
1

CPU Sim 3.1

A Tool for Simulating Computer Architectures for CS3 classes

1. Abstract

CPU Sim 3.1 is an educational software package written in Java for use in CS3 courses.

CPU Sim provides students an active learning environment in which they can design, modify, and

compare various computer architectures at the register-transfer level and higher. They can run

assembly-language or machine-language programs for those architectures through simulation.

CPU Sim is a complete development environment, including dialog boxes for designing the CPU

architecture, a text editor for editing assembly language programs, an assembler, several display

windows for viewing the registers and RAMs during the execution of programs, and many

debugging features such as the ability to step forward or backward during execution, inspecting

and optionally changing the values in the registers and RAMs after each step. These features and

suggested uses of CPU Sim in CS3 classes are discussed.

2. Introduction

In a CS3 course, students should not only read about various computer architectures, but

should ideally have active hands-on experience with such architectures. Unfortunately, providing

this experience can be difficult due to the cost of providing a lab with the necessary hardware and

the time required for students to become proficient in the use of the tools for working with the

hardware. For this reason, many CPU simulators have been developed [Abbatista et al. 2000;

Agren 1999; Yehezkel et al. 2001; Yurcik 2001].

2

Unfortunately, most of these packages simulate only one fixed architecture. We feel that

students should be exposed to several computer architectures and ideally should have hands-on

experience with as many of them as possible, and even have hands-on experience at designing

some simple architectures. With the use of a simulator that allows students such control over the

simulation, instructors have many more opportunities for providing valuable learning experiences.

For example, one possible approach would be to give students an architecture and a series of

assignments that repeatedly ask the students to add new features to it, such as new addressing

modes, new machine instructions, or new registers, to make programming easier for that

architecture. At each stage, the students would also be given assembly language programming

assignments that emphasize the advantages of the new features being added.

CPU Sim is an tool that was designed to facilitate such interactive hands-on learning.

With CPU Sim, students can design their own architectures from scratch or modify architectures

given to them. They can simulate a variety of architectures, including accumulator-based, register-

based (RISC), and stack-based CPU’s, for example, and they can run programs on them without

the need of any physical hardware other than the computer on which CPU Sim is run.

With CPU Sim instructors can give students hands-on experience with the following topics

in the IEEE/ACM Computing Curriculum [IEEE/ACM 2001]

• Numeric data representation and number bases

• Representation of nonnumeric data

• Microprogrammed realization of the CPU

• Control unit; instruction fetch, decode, and execution

• Instruction types (data manipulation, control, I/O)

• Instruction formats

• Assembly/machine language programming

3

• Addressing modes

a) Main memory organization and operations

The knowledge of a high-level language is not a prerequisite to understanding and using

CPU Sim but an appreciation of what is involved in programming with a high-level language is

useful.

The author has successfully used CPU Sim in his introductory machine organization class

since 1989, in conjunction with the text “Structured Computer Organization” [Tanenbaum, 1999].

CPU Sim was not designed specifically to be used with that book, but it works well with it.

The precursor to CPU Sim can be found in [Kerridge et al. 1980]. CPU Sim version

1.0.13 and its uses in the classroom were discussed in [Skrien et al. 1991]. A later version (2.2)

was discussed in [Skrien 1994] The current version of CPU Sim, version 3.1, was written using

Java 2 and the Swing package. It has been tested on computers running MacOS X, Windows

98/NT/2000, and Linux.

This paper discusses the features of CPU Sim 3.1, how to use it, and gives some sample

assignments. The details of those assignments and their solutions are available from the author.

3. Main Display of CPU Sim

When CPU Sim, is started, the main display window appears (see Figure 1). Except for

some dialog boxes and help windows, all windows are internal to this main window. The internal

windows include ones that display the contents of registers and RAMs and ones that contain text

such as assembly programs. Each of these inner windows and many of the menu items are

discussed in later sections of this paper.

4

Figure 1. CPU Sim s main display window.

4. Design Features of CPU Sim

In CPU Sim, architectures are designed at the register-transfer level. That is, the user

specifies the registers, main memories (RAM), microinstructions, machine instructions, and

5

assembly language instructions for a hypothetical machine.

A machine instruction is implemented by a sequence of microinstructions called its

execute sequence . The user specifies the execute sequence of all machine instructions and so

the user has complete control over the semantics of every instruction. When CPU Sim executes a

program, it repeatedly executes machine cycles that consist of a fetch sequence (a sequence of

microinstructions specified by the user) followed by the execute sequence of the machine

instruction that was fetched.

