Making Pictures With GNU PIC

Eric S. Raymond
[@ésr@snark.thyrsus.cdm

ABSTRACT

Thepic language is &off extension that mads it easy to create and alter box-and-
arran diagrams of the kind frequently used in technical papers atiobteks. Thigpaper
is both an introduction to and referencedpic(1), the implementation distributed by the
Free Software Foundation for use wggtoff (1).

1. Introduction to PIC

1.1. Why PIC?

Thepic language provides an easy way to write procedural box-and-dimgrams to be included in
troff documents. Th&anguage is sufficiently flexible to be quite useful for state charts, Petri-net diagrams,
flow charts, simple circuit schematics, jumper layouts, and other kinds of illustratiawimng repetitve
uses of simple geometric forms and splines. Because these descriptions are procedural and object-based,
they are both compact and easy to modify.

The gpic(1) implementation opic is distributed by the Free Software Foundation for use with their
groff (1) implementation ofroff. Because both implementations are widelgilable in source form for
free, thg are good bets for writing very portable documentation.

1.2. PICVersions

The original 1984 prelitroff (1) version ofpic is long obsolete.The rewritten 1991 version is still
awailable as part of the DocumengYork Bench module of System V.

Where differences between Documergevork Bench (1991)pic and GNU pic need to be
described, originapic is referred to as “DWB pic”. Details on the history of the program amngit the
end of this document.

In this document, thgpic(1) extensions will be marked as such.

2. Invoking PIC

Every pic description is a little program, which gets compiledpi(1) into gtroff (1) macros.Pro-
grams that process or displgiroff (1) output need not kmoor care that parts of the imagedaa life as
pic descriptions.

The pic(1) program tries to translate anything betweleS and .PE markers, and passes through
evaything else. The normal definitions dtfSand.PE in the msmacro package and elsewher@eédso
the side-effect of centering tipéc output on the page.

2.1. PICError Messages

If you male apic syntax errargpic(1) will issue an error message in the standmafl)-like s/ntax.
A typical error message looks dikhis,

-2-

pic:pic.ms:<nnn>: parse error before ‘<token>’
pic:pic.ms:<nnn>: giving up on this picture

wherelhnris a line numberand fokeriis a token near (usually just after) the error location.

3. BasicPIC Concepts

Pictures are described procedurallg ®llections of objects connected by motioidormally, pic
tries to string together objects left-to-right in the sequengeaieedescribed, joining them at visually natu-
ral points. Here is an example illustrating thevflof data inpic processing:

r—-———-—--=-=-= 1

. I gtbl(1) orgegn(l) '
gpic(1) ﬂ (optional) %» gtroff (1)

L - - - - - - - J

Figure 3-1: Flav of pic data

This was produced from the followinmic program:

.PS

ellipse "document”;

arrow;

box width 0.6 "\flpic\\fP(1)"
arrow;

box width 1.1 "\flgtb\\fP(1) or \flgegn\\fP(1)" "(optional)" dashed;
arrow;

box width 0.6 "\flgtroff\\fP(1)";
arrow;

ellipse "PostScript"

.PE

This little program illustrates geral pic basics. Firstlywe e hev to invoke three object types; ellipses,
arrovs, and boes. W& e hoev to declare t&t lines to go within an object (and that text canehfont
changes in it).We se hoev to change the line style of an object from solid to dashed. And we see that a
box can be made wider than its default size to accommodate mbfedd| discuss this facility in detail in

the next section).

We dso get to se@ic’'s smple syntax. Statements are ended bwlimes or semicolonsString
guotes are required around akttarguments, whether or not theontain spaces. In general, the order of
command arguments and modifierglikidth 1.2" or “dashed” doeshimatter except that the order ofxe
arguments is significant.

Here are all but one of the bagic objects at their default sizes:

line arrow j
box — —
arc

Figure 3-2: Basipic objects

The missing simple object type isgpline There is also a way to collect objects ibtod compos-
ites which allows you to treat the whole group as a single object (resembling a box) fppuonpases.
WEe'll describe both of these later on.

The box, ellipse, circle, and block composite objectschysed lines, arrows, arcs and splines are
open This distinction will often be important in explaining command modifiers.

-3-

Figure 3-2 was produced by the followipig program, which introduces some more basic concepts:

.PS

box "box";
move;

line "line" ",
move;

arrow "arrow" "";
move;

circle "circle";
move;

ellipse "ellipse";
move;

arc; down; move; "arc"
.PE

The first thing to notice is thmovecommand, which maes a cfault distance (1/2 inch) in the eur
rent maowement direction.

Secondly see hav we can also decorate lines and arrows witkt.teTheline and arraw commands
each tak two aguments here, specifying text to go aband belav the object. If you wonder wly one
argument would not do, contemplate the outpwrobw "ow!" :

—owl e

Figure 3-3: Ext centered on an arrow

When a command takes one text stripig,tries to place it at the objestgeometric centerAs you
add more stringgic treats them as a vertical block to be centered. The program
line "1";
line "1" "2";
line "1" "2" "3";
line "1" "2" "3" "4";
line "1" "2" "3" "4" "5";

for example, gies you this:

1
1
1 2
1 ; 2 :23 3
3 : 4
5

Figure 3-4: Effects of multiple text arguments

The last line of Figure 3.2'program, arc; down; move; " arc"’, describing the captioned arc, intro-
duces seeral nav ideas. Firstlywe e hav to change the direction in which objects are joined. Had we
written arc; move; " arc", omitting down the caption would hee been joined to the top of the arc,dik
this:

arc

)

Figure 3-5: Result adirc; move;

This is because drawing an arc changes theuttedirection to the one its exit end points ab. rein-
force this point, consider:

arc

Figure 3-6: Result odirc ow; move;

All we've done differently here is specify “cw” for a clockwise arc (“ccw” specifies cotaitek-
wise direction). Obser/how it changes the default direction to down, rather than up.

Another good way to see this via with the following program:

line; arc; arc cw; line

which yields:

Figure 3-7: Result dine; arc; arc ow; line

Notice that we did not lve o gpecify “up” for the second arc to be joined to the end of the first.

Finally, obsene that a string, alone, is treated as text to be surrounded by an invisible box of a size
either specified by width and height attribs or by the datltstextwid andtextht. Both are initially zero
(because we donknow the default font size).

4. Sizesand Spacing

Sizes are specified in inche.you dont like inches, its possible to set a global stylanablescale
that changes the uniSettingscale = 2.54will effectively change the internal unit to centimeters (all other
size variable values will be scaled correspondingly).

4.1. DefaultSizes of Objects
Here are the default sizes faic objects:

Object | Default Size

box 0.75"wide by 0.5" high
circle 0.5"diameter

ellipse | 0.75'wide by 0.5" high
arc 0.5"radius

Object | Default Size

line 0.5"long
arrov 0.5" long

The simplest way to think about these defaults is thatrifede the other basic objects fit snugly into
a default-sized box.

4.2. ObjectsDo Not Stretch!

Text is rendered in the current font with normal frohe spacing.Boxes, circles, and ellipses dot
automatically resize to fit enclosedte Thus,if you saybox "this text far too long for a default box"
you'll get this:

this text is far too long for a default box

Figure 4-1: Boxes do not automatically resize

which is probably not the effect you want.

