RUIGERS

R Y

Department of Electrical and Computer Engineering

332:428 Capstone Design - Communications Systems Spring 2012

The Brain Wave App
Final Project Design Report

Group Members:
Mrunal Shah
Richard Roman

Project Director: Dr. David G. Daut

May 9, 2012

Table of Contents

=

. Design Project Overview
2. Technical Specifications
3. Final Project Summary
3.1. System Design - Final Version
3.2. System Performance
3.3. System Design Iterations
4. Task List and Work Distribution
5. Design Project Details
5.1. Sub-System 1 - Tweeting Module
5.1.1. Theoretical Considerations
5.1.2. Design Procedure
5.1.3. Observed and Measured Results
5.2. Sub-System 2 - Tweet Recognition Module
5.2.1. Theoretical Considerations
5.2.2. Design Procedure
5.2.3. Observed and Measured Results
5.3. Sub-System 3 - Remote Operation Module
5.3.1. Theoretical Considerations
5.3.2. Design Procedure
5.3.3. Observed and Measured Results
6. Sub-System Integration Considerations
7. Economic Considerations

7.1. Cost Analysis - Prototype

23

23

25

27

32

33

33

33

33

35

36

36

36

37

38

38

38

40

41

44

44

7.2. Cost Analysis - Final Version
8. Manufacturability
9. Marketability
10. Individual Team Member Discussions
10.1. Richard Roman
10.1.1. Overview Discussion of the Project
10.1.2. Detailed Discussion of Pertinent Sub-Systems
10.2. Mrunal Shah
Appendices
Appendix 1
Appendix 2

References

45

48

50

52

52

52

55

57

57

57

73

1. Design Project Overview

There is no technology on the market at the moment that allows
communication by thought. We wanted to change that. We made an application
that would allow people to just think and convert their brain waves into tangible
actions. Through this project we wanted to introduce a new medium and a new way
to interact with surroundings, just by using brain waves. People from all walks of
life would benefit from such a project. For example, disabled people can establish
two-way communications with someone living far away. Additionally, they would
be able to control appliances in your house just by thinking.

In our approach, we procured Emotiv Epoc headset, an EEG headset that reads
potential difference between different parts of the brain. Additionally, we used
signal processing to output P300 brain waves. Essentially, we are interpreting what
the using is thinking. We take the signals from Emotiv headset and pass it through
our custom software to decide what emotions or brain patterns are coming from the
user. Using the Twitter API, we send this message over the Internet so that it can be
read by anyone with Internet access.

In the second part of our project, we are controlling a television just by
thinking. Justlike in the previous part, custom software is used to decipher what
signals are coming out of the headset. We then translate those signals to interpret
what actions the user is trying to achieve. The resulting signal is passed along to our
remote tool, which utilizes the Arduino Uno, to control the television.

The project has been successfully completed. We are able to decipher those

brain waves and communicate via Twitter, along with control a television via
remote signals. Additionally, we have been successful in achieving two-way
communications. Not only can we send messages to the Internet, but we can also
indicate if messages were received. A reply back to a tweet can be indicated by the
flashing of an LED connected to a protoboard. We have effectively, enabled

communication and convenience in one cheap, easy to use product.

2. Technical Specifications

Hardware Technical Specifications:

The project used three different pieces of hardware for our project:

i. Emotiv Epoch EEG headset.
ii. Arduino Microcontroller.

iii. TV remote control.

i. Emotiv Epoc EEG Headset:
The Emotiv headset comes along with the following hardware.

i. USB Transceiver Dongle
ii. Hydration Sensor Pack with 16 Sensor Units
iii. Saline solution

iv. 50/60Hz 100-250 VAC Battery Charger

Number of channels 14 (plus CMS/DRL references)

Channel names (Int. 10-20 AF3, AF4, F3, F4, F7, F8, FC5, FC6, P3 (CMS), P4 (DRL),

locations) P7,P8,T7,T8, 01, 02
Sampling method Sequential sampling, Single ADC
Sampling rate ~128Hz (2048Hz internal)

Resolution 16 bits (14 bits effective) 1 LSB = 0.51pV

Bandwidth 0.2 - 45Hz, digital notch filters at 50Hz and 60Hz

Dynamic range (input

256mVpp
referred)
Coupling mode AC coupled
Connectivity Proprietary wireless, 2.4GHz band
Battery type Li-poly
Battery life (typical) 12 hrs.
Impedance measurement Contact quality using patented system

Table 1: EEG Headset Technical Specifications [0]

Image 1: Ideal placement of individual sensors on the scalp

F7

Q..
|
\\ CMS

P7

Image 2: Electrode Positions

All the information wirelessly transmitted from the headset is encrypted and
is decrypted on computer by edk.dll making it hard to know what information

individual sensors are collecting.

Signal Processing done for brain wave detection:

Preprocessing done by Emotiv headset:

i) Low-pass filter with a cutoff at 85Hz.

ii) High-pass filter with a cutoff at 0.16Hz.

iii) Notch filter at 50Hz and 60Hz.

After the pre-processing signal is obtained, it is streamed to the computer wirelessly
to be made available to the edk.dll. The Sampling Rate is 128 samples per second

and is actualized on the computer using Sampling Algorithm (Appendix 2, #1).

To reduce the anomalies introduced into digital signal as a result of signal
processing, the artifact removal algorithm is used. To detect blinks the mean and
standard deviation of each near-eye electrode has been computed and then scanned
for samples exceeding a standard-deviation-related limit. Those samples are joined
into nearby groups and finally fitted (extended to the left and right) until the value
has fallen below another standard-deviation-related limit (code in Appendix 2,
#2,#6). Itis then passed through a 2nd -order IIR-Filter and Averaging is done.

Averaging is done under the assumption that noise is randomly distributed.

ii. Arduino Uno Microcontroller:

The Arduino Uno is an open source microcontroller useful for rapid electronic

prototyping.
Microcontroller ATmega328
Operating Voltage 5V
Input Voltage 7-12V
(recommended)
Input Voltage (limits) 6-20V

Digital I/0 Pins 14 (of which 6 provide PWM output)
Analog Input Pins 6

DC Current per I/0 Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328) of which 0.5 KB used by
bootloader

SRAM 2 KB (ATmega328)

EEPROM 1 KB (ATmega328)

Clock Speed 16 MHz

Table 2: Technical Specifications for the Arduino Uno [2]

10

iii. TV-Remote:

We used Sanyo TV’s remote to detect what information was being sent using to the
television, so that it could be emulated on Arduino. We used an IR detector to detect
what information was being pulsed from the remote. Using Oscilloscope we were
able to see the pulses on screen. The circuit diagram to detect the pulses can be

seen in image 3.

FHE

Image 3: Circuit Diagram to detect infrared pulses

The infrared LED detects the output. The black wire is connected to ground and the

red wire is connected to 5V power. The waveform obtained is displayed in image 4.

11

Image 4: Waveform obtained from the infrared LED detector

Using the Cursor we were able to find the time between 2 pulses. High is IR-LED

on/off at 38KHz frequency. Low is IR-LED off.

12

Software Technical Specifications:

Our project utilizes a number of different software components:

i. Emotiv Control Panel
ii. Mind Your OSC’s

iii. Processing

iv. Twitter API

v. Python Script

vi. Arduino IDE

i. Emotiv Control Panel

The Emotiv Control Panel is a proprietary program that presents the user
with a logical, graphical interface for using the headset. It allows the user to utilize
all of the capabilities of the headset and customize actions according to brain waves.
It consists of four main tabs. However, only one tab was used for our purposes.
Depicted in image 5 is the Cognitiv Suite. This screen allows the user to designate
certain thoughts or facial movements to certain actions. Actions used in our

program include push, pull, lift, and disappear.