4.1. Specifying the Hardware Components

If users are building a new architecture from scratch, they will need to create first the

basic hardware components of the CPU. One type of component is a register or register array.

Users can create as many registers and register arrays as they wish, with arbitrary widths

(number of bits). For each register, the user specifies a name and the width. For each register

array, the user specifies a name, the number of registers in the array, and the width of all

registers. These arrays are specified through the dialog box shown in Figure 2. If an array of 16

registers is named A , then CPU Sim automatically gives each individual register in the array the

names A[0] , A[1] , , A[15] .

6

Figure 2. The dialog for edited register arrays.

Another type of hardware component that the user must specify is memory or RAM. A

RAM is byte-addressable and each RAM is accessible by the CPU only through memory

access microinstructions, which transfer data between registers and RAMs. The user can

specify as many RAMs as desired, each with their own size. For example, the user may wish to

create three RAMs, one to hold the code, one to hold the stack, and one to hold the heap, or the

user may wish to use only one RAM to hold everything.

The last type of hardware component the user specifies is a condition bit (see Figure

3). Condition bits are just specific bits of existing registers that can be set to 1 by

microinstructions and optionally by arithmetic operations if an overflow or carry out occurs. For

example, a typical status register with NZVC bits can be specified this way. The user can also

specify whether the setting of a condition bit will halt the execution of the current program.

7

Figure 3. The dialog for editing condition bits.

4.2. Specifying the Microinstructions

The user next creates microinstructions for manipulating the data in the registers and

RAMs. The microinstructions involving arithmetic operations assume that integer values are

stored in two s complement representation. There are 15 kinds of microinstructions that can be

created:

1. Transfer (or copy) operation between two registers. The user specifies the registers, the

subset of consecutive bits of the source register that are to be copied, and the subset of

consecutive bits of the destination register into which the data is to be copied. See Figure 4

for the dialog for editing transfer microinstructions.

8

Figure 4. The dialog for editing transfer microinstructions.

2. Transfer operation from a register to a register in an array. In addition to the register-to-

register transfer specifications, the user specifies which bits of which register contain the

index of the destination register in the array.

3. Transfer operation from a register in an array to a register. This operation is similar to the

preceding kind of microinstruction.

4. Integer arithmetic operation (addition, subtraction, multiplication, division). The user

specifies the operation, the two source registers, the destination register, and whether any

condition bits should be set if overflow or carry out occurs. Note that there is no floating point

support in CPU Sim.

5. Logical (boolean) operation. The user specifies the operation (and, or, nand, nor, xor, not),

the source registers, and the destination register.

6. Shift operation. The user specifies the type of shift (logical, arithmetic, or cyclical), the

direction of the shift (left or right), the amount of shift, and the source and destination

registers.

9

7. Test operation on bits of a register. These microinstructions allow jumping to other

microinstructions forward or backward within a microinstruction sequence. The test

microinstruction compares the value in part of a register with a specified value. If the

comparison succeeds, then a specified number of successive microinstructions in the current

sequence are skipped over. The user specifies the comparison to be used (=, <, >, <=, >=),

the value to be compared, the register, the bits of the register to be tested, and the amount to

jump if the test succeeds.

8. Branch operation. This microinstruction is like a test microinstruction except that it is an

unconditional jump. The user specifies the amount to jump, which can be positive or

negative.

9. Increment operation. The user specifies the register to be incremented, the amount of the

increment, and whether any condition bits are to be set if overflow or carry out occurs.

10. Set operation. This operation sets a specified part of a register to specified value. The user

chooses the register, the consecutive bits of that register that are to be set, and the value.

11. Set condition bit operation. This operation sets a condition bit to 0 or 1. The user chooses

the condition bit and the value to which it is to be set.

12. Memory access operation. The user specifies a data register, an address register, the RAM,

and the direction of data movement (read or write).

13. I/O operation. The user specifies a buffer register to or from which data is to be moved, the

direction of data movement (input or output), the type of data being moved (integer, ASCII,

or Unicode), and the external source or destination of the data (either a dialog box for

interaction with the user or a text file specified by the user for batch mode).

14. Decode operation. This operation is used in the fetch sequence and causes the contents of a

10

specified instruction register to be decoded and the decoded machine instruction to be

executed.

15. End operation. This operation indicates the end of the execution of the current machine

instruction and tells CPU Sim to jump to the first microinstruction in the fetch sequence, and

so start a new machine cycle.

