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Abstract— People listen to music using iTunes more than any 
other media player currently available. Most media players have 
visualizers that can be placed on the screen to give the music more 
excitement. The problem with this is that visualizer software 
limits lighting effects simply to the screen and no where else. 
Light controllers exist, but for a high price and with no easy-to-
use interface. We propose a plug-in for iTunes that gives the user 
an easy-to-use interface that controls incandescent lights of 
various colors to bring the visualizer out of the screen and bring 
color and excitement to the user’s environment.  
 

I. INTRODUCTION  

ur design moves music visualizations constrained to the 
iTunes window out into the room in terms of actually 
realizing an external light visualization through the 

control of incandescent lights. This solution will provide an 
appropriate visual stimulation to complement the audio 
experience of iTunes users. Users would like to be able to 
bring life to their music and do away with the isolation of the 
computer screen. While devices already exist to dim lights in 
response to music, they do not give the user a GUI (Graphical 
User Interface) from which they can control what audible 
frequency ranges the lights will interact with. iLights allows 
users the ability to plug-in four incandescent lights and have 
them interact with the beat of the song playing in real time. 
Users can select which range of the audible spectrum they want 
each channel to react to through the iTunes plug-in. The user 
sees a display of the frequency spectrum output of the song to 
allow band selection to be done in a straightforward manner. 
The user is supplied with four selectable ranges for four 
different channels of lights to react in response to treble, bass, 
mid-range, or any other variation of the audible spectrum. 
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A. Requirement Specifications  

1. Deliver up to 500W X 4 output channels, 2000W max. 
2. Go from off to fully illuminated and back off again in 

under 75ms (800bpm). 
3. Lights to be fully illuminated within 80ms of audio 

input (Human sync detection range). 
4. iTunes plug-in that allows users to select frequency 

band between 20 - 20,000Hz as trigger for each 
channel. 

5. USB 1.0 link to Arduino microcontroller. 
6. Documented source code + user manual 

II.  DESIGN  

A. System Overview 

Our basic system design includes a computer with the iTunes 
program and our GUI along with a frequency analyzer. The 
software communicates with our hardware via serial port 
communication from a USB 2.0 output on the computer to a 
USB 1.0 connection that will tie into the input of the iLights 
Hardware Box. The hardware box contains two 
microcontrollers, 120VAC/5VDC power supply, and the Triac  
control circuitry, all needed to use the frequency information 
provided by our GUI to obtain control of the four channels 
where the incandescent lights will be connected. Each channel 
will be capable of safely handling 500W.  
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B. Block Diagram 

 
Fig. 1: System Block Diagram - Through the GUI the user selects 
frequency ranges which are then communicated through the two 
Arduinos leading to the controlling of the four power triacs controlling 
each channel. 

C. System Specification  

iTunes interface 

Our software is able to communicate with iTunes in order to 
control lights based on the music being played.  The software 
also allows the user to select frequency ranges that will control 
each iLights electrical outlet.  From data extracted from iTunes 
we determine the power contained in each of four user selected 
frequency bands and use this to set the amplitude of the 
connected lights. Due to the physical properties of triacs, the 
fastest we can adjust the power sent to our lights is 120 times 
per second.  This is more than adequate for reacting to music. 
This data is updated, packaged and sent via USB at the fastest 
frame rate available.  Our monitor can only update at 60 
frames per second, but debug info tells us that we are able to 
update our lights at up to 75 frames per second when there is 
little other CPU load.   
 
To extract frequency data we use the software development kit 
released by apple for visualization development.  Using this we 
implement a Dynamic Link Library, call a *.dll file.  Once 
iTunes is displaying the visualizer it sends messages to update 
the frame at the desired frame rate.  With these messages it 
passes a pointer to information about the song playing which 
includes frequency data.  iTunes does a FFT (Fast Fourier 
Transform) of the audio being played and makes available the 
power contained in 512 samples spaced linearly from 20 Hz to 
20kHz.  The data provided is amplitude as an 8 bit integer at 
each step.  
 

