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INTRODUCTION

The Coastline Evolution Model (CEM) simulates large-scale coastline behavior
caused by gradients in alongshore sediment flux (Ashton et al., 2001; Ashton and
Murray, 2006a, 2006b). The wave climate, or the angle and direction of incoming
waves relative to the local coastline orientation, is the forcing mechanism and
determines the resultant long-term coastline morphology (i.e., capes, spits,
migrating sandwaves). Operating alone, CEM transforms waves in the most basic
way by assuming shore-parallel bathymetry contours that extend seaward only to
the depth of the shoreface (10-20 m). This simplification inherently excludes
alongshore wave energy convergence/divergence, wave transformation over the
shelf, and coastlines where bathymetry is complex (e.g. nearshore or cape-
associated shoals; van den Berg et al,, 2012; Kaergaard and Fredsoe, 2013a, 2013b,
2013c). By replacing CEM’s basic wave shoaling routine with a more complex
spectral wave transformation model (Simulating WAves Nearshore, or SWAN; Booij
et al, 1999; Ris et al., 1999), CEM can simulate a broader array of coastline
behaviors, especially those influenced by nearshore shoals or irregular bathymetry.
This manual details how the coupling between CEM and SWAN was accomplished,

and how to couple CEM and SWAN on the UF High Performance Computing Cluster.

Basic model structure
Before proceeding, you need a scripting-oriented text editor. For Mac, Xcode (free;
version 5, or greater) is highly recommended. Aquamacs or TextWrangler will also

work.

CEM and SWAN are two separate, standalone models, written in C and Fortran,
respectively. Because they ‘speak’ different languages, CEM and SWAN do not

communicate directly with each other. Instead, the models communicate through a



UNIX shell script (called a ‘RUN file’). The RUN file acts as a translator between the
models by executing SWAN and CEM sequentially and mediating the exchange of
information (input-output) between SWAN and CEM. The RUN file can be set to

perform as many model iterations as necessary.

To couple SWAN and CEM, no changes have been made to the SWAN program; it is
run as it would without CEM. There are, however, some critical SWAN parameters
that must be set correctly to ensure successful input-output between SWAN and

CEM (see the ‘Pre-simulation set-up’ section below).

Several major changes have been made to CEM in order to couple it with SWAN. All
changes are flagged with the hashtag #SWAN within the CEM_SWAN.c file so they

are easily searchable. The most noteworthy changes to CEM are:

The main time loop that sets the number of model iterations in a given
simulation has been made external to CEM; it is now implemented in the
RUN file. CEM is set to run for only ONE time step each time it is called by
the RUN file, and it loads the shoreline position from the previous model

iteration to use as initial conditions.

The basic wave shoaling routine no longer exists within CEM, as it is
replaced by SWAN.
The ‘FindWaveAngle’ routine that selects a random deep-water wave

angle before each model iteration has been made external to CEM. It is
now a stand-alone executable program called by the RUN file because it

must inform SWAN, rather than CEM, of wave boundary conditions.

A new function called “LoadSWAN” was added that inputs SWAN’s output

grids (wave height, angle) as well as bathymetry.



A new function called “ParseSWAN” was added that finds breaking wave
height and angle from the SWAN grids loaded in the function
“LoadSWAN”. For each model shoreline cell, the routine searches seaward
until a breaking wave threshold (wave height divided by water depth) is
found. Then the wave height and angle are stored and used later to

calculate alongshore sediment flux with the CERC equation.

A new function called “SaveSWANToFile” was added. This function
completes two key tasks after CEM has calculated alongshore sediment
flux gradients and updated shoreline position. First, using the updated
shoreline position, it linearly interpolates the shoreface bathymetry
seaward from each model shoreline cell using the user-inputted shoreface
depth and slope. Then, using the bathymetry from the earlier SWAN
simulation, the new shoreface bathymetry is merged with the shelf
bathymetry. Second, the updated shoreface/shelf bathymetry grid is
written to file so that SWAN can input it during the next model iteration to

calculate a new set of wave heights and angles.

A new function called “ConvertAngle” was added that converts the angle
convention used by SWAN (azimuth, 0° or 360° is shore-normal) to the
convention used by CEM (-90° < wave angle < 90°, where negative angles

come from the left and positive from the right).

The SWAN/CEM coupled model is executed using the RUN file that is submitted as a
job to the HPC cluster. Figure 1 is a flow chart showing the order of operations
dictated by the RUN file. The following sections explain each colored boxes in Figure

1 in detail, including the inputs and outputs in each step.
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Figure 1. Flow chart of the coupled SWAN and CEM model. Each colored box, or

step, is explained in the manual.



Pre-simulation set-up

Setting up your CEM/SWAN simulation is generally the same as setting up a nested
SWAN run, with a few added steps (this manual assumes the reader knows how to
set up a SWAN run on the HPC cluster, and has a basic understanding of the shell

script).

Directory Structure

On the HPC cluster, the RUN file will be stored in your Home directory
(/home/username) from where it will be submitted as a job. Within your home
directory, the model saves files as the model runs in an ‘output’ subdirectory

(/home/username/output).

The computation does not take place in your home directory. This happens in your

‘working’ directory on the HPC’s scratch drive (/scratch/lfs/username).

To summarize: the RUN file is stored and submitted as a job from your home
directory; the RUN file sequentially calls executables (CEM, SWAN, etc.) located in
your working directory; and as the model runs, files you wish to save are moved

automatically to your output directory.

On your local hard drive, you will need a directory to store your output
(downloaded from the HPC) where Matlab scripts, described below, are executed to

parse and display model output.

Necessary files and scripts

Before running SWAN+CEM, the following files must be placed in the correct

directories and must be named as specified below, unless indicated otherwise.



Each file is explained in detail below. (Note that you do not need to put any files in

your output directory.)