4.3. ResizingBoxes
To change the box size, you can specify a box width with the “width” modifier:

this text is far too long for a default box

Figure 4-2: Result dbox width 3

This modifier taks a dimension in inches. There is also a “height” modifier that will change s box
height. Thewidth keyword may be abbreviated ¥aid; the height keyword toht.

4.4. ResizingOther Object Types

To change the size of a circle,vgiit a rad[ius] or diam[eter] modifier; this changes the radius or
diameter of the circle, according to the numeric argument that follows.

0 ® (v

Figure 4-3: Circles with increasing radii

The move command can also taka dmension, which just tells it ko mary inches to mee in the
current direction.

Ellipses are sized to fit in the rectangular box defined by thes, @nd can be resized witldth
andheight like boxes.

You can also change the radius of curvature of an arcradfius] (which specifies the radius of the
circle of which the arc is a gment). Lager values yield flatter arcs.

S,/
0.1 0.2 0.3

Figure 4-4:arc rad with increasing radii

Obsene that because an arc is defined as a quarter circle, increasing the radius also increases the size
of the arcs bounding box.

4.5. The'same’ Keyword
In place of a dimension specification, you can use ¢yadrd same This gives the object the same
size as the previous one of its type. As an example, the program

.PS
box; box wid 1 ht 1; box same; box
.PE

gives you

Figure 4-5: Thesamekeyword

5. GeneralizedLines and Splines

5.1. DiagonalLines

It is possible to specify diagonal lines or arrows by adding multipJelown, left, and right modi-
fiers to the line objectAny of these can hee a rultiplier. To understand the effects, think of the wiag
area as being gridded with standard-sized boxes.

line up left arrow up left 1 arrow up left 1.5 arrow up left 2

Figure 5-1: Diagonal arrows (dotted boxeswglioe implied 0.5-inch grid)

5.2. Multi-SegmentLine Objects

A “line” or “arrow” object may actually be a path consisting of aumber of segments ofawying
lengths and directionsTo describe a path, connectvegl line or arrav commands with thedgword then.

Figure 5-21ine right 1 then down .5 left 1 then right 1

5.3. SplineObjects

If you start a path with thepline keyword, the path ertices are treated as control points for a spline
cune fit.

Z | B
3-7¢ 4
The spline curve... ...with tangents displayed

Figure 5-3:spline right 1 then down .5 left 1 then right 1

You can describe mamatural-looking but irregular curves this walor example:

C O\

spline right then up then left then down ->; spline left then up right then down right ->;

Figure 5-4: Wo more spline examples

Note the arrav decorations. Arreheads can be applied naturally toy gath-based object, line or spline.
WEe'll see hav in the next section.

6. DecoratingObjects

6.1. Dashedbjects

Weve already seen that the modifidashedcan change the line style of an object from solid to
dashed. GNUWpic permits you to dot or dash ellipses, circles, and arcs (and splingX imdde only);
some versions of @B may only permit dashing of lines and lex Its possible to change the dash inter
val by specifying a number after the modifier.

C | C k I] fozﬁ

1 default [0.05 [\ 0.1 \ 0.15

: L [R T R B

Figure 6-1: Dashed objects

6.2. DottedObjects

Another &ailable qualifier isdotted. GNU gpic permits you to dot or dash ellipses, circles, and arcs
(and splines in@X mode only); some versions of DWB may only permit dashing of lines aresbditoo
can be suffixed with a number to specify the interval between dots:

default 0.05 0.1 0.15 0.2

Figure 6-2: Dotted objects

6.3. RoundingBox Corners
It is also possible, in GNgpic only, to modify a box so it has rounded corners:

Figure 6-3:box rad with increasing radius values

Radius values higher than half the minimum box dimension are silently truncated to that value.

6.4. Arrowheads

Lines and arcs can be decorated as waily line or arc (and gnspline as well) can be decorated
with arrowheads by adding one or more as modifiers:

-

Figure 6-4: Double-headed line made withe <- ->

In fact, thearrow command is just shorthand fline ->. And there is a double-head modifier <->,
so the figure ab@ muld hare been made witline <->.

Arrowheads hee awidth attribute, the distance across the rear; aheight attribute, the length of
the arrowhead along the shaft.

Arrowhead style is controlled by the stylariablearrowhead The DWB and GNU &rsions inter
pret it differently DWB defaults to open arrowheads andaanowhead value of 2; the Kernighan paper
says a value of 7 will makolid arrovheads. GNUWpic defaults to solid arrowheads and amowhead
vaue of 1; a value of 0 will produce open ameeads. Notéhat solid arrowheads arenalys filled with
the current outline color.

6.5. LineThickness

It's dso possible to change the line thickness of an object (this is a GNU extenaiBrpiDdoesn't
support it). The default thickness of the lines used tw digects is controlled by thénethick variable.
This gives the thickness of lines in point#\ negdive value means use the default thicknessg\ dutput
mode, this means use a thickness of 8 millinchesgkdlutput mode with thec option, this means use
the line thickness specified byslines; in trof output mode, this means use a thickness proportional to the
pointsize. Azero value means dwathe thinnest possible line supported by the outpuicde Initially it
has a value of -1. There is alsthacknessattribute (which can be abbreviatedthock). For example,cir-
cle thickness 1.5vould drav a drcle using a line with a thickness of 1.5 points. The thickness of lines is
not affected by the value of tisealevariable, nor by apwidth or height gren in the .PSline.

6.6. Invisible Objects

The modifierinvis[ible] makes an object entirelywisible. Thisused to be useful for positioning text
in an invisible object that is properly joined to neighboring oméswver DWB versions and GNUic treat
stand-alone text in exactly this way.

6.7. FilledObjects

It is possible to fill boxes, circles, and ellipses. The modifigd] accomplishes thisYou can suf-
fix it with a fill value; the default is gen by the stule variablélival .

DWB pic and gpic have gqposite comentions for fill values and different dafilts. DVB fillval
defaults to 0.3 and smaller values are darker; GiNal uses 0 for white and 1 for black.

® 00

Figure 6-5:circle fill; move; circle fill 0.4; move; circle fill 0.9;

GNU gpic makes some additional guarantedsfill value greater than 1 can also be used: this means
fill with the shade of gray that is currently being used far &md lines. Normally this will be blackub
output devices may provide a mechanism for changing this. The invisibleli@tdbes not affect the fill-
ing of objects.Any text associated with a filled object will be added after the object has been filled, so that
the text will not be obscured by the filling.

The closed-object modifiesolid is equiaent tofill with the darkest fill value (B pic had this
capability but mentioned it only in a reference section).

6.8. Colored Objects

As a GNU extension, three additional modifiers amélable to specify colored objectautline sets
the color of the outlineshadedthe fill color, and color sets both.All three keywords expect a suffix speci-

fying the color Example:

Figure 6-6:box color "yellow"; arr ow color "cyan”; circle shaded "green" outline "black";

Alternative pellings arecolour, colored, coloured, and outlined.

Currently color support is not\ailable in TeX mode. Predefinedolor names fogroff (1) are in the
device macro files, forxampleps.tmac ; additional colors can be defined with tliefcolor request (see
the manual page of GNtbff (1) for more details).

pic assumes that at the beginning of a picture both glyph and fill color are set to the default value.

