

Intel Xeon Phi (MIC)

User’s Manual
Programming and Execution Manual

Andreas Diavastos
October, 2014

Version 1.0

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 1

Contents

Contents .. 1

1 THE CYI XEON PHI CLUSTER ... 3

CYI XEON PHI CLUSTER TECHNICAL CHARACTERISTICS ... 4

2 LOADING LIBRARY MODULES .. 5

3 COMPILING FOR THE MIC PROCESSORS ... 7

4 EXECUTING ON MIC PROCESSORS ... 8

EXECUTE USING MICNATIVELOADEX: ... 8

EXECUTE NATIVE (CO-PROCESSOR ONLY MODEL): .. 8

5 INSTALL QPHIX FOR THE XEON PHI .. 10

INSTALLATION GUIDE: ... 10

Installing libxml2 library .. 11

Installing QMP .. 12

Installing QDP++ ... 13

Installing QPhix ... 15

6 INSTALL QPHIX ON PROMETHEUS ... 17

INSTALLATION GUIDE: ... 17

Installing libxml2 library .. 18

Installing QMP .. 19

Installing QDP++ ... 20

Installing QPhix ... 22

7 INSTALL QPHIX ON CY-TERA .. 23

INSTALLATION GUIDE: ... 23

Installing libxml2 library .. 24

Installing QMP .. 25

Installing QDP++ ... 26

Installing QPhix ... 28

8 INTEL XEON PHI CO-PROCESSOR SOFTWARE DEVELOPER’S GUIDE .. 29

HARDWARE POINT-OF-VIEW .. 29

Intel MIC Architecture Core ... 31

Cache Organization and Hierarchy ... 33

Performance Monitoring Unit – Performance Counters ... 35

Memory Controller .. 35

VPU and Vector Architecture .. 35

Intel Xeon Phi Coprocessor SMC Control Panel ... 36

Ganglia* Support .. 36

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 2

Table of Figures

FIGURE 1: LOGICAL DESIGN OF THE CYI XEON PHI CLUSTER (PHI.CYTERA.CYI.AC.CY) 3

FIGURE 2: QPHIX INSTALLATION LOGICAL DIAGRAM 10

FIGURE 3: INTEL XEON PHI (KNIGHTS CORNER) HIGH-LEVEL MICRO-ARCHITECTURE 30

FIGURE 4: INTEL MIC ARCHITECTURE CORE OVERVIEW 32

FIGURE 5 : CORE PIPELINE COMPONENTS 32

FIGURE 6 : GANGLIA* MONITORING SYSTEM DATA FLOW DIAGRAM 37

Table of Tables

TABLE 1: DESCRIPTION OF CO-PROCESSOR COMPONENTS .. 30

TABLE 2 : CACHE HIERARCHY ... 34

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 3

1 The CYI Xeon Phi Cluster

This manual was prepared for the GPU ClusterWare project at the Cyprus Institute (CYI). All

information are based on the CYI Xeon Phi Cluster. So you will find information in this manual

on how to connect, how to compile and how to execute on this specific cluster. Most of these

information though are general and can be extrapolated for other similar systems.

CYI Xeon Phi Cluster: phi.cytera.cyi.ac.cy

 Connect using an SSH client (putty, etc.)

 This will connect you to the head-node of the Phi Cluster (ph04).

 There are a total of 4 ph nodes (ph04, ph03, ph02, ph01). Each one of these has 3 MIC

nodes connected to it (MIC0, MIC1, and MIC2). Ph04 also has 2 nodes with each one

having 2 Kepler cards. Figure 1 present the logical design of the Xeon Phi Cluster.

ph02 ph03 ph04

cwg01 cwg02

GPU

Communication switch

cwp01 cwp02

ph01

GPU GPU GPU MIC0 MIC1 MIC0 MIC1

MIC0 MIC1

MIC2

MIC0 MIC1

MIC2

MIC0 MIC1

MIC2

MIC0 MIC1

MIC2

Figure 1: Logical Design of the CYI Xeon Phi Cluster (phi.cytera.cyi.ac.cy)

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 4

CYI Xeon Phi Cluster Technical Characteristics

ph0* nodes (ph04, ph03, ph02 and ph01):

PROCESSOR Intel Xeon CPU E5-2640 v2
FREQUENCY 2.0GHz (1.2GHz – 2GHz)
OF CORES 8
OF THREADS (TOTAL) 16
CACHE SIZE 20MB

cwg0* nodes (cwg01 and cwg02):

PROCESSOR Intel Xeon CPU E5-2650
FREQUENCY 2.0GHz
OF CORES 8 (cat /proc/cpuinfo shows 16)
OF THREADS (TOTAL) 16 (cat /proc/cpuinfo shows 32)
CACHE SIZE 20MB

MIC* nodes (MIC0, MIC1 and MIC2):

PROCESSOR Intel MIC 7120P
FREQUENCY 1.2GHz
OF CORES 61
OF THREADS (TOTAL) 244
CACHE SIZE 512KB

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 5

2 Loading Library Modules

If you want to compile and run applications on the Xeon Phi nodes then you must first load the

modules needed for the MIC processor (compilation, execution, parallel libraries modules, etc.).

 To see which modules are available for loading:

module avail

 To load the modules for MIC:

module load ictce/6.1.5

 To see the modules that are load now:

module list

 To unload a specific module (in any case you need to do so):

module unload ictce/6.1.5

The ictce/6.1.5 module contains the Intel compilers (icc and ifort), Intel MPI and Intel Kernel

Library.