@ {In your home directory}

RUN file - can be named whatever you like.
SWAN4091 - the folder containing the SWAN program and executable.

r— {In your working directory}

Files that are updated/changed during the model run:

Depth.bot - bathymetry input file for nested SWAN run that is updated each
timestep by CEM as the shoreline position changes. Values below sea level

are positive, and subaerial values are negative.

0 - initial shoreline conditions for CEM. The name corresponds to the
timestep, and each time the shoreline is updated CEM exports a new
shoreline file named after the current timestep.

Files that are NOT updated/changed during the model run:

Depth_main.bot - bathymetry for the coarse-grid (or main) SWAN run that

supplies boundary conditions for the nested run.

CEM_SWAN.c - CEM model that must be compiled to an executable file.



FindWaveAngle.c - Generates a new, random deep-water wave angle from a
probability distribution function each time step. Must be compiled to an

executable file.

finegrid.swn - SWAN file corresponding to your nested SWAN run.

In addition to the above files, you must have 181 main SWAN files in your
working directory. Each file has a unique integer deep-water wave angle as a
boundary condition, and controls the coarse-grid SWAN runs that supply
boundary conditions for the nested runs. They must be named sequentially
1000.swn - 1090.swn and 1270.swn - 1360.swn. The last 3 numbers in
the file names correspond to the deep-water wave angle in azimuthal
degrees relative to the coast that is indicated within the file. The angle is
selected each time step by the ‘FindWaveAngle’ function. For example, if the
FindWaveAngle function selects a wave angle of 43 degrees, the SWAN file
1043.swn will be called and will execute a coarse-grid SWAN run based on

that angle.

r— {In your local directory}

makeinitconds.m: This script will create the initial shoreline conditions file

called “0” (see above) from your nested SWAN bathymetry grid.

postprocess.m: Main script for viewing and plotting model output. Execute
the script on your local directory containing model output, and it will load

the whatever output you tell it to (wave height, wave angle, bathymetry, etc.).

animateoutput.m: Animates output files through time and compiles them

into movie (.avi) files.



sort_nat.m: Sorting routine; must be present with your model output (i.e. in

the same folder) when running postprocess.m.

Parameters to adjust and know before starting your simulation

Below is a list of all parameters that need to set before starting your model run. Use

the CEM/SWAN Reference Guide to see where these variables are located within

each file.

{IN CEM_swan.c }

Cell size: This must be set exactly the same as the cell size in the nested
SWAN run. Generally, CEM works best when cell size is 100 m or greater, so
use that as a guide to set your nest grid cell size. In order to spatially resolve
the wave breaking threshold (see below), a cell size less than 500 m for your
simulation is suggested.

Cross-shore domain size: Called ‘Xmax’ in CEM. Should be exactly the same
as the cross-shore extent of your nest SWAN grid. NOTE: when entering grid
dimensions to your .swn files, SWAN requires them to be number of meshes
rather than number of grid cells. The number of meshes is the number of grid
cells minus one. So, if your bathymetry grid size is 100 cross-shore cells by
100 alongshore cells, in CEM you would enter 100 x 100; however, in the
.swn files, you would enter 99 x 99.

Alongshore domain size: Called ‘Ymax’ in CEM. Should be 0.5 of the
alongshore extent of your nest SWAN grid. NOTE: when entering grid
dimensions to your .swn files, SWAN requires them to be number of meshes
rather than number of grid cells. The number of meshes is the number of grid
cells minus one. So, if your bathymetry grid size is 100 cross-shore cells by
100 alongshore cells, in CEM you would enter 100 x 100; however, in the

.swn files, you would enter 99 x 99.
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Shoreface depth: Called ‘DepthShoreface’ in CEM. Typical values range
from 10-20 m. It is the depth over which sediment is evenly distributed as it
is transported alongshore. If the shoreline moves landward, a ravinement
surface is left behind corresponding to the shoreface depth (see Ashton and
Murray, 2006a). If the shoreface and shelf bathymetry are not merging
smoothly in the SaveSWANToFile function in CEM, shoreface depth can be
adjusted to improve the fit. Note, however, that adjusting the shoreface depth
affects the timescales for shoreline adjustment (Ashton and Murray, 2006a).
Shoreface slope: Called ‘ShorefaceSlope’ in CEM. Typical values range from
0.005 to 0.05. If the shoreface and shelf bathymetry are not merging
smoothly in the SaveSWANToFile function in CEM, shoreface slope can be
adjusted to improve the fit.

Wave breaking threshold: Called ‘WaveBreakDepth’ in CEM. Typical
values range from 0.8 to 0.3. The lower the number, the farther offshore CEM
will look to find a “breaking” wave. The SWAN-generated wave heights and
angles are most accurate at least a couple cells seaward of the shoreline cell,
so using a lower number works best (0.3 - 0.5). See List and Ashton (2007)
for a discussion of this. In order to spatially resolve the wave breaking
threshold, a cell size less than 500 m for your simulation is suggested. If the
cell size is too big, the wave breaking threshold will be exceeded for every

nearshore cell and faulty wave characteristics will be retrieved.

{ IN coarse-grid .swn files }

Wave height: Wave height is specified within the .swn files that control your
coarse grid SWAN runs. It must be the same in all 181 files. Rather than edit
each file individually when wave height and/or period need to be changed,
use the current version of Xcode (5.0.1) to find and replace text within your
workspace (i.e., it will change the wave conditions for all 181 files at once;
see specific instructions below).

Wave period: Wave period is specified within the .swn files that control your

coarse grid SWAN runs. [t must be the same in all 181 files.
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Cell size of coarse SWAN grid: Cell size can be whatever you wish. The cell
size of the nested grid, however, must match the cell size of CEM.

Domain size coarse SWAN grid: Size can be whatever you wish; although it
is beneficial for the coarse-grid alongshore length to be at least 5 times the
length of the nested domain (with the nest in the center) to avoid
edge/boundary effects. In the cross-shore direction, the grid should extend to
true deep water (depth > 0.5*wavelength).