13

@ Emotiv Control Panel 0.8.0.0
Application Connect Help

readset Setup Expressy Sute

Affecty Sute

Cognitiv Suite

Action Tanng | Advanced

Acton Control

Current Action Neutral

Detecton Status Deactivated: Some actions are untramed
Difficuity Level Hard

Overal Skl Ratng == = =) 34%

Traned? Acton Type Sl Ratng
v Push T
v Lift L ESD
*x Drop | 0%

<= Add “= Remove tdit

To begin the Cognitiv expenence, switch to the Training tad and start traning on
the untraned actiond(s).

Image 5: Emotiv Control Panel: Cognitiv Suite

Also, notice the upper panel. It displays the essential information regarding

the status of the headset. Information includes, the wireless signal, user profile, and

sensor status (green means working well).

In order to use the chosen actions, each user must train the program to

recognize appropriate brain waves. This is where the Training Screen comes into

play.

14

@ Emotiv Control Panel 0.30.0
Application Connect Help

Add Profile l Remove

Affecty Sute Cogritlv Suite

Expressy Sute

Actior Tranng

Traning Control

Each traning session takes 8 seconds. You wil not be able o perform that
action unti it has been rained. Neutral must also be traned in order to unfock
other actions.

Select an acton to trar

Abort Training |

Auto Neutral Recordng

This feature provides Neutr ol data recordng for a long period of tr
user marualy stops the process, T

Image 6: Emotiv Control Panel: Cognitive Suite - Training Screen

Trainings must be complete for each action in order for the headset to work.
Training consists of the user doing the desired facial action or think of the idea that
will be tied to each action continuously, for a short interval of time. After this is
completed the program will recognize which action the user is trying to accomplish
by reading the users “thoughts”. [3] While the Control Panel does the difficult job of
taking in the raw data from the headset and translating it into more easily used data,
the data outputted from the Control Panel is still not easily utilized in other

programs. To solve this problem, we found another program helps out the process.

15

ii. Mind Your OSC’s

Mind Your OSC'’s is an open source project that changes the output from the
Control Panel into OSC packets.[4]Open Sound Control (OSC) is an open, transport-
independent, message-based protocol developed for communication among
computers, sound synthesizers, and other multimedia devices.[5] OSC information
is sent in regulated data packets that have a distinct format that can be easily read
by other programs. There are libraries in place in our other components that are
custom tailored to OSC protocol. They include functions that deal specifically with
0SC packets to accomplish convenient and effective processing. This program
provides a much easier and more effective way of transmitting our information

between components.

iii. Processing

Processing is a programming language, development environment, and
online community that since 2001 has promoted software literacy within the visual
arts. Initially created to serve as a software sketchbook and to teach fundamentals of
computer programming within a visual context, Processing quickly developed into a

tool for creating finished professional work as well.[6]

Processing provided the group with an easy to use development
environment that is very flexible and allows programmers many conveniences.

Because it uses a language that is based heavily off of Java, the project team was able

16

to focus on developing our project without the disadvantage of having to learn a
new language. Additionally, Processing is able to interface with many different
systems, such as Twitter and Arduino. This enabled us to experiment with different
methods of design, relatively easily. This facilitated a dynamic design process that

allowed change and let us refine our design plan quickly and effectively.

The open source nature Processing also afforded us another advantage.
Because it has been developed and improved by many different people in the open
source community, there are a variety of different libraries that interface with the
systems listed above. These libraries are easy to install and add a great deal of

capabilities to any Processing program.

The oscP5 library was written by Andreas Schlegel for the programming
environment Processing. The library features Automatic Event Detection, in which
oscP5 locates functions inside your sketch and will link incoming OSC message to
matching functions automatically. Additionally incoming OSC messages can easily
be captured within the sketch. In order to install it, one only has to unzip the
downloadable file and put the extracted oscP5 folder into the libraries folder of your

processing sketches. [7]

Twitter4] is an unofficial Java library for the Twitter API. With Twitter4], we
easily integrated the Java application with the Twitter service. It features 100%
pure Java (works on any Java Platform version 1.4.2 or later), zero dependency (no

additional jars are required), built-in OAuth support (the standard authorization

17

method used by Twitte), and out-of-the-box gzip support. In order to install it the

user just adds add twitter4j-core-2.2.5.jar to the application classpath.[8]

iv. Twitter API

The Twitter APl is a great tool for developers. It allows a programmer to
easily access the Twitter system to do a number of operations. Posting tweets,
reading the TwitterFeed, sending and reading Direct Messages are all operations
that can be accomplished. A programmer just needs to visit dev.twitter.com and go
through a few steps to get authorized to access his or her twitter account remotely.
After registration, the account menu holds all of the information needed to allow an
application to successfully complete OAuth. OAuth is an authorization system that
allows the user to grant access to your private resources on one site (which is called
the Service Provider), to another site (called Consumer, not to be confused with you,
the User). The purpose of this is to provide a standard way for developers to offer
their services via an API without forcing their users to expose their passwords (and
other credentials).[9] The fact that the credentials are easily obtained after

registration is a big benefit and assists our system greatly.

18

v. Python

Python is a remarkably powerful dynamic programming language that is
used in a wide variety of application domains. Python has some key features that

assisted us in the completion of this project. They include:

* very clear, readable syntax

* strong introspection capabilities

* intuitive object orientation

* natural expression of procedural code

e full modularity, supporting hierarchical packages

* exception-based error handling

* very high level dynamic data types

* extensive standard libraries and third party modules for virtually every task
The language itself is a flexible powerhouse that can handle practically any problem
domain. Additionally, python runs on Windows with minimal configuration.[10]
Due to the fact that it is open source, there are libraries available that help to

interface with many different systems, including in our case, Twitter.

The pySerial libary encapsulates the access for the serial port. It provides
backends for Python running on Windows, Linux, BSD (possibly any POSIX
compliant system), Jython and IronPython (.NET and Mono). The library contains a
module that automatically selects the appropriate backend for the python script.

The library features:

* Same class based interface on all supported platforms.

19

* Access to the port settings through Python properties.

* Support for different byte sizes, stop bits, parity and flow control with
RTS/CTS and/or Xon/Xoff.

* Working with or without receive timeout.

* File like API with “read” and “write” (“readline” etc. also supported).

* The files in this package are 100% pure Python.

* The portis set up for binary transmission. No NULL byte stripping, CR-LF

translation etc. (making the library universally useful

Compatible with jo library (Python 2.6+)
The package can be easily installed by downloading the archive off of the website,

unpacking it (command: pyserial-x.y), and running it (command: python setup.py

install) .[11]

The simplejson library is a simple, fast, complete, correct and extensible JSON
encoder and decoder for Python 2.5+. It is pure Python code with no dependencies,
but includes an optional C extension for a serious speed boost.[12] JSON (JavaScript
Object Notation) is a lightweight data-interchange format. JSON is a text format that
is completely language independent but uses conventions that are familiar to
programmers of the C-family of languages, including C, C++, C#, Java, JavaScript,
Perl, Python, and many others. These properties make JSON an ideal data-
interchange language.[13] The installation method used by the pySerial library is
standard for all Python libraries. Thus it can be used to install the simplejson library

as well.

20

The httplib2 library is a comprehensive HTTP client library that supports

many features left out of other HTTP libraries. Features include:

* Support for both http and https
* Support for keep-alive - keeping the socket open and performing multiple
requests over the same connection if possible.