OpenGL is used to display this data graphically.  Our display is 
built on “VizKit”, an open source framework for building an 
iTunes visualizer [9]. This code took care of initializing an 
OpenGL window inside of the iTunes provided frame, and had 
features similar to what we were interested in.  Or visualizer 
displays a spectrograph in the center of the screen with some 
debug info (such as frame rate) in the upper left hand corner. 

 
Fig 2: iLights Visualizer Window 
 

We added to this framework CSerial [10], an open source 
project that makes it easier to set up and transmit via the COM 
port in Windows.  Using this class we are able to write to the 
port in the same way as outputting to the terminal.  We have a 
method, called iLightsSerial, which is called every time we 
receive a renderframe message from iTunes and passed the 
frequency information.  This function finds the power average 
in each of the 4 selected bands, stores them as 2 char ANSI 
string values, and transmits the values via the COM port.  The 
averages are scaled to be between 0 and 63 in order to fit in 6 
bit parallel ports used by our microcontrollers.  The final 
transmitted data is a 9 byte char array.  Each channel receives a 
2 byte message, and there is one additional character for ANSI 
string termination.  
 
The user interface is implemented inside of the visualizer 
options menu.  When the user selects visualizer options iTunes 
send our plug-in a message and we open a windows created 
using Microsoft Foundation Classes (MFC).  These include the 
standard user interface libraries for Windows.  The initial 
windows is an “about” tab, crediting team Soules of Umass 
SDP 2009.  The next tab contains the actual user options.  
Here the user is presented with 8 sliders, a low and high 
frequency cut for each channel.  The value the slider position 
corresponds to in Hertz is displayed next to each slider.  The 
user interface is kept to this minimal slider selection for 
simplicity.  To turn of a channel completely the user just 
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moves the high slider above the low cut slider.  The average 
power can never be greater than 0 on this range.  There is also 
a save button on this page which, when clicked, backs up the 
user selected values to a text file.  This way the values will 
remain even after iTunes is closed. 

 
Fig 3: iLights Visualizer Options GUI 
 

Serial Port Communication Link   
 
The link from the pc to the microcontroller that triggers the 
switching circuitry is composed of two parts: one Arduino 
prototyping board with an Atmega168 that has been 
programmed to read the serial port data and another which has 
been programmed for triggering the triac circuits. The first part 
consists of C++ code written with Microsoft Visual Studio 
Professional which translates and transmits the extracted 
frequency data over the serial port; this code interprets the 
frequency data so that we can send a simple string to the first 
Arduino board which will be used as an index for a lookup 
table. The Serial.Read() function allows us to read a byte from 
the serial port for each of the four channels. We use two pins 
on each microcontroller to flag when we have data ready to be 
sent and when we are ready to receive data. Once we flag that 
we have data ready we wait until we get a response that it is ok 
to send the data before transmitting. This provides a simple 
handshaking protocol that ensures the data flow is always in 
control. 
 
The task of providing control signals for the hardware is 
accomplished using a second Arduino. The reason for this is 
that receiving serial data hinders our ability to simultaneously 
transmit control signals because there is simply too much 
computation involved for the microcontrollers. The first 
microcontroller receives a string, at 38400 baud, which 
contains 6 bit values for each of the four channels. These 
values represent the average power across the particular 
frequency band. This data is stored until the second Arduino 
requests new values.  At this point the data is transmitted over 
ports B and C of the Atmega168 used as parallel ports.  

Parallel data is sent extremely fast since only bitwise data is 
needed, and this allows for efficient communication of our 
signals. Using two ports allows us to send update data for two 
channels simultaneously, meaning it only takes two 
transmissions to send all four values. 
 
The second microcontroller receives our parallel data and 
converts it into dimming delays using a lookup table.  This 
table is scaled in a logarithmic manner in order to match 
human perception of brightness.  The dimming is 
accomplished using a critically timed loop to properly set the 
phase delay at which to trigger each channel. This loop is run 
approximately 1300 times over every full 120Hz AC signal, 
which was discovered empirically. To dim the lights to the 
specified level we simply run this loop a certain number of 
times, determined by the proper value from the lookup table, 
before sending the signal to trigger the power for that channel. 
This gives us a very consistent way to maintain phase control. 
Communicating with our pc in this way has allowed us to 
continuously send updating signals to each of the four lights at 
around 80 times a second without any visual delay between the 
music and the properly dimmed lighting. 
 
