
Proof General
Organize your proofs!

User Manual for Proof General 4.3pre
January 2013

proofgeneral.inf.ed.ac.uk

David Aspinall and Thomas Kleymann
with P. Courtieu, H. Goguen, D. Sequeira, M. Wenzel.

This manual and the program Proof General are Copyright c© 1998-2011 Proof General team,
LFCS Edinburgh.

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

This manual documents Proof General, Version 4.3pre, for use with GNU Emacs 24.2 or later
versions (subject to Emacs API changes). Proof General is distributed under the terms of the
GNU General Public License (GPL); please check the accompanying file ‘COPYING’ for more
details.

Visit Proof General on the web at http://proofgeneral.inf.ed.ac.uk

ProofGeneral.texi,v 12.24 2013/07/22 12:21:36 pier Exp

Preface 1

Preface

Welcome to Proof General!

This preface has some news about the current release, future plans, and acknowledgements to
those who have helped along the way. The appendix [History of Proof General], page 81 contains
old news about previous releases, and notes on the development of Proof General.

Proof General has a home page at http://proofgeneral.inf.ed.ac.uk. Visit this page for
the latest version of this manual, other documentation, system downloads, etc.

News for Version 4.3

In Proof General version 4.3, the multiple file handling for Coq has been improved. It now
supports asynchronous and parallel compilation of required modules.

The proof tree display now supports the newest features of Coq 8.4. Proof General version 4.3
is compatible with Prooftree version 0.11 (or better).

News for Version 4.2

Proof General version 4.2 adds the usual round of compatibility fixes, to support newer versions
of Emacs and Coq. It also contains some updates to support HOL Light in a primitive fashion.

It also contains a new mechanism to display proof trees, provided by Hendrik Tews and using a
bespoke rendering application named Prooftree.

News for Version 4.1

Proof General version 4.1 adds some compatibility fixes to Proof General 4.0, specifically for
Coq version 8.3 and Isabelle 2011.

It also contains a new implementation of multiple file handling for Coq provided by Hendrik
Tews.

News for Version 4.0

Proof General version 4.0 is a major overhaul of Proof General. The main changes are:

• support for GNU Emacs only, you cannot use XEmacs any more;

• a new Unicode Tokensmode, which now replaces X-Symbol, see Chapter 4 [Unicode symbols
and special layout support], page 27;

• to allow “document centred” working, annotating scripts with prover output and auto-
matically sending commands to the prover, see Section 3.1 [Document centred working],
page 21;

• support for latest versions of provers (Isabelle2009-2 and Coq 8.2);

• numerous smaller enhancements and efficiency improvements.

See the ‘CHANGES’ file in the distribution for more complete details of changes, and the appendix
[History of Proof General], page 81 for old news.

Future

The aim of the Proof General project is to provide powerful environments and tools for interactive
proof.

Proof General has been Emacs based so far and uses heavy per-prover customisation. The
Proof General Kit project proposes that proof assistants use a standard XML-based protocol
for interactive proof, dubbed PGIP. PGIP will enable middleware for interactive proof tools and

http://proofgeneral.inf.ed.ac.uk
http://askra.de/software/prooftree/

2 Proof General

interface components. Rather than configuring Proof General for your proof assistant, you will
need to configure your proof assistant to understand PGIP. There is a similarity however; the
design of PGIP was based heavily on the Emacs Proof General framework.

At the time of writing, the Proof General Kit software is in a prototype stage and the PGIP
protocol is still being refined. We have a prototype Proof General plugin for the Eclipse IDE
and a prototype version of a PGIP-enabled Isabelle. There is also a middleware component for
co-ordinating proof written in Haskell, the Proof General Broker. Further collaborations are
sought for more developments, especially the PGIP enabling of other provers. For more details,
see the Proof General Kit webpage. Help us to help you organize your proofs!

Credits

The original developers of the basis of Proof General were:

• David Aspinall,

• Healfdene Goguen,

• Thomas Kleymann, and

• Dilip Sequeira.

LEGO Proof General (the successor of lego-mode) was written by Thomas Kleymann and Dilip
Sequeira. It is no longer maintained. Coq Proof General was written by Healfdene Goguen, with
later contributions from Patrick Loiseleur. It is now maintained by Pierre Courtieu. Isabelle
Proof General was written and is being maintained by David Aspinall. It has benefited greatly
from tweaks and suggestions by Markus Wenzel, who wrote the first support for Isar and added
Proof General support inside Isabelle. David von Oheimb supplied the original patches for X-
Symbol support, which improved Proof General significantly. Christoph Wedler, the author of
X-Symbol, provided much useful support in adapting his package for PG.

The generic base for Proof General was developed by Kleymann, Sequeira, Goguen and Aspinall.
It follows some of the ideas used in Project CROAP. The project to implement a proof mode
for LEGO was initiated in 1994 and coordinated until October 1998 by Thomas Kleymann,
becoming generic along the way. In October 1998, the project became Proof General and has
been managed by David Aspinall since then.

This manual was written by David Aspinall and Thomas Kleymann, with words borrowed from
user documentation of LEGO mode, prepared by Dilip Sequeira. Healfdene Goguen wrote some
text for Coq Proof General. Since Proof General 2.0, this manual has been maintained by David
Aspinall, with contributions from Pierre Courtieu, Markus Wenzel and Hendrik Tews.

The Proof General project has benefited from (indirect) funding by EPSRC (Applications of
a Type Theory Based Proof Assistant in the late 1990s and The Integration and Interaction
of Multiple Mathematical Reasoning Processes, EP/E005713/1 (RA0084) in 2006-8), the EC
(the Co-ordination Action Types and previous related projects), and the support of the LFCS.
Version 3.1 was prepared whilst David Aspinall was visiting ETL, Japan, supported by the
British Council.

For Proof General 3.7, Graham Dutton helped with web pages and infrastructure; since then
the the computing support team at the School of Informatics have given help. For testing and
feedback for older versions of Proof General, thanks go to Rod Burstall, Martin Hofmann, and
James McKinna, and several on the longer list below.

For the Proof General 4.0 release, special thanks go to Stefan Monnier for patches and sugges-
tions, to Makarius for many bug reports and help with Isabelle support and to Pierre Courtieu
for providing new features for Coq support.

During the development of Proof General 3.x and 4.x releases, many people helped provide
testing and other feedback, including the Proof General maintainers, Paul Callaghan, Pierre

http://proofgeneral.inf.ed.ac.uk/kit
http://www.inria.fr/croap/

Preface 3

Courtieu, and Markus Wenzel, Stefan Berghofer, Gerwin Klein, and other folk who tested pre-
releases or sent bug reports and patches, including Cuihtlauac Alvarado, Esben Andreasen,
Lennart Beringer, Pascal Brisset, James Brotherston, Martin Buechi, Pierre Casteran, Lucas
Dixon, Erik Martin-Dorel, Matt Fairtlough, Ivan Filippenko, Georges Gonthier, Robin Green,
Florian Haftmann, Kim Hyung Ho, Mark A. Hillebrand, Greg O’Keefe, Alex Krauss, Peter
Lammich, Pierre Lescanne, John Longley, Erik Martin-Dorel, Assia Mahboubi, Adam Megacz,
Stefan Monnier, Tobias Nipkow, Leonor Prensa Nieto, David von Oheimb, Lawrence Paulson,
Paul Roziere, Randy Pollack, Robert R. Schneck, Norbert Schirmer, Sebastian Skalberg, Mike
Squire, Hendrik Tews, Norbert Voelker, Tjark Weber, Mitsuharu Yamamoto.

Thanks to all of you (and apologies to anyone missed)!

Chapter 1: Introducing Proof General 5

1 Introducing Proof General

Proof General is a generic Emacs interface for interactive proof assistants,1 developed at the
LFCS in the University of Edinburgh.

You do not have to be an Emacs militant to use Proof General!

The interface is designed to be very easy to use. You develop your proof script2 in-place rather
than line-by-line and later reassembling the pieces. Proof General keeps track of which proof
steps have been processed by the prover, and prevents you editing them accidently. You can
undo steps as usual.

The aim of Proof General is to provide a powerful and configurable interface for numerous
interactive proof assistants. We target Proof General mainly at intermediate or expert users, so
that the interface should be useful for large proof developments.

Please help us!

Send us comments, suggestsions, or (the best) patches to improve support for your chosen proof
assistant. Contact us at http://proofgeneral.inf.ed.ac.uk/trac.

If your chosen proof assistant isn’t supported, read the accompanying Adapting Proof General
manual to find out how to configure PG for a new prover.

1.1 Installing Proof General

If Proof General has not already been installed for you, you should unpack it and insert the line:

(load "proof-general-home/generic/proof-site.el")

into your ‘~/.emacs’ file, where proof-general-home is the top-level directory that was created
when Proof General was unpacked.

For much more information, See Appendix A [Obtaining and Installing], page 75.

1.2 Quick start guide

Once Proof General is correctly installed, the corresponding Proof General mode will be invoked
automatically when you visit a proof script file for your proof assistant, for example:

Prover Extensions Mode
LEGO ‘.l’ lego-mode

Coq ‘.v’ coq-mode

Isabelle ‘.thy’ isar-mode

Phox ‘.phx’ phox-mode

HOL98 ‘.sml’ hol98-mode

HOL Light ‘.ml’ hol-light-mode

ACL2 ‘.acl2’ acl2-mode

Twelf ‘.elf’ twelf-mode

Plastic ‘.lf’ plastic-mode

Lambda-CLAM ‘.lcm’ lclam-mode

CCC ‘.ccc’ ccc-mode

PG-Shell ‘.pgsh’ pgshell-mode

(the exact list of Proof Assistants supported may vary according to the version of Proof General
and its local configuration). You can also invoke the mode command directly, e.g., type M-x

lego-mode, to turn a buffer into a lego script buffer.

1 A proof assistant is a computerized helper for developing mathematical proofs. For short, we sometimes call it a
prover, although we always have in mind an interactive system rather than a fully automated theorem prover.

2 A proof script is a sequence of commands which constructs a proof, usually stored in a file.

http://proofgeneral.inf.ed.ac.uk/trac

6 Proof General

You’ll find commands to process the proof script are available from the toolbar, menus, and
keyboard. Type C-h m to get a list of the keyboard shortcuts for the current mode. The
commands available should be easy to understand, but the rest of this manual describes them
in some detail.

The proof assistant itself is started automatically inside Emacs as an "inferior" process when
you ask for some of the proof script to be processed. You can start the proof assistant manually
with the menu command "Start proof assistant".

To follow an example use of Proof General on a Isabelle proof, see Section 2.1 [Walkthrough
example in Isabelle], page 9. If you know the syntax for proof scripts in another theorem prover,
you can easily adapt the details given there.

1.3 Features of Proof General

Why would you want to use Proof General?

Proof General is designed to be useful for novices and expert users alike. It will be useful to you
if you use a proof assistant, and you’d like an interface with the following features: simplified
interaction, script management, multiple file scripting, a script editing mode, proof by pointing,
proof-tree visualization, toolbar and menus, syntax highlighting, real symbols, functions menu,
tags, and finally, adaptability.

Here is an outline of some of these features. Look in the contents page or index of this manual
to find out about the others!

• Simplified interaction
Proof General is designed for proof assistants which have a command-line shell interpreter.
When using Proof General, the proof assistant’s shell is hidden from the user. Communi-
cation takes place via three buffers (Emacs text widgets). Communication takes place via
three buffers. The script buffer holds input, the commands to construct a proof. The goals
buffer displays the current list of subgoals to be solved. The response buffer displays other
output from the proof assistant. By default, only two of these three buffers are displayed.
This means that the user normally only sees the output from the most recent interaction,
rather than a screen full of output from the proof assistant.

Proof General does not commandeer the proof assistant shell: the user still has complete
access to it if necessary.

For more details, see Section 2.4 [Summary of Proof General buffers], page 14 and see
Section 8.3 [Display customization], page 42.

• Script management
Proof General colours proof script regions blue when they have been processed by the prover,
and colours regions red when the prover is currently processing them. The appearance of
Emacs buffers always matches the proof assistant’s state. Coloured parts of the buffer
cannot be edited. Proof General has functions for asserting or retracting parts of a proof
script, which alters the coloured regions.

For more details, see Chapter 2 [Basic Script Management], page 9, Section 2.6 [Script
processing commands], page 15, and Chapter 3 [Advanced Script Management and Editing],
page 21.

• Script editing mode
Proof General provides useful facilities for editing proof scripts, including syntax hilight-
ing and a menu to jump to particular goals, definitions, or declarations. Special editing
functions send lines of proof script to the proof assistant, or undo previous proof steps.

For more details, see Section 2.5 [Script editing commands], page 14, and Section 2.6 [Script
processing commands], page 15.

Chapter 1: Introducing Proof General 7

• Proof-tree visualization
In cooperation with the external program Prooftree (available from the Prooftree website),
Proof General can display proof trees graphically and provide visual information about the
proof status of different branches in a proof. The proof-tree display provides additional
means for inspecting the proof tree and thus helps against loosing track in proofs.

The graphical proof-tree visualization is currently only supported for Coq. For more details,
see Chapter 7 [Graphical Proof-Tree Visualization], page 39.

• Toolbar and menus
A script buffer has a toolbar with navigation buttons for processing parts of the proof
script. A menu provides further functions for operations in the proof assistant, as well as
customization of Proof General.

For more details, see Section 2.8 [Toolbar commands], page 19, Section 2.7 [Proof assistant
commands], page 16, and Chapter 8 [Customizing Proof General], page 41.

• Proof by pointing
Proof General has support for proof-by-pointing and similar features. Proof by pointing
allows you to click on a subterm of a goal to be proved, and automatically apply an appro-
priate proof rule or tactic. Proof by pointing is specific to the proof assistant (and logic)
in use; therefore it is configured mainly on the proof assistant side. If you would like to
see proof by pointing support for Proof General in a particular proof assistant, petition the
developers of the proof assistant to provide it.

1.4 Supported proof assistants

Proof General comes ready-customized for several proof assistants, including these:

• LEGO Proof General for LEGO Version 1.3.1
See Chapter 10 [LEGO Proof General], page 55, for more details.

• Coq Proof General for Coq Version 8.2
See Chapter 11 [Coq Proof General], page 57, for more details.

• Isabelle Proof General for Isabelle2009-2
See Chapter 12 [Isabelle Proof General], page 67, and documentation supplied with Isabelle
for more details.

• HOL Light Proof General for HOL Light
See Chapter 13 [HOL Light Proof General], page 71, for more details.

• Shell Proof General for shell scripts (not really a proof assistant!)
See Chapter 14 [Shell Proof General], page 73, for more details.

Proof General is designed to be generic, so if you know how to write regular expressions, you
can make:

• Your Proof General for your favourite proof assistant.
For more details of how to make Proof General work with another proof assistant, see the
accompanying manual Adapting Proof General.

The exact list of Proof Assistants supported may vary according to the version of Proof General
you have and its local configuration; only the standard instances documented in this manual are
listed above.

Note that there is some variation between the features supported by different instances of Proof
General. The main variation is proof by pointing, which is only supported in LEGO at the
moment. For advanced features like this, some extensions to the output routines of the proof
assistant are required, typically. If you like Proof General, please help us by asking the imple-
mentors of your favourite proof assistant to support Proof General as much as possible.

http://askra.de/software/prooftree/

8 Proof General

1.5 Prerequisites for this manual

This manual assumes that you understand a little about using Emacs, for example, switching
between buffers using C-x b and understanding that a key sequence like C-x b means "control
with x, followed by b". A key sequence like M-z means "meta with z". (META may be labelled
ALT on your keyboard).

The manual also assumes you have a basic understanding of your proof assistant and the language
and files it uses for proof scripts. But even without this, Proof General is not useless: you can
use the interface to replay proof scripts for any proof assistant without knowing how to start it
up or issue commands, etc. This is the beauty of a common interface mechanism.

To get more from Proof General and adapt it to your liking, it helps to know a little bit about
how Emacs lisp packages can be customized via the Customization mechanism. It’s really easy
to use. For details, see Section 8.2 [How to customize], page 41. See Info file ‘(emacs)’, node
‘Customization’, for documentation in Emacs.

To get the absolute most from Proof General, to improve it or to adapt it for new provers, you’ll
need to know a little bit of Emacs lisp. Emacs is self-documenting, so you can begin from C-h

and find out everything! Here are some useful commands:

C-h i info

C-h m describe-mode

C-h b describe-bindings

C-h f describe-function

C-h v describe-variable

1.6 Organization of this manual

This manual covers the user-level view and customization of Proof General. The accompanying
Adapting Proof General manual considers adapting Proof General to new proof assistants, and
documents some of the internals of Proof General.

Three appendices of this manual contain some details about obtaining and installing Proof
General and some known bugs. The contents of these final chapters is also covered in the files
‘INSTALL’ and ‘BUGS’ contained in the distribution. Refer to those files for the latest information.

The manual concludes with some references and indexes. See the table of contents for full details.

Chapter 2: Basic Script Management 9

2 Basic Script Management

This chapter is an introduction to using the script management facilities of Proof General. We
begin with a quick walkthrough example, then describe the concepts and functions in more
detail.

2.1 Walkthrough example in Isabelle

Here’s a short example in Isabelle to see how script management is used. The file you are asked
to type below is included in the distribution as ‘isar/Example.thy’. If you’re not using Isabelle,
substitute some lines from a simple proof for your proof assistant, or consult the example file
supplied with Proof General for your prover, called something like ‘foo/example.foo’ for a
proof assistant Foo.

This walkthrough is keyboard based, but you could easily use the toolbar and menu functions
instead. The best way to learn Emacs key bindings is by using the menus. You’ll find the keys
named below listed on the menus.

• First, start Emacs with Proof General loaded. According to how you have installed Proof
General, this may be by typing proofgeneral in a terminal, selecting it from a menu, or
simply by starting Emacs itself.

• Next, find a new file by C-x C-f and typing as the filename ‘Walkthrough.thy’. This
should load Isabelle Proof General and the toolbar and Proof General menus will appear.
You should have an empty buffer displayed.

The notation C-x C-f means control key with ‘x’ followed by control key with ‘f’. This is a
standard notation for Emacs key bindings, used throughout this manual. This function also
appears on the File menu of Emacs. The remaining commands used will be on the Proof-

General menu or toolbar.

If you’re not using Isabelle, you must choose a different file extension, appropriately for your
proof assistant. If you don’t know what to use, see the previous chapter for the list of supported
assistants and file extensions.

• Turn on electric terminator by typing C-c ; and enter:

theory Walkthrough imports Main begin;

This first command begins the definition of a new theory inside Isabelle, which extends the
theory Main. (We’re assuming that you have Isabelle/HOL available, which declares the
Main theory. You should be able to see the list of installed logics in Isabelle on the Logics
menu).

Electric terminator sends commands to the proof assistant as you type them. At the moment
you type the semicolon, the theory command will be sent to Isabelle behind the scenes. First,
there is a short delay while Isabelle is launched; you may see a welcome message. Then, you
may notice that the command briefly is given an orange/pink background (or shown in inverse
video if you don’t have a colour display), before you see a window containing text like this:

theory Walkthrough

which reflects the command just executed.

In this case of this first command, it is hard to see the orange/pink stage because the command
is processed very quickly on modern machines. But in general, processing commands can take
an arbitrary amount of time (or not terminate at all). For this reason, Proof General maintains
a queue of commands which are sent one-by-one from the proof script. As Isabelle successfully
processes commands in the queue, they will turn from the orange/pink colour into blue.

The blue regions indicate text that has been read by the prover and should not be edited, to
avoid confusion between what the prover has processed and what you are looking at. To enforce

10 Proof General

this (and avoid potentially expensive reprocessing) the blue region can be made read-only. This
is controlled by the menu item:

Proof-General -> Quick Options -> Read Only

The first option ‘Strict Read Only’ was formerly the default for Proof General, and causes the
blue region to be locked. Because of this, the term locked region term is used in Proof General
documentation to mean the blue portion of the text which has been processed, although it is no
longer locked by default. The current default is ‘Undo on Edit’ which causes the prover to undo
back to any user edits. So if you change a processed piece of text you will need to re-process it.
The final option, ‘Freely Edit’, allows you to freely edit the buffer without causing the prover
to reprocess it. This can quickly lead to confusion and a loss of synchronization between what
you are reading and what the prover has processed, so it is best used sparingly.

Electric terminator mode is popular, but not enabled by default because of the principle of
least surprise. Moreover, in Isabelle, the semicolon terminators are optional so proof scripts
are usually written without them to avoid clutter. You’ll notice that although you typed a
semi-colon it was not included in the buffer! The electric terminator tries to be smart about
comments and strings but sometimes it may be confused (e.g., adding a semi-colon inside an
already written comment), or you may need to type several terminator commands together.
In this case you can use the standard Emacs quote next character, typing C-q ; to quote the
semi-colon. Alternatively you can use a prefix argument, as in M-3 ; to type three semi-colons.

Without using electric terminator, you can trigger processing the text up to the current position
of the point with the key C-c C-RET, or just up to the next command with C-c C-n. We show
the rest of the example in Isabelle with semi-colons, but these will not appear in the final text.

Coq, on the other hand, requires a full-stop terminator at the end of each line, so C-c C-. is
the key binding used to turn on electric terminator. If you don’t know what the terminator
character is, you can find the option anyway on the menu: Proof-General -> Quick Options

-> Processing -> Electric Terminator which also shows the key binding.

If you want to use electric terminator, you can customize Proof General to enable it everytime
if you want, See Chapter 8 [Customizing Proof General], page 41. For the common options,
customization is easy: just use the menu item Proof General -> Quick Options to make your
choices, and Proof-General -> Quick Options -> Save Options to save your choices.