* Supports the following authentication types:

o Digest
o Basic
o WSSE

o HMAC Digest
o Google Account Authentication
* Caching
* (Can handle every http method, not just get and post
* Redirects - Automatically follows 3XX redirects on GETs.
* Compression - Handles both 'deflate’ and 'gzip' types of compression.
* Lost Update Support - Automatically adds back ETags into PUT requests to
resources we have already cached.
* Unit Tested - A large and growing set of unit tests.

Can be installed in the same way that the other python libraries were installed.[14]

The python-oauth?2 class handles authorization. This is not specific to any

application it handles general oauth.

21

The python-twitter library provides a pure Python interface for the Twitter
APIL. The library provides a Python wrapper around the Twitter API and the Twitter

data model.

vi. Arduino

Arduino provides not just hardware for our project, but also software. Along
with the Uno microprocessor, the Arduino development environment was also used.
It is an environment that interfaces specifically with the Arduino microprocessor.
Luckily, there are already extensive standard libraries that are in place, so no new

libraries were needed to finish the program that was loaded onto the Arduino.

22

3.

Final Project Summary

3.1. System Design - Final Version

Emotiv Epoc

EEG Headset

Emotiv Software

(Emotiv Control Panel)

Mind Your OSC’s

%

Send Tweet

Processing Application

(Made by Group)

Receive
Tweet

Python Script

(made by group)

Send

Operation

Television

Image 7: Final Version Block Diagram

Our project is designed to integrate new technology with custom programs.

The design features only a few products that will cost the consumer money. The

rest of the components are open source. Even the custom programs were written

23

on open source programs. This is not only cost effective, but also encourages
consumers to customize it to their needs.

[t all starts with the Emotiv Epoc Headset. It reads the user’s brain waves and,
over wi-fi, outputs data into the Emotiv SDK (Software Development Kit). The
Emotiv SDK translates the raw data into information that is recognized by the
Emotiv Software Suite. Unfortunately this information is only understood by Emotiv
propriety programs. To remedy this we utilized Mind Your OSC’s. This open source
program translates the information into OSC data packets (explanation will be
provided in future sections). A custom program written in Processing recognizes
what operation the user is trying to do and outputs one of four pre-loaded tweets
onto the user’s Twitter account. From here, anyone with an Internet access can see
the outputted tweets (Twitter allows account protection so that only accepted users
can view tweets, but this is out of the scope of our project). This allows long-range
communication. From here, a custom python script, which runs in the background,
reads the last tweet in which the user was mentioned. It looks for flags in the tweet
(hashtag keyword) that either correspond to remote operations, or cause an
indication LED to be turned on. It sends a signal to the Arduino Uno. From here the
Arduino decides whether to manipulate an infrared LED, or to light an indicator
LED. In the latter, the LED is turned on, letting the user know that their tweet has
been answered. If a remote operation has been recognized, the Arduino pulses the
infrared LED to a certain frequency that then completes the operation on the
television.

After all is said and done, our system allows the user incredible convenience

24

and communicative capabilities. We have also established a new medium through

which communication can take place.

3.2. System Performance

Theoretically the system should be very fast. Due to light nature of the
processing needed, the computer processing should only take milliseconds total
(one second maximum). The other components communicate over an Internet
connection. Seeing as how fast the Internet has become, this should not be a
problem. Communication should take a few seconds at the most. The other
communication is done over wi-fi (headset to computer) and infrared frequencies
(infrared LED to TV), both of these mediums are very quick and reliable and should
not even have one second of latency. All in all, the entire system should just take
seconds to complete.

Unfortunately this is not an ideal world, and our system does have some
dependencies that cause latency. Firstly, it is essential that there is reliable, and fast
wi-fi for the headset to send consistent and accurate data to the computer. This was
never a problem during development and testing, so we assume that this is not a
strong vulnerability for the system. The computer processing is dependent on the
stress of the computer. Because of the low load of processing data in our program,
the cpu is generally not overworked. Just like the wi-fi this is a weak vulnerability of
the system.

The first significant latency issue we run into lies in the Twitter API. We

made the design choice to use Twitter as the communication medium for the remote

25

operations. This was due to the fact that it was already being used for
communication purposes, and it was an easy addition to utilize the Twitter API to
send operations to our remote tool. While this is a reliable way of sending operation
instructions, it is not the fastest. Naturally, the Twitter API must be accessed over
an Internet connection. Unfortunately this exposes the system to inconsistent
dependencies. A reliable, and fast internet connection is needed to not only send
tweets out, but also to read the tweets back into the system. Additionally, we are
dependent on the speed of Twitter’s API. If the site is experiencing large amounts of
traffic, that could slow down the posting of tweets, and therefore slow our system
down. However, this is not the biggest problem. It is impossible to be able to tell
how slow it would be in the worst case. However, in a bad case it would still only
take up to thirty seconds to post a tweet.

The biggest latency comes from the Python script that recognizes incoming
tweets. The script was designed to poll Twitter every twenty seconds. Because of
this interval, the speed of recognition depends upon the time the tweet was received
in relation to the latest polling. There is an average wait time of ten seconds.
However it is possible that recognition could take anywhere from one second to
twenty seconds. This easily causes the biggest latency, and stops our system from

being as responsive as we hoped.

26

3.3. System Design Iterations

Iteration 1

Our initial proposal idea was to make a Brain wave app that could control an
iPhone just by thinking. We were going to achieve this by making an iPhone (i0S)

Application that would understand information that was being streamed to it from

the headset.
Emotiv > DSP Kit > iPhone ~ | Control
Headset Application iPhone

Image 8: Iteration 1 Block Diagram

However we hit many hurdles while working on this particular way of controlling
our iPhone.

i. The iPhone is locked by Apple, which means that Apple determines how
applications can interact with the iPhone.

ii. The only way to break the barriers of communication with iPhone is the to
jailbreak it. Jail breaking is a process through which user gets the
administrative privileges or becomes the “root” of the phone. As a result,
the user can install any application he or she wants. In this setup certain
ports and files are accessible for further development. Jail breaking is
legal under laws of US. However, every country has its own sets of law
and rules governing jail breaking. This limits the extent to which the
application can be distributed. Jail breaking is also not recommended by

Apple.

27

iii. We jail broke the iPhone that we were using. However, even after this and
getting root access to all the files of our phone, we were not able to
effectively stream the to the smartphone using current existing
technology. We could send information as files, but could not stream

continuous information to our smartphone.

Iteration 2:

In the next stage of our project, we changed our approach. We decided to
make an application that could send emergency messages just by thinking. This
would enable the user (presumably disabled) to turn on or off LED’s depending on

what he or she was thinking.

Emotiv EEG Mind Your Processing Arduino with
Headset OSC’s LEDs
Software connected.

Image 8: Iteration 2 Block Diagram

We successfully achieved this part of our project and were able to send information to an

Arduino from the Emotiv EEG Headset.

Iteration 3:

After achieving local communication, we decided to extend this even further

by attempting more universal communication. We chose to attempt communication

28

over the Internet. After researching various Internet systems, we decided on using

Twitter. Our messages could be sent as tweets, and would reach a large amount of

people.
Processing ;
Emotiv EEG Mind Your connecting to Twitter
Headset OSC’s twitter using
Software OAuth
credentials

Image 9: Iteration 3 Block Diagram

Using the flow given in the diagram above we were able to connect to Twitter
and send information as predefined tweets. This enabled the user at home to
communicate with anyone that had a Twitter application installed on his or her
phone. Our communications could now range over remarkably long distances.