Light Control Circuitry 
 
The idea for controlling the light is to use a type of phase 
control. AC mains are rated at 120VAC at 60Hz. The amount 
of power provided to an incandescent light is essentially the 
area under the sinusoidal wave. If we are able to supply half 
the amount of power during every half-cycle then we 
essentially deliver half the power to the incandescent bulb 
which in return creates an affect on the incandescent light bulb 
being half as bright as usual. The use of a power triac is ideal 
for this. This is demonstrated in the figure below: 

 
Fig. 4:  Graph of AC mains (GREEN) and supply of half of each half-
cycle to the load (RED).  Graph also represents triggering the triac on to 
dim the bulb at half of its full brightness (RED). 

 
The power triac is a device of the Thrysistor family which 
allows for switching of AC loads either resistive or inductive. 
The triac of choice is the BTA20-700CW snubberless triac 
from ST Microelectronics. The way the device works is by 
attaching the mains (120VAC) to pins A1 and A2. Pin G is a 
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gate triggering pin which will activate the triac and allow 
current to flow through pins A2 and A1. The uniqueness of this 
device is its capability to block the current flow when the AC 
main voltage crosses zero. In order to allow current to flow the 
triac need to be triggered after every zero crossing of the AC 
mains. This property makes the device ideal for phase control 
of our lights. The triac is capable of withstanding 700V at 20 A 
which exceeds our design requirements of 500W. Each channel 
contains its own power triac for individual control of each 
channel.  
 
The second device used to control the lights and interface with 
the microcontroller is a Triac Driver IC. This device is needed 
to isolate the sensitive microcontroller from the AC main lines 
that the power triac will be controlling. The device of we chose 
is the MOC3012, Opto-isolated Triac Driver. This device is a 
random phase opto-isolated triac driver. Within the device 
there is an infrared light emitting diode which optically triggers 
an infrared sensitive triac. When this triac is triggered it will 
supply an output trigger for the power triac therefore safely 
preventing any current from entering the microcontroller.  

 
 

 
Fig. 5:  Basic structure of design for controlling a single incandescent 

light bulb or channel.  

 
The last major component of the light control circuitry is a 
zero cross detection circuit. This is needed in our design so 
that the system knows when the AC mains cross zero and 
therefore calculate a delay after the zero crossing to switch the 
power triac to its on state. This has been achieved easily with 
the use of an Atmega168. Atmel released a bulletin that the 
Atmega can be directly connected to the AC mains with 1Meg 
resistors at the input pins and due to the internal clamping 
diodes it was possible to achieve a zero cross detection circuit. 
The clamping diodes keep the input pins between Vcc + 0.5V 
and Vg – 0.5V. The 1Meg resistors limit the current below its 
1mA max up to 1000V. This allows our system to recognize 
when the AC main crosses zero in order to set-up a delay 
trigger to the power triac. With this trigger to the power triac 
we can control where within the half cycle we trigger the 
power triac depending on the delay from that zero cross. This, 
in return, gives us the ability to control the power to the 
incandescent light bulb and vary its brightness with the 

microcontroller.  
 
Both triacs in our design are snubberless meaning that there is 
no need for external components such as RC or RLC circuits to 
suppress transient spikes from the mains or the load.  
 
 
 
Electromagnetic Interference and Compatibility 
 
Since our project involves switching large amounts of AC 
current very quickly, electromagnetic interference (EMI) is an 
issue we are going to have to address. When large amounts of 
current are switched in close proximity to other circuits, they 
can induce a current in those circuits which will have a 
detrimental effect on performance. For example, in our circuit 
we are counting zero-crossings of the AC main line and also 
triggering the triacs with digital circuitry. The Electromagnetic 
(EM) fields produced by the triac output lines could induce a 
current in the zero-cross circuit and produce a fake zero 
crossing or it could induce a current in the triac triggering 
circuit and trigger the triac when it is not supposed to be 
triggered. The Federal Communications Commission (FCC) 
has passed many restrictions on the amount of EMI consumer 
electronics are allowed to produce. A product which produces 
too much EMI will degrade the performance of other 
products/appliances nearby. 
 