• Next type on a new line:

theorem my_theorem: "A & B --> B & A";

The goal we have set ourselves to prove should be displayed in the goals buffer.

• Now type:

proof

assume "A & C";

This will update the goals buffer.

But whoops! That was the wrong command, we typed C instead of B.

• Press C-c C-BS to pretend that didn’t happen.

Note: BS means the backspace key. This key press sends an undo command to Isabelle, and
deletes the assume command from the proof script. If you just want to undo without deleting,
you can type C-c C-u instead, or use the left-arrow toolbar navigation button.

• Instead, let’s try:

assume "A & B";

Which is better.

• From this assumption we can get B and A by the trivial step .. which splits the assumption
using an elimination step:

Chapter 2: Basic Script Management 11

then obtain B and A ..;

• Finally, we establish the goal by the trivial step .. again, which triggers an introduction
rule:

then show "B & A" ..;

After this proof step, the message from Isabelle indicates that the proof has succeeded, so we
can conclude the proof with the qed command.

• Finally, type:

qed;

This last command closes the proof and saves the proved theorem.

Moving the mouse pointer over the qed command now reveals that the entire proof has been
aggregated into a single segment (if you did this before, you would see highlighting of each
command separately).

• Suppose we decide to call the theorem something more sensible. Move the cursor up into
the locked region, somewhere between ‘theorem’ and ‘qed’, enter C-c C-RET.

You see that the locked segment for the whole proof is now unlocked (and uncoloured): it is
transferred back into the editing region.

The command C-c C-RET moves the end of the locked region to the cursor position, or as near
as possible above or below it, sending undoing commands or proof commands as necessary. In
this case, the locked region will always be moved back to the end of the theory line, since that
is the closest possible position to the cursor that appears before it. If you simply want to retract
the whole file in one go, you can use the key C-c C-r (which corresponds to the up arrow on the
toolbar), which will automatically move the cursor to the top of the file.

• Now improve the goal name, for example:

theorem and_commutes: "A & B --> B & A"

You can swiftly replay the rest of the buffer now with C-c C-b (or the down arrow on the
toolbar).

• At the end of the buffer, you may insert the command

end

to complete the theory.

Notice that if you right-click on one of the highlighted regions in the blue area you will see a
context menu for the region. This includes a “show/hide” option for folding a proof, as well as
some editing commands for copying the region or rearranging its order in the processed text:
“move up/move down”. (These latter commands occasionally help you reorder text without
needing to reprove it, although they risk breaking the proof!)

Finally, once you are happy with your theory, you should save the file with C-x C-s before
moving on to edit another file or exiting Emacs. If you forget to do this, Proof General or
Emacs will surely prompt you sooner or later!

2.2 Proof scripts

A proof script is a sequence of commands which constructs definitions, declarations, theories,
and proofs in a proof assistant. Proof General is designed to work with text-based interactive
proof assistants, where the mode of working is usually a dialogue between the human and the
proof assistant.

Primitive interfaces for proof assistants simply present a shell (command interpreter) view of this
dialogue: the human repeatedly types commands to the shell until the proof is completed. The
system responds at each step, perhaps with a new list of subgoals to be solved, or perhaps with

12 Proof General

a failure report. Proof General manages the dialogue to show the human only the information
which is relevant at each step.

Often we want to keep a record of the proof commands used to prove a theorem, to build up a
library of proved results. An easy way to store a proof is to keep a text file which contains a
proof script; proof assistants usually provide facilities to read a proof script from a file instead
of the terminal. Using the file, we can replay the proof script to prove the theorem again.

Using only a primitive shell interface, it can be tedious to construct proof scripts with cut-and-
paste. Proof General helps out by issuing commands directly from a proof script file, while
it is being written and edited. Proof General can also be used conveniently to replay a proof
step-by-step, to see the progress at each stage.

Scripting is the process of building up a proof script file or replaying a proof. When script-
ing, Proof General sends proof commands to the proof assistant one at a time, and prevents
you from editing commands which have been successfully completed by the proof assistant, to
keep synchronization. Regions of the proof script are analysed based on their syntax and the
behaviour of the proof assistant after each proof command.

2.3 Script buffers

A script buffer is a buffer displaying a proof script. Its Emacs mode is particular to the proof
assistant you are using (but it inherits from proof-mode).

A script buffer is divided into three regions: locked, queue and editing. The proof commands in
the script buffer can include a number of Goal-save sequences.

2.3.1 Locked, queue, and editing regions

The three regions that a script buffer is divided into are:

• The locked region, which appears in blue (underlined on monochrome displays) and contains
commands which have been sent to the proof process and verified. The commands in the
locked region cannot be edited.

• The queue region, which appears in pink (inverse video) and contains commands waiting
to be sent to the proof process. Like those in the locked region, these commands can’t be
edited.

• The editing region, which contains the commands the user is working on, and can be edited
as normal Emacs text.

These three regions appear in the buffer in the order above; that is, the locked region is always
at the start of the buffer, and the editing region always at the end. The queue region only exists
if there is input waiting to be processed by the proof process.

Proof General has two fundamental operations which transfer commands between these regions:
assertion (or processing) and retraction (or undoing).

Assertion causes commands from the editing region to be transferred to the queue region and
sent one by one to the proof process. If the command is accepted, it is transferred to the locked
region, but if an error occurs it is signalled to the user, and the offending command is transferred
back to the editing region together with any remaining commands in the queue.

Assertion corresponds to processing proof commands, and makes the locked region grow.

Retraction causes commands to be transferred from the locked region to the editing region (again
via the queue region) and the appropriate ’undo’ commands to be sent to the proof process.

Retraction corresponds to undoing commands, and makes the locked region shrink. For details
of the commands available for doing assertion and retraction, See Section 2.6 [Script processing
commands], page 15.

Chapter 2: Basic Script Management 13

2.3.2 Goal-save sequences

A proof script contains a sequence of commands used to prove one or more theorems.

As commands in a proof script are transferred to the locked region, they are aggregated into
segments which constitute the smallest units which can be undone. Typically a segment consists
of a declaration or definition, or all the text from a goal command to the corresponding save
(e.g. qed) command, or the individual commands in the proof of an unfinished goal. As the
mouse moves over the the region, the segment containing the pointer will be highlighted.

Proof General therefore assumes that the proof script has a series of proofs which look something
like this:

goal mythm is G

...

save theorem mythm

interspersed with comments, definitions, and the like. Of course, the exact syntax and termi-
nology will depend on the proof assistant you use.

The name mythm can appear in a menu for the proof script to help quickly find a proof (see
Section 5.2 [Imenu and Speedbar], page 33).

2.3.3 Active scripting buffer

You can edit as many script buffers as you want simultaneously, but only one buffer at a time
can be used to process a proof script incrementally: this is the active scripting buffer.

The active scripting buffer has a special indicator: the word Scripting appears in its mode line
at the bottom of the screen. This is coloured to indicate the status: if it has a pink or blue
background, the prover is processing the text (busy when pink). If it is in green, the buffer is
completely processed.

When you use a scripting command, it will automatically turn a buffer into the active scripting
mode. You can also do this by hand, via the menu command ’Toggle Scripting’ or the key C-c

C-s.

C-c C-s proof-toggle-active-scripting

When active scripting mode is turned on, several things may happen to get ready for scripting
(exactly what happens depends on which proof assistant you are using and some user settings).
First, the proof assistant is started if it is not already running. Second, a command is sent to
the proof assistant to change directory to the directory of the current buffer. If the current
buffer corresponds to a file, this is the directory the file lives in. This is in case any scripting
commands refer to files in the same directory as the script. The third thing that may happen
is that you are prompted to save some unsaved buffers. This is in case any scripting commands
may read in files which you are editing. Finally, some proof assistants may automatically read
in files which the current file depends on implicitly. In Isabelle, for example, there is an implicit
dependency between a .ML script file and a .thy theory file which defines its theory.

If you have a partly processed scripting buffer and use C-c C-s, or you attempt to use script
processing in a new buffer, Proof General will ask you if you want to retract what has been proved
so far, Scripting incomplete in buffer myproof.l, retract? or if you want to process the
remainder of the active buffer, Completely process buffer myproof.l instead? before you
can start scripting in a new buffer. If you refuse to do either, Proof General will give an error
message: Cannot have more than one active scripting buffer!.

To turn off active scripting, the buffer must be completely processed (all blue), or completely
unprocessed. There are two reasons for this. First, it would certainly be confusing if it were
possible to split parts of a proof arbitrarily between different buffers; the dependency between

14 Proof General

the commands would be lost and it would be tricky to replay the proof.1 Second, we want
to interface with file management in the proof assistant. Proof General assumes that a proof
assistant may have a notion of which files have been processed, but that it will only record files
that have been completely processed. For more explanation of the handling of multiple files, See
Section 3.4 [Switching between proof scripts], page 23.

[Command]proof-toggle-active-scripting &optional arg
Toggle active scripting mode in the current buffer.
With arg, turn on scripting iff arg is positive.

2.4 Summary of Proof General buffers

Proof General manages several kinds of buffers in Emacs. Here is a summary of the different
kinds of buffers you will use when developing proofs.

• The proof shell buffer is an Emacs shell buffer used to run your proof assistant. Usu-
ally it is hidden from view (but see Section 3.9 [Escaping script management], page 25).
Communication with the proof shell takes place via two or three intermediate buffers.

• A script buffer, as we have explained, is a buffer for editing a proof script. The active
scripting buffer is the script buffer which is currently being used to send commands to the
proof shell.

• The goals buffer displays the list of subgoals to be solved for a proof in progress. During
a proof it is usually displayed together with the script buffer. The goals buffer has facility
for proof-by-pointing.

• The response buffer displays other output from the proof assistant, for example error mes-
sages or informative messages. The response buffer is displayed whenever Proof General
puts a new message in it.

• The trace buffer is a special version of the response buffer. It may be used to display
unusual debugging output from the prover, for example, tracing proof tactics or rewriting
procedures. This buffer is also displayed whenever Proof General puts a new message in it
(although it may be quickly replaced with the response or goals buffer in two-buffer mode).

Normally Proof General will automatically reveal and hide the goals and response buffers as
necessary during scripting. However there are ways to customize the way the buffers are dis-
played, for example, to prevent auxiliary buffers being displayed at all (see Section 8.3 [Display
customization], page 42).

The menu Proof General -> Buffers provides a convenient way to display or switch to a Proof
General buffer: the active scripting buffer; the goal or response buffer; the tracing buffer; or the
shell buffer. Another command on this menu, Clear Responses, clears the response and tracing
buffer.

2.5 Script editing commands

Proof General provides a few functions for editing proof scripts. The generic functions mainly
consist of commands to navigate within the script. Specific proof assistant code may add more
to these basics.

Indentation is controlled by the user option proof-script-indent (see Section 8.4 [User op-
tions], page 44). When indentation is enabled, Proof General will indent lines of proof script
with the usual Emacs functions, particularly TAB, indent-for-tab-command. Unfortunately,

1 Some proof assistants provide some level of support for switching between multiple concurrent proofs, but Proof
General does not use this. Generally the exact context for such proofs is hard to define to easily split them into
multiple files.

Chapter 2: Basic Script Management 15

indentation in Proof General 4.3pre is somewhat slow. Therefore with large proof scripts, we
recommend proof-script-indent is turned off.

Here are the commands for moving around in a proof script, with their default key-bindings:

C-c C-a proof-goto-command-start

C-c C-e proof-goto-command-end

C-c C-. proof-goto-end-of-locked

[Command]proof-goto-command-start
Move point to start of current (or final) command of the script.

[Command]proof-goto-command-end
Set point to end of command at point.

The variable proof-terminal-string is a prover-specific string to terminate proof commands.
LEGO and Isabelle use a semicolon, ‘;’. Coq employs a full-stop ‘.’.

[Command]proof-goto-end-of-locked &optional switch
Jump to the end of the locked region, maybe switching to script buffer.
If called interactively or switch is non-nil, switch to script buffer. If called interactively, a
mark is set at the current location with ‘push-mark’

2.6 Script processing commands

Here are the commands for asserting and retracting portions of the proof script, together with
their default key-bindings. Sometimes assertion and retraction commands can only be issued
when the queue is empty. You will get an error message Proof Process Busy! if you try to
assert or retract when the queue is being processed.2

C-c C-n proof-assert-next-command-interactive

C-c C-u proof-undo-last-successful-command

C-c C-BS proof-undo-and-delete-successful-command

C-c C-RET proof-goto-point

C-c C-b proof-process-buffer

C-c C-r proof-retract-buffer

C-c terminator-character

proof-electric-terminator-toggle

The last command, proof-electric-terminator-toggle, is triggered using the character
which terminates proof commands for your proof assistant’s script language. For LEGO and
Isabelle, use C-c ;, for Coq, use C-c .. This not really a script processing command. Instead,
if enabled, it causes subsequent key presses of ; or . to automatically activate proof-assert-

next-command-interactive for convenience.

Rather than use a file command inside the proof assistant to read a proof script, a good reason
to use C-c C-b (proof-process-buffer) is that with a faulty proof script (e.g., a script you are
adapting to prove a different theorem), Proof General will stop exactly where the proof script
fails, showing you the error message and the last processed command. So you can easily continue
development from exactly the right place in the script.

Here is the full set of script processing commands.

2 In fact, this is an unnecessary restriction imposed by the original design of Proof General. There is nothing to
stop future versions of Proof General allowing the queue region to be extended or shrunk, whilst the prover is
processing it. Proof General 3.0 already relaxes the original design, by allowing successive assertion commands
without complaining.

16 Proof General

[Command]proof-assert-next-command-interactive
Process until the end of the next unprocessed command after point.
If inside a comment, just process until the start of the comment.

[Command]proof-undo-last-successful-command
Undo last successful command at end of locked region.

[Command]proof-undo-and-delete-last-successful-command
Undo and delete last successful command at end of locked region.
Useful if you typed completely the wrong command. Also handy for proof by pointing, in
case the last proof-by-pointing command took the proof in a direction you don’t like.

Notice that the deleted command is put into the Emacs kill ring, so you can use the usual
‘yank’ and similar commands to retrieve the deleted text.

[Command]proof-goto-point
Assert or retract to the command at current position.
Calls ‘proof-assert-until-point’ or ‘proof-retract-until-point’ as appropriate.

[Command]proof-process-buffer
Process the current (or script) buffer, and maybe move point to the end.

[Command]proof-retract-buffer &optional called-interactively
Retract the current buffer, and maybe move point to the start.
Point is only moved according to ‘proof-follow-mode’, if called-interactively is non-nil,
which is the case for all interactive calls.

[Command]proof-electric-terminator-toggle &optional arg
Toggle ‘proof-electric-terminator-enable’. With arg, turn on iff ARG>0.
This function simply uses customize-set-variable to set the variable.

[Command]proof-assert-until-point-interactive
Process the region from the end of the locked-region until point.
If inside a comment, just process until the start of the comment.

[Command]proof-retract-until-point-interactive &optional delete-region
Tell the proof process to retract until point.
If invoked outside a locked region, undo the last successfully processed command. If called
with a prefix argument (delete-region non-nil), also delete the retracted region from the
proof-script.

As experienced Emacs users will know, a prefix argument is a numeric argument supplied by
some key sequence typed before a command key sequence. You can supply a specific number by
typing META with the digits, or a “universal” prefix of C-u. See See Info file ‘(emacs)’, node
‘Arguments’ for more details. Several Proof General commands, like proof-retract-until-

point-interactive, may accept a prefix argument to adjust their behaviour somehow.

2.7 Proof assistant commands

There are several commands for interacting with the proof assistant and Proof General, which
do not involve the proof script. Here are the key-bindings and functions.

C-c C-l proof-display-some-buffers

C-c C-p proof-prf

C-c C-t proof-ctxt

Chapter 2: Basic Script Management 17

C-c C-h proof-help

C-c C-i proof-query-identifier

C-c C-f proof-find-theorems

C-c C-w pg-response-clear-displays

C-c C-c proof-interrupt-process

C-c C-v proof-minibuffer-cmd

C-c C-s proof-shell-start

C-c C-x proof-shell-exit

[Command]proof-display-some-buffers
Display the reponse, trace, goals, or shell buffer, rotating.
A fixed number of repetitions of this command switches back to the same buffer. Also move
point to the end of the response buffer if it’s selected. If in three window or multiple frame
mode, display two buffers. The idea of this function is to change the window->buffer mapping
without adjusting window layout.

[Command]proof-prf
Show the current proof state.
Issues a command to the assistant based on proof-showproof-command.

[Command]proof-ctxt
Show the current context.
Issues a command to the assistant based on proof-context-command.

[Command]proof-help
Show a help or information message from the proof assistant.
Typically, a list of syntax of commands available. Issues a command to the assistant based
on proof-info-command.

[Command]proof-query-identifier string
Query the prover about the identifier string.
If called interactively, string defaults to the current word near point.

[Command]proof-find-theorems arg
Search for items containing given constants.
Issues a command based on arg to the assistant, using proof-find-theorems-command. The
user is prompted for an argument.

[Command]pg-response-clear-displays
Clear Proof General response and tracing buffers.
You can use this command to clear the output from these buffers when it becomes overly
long. Particularly useful when ‘proof-tidy-response’ is set to nil, so responses are not
cleared automatically.

[Command]proof-interrupt-process
Interrupt the proof assistant. Warning! This may confuse Proof General.

This sends an interrupt signal to the proof assistant, if Proof General thinks it is busy.

This command is risky because we don’t know whether the last command succeeded or not.
The assumption is that it didn’t, which should be true most of the time, and all of the time
if the proof assistant has a careful handling of interrupt signals.

18 Proof General

Some provers may ignore (and lose) interrupt signals, or fail to indicate that they have been
acted upon yet stop in the middle of output. In the first case, PG will terminate the queue
of commands at the first available point. In the second case, you may need to press enter
inside the prover command buffer (e.g., with Isabelle2009 press RET inside isabelle).

[Command]proof-minibuffer-cmd cmd
Send cmd to proof assistant. Interactively, read from minibuffer.
The command isn’t added to the locked region.

If a prefix arg is given and there is a selected region, that is pasted into the command. This
is handy for copying terms, etc from the script.

If ‘proof-strict-state-preserving’ is set, and ‘proof-state-preserving-p’ is config-
ured, then the latter is used as a check that the command will be safe to execute, in other
words, that it won’t ruin synchronization. If when applied to the command it returns false,
then an error message is given.

warning : this command risks spoiling synchronization if the test
‘proof-state-preserving-p’ is not configured, if it is only an approximate test,
or if ‘proof-strict-state-preserving’ is off (nil).

As if the last two commands weren’t risky enough, there’s also a command which explicitly
adjusts the end of the locked region, to be used in extreme circumstances only. See Section 3.9
[Escaping script management], page 25.

There are a few commands for starting, stopping, and restarting the proof assistant process.
The first two have key bindings but restart does not. As with any Emacs command, you can
invoke these with M-x followed by the command name.

[Command]proof-shell-start
Initialise a shell-like buffer for a proof assistant.
Does nothing if proof assistant is already running.

Also generates goal and response buffers.

If ‘proof-prog-name-ask’ is set, query the user for the process command.

[Command]proof-shell-exit &optional dont-ask
Query the user and exit the proof process.

This simply kills the ‘proof-shell-buffer’ relying on the hook function

‘proof-shell-kill-function’ to do the hard work. If optional argument dont-ask is non-
nil, the proof process is terminated without confirmation.

The kill function uses ‘<PA>-quit-timeout’ as a timeout to wait after sending
‘proof-shell-quit-cmd’ before rudely killing the process.

This function should not be called if ‘proof-shell-exit-in-progress’ is t, because a re-
cursive call of ‘proof-shell-kill-function’ will give strange errors.

[Command]proof-shell-restart
Clear script buffers and send ‘proof-shell-restart-cmd’.
All locked regions are cleared and the active scripting buffer deactivated.

If the proof shell is busy, an interrupt is sent with ‘proof-interrupt-process’ and we wait
until the process is ready.

The restart command should re-synchronize Proof General with the proof assistant, without
actually exiting and restarting the proof assistant process.

It is up to the proof assistant how much context is cleared: for example, theories already
loaded may be "cached" in some way, so that loading them the next time round only performs
a re-linking operation, not full re-processing. (One way of caching is via object files, used by
Lego and Coq).

Chapter 2: Basic Script Management 19

2.8 Toolbar commands

The toolbar provides a selection of functions for asserting and retracting portions of the script,
issuing non-scripting commands to inspect the prover’s state, and inserting "goal" and "save"
type commands. The latter functions are not available on keys, but are available from the from
the menu, or via M-x, as well as the toolbar.

[Command]proof-issue-goal arg
Write a goal command in the script, prompting for the goal.
Issues a command based on arg to the assistant, using proof-goal-command. The user is
prompted for an argument.

[Command]proof-issue-save arg
Write a save/qed command in the script, prompting for the theorem name.
Issues a command based on arg to the assistant, using proof-save-command. The user is
prompted for an argument.

2.9 Interrupting during trace output

If your prover generates output which is recognized as tracing output in Proof General, you
may need to know about a special provision for interrupting the prover process. If the trace
output is voluminous, perhaps looping, it may be difficult to interrupt with the ordinary C-c

C-c (proof-interrupt-process) or the corresponding button/menu. In this case, you should
try Emacs’s quit key, C-g. This will cause a quit in any current editing commands, as usual,
but during tracing output it will also send an interrupt signal to the prover. Hopefully this will
stop the tracing output, and Emacs should catch up after a short delay.