We found that there were two ways of connecting to Twitter. We could
connect over the computer’s Internet connection using Processing, or through the
Ethernet Shield add on to the Arduino Uno. In order to use the Ethernet Shield, the
Arduino would have to be hard-wired into either an Ethernet port, or a router. This
added a new dependency and a new inconvenience. Because of this inconvenient
fact, we settled upon using Processing. Since we were already using the computer to

process the headset signal, it was convenient to use it to submit the tweets.

Iteration 4:

We were able to successfully establish one-way communication using the
Emotiv Headset. However, we wanted to establish two-way communication. We

wanted to indicate to the user if a response had been received. The response from

29

the initial recipient would be signaled by an LED turning on or off, depending on the
information in the response tweet. To achieve this we wrote a custom python script
that would connect to our private twitter account, parse information and look for
certain keywords. If those keywords were found the LED’s on the Arduino would

turn on or off.

Python Script : :
Twitter looks for Arduino with
2 certain = LED
keywords connected

Image 10: Iteration 4 Block Diagrams

Iteration 5:

We pushed our project further by attemping to control a television just by
thinking. We integrated an infrared LED into our system in order to send pulses of
information to our TV based on certain keywords found in tweets addressed to our
Twitter account. The user would send a tweet including the account username. The
python script would parse the information and send a signal to the Arduino. The
Arduino had a custom program uploaded that, upon receiving a certain signal,
would pulse the infrared LED. This would send information to the television at a

rate of 38kHz.

30

Python Script

Twitter

looks for

>’ certain

keywords

Arduino with
IR-LED

Image 11: Iteration 5 Block Diagram

31

(38kHz)
connected

Television

4. Task List and Work Distribution

* [dea Conception — Mrunal Shah

* Background Research — Mrunal Shah

* Compatibility Research — Rich Roman - 50%, Mrunal Shah - 50%

* Component Research - Rich Roman 50%, Mrunal Shah 50%

* Material Procurement - Rich Roman - 50%, Mrunal Shah - 50%

* Prototype Construction — Rich Roman - 50%, Mrunal Shah- 50%

* Tweeting Module - Rich Roman

* Tweet Recognition Module - Rich Roman - 30%, Mrunal Shah - 70%

* Remote Operation Module — Mrunal Shah

* Proposal - Rich Roman - 50%, Mrunal Shah - 50%

* Design Review 1 - Rich Roman

* Design Review 2 - Rich Roman

* Final Project Report - Rich Roman - 70%, Mrunal Shah 30%

* Engineering Open House Demonstration - Mrunal Shah - 60%, Rich Roman -
40%

* Poster Day Demonstration - Rich Roman - 50%, Mrunal Shah - 50%

¢ Presentation — Rich Roman - 40%, Mrunal Shah 60%

Weekly Progress Reports — Mrunal Shah 60%, Rich Roman - 40%

32

5. Design Project Details

5.1. Sub-System 1 - Tweeting Module

Designer of Sub-Section - Rich Roman

Author of Section - Rich Roman

5.1.1. Theoretical Considerations
The Tweeting module is the connection between Mind Your OSC’s and Twitter. It
connects to Twitter using OAuth and posts the pre-loaded tweets that are set in the

module.

5.1.2. Design Procedure
Initially this was not a “Tweeting” but was instead a messaging module. It

would send messages to the Arduino that would light LED’s that were attached to
the microprocessor. The first step to creating this module was to send messages
using the Emotiv Epoc headset. We started attempting this by using the Processing
development environment and Mind Your OSC’s. Processing has a library that
allows a program to control an Arduino. As a result there were no compatibility
issues. We made a program that allowed us to turn on and off an LED that was
connected to the Arduino board. The program used thresholds to determine when
the incoming OSC values were intended to send a message. This proved to the
group that we would be able to send messages using thoughts and facial
expressions. It also succeeded in our initial goal of sending messages to an Arduino

microprocessor.

33

We soon realized we could push the messaging concept further. We looked
to the Internet for solutions and settled on Twitter because of its technological
ubiquity. The first step was learning how to authorize our application to log into
and tweet from the project Twitter account. Luckily, Twitter makes it very easy to
link applications with Twitter accounts. After registering our application, we were
given OAuth credentials that were used in our code.

We started by using the Ethernet Shield on the Arduino Uno to tweet.
Because there is a Twitter library that is available for download for the Arduino, this
was not a terribly difficult task. Using the credentials given by the Twitter API, we
were able to log in and post tweets to the project Twitter account. However we
realized that in order for the Ethernet Shield to work, it would have to be hard-
wired into a router or modem. This presented the group with a new inconvenience.

We chose instead to use the Processing development environment and
forego using the Arduino. Instead, Processing allowed us to use the computer’s
Internet connection to log into Twitter and post Tweets. A different but equally
effective library was available for Processing that assisted us in the process. Soon,
we had a program that quickly and effectively posted tweets to our Twitter account
using the computer’s Internet.

We were able to merge the codes with little hassle. We also extended the
code to handle more than one tweet and more than one OSC command. This is when
we extended it from 1 pre-loaded tweet to 4. This became our stable version of the

code, and is the version that is in the working prototype.

34

5.1.3. Observed and Measured Results

Because of the nature of our project there were no measurements that
needed to be taken; so all of our results were observed. The communication
between the module and Twitter is directly dependent on the Internet connection.
Luckily a regular connection showed almost instant results between the program
sending a signal and a tweet being received and posted.

The communication between the headset and our program was somewhat
inconsistent. This was through no fault of the computer or of our module. The
problem lied in the headset’s recognition. The sensors were quite delicate and
sensitive. As a result if they were in the wrong place or were jostled slightly,
connection would not be optimal. Additionally, correct outputs required the
headset to be able to accurately recognize the brain waves associated with the
thoughts or facial expressions you were making. Consistent brain wave training
solved this problem. Even this was only a small issue and did not pose a problem on
the results as long as the user took care to properly adjust and train the headset. It
can be concluded that the results of this module were close to if not faster than the
expected values.

Code is located in Appendix 2, #5

35

5.2. Sub-System 2 - Tweet Recognition Module

Designer of Sub-Section - Mrunal Shah

Author of Sub-Section - Rich Roman

5.2.1. Theoretical Considerations
The Tweet Recognition Module connects the Twitter API with the Arduino
program. The script is written in python. It reads tweets directed at the user’s
Twitter account and sends signals to the Arduino program. The types of signals it
sends are dependent on predefined flags (hashtag keywords) present in the tweets.
[t is the module that deciphers what action the user means to accomplish, and sends

the necessary signal to the Arduino to accomplish it.

5.2.2. Design Procedure

This module is a later adaptation of one of the initial codes that was used in
the making of the Tweeting module. That initial code, written in Arduino, took a
message and performed the on/off operation for an LED connected to the Arduino
microprocessor. In essence this module does just that. It takes in messages and
outputs signals that are dependent on the message. The main difference is that this
module takes in tweets in which the user’s profile is mentioned and deciphers
commands through keywords present in the tweet. The pre-defined keywords are

formatted as #keyword.

36

After some research it was an easy decision to change development
environments for the module from Arduino to Python. The python code allows us to
continuously poll the Twitter API. Also like the design process of the Tweeting
module, we adopted connection over the computer’s Internet connection instead of
through a hard-wired Ethernet Shield for convenience purposes. Unfortunately, we
could not sidestep this problem with the Ethernet Shield because the Arduino Uno,
by itself, cannot connect to the Internet without the help of a computer. Luckily the
connection between the python script and the Arduino is seamless, so there are no
downsides to this switch.