To help reduce EMI in our circuit, we are going to first use 
capacitors to couple the ac lines with the ground lines. This 
will prevent sharp and sudden voltage spikes due to ground 
noise. Y-type capacitors are ideal for this because they are 
double insulated and designed for this purpose. X-type 
capacitors can be used between ac line and neutral together to 
further reduce interference. We will also arrange our circuit in 
such a way that minimizes EMI. The best way to do this is to 
have small loops on the PCB and to have lines carrying large 
amounts of current going in opposite directions. When two 
lines with equal current go in opposite directions, they each 
produce an EM field equal but opposite to the other. This will 
dramatically reduce our emissions. Large loops in a path 
amplify the ability of that path to conduct and radiate noise. 
Prevention of this type of noise will be done by keeping high-
current loops far away from low-current loops and by keeping 
loops as small as possible. 
 
PCB Design 
 
This PCB design posed a particular challenge because of the 
high power requirements of iLights. The average PCB you 
encounter everyday consists of a variety of resistors, 



Final Draft Report 
 

5 

capacitors, and integrated circuits. Integrated circuits, such as 
the Atmega 168, operate at a very low pin current of 40mA. 
PCB traces of minimal thickness will suffice for carrying this 
amount of current. The vast majority of PCBs also use DC 
current or small AC currents because it is safer, easier to build 
and more cost efficient. The iLights PCB, however, is required 
to switch up to 2kW of power at 20 amps and 120VAC. The 
reason this is a special case is because standard PCB traces are 
1 oz/ft2 thick; nowhere near thick enough to carry so much 
current without burning up. Based on calculations it was 
determined that the iLights PCB required a trace thickness of 4 
oz/ft2. 1oz/ft2 is the thickness of copper achieved by stretching 
1oz of copper uniformly over an area of 1 ft2; it is roughly 
1.38 mils.  
 
To calculate minimum trace width, a few parameters had to be 
taken under consideration. First, the maximum current 
expected in the trace must be known. For iLights, an output of 
500W at 120VAC per channel results in a total of 4.66A (5A 
used in calculations to be on the safe side) required per 
channel. With four output channels this is a total of 
approximately 20A going into the PCB. The second parameter 
needed to calculate trace width is the maximum permissible 
temperature rise of the trace. Since this PCB is going to be 
surrounded by four heat sinks at a temperature of 140°F (more 
on this in the next section) and in an enclosure, a maximum 
temperature rise of 70°F was selected. This value was selected 
based on a 70°F ambient room temperature. The final 
parameter needed is the thickness of the copper. Values of 1-3 
oz/ft2 were used in the calculation and trace width could not be 
brought below 108 mils for traces in open air. Traces in open 
air are on an outer layer of the PCB and can therefore dissipate 
more of their heat into the air than a trace on an inner layer 
would be able to. This allows them to be thinner and carry the 
same amount of current without burning up. When a copper 
thickness of 4 oz/ft2 (5.5 mils) was selected, the minimum 
trace width dropped to 80 mils; a much more practical value. A 
thickness of more than 100 mils would not work because it 
would not be able to pass under the triacs without connecting 
two of the triac pins. The same parameters as outlined above 
were used to calculate the minimum trace thickness of the 5A 
lines. They are 40 mils thick although a value of 14 mils is all 
that was required. In case of an accidental power surge, each 
output will be able to handle 12A before being destroyed. This 
is a useful protection feature in case the 5A fuse on each output 
does not trip fast enough to protect the PCB trace from 
burning. 
 
To connect external power to the board and distribute power to 
the output channels, arrays of plastic screw terminals were 
selected. These are the ideal way to connect a PCB to high-

current inputs and outputs because they have high ratings 
(700V/60A) and are easy to use and service. They do not wear 
out from excessive use and they pose no risk of accidental 
electrocution. They are also much easier to connect and 
reconnect than soldering leads directly onto the board. 
Also, since the traces are carrying 120VAC, sharp turns greater 
than 45 degrees were avoided. When alternating currents are 
redirected to quickly, they produce large amounts of EMI. This 
occurs because as traces bend more and more, their properties 
change from that of a wire to that of an antennae. This is 
undesirable because not only will iLights produce large 
amounts of EMI and interfere with other electronics, but it will 
act as a receiver for other signals and can have signals injected 
into the line. This phenomenon also occurs at “T” junctions so 
they were avoided. Highly current-sensitive devices, such as 
the two Atmega168 ICs and triac opto-isolators, were placed 
on the opposite end of the board to minimize the risk of 
induced currents in the pins. 
 