Automatic load of modules when logging in:

When you logout of your account from the Phi Cluster the modules that are loaded will be

unloaded, thus you need to load the modules every time you login to the cluster. To avoid this

you can do the following in order to automate this process and let the system automatically

load the modules you want every time you login:

1. Login on the Phi Cluster

2. Go to your home directory (if not already there):

cd ~

3. Open the .bashrc file with a text editor:

vim .bashrc

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 6

4. At the end of the file (where it says “# User specific aliases and functions”), write the

commands for loading the modules you want (just like you would execute them in a

terminal):

module load ictce/6.1.5

This is an example file of a simple .bashrc file with the module load commands:

#.bashrc

 #Source global definitions

 if [-f /etc/bashrc]; then

 . /etc/bashrc

 fi

 #User specific aliases and functions

 module load ictce/6.1.5

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 7

3 Compiling for the MIC Processors

After loading the necessary modules you have to cross compile for the MIC processors. To do so

you have to connect on one of the Phi Cluster nodes (ph04, ph03, ph02, ph01). Compile using

the icc compiler and the “-mmic” flag.

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 8

4 Executing on MIC Processors

Execute using micnativeloadex:

 This is a script that takes as a parameter the binary file to be executed on the MIC

processors and returns the results. It offers several parameters. Execute

micnativeloadex –h to see all available options.

 To use this script you first need to set the SINK_LD_LIBRARY_PATH to the location of the

Intel compiler runtime libraries for Intel Xeon Phi.

Example:

export

SINK_LD_LIBRARY_PATH=/home/buildsets/eb141118/software/impi

/5.0.1.035-iccifort-2015.0.090/mic/lib

 micnativeloadex ./main –a “1024 1”

** Remember that these must be executed after loading the ictce/6.1.5 module **

Execute native (Co-Processor only Model):

OpenMP Applications:

 To execute native on the MIC processors you have to be on one of the MIC boards

(MIC0, MIC1 and MIC2). Use ssh to connect from the phi nodes to the MIC nodes.

Example:

 ssh mic0

 Then you have to add the above to your LD_LIBRARY_PATH. And then execute just like

in any other Linux machine.

Example:

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 9

export

LD_LIBRARY_PATH=/home/buildsets/eb141118/software/impi/5.0.1.035

-iccifort-2015.0.090/mic/lib:$LD_LIBRARY_PATH

export

LD_LIBRARY_PATH=/home/buildsets/eb141118/software/icc/2015.0.090

/lib/mic/:$LD_LIBRARY_PATH

./main 1024 1

MPI Applications:

 Create a file with the IPs of the nodes in the cluster that you want to use

o Name it ‘hostfile’

 Execute the following commands on MIC0 of the cluster (if you export on MIC0 then

there is no need to do the same on other MICs as the mpiexec default will be to pass all

environment variables to all ranks participating in the execution):

export

LD_LIBRARY_PATH=/home/buildsets/eb141118/software/impi/5.0.1.035

-iccifort-2015.0.090/mic/lib

export

LD_LIBRARY_PATH=/home/buildsets/eb141118/software/icc/2015.0.090

/lib/mic/:$LD_LIBRARY_PATH

export PATH=/home/buildsets/eb141118/software/impi/5.0.1.035-

iccifort-2015.0.090/mic/bin:$PATH

export I_MPI_FABRICS=shm:tcp

export OMP_NUM_THREADS=240

 Execute this on MIC0 (for 2 MIC nodes):

mpiexec -n 6 -machinefile hostfile ./hello

My example for QPhix tests:

mpiexec -n 2 -machinefile hostfile ./time_dslash_noqdp -x 32 -y 32 -z 32 -t

64 -by 4 -bz 4 -pxy 1 -pxyz 0 -c 60 -sy 1 -sz 1 -minct 1 -compress12 -geom 1

1 1 2

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 10

5 Install QPhix for the Xeon Phi

In Figure 2 we show the logical diagram of the QPhix Installation for a multi-node Xeon Phi

Cluster. It basically shows the dependencies between the different libraries used.

QPhiX
 icpc – Intel C++ Compiler
 Intel MPI
 CML Proxy for multi-xeon

Phi execution

QDP++

 filedb
 libintrin
 qio
 c-lime
 xpath_reader

QMP

libxml2

Figure 2: QPhix Installation Logical Diagram

Installation Guide:

NOTE 1: The configuration and compilation scripts (makefiles) will be executed on the host

machines (the Head Node of the CYI Xeon Phi Cluster) so for all the libraries and QPhix, the

compilation must be done as cross-compile for the MIC processors.

NOTE 2: These instructions are specific and only for the CYI Xeon Phi Cluster on 8th October

2014. This is the time I had not root access on the cluster and the 4 ph0* nodes weren’t the

same (meaning the machines didn’t have the same image installed – basically they didn’t have

the same libraries e.g. autoconf, compilers, etc.)