Where to apply boundary conditions (wave height, angle, period): Wave
conditions are applied by the user at the top (or seaward) boundary of the
coarse grid only. The nested SWAN run automatically receives boundary

conditions from the coarse-grid SWAN run.

{ IN FindWaveAngle.c }

Wave climate asymmetry: Assigned using the variable ‘asym’. It must range
from 0 - 1, with a value of 0.5 meaning an equal number of waves come from
the left and right directions. Wave asymmetry is a property that can be found
for a given coastline using wave buoy data (see Ashton and Murray, 20064,
2006b).

Proportion of high-angle waves: Assigned using the variable ‘highness’. It
must range from 0 - 1, with a value of 0 meaning all deep-water waves are
<45 degrees (low-angle). This is a property that can be found for a given

coastline using wave buoy data (see Ashton and Murray, 2006a, 2006b).

{ IN nest-grid .swn file }

Cell size of nested SWAN grid: This must be set exactly the same as the
cell size in CEM. Generally, CEM works best when cell size is 100 m or
greater, so use that as a guide to set your minimum nest grid cell size. To set
the maximum cell size, consider that the wave breaking threshold (wave
height divided by depth) must be spatially resolved. Because of this, a cell
size less than 500 m is optimal.

Cross-shore domain size: Must be the same as in CEM, or equal to Xmax.
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Alongshore domain size: Must be equal to 2*Ymax and set up according to

Figure 2 and the periodic boundary conditions (see following section).

{IN Run file }

Time steps: Stored in variable ‘t’, this controls the number of times the main
time loop iterates.

Internal time steps: To speed up the simulation, the same SWAN output can
be used for multiple CEM iterations. By doing this, SWAN does not regenerate
a wave field every time step. The number of times to internally loop CEM
with the same wave conditions is stored in the variable ‘ti’. The underlying
assumption is that shoreline position does not change appreciably over one
time step, so the same waves can be used multiple times; this assumption
breaks down when ti ~> 5. If you do not want to engage the internal loop
(i.e., you want SWAN to generate new waves every time step), set ti = 1.
Working directory name and location: Make sure the working directory
location is correct. Your working directory name must be the same as
your output directory name.

How many files you wish to save during the simulation: Use the variable
‘cull for this. For example, if you want to save model output every 100 time

steps, set cull = 100.

Making your bathymetry, setting up your computational CEM domain, and

dealing with periodic boundary conditions

Orienting your SWAN and CEM computational domains appropriately is the most

critical step in coupling the models. Your bathymetry and shoreline domains must

be set up as in Figure 2. Incorrect grid sizes, locations, and cell sizes are the most

common causes of model crashes or faults.

All computational domains for SWAN and CEM (bathymetry for SWAN, shoreline

position for CEM) must be oriented with the offshore direction facing up or north.
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Figure 2 shows how the bathymetry must be set up for the SWAN runs, and how it
relates to the CEM computational domain. Variables listed above (e.g., Ymax, Xmax)
are also shown in Figure 2. SWAN bathymetry can be set up as it would for any usual
nested SWAN run, but you must make certain that the nested grid is located correctly
within the coordinate space of the coarse/main grid, and the cell size of the nested grid

is the same as the cell size of the CEM domain.

The boundary conditions in CEM are periodic, meaning that 1) sediment is
conserved, 2) sediment that fluxes out of the right boundary comes back through
the left boundary and vice versa, and 3) the shoreline domain is therefore effectively
repeated to infinity alongshore. To impose periodic boundary conditions, CEM’s
main computational domain (defined by Ymax and Xmax) is split down the middle.
The right half is placed adjacent to the left boundary, and the left half is placed
adjacent to the right boundary (see Figure 2). Thus CEM effectively operates on an
alongshore distance of 2*Ymax. The nested SWAN grid over which the wave field is
computed must be set up the same way, with a central domain defined by Ymax and
Xmax that is split into two halves that are placed on either boundary. This ensures
that CEM will have a ‘smooth’ and continuous wave field to read when it applies

periodic boundary conditions.

The practical effects on SWAN of imposing periodic boundary conditions in CEM are
summarized as follows:

— The nested bathymetry grid must be of alongshore size 2*Ymax and cross-shore
size Xmax. The central grid that corresponds to the CEM domain is of size
Ymax by Xmax and is defined on the left by Ymax/2 and on the right by
(3*Ymax)/2 (see Figure 2).

— The cross-shore shoreline position on the left and right edges of the central
domain (defined on the left by Ymax/2 and on the right by (3*Ymax)/2)
must be equal. This applies to both SWAN and CEM (see below). Otherwise
there will be a discontinuity when CEM applies periodic boundary

conditions.
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Wave direction or angle conventions are different between SWAN and CEM: in
SWAN, wave direction is azimuthal where 0°/360° is shore-normal, 270° is directed
left and 90° is directed right; in CEM, 0° is also shore-normal, but -90° is directed left

and 90° is directed right (see Figure 2).

Once your SWAN bathymetry grids are complete, the initial conditions for CEM (the
file is called “0” in the file list above) can be extracted from the nest grid. Cells in the
CEM domain all contain values between, or equal to, 0 and 1 that specify how ‘“full’
the cell is with sediment (Ashton and Murray, 2006a). Thus cells can either be land
(cell is full, or equal to 1), water (cell is empty, or equal to zero), or shoreline (cell
has a fractional value between zero and one). Thus, in the nest bathymetry grid,
values greater than and equal to sea level (zero elevation) are assigned a value of 1,
values less than sea level are assigned a value of zero, and the seaward-most cells
greater than or equal to sea level are assigned a fractional number (e.g., 0.5). These
fractional cells are the shoreline. A Matlab script called makeinitconds.m is supplied
that will convert your nest bathymetry grid to CEM initial conditions and produce a

text file called “0”.
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Figure 2. Schematic of the computational domains, and how they are spatially related. The
variables Xmax and Ymax are the cross-shore and alongshore lengths, respectively, of the CEM
domain. Conventions used to define wave direction (or angle) are shown by the gray circles.
The procedure for imposing periodic boundary conditions is shown on the bottom right (and is
explained in the text).
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Model steps and main function calls as executed by the RUN file

Each step below is labeled and annotated within the RUN file. Reading this section

with the RUN file at hand is recommended.