Here’s an explanation of the reason for this special provision. When large volumes of output from
the prover arrive quickly in Emacs, as typically is the case during tracing (especially tracing
looping tactics!), Emacs may hog the CPU and spend all its time updating the display with
the trace output. This is especially the case when features like output fontification and token
display are active. If this happens, ordinary user input in Emacs is not processed, and it becomes
difficult to do normal editing. The root of the problem is that Emacs runs in a single thread,
and pending process output is dealt with before pending user input. Whether or not you see this
problem depends partly on the processing power of your machine (or CPU available to Emacs
when the prover is running). One way to test is to start an Emacs shell with M-x shell and
type a command such as yes which produces output indefinitely. Now see if you can interrupt
the process! (Warning — on slower machines especially, this can cause lockups, so use a fresh
Emacs.)

Chapter 3: Advanced Script Management and Editing 21

3 Advanced Script Management and Editing

If you are working with large proof developments, you may want to know about the advanced
script management and editing features of Proof General covered in this chapter.

3.1 Document centred working

Proof scripts can be annotated with the output produced by the prover while they are checked.
By hovering the mouse on the completed regions you can see any output that was produced when
they were checked. Depending on the proof language (it works well with declarative languages),
this may enable a “document centred” way of working, where you may not need to keep a
separate window open for displaying prover output.

This way of working is controlled by several settings. To help configure things appropriately for
document-centred working, there are two short-cut commands:

Proof-General -> Quick Options -> Display -> Document Centred

Proof-General -> Quick Options -> Display -> Default

which change settings appropriately between a document centred mode and the original classic
Proof General behaviour and appearance. The first command also engages automatic processing
of the whole buffer, explained in the following section further below.

The behaviour can be fine-tuned with the individual settings. Starting with the classic settings,
first, you may select

Proof-General -> Quick Options -> Processing -> Full Annotations

to ensure that the details are recorded in the script. This is not the default because it can
cause long sequences of commands to execute more slowly as the output is collected from the
prover eagerly when the commands are executed, and printing can be be slow for large and
complex expressions. It also increases the space requirements for Emacs buffers. However, when
interactively developing smaller files, it is very useful.

Next, you may deselect

Proof-General -> Quick Options -> Display -> Auto Raise

which will prevent the prover output being eagerly displayed. You can still manually arrange
your Emacs windows and frames to ensure the output buffers are present if you want.

You may like to deselect

Proof General -> Quick Options -> Display -> Colour Locked

to prevent highlighting of the locked region. This text which has been checked and that which
has not is less obvious, but you can see the position of the next command to be processed with
the marker.

If you have no colouring on the locked region, it can be hard to see where processing has got
to. Look for the “overlay marker”, a triangle in the left-hand fringe of the display, to see which
line processing has stopped at. If it has stopped on a region with an error, you might want to
see that. You can select

Proof-General -> Quick Options -> Display -> Sticky Errors

to add a higlight for regions which did not successfully process on the last attempt. Whenever
the region is edited, the highlight is removed.

Finally, you may want to ensure that

Proof-General -> Quick Options -> Read Only -> Undo On Edit

is selected. Undo on edit is a setting for the proof-strict-read-only variable. This allows
you to freely edit the processed region, but first it automatically retracts back to the point of
the edit. Comments can be edited freely without retraction.

22 Proof General

The configuration variables controlled by the above menu items can be customized as Emacs vari-
ables. The two settings which control interaction with the prover are proof-full-annotation
and proof-strict-read-only. Note that you can also record the history of output from the
prover without adding mouse hovers to the script. This is controlled by proof-output-tooltips
which is also on the Display menu in Quick Options. See Section 8.3 [Display customization],
page 42, for more information about customizing display options.

[User Option]proof-full-annotation
Non-nil causes Proof General to record output for all proof commands.
Proof output is recorded as it occurs interactively; normally if many steps are taken at once,
this output is suppressed. If this setting is used to enable it, the proof script can be annotated
with full details. See also ‘proof-output-tooltips’ to enable automatic display of output
on mouse hovers.

The default value is nil.

[User Option]proof-strict-read-only
Whether Proof General is strict about the read-only region in buffers.
If non-nil, an error is given when an attempt is made to edit the read-only region, except
for the special value ’retract which means undo first. If nil, Proof General is more relaxed
(but may give you a reprimand!).

The default value is retract.

3.2 Automatic processing

If you like making your hair stand on end, the electric terminator mode is probably not enough.
Proof General has another feature that will automatically send text to the prover, while you
aren’t looking.

Enabling

Proof-General -> Quick Options -> Processing -> Process Automatically

Causes Proof General to start processing text when Emacs is idle for a while. You can choose
either to send just the next command beyond the point, or the whole buffer. See

Proof-General -> Quick Options -> Processing -> Automatic Processing Mode

for the choices.

The text will be sent in a fast loop that processes more quickly than C-c C-b (i.e., proof-
process-buffer, the down toolbar button), but ignores user input and doesn’t update the
display. But the feature tries to be non-intrusive to the user: if you start to type something
or use the mouse, the fast loop will be interrupted and revert to a slower interactive loop with
display updates.

In the check next command mode, the successfully checked region will briefly flash up as green
to indicate it is okay.

You can use C-c C-. (proof-goto-end-of-locked) to find out where processing got to, as
usual. Text is only sent if the last interactive command processed some text (i.e., wasn’t an
undo step backwards into the buffer) and processing didn’t stop with an error. To start automatic
processing again after an error, simply hit C-c C-n after editing the buffer. To turn the automatic
processing on or off from the keyboard, you can use the keybinding:

C-c > proof-autosend-toggle

[Command]proof-autosend-toggle &optional arg
Toggle ‘proof-autosend-enable’. With arg, turn on iff ARG>0.
This function simply uses customize-set-variable to set the variable.

Chapter 3: Advanced Script Management and Editing 23

3.3 Visibility of completed proofs

Large developments may consist of large files with many proofs. To help see what has been
proved without the detail of the proof itself, Proof General can hide portions of the proof script.
Two different kinds of thing can be hidden: comments and (what Proof General designates as)
the body of proofs.

You can toggle the visibility of a proof script portion by using the context sensitive menu
triggered by clicking the right mouse button on a completed proof, or the key C-c v, which runs
pg-toggle-visibility.

You can also select the “disappearing proofs” mode from the menu,

Proof-General -> Quick Options -> Display -> Disappearing Proofs

This automatically hides each the body of each proof portion as it is completed by the proof
assistant. Two further menu commands in the main Proof-General menu, Show all and Hide all
apply to all the completed portions in the buffer.

Notice that by design, this feature only applies to completed proofs, after they have been
processed by the proof assistant. When files are first visited in Proof General, no information is
stored about proof boundaries.

The relevant elisp functions and settings are mentioned below.

[Command]pg-toggle-visibility
Toggle visibility of region under point.

[Command]pg-show-all-proofs
Display all completed proofs in the buffer.

[Command]pg-hide-all-proofs
Hide all completed proofs in the buffer.

[User Option]proof-disappearing-proofs
Non-nil causes Proof General to hide proofs as they are completed.

The default value is nil.

3.4 Switching between proof scripts

Basic modularity in large proof developments can be achieved by splitting proof scripts across
various files. Let’s assume that you are in the middle of a proof development. You are working on
a soundness proof of Hoare Logic in a file called1 ‘HSound.l’. It depends on a number of other
files which develop underlying concepts e.g. syntax and semantics of expressions, assertions,
imperative programs. You notice that the current lemma is too difficult to prove because you
have forgotten to prove some more basic properties about determinism of the programming
language. Or perhaps a previous definition is too cumbersome or even wrong.

At this stage, you would like to visit the appropriate file, say ‘sos.l’ and retract to where
changes are required. Then, using script management, you want to develop some more basic
theory in ‘sos.l’. Once this task has been completed (possibly involving retraction across even
earlier files) and the new development has been asserted, you want to switch back to ‘HSound.l’
and replay to the point you got stuck previously.

Some hours (or days) later you have completed the soundness proof and are ready to tackle new
challenges. Perhaps, you want to prove a property that builds on soundness or you want to
prove an orthogonal property such as completeness.

1 The suffix may depend of the specific proof assistant you are using e.g, LEGO’s proof script files have to end with
‘.l’.

24 Proof General

Proof General lets you do all of this while maintaining the consistency between proof script
buffers and the state of the proof assistant. However, you cannot have more than one buffer
where only a fraction of the proof script contains a locked region. Before you can employ script
management in another proof script buffer, you must either fully assert or retract the current
script buffer.

3.5 View of processed files

Proof General tries to be aware of all files that the proof assistant has processed or is currently
processing. In the best case, it relies on the proof assistant explicitly telling it whenever it
processes a new file which corresponds2 to a file containing a proof script.

If the current proof script buffer depends on background material from other files, proof assistants
typically process these files automatically. If you visit such a file, the whole file is locked as having
been processed in a single step. From the user’s point of view, you can only retract but not
assert in this buffer. Furthermore, retraction is only possible to the beginning of the buffer.

Unlike a script buffer that has been processed step-by-step via Proof General, automatically
loaded script buffers do not pass through a “red” phase to indicate that they are currently being
processed. This is a limitation of the present implementation. Proof General locks a buffer as
soon as it sees the appropriate message from the proof assistant. Different proof assistants may
use different messages: either early locking when processing a file begins (e.g. LEGO) or late
locking when processing a file ends (e.g. Isabelle).

With early locking, you may find that a script which has only been partly processed (due to an
error or interrupt, for example), is wrongly completely locked by Proof General. Visit the file
and retract back to the start to fix this.

With late locking, there is the chance that you can break synchronization by editing a file as it
is being read by the proof assistant, and saving it before processing finishes.

In fact, there is a general problem of editing files which may be processed by the proof assistant
automatically. Synchronization can be broken whenever you have unsaved changes in a proof
script buffer and the proof assistant processes the corresponding file. (Of course, this problem
is familiar from program development using separate editors and compilers). The good news is
that Proof General can detect the problem and flashes up a warning in the response buffer. You
can then visit the modified buffer, save it and retract to the beginning. Then you are back on
track.

3.6 Retracting across files

Make sure that the current script buffer has either been completely asserted or retracted (Proof
General enforces this). Then you can retract proof scripts in a different file. Simply visit
a file that has been processed earlier and retract in it, using the retraction commands from
see Section 2.6 [Script processing commands], page 15. Apart from removing parts of the
locked region in this buffer, all files which depend on it will be retracted (and thus unlocked)
automatically. Proof General reminds you that now is a good time to save any unmodified
buffers.

3.7 Asserting across files

Make sure that the current script buffer has either been completely asserted or retracted. Then
you can assert proof scripts in a different file. Simply visit a file that contains no locked region
and assert some command with the usual assertion commands, see Section 2.6 [Script processing
commands], page 15. Proof General reminds you that now is a good time to save any unmodified

2 For example, LEGO generates additional compiled (optimised) proof script files for efficiency.

Chapter 3: Advanced Script Management and Editing 25

buffers. This is particularly useful as assertion may cause the proof assistant to automatically
process other files.

3.8 Automatic multiple file handling

To make it easier to adapt Proof General for a proof assistant, there is another possibility for
multiple file support — that it is provided automatically by Proof General and not integrated
with the file-management system of the proof assistant.

In this case, Proof General assumes that the only files processed are the ones it has sent to the
proof assistant itself. Moreover, it (conservatively) assumes that there is a linear dependency
between files in the order they were processed.

If you only have automatic multiple file handling, you’ll find that any files loaded directly by the
proof assistant are not locked when you visit them in Proof General. Moreover, if you retract a
file it may retract more than is strictly necessary (because it assumes a linear dependency).

For further technical details of the ways multiple file scripting is configured, see Handling multiple
files in the Adapting Proof General manual.

3.9 Escaping script management

Occasionally you may want to review the dialogue of the entire session with the proof assistant,
or check that it hasn’t done something unexpected. Experienced users may also want to directly
communicate with the proof assistant rather than sending commands via the minibuffer, see
Section 2.7 [Proof assistant commands], page 16.

Although the proof shell is usually hidden from view, it is run in a buffer which you can use to
interact with the prover if necessary. You can switch to it using the menu:

Proof-General -> Buffers -> Shell

Warning: you can probably cause confusion by typing in the shell buffer! Proof General may
lose track of the state of the proof assistant. Output from the assistant is only fully monitored
when Proof General is in control of the shell. When in control, Proof General watches the
output from the proof assistant to guess when a file is loaded or when a proof step is taken or
undone. What happens when you type in the shell buffer directly depends on how complete
the communication is between Proof General and the prover (which depends on the particular
instantiation of Proof General).

If synchronization is lost, you have two options to resynchronize. If you are lucky, it might
suffice to use the key:

C-c C-z proof-frob-locked-end

This command is disabled by default, to protect novices using it accidently.

If proof-frob-locked-end does not work, you will need to restart script management altogether
(see Section 2.7 [Proof assistant commands], page 16).

[Command]proof-frob-locked-end
Move the end of the locked region backwards to regain synchronization.
Only for use by consenting adults.

This command can be used to repair synchronization in case something goes wrong and you
want to tell Proof General that the proof assistant has processed less of your script than
Proof General thinks.

You should only use it to move the locked region to the end of a proof command.

26 Proof General

3.10 Editing features

To make editing proof scripts more productive, Proof General provides some additional editing
commands.

One facility is the input ring of previously processed commands. This allows a convenient way
of repeating an earlier command or a small edit of it. The feature is reminiscent of history
mechanisms provided in shell terminals (and the implementation is borrowed from the Emacs
Comint package). The input ring only contains commands which have been successfully pro-
cessed (coloured blue). Duplicated commands are only entered once. The size of the ring is set
by the variable pg-input-ring-size.

M-p pg-previous-matching-input-from-input

M-n pg-next-matching-input-from-input

[Command]pg-previous-input arg
Cycle backwards through input history, saving input.

[Command]pg-next-input arg
Cycle forwards through input history.

[Command]pg-previous-matching-input regexp n
Search backwards through input history for match for regexp.
(Previous history elements are earlier commands.) With prefix argument n, search for Nth
previous match. If n is negative, find the next or Nth next match.

[Command]pg-next-matching-input regexp n
Search forwards through input history for match for regexp.
(Later history elements are more recent commands.) With prefix argument n, search for Nth
following match. If n is negative, find the previous or Nth previous match.

[Command]pg-previous-matching-input-from-input n
Search backwards through input history for match for current input.
(Previous history elements are earlier commands.) With prefix argument n, search for Nth
previous match. If n is negative, search forwards for the -Nth following match.

[Command]pg-next-matching-input-from-input n
Search forwards through input history for match for current input.
(Following history elements are more recent commands.) With prefix argument n, search for
Nth following match. If n is negative, search backwards for the -Nth previous match.

Chapter 4: Unicode symbols and special layout support 27

4 Unicode symbols and special layout support

Proof General inherits support for displaying Unicode (and any other) fonts from the underlying
Emacs program. If you are lucky, your system will be able to use or synthesise a font that
provides a rich set of mathematical symbols. To store symbols directly in files you need to
use a particular coding, for example UTF-8. Newer Emacs versions can handle a multitude of
different coding systems and will try to automatically detect an appropriate one; consult the
Emacs documentation for more details. Of course, the prover that you are using will need to
understand the same encodings and symbol meanings.

Alternatively, you can use the Unicode Tokens mode provided in Proof General to display
mathematical symbols in place of sequences of other characters (usually plain ASCII). This can
provide better compatibility, portability, and flexibility. Even if you use real Unicode characters
as prover input, the Unicode Tokens mode can provide some helpful facilities for input shorthands
and giving special layout.

4.1 Maths menu

The Maths Menu minor mode (adapted from a menu by Dave Love) simply adds a menu Maths

to the main menubar for inserting common mathematical symbols. You can enable or disable it
via the menu

Proof-General -> Quick Options -> Minor Modes -> Unicode Maths Menu

(proof-maths-menu-toggle). Whether or not the symbols display well the menus depends on
the font used to display the menus (which depends on the Emacs version, toolkit and platform).
Ordinarily, the symbols inserted into the text will be Unicode characters which will be saved in
the file using the encoding selected by standard Emacs mechanisms.

4.2 Unicode Tokens mode

The Unicode Tokens minor mode has been written specially for Proof General (with thanks to
Stefan Monnier for providing inspiration and a starting point). It supports the display of symbols
when the underlying text of the file and buffer actually contains something else, typically, plain
ASCII text. It provides backward compatibility with the older X-Symbol mode.

Unicode Tokens can be enabled or disabled using the menu:

Proof-General -> Quick Options -> Display -> Unicode Tokens

The mode to allows ASCII tokens (i.e., sequences of plain ASCII characters) to be displayed as
Unicode character compositions, perhaps with additional text properties. The additional text
properties allow the use of tokens to cause font changes (bold, italic), text size changes, and
sub-script/super-script.

For example, the ASCII sequences /\ or \<And> could be displayed as a conjunction symbol.
The sequence x __ y might be written to display y as subscript. This allows a file to be stored
in perfectly portable plain ASCII encoding, but be displayed and edited with real symbols and
appealing layout. Of course, the proof assistant needs to understand the underlying tokens in
each case.

Technically, the mechanism is based on Emacs Font Lock facility, using the composition text
property to display ASCII character sequence tokens as something else. This means that the
underlying buffer text is not altered. This is a major advantage over the older X-Symbol (and
the experimental version of Unicode Tokens in PG 3.7.1), which had the annoying risk of saving
your buffer text in a corrupted format. This can never happen with the new mode.

When the Unicode Tokens mode is enabled, Maths Menu is automatically modified to insert
tokenised versions of the Unicode characters (whenever a reverse mapping can be found). This
means that you can still use the Maths Menu to conveniently input symbols. You can easily

28 Proof General

add custom key bindings for particular symbols you need to enter often (see Section 9.1 [Adding
your own keybindings], page 51 for examples).

The Unicode Tokens mode also allows short-cut sequences of ordinary characters to quickly type
tokens (similarly to the facility provided by X-Symbol). These, along with the token settings
themselves, are configured on a per-prover basis.

4.3 Configuring tokens symbols and shortcuts

To edit the strings used to display tokens, or the collection of short-cuts, you can edit the file
PA-unicode-tokens.el, or customize the main variables it contains, for example PA-token-

name-alist and PA-shortcut-alist.

E.g., for Isabelle

M-x customize-variable isar-token-name-alist RET

provides an interface to the tokens, and

M-x customize-variable isar-shortcut-alist

an interface to the shortcuts.

Where possible, it is better to use the more fine grained way is available to do this, which edits
the separate tables which are combine to form the big list of tokens. This is available via the
menus, e.g., in Isabelle, use

Tokens -> Customize -> Extended Symbols

to customize the symbols used for the “extended” (non standard) symbol list.

4.4 Special layout

The Unicode Tokens mode supports both symbol tokens used to display character sequences in
different ways and control tokens used to control the layout of the text in various ways, such as
superscript, subscript, large, small, bold, italic, etc. (The size and position layout is managed
using Emacs’s display text property)

As well as displaying token sequences as special symbols, symbol tokens themselves can define
layout options as well; for example you might define a token \<hugeOplus> to display a large
circled-plus glyph. If you try the customization mentioned in the section above you will see the
options available when defining symbols.

These options are fixed layout schemes which also make layout tokens easy to configure for
provers. The layout possibilities include the ones shown in the table below. There are two ways
of configuring control tokens for layout: character controls and region controls. The character
controls apply to the next “character”, although this is a prover-specific notion and might
actually mean the next word or identifier. An example might be writing BOLDCHAR x to make a
bold x. Similarly the region controls apply to a delineated region of text, for example, writing
BEGINBOLD this is bold ENDBOLD could cause the enclosed text this is bold to be displayed in
a bold font.

The control tokens that have been configured populate the Tokens menu, so, for example, you
may be able to select a region of text and then use the menu item:

Tokens -> Format Region -> Bold

to cause the bold region tokens to be inserted around the selected text, which should cause the
buffer presentation to show the text in a bold format (hiding the tokens).

Here is the table of layout controls available. What you actually can use will depend on the
configuration for the underlying prover.

sub lower the text (subscript)

sup raise the text (superscript)

Chapter 4: Unicode symbols and special layout support 29

bold make the text be in the bold weight of the current font

italic make the text be in the italic variant of the current font

big make the text be in a bigger size of the current font

small make the text be in a smaller size of the current font

underline

underline the text

overline overline the text

script display the text in a “script” font

frakt display the text in a “fraktur” font

serif display the text in a serif font

sans display the text in a sans serif font

keyword display the text in the keyword face (font-lock-keyword-face)

function display the text in the function name face (font-lock-function-name-face)

type display the text in the type name face (font-lock-type-face)

preprocessor

display the text in the preprocessor face (font-lock-preprocessor-face)

doc display the text in the documentation face (font-lock-doc-face)

builtin display the text in the builtin face (font-lock-builtin-face)

Notice that the fonts can be set conveniently by the menu commands

Tokens -> Set Fonts -> Script

etc. See Section 4.7 [Selecting suitable fonts], page 31, for more.

The symbols used to select the various font-lock faces (see M-x list-faces-display to show
them) allow you to define custom colouring of text for proof assistant input and output, exploit-
ing rich underlying syntax mechanisms of the prover.

[Face]unicode-tokens-serif-font-face
Serif (roman) font face.

[Face]unicode-tokens-sans-font-face
Sans serif font face.

[Face]unicode-tokens-fraktur-font-face
Fraktur font face.

[Face]unicode-tokens-script-font-face
Script font face.