The interfaces between the python script and the Twitter API are also very
easy to integrate. The same credentials that were used in the Processing program in
the Tweeting module can be used in the python script. Also, similar to the
Processing program, there are libraries in place that interface the Twitter API with
any python script very effectively. Even though we are using yet another
development program, this module creates a seamless transition between Twitter
and Arduino.

Code is located in Appendix 2, #4

5.2.3. Observed and Measured Results
While this module does not present any compatibility issues, it is the main
source of latency in our project. Because we chose to use a constant polling method
for tweet recognition, there is a constant interval present in which a tweet is not

recognized. The module polls Twitter every twenty seconds. This means that the

37

responsiveness of the system depends directly on what time the tweet is submitted.
A tweet can take twenty seconds to be recognized or it could take one second to be
recognized. After testing our system we determined that it took an average of ten
seconds from the time a tweet is posted until the python script recognizes it. We
determined this by submitting tweets and measuring the response time in a large
sample, and averaging out the data. While the noticeable lag is not desirable, given

the accuracy of the system of the module, it is acceptable.

5.3. Sub-System 3 - Remote Operation Module

Designer of Sub-Section - Mrunal Shah

Author of Sub-Section - Mrunal Shah

5.3.1. Theoretical Considerations
Arduino Remote Control: There is two ways of emulating a remote control on

Arduino.
The first one is to find information being transmitted on oscilloscope.

And the second one is to find information being transmitted using Arduino.

5.3.2. Design Procedure

We will go in detail on how both the methods work.

38

1) Finding information sent using Oscilloscope. As we can see from Image 4,
there are pulses of information in the beginning that is distinct for every

remote and every command.

The information attached below is when we sent On/Off signal to our TV and
captured it on oscilloscope. Using cursor and zooming in, we were able to
find distance in microseconds between pulses and record it. We used that

information and embedded it in our code to send information to our TV.

2) We can also connect IR-Detector to breadboard and connect it to Arduino to
precisely detect the distance between two pulses in microseconds and code

that in our Arduino software.

The final Arduino code used to send On/Off signal can be seen in Appendix 2,

#3.

39

5.3.3. Observed and Measured Results

We had to play with the timing a bit to get just the right numbers so the TV would
turn on and off, as there is always an error of +-10% when the information was

being sent from the remote.

But after trial and error we were able to get just the right combination for which our

TV worked.

40

6. Sub-System Integration Considerations

Integration was a constant issue in our project. Due to the amount of
different components we have in our system, compatibility needed to be kept as a
central focus. Before a decision was made on the structure of any custom program,
we first needed to decide what the best application to use to produce the program.

This was a process of research, but also of trial and error.

The first compatibility issue we ran into affected our overall project idea.
The Emotiv headset and the Apple iPhone were both proprietary systems that were
not friendly to tampering. They were also highly incompatible. We tried to solve
the problem by using go between programs such as Mind Your OSC’s. This program
solved the issue with the Emotiv headset, but the issue remained with the Apple
iPhone. We quickly realized that an iPhone App would not be feasible. Instead we
focused on accessing the iPhone through another application. We decided to use
Twitter. Because Twitter offers a free application to any iPhone, we still were able
to use the iPhone as a tool of communication. The compatibility issues that were
present previously were no longer obstacles. Twitter allows users to easily register
an application with a Twitter Account, and provides the OAuth credentials to let
remote devices or programs access the Twitter API. Additionally, the Twitter API
can be easily interfaced with our custom programs in Processing using an open
source, downloadable library (Twitter4j). The program that initially solved the
issue with the Emotiv Epoc headset previously, also interfaced well with the

Processing development environment because of a similar library (oscP5). This

41

overall integration solved the initial goal of our revised project plan, and allowed
users to communicate with smartphones. Another tweeting method was attempted
using the Arduino Uno Ethernet Shield. Even though it was able to connect to the
Twitter API and post tweets, it required a hard-line into a router or modem. This
added an inconvenience that was easily circumvented using the Processing

approach.

After completing initial goal, we set to work on the recognition aspect of our
project. We wanted to let our users not only send tweets to other people, but also
have some indication when response tweets were received. We quickly learned that
we would need to adopt another new system to be able to have the project come full
circle. The Ethernet Shield presented the same problems on the Twitter receiving
end as it did on the Twitter sending end so it was immediately discarded. Because
the Arduino Uno was not able to connect to the Internet itself we needed to find a
program to bridge the Twitter API with the Arduino. We settled upon using python.
Both Twitter and Arduino easily interfaced with python. Just like in the Processing
code, Twitter had a downloadable library that interfaced with Python. On the other
end communication with the Arduino was accomplished using the computer’s serial

ports. Both Arduino and Python had libraries that enabled serial communication.

Having achieved two-way communication, we tried to find other ways to use
the incoming tweets. We found that using signals outputted by our Python script we
would be able to complete actions on remote appliances. We had to fashion a

remote tool. We knew that remotes use an infrared LED to communicate with their

42

respective appliances. The issue was instead how to use the infrared LED to submit
accurate commands. The solution was a circuit that utilized an infrared LED
detector (Image 3). Using an oscilloscope and a television remote control, we were
able to record the infrared LED signatures that corresponded to the remote
operation for on/off. After some measurements we were able to output the specific
information that needed to be sent through the infrared LED. The only remaining
step was to make an Arduino program that accepted the signals that came in on the
shared serial port and manipulate the infrared LED at the correct frequencies to
send the information to the television to turn it on. Our project only features one
operation. However, this same procedure can be followed to enable other
operations to occur on any remote appliance. Additionally the python script can be
easily extended to send a multitude of signals. In the end, all of the components

used are needed to effectively integrate and synchronize our entire system.

43

7. Economic Considerations

7.1. Cost Analysis - Prototype

In order to find out the cost analysis of the prototype, one simply has to look at the
work done by the group this semester. The group completed a working prototype.
The statistics from this semester are displayed below.
Startup costs:
* A computer
o Windows or Mac OSX operating system
o 2 usb ports
* An appliance with a remote
o Note: for our case a television
The group had the necessary startup materials.
Project Materials:

* Emotiv Epoc Headset and Emotiv SDK - $500 in combined package

Arduino Uno Microprocessor - $40

Infrared LED - $2

Resistor - $1

Protoboard - $40
The group was able to borrow the Emotiv headset and SDK, the Arduino Uno, a
Protoboard, and a resistor from Winlab, and the ECE Department

The group paid out of pocket for the Infrared LED.

44

Manhours:
* 2 people working
* Roughly 136 hours total
o Note: This includes background research, and code development.
The number would be much smaller once the working code is already
discovered and used (which is currently the case)
Variations:
* Custom programming would need to be done for every Twitter account,
remote operation
o This could be done by the consumer, but for our purposes we are
assuming that this will be done before it reaches the consumer.
* Additional Manhours to program Twitter Account: 1-2 hours
* Additional Manhours to program new compatibility for operation on each

distinct appliance: 4-5 hours

7.2. Cost Analysis - Final Version

In order to accurately determine the cost analysis of the finished product, we
must take a different perspective than was used when considering the prototype.
All of the costs that were incurred while building the prototype, no longer apply.
Because our system is made of many different licensed consumer hardware,
and licensed open source software, our system would not be marketed with all of
the components presented in the project. Most likely it would be marketed as an
add-on to those that already possess those consumer products (this will be explored

45

in further detail in following sections). For this reason, the most expensive
materials that were procured in the prototype no longer have to be taken into
account (Emotiv products, Arduino Uno). Additionally because we would not be
licensed to send out Arduino Uno’s, the costs of other components (infrared LED’s,
resistors) would fall on the consumer. The hardware will have to be built by the
consumer. We will provide a manual guiding the consumer through installation, but
there are no packaging concerns on our end.

