
TianSiak
Placed Image

TianSiak
Text Box
9 May 2008

TianSiak
Text Box
9 May 2008

TianSiak
Placed Image

 iii

SAFETY CABINET ALARM SYSTEM

FOO KON SIAN

A thesis submitted in fulfillment of the

requirements for the award of the degree of

Bachelor of Electrical Engineering

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

MAY 2008

 v

Specially dedicated to my beloved family and friends

 vi

ACKNOWLEDGEMENT

First of all, I would like to express my sincere appreciation to my supervisor,

Encik Ismail Bin Ariffin for his guidance, advice and assistance throughout the

process of fulfillment of this final year project.

I am very grateful to get the guidance and advice from other lecturers in

INSEED and the sources given by them are useful indeed.

I would also like to take this opportunity to thank my beloved parents and

siblings for always mentally and financially supporting me while completing this

project.

My fellow course mates should also be recognized for their support. My

sincere appreciation also extends to all my friends and others who have provided

assistance at various occasions. Their views and tips are useful indeed.

Unfortunately, it is not possible to list all of them in this limited space.

 vii

ABSTRACT

In our country, Malaysia, there are many house breaking cases happen among

the citizen, especially at Johor Bharu. Because of these problems,

administrator/professional/resident from various sectors really needs the alarmed

system to ensure safety of their cash money or valuable things. As for this project, a

safety cabinet alarm system (Anti-thief System) will be set up to ensure total security

of cabinet or valuable things in various sectors. For lawyer, they need the alarm

system to keep the confidential contract or any agreement of their client. If in the

banking field, the banker will install alarm system to the safety locker. The safety

locker is set up as a place for keeping valuable things of their customer. Software

programming is implemented to build the controller system and make the system can

be function perfectly. Manufacturers can apply this alarm system to any sizes of

cabinets depend to requirement of customers. Hence, everyone in our country can

install the alarm system in their house or office and keep their things safe.

 viii

ABSTRAK

Dalam negara kita, Malaysia, terdapat banyak kes pencerobohan rumah dan

kes pencurian berlaku di kalangan rakyat, terutamanya dalan daerah Johor Bharu.

Oleh kerana kes tersebut sering berlaku, golongan profesional, pentadbir and

penduduk tempatan dari bidang yang berlainan amat memerlukan sistem kawalan

untuk memastikan wang tunai dan barang-barang berharga mereka dalam keadaan

yang selamat. Dalam projek sarjana muda saya, Sistem Kawalan Keselamatan

Kabinet(Sistem Anti- Pencuri) akan didirikan untuk memastikan keselamatan

sepenuhnya bagi barangan berharga yang disimpankan dalam kabinet tertentu.

Peguam akan menggunakan sistem ini untuk menyimpan fail-fail pelanggan penting.

Dalam sektor kewangan pula, mereka memerlukan sistem ini untuk melindungi

barang yang disimpankan dalam kotak keselamatan. Perisian atau pengaturcaraan

juga memainkan peranan penting dalam Sistem Kawalan saya and membolehkan

sistem dapat beroperasi dengan sempurna. Usahawan boleh menggunakan sistem

keselamatan tersebut terhadap pelbagai size kabinet bergantung kepada keperluan

pengguna. Dengan adanya sistem ini, setiap rakyat boleh memilikinya di rumah atau

pejabat masing-masing dan tidak perlu membimbangkan kehilangan barang-barang

berharga lagi.