4.5 Moving between Unicode and tokens

If you want to share text between applications (e.g., email some text from an Isabelle theory
file which heavily uses symbols), it is useful to convert to and from Unicode with cut-and-paste
operations. The default buffer cut and paste functions will copy the underlying text, which
contains the tokens (ASCII format). To copy and convert or paste then convert back, use these
commands:

30 Proof General

Tokens -> Copy as unicode

Tokens -> Paste from unicode

Both of these are necessarily approximate. The buffer presentation may use additional controls
(for super/subscript layout or bold fonts, etc), which cannot be converted. Pasting relies on
being able to identify a unique token mapped from a single Unicode character; the token table
may not include such an entry, or may be ambiguous.

[Command]unicode-tokens-copy beg end
Copy presentation of region between beg and end.
This is an approximation; it makes assumptions about the behaviour of symbol compositions,
and will lose layout information.

[Command]unicode-tokens-paste
Paste text from clipboard, converting Unicode to tokens where possible.

If you are using a mixture of “real” Unicode and tokens like this you may want to be careful
to check the buffer contents: the command unicode-tokens-highlight-unicode helps you to
manage this. It is available on the Tokens menu as

Tokens -> Highlight Real Unicode Chars

Alternative ways to check are to toggle the display of tokens using

Tokens -> Reveal Symbol Tokens

(the similar entry for Control Tokens displays tokens being used to control layout). Or simply
toggle the tokens mode, which will leave the true Unicode tokens untouched.

[Variable]unicode-tokens-highlight-unicode
Non-nil to highlight Unicode characters.

4.6 Finding available tokens shortcuts and symbols

Two commands (both on the Tokens menu) allow you to see the tokens and shortcuts available:

Tokens -> List Tokens

Tokens -> List Shortcuts

Additionally, you can view the complete Unicode character set available in the default Emacs
font, with

Tokens -> List Unicode Characters

(this uses a list adapted from Norman Walsh’s unichars.el).

Note that the Unicode Tokens modes displays symbols defined by symbol tokens in a special
font.

[Command]unicode-tokens-list-tokens
Show a buffer of all tokens.

[Command]unicode-tokens-list-shortcuts
Show a buffer of all the shortcuts available.

[Command]unicode-tokens-list-unicode-chars
Insert each Unicode character into a buffer.
Lets you see which characters are available for literal display in your emacs font.

(fn)

Chapter 4: Unicode symbols and special layout support 31

4.7 Selecting suitable fonts

The precise set of symbol glyphs that are available to you will depend in complicated ways on
your operating system, Emacs version, configuration options used when Emacs was compiled,
installed font sets, and (even) command line options used to start Emacs. So it is hard to give
comprehensive and accurate advice in this manual. In general, things work much better with
Emacs 23 than earlier versions.

To improve flexibility, Unicode Tokens mode allows you to select another font to display symbols
from the default font that is used to display text in the buffer. This is the font that is configured
by the menu

Tokens -> Set Fonts -> Symbol

its customization name is unicode-tokens-symbol-font-face, but notice that only the font
family aspect of the face is used. Similarly, other fonts can be configured for controling different
font families (script, fraktur, etc).

For symbols, good results are possible by using a proportional font for displaying symbols that
has many symbol glyphs, for example the main font StixGeneral font from the Stix Fonts project
(http://www.stixfonts.org/). At the time of writing you can obtain a beta version of these
fonts in TTF format from http://olegueret.googlepages.com/stixfonts-ttf. On recent
Linux distributions and with an Emacs 23 build that uses Xft, simply copy these ttf files into
the .fonts directory inside your home directory to make them available.

Another font I like is DejaVu Sans Mono. It covers all of the standard Isabelle symbols. Some
of the symbols are currently not perfect; however this font is an open source effort so users can
contribute or suggest improvements. See http://dejavu-fonts.org.

If you are stuck with Emacs 22, you need to use the fontset mechanism which configures sets of
fonts to use for display. The default font sets may not include enough symbols (typical symptom:
symbols display as empty boxes). To address this, the menu command

Tokens -> Set Fonts -> Make Fontsets

constructs a number of fontsets at particular point sizes, based on several widely available fonts.
See pg-fontsets.el for the code. After running this command, you can select from additional
fontsets from the menus for changing fonts.

For further suggestions, please search (and contribute!) to the Proof General wiki at
http://proofgeneral.inf.ed.ac.uk/wiki.

[Face]unicode-tokens-symbol-font-face
The default font used for symbols. Only :family and :slant attributes are used.

[Variable]unicode-tokens-font-family-alternatives
Not documented.

http://www.stixfonts.org/
http://olegueret.googlepages.com/stixfonts-ttf
http://dejavu-fonts.org
http://proofgeneral.inf.ed.ac.uk/wiki

Chapter 5: Support for other Packages 33

5 Support for other Packages

Proof General makes some configuration for other Emacs packages which provide various useful
facilities that can make your editing more effective.

Sometimes this configuration is purely at the proof assistant specific level (and so not necessarily
available), and sometimes it is made using Proof General settings.

When adding support for a new proof assistant, we suggest that these other packages are sup-
ported, as a convention.

The packages currently supported include font-lock, imenu and speedbar, outline-mode,
completion, and etags.

5.1 Syntax highlighting

Proof script buffers are decorated (or fontified) with colours, bold and italic fonts, etc, according
to the syntax of the proof language and the settings for font-lock-keywords made by the proof
assistant specific portion of Proof General. Moreover, Proof General usually decorates the output
from the proof assistant, also using font-lock.

To automatically switch on fontification in Emacs, you may need to engage M-x global-font-

lock-mode.

By the way, the choice of colour, font, etc, for each kind of markup is fully customizable in Proof
General. Each face (Emacs terminology) is controlled by its own customization setting. You
can display a list of all of them using the customize menu:

Proof General -> Advanced -> Customize -> Faces -> Proof Faces.

5.2 Imenu and Speedbar

The Emacs package imenu (Index Menu) provides a menu built from the names of entities
(e.g., theorems, definitions, etc) declared in a buffer. This allows easy navigation within the
file. Proof General configures both packages automatically so that you can quickly jump to
particular proofs in a script buffer.

(Developers note: the automatic configuration is done with the settings proof-goal-with-

hole-regexp and proof-save-with-hole-regexp. Better configuration may be made manually
with several other settings, see the Adapting Proof General manual for further details).

To use Imenu, select the option

Proof-General -> Quick Options -> Minor Modes -> Index Menu

This adds an "Index" menu to the main menu bar for proof script buffers. You can also use M-x
imenu for keyboard-driven completion of tags built from names in the buffer.

Speedbar displays a file tree in a separate window on the display, allowing quick navigation.
Middle/double-clicking or pressing + on a file icon opens up to display tags (definitions, theorems,
etc) within the file. Middle/double-clicking on a file or tag jumps to that file or tag.

To use Speedbar, use

Proof-General -> Quick Options -> Minor Modes -> Speedbar

If you prefer the old fashioned way, ‘M-x speedbar’ does the same job.

For more information about Speedbar, see http://cedet.sourceforge.net/speedbar.shtml.

http://cedet.sourceforge.net/speedbar.shtml

34 Proof General

5.3 Support for outline mode

Proof General configures Emacs variables (outline-regexp and outline-heading-end-

regexp) so that outline minor mode can be used on proof script files. The headings taken
for outlining are the "goal" statements at the start of goal-save sequences, see Section 2.3.2
[Goal-save sequences], page 13. If you want to use outline to hide parts of the proof script in
the locked region, you need to disable proof-strict-read-only.

Use M-x outline-minor-mode to turn on outline minor mode. Functions for navigating, hiding,
and revealing the proof script are available in menus.

Please note that outline-mode may not work well in processed proof script files, because of read-
only restrictions of the protected region. This is an inherent problem with outline because it
works by modifying the buffer. If you want to use outline with processed scripts, you can turn
off the Strict Read Only option.

See See Info file ‘(emacs)’, node ‘Outline Mode’ for more information about outline mode.

5.4 Support for completion

You might find the completion facility of Emacs useful when you’re using Proof General. The key
C-RET is defined to invoke the complete command. Pressing C-RET cycles through completions
displaying hints in the minibuffer.

Completions are filled in according to what has been recently typed, from a database of symbols.
The database is automatically saved at the end of a session.

Proof General has the additional facility for setting a completion table for each supported proof
assistant, which gets loaded into the completion database automatically. Ideally the completion
table would be set from the running process according to the identifiers available are within the
particular context of a script file. But until this is available, this table may be set to contain a
number of standard identifiers available for your proof assistant.

The setting PA-completion-table holds the list of identifiers for a proof assistant. The function
proof-add-completions adds these into the completion database.

[Variable]PA-completion-table
List of identifiers to use for completion for this proof assistant.
Completion is activated with M-x complete.

If this table is empty or needs adjusting, please make changes using ‘customize-variable’
and post suggestions at http://proofgeneral.inf.ed.ac.uk/trac

The completion facility uses a library ‘completion.el’ which usually ships with Emacs, and
supplies the complete function.

[Command]complete
Fill out a completion of the word before point.
Point is left at end. Consecutive calls rotate through all possibilities. Prefix args:

C-u leave point at the beginning of the completion, not the end.

a number rotate through the possible completions by that amount

0 same as -1 (insert previous completion)

See the comments at the top of ‘completion.el’ for more info.

Chapter 5: Support for other Packages 35

5.5 Support for tags

An Emacs "tags table" is a description of how a multi-file system is broken up into files. It lists
the names of the component files and the names and positions of the functions (or other named
subunits) in each file. Grouping the related files makes it possible to search or replace through
all the files with one command. Recording the function names and positions makes possible the
M-. command which finds the definition of a function by looking up which of the files it is in.

Some instantiations of Proof General (currently LEGO and Coq) are supplied with external
programs (‘legotags’ and ‘coqtags’) for making tags tables. For example, invoking ‘coqtags
.v’ produces a file ‘TAGS’ for all files ‘.v’ in the current directory. Invoking ‘coqtags ‘find .

-name *.v‘’ produces a file ‘TAGS’ for all files ending in ‘.v’ in the current directory structure.
Once a tag table has been made for your proof developments, you can use the Emacs tags
mechanisms to find tags, and complete symbols from tags table.

One useful key-binding you might want to make is to set the usual tags completion key M-tab to
run tag-complete-symbol to use completion from names in the tag table. To set this binding
in Proof General script buffers, put this code in your ‘.emacs’ file:

(add-hook ’proof-mode-hook

(lambda () (local-set-key ’(meta tab) ’tag-complete-symbol)))

Since this key-binding interferes with a default binding that users may already have customized
(or may be taken by the window manager), Proof General doesn’t do this automatically.

Apart from completion, there are several other operations on tags. One common one is replacing
identifiers across all files using tags-query-replace. For more information on how to use tags,
See Info file ‘(emacs)’, node ‘Tags’.

To use tags for completion at the same time as the completion mechanism mentioned already,
you can use the command M-x add-completions-from-tags-table.

[Command]add-completions-from-tags-table
Add completions from the current tags table.

Chapter 6: Subterm Activation and Proof by Pointing 37

6 Subterm Activation and Proof by Pointing

This chapter describes what you can do from inside the goals buffer, providing support for these
features exists for your proof assistant.

As of Proof General 4.0, this support only exists for LEGO and proof-by-pointing functionality
has been temporarily removed from the interface. If you would like to see subterm activation
support for Proof General in another proof assistant, please petition the developers of that proof
assistant to provide it!

6.1 Goals buffer commands

When you are developing a proof, the input focus (Emacs cursor) is usually on the script buffer.
Therefore Proof General binds some mouse buttons for commands in the goals buffer, to avoid
the need to move the cursor between buffers.

The mouse bindings are these:

mouse-1 pg-goals-button-action

C-mouse-3

proof-undo-and-delete-last-successful-command

C-S-mouse-1

pg-identifier-under-mouse-query

Where mouse-1 indicates the left mouse button, and mouse-3 indicates the right hand mouse
button. The functions available provide a way to construct commands automatically (pg-goals-
button-action) and to inspect identifiers (pg-identifier-under-mouse-query) as the Info
toolbar button does.

Proof-by-pointing is a cute idea. It lets you automatically construct parts of a proof by clicking.
You can ask the proof assistant to try to do a step in the proof, based on where you click. If you
don’t like the command which was inserted into the script, you can comment use the control
key with the right button to undo the step and delete it from your script (proof-undo-and-
delete-last-successful-command).

Proof-by-pointing may construct several commands in one go. These are sent back to the proof
assistant altogether and appear as a single step in the proof script. However, if the proof is
later replayed (without using PBP), the proof-by-pointing constructions will be considered as
separate proof commands, as usual.

The main function for proof-by-pointing is pg-goals-button-action.

[Command]pg-goals-button-action event
Construct a proof-by-pointing command based on the mouse-click event.
This function should be bound to a mouse button in the Proof General goals buffer.

The event is used to find the smallest subterm around a point. A position code for the
subterm is sent to the proof assistant, to ask it to construct an appropriate proof command.
The command which is constructed will be inserted at the end of the locked region in the
proof script buffer, and immediately sent back to the proof assistant. If it succeeds, the
locked region will be extended to cover the proof-by-pointing command, just as for any proof
command the user types by hand.

Proof-by-pointing uses markup describing the term structure of the concrete syntax output by
the proof assistant. This markup is useful in itself: it allows you to explore the structure of a
term using the mouse (the smallest subexpression that the mouse is over is highlighted), and
easily copy subterms from the output to a proof script.

38 Proof General

[Command]pg-identifier-under-mouse-query event
Query the prover about the identifier near mouse click event.

Chapter 7: Graphical Proof-Tree Visualization 39

7 Graphical Proof-Tree Visualization

Since version 4.2, Proof General supports proof-tree visualization on graphical desktops via the
additional program Prooftree. Currently, proof-tree visualization is only supported for the Coq
proof assistant.

This version of Proof General requires Prooftree version 0.11. Check the Prooftree website, to
see if some later versions are also compatible. (Because of the communication protocol, Proof
General is always only compatible with certain versions of Prooftree.)

For installation instructions and more detailed information about Prooftree, please refer to the
Prooftree website and the Prooftree man page. For information about how to support proof-tree
visualization for a different proof assistant, see Section Configuring Proof-Tree Visualization in
the Adapting Proof General manual.

7.1 Starting and Stopping Proof-Tree Visualization

When proof-tree visualization is supported (currently only for the Coq proof assistant), you can
start the visualization via the proof-tree button in the tool-bar, via the menu

Proof-General -> Start/Stop Prooftree

or via the keyboard shortcut C-c C-d, all of which invoke proof-tree-external-display-

toggle.

If you are inside a proof, the graphical display is started immediately for your current proof.
Otherwise the display starts as soon as you start the next proof. Starting the proof-tree display
in the middle of a proof involves an automatic reexecution of your current proof script in the
locked region, which should be almost unnoticeable, except for the time it takes.

The proof-tree display stops at the end of the proof or when you invoke proof-tree-external-
display-toggle by one of the three indicated means again. Alternatively you can also close
the proof-tree window.

Proof General launches only one instance of Prooftree, which can manage an arbitrary amount
of proof-tree windows.

7.2 Features of Prooftree

The proof-tree window provides visual information about the status of the different branches
in your proof (by coloring completely proved branches in green, for example) and means for
inspecting previous proof states without the need to retract parts of your proof script. Currently,
Prooftree provides the following features:

• Navigation in the proof tree and display of all previous proof states and proof commands.

• Display branches of the proof in different colors according to their proof state, distinguishing
branches with open, partially or fully instantiated existential variables as well as branches
that have been finished by a cheating command such as admit.

• Display the status of existential variables and their dependencies.

• Mark proof commands that introduce or instantiate a given existential variable.

• Snapshots of proof trees for reference when you retract your proof to try a different approach.

• Trigger a retract (undo) operation with a selected sequent as target.

• Insert proof scripts from the proof tree in the current buffer.

For a more elaborated description please consult the help dialog of Prooftree or the Prooftree
man page.

http://askra.de/software/prooftree/
http://askra.de/software/prooftree/
http://askra.de/software/prooftree/prooftree.man.html
http://askra.de/software/prooftree/prooftree.man.html
http://askra.de/software/prooftree/prooftree.man.html

40 Proof General

7.3 Prooftree Customization

The location of the Prooftree program and command line arguments can be configured in the
customization group proof-tree. You can visit this customization group inside a running
instance of Proof General by typing M-x customize-group <RET> proof-tree <RET>.

The graphical aspects of the proof-tree rendering, fonts and colors can be changed inside
Prooftree by invoking the Configuration item of the main menu.

Prover specific parts such as the regular expressions for recognizing subgoals, existential variables
and navigation and cheating commands are in the customization group proof-tree-internals.
Under normal circumstances there should be no need to change one of these internal settings.

Chapter 8: Customizing Proof General 41

8 Customizing Proof General

There are two ways of customizing Proof General: it can be customized for a user’s preferences
using a particular proof assistant, or it can be customized by a developer to add support for a
new proof assistant. The latter kind of customization we call instantiation, or adapting. See the
Adapting Proof General manual for how to do this. Here we cover the user-level customization
for Proof General.

There are two kinds of user-level settings in Proof General:

• Settings that apply globally to all proof assistants.

• those that can be adjusted for each proof assistant individually.

The first sort have names beginning with proof-. The second sort have names which begin with
a symbol corresponding to the proof assistant: for example, isa-, coq-, etc. The symbol is the
root of the mode name. See Section 1.2 [Quick start guide], page 5, for a table of the supported
modes. To stand for an arbitrary proof assistant, we write PA- for these names.

In this chapter we only consider the generic settings: ones which apply to all proof assistants
(globally or individually). The support for a particular proof assistant may provide extra indi-
vidual customization settings not available in other proof assistants. See the chapters covering
each assistant for details of those settings.

8.1 Basic options

Proof General has some common options which you can toggle directly from the menu:

Proof-General -> Quick Options

The effect of changing one of these options will be seen immediately (or in the next proof
step). The window-control options on this menu are described shortly. See Section 8.3 [Display
customization], page 42.

To save the current settings for these options (only), use the Save Options command in the
submenu:

Proof-General -> Quick Options -> Save Options

or M-x customize-save-customized.

The options on this sub-menu are also available in the complete user customization options
group for Proof General. For this you need to know a little bit about how to customize in
Emacs.

8.2 How to customize

Proof General uses the Emacs customization library to provide a friendly interface. You can
access all the customization settings for Proof General via the menu:

Proof-General -> Advanced -> Customize

Using the customize facility is straightforward. You can select the setting to customize via the
menus, or with M-x customize-variable. When you have selected a setting, you are shown a
buffer with its current value, and facility to edit it. Once you have edited it, you can use the
special buttons set, save and done. You must use one of set or save to get any effect. The save
button stores the setting in your ‘.emacs’ file. The command M-x customize-save-customized

or Emacs menubar item Options -> Save Options saves all settings you have edited.

A technical note. In the customize menus, the variable names mentioned later in this chapter
may be abbreviated — the "proof-" or similar prefixes are omitted. Also, some of the option
settings may have more descriptive names (for example, on and off) than the low-level lisp values
(non-nil, nil) which are mentioned in this chapter. These features make customize rather more
friendly than raw lisp.

42 Proof General

You can also access the customize settings for Proof General from other (non-script) buffers.
Use the menu:

Options -> Customize Emacs -> Top-level Customization Group

and select the External and then Proof-General groups.

The complete set of customization settings will only be available after Proof General has been
fully loaded. Proof General is fully loaded when you visit a script file for the first time, or if you
type M-x load-library RET proof RET.

For more help with customize, see See Info file ‘(emacs)’, node ‘Customization’.

8.3 Display customization

By default, Proof General displays two buffers during scripting, in a split window on the dis-
play. One buffer is the script buffer. The other buffer is either the goals buffer (*goals*) or
the response buffer (*response*). Proof General raises and switches between these last two
automatically.

Proof General allows several ways to customize this default display model, by splitting the Emacs
frames in different ways and maximising the amount of information shown, or by using multiple
frames. The customization options are explained below; they are also available on the menu:

Proof-General -> Quick Options -> Display

and you can save your preferred default.

If your screen is large enough, you may prefer to display all three of the interaction buffers at
once. This is useful, for example, to see output from the proof-find-theorems command at
the same time as the subgoal list. Set the user option proof-three-window-enable to make
Proof General keep both the goals and response buffer displayed.

If you prefer to switch windows and buffers manually when you want to see the prover output, you
can customize the user option proof-auto-raise-buffers to prevent the automatic behaviour.
You can browse interaction output by hovering the mouse over the command regions in the proof
script.

[User Option]proof-auto-raise-buffers
If non-nil, automatically raise buffers to display latest output.
If this is not set, buffers and windows will not be managed by Proof General.

The default value is t.

[User Option]proof-three-window-enable
Whether response and goals buffers have dedicated windows.
If non-nil, Emacs windows displaying messages from the prover will not be switchable to
display other windows.

This option can help manage your display.

Setting this option triggers a three-buffer mode of interaction where the goals buffer and
response buffer are both displayed, rather than the two-buffer mode where they are switched
between. It also prevents Emacs automatically resizing windows between proof steps.

If you use several frames (the same Emacs in several windows on the screen), you can force
a frame to stick to showing the goals or response buffer.

The default value is t.

Sometimes during script management, there is no response from the proof assistant to some
command. In this case you might like the empty response window to be hidden so you have
more room to see the proof script. The setting proof-delete-empty-windows helps you do
this.

Chapter 8: Customizing Proof General 43

[User Option]proof-delete-empty-windows
If non-nil, automatically remove windows when they are cleaned.
For example, at the end of a proof the goals buffer window will be cleared; if this flag is set it
will automatically be removed. If you want to fix the sizes of your windows you may want to
set this variable to ’nil’ to avoid windows being deleted automatically. If you use multiple
frames, only the windows in the currently selected frame will be automatically deleted.