The next expense to consider is manpower. Building our project as a large-
scale product holds a distinct advantage in this category over the prototype. Most of
the man-hours spent making the prototype were dedicated to researching the
capabilities of our project, and developing the code that is in place. Because neither
of those things would have to be done, the large numbers of man-hours can be
significantly cut down. Because our product would have to be installed on the users
computer, very little work is needed on our part. A package would have to be
developed to automate installation, but that would be available for download on the
Internet, and would not require manual labor. Also, because there is a distinct way
(documented in section 2) to find out the infrared signatures of operations on
different products, a module could be deployed that would allow consumers to do it
themselves, further cutting down on labor needed on our end. Creating this package
would result in an initial spike in man-hours, but it would settle back down.

As with most open source projects, support can be done in a forum, and would
not need to be immediate (ie. phone line). This cuts down on man hours needed for

support. We would still need somebody to answer these forums but it would be a

46

significantly reduced number than if we had a dedicated customer support line.

In the end there are no real costs for our system. Because we are not
providing any physical hardware, and because our product will be available online
for download, there are no material costs. Because most of the development is done
(not including application packaging), and support can be done in a forum, there
does not need to be any workers hired (Mrunal and Rich will enough). Because
there were no startup costs in building the prototype, and no workers will be hired
there will be no startup costs. So taking this large-scale in reality will be quite a

cheap endeavor.

47

8. Manufacturability

As can be seen already, our system requires consumer products that are
licensed and already on the market. Additionally, the system uses open source
software that is also licensed. In reality, if this were a small time operation, this
probably would not matter. However in the interest of this report, we have to
assume that this would become a legitimate business. If this became a legitimate
business venture, we would have to gain permission from the companies that own
these products to use them and sell them in our package. This would be difficult to
do. Realistically, even if we gained permission, we would have to order these
products in bulk in order to get a reduced price. This is the only way that
manufacturing would be profitable. Buying $500 headset packages in bulk, even
with a markdown to $300 would be very difficult to handle considering we would be
starting our own business. That is not even taking into account the money spent on
purchasing Arduino Uno’s in bulk. This would most likely not be a successful
business venture.

Assuming that the previous option is not feasible, we could take the time to
develop our own propriety components. We would have to make our own headset,
our own microprocessor, and make new software that doesn’t run on the open
source programs we are currently using. This would take an incredible amount of
time and money. It is simply not realistic to assume that it would be possible for our
project to be extended to include a custom EEG headset and microprocessor.
Assuming we did create prototypes of both, it would be unrealistic to think that we

would be able to secure the funding needed to create facilities that could make these

48

things on the scale needed to start and maintain a successful company.

Consequently, it would be better to view this more as an open source project.
In this case, users would have to purchase the headset, the Arduino Uno, and an
infrared LED. We would provide instructions on what other open source programs
would be needed, and guide users on installing them and integrating them into a
system. It would be very easy to deploy the custom programs in their current state.
We would only need to package the code, and package a configuration module for
remote tools. We have code that allows a user to read the infrared LED signatures
off of any remote performing any function. We would need to make this code into
an easy to use module that would automatically fill in the values needed to integrate
these operations into our system. That would take a few man-hours, but it could be
done relatively easily.

The main “manufacturing” would, in essence, only be a few steps that the
current project team could do given a few more weeks. We would simply need to
make a website to deploy the project package for download, provide instructions on
installation and customization, and create a forum that would allow us to provide
support for the product. The forum could also serve as a place that would allow
users to share their customizations, and improvements. Our system would take on
the spirit of a true open source project. This means that there would be no cost
associated with “manufacturing” our product besides man-hours. Due to the fact
that there is no need for extra workers, it would just be members of the project

team. So, in reality, there would be no “manufacturing” cost at all.

49

9. Marketability

As mentioned in the previous section, we are taking the approach of an open
source project. As such, we are not pursuing any profit. Because there is no cost
deploying our project this is not a problem.

Luckily, this is actually a marketable idea. There is a big open source
community on the Internet that shares projects and improves them. The only
marketing we would need is to post our project on websites that publicize these

open source systems. Websites such as www.instructables.com feature open source

projects just like ours. Project creators provide instructions to install their program
and encourage people in the open source community to customize it and make it
better. There would be no mass marketing needed. The only marketing needed

would be postings on websites like www.sourceforge.net and on the forums of

products that we are featuring in our system. We would post in forums for Arduino,
Emotiv, and Processing. The people that visit these forums are the exact people that
would download and install our system and try to make it better. We are lucky that
there is a receptive community for our system and it is localized in places that are
easy to access.

One of the best things about having people work on our project is that it would
give us a large amount of people that will voluntarily develop our project and
improve it. These same people will also provide support for our project in our
forum on our website. We would have users effectively joining our development
and support team. Additionally we would be able to release updates to our product
that utilize the improvements made by the users. This is a common approach and is

50

used by companies such as Ubuntu that deploy open source products. This would
only occur two or three times a year, and thus would not take that much time from
the members of the project team.

Releasing our product in the open source community can allow our small
“company” to use essentially free labor to improve the product much more than

what would be possible for a propriety system being sold on the consumer market.

51

10. Individual Team Member Discussions

10.1. Rich Roman

10.1.1. Overview Discussion of the Project

This project integrates a number of consumer products and open source
software to open up a new medium of communication and new methods for user
convenience. We have enabled long-range communication by thought using the
Internet. We have utilized new technology to enable a new mode of completing
actions. Brain waves can now be used to communicate over great distances, and
control remote appliances around the house. This is all accomplished using the
Emotiv Epoc EEG headset, Twitter, and a custom remote tool that features an
infrared LED and the Arduino Uno microprocessor. We utilized programs such as
Mind Your OSC'’s, Processing, Python, and Arduino to form seamless communication

and cooperation between the components listed before.

The end result took on a different form than what was initially proposed.
The initial idea consisted of controling an Apple iPhone using a custom made
application and the Emotiv Epoc headset. The Apple iPhone turned out to be a road-
block. However we wanted to still use the “thought based” technology provided by
the EEG headset. Utilizing the Twitter API we were able to still send messages that

interacted with smartphones.

Further exploration of the product led the team down a few dead ends before
providing a clear path. We attempted to use the Arduino Ethernet Shield to

communicate over the Internet. It was abandoned altogether because of the lack of

52

convenience that it afforded the user. We also attempted to make our own headset
and replicate the functions of the Emotiv Epoc. This was a failed attempt due to lack
of project time and resources. This path can be pursued further by a team with

more time and resources (we attempted this towards the end of the semester).

Even at the beginning of the semester we understood that this project would
most likely not yield a viable consumer product. Due to the fact that we were
utilizing very cutting edge technology, the main goal was to produce something that
can be built upon further by other project groups or other developers. We were
able to produce a working prototype that shows that development can be done
using brain waves to accomplish tangible actions. As such, we chose to take the
approach of an open source project. We wanted to have a system that could be
made available to the public for no cost. This will encourage people in the open
source community to take on the task of further development. Having a large
sampling of possible users and developers would allow this project to further
improve and gain more features after the term of this project. Being as this was
more of an exploratory project, this approach fits right in with the mindset of the
group. One day, products that allow users to control products accurately and
effectively with their minds will be on the market. Hopefully we will be able to say

that our project helped to pave the way for those products to be developed.