Heat Control Design 
 
Closely related to the design of the PCB itself is the design of 
the thermal management system for the PCB. An overheating 
PCB causes two main issues: First, if the copper traces get too 
hot they will melt and not conduct anymore. Second, the triacs 
used in iLights have a maximum operating temperature of 
125°C. If this is exceeded, currents can be arbitrarily induced 
in the doped materials and the triac may trigger when it is not 
supposed to or may not trigger when it is supposed to. It can 
also melt if it gets too hot. Initial tests with a small aluminum 
heat sink showed that switching 500W of power per channel 
produces a lot of heat. Within minutes of being operated at 
450W one of the triacs heated up to over 93°C. This triac was 
only operating at 90% load and was in the open air; larger heat 
sinks were needed to prevent overheating.  
 
The first and easiest method employed for cooling the triacs 
and PCB was to spread large sheets of copper over the top and 
bottom layers of the PCB. To do this, copper rectangles were 
placed over the high-voltage traces on the board, allowing 
them to act as heat sinks and dissipate small amounts of heat. 
This method works to prevent overheating of smaller 
components quite well, but was not enough for this project. In 
conjunction with the traces acting as heat sinks, large 
aluminum heat sinks were attached to the triacs to replace the 
smaller ones used during testing. To calculate the size of the 
heat sinks, the thermal properties of the triac and heat sink had 
to be looked at and the following equation had to be used:  
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Where:  
RHA = thermal resistance of the heat sink 
RJC = thermal resistance of triac junction to case = 2.1 °C/W  

(from triac datasheet) 
RCH = thermal resistance of triac case to heat sink = 1 °C/W  

(worst-case value for thermal epoxy) 
TJ = maximum allowed temperature of heat sink = 140°F =  

60°C (low temperature of computer) 
TA = ambient temperature of air around heat sink = 75°F =  

24°C (high room temperature) 
P = heat energy dissipated by triac = 5.1W (from triac  

datasheet and explained below) 
 

Figure 1 shows heat dissipation vs. operating current for the 
BTA-20 triac we selected. The maximum current each triac 
will be handling is 5A since each output will be limited by a 
5A fuse. A phase angle of 180° is a full power cycle and 
therefore will dissipate the most heat, so to find heat 
dissipation we look at the top plot in the figure (α = 180°. 
From the figure it is evident that when operated at 5A, the triac 
will dissipate roughly 5.1W of heat.  

 
Figure 1: Heat dissipation vs. operating current for BTA-
20 triac for different duty cycles 
 
Evaluating the above equation for the values shown produces a 

result of 3.96 °C/W. This means the heat sink 

must heat up less than 3.96°C for every Watt of heat released 
into it. The heat sink selected for use in iLights has a thermal 
resistance of 2.6°C/W.  The actual thermal resistance value of 
a heat sink is a function of airflow, and that will be addressed 
next. 

 
Since the triacs and heat sinks described earlier are in a sealed 
enclosure, a fan was needed to circulate the air and keep the air 
in the box as close to ambient as realistically possible. If there 
were no fan, the air in the enclosure would heat up until it 
eventually got to the same temperature as the heat sinks. As the 
temperature difference between the air inside the enclosure and 
heat sinks got smaller, the rate of heat exchange would slow 
and the heat sinks themselves would get hotter. After a long 
time, the air inside the enclosure would be the same 
temperature as the triacs with no heat sinks on them; over 
125°C. The important parameters for a fan are the air flow rate, 
and the noise it produces. An AC fan was selected as opposed 
to a DC fan because we already have 120VAC lines in the 
enclosure and adding a separate 12VDC supply solely for the 
fan was not practical. To calculate the minimum airflow 
needed, the following equation was used: 
 

 
 