7. More About Text Placement

By default, text is centered at the geometric center of the object it is associated lvd@timodifier
ljust causes the left end to be at the specified point (which means that the text lies to the right of the speci-
fied place!), the modifiefjust puts the right end at the plac&he modifiersabove andbelow center the
text one half line space in thevgn direction.

Text attributes can be combined:

-10-

ljust text rjust tex ljust abae
rjust below

Figure 7-1: '&xt attributes

What actually happens is thatext strings are centered in a box thateistwid wide bytextht high.
Both these variables are initially zero (thatpis’s way of not making assumptions abdtg]roff (1)'s
default point size).

In GNU gpic, objects can hae an aligned attribute. Thiswill only work when the postprocessor is
grops. Any text associated with an object having thkgned attribute will be rotated about the center of
the object so that it is aligned in the direction from the start point to the end point of the blojecthat
this attribute will hae ro efect for objects whose start and end points are coincident.

8. More About Direction Changes

Weve already seen hoto change the direction in which objects are composed from rightwards to
downwards. Herare some more illustrag examples:

right; box; arr ow; circle; arr ow; ellipse

left; box; arr ow; circle; arr ow; ellipse

Figure 8-1: Effects of different motion directions (right and left)

-11-

down; box; arrow; circle; arr ow; ellipse; up; box; arrow; circle; arr ow; ellipse;

Figure 8-2: Effects of different motion directions (up and down)

Something that may appear surprising happens if you change directions in the obvious way:

Figure 8-3box; arrow; circle; down; arr ow; ellipse

You might have expected that program to yield this:

Figure 8-4: More intuitie?

But, in fact, to get Figure 8.3 youvea do his:

-12-

.PS

box;

arrow;

circle;

move to last circle .s;
down;

arrow;

ellipse

.PE

Why is this? Becausthe exit point for the current direction is already set when yow tira object. The
second arn in Figure 8.2 dropped aewards from the circle’ @tachment point for an object to be joined
to the right.

The meaning of the commamnabve to last circle .sshould be obious. Inorder to see it gener-
alizes, we'll need to go into detail ondwmportant topics; locations and object names.

9. NamingObijects

The most natural way to name locationpia is relative to objects. Inorder to do this, you va
be able you ha be dle to name objectsThe pic language has rich facilities for this that try to emulate
the syntax of English.

9.1. NamingObijects By Order Of Drawing

The simplest (and generally the most usefidywo name an object is withlast clause. ltnheeds to
be followed by an object type nantmx, circle, ellipse, line, arrow, spline, ™ , or [] (the last type refers
to acomposite objecivhich we'll discuss later).So, for example, théast circle clause in the program
attached to Figure 9.1.3 refers to the last circle drawn.

More generallyobjects of a gien type are implicitly numbered (starting from 1you can refer to
(say) the third ellipse in the current picture w8l ellipse, or to the first box adst box or to he fifth text
string (which isnt an dtribute to another object) &h "' .

Objects are also numbered backds by type from the last on&ou can say2nd last boxto get the
second-to-last box, @rd last ellipseto get the third-to-last ellipse.

In places wherath is allowved, ‘expr'th is also alleved. Notethat'th is a single token: no space is
allowed between theand theth. For example,

fori=1to4do{
line from ‘i'th box.nw to ‘i+1'th box.se
}

9.2. NamingObijects With Labels

You can also specify an object by referring to a lab&llabel is a word (which must begin with a
capital letter) followed by a colon; you declare it by placing it immediately before the object drawing com-
mand. er example, the program

.PS

A: box "first" "object"
move;

B: ellipse "second
move;

arrow right at A .r;
.PE

object”

declares label8 andB for its first and second objects. Her@hat that looks like:

13-

first second
object object

Figure 9-1: Example of label use

The at statement in the fourth line uses the labgithe behavior ot will be explained in the next sec-
tion). We'll see later on that labels are most useful for referring to block composite objects.

Labels are not constants budriables (you can we colon as a sort of assignmentyou can say
something lile A: A + (1,0); and the effect will be to reassign the laBefo designate a position one inch
to the right of its old value.

10. Describinglocations

The location of points can be described in yndifferent ways. Allthese forms are interchangeable
as for as theic language syntax is concerned; where you can use onef #me others that would mak
semantic sense are allowed.

The special labéHere always refers to the current position.

10.1. AbsoluteCoordinates

The simplest is absolute coordinates in inclpésuses a Cartesian system with (0, 0) at theeto
left corner of the virtual drawing saide for each picture (that is, X increases to the right and Y increases
upwards). Anabsolute location may\abys be written in the caentional form as tw comma-separated
numbers surrounded by parentheses (and this is recommended for claritghtexts where it creates no
ambiguity the pair of X and Y coordinates suffices without parentheses.

It is a good idea tovaid absolute coordinates, Wwever. They tend to mak pcture descriptions dif
cult to understand and modifynstead, there are quite a number of ways to specify locationsedtapic
objects and previous locations.

10.2. LocationsRelative to Objects

The symbolHere always refers to the position of the last object drawn or the destination of the last
move.

Alone and unqualified, st circle or ary other way of specifying a closed-object or arc location
refers as a position to the geometric center of the objdatjualified, the name of a line or spline object
refers to the position of the object start.

Also, pic objects hae quite a fav named locations associated with them. One of these is the object
center which can be indicated (redundantly) with thefigucenter (or just.c). Thus,last circle .centeris
equialent tolast circle.

10.2.1. LocationsRelative to Closed Objects

Every closed object (box, circle, ellipse, or block composite) also has eight compass points associ-
ated with it;

-14-

nw n ne
We e.C . W
SW kS Se

Figure 10-1: Compass points

these are the locations where eight compass rays from the geometric center would intersect ttfg@ofigure.
when we sayast circle .swe are referring to the south compass point of the last ciralendraiheexpla-
nation of Figure 7.3 program is nav complete.

(In case you disli& mmpass points, the naméap, .bottom, .left and.right are synonyms fom, .s,
.6, and.w respectiely; they can even be dbreviated tat, .b, .| and.r).

The namegenter, top, bottom, left, right, north, south, east and west can also be used (without
the leading dot) in a prefix form marked bfj thus, center of last circle andtop of 2nd last ellipseare
both valid object reference&inally, the namegeft andright can be prefigd withupper andlower which
both hae the obvious meaning.

Arc objects also hee mmpass point; theare the compass points of the implied circle.

10.2.2. LocationsRelative to Open Objects

Every open object (line, ang arc, or spline) has three named poingsart, .center (or .c), and.end
They can also be used without leading dots in df@refix form. The center of an arc is the center of its
circle, but the center of a line, path, or spline is halfway between its endpoints.

.end .start
.center
.start .center .end

.start .end

.center

.center

.end .start

Figure 10-2: Special points on open objects

10.3. Ways of Composing Positions

Once you hee wo positions to work with, there areaeal ways to combine them to specifymne
positions.

10.3.1. \éctor Sums and Displacements

Positions may be added or subtracted to yieldrapusition (to be more precise, you can only add a
position and am@ression pair; the latter must be on the right side of the addition or subtractionTdign).
result is the corentional vector sum or difference of coordinatésr example,last box .ne + (0.1, Ojs a
valid position. This example illustrates a common use, to define a position sligk#y fodbm a named one
(say for captioning purposes).