The default value is nil.

This option only has an effect when you have set proof-three-window-mode.

If you are working on a machine with a window system, you can use Emacs to manage several
frames on the display, to keep the goals buffer displayed in a fixed place on your screen and in
a certain font, for example. A convenient way to do this is via the user option

[User Option]proof-multiple-frames-enable
Whether response and goals buffers have separate frames.
If non-nil, Emacs will make separate frames (screen windows) for the goals and response
buffers, by altering the Emacs variable ‘special-display-regexps’.

The default value is nil.

Multiple frames work best when proof-delete-empty-windows is off and proof-three-

window-mode is on.

Finally, there are two commands available which help to switch between buffers or refresh the
window layout. These are on the menu:

Proof-General -> Buffers

[Command]proof-display-some-buffers
Display the reponse, trace, goals, or shell buffer, rotating.
A fixed number of repetitions of this command switches back to the same buffer. Also move
point to the end of the response buffer if it’s selected. If in three window or multiple frame
mode, display two buffers. The idea of this function is to change the window->buffer mapping
without adjusting window layout.

[Command]proof-layout-windows
Refresh the display of windows according to current display mode.

For multiple frame mode, this function obeys the setting of ‘pg-response-eagerly-raise’,
which see.

For single frame mode:

- In two panes mode, this uses a canonical layout made by splitting Emacs windows in equal
proportions. The splitting is vertical if emacs width is smaller than ‘split-width-threshold’
and horizontal otherwise. You can then adjust the proportions by dragging the separating
bars.

- In three pane mode, there are three display modes, depending

where the three useful buffers are displayed: scripting

buffer, goals buffer and response buffer.

Here are the three modes:

- vertical: the 3 buffers are displayed in one column.

- hybrid: 2 columns mode, left column displays scripting buffer

and right column displays the 2 others.

- horizontal: 3 columns mode, one for each buffer (script, goals,

44 Proof General

response).

By default, the display mode is automatically chosen by

considering the current emacs frame width: if it is smaller

than ‘split-width-threshold’ then vertical mode is chosen,

otherwise if it is smaller than 1.5 * ‘split-width-threshold’

then hybrid mode is chosen, finally if the frame is larger than

1.5 * ‘split-width-threshold’ then the horizontal mode is chosen.

You can change the value of ‘split-width-threshold’ at your

will.

If you want to force one of the layouts, you can set variable

‘proof-three-window-mode-policy’ to ’vertical, ’horizontal or

’hybrid. The default value is ’smart which sets the automatic

behaviour described above.

[User Option]proof-shrink-windows-tofit
If non-nil, automatically shrink output windows to fit contents.
In single-frame mode, this option will reduce the size of the goals and response windows to
fit their contents.

The default value is nil.

[User Option]proof-colour-locked
If non-nil, colour the locked region with ‘proof-locked-face’.
If this is not set, buffers will have no special face set on locked regions.

The default value is t.

[User Option]proof-output-tooltips
Non-nil causes Proof General to add tooltips for prover output.
Hovers will be added when this option is non-nil. Prover outputs can be displayed
when the mouse hovers over the region that produced it and output is available (see
‘proof-full-annotation’). If output is not available, the type of the output region is
displayed. Changes of this option will not be reflected in already-processed regions of the
script.

The default value is nil.

8.4 User options

Here is a list of the important user options for Proof General, apart from the display options
mentioned above.

User options can be set via the customization system already mentioned, via the old-fashioned
M-x edit-options mechanism, or simply by adding setq’s to your ‘.emacs’ file. The first
approach is strongly recommended.

Unless mentioned, all of these settings can be changed dynamically, without needing to restart
Emacs to see the effect. But you must use customize to be sure that Proof General reconfigures
itself properly.

[User Option]proof-splash-enable
If non-nil, display a splash screen when Proof General is loaded.

The default value is t.

Chapter 8: Customizing Proof General 45

[User Option]proof-electric-terminator-enable
If non-nil, use electric terminator mode.
If electric terminator mode is enabled, pressing a terminator will automatically issue
‘proof-assert-next-command’ for convenience, to send the command straight to the proof
process. If the command you want to send already has a terminator character, you don’t
need to delete the terminator character first. Just press the terminator somewhere nearby.
Electric!

The default value is nil.

[User Option]proof-next-command-insert-space
If non-nil, PG will use heuristics to insert newlines or spaces in scripts.
In particular, if electric terminator is switched on, spaces or newlines will be inserted as the
user types commands to the prover.

The default value is t.

[User Option]proof-toolbar-enable
If non-nil, display Proof General toolbar for script buffers.

The default value is t.

[User Option]proof-query-file-save-when-activating-scripting
If non-nil, query user to save files when activating scripting.

Often, activating scripting or executing the first scripting command of a proof script will cause
the proof assistant to load some files needed by the current proof script. If this option is non-
nil, the user will be prompted to save some unsaved buffers in case any of them corresponds
to a file which may be loaded by the proof assistant.

You can turn this option off if the save queries are annoying, but be warned that with some
proof assistants this may risk processing files which are out of date with respect to the loaded
buffers!

The default value is t.

[User Option]PA-script-indent
If non-nil, enable indentation code for proof scripts.

The default value is t.

[User Option]PA-one-command-per-line
If non-nil, format for newlines after each command in a script.

The default value is t.

[User Option]proof-prog-name-ask
If non-nil, query user which program to run for the inferior process.

The default value is nil.

[Variable]PA-prog-args
Arguments to be passed to ‘proof-prog-name’ to run the proof assistant.
If non-nil, will be treated as a list of arguments for ‘proof-prog-name’. Otherwise
‘proof-prog-name’ will be split on spaces to form arguments.

Remark: Arguments are interpreted strictly: each one must contain only one word, with no
space (unless it is the same word). For example if the arguments are -x foo -y bar, then the
list should be ’("-x" "foo" "-y" "bar"), notice that ’("-x foo" "-y bar") is wrong.

46 Proof General

[Variable]PA-prog-env
Modifications to ‘process-environment’ made before running ‘proof-prog-name’.
Each element should be a string of the form ENVVARNAME=value. They will be added
to the environment before launching the prover (but not pervasively). For example for coq
on Windows you might need something like: (setq coq-prog-env ’("HOME=C:\Program
Files\Coq\"))

[User Option]proof-prog-name-guess
If non-nil, use ‘proof-guess-command-line’ to guess ‘proof-prog-name’.
This option is compatible with ‘proof-prog-name-ask’. No effect if
‘proof-guess-command-line’ is nil.

The default value is nil.

[User Option]proof-tidy-response
Non-nil indicates that the response buffer should be cleared often.
The response buffer can be set either to accumulate output, or to clear frequently.

With this variable non-nil, the response buffer is kept tidy by clearing it often, typically
between successive commands (just like the goals buffer).

Otherwise the response buffer will accumulate output from the prover.

The default value is t.

[User Option]proof-keep-response-history
Whether to keep a browsable history of responses.
With this feature enabled, the buffers used for prover responses will have a history that can
be browsed without processing/undoing in the prover. (Changes to this variable take effect
after restarting the prover).

The default value is nil.

[User Option]pg-input-ring-size
Size of history ring of previous successfully processed commands.

The default value is 32.

[User Option]proof-general-debug
Non-nil to run Proof General in debug mode.
This changes some behaviour (e.g. markup stripping) and displays debugging messages
in the response buffer. To avoid erasing messages shortly after they’re printed, set
‘proof-tidy-response’ to nil. This is only useful for PG developers.

The default value is nil.

[User Option]proof-follow-mode
Choice of how point moves with script processing commands.
One of the symbols: ’locked, ’follow, ’followdown, ’ignore.

If ’locked, point sticks to the end of the locked region. If ’follow, point moves just when
needed to display the locked region end. If ’followdown, point if necessary to stay in write-
able region If ’ignore, point is never moved after movement commands or on errors.

If you choose ’ignore, you can find the end of the locked using M-x proof-goto-end-of-

locked

The default value is locked.

[User Option]proof-auto-action-when-deactivating-scripting
If ’retract or ’process, do that when deactivating scripting.

Chapter 8: Customizing Proof General 47

With this option set to ’retract or ’process, when scripting is turned off in a partly
processed buffer, the buffer will be retracted or processed automatically.

With this option unset (nil), the user is questioned instead.

Proof General insists that only one script buffer can be partly processed: all others have to
be completely processed or completely unprocessed. This is to make sure that handling of
multiple files makes sense within the proof assistant.

NB: A buffer is completely processed when all non-whitespace is locked (coloured blue); a
buffer is completely unprocessed when there is no locked region.

For some proof assistants (such as Coq) fully processed buffers make no sense. Setting this
option to ’process has then the same effect as leaving it unset (nil). (This behaviour is
controlled by ‘proof-no-fully-processed-buffer’.)

The default value is nil.

[User Option]proof-rsh-command
Shell command prefix to run a command on a remote host.
For example,

ssh bigjobs

Would cause Proof General to issue the command ‘ssh bigjobs isabelle’ to start Isabelle
remotely on our large compute server called ‘bigjobs’.

The protocol used should be configured so that no user interaction (passwords, or whatever)
is required to get going. For proper behaviour with interrupts, the program should also
communicate signals to the remote host.

The default value is nil.

8.5 Changing faces

The numerous fonts and colours that Proof General uses are configurable. If you alter faces
through the customize menus (or the command M-x customize-face), only the particular kind
of display in use (colour window system, monochrome window system, console, . . .) will be af-
fected. This means you can keep separate default settings for each different display environment
where you use Proof General.

As well as the faces listed below, Proof General may use the regular font-lock- faces (eg font-
lock-keyword-face, font-lock-variable-name-face, etc) for fontifying the proof script or
proof assistant output. These can be altered to your taste just as easily, but note that changes
will affect all other modes which use them!

8.5.1 Script buffer faces

[Face]proof-queue-face
Face for commands in proof script waiting to be processed.

[Face]proof-locked-face
Face for locked region of proof script (processed commands).

[Face]proof-script-sticky-error-face
Proof General face for marking an error in the proof script.

[Face]proof-script-highlight-error-face
Proof General face for highlighting an error in the proof script.

[Face]proof-mouse-highlight-face
General mouse highlighting face used in script buffer.

48 Proof General

[Face]proof-highlight-dependent-face
Face for showing (backwards) dependent parts.

[Face]proof-highlight-dependency-face
Face for showing (forwards) dependencies.

[Face]proof-declaration-name-face
Face for declaration names in proof scripts.
Exactly what uses this face depends on the proof assistant.

[Face]proof-tacticals-name-face
Face for names of tacticals in proof scripts.
Exactly what uses this face depends on the proof assistant.

8.5.2 Goals and response faces

[Face]proof-error-face
Face for error messages from proof assistant.

[Face]proof-warning-face
Face for warning messages.
Warning messages can come from proof assistant or from Proof General itself.

[Face]proof-debug-message-face
Face for debugging messages from Proof General.

[Face]proof-boring-face
Face for boring text in proof assistant output.

[Face]proof-active-area-face
Face for showing active areas (clickable regions), outside of subterm markup.

[Face]proof-eager-annotation-face
Face for important messages from proof assistant.

The slightly bizarre name of the last face comes from the idea that while large amounts of output
are being sent from the prover, some messages should be displayed to the user while the bulk of
the output is hidden. The messages which are displayed may have a special annotation to help
Proof General recognize them, and this is an "eager" annotation in the sense that it should be
processed as soon as it is observed by Proof General.

8.6 Tweaking configuration settings

This section is a note for advanced users.

Configuration settings are the per-prover customizations of Proof General. These are not in-
tended to be adjusted by the user. But occasionally you may like to test changes to these settings
to improve the way Proof General works. You may want to do this when a proof assistant has
a flexible proof script language in which one can define new tactics or even operations, and you
want Proof General to recognize some of these which the default settings don’t mention. So
please feel free to try adjusting the configuration settings and report to us if you find better
default values than the ones we have provided.

The configuration settings appear in the customization group prover-config, or via the menu

Proof-General -> Internals -> Prover Config

One basic example of a setting you may like to tweak is:

Chapter 8: Customizing Proof General 49

[Variable]proof-assistant-home-page
Web address for information on proof assistant.
Used for Proof General’s help menu.

Most of the others are more complicated. For more details of the settings, see Adapting Proof
General for full details. To browse the settings, you can look through the customization groups
prover-config, proof-script and proof-shell. The group proof-script contains the con-
figuration variables for scripting, and the group proof-shell contains those for interacting with
the proof assistant.

Unfortunately, although you can use the customization mechanism to set and save these vari-
ables, saving them may have no practical effect because the default settings are mostly hard-
wired into the proof assistant code. Ones we expect may need changing appear as proof as-
sistant specific configurations. For example, proof-assistant-home-page is set in the LEGO
code from the value of the customization setting lego-www-home-page. At present there is no
easy way to save changes to other configuration variables across sessions, other than by edit-
ing the source code. (In future versions of Proof General, we plan to make all configuration
settings editable in Customize, by shadowing the settings as prover specific ones using the PA-

mechanism).

Chapter 9: Hints and Tips 51

9 Hints and Tips

Apart from the packages officially supported in Proof General, many other features of Emacs
are useful when using Proof General, even though they need no specific configuration for Proof
General. It is worth taking a bit of time to explore the Emacs manual to find out about them.

Here we provide some hints and tips for a couple of Emacs features which users have found
valuable with Proof General. Further contributions to this chapter are welcomed!

9.1 Adding your own keybindings

Proof General follows Emacs convention for file modes in using C-C prefix key-bindings for its
own functions, which is why some of the default keyboard short-cuts are quite lengthy.

Some users may prefer to add additional key-bindings for shorter sequences. This can be done
interactively with the command M-x local-set-key, or for longevity, by adding code like this
to your ‘.emacs’ file:

(eval-after-load "proof-script" ’(progn

(define-key proof-mode-map [(control n)]

’proof-assert-next-command-interactive)

(define-key proof-mode-map [(control b)]

’proof-undo-last-successful-command)

))

This lisp fragment adds bindings for every buffer in proof script mode (the Emacs keymap is
called proof-mode-map). To just affect one prover, use a keymap name like isar-mode-map and
evaluate after the library isar has been loaded.

To find the names of the functions you may want to bind, look in this manual, or query current
bindings interactively with C-h k. This command (describe-key) works for menu operations
as well; also use it to discover the current key-bindings which you’re losing by declarations such
as those above. By default, C-n is next-line and C-b is backward-char-command; neither are
really needed if you have working cursor keys.

If your keyboard has a super modifier (on my PC keyboard it has a Windows symbol and is
next to the control key), you can freely bind keys on that modifier globally (since none are used
by default). Use lisp like this:

(global-set-key [?\s-l] ’maths-menu-insert-lambda)

(global-set-key [?\s-l] ’maths-menu-insert-lambda)

(global-set-key [?\s-l] ’maths-menu-insert-lambda)

(global-set-key [?\s-L] ’maths-menu-insert-Lambda)

(global-set-key [?\s-D] ’maths-menu-insert-Delta)

(global-set-key [?\s-a] ’maths-menu-insert-for-all)

(global-set-key [?\s-e] ’maths-menu-insert-there-exists)

(global-set-key [?\s-t] ’maths-menu-insert-down-tack)

(global-set-key [?\s-b] ’maths-menu-insert-up-tack)

(global-set-key [?\s-\#] ’maths-menu-insert-music-sharp-sign)

(global-set-key [?\s-\.] ’maths-menu-insert-horizontal-ellipsis)

(global-set-key [?\s-3] ’proof-three-window-toggle)

52 Proof General

This defines a bunch of short-cuts for inserting symbols taken from the Maths Menu, see
Chapter 4 [Unicode symbols and special layout support], page 27 and a short-cut for enabling
three window mode, see Section 8.3 [Display customization], page 42.

9.2 Using file variables

A very convenient way to customize file-specific variables is to use File Variables (See Info file
‘emacs’, node ‘File Variables’). This feature of Emacs permits to specify values for certain
Emacs variables when a file is loaded. File variables and their values are written as a list at the
end of the file.

Remarque 1: The examples in the following are for Coq but the trick is applicable to other
provers.

Remarque 2: For Coq specifically there is a recommended other way of configuring coq options:
project files (Section 11.2 [Using the Coq project file], page 57).

For example, in Coq projects involving multiple directories, it is necessary to set the variable
coq-load-path (Section 11.3.3 [Customizing Coq Multiple File Support], page 61). Here is an
example: Assume the file ‘.../dir/bar/foo.v’ depends on modules in .../dir/theories/.
Then you can put the following at the end of ‘foo.v’:

(*

*** Local Variables: ***

*** coq-load-path: ("../theories") ***

*** End: ***

*)

This way, the right command line arguments are passed to the invocation of coqtop when
scripting starts in ‘foo.v’. Note that the load path "../theories" is project or even file specific,
and that therefore a global setting via the configuration tool would be inappropriate. With file
variables, Emacs will set coq-load-path automatically when visiting foo.v. Moreover, the
setting of coq-load-path in different files or buffers will not be affected. (File variables become
buffer local.)

Extending the previous example, if the makefile for ‘foo.v’ is located in directory ‘.../dir/’,
you can add the right compile command. You can also specify a "-R" command. And if you
want a non standard coq executable to be used, here is what you should put in variables:

(*

*** Local Variables: ***

*** coq-prog-name: "../../coqsrc/bin/coqtop" ***

*** coq-load-path: (("../util" "util") "../theories") ***

*** compile-command: "make -C .. -k bar/foo.vo" ***

*** End:***

*)

And then the right call to make will be done if you use the M-x compile command. Note that
the lines are commented in order to be ignored by the proof assistant. It is possible to use this
mechanism for all variables, See Info file ‘emacs’, node ‘File Variables’.

One can also specify file variables on a per directory basis, See Info file ‘emacs’, node ‘Directory
Variables’. For instance, assume you have a Coq project with several subdirectories and you
want to put each subdirectory into coq-load-path for every file in the project. You can achieve
this by storing

((coq-mode . ((coq-load-path . (("../util" "util") "../theories")))))

into the file .dir-locals.el in one of the parent directories. The value in this file must be an
alist that maps mode names to alists, where these latter alists map variables to values. You can
aso put arbitrary code in this file See Info file ‘emacs’, node ‘Directory Variables’.

Chapter 9: Hints and Tips 53

9.3 Using abbreviations

A very useful package of Emacs supports automatic expansions of abbreviations as you type,
See Info file ‘(emacs)’, node ‘Abbrevs’.

For example, the proof assistant Coq has many command strings that are long, such as “reflex-
ivity,” “Inductive,” “Definition” and “Discriminate.” Here is a part of the Coq Proof General
abbreviations:

"abs" "absurd "

"ap" "apply "

"as" "assumption"

The above list was taken from the file that Emacs saves between sessions. The easiest way to
configure abbreviations is as you write, by using the key presses C-x a g (add-global-abbrev)
or C-x a i g (inverse-add-global-abbrev). To enable automatic expansion of abbreviations
(which can be annoying), the Abbrev minor mode, type M-x abbrev-mode RET. When you are
not in Abbrev mode you can expand an abbreviation by pressing C-x ’ (expand-abbrev). See
the Emacs manual for more details.

Coq Proof General has a special experimental feature called "Holes" which makes use of the
abbreviation mechanism and includes a large list of command abbreviations. See Section 11.6
[Holes feature], page 65, for details. With other provers, you may use the standard Emacs
commands above to set up your own abbreviation tables.

Chapter 10: LEGO Proof General 55

10 LEGO Proof General

LEGO proof script mode is a mode derived from proof script mode for editing LEGO scripts.
An important convention is that proof script buffers must start with a module declaration. If
the proof script buffer’s file name is ‘fermat.l’, then it must commence with a declaration of
the form

Module fermat;

If, in the development of the module ‘fermat’, you require material from other module e.g.,
‘lib_nat’ and ‘galois’, you need to specify this dependency as part of the module declaration:

Module fermat Import lib_nat galois;

No need to worry too much about efficiency. When you retract back to a module declaration
to add a new import item, LEGO does not actually retract the previously imported modules.
Therefore, reasserting the extended module declaration really only processes the newly imported
modules.

Using the LEGO Proof General, you never ever need to use administrative LEGO commands
such as ‘Forget’, ‘ForgetMark’, ‘KillRef’, ‘Load’, ‘Make’, ‘Reload’ and ‘Undo’ again1.

10.1 LEGO specific commands

In addition to the commands provided by the generic Proof General (as discussed in the previous
sections) the LEGO Proof General provides a few extensions. In proof scripts, there are some
abbreviations for common commands:

C-c C-a C-i

intros

C-c C-a C-I

Intros

C-c C-a C-R

Refine

10.2 LEGO tags

You might want to ask your local system administrator to tag the directories ‘lib_Prop’,
‘lib_Type’ and ‘lib_TYPE’ of the LEGO library. See Section 5.5 [Support for tags], page 35, for
further details on tags.

10.3 LEGO customizations

We refer to chapter Chapter 8 [Customizing Proof General], page 41, for an introduction to the
customisation mechanism. In addition to customizations at the generic level, for LEGO you can
also customize:

[User Option]lego-tags
The directory of the tags table for the lego library

The default value is "/usr/lib/lego/lib_Type/".

[Variable]lego-www-home-page
Lego home page URL.

1 And please, don’t even think of including those in your LEGO proof script!

Chapter 11: Coq Proof General 57

11 Coq Proof General

Coq Proof General is an instantiation of Proof General for the Coq proof assistant. It supports
most of the generic features of Proof General.

11.1 Coq-specific commands

Coq Proof General supplies the following key-bindings:

C-c C-a C-i

Inserts “intros ” and also introduces the name of the hypothesis proposed by coq
on the current goal.