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 11

Installing libxml2 library

When running QPhix you will need the libxml2 library for parsing xml files that may be

generated as results. If you don’t have root access on the machine then you can install this

library locally on your personal account. These are the instructions to do so:

1. Connect on the CYI Xeon Phi Cluster Head Node (ph04)

2. Download the compressed library file from:

http://xmlsoft.org/sources/

3. Un-compress the file using:

tar –xzvf libxml2-2.9.1.tar.gz

4. Configure the library prior while giving as input the new path to the library installation

folder (if you don’t give the new path (with –prefix=) then the default installation folder

will be /usr which you may not have permissions to install anything):

my example:

 CC=icc CXX=icc CFLAGS="-mmic" CXXFLAGS="-mmic" LDFLAGS="-mmic" \

 ./configure --prefix=/home/adiavastos/applications/libxml2-2.9.1/

--host=x86_64-k1om-linux --without-python

5. Compiler the library:

make –j

6. Install the library:

make install

REFERENCES:

 http://scicom.cmm.uchile.cl/pmwiki.php/KB/Blast-XeonPhi

 http://xmlsoft.org/sources/

http://xmlsoft.org/sources/
http://xmlsoft.org/sources/

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 12

Installing QMP

1. Connect on the Xeon Phi Cluster Head Node (ph04)

2. Connect using ssh on ph03 (this is because ph04 is missing the autotools for autoconf,

automake, etc.)

3. Download the compressed library file from here:

https://github.com/usqcd-software/qmp

4. Transfer the uncompressed file on the ph03 machine

5. Go into QMP directory

cd qmp

6. Execute these commands:

aclocal

autoconf

automake

7. Go back to the Cluster’s Head Node (ph04)

8. Create a build directory inside the qmp directory:

mkdir qmp-build

9. Configure the library prior while giving as input the new path to the library installation

folder (if you don’t give the new path (with –prefix=) then the default installation folder

will be /usr which you may not have permissions to install anything):

my example:

./configure CC=mpiicc --prefix=/home/adiavastos/applications/qmp/qmp-

build CFLAGS="-openmp -mmic -std=c99" --host=x86_64-k1om-linux --with-

qmp-comms-type=MPI

10. Compile QMP:

make –j NOTE: Check for possible errors

11. Install QMP:

make install NOTE: Check for possible errors

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 13

Installing QDP++

1. Connect on the Xeon Phi Cluster Head Node (ph04)

2. Connect using ssh on ph03 (this is because ph04 is missing the autotools for autoconf,

automake, etc.)

3. Download the compressed library file from here:

http://usqcd-software.github.io/qdpxx/

4. Transfer the uncompressed file on the ph03 machine

5. Go into QDP++ directory

cd qdp++

6. Execute these commands:

aclocal

autoconf

automake

7. Go back to the Cluster’s Head Node (ph04)

8. Create a build directory inside the qdp++ directory:

mkdir qdp++-build

9. Download and move THE CONTENTS of these libraries into the appropriate folder

(…./qdp++/other_libs):

a. filedb:

From : https://github.com/usqcd-software/filedb

Into folder : .../qdp++/other_libs/filedb/

b. libintrin:

From : https://github.com/usqcd-software/libintrin

Into folder : .../qdp++/other_libs/libintrin/

c. qio:

From : https://github.com/usqcd-software/qio

Into folder : .../qdp++/other_libs/qio/

d. c-lime:

From : https://github.com/usqcd-software/c-lime

Into folder : .../qdp++/other_libs/qio/other_libs/c-lime/

e. xpath_reader:

http://usqcd-software.github.io/qdpxx/

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 14

From : https://github.com/usqcd-software/xpath_reader

Into folder : .../qdp++/other_libs/xpath_reader/

NOTE: The folders already exist but are empty. Just move the uncompressed CONTENTS of

these files into the /qdp++/other_libs/.... folders without creating a new uncompressed

folder.

10. Configure the library prior while giving as input the new path to the library installation

folder (if you don’t give the new path (with –prefix=) then the default installation folder

will be /usr which you may not have permissions to install anything):

my example:

./configure CC=mpiicc CXX=mpiicpc --

prefix=/home/adiavastos/applications/qdp++/qdp++-build/ --host=x86_64-

k1om-linux --with-qmp=/home/adiavastos/applications/qmp/qmp-build/ --

enable-precision=double --enable-parallel-arch=parscalar --with-

libxml2=/home/adiavastos/applications/libxml2-2.9.1/ --enable-openmp

CFLAGS="-openmp -std=c99 -mmic" CXXFLAGS="-mmic -openmp -std=c++0x"

LDFLAGS=-openmp

11. Compile QDP++:

make –j NOTE: Check for any possible errors

12. Install QDP++:

make install NOTE: Check for any possible errors

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 15

Installing QPhix

1. Connect on the Xeon Phi Cluster Head Node (ph04)

2. Connect using ssh on ph03 (this is because ph04 is missing the autotools for autoconf,

automake, etc.)

3. Download the compressed library file from here:

https://github.com/JeffersonLab/qphix

4. Transfer the uncompressed file on the ph03 machine

5. Go into QPhix directory

cd qphix

6. Execute these commands:

aclocal

autoconf

automake

7. Go back to the Cluster’s Head Node (ph04)

8. Create a build directory inside the qmp directory:

mkdir qphix-build

9. Configure the library prior while giving as input the new path to the library installation

folder (if you don’t give the new path (with –prefix=) then the default installation folder

will be /usr which you may not have permissions to install anything):

my example:

./configure CC=mpiicc CXX=mpiicpc --

prefix=/home/adiavastos/applications/qphix/qphix-build --host=x86_64-

k1om-linux --with-qmp=/home/adiavastos/applications/qmp/qmp-build --

with-qdp=/home/adiavastos/applications/qdp++/qdp++-build --enable-

parallel-arch=parscalar --enable-proc=MIC --enable-soalen=8 --enable-

clover --enable-openmp --enable-cean --enable-mm-malloc CXXFLAGS="-

openmp -mmic -vec-report -restrict -

mGLOB_default_function_attrs=\"use_gather_scatter_hint=off\" -g -O2 -

finline-functions -fno-alias -Drestrict=__restrict__ -std=c++0x"

CFLAGS="-mmic -vec-report -restrict -

mGLOB_default_function_attrs=\"use_gather_scatter_hint=off\" -openmp -g

-O2 -fno-alias -std=c99" LDFLAGS=-openmp

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 16

10. Compile QPhix:

make –j NOTE: Check for possible errors

11. Install QPhix:

make install NOTE: Check for possible errors

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 17

6 Install QPhix on Prometheus

This section describes how to install QPhix library on Prometheus cluster at the CYI

Installation Guide:

NOTE 1: The configuration and compilation scripts (makefiles) will be executed on the login

node of Prometheus.

NOTE 2: These instructions are specific and only for the CYI Prometheus Xeon Cluster on 11th

December 2014.

NOTE 3: Xeon Nodes on Prometheus Characteristics:

Product Intel Xeon E5520
Frequency 2.27 GHz
of Cores 4
of Threads 8
SSE | AVX | MMX NONE

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 18

Installing libxml2 library

When running QPhix you will need the libxml2 library for parsing xml files that may be

generated as results. If you don’t have root access on the machine then you can install this

library locally on your personal account. These are the instructions to do so:

7. Connect on the Prometheus Login Node

8. Download the compressed library file from:

http://xmlsoft.org/sources/

9. Un-compress the file using:

tar –xzvf libxml2-2.9.1.tar.gz

10. Configure the library prior while giving as input the new path to the library installation

folder (if you don’t give the new path (with –prefix=) then the default installation folder

will be /usr which you may not have permissions to install anything):

my example:

 CC=icc CXX=icc \

 ./configure --prefix=/home/adiavastos/applications/libxml2-2.9.1/

--without-python

11. Compiler the library:

make –j

12. Install the library:

make install

REFERENCES:

 http://scicom.cmm.uchile.cl/pmwiki.php/KB/Blast-XeonPhi

 http://xmlsoft.org/sources/

http://xmlsoft.org/sources/
http://xmlsoft.org/sources/

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 19

Installing QMP

1. Connect to Prometheus Login Node

2. Download the compressed library file from here:

https://github.com/usqcd-software/qmp

3. Go into QMP directory

cd qmp

4. Execute these commands:

aclocal

autoconf

automake

5. Create a build directory inside the qmp directory:

mkdir qmp-build

6. Configure the library prior while giving as input the new path to the library installation

folder (if you don’t give the new path (with –prefix=) then the default installation folder

will be /usr which you may not have permissions to install anything):

my example:

./configure CC=mpiicc --prefix=/home/adiavastos/applications/qmp/qmp-

build CFLAGS="-openmp -std=c99" --with-qmp-comms-type=MPI

7. Compile QMP:

make –j NOTE: Check for possible errors

8. Install QMP:

make install NOTE: Check for possible errors

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 20

Installing QDP++

1. Connect to Prometheus Login Node

2. Download the compressed library file from here:

http://usqcd-software.github.io/qdpxx/

3. Go into QDP++ directory

cd qdp++

4. Execute these commands:

aclocal

autoconf

automake

5. Create a build directory inside the qdp++ directory:

mkdir qdp++-build

6. Download and move THE CONTENTS of these libraries into the appropriate folder

(…./qdp++/other_libs):

a. filedb:

From : https://github.com/usqcd-software/filedb

Into folder : .../qdp++/other_libs/filedb/

b. libintrin:

From : https://github.com/usqcd-software/libintrin

Into folder : .../qdp++/other_libs/libintrin/

c. qio:

From : https://github.com/usqcd-software/qio

Into folder : .../qdp++/other_libs/qio/

d. c-lime:

From : https://github.com/usqcd-software/c-lime

Into folder : .../qdp++/other_libs/qio/other_libs/c-lime/

e. xpath_reader:

From : https://github.com/usqcd-software/xpath_reader

Into folder : .../qdp++/other_libs/xpath_reader/

http://usqcd-software.github.io/qdpxx/

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 21

NOTE: The folders already exist but are empty. Just move the uncompressed CONTENTS of

these files into the /qdp++/other_libs/.... folders without creating a new uncompressed

folder.

7. Configure the library prior while giving as input the new path to the library installation

folder (if you don’t give the new path (with –prefix=) then the default installation folder

will be /usr which you may not have permissions to install anything):

my example:

./configure CC=mpiicc CXX=mpiicpc --

prefix=/home/adiavastos/applications/qdp++/qdp++-build/ --with-

qmp=/home/adiavastos/applications/qmp/qmp-build/ --enable-

precision=double --enable-parallel-arch=parscalar --with-

libxml2=/home/adiavastos/applications/libxml2-2.9.1/ --enable-openmp

CFLAGS="-openmp -std=c99 " CXXFLAGS="-openmp -std=c++0x" LDFLAGS=-

openmp

8. Compile QDP++:

make –j NOTE: Check for any possible errors

9. Install QDP++:

make install NOTE: Check for any possible errors

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 22

Installing QPhix

1. Connect to Prometheus Login Node

2. Download the compressed library file from here:

https://github.com/JeffersonLab/qphix

3. Go into QPhix directory

cd qphix

4. Execute these commands:

aclocal, autoconf, automake

5. Create a build directory inside the qmp directory:

mkdir qphix-build

6. Configure the library prior while giving as input the new path to the library installation

folder (if you don’t give the new path (with –prefix=) then the default installation folder

will be /usr which you may not have permissions to install anything):

my example:

./configure CC=mpiicc CXX=mpiicpc --

prefix=/fhgfs/prometheus/home/adiavastos/QPhix/qphix/qphix-build --

with-qmp=/fhgfs/prometheus/home/adiavastos/QPhix/qmp/qmp-build --with-

qdp=/fhgfs/prometheus/home/adiavastos/QPhix/qdp++/qdp++-build --enable-

parallel-arch=parscalar --enable-proc=SCALAR –-enable-soalen=1 --

enable-clover --enable-openmp --enable-cean --enable-mm-malloc

CXXFLAGS="-openmp -vec-report -restrict -

mGLOB_default_function_attrs=\"use_gather_scatter_hint=off\" -g -O2 -

finline-functions -fno-alias -Drestrict=__restrict__ -std=c++0x"

CFLAGS="-vec-report -restrict -

mGLOB_default_function_attrs=\"use_gather_scatter_hint=off\" -openmp -

g -O2 -fno-alias -std=c99" LDFLAGS=-openmp

7. Compile QPhix:

make –j NOTE: Check for possible errors

8. Install QPhix:

make install NOTE: Check for possible errors

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 23

7 Install QPhix on CY-TERA

This section describes how to install QPhix library on CY-TERA machine at the CYI

Installation Guide:

NOTE 1: The configuration and compilation scripts (makefiles) will be executed on the login

node of CY-TERA.

NOTE 2: These instructions are specific and only for the CYI CY-TERA Xeon Cluster on 11th

December 2014.

NOTE 3: Xeon Nodes on CY-TERA Characteristics:

Product Intel Xeon X5650
Frequency 2.67 GHz
of Cores 6
of Threads 12
SSE | AVX | MMX SSE4.2

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 24

Installing libxml2 library

When running QPhix you will need the libxml2 library for parsing xml files that may be

generated as results. If you don’t have root access on the machine then you can install this

library locally on your personal account. These are the instructions to do so:

13. Connect on the CY-TERA Login Node

14. Download the compressed library file from:

http://xmlsoft.org/sources/

15. Un-compress the file using:

tar –xzvf libxml2-2.9.1.tar.gz

16. Configure the library prior while giving as input the new path to the library installation

folder (if you don’t give the new path (with –prefix=) then the default installation folder

will be /usr which you may not have permissions to install anything):

my example:

 CC=icc CXX=icc \

 ./configure --prefix=/home/adiavastos/applications/libxml2-2.9.1/

--without-python

17. Compiler the library:

make –j

18. Install the library:

make install

REFERENCES:

 http://scicom.cmm.uchile.cl/pmwiki.php/KB/Blast-XeonPhi

 http://xmlsoft.org/sources/

http://xmlsoft.org/sources/
http://xmlsoft.org/sources/

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 25

Installing QMP

9. Connect to CY-TERA Login Node

10. Download the compressed library file from here:

https://github.com/usqcd-software/qmp

11. Go into QMP directory

cd qmp

12. Execute these commands:

aclocal

autoconf

automake

13. Create a build directory inside the qmp directory:

mkdir qmp-build

14. Configure the library prior while giving as input the new path to the library installation

folder (if you don’t give the new path (with –prefix=) then the default installation folder

will be /usr which you may not have permissions to install anything):

my example:

./configure CC=mpiicc --prefix=/home/adiavastos/applications/qmp/qmp-

build CFLAGS="-openmp -std=c99" --with-qmp-comms-type=MPI

15. Compile QMP:

make –j NOTE: Check for possible errors

16. Install QMP:

make install NOTE: Check for possible errors

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 26

Installing QDP++

10. Connect to CY-TERA Login Node

11. Download the compressed library file from here:

http://usqcd-software.github.io/qdpxx/

12. Go into QDP++ directory

cd qdp++

13. Execute these commands:

aclocal

autoconf

automake

14. Create a build directory inside the qdp++ directory:

mkdir qdp++-build

15. Download and move THE CONTENTS of these libraries into the appropriate folder

(…./qdp++/other_libs):

a. filedb:

From : https://github.com/usqcd-software/filedb

Into folder : .../qdp++/other_libs/filedb/

b. libintrin:

From : https://github.com/usqcd-software/libintrin

Into folder : .../qdp++/other_libs/libintrin/

c. qio:

From : https://github.com/usqcd-software/qio

Into folder : .../qdp++/other_libs/qio/

d. c-lime:

From : https://github.com/usqcd-software/c-lime

Into folder : .../qdp++/other_libs/qio/other_libs/c-lime/

e. xpath_reader:

From : https://github.com/usqcd-software/xpath_reader

Into folder : .../qdp++/other_libs/xpath_reader/

http://usqcd-software.github.io/qdpxx/

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 27

NOTE: The folders already exist but are empty. Just move the uncompressed CONTENTS of

these files into the /qdp++/other_libs/.... folders without creating a new uncompressed

folder.