-15-

10.3.2. Intempolation Between Positions

A position may be interpolated betweenyawo positions. Thesyntax is fraction of the way
betweenpositionland position2. For example, you can sdy3 of the way between her and last ellipse
.ne. The fraction may be in numerator/denominator form or may be an ordinary number (valnes are
restricted to [0,1]). As an alternadi o this verbose syntax, you can sdsaction <positionl, position2’;
thus, the example could also be writterl&s<here, last ellipse>

Figure 10-3P: 1/3 of the way between last aow start and last arrow .end

This facility can be used, for example, towl@ouble connections.

yin yang

Figure 10-4: Doubled arrows

You can get Figure 10-4 from the following program:

.PS

A: box "yin"; move;

B: box "yang";

arrow right at 1/4 <A.e,A.ne>;
arrow left at 1/4 <B.w,B.sw>;
.PE

Note the use of the short form for interpolating points.

10.3.3. Ppjections of Points

Given two positionsp andgq, the position(p, g) has the X coordinate gfand the Y coordinate af.
This can be helpful in placing an object at one of the corners of the virtual box defined bihéw
objects.

A (B,A) is here

(A,B) is here ’ B

Figure 10-5: Usingx, y) compaosition

10.4. UsingLocations

There are four ways to use locatioas; from, to, and with. All three are object modifiers; that is,
you use them as suffixes to a drawing command.

-16-

The at modifier says to dia a dosed object or arc with its center at the following location, or to
draw a line/spline/arrav starting at the following location.

The to modifier can be used alone to specify avendestination. Theérom modifier can be used
alone in the same way at

Thefrom andto modifiers can be used withiae or arc command to specify start and end points of
the object. In conjunction with named locations, this offers a verybfte mechanism for connecting
objects. IBr example, the following program

.PS
box "from"
move 0.75;
ellipse "to"
arc cw from 1/3 of the way \
between last box .n and last box .ne to last ellipse .n;
.PE

yields:

from

Figure 10-6: A tricl connection specified with English-éks/ntax

Thewith modifier allows you to identify a named attachment point of an object (or a position within
the object) with another poinfThis is very useful for connecting objects in a natura). wor an &le,
consider these twprograms:

box wid 0.5 ht 0.5;

box wid 0.5 ht 0.5; box wid 0.75 ht 0.75 box wid 0.75 ht 0.75 with .sw at last box .se;

Figure 10-7: Using theiith modifier for attachments

10.5. The'chop’ Modifier

When drawing lines between circles that dantersect them at a compass point, it is useful to be
able to shorten a line by the radius of the circle at either or both ends. Consider the following program:

-17-

.PS

circle "x"

circle "y" at 1st circle - (0.4, 0.6)

circle "z" at 1st circle + (0.4, -0.6)
arrow from 1st circle to 2nd circle chop
arrow from 2nd circle to 3rd circle chop
arrow from 3rd circle to 1st circle chop
.PE

It yields the following:

Figure 10-8: Thehop modifier

Notice that thechop attribute maes arowheads rather than stepping on them. By defaultchiop modi-
fier shortens both ends of the line disclerad. By suffixing it with a number you can change the amount
of chopping.

If you sayline ... chop rl chopr2 with rl andr2 both numbers, you can vary the amount of chop-
ping at both endsYou can use this in combination with trigonometric functions to write code that will deal
with more complg intersections.

11. ObjectGroups
There are tw different ways to group objects pic; brace groupingandblodk composites

11.1. BraceGrouping

The simpler method is simply to group a set of objects within curly btawkbrace character©n
exit from this grouping, the current position and direction are restored to their value when the opening
brace was encountered.

11.2. BlockComposites

A block composite object is created a series of commands enclosed by squaets brlckcompos-
ite can be treated for most purposes Bkéngle closed object, with the size and shape of its bounding box.
Here is an xample. Therogram fragment

A [
circle;
line up 1 at last circle .n;
line down 1 at last circle .s;
line right 1 at last circle .e;
line left 1 at last circle .w;
box dashed with .nw at last circle .se + (0.2, -0.2);
Caption: center of last box;

]

yields the block in figure 11-1, which we shboth with and without its attachment points. The bleck’
location becomes the value Af

-18-

.nw .n .ne

Figure 11-1: A sample composite object

To refer to one of the composisedtachment points, you can say (fotaenple) A .s. For purposes of
object naming, composites are a cla¥su could writelast [] .s as an eqwalent reference, usable @an

where a location is needed. This construction is very important for putting together large, multi-part dia-
grams.

Blocks are also a variable-scoping mechanisre, digroff (1) ervironment. Allvariable assignments
done inside a block are undone at the end ofadtget at values within a block, write a name of the block
followed by a dot, follwed by the label you ant. For example, we could refer the the center of the box in
the abwe composite asast [.Caption or A.Caption.

This kind of reference to a label can be used invealy ary other location can beFor example, if
we addedHi!" at A.Caption the result would look li& this:

)
NI

Figure 11-2: Adding a caption using interior labeling

You can also use interior labels in either part ofith modifier This means that the example com-
posite could be placed relatito its caption box by a command containimigh A.Caption at.

Note that both width and height of the block composite object wayaposite:

-19-

box wid -0.5 ht 0.5; box wid 0.75 ht 0.75 [box wid -0.5 ht 0.5]; box wid 0.75 ht 0.75

Figure 11-3: Composite block objectsvays have positive width and height

Blocks may be nested. This means you can use block attachment pointkl topbcomple dia-
grams hierarchicallyfrom the inside outNote thatlast and the other sequential naming mechanismstdon’
look inside blocks, so if you kia a pogram that looks like

.PS
P: [box "foo"; ellipse "bar'];
Q[
[box "baz"; ellipse "quxx"]
"random text";
]
arrow from 2nd last [J;
.PE

the arrav in the last line will be attached to objdéttnot objectQ.

In DWB pic, only references one Vel deep into enclosed blocks were permittedNU gpic
removes this restriction.

The combination of block variable scoping, assignability of labels and the nzedity fthat well
describe later on can be used to simulate functions with lacables (just wrap the macro body in block
braces).

12. StyleVariables

There are a number of global stylariables inpic that can be used to change iterall behaior.
Welve mentioned seeral of them in previous sectiond.hey're all described heref-or each variable, the
default is gven.

Style Variable | Default | What It Does

boxht 0.5 Default height of a box

boxwid 0.75 | Default width of a box

lineht 0.5 Default length of vertical line

linewid 0.75 | Default length of horizontal line

linethick -1 Default line thickness

arcrad 0.25 | Default radius of an arc

circlerad 0.25 | Default radius of a circle

ellipseht 0.5 Default height of an ellipse

ellipsawid 0.75 | Default width of an ellipse

moveht 0.5 Default length of vertical ma

movewid 0.75 | Default length of horizontal nve

textht 0 Default height of box enclosing a text object
textwid 0 Default width of box enclosing a text object
arrovht 0.1 Length of arrowhead along shaft

arrovwid 0.05 | Width of rear of arrowhead

arrovhead 1 Enable/disable arrowhead filling

-20-

Style Variable | Default | What It Does

dashwid 0.05 | Interval for dashed lines
maxpswid 11 Maximum width of picture
maxpsht 8.5 Maximum height of picture
scale 1 Unit scale factor

fillval 0.5 Default fill value

Any of these variables can be set with a simple assignment stateffoeekample:

Figure 12-1boxht=1; boxwid=0.3; movewid=0.2; box; move; box; move; box; move; box;

In GNU pic, setting thescalevariable re-scales all size-related state variables so that tleiesy
remain equialent in the nes units.