C-c C-a C-s

Show the goal (enter for the current goal, i <enter> for the ith goal).

Add the prefix C-u to see the answer with all pretty printing options temporarily
disable (Set Printing All).

C-c C-a C-c

Prompts for “Check ” query arguments, the default input name is built from the
identifier under the cursor.

Add the prefix C-u to see the answer with all pretty printing options temporarily
disable (Set Printing All).

C-c C-a C-p

The same for a “Print ” query.

C-c C-a C-b

The same for a “About ” query.

C-c C-a C-a

The same for a “SearchAbout ” query (no C-u prefix).

C-c C-a C-o

The same for a Search “SearchIsos” (no C-u prefix).

C-c C-a C-)

Inserts “End <section-name>.” (this should work well with nested sections).

11.2 Using the Coq project file

Before starting the Coq process, one need to set coqtop options, in particular the -I and -R
command that set the directories to have in the coq load path. You can use file variables
(Section 9.2 [Using file variables], page 52) as it was recommended on previous versions of
ProofGeneral but there is now a better way. ProofGeneral knows how to extract this information
from the Coq project file if there is one. The Coq project file must be named following variable
‘coq-project-filename’ (default: _CoqProject) and be on the root directory of your development.

It should contain something like:

-R foo bar

-I foo2

-arg -foo3

The intial use of this file is to be given to the coq_makefile tool to generate a Makefile (see
Coq documentation for details). It is parsed by ProofGeneral to guess the command line option.
In this example the command line built by Proofgeneral will be coqtop -foo3 -R foo bar -I

foo2.

58 Proof General

This is the recommended way of configuring coqtop options for coq compilation, CoqIde and
Proofgeneral. Its main advantage is that it avoids duplicating informations between these three
tools.

For specific (and rare) per file configuration one can still use file variables (Section 9.2 [Using
file variables], page 52).

11.2.1 Changing the name of the coq project file

One can change the name of the project file by:

(setq coq-project-filename "myprojectfile")

or:

(setq (make-local-variable ’coq-project-filename) "myprojectfile")

If this is for a project, the best is probably to have a .dir-locals.el at the root of the project, as
explained in Section 9.2 [Using file variables], page 52. This file should contain something like:

((coq-mode . ((coq-project-filename . "myprojectfile"))))

or equivalently:

((coq-mode

.

((eval

.

(progn

(make-local-variable ’coq-project-filename)

(setq coq-project-filename "myprojectfile"))))))

11.2.2 Disabling the coq project file mechanism

If the variable ‘coq-use-project-file’ is nil, then Proofgeneral will not look at project file. therefore
you can put this in your config file (.emacs) to disable the use of project file:

(setq coq-use-project-file nil)

You can also use the .dir-locals.el as above to configure this setting on a per project basis.

11.3 Multiple File Support

Since version 4.1 Coq Proof General has multiple file support. It consists of the following points:

Restarting coqtop when changing the active scripting buffer
Different buffers may require different load path’ or different sets of -I options.
Because Coq cannot undo changes in the load path, Proof General is forced to
restart coqtop when the active scripting buffer changes.

Locking ancestors
Locking those buffers on which the current active scripting buffer depends. This
is controlled by the user option coq-lock-ancestors, Section 11.3.3 [Customizing
Coq Multiple File Support], page 61 and Section 11.3.2 [Locking Ancestors], page 60.

(Re-)Compilation
Before a Require command is processed it may be necessary to save and compile
some buffers. Because this feature conflicts with existing customization habits, it
is switched off by default. When it is properly configured, one can freely switch
between different buffers. Proof General will compile the necessary files whenever a
Require command is processed.

The compilation feature does currently not support ML modules.

There are actually two implementations of the Recompilation feature.

Chapter 11: Coq Proof General 59

Synchronous single threaded compilation (stable)
With synchronous compilation, coqdep and coqc are called synchronously for each
Require command. Proof General is locked until the compilation finishes

Parallel asynchronous compilation (experimental)
With parallel compilation, coqdep and coqc are launched in the background and
Proof General stays responsive during compilation. Up to ‘coq-max-background-
compilation-jobs’ coqdep and coqc processes may run in parallel.

To enable the automatic compilation feature, you have to follow these points:

• The option coq-compile-before-require must be turned on (menu Coq -> Settings ->

Compile Before Require).

• Nonstandard load path elements must be configured in the option coq-load-path. -I

options in coq-prog-name or coq-prog-args must be deleted.

• In coq-load-path use strings "dir" for -I options and lists of two strings ("dir" "path")

for -R "dir" -as "path" (for more details see the documentation of ‘coq-load-path’ or
Section 11.3.3 [Customizing Coq Multiple File Support], page 61).

• For a nonstandard compilation procedure and limited ML module support, coq-compile-
command can be set to an external compilation command. For standard dependency analysis
with coqdep and compilation with coqc the option coq-compile-command can be left empty.
In this case Proof General calls coqdep and coqc as needed.

• The default compilation method is synchronous compilation. In order to experience
parallel background compilation on all your CPU cores, enable ‘coq-compile-parallel-in-
background’ (menu Coq -> Settings -> Compile Parallel In Background). Configure
coq-max-background-compilation-jobs if you want to limit the number of parallel back-
ground jobs.

11.3.1 Automatic Compilation in Detail

When coq-compile-before-require is enabled, Proof General looks for Require commands
in text that gets asserted (i.e., in text that is moved from the editing region to the queue region,
Section 2.3.1 [Locked queue and editing regions], page 12). If Proof General finds a Require

command, it checks the dependencies and (re-)compiles files as necessary. The Require command
and the following text is only sent to Coq after the compilation finished.

Declare ML Module commands are currently not recognized.

Proof General uses coqdep in order to translate the qualified identifiers in Require commands
to coq library file names. Therefore, in Coq version prior to 8.3pl2, Require Arith works,
while Require Arith.Le gives an error. The use of coqdep is also the reason why nonstandard
load path elements must be configured in coq-load-path.

Once the library file name has been determined, its dependencies must be checked and out-
of-date files must be compiled. This can either be done internally, by Proof General itself, or
by an external command. If coq-compile-command is the empty string, Proof General does
dependency checking and compilation itself. Otherwise the command in coq-compile-command

is started as an external process after substituting certain keys, Section 11.3.3 [Customizing Coq
Multiple File Support], page 61.

For an external compilation command Proof General uses the general compilation facilities of
Emacs (See Info file ‘emacs’, node ‘Compilation’) with its own customization variables. The
compilation command must be customized in coq-compile-command and the flag coq-confirm-
external-compilation (menu Coq -> Settings -> Confirm External Compilation) deter-
mines whether the user must confirm the compilation command. The output of the compilation
appears then in the *compilation* buffer.

60 Proof General

When Proof General compiles itself, output is only shown in case of errors. It then appears in
the buffer *coq-compile-response*. With internal as well as with external compilation one
can use C-x ‘ (bound to next-error, See Info file ‘emacs’, node ‘Compilation Mode’) to jump
to error locations. Note however, that coqdep does not produce error messages with location
information, so C-x ‘ cannot work for errors from coqdep.

Proof General cannot know if some library files have been updated outside of Proof General,
therefore, it must perform the dependency checking for each Require command. If the continu-
ous confirmation of the external compilation commands becomes tedious, disable coq-confirm-
external-compilation (see menu Coq -> Settings).

When a Require command causes a compilation of some files one may wish to save some buffers
to disk beforehand. The option coq-compile-auto-save controls how and which files are saved.
There are two orthogonal choices: One may wish to save all or only the Coq source files, and,
one may or may not want to confirm the saving of each file.

With ‘coq-compile-parallel-in-background’ (menu Coq -> Settings -> Compile Parallel In

Background) you can choose between two implementations of internal compilation.

Synchronous single threaded compilation
This is the stable version supported since Proof General version 4.1. This method
starts coqdep and coqc processes one after each other in synchronous subprocesses.
Your Emacs session will be locked until compilation finishes. Use C-g to interrupt
compilation.

Parallel asynchronous compilation
This is the new version added in Proof General version 4.3. It runs up to coq-max-

background-compilation-jobs coqdep and coqc jobs in parallel in asynchronous
subprocesses (or uses all your CPU cores if coq-max-background-compilation-
jobs equals ’all-cpus). Your Emacs will stay responsive during compilation. Use
C-c C-c or the tool bar icons for interrupt or restart to interrupt compilation.

For the usual case, you have at most ‘coq-max-background-compilation-jobs’ par-
allel processes including your Proof General process. The usual case applies, when
the Require commands are the first commands in the file. If you have other com-
mands between two Require commands or before the first Require, then you may see
Proof General and Coq running in addition to ‘coq-max-background-compilation-
jobs’ compilation jobs.

Actually, even with this method, not everything runs asynchronously. To translate
module identifiers from the Coq sources into file names, Proof General runs coqdep
on an automatically generated, one-line file. These coqdep jobs run synchronously
while the Require commands are parsed. The coqdep jobs on the real source files
do run asynchronously in the background.

11.3.2 Locking Ancestors

Locking ancestor files works as a side effect of dependency checking. This means that ancestor
locking does only work when Proof General performs dependency checking and compilation
itself. If an external command is used, Proof General does not see all dependencies and can
therefore only lock direct ancestors.

In the default setting, when you want to edit a locked ancestor, you are forced to completely
retract the current scripting buffer. You can simplify this by setting proof-strict-read-only

to ’retract (menu Proof-General -> Quick Options -> Read Only -> Undo On Edit). Then
typing in some ancestor will immediately retract you current scripting buffer and unlock that
ancestor.

You have two choices, if you don’t like ancestor locking in its default way. You can either
switch ancestor locking completely off via coq-lock-ancestors (Section 11.3.3 [Customizing

Chapter 11: Coq Proof General 61

Coq Multiple File Support], page 61) or you can generally permit editing in locked sections with
selecting Proof-General -> Quick Options -> Read Only -> Freely Edit (which will set the
option proof-strict-read-only to nil).

[The right behaviour for Coq, namely to retract the current scripting buffer only up to the
appropriate Require command, would be quite difficult to implement in the current Proof
General infrastructure. Further, it has only dubious benefit, as Require commands are usually
on the top of each file.]

11.3.3 Customizing Coq Multiple File Support

The customization settings for multiple file support of Coq Proof General are in a separate
customization group, the coq-auto-compile group. To view all options in this group do M-

x customize-group coq-auto-compile or select menu entry Proof-General -> Advanced ->

Customize -> Coq -> Coq Auto Compile -> Coq Auto Compile.

[Variable]coq-compile-before-require
If non-nil, check dependencies of required modules and compile if necessary.
If non-nil ProofGeneral intercepts "Require" commands and checks if the required library
module and its dependencies are up-to-date. If not, they are compiled from the sources
before the "Require" command is processed.

This option can be set/reset via menu ‘Coq -> Settings -> Compile Before Require’.

[Variable]coq-compile-auto-save
Buffers to save before checking dependencies for compilation.
There are two orthogonal choices: Firstly one can save all or only the coq buffers, where coq
buffers means all buffers in coq mode except the current buffer. Secondly, Emacs can ask
about each such buffer or save all of them unconditionally.

This makes four permitted values: ’ask-coq to confirm saving all modified Coq buffers,
’ask-all to confirm saving all modified buffers, ’save-coq to save all modified Coq buffers
without confirmation and ’save-all to save all modified buffers without confirmation.

The following two options are for the parallel compilation method.

[Variable]coq-compile-parallel-in-background
Choose the internal compilation method.
When Proof General compiles itself, you have the choice between two implementations. If
this setting is nil, then Proof General uses the old implementation and compiles everything
sequentially with synchronous job. With this old method Proof General is locked during
compilation. If this setting is t, then the new method is used and compilation jobs are
dispatched in parallel in the background. The maximal number of parallel compilation jobs
is set with ‘coq-max-background-compilation-jobs’.

This option can be set/reset via menu ‘Coq -> Settings -> Compile Parallel In

Background’.

[Variable]coq-max-background-compilation-jobs
Maximal number of parallel jobs, if parallel compilation is enabled.
Use the number of available CPU cores if this is set to ’all-cpus. This variable is the user set-
ting. The value that is really used is ‘coq-internal-max-jobs’. Use ‘coq-max-jobs-setter’
or the customization system to change this variable. Otherwise your change will have no ef-
fect, because ‘coq-internal-max-jobs’ is not adapted.

The following two options deal with the load path. Proof General divides the load path into
the standard load path (which is hardwired in the tools and need not be set explicitly), the
nonstandard load path (which must always be set explicitly), and the current directory (which

62 Proof General

must be set explicitly for coqdep). The option coq-load-path determines the nonstandard
load path and coq-load-path-include-current determines whether the current directory is
put into the load path of coqdep.

[Variable]coq-load-path
Non-standard coq library load path.
This list specifies the LoadPath extension for coqdep, coqc and coqtop. Usually, the elements
of this list are strings (for "-I") or lists of two strings (for "-R" dir "-as" path).

The possible forms of elements of this list correspond to the 3 forms of include options (’-I’
and ’-R’). An element can be

- A string, specifying a directory to be mapped to the empty

logical path (’-I’).

- A list of the form ’(rec dir path)’ (where dir and path are

strings) specifying a directory to be recursively mapped to the

logical path ’path’ (’-R dir -as path’).

- A list of the form ’(norec dir path)’, specifying a directory

to be mapped to the logical path ’path’ (’-I dir -as path’).

For convenience the symbol ’rec’ can be omitted and entries of the form ’(dir path)’ are
interpreted as ’(rec dir path)’.

Under normal circumstances this list does not need to contain the coq standard library or
"." for the current directory (see ‘coq-load-path-include-current’).

[Variable]coq-load-path-include-current
If ‘t’ let coqdep search the current directory too.
Should be ‘t’ for normal users. If ‘t’ pass "-I dir" to coqdep when processing files in directory
"dir" in addition to any entries in ‘coq-load-path’.

The following two options configure an external compilation process.

[Variable]coq-compile-command
External compilation command. If empty ProofGeneral compiles itself.
If unset (the empty string) ProofGeneral computes the dependencies of required modules
with coqdep and compiles as necessary. This internal dependency checking does currently
not handle ML modules.

If a non-empty string, the denoted command is called to do the dependency checking and
compilation. Before executing this command the following keys are substituted as follows:

%p the (physical) directory containing the source of

the required module

%o the Coq object file in the physical directory that will

be loaded

%s the Coq source file in the physical directory whose

object will be loaded

%q the qualified id of the "Require" command

%r the source file containing the "Require"

For instance, "make -C %p %o" expands to "make -C bar foo.vo" when module "foo" from
directory "bar" is required.

After the substitution the command can be changed in the minibuffer if
‘coq-confirm-external-compilation’ is t.

[Variable]coq-confirm-external-compilation
If set let user change and confirm the compilation command.
Otherwise start the external compilation without confirmation.

Chapter 11: Coq Proof General 63

This option can be set/reset via menu ‘Coq -> Settings -> Confirm External

Compilation’.

Locking ancestors can be disabled with the following option.

[Variable]coq-lock-ancestors
If non-nil, lock ancestor module files.
If external compilation is used (via ‘coq-compile-command’) then only the direct ancestors
are locked. Otherwise all ancestors are locked when the "Require" command is processed.

The following option controls which warnings of coqdep are treated as errors.

[Variable]coq-coqdep-error-regexp
Regexp to match errors in the output of coqdep.
coqdep indicates errors not always via a non-zero exit status, but sometimes only via printing
warnings. This regular expression is used for recognizing error conditions in the output of
coqdep (when coqdep terminates with exit status 0). Its default value matches the warning
that some required library cannot be found on the load path and ignores the warning for
finding a library at multiple places in the load path. If you want to turn the latter condition
into an error, then set this variable to "^*** Warning".

The following two options do only influence the behaviour if Proof General does dependency
checking and compilation itself. These options determine whether Proof General should descend
into other Coq libraries and into the Coq standard library.

[Variable]coq-compile-ignored-directories
Directories in which ProofGeneral should not compile modules.
List of regular expressions for directories in which ProofGeneral should not compile modules.
If a library file name matches one of the regular expressions in this list then ProofGeneral
does neither compile this file nor check its dependencies for compilation. It makes sense to
include non-standard coq library directories here if they are not changed and if they are so
big that dependency checking takes noticeable time.

[Variable]coq-compile-ignore-library-directory
If non-nil, ProofGeneral does not compile modules from the coq library.
Should be ‘t’ for normal coq users. If ‘nil’ library modules are compiled if their sources are
newer.

This option has currently no effect, because Proof General uses coqdep to translate qualified
identifiers into library file names and coqdep does not output dependencies in the standard
library.

The last three Emacs constants are internal parameters. They only need to be changed under
very special, unforeseen circumstances. They can only be set in Emacs lisp code because they
are no customizable user options.

[Variable]coq-compile-substitution-list
Substitutions for ‘coq-compile-command’.
Value must be a list of substitutions, where each substitution is a 2-element list. The first
element of a substitution is the regexp to substitute, the second the replacement. The replace-
ment is evaluated before passing it to ‘replace-regexp-in-string’, so it might be a string,
or one of the symbols ’physical-dir, ’module-object, ’module-source, ’qualified-id
and ’requiring-file, which are bound to, respectively, the physical directory containing
the source file, the Coq object file in ’physical-dir that will be loaded, the Coq source file
in ’physical-dir whose object will be loaded, the qualified module identifier that occurs in
the "Require" command, and the file that contains the "Require".

64 Proof General

[Variable]coq-require-command-regexp
Regular expression matching Require commands in Coq.
Should match "Require" with its import and export variants up to (but not including) the
first character of the first required module. The required modules are matched separately
with ‘coq-require-id-regexp’

[Variable]coq-require-id-regexp
Regular expression matching one Coq module identifier.
Should match precisely one complete module identifier and surrounding white space. The
module identifier must be matched with group number 1. Note that the trailing dot in
"Require A." is not part of the module identifier and should therefore not be matched by
this regexp.

11.3.4 Current Limitations

In the current release some aspects of multiple file support have not been implemented. The
following points will hopefully be addressed at some stage.

• Support Declare ML Module commands.

• Increase precision when comparing modification times. Because of an Emacs limitation,
modification time stamps of files have only a precision of 1 second. If several compiled Coq
object files have been created in the same second, Proof General is optimistic and does
not recompile. (Note that GNU make behaves the same on file systems that record time
stamps only with a precision of 1 second.) Emacs version 24.3 implements high precision
time stamps on files.

11.4 Editing multiple proofs

Coq allows the user to enter top-level commands while editing a proof script. For example, if
the user realizes that the current proof will fail without an additional axiom, he or she can add
that axiom to the system while in the middle of the proof. Similarly, the user can nest lemmas,
beginning a new lemma while in the middle of an earlier one, and as the lemmas are proved or
their proofs aborted they are popped off a stack.

Coq Proof General supports this feature of Coq. Top-level commands entered while in a proof
are well backtracked. If new lemmas are started, Coq Proof General lets the user work on the
proof of the new lemma, and when the lemma is finished it falls back to the previous one. This
is supported to any nesting depth that Coq allows.

Warning! Using Coq commands for navigating inside the different proofs (Resume and especially
Suspend) are not supported, backtracking will break syncronization.

Special note: The old feature that moved nested proofs outside the current proof is disabled.

11.5 User-loaded tactics

Another feature that Coq allows is the extension of the grammar of the proof assistant by new
tactic commands. This feature interacts with the proof script management of Proof General,
because Proof General needs to know when a tactic is called that alters the proof state. When
the user tries to retract across an extended tactic in a script, the algorithm for calculating how
far to undo has a default behavior that is not always accurate in proof mode: do "Undo".

Coq Proof General does not currently support dynamic tactic extension in Coq: this is desirable
but requires assistance from the Coq core. Instead we provide a way to add tactic and command
names in the ‘.emacs’ file. Four Configurable variables allows to register personal new tactics
and commands into four categories:

• state changing commands, which need "Back" to be backtracked;

Chapter 11: Coq Proof General 65

• state changing tactics, which need "Undo" to be backtracked;

• state preserving commands, which do not need to be backtracked;

• state preserving tactics, which do not need to be backtracked;

We give an example of existing commands that fit each category.

• coq-user-state-preserving-commands: example: "Print"

• coq-user-state-changing-commands: example: "Require"

• coq-user-state-changing-tactics: example: "Intro"

• coq-user-state-preserving-tactics: example: "Idtac"

This variables are regexp string lists. See their documentations in emacs (C-h v coq-user...)
for details on how to set them in your ‘.emacs’ file.

Here is a simple example:

(setq coq-user-state-changing-commands

’("MyHint" "MyRequire"))

(setq coq-user-state-preserving-commands

’("Show\\s-+Mydata"))

The regexp character sequence \\s-+ means "one or more whitespaces". See the Emacs doc-
umentation of regexp-quote for the syntax and semantics. WARNING: you need to restart
Emacs to make the changes to these variables effective.

In case of losing synchronization, the user can use C-c C-z to move the locked region to the proper
position, (proof-frob-locked-end, see Section 3.9 [Escaping script management], page 25) or
C-c C-v to re-issue an erroneously back-tracked tactic without recording it in the script.

11.6 Holes feature

Holes are an experimental feature for complex expression editing by filling in templates. It
is inspired from other tools, like Pcoq (http://www-sop.inria.fr/lemme/pcoq/index.html).
The principle is simple, holes are pieces of text that can be "filled" by various means. The Coq
command insertion menu system makes use of the holes system. Almost all holes operations are
available in the Holes menu.