Step 1: FindWaveAngle

— FILE/PROGRAM NAME: FindWaveAngle, an executable file created by compiling
FindWaveAngle.c

— INPUTS: None

— OUTPUTS:

* ‘AngleDegrees.txt’, a text file containing a deep-water wave angle in
azimuthal degrees (to be used by SWAN and CEM)

— PURPOSE: Extracted from the original CEM, this stand-alone function creates a
PDF of waves based on wave asymmetry (4) and 'highness' (U, proportion of
waves that are >~42). From this PDF, CEM picks 'randomly' each model day a
deep-water wave to drive the daily model simulation. The PDF function is
made external to CEM because SWAN needs to know the deep-water wave
angle to generate a wave field before CEM is called. The output, a text file,
contains the generated wave angle. The RUN file reads the text file and the
wave angle is assigned to a variable called “temp”. The variable “temp” is

then used to call the corresponding SWAN coarse-grid file.

Step 2: Run SWAN coarse grid

— FILE/PROGRAM NAME: “temp”.swn
— INPUTS:

* Depth_main.bot
— OUTPUTS:

17



* Boundary conditions for nested SWAN run. This will also output grid
plots of wave height and angle for the coarse grid, if you like. This is

useful for debugging.

— PURPOSE: To generate boundary conditions for the nested SWAN run.

Step 3: Run SWAN nested grid

— FILE/PROGRAM NAME: finegrid.swn
— INPUTS:
* Boundary conditions from coarse-grid SWAN run

* Depth.bot (from CEM)
— OUTPUTS:

“Hsig”, a text file containing a Ymax by Xmax matrix of significant

wave heights (to be used by CEM)

“Dir”, a text file containing a Ymax by Xmax matrix of wave directions

(to be used by CEM)

— PURPOSE: The nested SWAN run creates the nearshore wave conditions, stored
in the “Hsig” and “Dir” text files, used to calculate alongshore sediment
transport in CEM. If results from a non-nested SWAN run are used as input
for CEM (i.e., wave conditions are generated from a single SWAN run), then

the calculated wave field will have edge effects (see SWAN user manual) and

will not be usable by CEM.

Step 4: Run CEM

— FILE/PROGRAM NAME: cem, and executable file created by compiling
CEM_SWAN.c.
— INPUTS:
¢ “Hsig” (from SWAN)
¢ “Dir” (from SWAN)

* Depth.bot (from previous CEM iteration)

18



* coastline domain (with the same name as the previous time step, from
previous CEM iteration)
* AngleDegrees.txt (from FindWaveAngle)
* TimeStep.txt (see below)
— OUTPUTS:
* Depth.bot (to be used by SWAN in next iteration)
* updated coastline domain (to be used CEM in the next iteration)

— PURPOSE: CEM reads in the wave conditions produced by the nested SWAN run,
calculates alongshore sediment flux, distributes sediment, updates the
shoreline position, and updates the shoreface bathymetry (extended seaward
from the new shoreline position). The new shoreface bathymetry is merged
with the SWAN nest bathymetry (Depth.bot), and in the next model iteration

SWAN uses the new bathymetry to generate a new wave field.

Step 5: Save files to output folder

— FILE/PROGRAM NAME: No program or file, just a sequence of UNIX commands
issued by the RUN file

— INPUTS: The variable “cull” assigned at the top of the RUN file

— OUTPUTS: Model outputs that are moved and saved include the coarse grid wave
field (“Hsig_main” and “Dir_main”), the nest grid wave field(“Hsig” and “Dir”),
CEM shoreline domain (named after the timestep), and the nested
bathymetry (“Depth.bot”).

— PURPOSE: The UNIX commands move model outputs/results at specified
intervals (set using “cull”) to your output folder. Files that are not moved are

overwritten to reduce the size (and clutter) in your working directory.
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Post-processing

After your model run is complete, download your output to a local directory.
Executing the Matlab script postprocess.m will load the saved model output (from
your output folder) into Matlab for viewing, plotting, etc. The file is annotated

thoroughly.

The postprocess.m script calls a second script (animateoutput.m) that will 1) animate

your loaded output files and 2) save them to a movie (.avi) file.

In order to run postprocess.m and animateoutput.m, you must have the
complementary Matlab script called sort_nat.m in your output directory.
Postprocess.m calls sort_nat.m (you do not need to manually execute sort_nat.m or
alter it in any way - it just needs to be present in your folder) to efficiently sort the

output data before loading into Matlab.

To understand how they work, these Matlab scripts are included with sample model

output.

Known issues and limitations

1) Running the model takes a long time. Using the variable ti in the RUN file,
which uses the same SWAN output for multiple CEM iterations, can speed up
the process significantly. However, it can still take several days to complete a
simulation. There are probably several other ways, unexplored here, to speed

up the simulations.
2) Currently the model can deal only with low-curvature shorelines. This means

no spits, or overhanging/recurving capes, or any shoreline that has multiple

cross-shore shoreline coordinates for a given alongshore coordinate. The

20



3)

reason for this is that the shoreface interpolation routine within CEM is
designed to interpolate the shoreface bathymetry very simply. It can be

updated to deal with high-curvature shorelines fairly easily, though.

Merging the shoreface bathymetry and the shelf bathymetry is sometimes
not completed smoothly, meaning there is an elevation discontinuity
between the shoreface and shelf that affects the SWAN-generated wave field.
This is something to watch out for. Adjusting the shoreface depth and slope

within CEM can help troubleshoot the problem.
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Step-by-step instructions using the sample files

Part 1: Setting up the directory structure and uploading necessary files

1)

2)

3)

4)
5)

6)
7)

8)

Open FileZilla, CyberDuck, or other FTP program. Log in to your HPC account
using SSH file transfer protocol and entering the address submit.hpc.ufl.edu.
Use the FTP program to upload the folder SWAN4091 to your home
directory (/home/username).