16. Configure the library prior while giving as input the new path to the library installation

folder (if you don’t give the new path (with –prefix=) then the default installation folder

will be /usr which you may not have permissions to install anything):

my example:

./configure CC=mpiicc CXX=mpiicpc --

prefix=/home/adiavastos/applications/qdp++/qdp++-build/ --with-

qmp=/home/adiavastos/applications/qmp/qmp-build/ --enable-

precision=double --enable-parallel-arch=parscalar --with-

libxml2=/home/adiavastos/applications/libxml2-2.9.1/ --enable-openmp

CFLAGS="-openmp -std=c99 " CXXFLAGS="-openmp -std=c++0x" LDFLAGS=-

openmp

17. Compile QDP++:

make –j NOTE: Check for any possible errors

18. Install QDP++:

make install NOTE: Check for any possible errors

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 28

Installing QPhix

9. Connect to CY-TERA Login Node

10. Download the compressed library file from here:

https://github.com/JeffersonLab/qphix

11. Go into QPhix directory

cd qphix

12. Execute these commands:

aclocal, autoconf, automake

13. Create a build directory inside the qmp directory:

mkdir qphix-build

14. Configure the library prior while giving as input the new path to the library installation

folder (if you don’t give the new path (with –prefix=) then the default installation folder

will be /usr which you may not have permissions to install anything):

my example:

./configure CC=mpiicc CXX=mpiicpc --

prefix=/gpfs/h/cypro113u11/QPhix/qphix/qphix-build/ --with-

qmp=/gpfs/h/cypro113u11/QPhix/qphix/qphix-build/ --with-

qdp=/gpfs/h/cypro113u11/QPhix/qdp++/qdp++-build/ --enable-parallel-

arch=parascalar --enable-proc=SCALAR --enable-soalen=1 --enable-clover

--enable-openmp --enable-cean --enable-mm-malloc CXXFLAGS="-openmp -

vec-report -restrict -

mGLOB_default_function_attrs=\"use_gather_scatter_hint=off\" -g -O2 -

finline-functions -fno-alias -Drestrict=__restrict__ -std=c++0x -

msse4.2" CFLAGS="-vec-report -restrict -

mGLOB_default_function_attrs=\"use_gather_scatter_hint=off\" -openmp -

g -O2 -fno-alias -std=c99 -msse4.2" LDFLAGS=-openmp

15. Compile QPhix:

make –j NOTE: Check for possible errors

16. Install QPhix:

make install NOTE: Check for possible errors

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 29

8 Intel Xeon Phi Co-processor Software Developer’s Guide

Hardware Point-of-View

The Intel Xeon Phi Coprocessor comprises of up to 61 processor cores connected by a high

performance on-die bidirectional interconnect. In addition there are 8 memory controllers

supporting up to 16 GDDR5 channels (2 per memory controller) delivering up to 5.5 GT/s with a

theoretical aggregate bandwidth of 352GB/s.

Each core is a fully functional, in-order core, which supports fetch and decode instructions from

4 hardware thread execution contexts. In order to reduce hot-spot contention for data among

the cores, a distributed tag directory is implemented so that every physical address the

coprocessor can reach is uniquely mapped through a reversible one-to-one address hashing

function. This hashing function not only maps each physical address to a tag directory, but also

provides a framework for more elaborate coherence protocol mechanisms than the individual

cores could provide.

Core

L2

Core

L2

GDDR

MC
. . .

TD TD

C
o
r
e

L
2

C
o
r
e

L
2

G
D
D
R

M
C

. . .

T
D

T
D

Core

L2

Core

L2

GDDR

MC
. . .

TDTD

C
o
r
e

L
2

C
o
r
e

L
2

G
D
D
R

M
C

. .
 .

T
D

T
D

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 30

Figure 3: Intel Xeon Phi (Knights Corner) high-level Micro-architecture

In Figure 3 we show the high-level micro-architecture of the Intel Xeon Phi coprocessor (Knights

Corner version). Each of the 61 cores include the following units:

 512-bit wide vector processor unit (VPU)

 The Core Ring Interface (CRI)

 Interfaces to the Core and the Ring Interconnect

 The L2 Cache and the L2 pipeline and associated arbitration logic

 The Tag Directory (TD) which is a portion of the distributed duplicate tag directory

infrastructure

Table 1: Description of Co-processor Components

Name Description

Core The processor core fetches and decodes instructions from four

hardware threads. It supports 32-bit and 64-bit execution

environment similar to those found in the Intel64 Architecture.

 32KB, 8-Way set associative L1 I-cache and D-cache

 Execute 2 instructions/cycle

 No support for Intel SSE (SIMD) or MMX

Vector Processing Unit (VPU) Includes the Extended Math Unit (EMU). It contains the vector

register file (32 registers / thread context). It executes:

 16 single-precision floating point / clock cycle

 16 32-bit integer operations

 8 double-precision floating point operations /cycle

L2 Cache 512 KB, 8-way

Tag Directory (TD) Distributed duplicate tag directory for cross-snooping L2

caches in all cores. The CPU L2 caches are kept fully coherent

with each other by the TDs, which are referenced after the L2

cache miss. A TD tag contains the address, state and an ID for

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 31

the owner (one of the L2 caches) of the cache line. The TD that

is referenced is not necessarily the one co-located with the

core that generated the miss, but is based upon address (each

TD gets an equal portion of the address space). A request is

sent from the core that suffered the memory miss to the

correct TD via the ring interconnect

Ring Includes:

 Component Interfaces

 Ring Stops

 Ring turns

 Addressing

 Flow control
The co-processor has 2 each for these rings – one travelling
each direction. There is no queuing on the ring or in the ring
turns; once a message is on the ring it will continue
deterministically to its destination. In case, the destination
does not have room to accept a message it may leave it on the
ring and pick it up next time it goes by. This is known as
bouncing.