4.3. Specifying the Machine Instructions and the Fetch Sequence

The user specifies the semantics of each machine instruction by a sequence of

microinstructions called its execute sequence . Therefore the user can create very simple

instructions such as incrementing a register or very complex instructions with elaborate

addressing schemes involving multiple registers and main memory. The user can create

instructions that are RISC-like, in that they all have the same length and layout, or the user can

choose CISC-like instructions with variable lengths and a variety of layouts.

11

Figure 5. The dialog for editing machine instructions.

 In addition to the execute sequence, the user specifies a name for each machine

instruction, an opcode, and a sequence of field lengths. The sum of the field lengths is the length

(in bits) of the instruction. The first field corresponds to the opcode and the remaining fields

correspond to operands of the instruction. See Figure 5 for the dialog box for editing machine

instructions.

CPU Sim also has a dialog box in which the user can specify the fetch sequence. The

fetch sequence is a sequence of microinstructions that CPU Sim executes at the beginning of each

machine cycle. Users can specify any sequence they wish, but the fetch sequence usually

includes microinstructions that fetch the next machine instruction, place it in an instruction

register, increment a program counter, and then decode the instruction in the instruction register.

4.4. Saving and Viewing the Specification

Once an architecture has been specified, the user can save this specification in an XML

file for later reloading into CPU Sim and editing. The user can also save the machine specification

in an HTML file which can be viewed with any web browser.

5. Writing and Running Programs in CPU Sim

Once a complete CPU architecture has been specified, the user can write machine language

or assembly language programs and run them on that CPU through simulation. For writing such

programs, CPU Sim has a built-in text editor, including all the cut/copy/paste/find/replace/print

facilities desired of such an editor.

12

Machine language programs are written as text in the form of a sequence of 0’s and 1’s on

each line followed optionally by comments. These programs can be loaded into any specified

RAM and then executed. See Figure 6 for a sample machine language program.

Figure 6. A simple machine language program.

In assembly language an instruction is written using the name of a machine instruction

followed by a list of values (either constants or symbols), one for each field of the instruction. For

example, an instruction to add the contents of register A[0] to A[1] might look like

add A0, A1

where A0 and A1 are equates with values 0 and 1, indicating the indices of the registers to be

added. See the window labeled “W1-0.a” in Figure 1 for a sample assembly language program.

Assembly programs can also include the definition of equates, the definitions and calls of

macros, and pseudoinstructions such as a “data” directive that initializes parts of memory to

specified values or an “include” directive that inserts the contents of another file in the current

program before assembly.

Once an assembly program has been written and saved to a file, it can be assembled. The

CPU Sim assembler will check for errors in the code and, if there are such errors, it will display an

error message and highlight the offending line in the assembly code. If no errors occur, the

13

assembled machine code can be loaded into any specified RAM, the user can initialize any of the

registers to specified values, and then execution of the program can begin.

If during execution the user’s program requests input from the user, a dialog box appears

asking the user to type in a value. If the program specifies output to the user, this output appears

in a dialog box. Input and output can also be directed to and from a file.

Once the program halts (because a condition bit was set to 1, an error occurred, or the user

selected the “Stop” menu item) the user can inspect the state of the machine, including the contents

of the registers and RAMs.

6. Special Features of CPU Sim

Some of the strengths of CPU Sim include its display of registers and RAMs, its editing

and debugging aids, and its help facilities, all of which make it easier for the user to understand

what is happening as a program is executing.

6.1. Displaying Registers and RAMs

The user can view the contents of the registers and RAMs though windows (for example,

see the windows labeled “Registers” and “RAM Main” in Figure 1). The contents of the registers

can be viewed and edited, if desired, in either decimal, binary, or hexadecimal. A decimal value is

converted to or from a binary value using two’s complement representation. The values in each

RAM can also be displayed in these bases. In addition, the RAM values can be displayed and

edited in groups of 1 to 8 bytes, corresponding to the word size of the architecture being simulated.

Furthermore, RAM windows include a column for comments associated with each word of

memory, which provides a way for the user to indicate the contents of the word. The assembler

initializes the entries with the comments on the end of each line of assembly code. That is, if a line

of the assembly program is:

add sum ; add sum to the acc

14

then the assembler and loader will put the assembled code in the RAM and will put the comment in

the corresponding comment column of the RAM window.