The commandesetresets all style variables to their delts. You can gie it a list of variable names
as arguments (optionally separated by commas), in which case it resets only those.

State variables retain their values across pictures until reset.

13. Expressions, Variables, and Assignment

A number is a valid expression, of course (all numbers are stored internally as floating{peait).
mal-point notation is acceptable; in GNjgic, scientific notation in & ‘e’ format (like 5e-2) is accepted.

Anywhere a number isxpected, the language will also acceptdable. \ariables may be thaubt-
in style variable described in the last section, or variables created by assignment.

DWB pic supports only the ordinary assignment wjavhich defines the variable (on the left side of
the equal sign) in the current block if it is not already defined there, and then changdselfervthe right
side) in the current block. The variable is not visible outside of the block. This is similar to the C program-
ming language where a variable within a block skheada variable with the same name outside of the block.

GNU gpic supports an alternate form of assignment usingThe variable must already be defined,
and the value will be assigned to that variable without creatirgyiable local to the current blockor
example, this

x=5
y=5

printx " "y

prints3 5.

You can use the height, width, radius, and x and y coordinates/afgect or corner inxpressions.
If A is an object label or name, all the following are valid:

-21-

A.X # x coordinate of the center of A

A.ne.y # y coordinate of the northeast corner of A
A.wid # the width of A

A.ht # and its height

2nd last circle.rad # t he radius of the 2nd last circle

Note the second expression, showing o extract a corner coordinate.

Basic arithmetic resembling those of C operators eaidahle; +, *, -, /, and%. So is” for exponen-
tiation. Groupingis permitted in the usual way using parentheseslU gpic allows logical operators to
appear in expressionis{logical neyation, not factorial)&& , ||, ==, =, >=, <=, <, >.

Various built-in functions are supportesin(x), cos), log(x), exp(), sqrt(x), max(x,y), atan2(x,y),
min(x.y), int(x), rand(), and srand(). Both exp andlog are base 10nt does integer truncatiomand()
returns a random number in [0-1), ardnd() sets the seed for ameequence of pseudo-random numbers
to be returned byand() (srand() is a GNU extension).

GNU gpic also documents a one-argument form or raadd(x), which returns a random number
between 1 ang, but this is deprecated and may be rgedan a future version.

The functionsprintf() behaes like a Csprintf(3) function that only takes %, %e, %f, and %g format
strings.

14. Macros

You can define macros ipic. This is useful for diagrams with repetii parts. Inconjunction with
the scope rules for block composites, it effetyi gives you the ability to write functions.

The syntax is

define name { replacement text

This definesnameas a macro to be replaced by the replacement text (not including the bigoeshacro
may be called as

namdargl, ag2, ... agn)

The arguments (if any) will be substituted for tok&as$2 . . . $n appearing in the replacement text.
As an example of macro use, consider this:

-22-

.PS
Plot a single jumper in a box, $1 is the on-off state.
define jumper { [

shrinkfactor = 0.8;

Outer: box invis wid 0.45 ht 1;

Count on end] to reset these
boxwid = Outer.wid * shrinkfactor / 2;
boxht = Outer.ht * shrinkfactor / 2;

box fill (1$1) with .s at center of QOuter;
box fill ($1) with .n at center of Outer;

1}

Plot a block of six jumpers.
define jumperblock {

jumper($1);

jumper($2);

jumper($3);

jumper($4);

jumper($5);

jumper($6);

jwidth = last [].Outer.wid;
jheight = last [].Outer.ht;

box with .nw at 6th last [J.nw wid 6*jwidth ht jheight;

Use {} to avoid changing position from last box draw.
This is necessary so move in any direction will work as expected
{"Jumpers in state $1$2$3%4$5%$6" at last box .s + (0, -0.2);}

}

Sample macro invocations.
jumperblock(1,1,0,0,1,0);
move;
jumperblock(1,0,1,0,1,1);

.PE

It yields the following:

Jumpers in state 110010 Jumpers in state 101011

Figure 14-1: Sample use of a macro

This macro example illustratesvagyou can combine [], brace grouping, and variable assignment to write
true functions.

One detail the example al®des not illustrate is the fact that macrguanent parsing is not tek-
oriented. Ifyou calljumper(1), the value of $1 will bé 1" . You could &en call jumper(big string) to
give $l the valu€e'big string” .

-23-

If you want to pass in a coordinate pgwu can &oid getting tripped up by the comma by wrapping
the pair in parentheses.

Macros persist through picture$o undefine a macro, sayndef name for example,

undef jumper
undef jumperblock

would undefine the tavymacros in the jumper block example.

15. Import/Export Commands
Commands that import or export data betweierand its environment are described here.

15.1. Fileand Table Insertion
The statement

copy filename

inserts the contents fifenamein the pic input stream.Any .PS.PE pair in the file will be ignoredThis,
you can use this to include pre-generated images.

A variant of this statement replicates tupy thru feature ofgrap(1). Thecall

copy filenamethru macro

callsmacro(which may be either a name or replacemext) ten the arguments obtained by breaking each
line of the file into blank-separated fields. The macro maw lp to 9 aguments. Theeplacement e
may be delimited by braces or by a pair of instancesyoflzracter not appearing in the rest of the text.

If you write

copythru macro

omitting the filename, lines to be parsed are taken from the input source up to tiREnext

In either of the last taw copy commands, GNWpic permits a trailing until word’ clause to be
added which terminates the gowhen the first word matches thegament (the default behavior is there-
fore equvalent tountil .PE).

Accordingly, the command

.PS

copy thru % circle at ($1,$2) % until "END"
12

34

56

END

box

.PE

is equiaent to

.PS
circle at (1,2)
circle at (3,4)
circle at (5,6)
box
.PE

15.2. Delug Messages

The commandgrint accepts aynnumber of arguments, concatenates their output forms, and writes
the result to standard errdeach argument must be an expression, a position, or a text string.

-24-

15.3. Escapéo Post-Processor
If you write

commandarg. ..

pic concatenates the arguments and pass them through as a lind t figf. Eacharg must be an
expression, a position, orte Thishas a similar effect to a line beginning witlr\, but allows the alues
of variables to be passed through.

15.4. ExecutingShell Commands
The command

sh{ anything..}

macro-epands the text in braces, thexeutes it as a shell command. This could be used to generate
images or data tables for later inclusion. The delimiters shown as {} here may also tapias of ag

one character not present in the shell commaxid t@ either case, the body may contain balanced {}
pairs. Stringsn the body may contain balanced or unbalanced bracey irase.

16. Control-flow constructs
Thepic language provides conditionals and loopigr example,

pi = atan2(0, -1);

fori=0to 2 * pi by 0.1 do {
"-"at (i/2, 0);
""at (i/2, sin(i)/2);
""at (i/2, cos(i)/2);

}

which yields this:

Figure 16-1: Plotting with &r loop

The syntax of théor statement is:
for variable=exprl to expr2 [by [*]expr3] do X body X

The semantics are as folle: Setvariableto exprl. While the value ofvariableis less than or equal to
expr2, do bodyand incremenvariable by expr3; if by is not given, incrementvariable by 1. If expr3is
prefixed by* thenvariable will instead be multiplied byexpr3. X can be ap character not occurring in
body; or the twoXs may be paired braces (as in #fecommand).