Intel MIC Architecture Core

The Intel MIC Architecture processor cores run at 1GHz (up to 1.3GHz). The Intel MIC

Architecture is based on the x86 ISA, extended with 64-bit addressing and new 512-bit wide

SIMD vector instructions and registers. Each core also supports 4 hardware threads.

Each core has a 32KB L1 data cache, a 32KB L1 instruction cache and a 512 L2 cache. The L2

caches of all cores are interconnected with each other and the memory controllers via a

bidirectional ring bus, effectively creating a shared last-level cache of up to 32MB. The design of

each core includes a short in-order pipeline. There is no latency in executing scalar operations

and low latency in executing vector operations. Due to the short in-order pipeline, the

overhead for branch misprediction is low.

The core can execute 2 instructions per clock cycle, one on the U-pipe and one on the V-pipe.

The V-pipe cannot execute all instruction types, and simultaneous execution is governed by

pairing rules. Vector instructions can only be executed on the U-pipe.

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 32

Instruction Decode

Scalar

Unit

Vector

Unit

Scalar

Registers

Vector

Registers

32K L1 I-cache

32K L1 D-cache

512K L2 Cache

Ring

Figure 4: Intel MIC Architecture core overview

Core Pipeline

In this section we present the cores pipeline stages:

PPF PF D0 D1 D2 E WB

Figure 5 : Core Pipeline Components

PPF Thread Picker

PF Instruction Cache Lookup
Prefetch buffer write

D0 Thread Picker
Instruction rotate
Decode of 0f, 62, D6, REX prefixes

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 33

D1 Instruction Decode
CROM loopup
Sunit register file read

D2 Microcode control execution
Address generation
Data cache lookup
Register file read

E Integer ALU execution
Retire/stall/exception determination

WB Integer register file write
Condition code (flag) evaluation

Most integer and mask instructions have a 1-clock latency, while most vector instructions have

4-clock latency with a 1-clock throughput.

Instruction Decoder: One of the changes made to simplify the core was to modify the

instruction decoder to be a two-cycle unit. While fully pipelined, the result of this change is that

the core issue instructions from the same hardware context in back-to-back cycles. That is, if in

cycle N the core issued instructions from context 1, then in cycle N+1 the core can issue

instructions from any context except context 1. This allows for a significant increase in the

maximum frequency, resulting in a net performance gain. For maximum utilization, at least two

hardware contexts or threads must be run on each core. Since the scheduler cannot issue

instructions in back-to-back from the same hardware context, running one thread on a core will

result in, at best, 50% utilization of the core potential.

Cache Organization and Hierarchy

The L1 cache accommodates higher working set requirements for four hardware contexts per

core. It has a 32KB L1 instruction and 32KB L1 data cache. Associativity was increased to 8-way,

with a 64-byte cache line. The bank width is 8 bytes. Data return can now be out-of-order. The

L1 cache has a load-to-use latency of 1 cycle – an integer value loaded from the cache can be

used in the next clock by an integer instruction. However, Vector instructions experience

different latencies than integer instructions. The L1 cache has an address generation interlock

with at least a 3-clock cycle latency.

The L2 cache is a 512 KB unified unit. The L2 raw latency is 11 cycles. The expected idle access

time is approximately 80 cycles. The L2 has a streaming hardware prefetcher that can

selectively prefetch code, read, RFO (Read-For-Owenership) cache lines into the L2 cache.

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 34

In the Intel Xeon Phi coprocessor cores, a miss in the L1 or L2 cache does not stall the entire

core (as it would in the original in-order Intel Pentium processor). Misses to the cache will not

stall the requesting hardware context of a core unless it is a load miss. Upon encountering a

load miss, the hardware context with the instruction triggering the miss will be suspended until

the data are brought into the cache for processing. The remaining hardware contexts in the

core will continue execution with no interruption. Both L1 and L2 caches can support up to

about 38 outstanding requests per core (combined read and write).

In Table 2 we summarize the basic parameters of L1 and L2 caches. Duty cycles and Ports

designation presented in the table are fields that are specific only to the Intel Xeon Phi

coprocessor design. The L1 cache can be accessed each clock, whereas the L2 can only be

accessed every other clock. Also, on any given clock, software can either read or write the L1 or

L2, but it cannot read and write in the same clock. This design artifact has implications when

software is trying to access a cache while evictions are taking place.

Table 2 : Cache Hierarchy

Parameter L1 L2

Coherence MESI MESI

Size 32KB + 32KB 512KB

Associativity 8-way 8-way

Line Size 64 bytes 64 bytes

Banks 8 8

Access Time 1 cycle 11 cycles

Policy Pseudo LRU Pseudo LRU

Duty Cycle 1 per clock 1 per clock

Ports Read or Write Read or Write

Inclusive / Exclusive - Inclusive of L1-I and L1-D

Shared / Private Private Shared

Each core contributes 512 KB of L2 to the total shared cache storage and it may appear as

though a maximum of 31 MB of common L2 cache is available, but this is not the absolute case.