 ix

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES ix

 LIST OF FIGURES x

 LIST OF ABBREVIATIONS xiii

 LIST OF NOTATIONS xiv

1 INTRODUCTION 1

 1.1 Background of Study 1

 1.2 Objectives 2

 1.3 Problem Statement 3

 1.4 Scope of Work 4

 1.4.1 Hardware Development 4

 1.4.2 Software Development 4

 1.6 Thesis Outline 5

 x

2 LITERATURE REVIEW 7

 2.1 Digital Code Lock with LCD and Keypad 8

2.1.1 A Brief Description 8

 2.1.2 User Side working 8

 2.1.3 Using the Keypad 9

 2.2 Security Keypad Lock 9

 2.3 Simple Low-Cost Digital Code Lock 12

 2.4 Nokia 3310 LCD Driver using a PIC 14

 2.5 Nokia 3310 Graphical LCD Demo 15

3 THEORY AND PROPOSED SYSTEM 17

 3.1 Flow Diagram 17

 3.2 Application Tools 20

 3.2.1 Microchip MPLAB ICD 2 20

 3.2.1.1 Modular Interface Connections 21

 3.2.1.2 Debug Mode 22

 3.2.1.3 Programmer Mode 24

 3.2.2 Protel SE 99 25

 3.2.3 C compiler (CCSC compiler) 27

 3.3 Components and Materials 28

 3.3.1 PIC 16F876A (Microcontroller) 29

 3.3.1.1 High-Performance RISC CPU 29

 3.3.1.2 Special Microcontroller Features 30

 3.3.1.3 Pin Diagrams 31

 3.3.1.4 Memory Organization 31

 3.3.1.5 Timer1 Operation 32

 3.3.2 LCD 33

 3.3.2.1 Electrical Interface specification 34

 3.3.3 AS1117 34

 3.3.3.1 Features 34

 3.3.3.2 Product Description 35

 3.3.3.2 Application External Capacitor 35

 3.3.4 74LCX245 37

 3.3.4.1 Features 37

 xi

 3.3.4.2 Description 37

 3.3.4.3 Pin Description 38

 3.3.4.4 Absolute Maximum Ratings 39

 3.3.4.5 Recommended Conditions 39

 3.3.5 L293D 40

 3.3.5.1 Features 40

 3.3.5.2 Description 40

 3.3.5.3 Block Diagram 41

 3.3.5.4 Recommended Conditions 42

 3.4 Schematic Diagram for Control System 43

 3.4.1 Microcontroller (PIC16F876A) 43

 3.4.2 Step down 5 volt to 2.8 volt for LCD 44

 3.4.3 Interfacing between 74LCX245 and LCD 45

 3.4.4 LED for Keypad 46

 3.4.5 Keypad 47

 3.4.6 L293D 48

4 SOFTWARE DEVELOPMENT 50

 4.1 Overall Structure 50

 4.2 Statements 51

 4.3 Operators 52.

 4.4 Data Definitions 54

 4.4.1 Basic Types 54

 4.5 Firmware (Microcontroller) 58

 4.5.1 Pseudo Code 58

 4.6 Parts of My Software 59

5 RESULTS AND DISCUSSION 64

 5.1 System Overview 64

 5.2 Project Overview 65

 5.2.1 User Manual 66

 5.3 PCB Layout 68

 5.3.1 Controller Layout (Top Layer) 68

 xii

 5.3.2 Controller Circuit (Top Layer) 69

 5.3.3 Controller Layout (Bottom Layer) 70

 5.3.4 Controller Circuit (Bottom Layer) 70

 5.4 Connector’s Board 71

6 CONCLUSION AND FUTURE SUGGESTIONS 72

REFERENCES 74

Appendices 75 - 108

 xiii

LIST OF TABLES

TABLE NO TITLE PAGE

1.1 Specification of safety cabinet alarm system 17

3.1 List of components and materials 29

3.2 Pin Description 38

3.3 Absolute Maximum Ratings 39

3.4 Recommended Operating Conditions 39

3.5 Functional Table 41

3.6 Recommended Operating Conditions 42

4.1 Statements 52

4.2 Operators 53

4.3 Basic Types 54

 xiv

LIST OF FIGURES

FIGURE NO TITLE PAGE

2.1 Digital Code Lock System 9

2.2 E-5 Security Concept 11

2.3 Simple Low-Cost Digital Code Lock 12

2.4 Nokia 3310 LCD Driver using a PIC 14

2.5 Nokia 3310 PCD8544 Based Graphical LCD Demo 15

2.6 Nokia 3310 Pin Connector 15

2.7 LCD Nokia 3310 16

3.1 Flow diagram of the project 18

3.2 Pin Numbering for Modular Connector 21

3.3 MPLAB® ICD 2 Connection To Target Board 22

3.4 Proper Connections For Programming 23

3.5 Illustrates the MPLAB ICD 2 ready for debugging 24

3.6 Protel SE 99 25