The syntax of thé statement is as follows:
if expr then X if-true X[elseY if-false Y]

Its semantics are as follows: &uvateexpr; if it is non-zero then ddf-true, otherwise ddf-false X can be
ary character not occurring ifttrue. Y can be aycharacter not occurring ifi-false

Eithe or both of theX or Y pairs may instead be balanced pairs of braces ({ and }) as shitwm-
mand. Ineither case, th#-true may contain balanced pairs of braces. None of these delimiters will be

-25-

seen inside strings.

All the usual relational operators my be used in conditioxlessions! (logical ngaion, not fic-
torial), && , ||, ==, =, >=, <=, <, >,

String comparison is also supported usirgand!=. String comparisons may need to be parenthe-
sized to ®oid syntactic ambiguities.

17. InterfaceTo [gt]roff

The output opic is [gt]roff draving commands. The GNYpic(1) command warns that it relies on
drawing extensions presentgroff (1) that are not present froff (1).

17.1. ScalingArguments

The DWB pic(1) program will accept one or tnarguments to.PS which is interpreted as a width
and height in inches to which the resultpii{1) should be scaled (width and height scale independently).
If there is only one argument, it is interpreted as a width to scale the picture to, and height will be scaled by
the same proportion.

GNU gpic is less general; it will accept a single width to scale to, or a zero width and a maximum
height to scale toWith two non-zero arguments, it will scale to the maximum height.

17.2. How Scaling is Handled

Whenpic processes a picture description on input, it pag38snd.PE through to the postproces-
sor. The.PSgets decorated with twnumeric arguments which are the X and Y dimensions of the picture
in inches. The post-processor can use these to eegeee for the picture and center it.

The GNU incarnation of thens macro package, for example, includes the following definitions:

.de PS
.br
.sp \n[DD]Ju
.ie \n[.$]<2 .@error bad arguments to PS (not preprocessed with pic?)
el\f\
d s@need (u;\$1)+1v
i n +(u;\n[I-\n[.i]-\$2/2>70)
A
.de PE
.par@reset
.sp \n[DD]Ju+.5m

Equivaent definition will be supplied by GNic(1) if you use the —mpic option; this should raak
usable with macro pages other timag1).

If .PF is used instead ofPE, the troff position is restored to what it was at the picture start
(Kernighan notes that the F stands for “flyback”).

The invocation

.PS <file

causes the contentsfié to replace thePSline. Thisfeature is deprecated; usmpyfile’ i nstead).

By default, input lines that begin with a period are passed to the postproesgsxuided at the cor
responding point in the output. Messing with horizontal or vertical spacing isvéwusbrecipe for bgs,
but point size and font changes will usually be safe.

Point sizes and font changes are also safe witkinstengs, as long as there undone before the
end of string.

-26-

The state ofgt]roff 's fill mode is preserved across pictures.

The Kernighan paper notes that there is a subtle problem with complicated equationgidngicle
tures; thg come out wrong ifeqn(1) has to leae exra vertical space for the equation. If your equation
involves more than subscripts and superscripts, you must add togiheibg of each equation thetea
informationspace 0 He gves the following example:

arrow
box "$space 0 {H(omega)} over {1 - H(omega)}$"
arrow

delm @@

@space-0-{H{(»nga } over {I-H{amega }@

Figure 17-1: Equations within pictures

18. Interfaceto TeX

TeX mode is enabled by thet option. InTpX mode, pic will define a vbox callédraph for each
picture. You must yourself print that vbox using, for example, the command

\centerline{\box\graph}

Actually, since the vbox has a height of zero this will produce slightly more vertical spaoe tabgicture
than belw it;

\centerline{\raise 1em\box\graph}
would avoid this.
You must use agX driver that supports thiic specials, version 2.

Lines beginning with are passed through transparentl§pas added to the end of the line teoil
unwanted spacesYou can safely use this feature to change fonts or to change the vahaselineskip
Anything else may well produce undesirable results; use at your own risk. Ligiesibg with a period
are not giren any Pecial treatment.

The BX mode ofpic(1) will nottranslateroff font and size changes included in text strings!

19. ObsoletecCommands
GNU gpic(1l) hasa mommand

plot expr ["text']

This is a text object which is constructed by udiext as a format string for sprintf with an argument of
expr. If textis omitted a format string 6f6g" is used.Attributes can be specified in the same way as for
a mormal text object. Be very careful that you specify an appropriate format giitngpes only very lim-
ited checking of the string. This is deprecatedaivodir of sprintf.

20. Somd.arger Examples

Here are a f@ larger examples, with complete source co@ae of our earlier examples is generated
in an instructie way using a for loop:

-27-

.PS
Draw a demonstration up left arrow with grid box overlay
define gridarrow
{
move right 0.1
[
{arrow up left $1;}
box wid 0.5 ht 0.5 dotted with .nw at last arrow .end;
fori=2to ($1/0.5) do

{
}

move down from last arrow .center;

[

box wid 0.5 ht 0.5 dotted with .sw at last box .se;

if ($1 == boxht)\
then { "\fBline up left\fP" } \
else { sprintf("\fBarrow up left %g\fP", $1) };
]
]
move right 0.1 from last [] .e;
}
gridarrow(0.5);
gridarrow(1);
gridarrow(1.5);
gridarrow(2);
undef gridarrow
.PE

line up left arrow up left 1 arrow up left 1.5 arrow up left 2

Figure 20-1: Diagonal arrows (dotted boxesvslize implied 0.5-inch grid)

Heres an éample concocted to demonstrate layout of a large, multiple-part pattern:

-28-

.PS
define filter {box ht 0.25 rad 0.125}
lineht = 0.25;
Top: [
right;
box "\fBms\fR" "sources";
move;
box "\fBHTML\fR" "sources";
move;
box "\fBlinuxdoc-sgmI\fP" "sources" wid 1.5;
move;
box "\fBTexinfo\fP" "sources";

line down from 1st box .s lineht;

A: line down;

line down from 2nd box .s; filter "\fBhtmI2ms\fP";

B: line down;

line down from 3rd box .s; filter "\fBformat\fP";

C: line down;

line down from 4th box .s; filter "\fBtexi2roff\fP";

D: line down;
]
move down 1 from last [] .s;
Anchor: box wid 1 ht 0.75 "\fBms\fR" "intermediate" "form";
arrow from Top.A.end to Anchor.nw;
arrow from Top.B.end to 1/3 of the way between Anchor.nw and Anchor.ne;
arrow from Top.C.end to 2/3 of the way between Anchor.nw and Anchor.ne;
arrow from Top.D.end to Anchor.ne
{

PostScript column

move to Anchor .sw;

line down left then down ->;

filter "\fBpic\fP";

arrow;

filter "\fBeqn\fP";

arrow;

filter "\fBtbI\fP";

arrow;

filter "\fBgroff\fP";

arrow;

box "PostScript";

HTML column

move to Anchor .se;

line down right then down ->;
A: filter dotted "\fBpic2img\fP";
arrow;

B: filter dotted "\fBegn2htmI\fP";
arrow;