Notes: Holes make use of the Emacs abbreviation mechanism, it will work without problem if you
don’t have an abbrev table defined for Coq in your config files. Use C-h v abbrev-file-name

to see the name of the abbreviation file.

If you already have such a table it won’t be automatically overwritten (so that you keep your own
abbreviations). But you must read the abbrev file given in the Proof General sources to be able
to use the command insertion menus. You can do the following to merge your abbreviations
with ProofGeneral’s abbreviations: M-x read-abbrev-file, then select the file named coq-

abbrev.el in the ProofGeneral/coq directory. At Emacs exit you will be asked if you want to
save abbrevs; answer yes.

11.7 Proof-Tree Visualization

Starting with Proof General version 4.2 and Coq version 8.4, Coq Proof General has full support
for proof-tree visualization, see Chapter 7 [Graphical Proof-Tree Visualization], page 39. To find
out which versions of Prooftree are compatible with this version of Proof General, see Chapter 7
[Graphical Proof-Tree Visualization], page 39 or the Prooftree website.

For the visualization to work properly, proofs must be started with Proof, which is encouraged
practice anyway (see Coq Bug #2776). Without Proof you lose the initial proof goal, possibly
having two or more initial goals in the display.

To support Grab Existential Variables Prooftree can actually display several graphically
independent proof trees in several layers.

http://www-sop.inria.fr/lemme/pcoq/index.html
http://askra.de/software/prooftree/

Chapter 12: Isabelle Proof General 67

12 Isabelle Proof General

Isabelle Proof General supports major generic features of Proof General, including integration
with Isabelle’s theory loader for proper automatic multiple file handling.

Isabelle provides its own way to invoke Proof General via the isabelle command. Running
isabelle emacs starts an Emacs session with Isabelle Proof General. The defaults may be
changed by editing the Isabelle settings, see the Isabelle documentation for details.

Proof General for Isabelle manages Isar ‘.thy’ files. Proof General provides reliable control over
incremental execution of the text.

12.1 Choosing logic and starting isabelle

When you load an Isabelle theory file into Proof General, you may be prompted for the path to
the program isabelle if it is not on the system PATH already. This is used to generate further
information for invoking Isabelle, in particular, the list of available logics.

The Isabelle menu offers an easy way to select the invoked object logic. If you look at the menu:

Isabelle -> Logics ->

you should see the list of logics available to Isabelle. This menu is generated from the output of
the command isabelle findlogics. (Similarly, the documentation menu is partly generated
from isabelle doc). Instead of the menu, you can use the keyboard command isabelle-

chose-logic to choose from the list.

The logics list is refreshed dynamically so you can select any newly built heap images in the
same Emacs session. However, notice that the choices are greyed out while Isabelle is actually
runnning — you can only switch to a new logic if you first exit Isabelle (similarly to Proof
General, Isabelle operates with only one logic at a time).

Another way to set the logic before Isabelle is launched is using an Emacs local variable setting
inside a comment at the top of the file, see the documentation of isabelle-chosen-logic
below.

In case you do not have the isabelle program available or want to override its behaviour, you
may set the variable isabelle-program-name-override to define the name of the executable
used to start Isabelle. The standard options are and logic name are still appended.

[User Option]isabelle-program-name-override
Name of executable program to run Isabelle.

You can set customize this in case the automatic settings mechanism does not work for you,
perhaps because isabelle is not on your path, or you are running it remotely.

The logic image name is tagged onto the end.

The default value is nil.

[User Option]isabelle-chosen-logic
Choice of logic to use with Isabelle.
If non-nil, added onto the Isabelle command line for invoking Isabelle.

You can set this as a file local variable, using a special comment at the top of your theory
file, like this:

(* -*- isabelle-chosen-logic: "ZF" -*- *)

The default value is nil.

[Command]isabelle-choose-logic logic
Adjust isabelle-prog-name and proof-prog-name for running logic.

68 Proof General

12.2 Isabelle commands

The Isabelle instance of Proof General supplies several specific help key bindings; these functions
are offered within the prover help menu as well.

C-c C-a r Invokes Isar command refute on the current subgoal. Only available in HOL and
derived logics.

C-c C-a C-q

Invokes Isar command quickcheck on the current subgoal.

C-c C-a C-d

Displays a draft document of the current theory.

C-c C-a C-p

Prints a draft document of the current theory.

C-c C-a h A

Shows available antiquotation commands and options.

C-c C-a h C

Shows the current Classical Reasoner context.

C-c C-a h I

Shows the current set of induct/cases rules.

C-c C-a h S

Shows the current Simplifier context.

C-c C-a h T

Shows the current set of transitivity rules (for calculational reasoning).

C-c C-a h a

Shows attributes available in current theory context.

C-c C-a h b

Shows all local term bindings.

C-c C-a h c

Shows all named local contexts (cases).

C-c C-a h f

Shows all local facts.

C-c C-a h i

Shows inner syntax of the current theory context (for types and terms).

C-c C-a h m

Shows proof methods available in current theory context.

C-c C-a h o

Shows all available commands of Isabelle’s outer syntax.

C-c C-a h t

Shows theorems stored in the current theory node.

C-c C-a C-s

Invoke sledgehammer on first subgoal.

C-c C-a C-m

Find theorems containing given arguments (prompt in minibuffer). Invokes the
thms_containing command. Arguments are separated by white space as usual in
Isar.

Chapter 12: Isabelle Proof General 69

C-c C-a C-f

Find theorems containing (argument in form)

C-c C-f Find theorems: either of the above.

The following shortcuts insert control sequences into the text, modifying the appearance of
individual symbols (single letters, mathematical entities etc.); the Tokens package will provide
immediate visual feedback.

C-c C-a C-b

Inserts "\<^bold>" (bold character)

C-c C-a C-c

Inserts "\<^loc>" (“local” control)

C-c C-a C-u

Inserts "\<^sup>" (superscript character)

C-c C-a C-l

Inserts "\<^sub>" (subscript character)

C-c C-a u Inserts "\<^bsup> \<^esup>" (superscript string)

C-c C-a l Inserts "\<^bsub> \<^esub>" (subscript string)

C-c C-a C-i

Inserts "\<^isub>" (identifier subscript letter)

C-c C-a C-r

Inserts "\<^raw:>" (raw LaTeX text)

C-c C-a C-a

Inserts "@{text ""}" (anti-quotation).

C-c C-a C-x

Inserts "ML {* *}" (inline ML code).

Command termination via ‘;’ is an optional feature of Isar syntax. Neither Isabelle nor Proof
General require semicolons to do their job. The following command allows to get rid of command
terminators in existing texts.

[Command]isar-strip-terminators
Remove explicit Isabelle/Isar command terminators ‘;’ from the buffer.

12.3 Isabelle settings

The Isabelle menu also contains a Settings submenu, which allows you to configure things such
as the behaviour of Isabelle’s term pretty printer (display of types, sorts, etc). Note that you
won’t see this sub-menu until Isabelle has been started, because it is generated by Isabelle itself.
Proof General, on the other hand, is responsible for recording any settings that are configured
when you select Isabelle -> Settings -> Save Settings. They are stored along with the
other Emacs customization settings.

12.4 Isabelle customizations

Here are some of the other user options specific to Isabelle. You can set these as usual with the
customization mechanism.

[Variable]isabelle-web-page
URL of web page for Isabelle.

Chapter 13: HOL Light Proof General 71

13 HOL Light Proof General

HOL Light Proof General is a "technology demonstration" of Proof General for HOL Light.
This means that only a basic instantiation has been provided, and that it is not yet supported
as a maintained instantiation of Proof General.

HOL Light Proof General has basic script management support, with a little bit of decoration of
scripts and output. It does not rely on a modified version of HOL Light, so the pattern matching
may be fragile in certain cases.

See the ‘example.ml’ file for a demonstration proof script which works with Proof General.

Note that HOL Light Proof Script proof scripts often use batch-oriented single step tactic proofs,
but Proof General does not (yet) offer an easy way to edit these kind of proofs. They will replay
simply as a single step proof and you will need to convert from the interactive to batch form
as usual if you wish to obtain batch proofs. Also note that Proof General does not contain an
SML parser, so there can be problems if you write complex ML in proof scripts.

HOL Light is the most recently tested version of HOL with Proof General, but the Proof General
distribution also contains experimental support for HOL 4 (aka HOL 98). To improve this older
version, or to support a new HOL variant, a few of the settings probably need to be tweaked to
cope with small differences in output between the systems. Please let us know if you try this
out and want help. We welcome any interested collaborators from the HOL communities to help
improve Proof General as an interface for HOL provers.

Chapter 14: Shell Proof General 73

14 Shell Proof General

This instance of Proof General is not really for proof assistants at all, but simply provided as a
handy way to use a degenerate form of script management with other tools.

Suppose you have a software tool of some kind with a command line interface, and you want to
demonstrate several example uses of it, perhaps at a conference. But the command lines for your
tool may be quite complicated, so you do not want to type them in live. Instead, you just want
to cut and paste from a pre-recorded list. But watching somebody cut and paste commands
into a window is almost as tedious as watching them type those commands!

Shell Proof General comes to the rescue. Simply record your commands in a file with the
extension .pgsh, and load up Proof General. Now use the toolbar to send each line of the file
to your tool, and have the output displayed clearly in another window. Much easier and more
pleasant for your audience to watch!

If you wish, you may adjust the value of proof-prog-name in ‘pgshell.el’ to launch your
program rather than the shell interpreter.

We welcome feedback and suggestions concerning this subsidiary provision in Proof General.
Please recommend it to your colleagues (e.g., the model checking crew).

Appendix A: Obtaining and Installing 75

Appendix A Obtaining and Installing

Proof General has its own home page hosted at Edinburgh. Visit this page for the latest news!

A.1 Obtaining Proof General

You can obtain Proof General from the URL

http://proofgeneral.inf.ed.ac.uk.

The distribution is available in as a tarball. It may be redistributed by third party packagers in
other forms.

Two versions are available:

• The current stable version,
http://proofgeneral.inf.ed.ac.uk/ProofGeneral-stable.tgz

• The latest development version,
http://proofgeneral.inf.ed.ac.uk/ProofGeneral-latest.tgz

The source tarball includes the generic elisp code, and code for LEGO, Coq, Isabelle, and
other provers. Also included are installation instructions (reproduced in brief below) and this
documentation.

For access to the source code repository, please see the Proof General web page
http://proofgeneral.inf.ed.ac.uk/devel.

A.2 Installing Proof General from tarball

Copy the distribution to some directory mydir. Unpack it there. For example:

cd mydir

tar -xpzf ProofGeneral-version.tgz

If you downloaded the version called latest, you’ll find it unpacks to a numeric version number.

Proof General will now be in some subdirectory of mydir. The name of the subdirectory will
depend on the version number of Proof General. For example, it might be ‘ProofGeneral-4.0’.
It’s convenient to link it to a fixed name:

ln -sf ProofGeneral-4.0 ProofGeneral

Now put this line in your ‘.emacs’ file:

(load-file "mydir/ProofGeneral/generic/proof-site.el")

A.3 Setting the names of binaries

The load-file command you have added will load ‘proof-site’ which sets the Emacs load
path for Proof General and add auto-loads and modes for the supported assistants.

The default names for proof assistant binaries may work on your system. If not, you will need
to set the appropriate variables. The easiest way to do this (and most other customization of
Proof General) is via the Customize mechanism, see the menu item:

Proof-General -> Advanced -> Customize -> Name of Assistant -> Prog Name

The Proof-General menu is available from script buffers after Proof General is loaded. To load
it manually, type

M-x load-library RET proof RET

If you do not want to use customize, simply add a line like this:

(setq coq-prog-name "/usr/bin/coqtop -emacs")

to your ‘.emacs’ file.

http://proofgeneral.inf.ed.ac.uk
http://proofgeneral.inf.ed.ac.uk
http://proofgeneral.inf.ed.ac.uk/ProofGeneral-stable.tgz
http://proofgeneral.inf.ed.ac.uk/ProofGeneral-latest.tgz
http://proofgeneral.inf.ed.ac.uk/devel

76 Proof General

A.4 Notes for syssies

Here are some more notes for installing Proof General in more complex ways. Only attempt
things in this section if you really understand what you’re doing!

Byte compilation

Compilation of the Emacs lisp files improves efficiency but can sometimes cause compatibility
problems, especially if you use more than one version of Emacs with the same .elc files.

If you discover problems using the byte-compiled .elc files which aren’t present using the source
.el files, please report them to us.

You can compile Proof General by typing make in the directory where you installed it. It may
be necessary to do this if you use a different version of Emacs.

Site-wide installation

If you are installing Proof General site-wide, you can put the components in the standard di-
rectories of the filesystem if you prefer, providing the variables in ‘proof-site.el’ are adjusted
accordingly (see Proof General site configuration in Adapting Proof General for more details).
Make sure that the ‘generic/’ and assistant-specific elisp files are kept in subdirectories (‘coq/’,
‘isa/’, ‘lego/’) of proof-home-directory so that the autoload directory calculations are cor-
rect.

To prevent every user needing to edit their own ‘.emacs’ files, you can put the load-file

command to load ‘proof-site.el’ into ‘site-start.el’ or similar. Consult the Emacs docu-
mentation for more details if you don’t know where to find this file.

Removing support for unwanted provers

You cannot run more than one instance of Proof General at a time: so if you’re using Coq,
visiting an ‘.ML’ file will not load Isabelle Proof General, and the buffer remains in fundamental
mode. If there are some assistants supported that you never want to use, you can adjust the
variable proof-assistants in ‘proof-site.el’ to remove the extra autoloads. This is advisable
in case the extensions clash with other Emacs modes, for example Verilog mode for ‘.v’ files
clashes with Coq mode.

See Proof General site configuration in Adapting Proof General, for more details of how to adjust
the proof-assistants setting.

Instead of altering proof-assistants, a simple way to disable support for some prover is to
delete the relevant directories from the PG installation. For example, to remove support for
Coq, delete the ‘coq’ directory in the Proof General home directory.

Appendix B: Bugs and Enhancements 77

Appendix B Bugs and Enhancements

For an up-to-date description of bugs and other issues, please consult the bugs file included in
the distribution: ‘BUGS’.

If you discover a problem which isn’t mentioned in ‘BUGS’, please use the search facility on
our Trac tracking system at http://proofgeneral.inf.ed.ac.uk/trac. If you cannot find
the problem mentioned, please add a ticket, giving a careful description of how to repeat your
problem, and saying exactly which versions of all Emacs and theorem prover you are using.

If you have some suggested enhancements to request or contribute, please also use the tracking
system at http://proofgeneral.inf.ed.ac.uk/trac for this.

http://proofgeneral.inf.ed.ac.uk/releases/ProofGeneral-latest/BUGS
http://proofgeneral.inf.ed.ac.uk/trac
http://proofgeneral.inf.ed.ac.uk/trac

References 79

References

A short overview of the Proof General system is described in the note:

• [Asp00] David Aspinall. Proof General: A Generic Tool for Proof Development. Tools and
Algorithms for the Construction and Analysis of Systems, Proc TACAS 2000. LNCS 1785.

Script management as used in Proof General is described in the paper:

• [BT98] Yves Bertot and Laurent Thry. A generic approach to building user interfaces for
theorem provers. Journal of Symbolic Computation, 25(7), pp. 161-194, February 1998.

Proof General has support for proof by pointing, as described in the document:

• [BKS97] Yves Bertot, Thomas Kleymann-Schreiber and Dilip Sequeira. Implementing Proof
by Pointing without a Structure Editor. LFCS Technical Report ECS-LFCS-97-368. Also
published as Rapport de recherche de l’INRIA Sophia Antipolis RR-3286

History of Proof General 81

History of Proof General

It all started some time in 1994. There was no Emacs interface for LEGO. Back then, Emacs
militants worked directly with the Emacs shell to interact with the LEGO system.

David Aspinall convinced Thomas Kleymann that programming in Emacs Lisp wasn’t so difficult
after all. In fact, Aspinall had already implemented an Emacs interface for Isabelle with bells
and whistles, called Isamode. Soon after, the package lego-mode was born. Users were able to
develop proof scripts in one buffer. Support was provided to automatically send parts of the
script to the proof process. The last official version with the name lego-mode (1.9) was released
in May 1995.

The interface project really took off the ground in November 1996. Yves Bertot had been
working on a sophisticated user interface for the Coq system (CtCoq) based on the generic
environment Centaur. He visited the Edinburgh LEGO group for a week to transfer proof-
by-pointing technology. Even though proof-by-pointing is an inherently structure-conscious
algorithm, within a week, Yves Bertot, Dilip Sequeira and Thomas Kleymann managed to
implement a first prototype of proof-by-pointing in the Emacs interface for LEGO [BKS97].

Perhaps we could reuse even more of the CtCoq system. It being a structure editor did no
longer seem to be such an obstacle. Moreover, to conveniently use proof-by-pointing in actual
developments, one would need better support for script management.

In 1997, Dilip Sequeira implemented script management in our Emacs interface for LEGO
following the recipe in [BT98]. Inspired by the project CROAP, the implementation made
some effort to be generic. A working prototype was demonstrated at UITP’97.

In October 1997, Healfdene Goguen ported lego-mode to Coq. Part of the generic code in
the lego package was outsourced (and made more generic) in a new package called proof.
Dilip Sequeira provided some LEGO-specific support for handling multiple files and wrote a few
manual pages. The system was reasonably robust and we shipped out the package to friends.

In June 1998, David Aspinall reentered the picture by providing an instantiation for Isabelle.
Actually, our previous version wasn’t quite as generic as we had hoped. Whereas LEGO and
Coq are similar systems in many ways, Isabelle was really a different beast. Fierce re-engineering
and various usability improvements were provided by Aspinall and Kleymann to make it easier
to instantiate to new proof systems. The major technical improvement was a truly generic
extension of script management to work across multiple files.

It was time to come up with a better name than just proof mode. David Aspinall suggested
Proof General and set about reorganizing the file structure to disentangle the Proof General
project from LEGO at last. He cooked up some images and bolted on a toolbar, so a naive user
can replay proofs without knowing a proof assistant language or even Emacs hot-keys. He also
designed some web pages, and wrote most of this manual.

Despite views of some detractors, we demonstrated that an interface both friendly and powerful
can be built on top of Emacs. Proof General 2.0 was the first official release of the improved
program, made in December 1998.

Version 2.1 was released in August 1999. It was used at the
Types Summer School held in Giens, France in September 1999 (see
http://www-sop.inria.fr/types-project/types-sum-school.html). About 50
students learning Coq, Isabelle, and LEGO used Proof General for all three systems. This
experience provided invaluable feedback and encouragement to make the improvements that
went into Proof General 3.0.

http://homepages.inf.ed.ac.uk/da/Isamode
http://www-sop.inria.fr/types-project/types-sum-school.html

82 Proof General

Old News for 3.0

Proof General 3.0 (released November 1999) has many improvements over 2.x releases.

First, there are usability improvements. The toolbar was somewhat impoverished before. It
now has twice as many buttons, and includes all of the useful functions used during proof which
were previously hidden on the menu, or even only available as key-presses. Key-bindings have
been re-organized, users of previous versions may notice. The menu has been redesigned and
coordinated with the toolbar, and now gives easy access to more of the features of Proof General.
Previously several features were only likely to be discovered by those keen enough to read this
manual!

Second, there are improvements, extensions, and bug fixes in the generic basis. Proofs which
are unfinished and not explicitly closed by a “save” type command are supported by the core,
if they are allowed by the prover. The design of switching the active scripting buffer has been
streamlined. The management of the queue of commands waiting to be sent to the shell has
been improved, so there are fewer unnecessary "Proof Process Busy!" messages. The support
for scripting with multiple files was improved so that it behaves reliably with Isabelle99; file
reading messages can be communicated in both directions now. The proof shell filter has been
optimized to give hungry proof assistants a better share of CPU cycles. Proof-by-pointing has
been resurrected; even though LEGO’s implementation is incomplete, it seems worth maintain-
ing the code in Proof General so that the implementors of other proof assistants are encouraged
to provide support. For one example, we can certainly hope for support in Coq, since the CtCoq
proof-by-pointing code has been moved into the Coq kernel lately. We need a volunteer from
the Coq community to help to do this.

An important new feature in Proof General 3.0 is support for X-Symbol, which means that real
logical symbols, Greek letters, etc can be displayed during proof development, instead of their
ASCII approximations. This makes Proof General a more serious competitor to native graphical
user interfaces.

Finally, Proof General has become much easier to adapt to new provers — it fails gracefully (or
not at all!) when particular configuration variables are unset, and provides more default settings
which work out-of-the-box. An example configuration for Isabelle is provided, which uses just
25 or so simple settings.

This manual has been updated and extended for Proof General 3.0. Amongst other improve-
ments, it has a better description of how to add support for a new prover.

See the CHANGES file in the distribution for more information about the latest improvements in
Proof General. Developers should check the ChangeLog in the developer’s release for detailed
comments on internal changes.

Most of the work for Proof General 3.0 has been done by David Aspinall. Markus Wenzel helped
with Isabelle support, and provided invaluable feedback and testing, especially for the improve-
ments to multiple file handling. Pierre Courtieu took responsibility from Patrick Loiseleur for
Coq support, although improvements in both Coq and LEGO instances for this release were
made by David Aspinall. Markus Wenzel provided support for his Isar language, a new proof
language for Isabelle. David von Oheimb helped to develop the generic version of his X-Symbol
addition which he originally provided for Isabelle.

A new instantiation of Proof General is being worked on for Plastic, a proof assistant being
developed at the University of Durham.