53

10.1.2. Detailed Discussion of Pertinent Sub-Systems

My role in the project team was that of exploration and documentation. I
served the role of discovering the capabilities and limitations of the components in
use. I had to experiment with the consumer hardware to discover how what
capabilities we could use, and where the products needed to be extended. I had to
research and learn what could be done with the hardware components that would
be used. I found the limitations in the Arduino Uno in Internet connectivity along
with the limitations present with communicating with the necessary software
components. I also introduced and eventually abandoned the Ethernet Shield for
the Arduino Uno as well. It was introduced because it was the only way to allow the
Arduino Uno autonomous network connectivity. However, I soon realized that the
inconvenience it presented (already documented) overcame the benefits of its
inclusion in the project. I also explored interfacing our system with the Twitter API.
After trial and error with different programming techniques, I found the best way to
connect our components to the Twitter API. The information and methods I
discovered were used in both the Tweeting Module, which I designed and
implemented, and the Tweet Recognition Module. I also assisted Mrunal in the
construction of our headset prototype, which upon further research and exploration

was eventually discarded.

[also assumed the role of providing full documentation. A successful project
must be accompanied with comprehensive documentation in order to give the

project team the credit that it deserves. I provided and compiled most of the official

54

documentation. I compiled the proposal, design reports, and most of this document
in the best way to communicate the strengths, weaknesses, accomplishments,

failures, and heartaches that the project team encountered along the way.

[am extremely proud of the finished product that Mrunal and I have put
forth. With hard work and determination, we were able to explore a new
technology and make some headway in the field of brain control. Maybe one day
our advisor Dr. Daut will have the ability to input the grade of this project into his

computer just by thinking of the letter A.

10.2. Mrunal Shah

For the whole project I was heavily involved in making sure that we didn’t hit any
compatibility issues. We went through 5 iterations, each one having its own set of
compatibility issues. Consequently we had to discard few design to achieve our
desired goal. Since a private company makes Emotiv headset and since it’s not open
source, compatibility was a big issue. Also since the way Emotiv headset
communicates with the computer is encrypted, we had to work around passing
information through set of software each doing its own specific thing. Emotiv
headset’s working along with its tech specs has been heavily discussed in the
sections above. Information from Emotiv Headset is passed to open source software
named “Mind Your OSCs” which converts the information coming headset into

packets of useable information, which can be used for processing. [was involved till

55

this process and Richard worked on how after passing information to Processing,
connections to twitter was made so that data could be sent to someone far away. I
worked on getting information back to Arduino board using custom python script
that parsed information looking for certain keywords. How Python works and its
detailed technical information is discussed in the sections above. Also I was heavily
involved in prototyping of Arduino remote control using infrared LED. Using custom
circuit I was able to get the waveform on the oscilloscope for further analysis. 36
relevant bits of information were exchanged at 38kHz frequency. I was able to
successfully find out distances between each pulse and program that on Arduino so

that we could use it as remote control.

56

Appendices

Appendix 1 - List of Equipement

=

Emotiv Epoch EEG Headset

2. Arduino Microcontroller, Board Model : UNO

3. IR-LED, Radio Shack SKU/No Cat 276-0142

4. 38kHz IR receiver module, Radio Shack SKU/No Cat 276-640
5. Breadboard obtained from the lab

6. Oscilloscope

7. Laptop

Appendix 2 - Program Code

1. Sampling Algorithm: used by Emotiv Epoc EEG Headset[1]

FixTimeStamps(SAMPLING_RATE)
miliSecondsPerSample 1000=SAMPLING_RATE
referenceTime nil

no0

for all sample do

if referenceTime = nil then

referenceTime getTimeStamp(sample)

57

end if

setTimeStamp(referenceTime+(n _ miliSecondsPerSample))

n n+l

end for

2. Artifact Algorithm: used by Emotiv Epoc EEG Headset[1]
findPeaks(y, mean, stdDev)

PEAK_LIMIT <- 3.5 .stdDev
CLUSTERING_DISTANCE <- 300

artifacts ;

lastArtifact (1,1)

fort=1tondo

if yt > PEAK_LIMIT then

ift CLUSTERING_DISTANCE <- lastArtifact
then

{extend the last artifact}

lastArtifact

else

{add a new artifact}

if lastArtifact = (6 1,1) then

artifacts artifacts [lastArtifact

lastArtifact (t,t)

end if

58

end if

end if

end for

if lastArtifact = (6 1,1) then
artifacts artifacts [lastArtifact
end if

return artifacts

3. Arduino Sketch: used in Remote Operation Module
Note: comments that explain code are on lines starting with //

int sentDat; // defining sentDat object
int IRledPin = 13; // defining pin 13 as IR-LED pin
void setup() {
Serial.begin(9600); // telling Arduino to communicate using port 9600
pinMode(IRledPin, OUTPUT); // tell Arduino that pin 13 is IR-LED pin
}
void loop() {
if (Serial.available() > 0) { // start sending information when the port become
available
sentDat = Serial.read();
//red control
if(sentDat == 'a"){ //if character “a” comes from python code send pulse IR-LED

SendTVCode();

}

59

}
// This procedure sends a 38KHz pulse to the IRledPin

// for a certain # of microseconds. We'll use this whenever we need to send codes
void pulselR(long microsecs) {
// we'll count down from the number of microseconds we are told to wait
cli(); // this turns off any background interrupts
while (microsecs > 0) {
// 38 kHz is about 13 microseconds high and 13 microseconds low
digitalWrite(IRledPin, HIGH); // this takes about 3 microseconds to happen
delayMicroseconds(10); // hang out for 10 microseconds
digitalWrite(IRledPin, LOW); // this also takes about 3 microseconds
delayMicroseconds(10); // hang out for 10 microseconds
// so 26 microseconds altogether
microsecs -= 26;

}

sei(); // this turns them back on

}

void SendTVCode() {

// This is the code we got from out remote by pulsing On/Off.
//pulselR(microseconds); we find out microseconds from Oscilloscope.
pulselR(8840);

delayMicroseconds(4280);

pulselR(620);

delayMicroseconds(460);

60

pulselR(620);
delayMicroseconds(480);
pulselR(620);
delayMicroseconds(480);
pulselR(600);
delayMicroseconds(1600);
pulselR(600);
delayMicroseconds(1600);
pulselR(620);
delayMicroseconds(1580);
pulselR(620);
delayMicroseconds(480);
pulselR(620);
delayMicroseconds(480);
pulselR(620);
delayMicroseconds(1580);
pulselR(620);
delayMicroseconds(1600);
pulselR(600);
delayMicroseconds(1600);
pulselR(620);
delayMicroseconds(480);
pulselR(620);
delayMicroseconds(480);

pulselR(620);

61

delayMicroseconds(480);
pulselR(620);
delayMicroseconds(1600);
pulselR(600);
delayMicroseconds(1600);
pulselR(620);
delayMicroseconds(480);
pulselR(600);
delayMicroseconds(1600);
pulselR(620);
delayMicroseconds(480);
pulselR(600);
delayMicroseconds(500);
pulselR(600);
delayMicroseconds(1600);
pulselR(620);
delayMicroseconds(480);
pulselR(600);
delayMicroseconds(480);
pulselR(620);
delayMicroseconds(480);
pulselR(620);
delayMicroseconds(1600);
pulselR(600);

delayMicroseconds(480);

62

pulselR(620);
delayMicroseconds(1600);
pulselR(600);
delayMicroseconds(1600);
pulselR(620);
delayMicroseconds(460);
pulselR(620);
delayMicroseconds(1600);
pulselR(600);
delayMicroseconds(1600);
pulselR(620);
delayMicroseconds(1600);
pulselR(600);
delayMicroseconds(39820);
pulselR(8860);
delayMicroseconds(2120);
pulselR(620);
delayMicroseconds(28160);
pulselR(8840);
delayMicroseconds(2140);
pulselR(620);
delayMicroseconds(28140);
pulselR(8840);
delayMicroseconds(2140);

pulselR(620);