6.2. Editing and Debugging

CPU Sim has a debugging mode that users can enter when they wish to step through the

execution of the program one machine instruction or one microinstruction at a time. (See Figure 7

for the toolbar that appears when users enter debugging mode.) After each such step, the user can

inspect and optionally edit the state of the machine. CPU Sim can also be configured to highlight

cells of RAMs whose addresses are in certain registers. For example, the top of the stack can be

highlighted, as well as the next instruction to be executed. At any point when in debug mode, the

user can also back up one machine instruction at a time (all the way back to the original state of the

machine when debug mode was entered). This ability to step forward and backward through the

code makes pinpointing hardware or software errors almost trivial.

If the program gets into an infinite loop, the user can choose “Stop” from the Execute

menu, and the program will be halted.

Figure 7. The debugging toolbar.

6.3. Getting Help

Virtually the whole user’s manual is available online with CPU Sim. In addition to a

general help window (see Figure 8), many dialog boxes have “Help” buttons that bring up the

online help for that dialog box.

15

Figure 8. The CPU Sim help window.

7. Sample Assignments using CPU Sim

A series of open and closed lab exercises using CPU Sim has been created by the author to

introduce CS3 students gradually to more and more complex machine architectures. These

exercises expose the students to an accumulator-based machine, a RISC-like machine (with regular

instruction layout and arrays of general-purpose registers), and a stack-based machine (the Java

Virtual Machine or JVM). The lab exercises are assigned approximately once or twice a week in a

14-week semester, with the first lab occurring in the second week of the semester. The students

are given about a week to complete each assignment.

 The lab exercises are summarized here. The complete assignments and their solutions can

be obtained from the author.

16

7.1. Introduction to the Wombat1

Before learning to use CPU Sim, the students are given an exercise in which they are

presented with a hypothetical machine (the “Wombat1”, a simple accumulator-based machine with

only 12 machine instructions, no stack, and only direct addressing) and two programs for that

machine written in binary machine language. The first program is documented and the second is

not. The students are asked to modify the first program to do something slightly different and to

figure out what the second machine language program does. The purpose of this pre-lab

assignment is (a) to get the students comfortable with the architecture of the Wombat1 before

seeing it in the CPU Sim environment, and (b) to get them to appreciate assembly language by

having to program first in binary machine language.

7.2. Introduction to CPU Sim

In the first (closed) lab, the students are introduced to CPU Sim and are asked to step

through the introductory tutorial given in the CPU Sim user’s manual. Then the students are asked

to redo the previous pre-lab assignment using assembly language instead of machine language, and

finally run the resulting program in the CPU Sim environment.

After this first closed lab, all assignments are open lab assignments.

7.3. Optional Wombat1 Interpreter

One option at this point is to ask the students to write a Wombat1 interpreter in their

favorite high-level language. The interpreter should take as input a text file containing a Wombat1

machine language program (in 0’s and 1’s as described above) and should execute that program.

This project helps the students understand the Wombat1 better and gives them a feeling for how

simulation and interpretation works.

7.4. Introduction to the Wombat2

17

The next assignment is to write a more complicated assembly language program for the

Wombat1 that accesses memory frequently. After a discussion of the costs of accessing memory,

students are given the Wombat2, which is similar to the Wombat1 except it has an array of 4

general-purpose registers and all machine instructions refer to those registers instead of an

accumulator. The students are then asked to redo the previous assignment, this time minimizing

memory references through efficient use of the 4 general-purpose registers for holding intermediate

results.

7.5. Limitations of the Wombat2

The next assignment asks the students to write a program for the Wombat2 that reverses an

arbitrarily long list of integers. Such a program can easily be written for a CPU with a stack or

with instructions with indirect or indexed addressing modes, but the only way the Wombat2 can

accomplish this task is with self-modifying code. This exercise not only teaches the students the

limitations of a machine with no stack and only direct addressing, it provides a good starting point

for a discussion of the advantages and disadvantages of self-modifying code.

7.6. Wombat3

For the next several assignments, the students are not given any more hypothetical

architectures. Instead, they are asked to gradually enhance the Wombat2 themselves, to give it

more power. For example, the students are asked to create the Wombat3 from the Wombat2 by

adding a stack, a new stack pointer register, and push and pop machine instructions to the

Wombat2. They then are asked to redo the previous assignment using the stack, to see how much

easier reversing a list of integers is using the new features.

7.7. Wombat4

The next enhancement, which results in the Wombat4, is to add call and return machine

instructions, allowing subroutine calls. Then students are given assignments to write subprograms

18

using value parameters and recursion.

The students typically have a little trouble with this assignment since there is still no

addressing mode in the Wombat4 other than direct addressing, which means that the only practical

way to access the values on the stack is by popping them off first.