Use the FTP program to upload the RUN file (‘RUN_swan_CEM’) to your
home directory.

In your home directory (/home/username), create a directory called ‘output’.
Within the new ‘output’ directory, create a subdirectory named ‘testrun’. This
is where the ‘testrun’ model output will be stored.

Now, navigate to your scratch directory: /scratch/Ifs/username

Create a working directory there called ‘testrun’. This directory must have
the same name as your ‘testrun’ output directory.

Using the FTP program, put the required files in your working directory:
finegrid.swn, 0, Depth.bot, Depth_main.bot, FindWaveAngle.c,
CEM_swan.c, and the 181 .swn files that control the coarse-grid SWAN

runs.

Part 2: Compiling the ‘.c’ files to make executables

9)

Open a terminal window. Log in to your HPC account by typing

ssh submit.hpc.ufl.edu

You will be prompted for your user name and password.

10) Navigate to your working directory:
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cd /scratch/Ifs/username/workingdirectory

11) Now you must compile the FindWaveAngle.c and CEM_swan.c files. For the

FindWaveAngle.c file, enter the command:

gcc —o FindWaveAngle FindWaveAngle.c -Im

‘gec’ calls the compiler, ‘-0’ is an option that allows you to specify the name of
the executable that is generated by the compiler, ‘FindWaveAngle’ is the
name of the executable (that is called by the RUN file), ‘FindWaveAngle.c’ is
the program to be compiled, and ‘-Im’ tells the compiler to add the necessary
math libraries. Note that you must name the executable ‘FindWaveAngle’
because it is called by the RUN file using the same name. After you
compile FindWaveAngle.c, the executable file will appear in your working

directory. Double-check: make sure the executable is called ‘FindWaveAngle’!
Do the same thing for the CEM_swan.c file:

gcc —o cem CEM_swan.c —-Im

This compiles the CEM, and the executable must be named ‘cem’ so that it
can be called correctly by the RUN file. After you compile, the executable

file will appear in your working directory. Check that it is called ‘cem’, all in

lower-case letters.

Part 3: Submitting your job

12) In your terminal window, navigate to your home directory:

cd /home/username
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13) Before submitting your job, you must convert the RUN file to UNIX format.

Type the command

dos2unix RUN_file

where ‘RUN_file’ is the name of your Run file, whatever that may be.

14) Now you are ready to submit your job by entering

qsub RUN._file

where ‘RUN_file’ is the given name of your RUN file. While your job is

running, you can check its status by typing

gstat —u username

or delete your job by typing

qdel jobID

The ‘jobID’ is shown when you submit your job and can be found by using the

gstat command.

As your job runs, files will accumulate in your output directory.

Part 4: Using Matlab to view the model output

15) Open Matlab. Set your Matlab working directory to your output directory,

and make sure that directory has the sort_nat.m script in it.

16) Using the FTP program, download your model output to a local directory.
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17) Open postprocess.m and make sure that the variables Ymax, Xmax, and cell

size are set the same as in CEM.

18) Run postprocess.m. It will load all of your model output, and

animateoutput.m will show you a movie.
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Appendix

Below are commented copies of the files needed to run the SWAN/CEM model.
They are intended as a reference that is complementary to the manual so that the
user can see where the parameters and variables discussed in the manual are

actually located in each model file.
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finegrid.swn



! Run ID Number: 20130222cpcnvl

! Run Clock: 22-Feb-2013 13:55:33
I

!

SET LEVEL=0 NAUTical

MODE STATIONARY TWODimensional

CpoRPDinates CARTe=:
REGular 7@&%3a 326@2 = IR LE 36 0.05 1
=% 0 0 2 XC -99999

READinp BOTtom 1 'Dept pt' 3 0 FR E
BOUNd SHAPespec JONswap 3.3 PEAK DSPR DEGR
BOUNdnestl NEST 'cem_f' CLOSed

OFF QUAD

OFF BRE G

GROUP 'compgrid! SUB 0 219(;;%02
QUANTITY HSIGN

OUTPUT OPTIONS BLOCK nde =2 len=220

BLOCK 'compgrid' NOHEADER 'Hsig' HSIGN
BLOCK 'compgrid' NOHEADER 'Dir' DIR C:j
COMPUTE

STOP



plimber
Sticky Note
Set up your computational grid, which corresponds to your bathymetry grid.

plimber
Sticky Note
alongshore (x direction) position of the bottom left corner of your nested bathymetry grid. It is a length relative to the origin of the bottom left corner of your main/coarse grid (see Figure 2 in the manual)

plimber
Sticky Note
alongshore (x direction) length, in meters, of your bathymetry grid. it is equal to 

number of alongshore meshes x cell size

plimber
Sticky Note
cross-shore (y direction) length, in meters, of your bathymetry grid. it is equal to 

number of cross-shore meshes x cell size

plimber
Sticky Note
number of alongshore (x) meshes. number of meshes is equal to the number of grid cells minus one.

NOTE!: this number should be the number of alongshore cells in CEM (Ymax) multiplied by 2 and minus 1: (2*Ymax)-1. Conversely, the number of alongshore cells set in CEM (using the variable Ymax) should be this number plus 1 and divided by 2 (110, in this case).

plimber
Sticky Note
number of cross-shore (y) meshes. number of meshes is equal to the number of grid cells minus one. NOTE that the number of cross-shore cells set in CEM (using the variable Xmax) should be this number plus one!

plimber
Sticky Note
Define your input grid; it is the same as your computational grid (unless you choose otherwise)

plimber
Sticky Note
alongshore (x direction) position of the bottom left corner of your nested bathymetry grid. It is a length relative to the origin of the bottom left corner of your main/coarse grid (see Figure 2 in the manual)

plimber
Sticky Note
number of alongshore (x) meshes. number of meshes is equal to the number of grid cells minus one.