C: filter dotted "\fBtbI2htmI\fP";
arrow;

filter "\fBms2htmI\fP";

arrow;

box "HTML";

Nonexistence caption

box dashed wid 1 at B + (2, 0) "These tools" "don’t yet exist";
line chop 0 chop 0.1 dashed from last box .nw to A.e ->;

line chop 0 chop 0.1 dashed from last box .w to B.e ->;

-29-

line chop 0 chop 0.1 dashed from last box .sw to C.e ->;

.PE

ms HTML linuxdoc-sgml Texinfo
sources sources sources sources

(html2ms format) (texi2roff)

AN

ms
intermediate
form
Y
pic pic2img -
- I A
db egn2html = - | These tools !
! anapimt - =rmm o , dontyetexist
' .)
o) bz -
Coor) ms2him
PostScript HTML

Figure 20-2: Hypothetical productionfdor dual-mode publishing

21. PICReference
This is an annotated grammar€.

21.1. Lexicalltems

In generalpic is a free-format, token-oriented language that ignores whitespace outside $rihgs.
certain lines and contructs are specially interpreted at the lexiehl le

A comment begins with and continues tdn (comments may also follotext in a line). Aline
beginning with a period or backslash may be interpreted as text to be passed through to the post-processor
depending on command-line options. An end-of-line backslash is interpreted as a request to continue the

-30-

line; the backslash and following newline are ignored.

21.2.

A w DN PR

Here are the grammar terminals:
INT A positive integer.

NUMBER
A floating point numeric constant. May contain a decimal point oxpeessed in scientific
notation in the style gbrintf (3)’'s %e escape. Atrailing ‘i’ or ‘I’ (indicating the unit ‘inch’) is
ignored.

TEXT
A string enclosed in double quoteA. double quote withimTEXT must be preceded by a back-
slash. Insteadf TEXT you can use

sprintf (TEXT [, <expr>...])

except after the ‘until’ and ‘last’ éywords, and after all ordinakgwords (‘th’ and friends).

VARIABLE
A string starting with a character from the set [a-z], optionally followed by one or more charac-
ters of the set [a-zA-Z0-9 _]. (Values of variables are preserved across pictures.)

LABEL
A string starting with a character from the set [A-Z], optionally fekal by one or more char
acters of the set [a-zA-Z0-9].

COMMAND-LINE
A line starting with a command characteri groff mode, ‘\' in TeX mode).

BALANCED-TEXT
A string either enclosed by {’ and ‘}' or witbX andX, whereX doesnt occur in the string.

BALANCED-BODY
Delimiters as irBALANCED-TEXT; the body will be interpreted agtbmmand.l. .".

FILENAME
The name of a file. This has the same semantiTEés.

MACRONAME
EitherVARIABLE or LABEL.

Semi-Brmal Grammar

Tokens not enclosed ifare literals, except:

\n is a newline.

Threedots is a suffix meaning ‘replace with 0 or more repetitions of the preceding element(s).
Anenclosure in square brackets has its usual meaning of ‘this clause is optional’.

Square-bragkt-enclosed portions within tokens are optiondlhus, ‘Heigh]t’ matches either
‘height’ or ‘ht’.

If one of these special tokens has to be referred to liteitalysurrounded with single quotes.

The top-led pic object is a picture.

<picture> ::=
.PS [NUMBER [NUMBER]]\n
<statement> ...
.PE\n

The arguments, if present, represent the width and height of the picture, gaiosiogattempt to

scale it to the gien dimensions in inches. In no casewwwer, will the X and Y dimensions of the picture
exceed the values of the stylariablesmaxpswid and maxpsheight(which defult to the normal 8i%y
1lipage size).

-31-

If the ending ‘.PE’ is replaced by ‘.PF’, the page vertical position is restored to its value at the time
‘.PS’ was encountered. Another alternate form wbaation is ‘.PS<FILENAME’, which replaces the .PS’
line with a file to be interpreted Ipjc (but this feature is deprecated).

The ".PS’, .PE’, and ‘.PF’ macros to perform centering and scaling are normally supplied by the
pOst-processor.

In the following, either ‘|" or a ne line starts an alternaé.

<statement> ::=
<command> ;
<command> \n

<command> ::=
<primitive> [<attribute>]
LABEL : [;] <command>
LABEL : [;] <command> [<position>]
{ <command> ... }
VARIABLE [:] = <any-expr>
up | down | left | right
COMMAND-LINE
command <print-arg> ...
print <print-arg> ...
sh BALANCED-TEXT
copy FILENAME
copy [FILENAME] thru MACRONAME [until TEXT]
copy [FILENAME] thru BALANCED-BODY [until TEXT]
for VARIABLE = <expr> to <expr> [by [*] <expr>] do BALANCED-BODY
if <any-expr> then BALANCED-BODY [else BALANCED-BODY]
reset [VARIABLE [[,] VARIABLE ...]]

<print-arg> ::=
TEXT
<expr>
<position>

The current position and direction arezeshon entry to a {. ..}’ construction and restored orite
from it.

Note that in ‘if constructions, newlines can only occuBIRLANCED-BODY. This means that
if

{. .}
els
{. .}
will fail. You have o use the braces on the same line as #dyaérds:
if {
} else{
}

This restriction doeshhold for the body after the ‘do’ in a ‘for’ construction.

-32-

<any-expr> ::=
<expr>
<text-expr>
<any-expr> <logical-op> <any-expr>
I < any-expr>

<logical-op> ::=
==|!1=]1&& |l

<text-expr> =
TEXT == TEXT
TEXT = TEXT

Logical operators are handled specially jig since thg can deal with text strings alsqic uses
stremp(3) to test for equality of strings; an empty string is considered as ‘false’ for ‘&&’ and ‘||'.

<primitive> ::=
box # dosed object — rectangle
circle # dosed object — circle
ellipse # dosed object — ellipse
arc # open object — quarter-circle
line # open object — line
arrow # open object — line with arrowhead
spline # open object — spline curve
move
TEXT TEXT ... # text within invisible box
plot <expr> TEXT # formatted text

T <command> ... T

Drawn objects within ‘[...] are treated as a single composite object with a rectangular shape (that
of the bounding box of all the elementdjariable and label assignments within a block are local to the
block. Currentdirection of motion is restored to the value at start of block up@n Positionis not
restored (unlik {}"); instead, the current position becomes tRi¢ gosition for the current direction on
the blocks bounding box.

<attribute> ::=

h[eigh]t <expr>
wid[th] <expr>
rad[ius] <expr>
diam[eter] <expr>
up [<expr>]
down [<expr>]
left [<expr>]
right [<expr>]
from <position>
to <position>

at <position>
with <path>
with <position>
by <expr-pair>
then

dotted [<expr>]
dashed [<expr>]
thick[ness] <expr>
chop [<expr>]
> U< <>
invis[ible]

solid

fillled] [<expr>]
colo[u]r[ed] TEXT
outline[d] TEXT
shaded TEXT
same

cw | ccw

ljust | rjust
above | below
aligned

TEXT TEXT ...
<expr>

-33-

set height of closed figure

set width of closed figure

st radius of circle/arc

st diameter of circle/arc

move p

move cbwn

move keft

move light

set from position of open figure
set to position of open figure

set center of open figure

fix corner/named point at specified location
fix position of object at specified location
set objects atachment point

sequential segment composition
set dotted line style

set dashed line style

st thickness of lines

chop end(s) of segment

decorate with arrows

make primitive invisible

make dosed figure solid

et fill density for figure

et fill and outline color for figure
set outline color for figure

et fill color for figure

copy size of previous object

st orientation of curves

adjust text horizontally

adjust text vertically

dign parallel to object

text within object

motion in the current direction

Missing attributes are supplied from defaults; inappropriate ones are silently igriemetines,
splines, and arcs, height and width refer to arrowhead size.