Old News for 3.1

Proof General 3.1 (released March 2000) is a bug-fix improvement over version 3.0. There are
some minor cosmetic improvements, but large changes have been held back to ensure stability.
This release solves a few minor problems which came to light since the final testing stages for

http://x-symbol.sourceforge.net/

History of Proof General 83

3.0. It also solves some compatibility problems, so now it works with various versions of Emacs
which we hadn’t tested with before (non-mule GNU Emacs, certain Japanese Emacs versions).

We’re also pleased to announce HOL Proof General, a new instance of Proof General for HOL98.
This is supplied as a "technology demonstration" for HOL users in the hope that somebody
from the HOL community will volunteer to adopt it and become a maintainer and developer.
(Otherwise, work on HOL Proof General will not continue).

Apart from that there are a few other small improvements. Check the CHANGES file in the
distribution for full details.

The HOL98 support and much of the work on Proof General 3.1 was undertaken by David
Aspinall while he was visiting ETL, Osaka, Japan, supported by the British Council and ETL.

Old News for 3.2

Proof General 3.2 introduced several new features and some bug fixes. One noticeable new
feature is the addition of a prover-specific menu for each of the supported provers. This menu
has a “favourites” feature that you can use to easily define new functions. Please contribute
other useful functions (or suggestions) for things you would like to appear on these menus.

Because of the new menus and to make room for more commands, we have made a new key
map for prover specific functions. These now all begin with C-c C-a. This has changed a few
key bindings slightly.

Another new feature is the addition of prover-specific completion tables, to encourage the use
of Emacs’s completion facility, using C-RET. See Section 5.4 [Support for completion], page 34,
for full details.

A less obvious new feature is support for turning the proof assistant output on and off internally,
to improve efficiency when processing large scripts. This means that more of your CPU cycles
can be spent on proving theorems.

Adapting for new proof assistants continues to be made more flexible, and easier in several
places. This has been motivated by adding experimental support for some new systems. One
new system which had good support added in a very short space of time is PhoX (see the PhoX
home page for more information). PhoX joins the rank of officially supported Proof General
instances, thanks to its developer Christophe Raffalli.

Breaking the manual into two pieces was overdue: now all details on adapting Proof General,
and notes on its internals, are in the Adapting Proof General manual. You should find a copy of
that second manual close to wherever you found this one; consult the Proof General home page
if in doubt.

The internal code of Proof General has been significantly overhauled for this version, which
should make it more robust and readable. The generic code has an improved file structure, and
there is support for automatic generation of autoload functions. There is also a new mechanism
for defining prover-specific customization and instantiation settings which fits better with the
customize library. These settings are named in the form PA-setting-name in the documenta-
tion; you replace PA by the symbol for the proof assistant you are interested in. See Chapter 8
[Customizing Proof General], page 41, for details.

Finally, important bug fixes include the robustification against write-file (C-x C-w), revert-
buffer, and friends. These are rather devious functions to use during script management, but
Proof General now tries to do the right thing if you’re deviant enough to try them out!

Work on this release was undertaken by David Aspinall between May-September 2000, and
includes contributions from Markus Wenzel, Pierre Courtieu, and Christophe Raffalli. Markus
added some Isar documentation to this manual.

http://www.lama.univ-savoie.fr/~RAFFALLI/af2.html
http://www.lama.univ-savoie.fr/~RAFFALLI/af2.html

84 Proof General

Old News for 3.3

Proof General 3.3 includes a few feature additions, but mainly the focus has been on compatibil-
ity improvements for new versions of provers (in particular, Coq 7), and new versions of emacs
(in particular, XEmacs 21.4).

One new feature is control over visibility of completed proofs, See Section 3.3 [Visibility of
completed proofs], page 23. Another new feature is the tracking of theorem dependencies inside
Isabelle. A context-sensitive menu (right-button on proof scripts) provides facility for browsing
the ancestors and child theorems of a theorem, and highlighting them. The idea of this feature
is that it can help you untangle and rearrange big proof scripts, by seeing which parts are
interdependent. The implementation is provisional and not documented yet in the body of this
manual. It only works for the "classic" version of Isabelle99-2.

Old News for 3.4

Proof General 3.4 adds improvements and also compatibility fixes for new versions of Emacs, in
particular, for GNU Emacs 21, which adds the remaining pretty features that have only been
available to XEmacs users until now (the toolbar and X-Symbol support).

One major improvement has been to provide better support for synchronization with Coq proof
scripts; now Coq Proof General should be able to retract and replay most Coq proof scripts
reliably. Credit is due to Pierre Courtieu, who also updated the documentation in this manual.

As of version 3.4, Proof General is distributed under the GNU General Public License (GPL).
Compared with the previous more restrictive license, this means the program can now be redis-
tributed by third parties, and used in any context without applying for a special license. Despite
these legal changes, we would still appreciate if you send us back any useful improvements you
make to Proof General, and register your use of Proof General on the web site.

Old News for 3.5

Old News for 3.6

There was no 3.6 release of Proof General.

Old News for 3.7

Proof General version 3.7.1 is an updated and enhanced version of Proof General 3.7. See
‘CHANGES’ for more details.

Proof General version 3.7 collects together a cummulative set of improvements to Proof General
3.5. There are compatibility fixes for newer Emacs versions, and particularly for GNU Emacs:
credit is due to Stefan Monnier for an intense period of debugging and patching. The options
menu has been simplified and extended, and the display management is improved and repaired
for Emacs API changes. There are some other usability improvements, some after feedback from
use at TYPES Summer Schools. Many new features have been added to enhance Coq mode
(thanks to Pierre Courtieu) and several improvements made for Isabelle (thanks to Makarius
Wenzel, Stefan Berghofer and Tjark Weber).

Support has been added for the useful Emacs packages Speedbar and Index Menu, both usually
distributed with Emacs. Compatible versions of the Emacs packages Math-Menu (for Unicode
symbols) and MMM Mode (for multiple modes in one buffer) are bundled with Proof General.
An experimental Unicode Tokens package has been added which will replace X-Symbol.

See the ‘CHANGES’ file in the distribution for more complete details of changes since version 3.5,
and the appendix [History of Proof General], page 81 for old news.

Function and Command Index 85

Function and Command Index

A
add-completions-from-tags-table 35

C
complete . 34

I
indent-for-tab-command . 14
isabelle-choose-logic . 67
isar-strip-terminators . 69

P
pg-goals-button-action . 37
pg-hide-all-proofs . 23
pg-identifier-under-mouse-query 38
pg-next-input . 26
pg-next-matching-input . 26
pg-next-matching-input-from-input 26
pg-previous-input . 26
pg-previous-matching-input . 26
pg-previous-matching-input-from-input 26
pg-response-clear-displays . 17
pg-show-all-proofs . 23
pg-toggle-visibility . 23
proof-active-area-face . 48
proof-assert-next-command-interactive 16
proof-assert-until-point-interactive 16
proof-autosend-toggle . 22
proof-boring-face . 48
proof-ctxt . 17
proof-debug-message-face . 48
proof-declaration-name-face 48
proof-display-some-buffers 17, 43
proof-eager-annotation-face 48
proof-electric-terminator-toggle 16
proof-error-face . 48
proof-find-theorems . 17
proof-frob-locked-end . 25
proof-goto-command-end . 15

proof-goto-command-start . 15
proof-goto-end-of-locked . 15
proof-goto-point . 16
proof-help . 17
proof-highlight-dependency-face 48
proof-highlight-dependent-face 48
proof-interrupt-process . 17
proof-issue-goal . 19
proof-issue-save . 19
proof-layout-windows . 43
proof-locked-face . 47
proof-minibuffer-cmd . 18
proof-mouse-highlight-face . 47
proof-prf . 17
proof-process-buffer . 16
proof-query-identifier . 17
proof-queue-face . 47
proof-retract-buffer . 16
proof-retract-until-point-interactive 16
proof-script-highlight-error-face 47
proof-script-sticky-error-face 47
proof-shell-exit . 18
proof-shell-restart . 18
proof-shell-start . 18
proof-tacticals-name-face . 48
proof-toggle-active-scripting 14
proof-undo-and-delete-last-successful-command

. 16
proof-undo-last-successful-command 16
proof-warning-face . 48

U
unicode-tokens-copy . 30
unicode-tokens-fraktur-font-face 29
unicode-tokens-list-shortcuts 30
unicode-tokens-list-tokens . 30
unicode-tokens-list-unicode-chars 30
unicode-tokens-paste . 30
unicode-tokens-sans-font-face 29
unicode-tokens-script-font-face 29
unicode-tokens-serif-font-face 29
unicode-tokens-symbol-font-face 31

Variable and User Option Index 87

Variable and User Option Index

C
coq-compile-auto-save . 61
coq-compile-before-require . 61
coq-compile-command . 62
coq-compile-ignore-library-directory 63
coq-compile-ignored-directories 63
coq-compile-parallel-in-background 61
coq-compile-substitution-list 63
coq-confirm-external-compilation 62
coq-coqdep-error-regexp . 63
coq-load-path . 62
coq-load-path-include-current 62
coq-lock-ancestors . 63
coq-max-background-compilation-jobs 61
coq-mode-hooks . 33
coq-require-command-regexp . 64
coq-require-id-regexp . 64

I
isa-mode-hooks . 33
isabelle-chosen-logic . 67
isabelle-program-name-override 67
isabelle-web-page . 69

L
lego-mode-hooks . 33
lego-tags . 55
lego-www-home-page . 55

P
PA-completion-table . 34
PA-one-command-per-line . 45
PA-prog-args . 45
PA-prog-env . 46

PA-script-indent . 45
pg-input-ring-size . 46
proof-assistant-home-page . 49
proof-auto-action-when-deactivating-scripting

. 46
proof-auto-raise-buffers . 42
proof-autosend-enable . 22
proof-colour-locked . 44
proof-delete-empty-windows . 43
proof-disappearing-proofs . 23
proof-electric-terminator-enable 45
proof-follow-mode . 46
proof-full-annotation . 22
proof-general-debug . 46
proof-goal-with-hole-regexp 33
proof-goal-with-hole-result 33
proof-keep-response-history 46
proof-multiple-frames-enable 43
proof-next-command-insert-space 45
proof-output-tooltips . 44
proof-prog-name-ask . 45
proof-prog-name-guess . 46
proof-query-file-save-when-activating-

scripting . 45
proof-rsh-command . 47
proof-script-indent . 14
proof-shrink-windows-tofit . 44
proof-splash-enable . 44
proof-strict-read-only . 22
proof-terminal-string . 15
proof-three-window-enable . 42
proof-tidy-response . 46
proof-toolbar-enable . 45

U
unicode-tokens-font-family-alternatives 31
unicode-tokens-highlight-unicode 30

Keystroke Index 89

Keystroke Index

C
C-c C-. 15
C-c C-a . 15
C-c C-a b . 69
C-c C-a C-) . 57
C-c C-a C-a . 57, 69
C-c C-a C-b . 57, 69
C-c C-a C-c . 57
C-c C-a C-d . 68
C-c C-a C-f . 68
C-c C-a C-i . 55, 57, 69
C-c C-a C-I . 55
C-c C-a C-l . 69
C-c C-a C-m . 68
C-c C-a C-o . 57
C-c C-a C-p . 57, 68
C-c C-a C-q . 68
C-c C-a C-r . 69
C-c C-a C-R . 55
C-c C-a C-s . 57, 68
C-c C-a C-u . 69
C-c C-a h a . 68
C-c C-a h A . 68
C-c C-a h b . 68
C-c C-a h c . 68
C-c C-a h C . 68
C-c C-a h f . 68

C-c C-a h i . 68
C-c C-a h I . 68
C-c C-a h m . 68
C-c C-a h o . 68
C-c C-a h S . 68
C-c C-a h t . 68
C-c C-a h T . 68
C-c C-a l . 69
C-c C-a r . 68
C-c C-a u . 69
C-c C-b . 15
C-c C-BS . 15
C-c C-c . 16
C-c C-e . 15
C-c C-f . 16, 68
C-c C-h . 16
C-c C-n . 15
C-c C-p . 16
C-c C-r . 15
C-c C-RET . 15
C-c C-t . 16
C-c C-u . 15
C-c C-v . 16

M
M-n . 26
M-p . 26

Concept Index 91

Concept Index

A
active scripting buffer . 13
Alt . 8
annotation . 21
Assertion . 12, 24
auto raise . 42
Automatic processing . 22
autosend . 22

B
blue text . 12
buffer display customization . 42

C
Centaur . 81
colour . 33
completion . 34
CtCoq . 81
Customization . 41

D
Dedicated windows . 44
display customization . 42

E
Editing region . 12
Emacs customization library . 41

F
Features . 6
file variables . 52
font lock . 33
frames . 42
Future . 1

G
generic . 81
goal . 13
goal-save sequences . 13
goals buffer . 14
Greek letters . 27

H
history . 81
HOL Light Proof General . 71

I
Imenu . 33
Indentation . 44
index menu . 33
Input ring . 26, 44
Isabelle commands . 68

Isabelle customizations . 69
Isabelle logic . 67
Isabelle Proof General . 67

K
key sequences . 8
keybindings . 51

L
LEGO Proof General . 55
lego-mode . 2, 81
Locked region . 12
logical symbols . 27

M
maintenance . 2
mathematical symbols . 27
Maths Menu . 27
Meta . 8
Multiple Files . 21
multiple frames . 42
multiple windows . 42

N
news . 1, 82, 83

O
outline mode . 34

P
pink text . 12
prefix argument . 15
proof assistant . 5
proof by pointing . 14, 81
Proof General . 5
Proof General Kit . 1
proof script . 11
Proof script indentation . 44
proof script mode . 12
proof-tree visualization . 39

Q
Query program name . 44
Queue region . 12

R
Remote host . 44
Remote shell . 44
response buffer . 14
Retraction . 12, 24
Running proof assistant remotely 44

92 Proof General

S
save . 13
script buffer . 12
script management . 81
scripting . 11
Shell . 25
shell buffer . 14
Shell Proof General . 73
Speedbar . 33
Strict read-only . 44
structure editor . 81
subscripts . 27
superscripts . 27
Switching between proof scripts 23
symbols . 27

T
tags . 35
three-buffer interaction . 42
Tokens Mode . 27

Toolbar button enablers . 44
Toolbar disabling . 44
Toolbar follow mode . 44

U
Undo in read-only region . 44
User options . 44
Using Customize . 41

V
Visibility of proofs . 23

W
Why use Proof General? . 6

X
X-Symbols . 27

i

Table of Contents

Preface . 1
News for Version 4.3 . 1
News for Version 4.2 . 1
News for Version 4.1 . 1
News for Version 4.0 . 1
Future . 1
Credits . 2

1 Introducing Proof General . 5
1.1 Installing Proof General . 5
1.2 Quick start guide . 5
1.3 Features of Proof General . 6
1.4 Supported proof assistants . 7
1.5 Prerequisites for this manual . 8
1.6 Organization of this manual . 8

2 Basic Script Management . 9
2.1 Walkthrough example in Isabelle . 9
2.2 Proof scripts . 11
2.3 Script buffers . 12

2.3.1 Locked, queue, and editing regions . 12
2.3.2 Goal-save sequences . 13
2.3.3 Active scripting buffer . 13

2.4 Summary of Proof General buffers . 14
2.5 Script editing commands . 14
2.6 Script processing commands . 15
2.7 Proof assistant commands . 16
2.8 Toolbar commands . 19
2.9 Interrupting during trace output . 19

3 Advanced Script Management and Editing 21
3.1 Document centred working . 21
3.2 Automatic processing . 22
3.3 Visibility of completed proofs . 23
3.4 Switching between proof scripts . 23
3.5 View of processed files . 24
3.6 Retracting across files . 24
3.7 Asserting across files . 24
3.8 Automatic multiple file handling . 25
3.9 Escaping script management . 25
3.10 Editing features . 26

ii Proof General

4 Unicode symbols and special layout support 27
4.1 Maths menu . 27
4.2 Unicode Tokens mode . 27
4.3 Configuring tokens symbols and shortcuts . 28
4.4 Special layout . 28
4.5 Moving between Unicode and tokens . 29
4.6 Finding available tokens shortcuts and symbols . 30
4.7 Selecting suitable fonts . 31

5 Support for other Packages . 33
5.1 Syntax highlighting . 33
5.2 Imenu and Speedbar . 33
5.3 Support for outline mode . 34
5.4 Support for completion . 34
5.5 Support for tags . 35

6 Subterm Activation and Proof by Pointing 37
6.1 Goals buffer commands . 37

7 Graphical Proof-Tree Visualization . 39
7.1 Starting and Stopping Proof-Tree Visualization . 39
7.2 Features of Prooftree . 39
7.3 Prooftree Customization . 40

8 Customizing Proof General . 41
8.1 Basic options . 41
8.2 How to customize . 41
8.3 Display customization . 42
8.4 User options . 44
8.5 Changing faces . 47

8.5.1 Script buffer faces . 47
8.5.2 Goals and response faces . 48

8.6 Tweaking configuration settings . 48

9 Hints and Tips . 51
9.1 Adding your own keybindings . 51
9.2 Using file variables . 52
9.3 Using abbreviations . 53

10 LEGO Proof General . 55
10.1 LEGO specific commands . 55
10.2 LEGO tags . 55
10.3 LEGO customizations . 55

iii

11 Coq Proof General . 57
11.1 Coq-specific commands . 57
11.2 Using the Coq project file . 57

11.2.1 Changing the name of the coq project file . 58
11.2.2 Disabling the coq project file mechanism . 58

11.3 Multiple File Support . 58
11.3.1 Automatic Compilation in Detail . 59
11.3.2 Locking Ancestors . 60
11.3.3 Customizing Coq Multiple File Support . 61
11.3.4 Current Limitations . 64

11.4 Editing multiple proofs . 64
11.5 User-loaded tactics . 64
11.6 Holes feature . 65
11.7 Proof-Tree Visualization . 65

12 Isabelle Proof General . 67
12.1 Choosing logic and starting isabelle . 67
12.2 Isabelle commands . 68
12.3 Isabelle settings . 69
12.4 Isabelle customizations . 69

13 HOL Light Proof General . 71

14 Shell Proof General . 73

Appendix A Obtaining and Installing . 75
A.1 Obtaining Proof General . 75
A.2 Installing Proof General from tarball . 75
A.3 Setting the names of binaries . 75
A.4 Notes for syssies . 76

Byte compilation . 76
Site-wide installation . 76
Removing support for unwanted provers . 76

Appendix B Bugs and Enhancements . 77

References . 79

History of Proof General . 81
Old News for 3.0 . 82
Old News for 3.1 . 82
Old News for 3.2 . 83
Old News for 3.3 . 84
Old News for 3.4 . 84
Old News for 3.5 . 84
Old News for 3.6 . 84
Old News for 3.7 . 84

Function and Command Index . 85

iv Proof General

Variable and User Option Index . 87

Keystroke Index . 89

Concept Index . 91

	Preface
	News for Version 4.3
	News for Version 4.2
	News for Version 4.1
	News for Version 4.0
	Future
	Credits

	Introducing Proof General
	Installing Proof General
	Quick start guide
	Features of Proof General
	Supported proof assistants
	Prerequisites for this manual
	Organization of this manual

	Basic Script Management
	Walkthrough example in Isabelle
	Proof scripts
	Script buffers
	Locked, queue, and editing regions
	Goal-save sequences
	Active scripting buffer

	Summary of Proof General buffers
	Script editing commands
	Script processing commands
	Proof assistant commands
	Toolbar commands
	Interrupting during trace output

	Advanced Script Management and Editing
	Document centred working
	Automatic processing
	Visibility of completed proofs
	Switching between proof scripts
	View of processed files
	Retracting across files
	Asserting across files
	Automatic multiple file handling
	Escaping script management
	Editing features

	Unicode symbols and special layout support
	Maths menu
	Unicode Tokens mode
	Configuring tokens symbols and shortcuts
	Special layout
	Moving between Unicode and tokens
	Finding available tokens shortcuts and symbols
	Selecting suitable fonts

	Support for other Packages
	Syntax highlighting
	Imenu and Speedbar
	Support for outline mode
	Support for completion
	Support for tags

	Subterm Activation and Proof by Pointing
	Goals buffer commands

	Graphical Proof-Tree Visualization
	Starting and Stopping Proof-Tree Visualization
	Features of Prooftree
	Prooftree Customization

	Customizing Proof General
	Basic options
	How to customize
	Display customization
	User options
	Changing faces
	Script buffer faces
	Goals and response faces

	Tweaking configuration settings

	Hints and Tips
	Adding your own keybindings
	Using file variables
	Using abbreviations

	LEGO Proof General
	LEGO specific commands
	LEGO tags
	LEGO customizations

	Coq Proof General
	Coq-specific commands
	Using the Coq project file
	Changing the name of the coq project file
	Disabling the coq project file mechanism

	Multiple File Support
	Automatic Compilation in Detail
	Locking Ancestors
	Customizing Coq Multiple File Support
	Current Limitations

	Editing multiple proofs
	User-loaded tactics
	Holes feature
	Proof-Tree Visualization

	Isabelle Proof General
	Choosing logic and starting isabelle
	Isabelle commands
	Isabelle settings
	Isabelle customizations

	HOL Light Proof General
	Shell Proof General
	Obtaining and Installing
	Obtaining Proof General
	Installing Proof General from tarball
	Setting the names of binaries
	Notes for syssies
	Byte compilation
	Site-wide installation
	Removing support for unwanted provers

	Bugs and Enhancements
	References
	History of Proof General
	Old News for 3.0
	Old News for 3.1
	Old News for 3.2
	Old News for 3.3
	Old News for 3.4
	Old News for 3.5
	Old News for 3.6
	Old News for 3.7

	Function and Command Index
	Variable and User Option Index
	Keystroke Index
	Concept Index