NOTE!: this number should be the number of alongshore cells in CEM (Ymax) multiplied by 2 and minus 1: (2*Ymax)-1. Conversely, the number of alongshore cells set in CEM (using the variable Ymax) should be this number plus 1 and divided by 2 (110, in this case).

plimber
Sticky Note
number of cross-shore (y) meshes. number of meshes is equal to the number of grid cells minus one. NOTE that the number of cross-shore cells set in CEM (using the variable Xmax) should be this number plus one!

plimber
Sticky Note
Cell size in meters (x direction). Cell size will always be the same in both x & y directions.

NOTE: Cell size MUST be the same as in CEM.

plimber
Sticky Note
Cell size in meters (y direction). Cell size will always be the same in both x & y directions.

NOTE: Cell size MUST be the same as in CEM.

plimber
Sticky Note
The input bathy grid for the nested run. CEM updates this grid every model iteration with a new shoreline position and shoreface bathymetry.

plimber
Sticky Note
Energy dissipation from wave breaking is turned off because the wave breaking characteristics are found within CEM…

plimber
Sticky Note
Command "SUBGRID" will produce a block (matrix) of output, which is needed for CEM. 

plimber
Sticky Note
the "0 219 0 102" specifies the dimensions of the output in number of grid cells (not meshes!) -- 0 to 219 is the alongshore direction, and 0 to 102 is the cross-shore direction.

plimber
Sticky Note
Here you tell SWAN what wave properties to output. "Hsign" is sig. wave height, and "Dir" is wave direction.

plimber
Sticky Note
"excv" sets the value to fill in the blanks where there is no wave field (i.e., on land). 

plimber
Sticky Note
The two lines starting with the BLOCK command tell SWAN to export the Hsign and Dir wave properties to text files from the computational grid, with no header (this is very important -- if a header is present, CEM will crash).

'Hsig' is the name of the text file containing wave height info from the nested grid, and 'Dir' is the name of the text file containing wave directional info.

plimber
Sticky Note
This line defines some output options: first "ndec" is number of decimal places. "len" is the alongshore length of the exported matrix specified above by the SUBGRID command. Note that 0 to 219 is a length of 220 grid cells, so "len=220". Here "len" must equal 2*Ymax in CEM!!

plimber
Sticky Note
cross-shore (y direction) position of the bottom left corner of your nested bathymetry grid.

plimber
Sticky Note
Orientation of your bathymetry or computational grid. A value of 0 means that the x-axis proceeds in the right-hand direction from the X,Y origin.


1009.swn



! Run Clock: 22-Feb-2013 13:55:33
!  conditions: 1 m, 8 s, @ deg, (10 deg spread)
I

5
g E 36 0.05 1
INPgrid BOTtom REGular 60 9 XC -99999

READinp BOTtom 1 'Depth_ .bot' 3 @ FREE

BOU SHAP HINSWVaE AK DEGR
BOU pec S%@ﬁom%ﬁ PAR sasgag

OFF QUAD

OFF BREAKI = %}

GRO ' compord '%@B 27D 0 % %}

NGR @_ 0 ;a;g,%’ 21 102@
QUANTITY HSIGN DIR excv=—5
OUTPUT OPTIONS BLOCK ndec=2 len=22

BLOCK 'compgrid' NOHEADER 'Hsig_main' HSIGN
BLOCK 'compgrid' NOHEAD 'Dir_main' DIR
NESTout 'cem_s' 'cem_f

COMPUTE

STOP

SET LEVEL=0 NAUTical
MODE STATIONARY TWODimensional

COORDinates Cn
CGRID REGular Ogﬁ 210



plimber
Sticky Note
alongshore (x direction) position of the bottom left corner of your main/coarse bathymetry grid. It should be set to zero. 

plimber
Sticky Note
cross-shore (y direction) position of the bottom left corner of your coarse/main bathymetry grid.

plimber
Sticky Note
alongshore (x direction) length, in meters, of your main grid. it is equal to 

number of alongshore meshes x cell size

plimber
Sticky Note
cross-shore (y direction) length, in meters, of your main bathymetry grid. it is equal to 

number of cross-shore meshes x cell size

plimber
Sticky Note
number of alongshore (x) meshes. number of meshes is equal to the number of grid cells minus one.

NOTE!: while this number is critical for coupling SWAN and CEM in the finegrid.swn file (nested SWAN run), here it is arbitrary.

plimber
Sticky Note
number of cross-shore (y) meshes. number of meshes is equal to the number of grid cells minus one.

NOTE!: while this number is critical for coupling SWAN and CEM in the finegrid.swn file (nested SWAN run), here it is arbitrary.

plimber
Sticky Note
number of alongshore (x) meshes. number of meshes is equal to the number of grid cells minus one.

Should be the same as in the CGRID command.

NOTE!: while this number is critical for coupling SWAN and CEM in the finegrid.swn file (nested SWAN run), here it is arbitrary.

plimber
Sticky Note
number of cross-shore (y) meshes. number of meshes is equal to the number of grid cells minus one.

Should be the same as in the CGRID command.

NOTE!: while this number is critical for coupling SWAN and CEM in the finegrid.swn file (nested SWAN run), here it is arbitrary.

plimber
Sticky Note
alongshore (x direction) position of the bottom left corner of your main/coarse bathymetry grid. It should be set to zero. 

plimber
Sticky Note
cross-shore (y direction) position of the bottom left corner of your coarse/main bathymetry grid.

plimber
Sticky Note
Cell size in meters (x direction). Cell size will always be the same in both x & y directions.

NOTE: While the cell size in the finegrid.swn file (i.e. the nested SWAN run) must be the same as in CEM, here it is arbitrary.

plimber
Sticky Note
Cell size in meters (y direction). Cell size will always be the same in both x & y directions.