The ‘at’ primitive sts the center of the current object. The ‘with’ attribute fixes the specified feature
of the given object to a specified location(Note that ‘with’ is incorrectly described in theekighan
paper.)

The ‘by’ primitive is not documented in the tutorial portion of therdighan papeiand should prob-
ably be considered unreliable.

The primitive ‘arrow’ is a synonym for ‘line ->'.

Text is normally an attribute of some object, in which case suosessings are vertically staek

and centered on the objectenter by dedult. Standalongext is treated as though placed in awisible
box.

A text item consists of a string or sprintf-expression, optionally fighb by positioning information.
Text (or strings specified with ‘spriftfnay contain [gtn]rdffont changes, size changes, and local motions,
provided those changes are undone before the end of the current item.

A position is an (x,y) coordinate paifhere are lots of different ways to specify positions:

-34-

<position> ::=
<position-not-place>
<place>

<position-not-place> ::=
<expr-pair>
<position> + <expr-pair>
<position> - <expr-pair>
(< position>, <position>)
<expr> [of the way] between <position> and <position>
<expr> '<’ <position> , <position> ">’

<expr-pair> ::=
<expr>, <expr>
(e xpr-pair)

<place> ::=
<label>
<label> <corner>
<corner> [of] <label>
Here

<label> ::=
LABEL [. LABEL ...]
<nth-primitive>

<corner> ::=
.nl.e|l.wl|.s
.ne|.se|.nw|.sw
.Clenter] | .start | .end
.t[op] | .b[ot[tom]] | .I[eft] | .r[ight]
left | right | <top-of> | <bottom-of>
<north-of> | <south-of> | <east-of> | <west-of>
<center-of> | <start-of> | <end-of>
upper left | lower left | upper right | lower right

<xxx-of> ;=
XXX # followed by ‘of

<nth-primitive> ::=

<ordinal> <object-type>
[<ordinal>] last <object-type>

<ordinal> ::=
INT th
INT st | INT nd | INT rd
‘ < any-expr>'th

-35-

<object-type> ::=

box
circle
ellipse
arc
line
arrow
spline
it
TEXT

As Kernighan notes, “since barbarismslikh and3th are barbaric, synonyms éklstand3rd are

accepted as well.Objects of a gien type are numbered from 1 uprds in order of declaration; thest
modifier counts backwards.

The “th” form (which allows you to select a previous object with apression, as opposed to a
numeric literal) is not documented in DWRIg(1).

The kxxof Orule is special: The lexical parser checks whetheris followed by the token ‘of
without eliminating it so that the grammar parser can still sée \édlid examples of specifying a place
with corner and label are thus

A .n
.nof A
.NA
north of A

while

north A
A north

both cause a syntax errdDWB pic also allows the weird fornA'north of’.)
Here the special rules for the ‘withélword using a path:
<path>::=

<relative-path>
(<relative-path>, <relative-path>)

<relative-path> ::=
<corner>
. L ABEL [. LABEL ...] [<corner>]

The following style variables control output:

Style Variable | Default | What It Does

boxht 0.5 Default height of a box

boxwid 0.75 | Default height of a box

lineht 0.5 Default length of vertical line
linewid 0.75 Default length of horizontal line
arcrad 0.25 | Default radius of an arc
circlerad 0.25 | Default radius of a circle
ellipseht 0.5 Default height of an ellipse
ellipsewid 0.75 Default width of an ellipse
moveht 0.5 Default length of vertical mee
movewid 0.75 Default length of horizontal nve
textht 0 Default height of box enclosing a text object

-36-

Style Variable | Default | What It Does

textwid 0 Default width of box enclosing a text object
arrowvht 0.1 Length of arrowhead along shaft

arronvwid 0.05 | Width of rear of arrowhead

arrovhead 1 Enable/disable arrowhead filling

dashwid 0.05 | Interval for dashed lines

maxpswid 11 Maximum width of picture

maxpsht 8.5 Maximum height of picture

scale 1 Unit scale factor

fillval 0.5 Default fill value

Any of these can be set by assignment, or reset usingdbestatement. Styleariables assigned within
‘T blocks are restored to their beginning-of-block value ity ®p-level assignments persist across pic-
tures. Dimensionare divided byscaleon output.

All pic expressions areveluated in floating point; units arevays inches (a trailing ‘i’ or ‘I’ is
ignored). Expressiorsave the following simple grammawith semantics very similar to C expressions:

<expr> ;=
VARIABLE
NUMBER

<place> <place-attribute>

<expr> <op> <expr>

- <expr>
(<any-expr>)
I < expr>

<funcl> (<any-expr>)
<func2> (<any-expr>, <any-expr>)

rand ()

<place-attribute>

X |.y| .h[eigh]t | .wid[th] | .rad

<op> ::=

-0 %

<funcl> ::=

<7 | 1>1 | 7<:1 | 1>:1

sin | cos | log | exp | sqgrt | int | rand | srand

<func2> ::=
atan2 | max | min

Both expandlog are base 10nt does integer truncation; anand() returns a random number in [0-1).

There aralefineandundef statements which are not part of the grammayy (tliebave & pre-proces-
sor macros to the language). These may be used to define pseudo-functions.

define name { replacement-text}

This definemameas a macro to be replaced by the replacement text (not including the braces). The macro

may be called as

namedargl, arg2, .., argn)

The arguments (if any) will be substituted foreak $1, $2 ... $n gopearing in the replacemenite To
undefine a macro, samndef name specifying the name to be undefined.

-37-

22. History and Acknowledgements

Original pic was written to go with Joseph Ossamnariginal troff (1) by Brian Kernighan, and later
re-written by Kernighan with substantial enhancements (apparently as part ofothgam of troff (1) into
ditroff (1) to generate device-independent output).

The language had been inspired by some earlier graphics languages inadadihgnd grap.
Kernighan credits Chris van Wyk (the designeidefal) with mary of the ideas that went infac.

delim $$ Thepic language s originally described by Brian Kernighan in Bell Labs Computing Sci-
ence Technical Report #116 (you can obtain a PostScriptafdbe revised version, [1], by sending a mail
message toetlib@reseash.att.comwith a body of ‘send 116 from research/cstr’). Thereeheen tvo
revisions, in 1984 and 1991.

The document you are readindeetively subsumes Krnighans description; it was written to fill in
lacunee in the exposition and integrate in descriptions of the gi\(L) features.

The GNUgpic implementation was written by James Clajjic@jclark.conil It is currently main-
tained by Werner Lembefgvi@gnu.ordl

23. Bibliography
1. Kernighan, B. W PIC — A Graphics Language for Typesetting (Revised User Manual)Bell
Labs Computing Science Technical Report #116, December 1991.

2. Van Wyk, C. J.A high-level language for specifying pictues ACM Transactions On Gaphicsl,2
(1982) 163-182.