If two or more cores are sharing data, the shared data is replicated among the individual cores’

various L2 caches. That is, if no cores share any data or code, then the effective total L2 size of

the chip is 31 MB. Whereas, if every core shares exactly the same code and data in perfect

synchronization, then the effective total L2 size of the chip is only 512 KB.

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 35

Performance Monitoring Unit – Performance Counters

The Intel Xeon Phi coprocessor includes a performance monitoring unit (PMU). Most of the 42

event types from the original Intel Pentium processor exists but some updates exist to reflect

more recent programming interfaces. Particular Intel Xeon Phi coprocessor-centric events have

been added to measure memory controller events, vector processing unit utilization and

statistics, local and remote cache read/write statistics and more.

The coprocessor comes with support for performance monitoring at the individual thread level.

Each thread has two performance counters and two event select registers. The events

supported for performance monitoring are a combination of the legacy Intel Pentium processor

events and new Intel Xeon Phi coprocessor-centric events. The Intel Xeon Phi coprocessor

switched to the Intel Pentium Pro style PMU interface, which allows user-space applications to

directly interact with and use the PMU features via specialized instructions.

Memory Controller

There are 8 on-die GDDR5-based memory controllers in the Intel Xeon Phi coprocessor. Each

can operate two 32-bit channels for a total of 16 memory channels that are capable of

delivering up to 5.5 GT/s per channel.

DMA Capabilities

Direct Memory Access (DMA) is a common hardware function within a computer system that is

used to relieve the CPU from the burden of copying large blocks of data. The following data

transfers are supported:

 Intel Xeon Phi to Intel Xeon Phi GDDR5 space (aperture)

 Intel Xeon Phi GDDR5 to Host System Memory

 Host System Memory to Intel Xeon Phi GDDR5 (aperture or non-aperture)

 Intra-GDDR5 Block Transfers within Intel Xeon Phi

VPU and Vector Architecture

The Intel Xeon Phi has a new SIMD 512-bit wide VPU with a corresponding vector instruction

set. The VPU can be used to process 16 single precision or 8 double precision elements. This

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 36

new Vector Processing Unit (VPU) has a new SIMD instruction set that does not support prior

vector architecture models like MMX, Intel SSE or Intel AVX.

Intel Xeon Phi Coprocessor SMC Control Panel

The SMC control panel (micsmc), located in /opt/intel/mic/bin after installing Intel MPSS, is the

local host-side user interface for system management. The Control Panel is more practical for

smaller setups like a workstation environment rather than for a large-scale cluster deployment.

The Control Panel’s main responsibilities are:

 Monitoring Intel Xeon Phi card status, parameters, power, thermal, etc.

 Monitoring system performance, core usage, memory usage, process information

 Monitoring overall system health, critical errors or events

 Hardware configuration and setting, ECC, turbo mode, power plan setting, etc.

Ganglia* Support

Ganglia* is a scalable distributed monitoring system for high-performance computing systems

such as clusters and grids. The implementation of Ganglia* is robust, has been ported to an

extensive set of operating systems and processor architectures. Briefly, the Ganglia* system has

a daemon running on each computing node or machine. The data from these daemons is

collected by another daemon and placed in an rrdtool database. Ganglia* then uses PHP scripts

on a web server to generate graphs as directed by the user. The typical Ganglia* data flow is

shown in Figure 6.

For integration with system management and monitoring systems like Ganglia*, the Manycore

Platform Software Stack (MPSS):

 Provides an interface for the Ganglia* monitoring agent to collect monitoring state or

data: sysfs or /proc virtual file system exposed by the Linux*-based coprocessor OS on

each Intel Xeon Phi coprocessor device

 Provides a plug-in for custom made metrics about the nodes (the Intel Xeon Phi

coprocessor cards) that are being monitored by Ganglia*

 Serves as a reference implementation for the whole Ganglia* monitoring environment

setup

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 37

In Ganglia* each Intel Xeon Phi card can be treated as an independent computing node as

each coprocessor is running a Linux*-based OS, thus one can run gmond monitoring agent

on the coprocessor as is. Gmond supports configuration files and plug-ins so it is easy to add

customized metrics. Gmetad can be run on the host. For gmetad, customization is not

needed. All the front-end tools like rrdtool, scripts should be standard Ganglia*

configuration.

All the daemons in Ganglia* talk to each other over TCP/IP. Ganglia* has default collecting

metrics, but Intel Xeon Phi has additional metrics that can be collected.

To collect additional metrics follow these steps (more details in p. 51 of Manual 3):

1. Write a script or C/C++ program which retrieves the information. The script can be

written in any scripting language. Python is used to retrieve default metrics. In case of a

C/C++ program, the .so files are needed.

2. Register the program with the Ganglia* daemon (gmond) by issuing the Ganglia*

command gmetric

3. Make the registration persistent b adding the modification to the configuration file:

/etc/ganglia/gmond.conf

gmond

Data Collector
Daemon one per node

Data Consolidator
Only one copy with the Web Server

/etc/gmond.conf

gmond/etc/gmond.conf

gmond/etc/gmond.conf

gmetad /etc/gmetad.conf

Rrdtool
- database of stats

PHP Scripts

Apache2
 + PHP

BROWSER:
IE, Firefox, Chrome,

etc.

Figure 6 : Ganglia* Monitoring System Data Flow Diagram

INTEL XEON PHI (MIC) USER’S MANUAL October 31, 2014

T h e C y p r u s I n s t i t u t e - C a S T o R C

Page 38