NOTE: While the cell size in the finegrid.swn file (i.e. the nested SWAN run) must be the same as in CEM, here it is arbitrary.

plimber
Sticky Note
Main bathymetry file. It does not get altered at any time during the model run. The nest bathymetry ("Depth.bot") does, however.

plimber
Sticky Note
This line specifies where the boundary conditions are to be applied (i.e. from where the wave field is generated using the specified wave conditions)

plimber
Sticky Note
SEG means we're using a segment of the computational/bathy gird. In this case, we're going to use the entire top boundary or segment to apply wave conditions to.

plimber
Sticky Note
"IJ" tells SWAN that we're going to use cell positions (rather than meters or other physical length) to define the boundary.

plimber
Sticky Note
X coordinate of boundary origin. Zero is the left boundary.

plimber
Sticky Note
The Y coordinate of the boundary segment origin. 68 is the top os the grid.

So, we are starting at point (0,68) of the bathy grid -- this is the top left corner.

plimber
Sticky Note
X coordinate of end of boundary. 219 is the total number of grid meshes, so we're at the far right side.

plimber
Sticky Note
The Y coordinate of the end of the boundary segment. 68 is the top os the grid.

So, we are ending at point (219,68) of the bathy grid -- this is the top right corner.

plimber
Sticky Note
Constant wave conditions

plimber
Sticky Note
Wave height in meters

plimber
Sticky Note
Wave period in seconds

plimber
Sticky Note
Wave direction in azimuthal degrees.

NOTE that this file is named after the wave direction, as explained in the manual.

plimber
Sticky Note
Disable energy dissipation from wave breaking.

plimber
Sticky Note
Parametric spread in degrees (see SWAN manual). Don't need to adjust this, unless you really want to.

plimber
Sticky Note
Command "SUBGRID" will produce a block (matrix) of output. This output from the coarse/main grid SWAN runs is not used by CEM. It is only for debugging purposes, or for seeing what the main grid wave field looks like.

NOTE: CGRID does not supply the boundary conditions to the nested run; that is accomplished below in NGRID

plimber
Sticky Note
the "0 219 0 68" specifies the dimensions of the output in number of grid cells (not meshes!) -- 0 to 219 is the alongshore direction, and 0 to 68 is the cross-shore direction.

plimber
Sticky Note
NGRID tells SWAN that we're working with a nested grid, and to give that nested grid boundary conditions (generated from the wave filed of this main grid). However, SWAN needs to know where the nested grid is located within the main grid's space or coordinate system. The numbers to the right describe the nested grid's position.

plimber
Sticky Note
Here you tell SWAN what wave properties to output. "Hsign" is sig. wave height, and "Dir" is wave direction.

plimber
Sticky Note
Alongshore (x direction) coordinate of the nested grid within the main/coarse grid. This is effectively a distance in meters from the bottom right-hand corner, or origin, of the main/coarse grid. 

Note that the 7 numbers on this line should match EXACTLY the first 7 numbers on the CGRID line of the finegrid.swn (nested grid SWAN run) file

plimber
Sticky Note
cross-shore (y direction) position of the bottom left corner of your nested bathymetry grid.

plimber
Sticky Note
Orientation of your bathymetry or computational grid. A value of 0 means that the x-axis proceeds in the right-hand direction from the X,Y origin.

plimber
Sticky Note
alongshore (x direction) length, in meters, of your bathymetry grid. it is equal to 

number of alongshore meshes x cell size

plimber
Sticky Note
cross-shore (y direction) length, in meters, of your bathymetry grid. it is equal to 

number of cross-shore meshes x cell size

plimber
Sticky Note
number of alongshore (x) meshes. number of meshes is equal to the number of grid cells minus one.

NOTE!: this number should be the number of alongshore cells in CEM (Ymax) multiplied by 2 and minus 1: (2*Ymax)-1. Conversely, the number of alongshore cells set in CEM (using the variable Ymax) should be this number plus 1 and divided by 2 (110, in this case).

plimber
Sticky Note
number of cross-shore (y) meshes. number of meshes is equal to the number of grid cells minus one. NOTE that the number of cross-shore cells set in CEM (using the variable Xmax) should be this number plus one!

plimber
Sticky Note
"excv" sets the value to fill in the blanks where there is no wave field (i.e., on land). 

plimber
Sticky Note
This line defines some output options: first "ndec" is number of decimal places. "len" is the alongshore length of the exported matrix specified above by the SUBGRID command. Note that 0 to 219 is a length of 220 grid cells, so "len=220".

In the finegrid.swn file (the nested SWAN run) the number assigned to "len" must correspond to CEM; here, it does not. It is arbitrary.

plimber
Sticky Note
The two lines starting with the BLOCK command tell SWAN to export the Hsign and Dir wave properties to a text file from the computational grid, with no header.
'Dir_main' is the name of the file containing wave directional info from the main/coarse grid. 'Dir_main' is the name of the file containing wave height info from the main/coarse grid. 

plimber
Sticky Note
NESTout exports the boundary conditions for the nest grid. 'cem_s' is the name of the boundary conditions, and 'cem_f' is the name of the file that the boundary conditions are saved to. 

plimber
Sticky Note
'cem_s' is the name of the generated boundary conditions. It must correspond to the name in the NESTout command below.


cem. SWAN.c



/* CAPERIFFIC x*/

/* PWL's changes to this program for SWAN integration are initialed PWL with the date
/* and a searchable tag: #SWAN x/
/* */

#include <stdlib.h> /*THIS PROGRAM GONNA MAKE CAPES, SANDWAVES??x/
#include <stdio.h>

#include <math.h>

#include <time.h>

#include <unistd.h>

#include <ncurses.h>

/* Run Control Parameters x/

int  SWANflag = 1; /* Are we using SWAN to do wave shoaling? */
int restartflag = 0; /* Are we starting a run from a previous run? x/

/* Wave climate and timing —— DO NOT TOUCH *;

#define TimeStep 1.0 /* days - reflects rate of sediment transport per time step
*/
#define OffShoreWvHt 1 /* wave height, meters. Not needed with #SWAN. x/
#define Period 10 /* seconds. Not needed with #SWAN. x/
#define Asym 0.6 /* fractional portion of waves coming from positive (left)
direction.

not needed with #SWAN.x/
#define Highness 0.7 /*A11l New! .5 = even dist, > .5 high angle domination. Not
needed

with #SWAN. x/

#define Duration 1 /* Number of time steps calculations loop at same wave angle x/
#define StopAfter 1 /* duration of model run —— stop after what number of time
steps.