Where:  
V = airflow rate [m3/hr] 
f = altitude factor (for altitudes less than 1000m, f = 3.5 
QV= heat radiated in enclosure = 25W (four heat sinks at 5.1W 
and a little overhead) 
Ti = highest allowed temperature inside enclosure 
To = highest anticipated temperature outside enclosure  
Ti-To = ∆T = 2°C 
 
A somewhat arbitrary selection of ∆T = 2°C was made to 
ensure the air in the enclosure was as close to the outside 
(ambient) air as possible. Solving the equation for the above 

values gives a minimum required airflow of  
m3/hr. Converting this to the more standard unit of CFM (cubic 

feet per minute) gives V  25.75 CFM. The fan selected for 
this project has a flow rate of 27 CFM and a noise rating of 
22dB. Standard laptop fans operate at around 30dB and are not 
too loud, so a noise rating of less than 30dB was the goal.  
 
As mentioned earlier, the thermal resistance of a heat sink is a 
function of the air flow over it. The calculated thermal 
resistance of the triac heat sinks assumes no airflow, so it is an 
absolute maximum resistance. Thermal resistances lower than 
the calculated 3.96 °C/W would result in lower heat sink 
temperatures. Now that an airflow rate has been determined, a 
slightly different version of the heat sink equation will be used 
to calculate the actual temperature of the heat sink.  
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Note Figure 2 shows how the thermal resistance of the heat 
sink changes with airflow. Converting between air velocity and 
feet per minute is a function of the radius of the fan. The 
selected fan has a radius of 1.3” and an airflow of 27 CFM, 
which translates to a velocity of roughly 732 ft/min. Figure 2 
shows that with this air velocity, the thermal resistance of the 
heat sink will drop from 2.6°C/W to 1.2°C/W. This will be the 
value used to calculate the operating temperature of the heat 
sinks. 
 
Using the above numbers, the operating temperature of the 
heat sinks can be calculated by using the heat sink equation: 
 

 
TJ = 44.91°C (113°F) 
 
The above calculation assumes an ambient temperature in the 
room of 24°C (75°F). In a room at 24°C with the heat sink and 
fan selected, the maximum temperature of the heat sinks will  
 
Figure 2: Thermal resistance vs. air velocity and mounting 
surface temperature rise vs. heat dissipated. 
 
be 45°C (113°F). This value is an acceptable value because 
laptop heat sinks routinely reach temperatures of 180°F before 
they start to malfunction, and these are considered safe for 
consumers. Of course the final temperature of the heat sink is 
dependent upon the ambient temperature, but with the flow rate 
and heat sinks selected the air inside the enclosure will be 2°C 
(3.6°F) warmer than room temperature ambient and the heat 
sink will be 21°C (38°F) warmer than the air inside the 
enclosure (this value of 21°C was calculated by hand, however 
Figure 2 shows it is correct because when 5.1W are dissipated 
by the heat sink there is expected to be a 21°C raise above 
ambient). This means that at all times the heat sink will be 
23°C (41.6°F) warmer than the air in the room. This relatively 
small temperature difference will ensure the triacs stay cool 
and operate reliably all the time. It will also stop the plastic 
enclosure from melting. 
 
 

III.  PROJECT M ANAGEMENT  

A. System Overview 

Our team as split the project up into four main areas: 
Chris Merola is responsible for designing the easy-to-use 

GUI along with the iTunes plug-in with iTunes SDK to extract 
frequency information and transmit via COM port. He is  also 
lead engineer for overall project. 

Nicholas Wittemen has developed the embedded systems 

design for the project.  Receiving the serial communication 
from the iTunes plug-in and implementing the phase delay 
timing in software on Arduino boards.  He is also the team 
coordinator. 

Jose D. Figueroa designed the zero crossing circuit along 
with the triac circuit which handles 4 channels at 500W each 
for 2000W total max power, and taking all safety precautions 
when interfacing with a live AC source. He is also the 
webmaster responsible for updating and maintaining Teams 
Soules’ website.  

Matthew C. Ryder as worked on reducing EMI 
(Electromagnetic Interference) so that our product functions 
properly within its contained environment. He also designed 
the printed circuit board and derived solutions to heating issues 
for the final enclosure. 
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