63

delayMicroseconds(28140);

}

4. Python Code: used by Tweet Recognition Module

Note: comments that explain code are on lines starting with #

import serial
import twitter
import time
#setup the serial port.
ser = serial.Serial('/dev/tty.usbmodemfd131’, 9600, timeout=1)
#Access the Twitter API with your unique key
api = twitter.Api(consumer_key="dOnOE8]1zj6 RWHIL{7 0w,
consumer_secret='"D5wCQe1CUBqFwN6ilyulvzOoVGI379yyUjbCBa88’,
access_token_key='223248327-
WecHEZhwtxaKr3rCStmwy0G5n4uRCoGHSS60gEQm’,
access_token_secret="QkmitdIRKIp]JJ6cb4YHmAepgRcC6XEbTZHSA9JH2UIO0")
while(1):

#Look at @ mentions from Twitter api

TweetAtMe = api.GetMentions()

TweetList = [u.text for u in TweetAtMe]

#Look at most recent @ mention

RecentPost = TweetList[0]

64

print RecentPost

#splits the most recent post into discreet words

#and stores these words in a list

CurrentTweetList = RecentPost.split()

#checks to see what #colors are in the list

#and sends serial commands to the Arduino accordingly

#currently checking for three colors, but capable of 4 (see below)

if "#red" in CurrentTweetList:
print "list contains”, "#red"
ser.write('a")

else:
print "no white"

ser.write('b")

if "#nored" in CurrentTweetList:

print "list contains”, "#nored"
ser.write('c")

else:
print "no red"

ser.write('d")

if "#white" in CurrentTweetList:

print "list contains”, "#white"
ser.write('e")

else:

65

print "no white"
ser.write('f")

Conditional statement for unused color port

3+

Set it to be whatever color you like

3+

if "#blue" in CurrentTweetList:

3+

print "list contains”, "#blue"

3+

ser.write('g")
else:
print "no blue”
ser.write('h")
#Checks the current status of the rate at which you are allowed to access Twitter
#Delays for minimum rate limit wait time plus one second
#This allows you to ping twitter as much as possible without exceeding the limit
and getting blocked
rateLimitWait = api.MaximumHitFrequency/()
print rateLimitWait

time.sleep(rateLimitWait + 1)

5. Processing Code: used by Tweeting Module

Note: comments that explain code are on lines starting with //
import oscP5.%;

import twitter4j.conf.*;

import twitter4j.internal.async.*;

66

import twitter4j.internal.org.json.*;
import twitter4j.internal.logging.*;
import twitter4j.auth.*;

import twitter4j.api.*;

import twitter4;j.util.*;

import twitter4j.internal.http.*;
import twitter4j.*;

//setting of OAuth variables as Twitter account credentials
static String OAuthConsumerKey = "hOKCMtICQzCPIDQLYcBkg";
static String OAuthConsumerSecret =
"IKgHOTxbYVO6n6TS52iynFHLQTMACcgZCsul2bMwwy08";
static String AccessToken ="526114727-
5ZBaRMuM3doWuUD27AbXoH9qG8ctpm2T0IGmD]Qc";
static String AccessTokenSecret =
"IfZm7VI2AcBVHAE8c1le3oUvceBCZoOu7JLdcDgzXQ";

//initialization of environment variables for other programs
Twitter twitter = new TwitterFactory().getInstance();

Arduino arduino;
OscP5 oscP5;

float disappear = 0;
float push=0;

float pull=0;

float lift = 0;

67

//initial program setup

void setup() {
size(125, 125);
frameRate(10);
background(0);
printin(Seriallist());
loginTwitter();

//functions that capture OSC values from Mind Your OSC'’s
oscP5 = new OscP5(this, 7400);
oscP5.plug(this,"getDisappear”,"/COG/DISAPPEAR");
oscP5.plug(this,"getPush”,"/COG/PUSH");
oscP5.plug(this,"getPull","/COG/PULL");

oscP5.plug(this,"getLift"," /COG/LIFT");

//functions that take OSC values and assign them to a variable
void getDisappear (float theValue) {
disappear = theValue;
println("OSC message received; new disappear value: "+disappear);
}
void getPush (float theValue) {
push = theValue;

println("OSC message received; new push value: "+push);

}

68

void getPull (float theValue) {
pull = theValue;
println("OSC message received; new pull value: "+pull);
}
void getLift (float theValue) {
lift = theValue;
println("OSC message received; new pull value: "+lift);
}
//function that logs into Twitter using OAuth
void loginTwitter() {
twitter.setOAuthConsumer(OAuthConsumerKey, OAuthConsumerSecret);
AccessToken accessToken = loadAccessToken();
twitter.setOAuthAccessToken(accessToken);
}
//utility function for loginTwitter()
private static AccessToken loadAccessToken() {
return new AccessToken(AccessToken, AccessTokenSecret);
}
//function that posts a tweet to Twitter
void postMsg(String s) {
try {
Status status = twitter.updateStatus(s);

println("new tweet --:{ " + status.getText() + " }:--");

69

}

catch(TwitterException e) {

println("Status Error: " + e + "; statusCode: " + e.getStatusCode());

}
}

//main function of program
void draw() {
background(0);
float count = random(50); //random number generator
text("simpleTweet_00", 18, 45);
text("@msg_box", 30, 70);
//pre-loaded tweets
String pushMes="@mrunalshah6";
String disMes="@rlroman90 help me";
String liftMes = "I'm tweeting by thinking!";
//threshold determinators - tweet a simple message if OSC value is greater
//than threshold
if(disappear >=0.5) {
postMsg(disMes);
}
else if(push >= 0.5) {
pushMes = pushMes + “ count” + “ #red”; //add count to tweet so each submitted

//tweet is unique and will not be rejected by the Twitter API

70

//#red is the keyword that turns on and off the television

postMsg(pushMes);

}

else if(pull >= 0.5) {
pushMes = pushMes + “ count” + “ #white”; //#white is the keyword that stops the
//television operation

postMsg(pushMes);

}
else if(lift >=0.5) {

postMsg(liftMes);

}
}

6. Baseline Removal Algorithm: used by the Emotiv Epoc Headset [1].

The purpose of the algorithm is to remove the mean of recording, so that values of

the signal would be distributed around zero.

size <-64

initBuffer(buffer, size)

fori=1tondo

push(buffer, xi)

if n _size then

71

size xi <-mean(buffer)

end if

end for

returny

72

References

. EEG’s Signal Processing and Emotiv’s Neuro Headset by Andre Hoffmann

http://data.text20.net/documentation /thesis.emotivsp.pdf

. Arduino - Arduino Board Uno

http://arduino.cc/en/Main/ArduinoBoardUno

. Emotiv Software Development Kit — User Manual

UserManual.pdf

. Mind Your OSC'’s

http://sourceforge.net/projects/mindyouroscs/

. The Open Sound Control 1.0 Specification

http://opensoundcontrol.org/spec-1 0

. Processing

http://processing.org/about/

73

7. oscP5 Processing Library

http: //www.sojamo.de/libraries/oscP5/

8. Twitter4j Processing Library

http: //twitter4j.org/en/index.html

9. OAuth

http://oauth.net/about/

10. Python

http://www.python.org/about/

11. pySerial Python Library

http://pyserial.sourceforge.net/

12. simplejson Python Library
http: i.python.or i/simplejson
13. JSON

http://www.json.org/

14. httplib2 Python Library

http://code.google.com/p /httplib2

74