———> Must equal 1 with #SWAN!!!!111 x/
/* File saving */@
int seed = 44; /* random seed control value = 1 %/
int StartSavingAt = 1; /* time step to begin saving files x/
int SaveSpacing = 1; /* space between saved files x/
int SavelLineSpacing = 100; /* space between saved line files */
int SaveFile = 1; /* save full file? (i.e., the whole 2D domain) x/
/*char savefilename[24] = "";x/ /% PWL, 10-16-13: leave blank for SWAN coupling x/
int SavelLine = 0; /* Save line? (i.e. just the shoreline shape, not the whole
domain) x/
/*char savelinename[24] = "lineout";*/
char StartFromFile = 'y'; /*x start from saved file? If using SWAN, must always be ==y
#SWAN>x/
/*char readfilename[24] = "dfdf.@";x/

/* PWL, 10-16-13: Must read in the igif}al file name for SWAN coupling. It is tracked outside
CEM in the PBS script loop. #SWAN *

char readfilename[24];

char savefilename[24];

int t;

FILE *xfp;

FILE xbathyfile;

FILE xDirfile;

FILE xHsigfile;


plimber
Sticky Note
Do not change any variables in this section!

plimber
Sticky Note
Do not change any variables in this section!

plimber
Sticky Note
Do not change any variables in this section!


int WavelIn = 0 ; /* Input Wave Distribution file? Can input specific wave
climate from

a wave buoy. But, it must be formatted
correctly. See example in the

model folder.x/
char readwavename[24] = "ebropp_30.dat";

/x Initial Condition Info */;
int PWidth = 50;
int PHeight = 75;

float MaxOver = 0.01; /* Maximum overwash step size (enforced at backbarrier) x/

/* Aspect Parameters x/ ?}

#define CellWidth 320. /* size of cells (meters). Should match SWAN. #SWAN x/

#define CritBWidth 350.0 /* width barrier maintains due to overwash (m) important
scaling param! x/

#define Xmax 103 /* number of cells in x (cross-shore) direction. Should match
SWAN. #SWAN */ =

#define Ymax 110 /* number of cells in y (longshore) direction. Should match

SWAN. #SWAN *x/

#define MaxBeachLength 8xYmax /* maximum length of arrays that contain beach data at each

time step */

#define ShelfSlope 0

#define ShorefaceSlope @

#define DepthShoreface 8
1
5

S

.001 /* slope of continental shelf x/
. /* linear slope of shoreface */

. /* depth of shoreface due to wave action (meters) s/

0 /* cell where initial conditions changes from beach to ocean x/

(S

#define InitBeach

#define InitialDepth .0 /* theoretical depth in meters of continental shelf at x =
InitBeach */

#define LandHeight 1.0 /* elevation of land above MHW x/

#define InitCType 0 /* type of initial conds @ = sandy, 1 = barrier */

#define InitBWidth 4 /* initial minimum width of barrier (Cells) x*/

#define OWType 1 /* @ = use depth array, 1 = use geometric rule x/

#define OWMinDepth 1.0 /* littlest overwash of all x/

#define FindCellError 5 /*x if we run off of array, how far over do we try again? x/
float SedTansLimit = 90; /* beyond what absolute slope don't do sed trans (degrees)x/
float OverwashLimit = 60; /* beyond what angle don't do overwash x/

/* New SWAN stuff. #SWAN x/ [;:j

#define WaveBreakDepth 0.3 /* Define wave breaking threshold, H/d x/
float WvHeight; /* Breaking wave height found from SWAN run x/
float Angle; /* Breaking wave angle found from SWAN run x/

float BreakDepth; /* Breaking wave depth found from SWAN run */


plimber
Sticky Note
Do not change any variables in this section!

plimber
Sticky Note
This section contains variables that you need to change. They are described in the user manual. Only the variables that need to be changed for a given model run are commented.

plimber
Sticky Note
Cell size

MUST MATCH SWAN NESTED RUN

plimber
Sticky Note
MUST MATCH SWAN NESTED GRID

plimber
Sticky Note
SWAN nested grid must be this number of cells times two, or

2*Ymax

The number of grid meshes specified in the .swn files must be (2*Ymax)-1

plimber
Sticky Note
Slope of the shoreface. Adjust as necessary (see manual)

plimber
Sticky Note
Shoreface depth. Generally 8-20 m.

plimber
Sticky Note
Wave breaking threshold!


FindWaveAngle.c



/*

* FindWaveAngle.c

'3

'S

* Created by plimber on 11/18/13.

* Extracted from the original CEM, this function creates a PDF of waves based on
* wave asymmetry and 'highness' (proportion of waves that are >~42). From this PDF,
* CEM picks 'randomly' each model day a deep-water wave to drive the daily model
* simulation. The PDF function is made external to CEM because SWAN needs to know
* the deep-water wave angle to generate a wave field before CEM is called.

'3

*/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>

* Wave characteristics —— adjust these two variables ONLY x/
#define Highness 0.2 /x proportion of high-angle waves */
#define Asym 0.5 /% proportion of waves coming from positive (left) direction x/

/* */



plimber
Sticky Note
Highness and Asym need to be adjusted before each different model run. They determine the long-term wave climate and can be found using wave buoy data (see Ashton and Murray 2006a, 2006b).
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