7.8. Wombat5

The students are next directed to create the Wombat5 by adding indirect, stack-relative, and

immediate addressing modes, which allow the proper development and use of stack frames and

allow call-by-address parameters in subroutine calls. Students are asked to rewrite previous

programs using subroutines that properly use and maintain stack frames. They are also asked to

manipulate arrays on the stack via indirect addressing. Some example manipulations are finding

the minimum of or sorting the array.

7.9. Wombat6

 To make working with arrays even easier, the students can then create the Wombat6 from

the Wombat5 by adding an index register and indexed-addressing mode and they redo the previous

array-manipulation assignment using indexed addressing.

7.10. Wombat7

To make the Wombat6 more realistic, the final step in this series of assignments is to add

bit operations (and, or, xor, not), and shift operations to form the Wombat7. Then the students are

asked to write a program using these new operations to manipulate data stored in binary-coded

decimal format.

7.11. JVM1

About half-way through the semester, the students are given a simplified version of the

Java Virtual Machine (JVM), so that they can get exposure to a CISC-like stack-based architecture.

19

This machine is almost identical to the IJVM discussed in [Tanenbaum 1999] except that it contains

only 24 machine instructions, none of which allow the user to store values in variables and so

require all data to be stored on the stack by means of pushing and popping. The students are asked

to write simple programs for the JVM1 to get used to this new architecture and then they are asked

to write slightly harder programs that require complex stack manipulations due to the lack of

variables. See Figure 9 for a simple JVM1 program.

Figure 9. A simple JVM program.

7.12. JVM2

Students are asked to create the JVM2 from the JVM1 by adding three new machine instructions

which allow storing, loading, and incrementing local variables on the stack and then they are asked

to redo the previous assignment.

7.13. JVM3

The students create the JVM3 from the JVM2 by adding procedure calls and returns. After adding

such instructions, students are asked to write recursive programs, such as a simple factorial

program, to test the call and return instructions. This turns out to be a quite difficult assignment if

the JVM stack frames follow the layout described in [Tanenbaum 1999].

20

7.14. JVM4

The final improvement, which leads to the JVM4, is the addition to the JVM3 of instructions that

perform the creation of and allow access to arrays in the heap. Students are asked to write a

sorting routine for such an array.

8. Conclusion

CPU Sim is a CPU simulation program designed for use with CS3 courses that allows the students

to create or modify the architectures being studied. It is an interactive learning environment in

which students can create, study, and modify a variety of simple architectures at the register-

transfer level. It is a fully-integrated package that includes text editors for writing programs, an

assembler, on-line help, and many debugging tools to help the user easily modify the architectures

and then write and execute programs on those architectures.

9. References

ABBATTISTA, F., dell Aquila, C., Pizzutilo, S., Tangorra, F. 2000 An Object Oriented

Simulator of Computer Microarchitectures. Proceedings of the IASTED International

Conference on Modelling and Simulation, Pittsburgh , USA (May).

AGREN, O. 1999 Teaching Computer Concepts Using Virtual Machines. SIGCSE Bulletin,

June 1999, Vol. 31, No. 2, pp. 84-85.

The Joint IEEE Computer Society/ACM Task Force on the "Year 2001 Model Curricula for

Computing". Online. Internet. [August 1, 2001]. Available WWW:

http://www.computer.org/education/cc2001/index.htm.

21

KERRIDGE, J. and Willis, N. 1980 A Simulator for Teaching Computer Architecture. SIGCSE

Bulletin, July, Vol. 12, No. 2, pp. 65-71.

SKRIEN, D. and Hosack, J. 1991 A multilevel simulator at the register transfer level for use in an

introductory machine organization class. SIGCSE Bulletin (Papers of the 22nd

ACM/SIGCSE Technical Symposium on Computer Science Education), March, Vol. 23,

No. 1, pp. 347-351.

SKRIEN, D. 1994 CPU Sim: A Computer Simulator for Use in an Introductory Computer

Organization Class. Journal of Computing in Higher Education, Fall, Vol. 6(1), pp. 3-13.

TANENBAUM, A. Structured Computer Organization, 4
th

 ed., Prentice Hall, 1999.

YEHEZKEL, C., Yurcik, W., and Pearson, M. 2001 Teaching Computer Architecture with a

Computer-Aided Learning Environment: State-of-the-Art Simulators, in Proceedings of

the 2001 International Conference on Simulation and Multimedia in Engineering

Education (January).

YURCIK, W., Wolffe, G., and Holliday, M. 2001 A Survey of Simulators Used in Computer

Organization/Architecture Courses. Proceedings of the 2001 Summer Computer

Simulation Conference (July).