3.7 Special Microcontroller Features 30

3.8 Pin Diagrams 31

3.9 Program Memory Map and Stack 32

3.10 Timer 1 Block Diagram 33

3.11 Electrical Interface specification 34

3.12 Application Notes External Capacitor 36

3.13 Pin Connection and IEC Logic Symbols 38

3.14 Block Diagram 41

3.15 Microcontroller (PIC16F876A) 44

3.16 Step down 5 volt to 2.8 volt for LCD 45

 xv

3.17 Interfacing between 74LCX245 and LCD 46

3.18 LED for Keypad 47

3.19 Keypad 48

3.20 L293D 49

5.1 System Overview 64

5.2 Project Overview 65

5.3 Keypad 66

5.4 LCD Pages 66

5.5 Controller Layout (Top Layer) 68

5.6 Controller Circuit (Top Layer) 69

5.7 Controller Layout (Bottom Layer) 70

5.8 Controller Circuit (Bottom Layer) 70

5.9 Connector’s Board 71

 xvi

LIST OF ABBREVIATIONS

LED - Light Emitting Diode

& - And

Sdn Bhd - Private Limited

I/O - Input or Output

LCD - Liquid Crystal Display

PCB - Printed Circuit Board

ROM - Read-Only Memory

RAM - Random-Access Memory

EPROM - Erasable Programmable Read Only Memory

EEPROM - Electrical Erasable Programmable Read Only Memory

FIFO - First In First Out

FILO - First In Last Out

IC - Integrated Circuit

VDD - Input Voltage

SCK - Serial Clock.

SDI - Serial Data Input.

D/C - Data/Command Input.

SCE - Chip Select.

GND - Ground.

RES - Reset.

MCLR - Master Clear

ALU - Arithmetic Logical Unit

DC - Direct Current

WDT - Watchdog Timer

ICD - In-Circuit Debug

ESR - Equivalent Series Resistance

AC - Alternating Current

 xvii

DIR - Direction

ESD - Electrostatic Discharge

EN - Enable

H - High

L - Low

 xviii

LIST OF NOTATIONS

mm - millimeter

cm - centimeter

m - meter

V - volt

W - walt

% - percent

MHz - mega Hertz

pF - pico Farad

uF - micro Farad

Ω - ohm

k Ω - kilo ohm

 1

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Nowadays, safety cabinet alarm system becomes common and very important

to ensure total security of cabinet or valuable things from various sectors. The safety

cabinet alarm system (Electronic lock system) is a locking system which uses some

form of electronics to authenticate those accessing it. The alarm systems are typically

considered more secure than conventional mechanical locks and can include

additional features. The alarm system is simple to use and maintain and provide a

convenient method for controlling cabinet access for residents and professionals

 It is known to provide electronic locks of various kinds. Such locks may

generally be viewed as being made up of three parts: an authorization module for

selectively allowing activation of the lock by certain keys or personnel; an

electromechanical actuation system for generating the required mechanical

movement of the lock mechanism; and a control system for controlling the functions

performed by the actuation system in response to authorized activation of the lock.

 Perhaps the most prevalent form of safety cabinet alarm system is that using a

numerical code for authentication; the correct code must be entered in order for the

 2

lock to deactivate. Such locks typically provide a keypad, and some feature an

audible response to each press. Combination lengths are usually between 4 and 6

digits long. This alarm system is an easy and quick retrofit for cam locks supplied as

standard on a wide range of lockers, cabinets and cupboards. It can easily be fitted to

lockers or cabinets, which don’t have a locking device already installed, giving the

user immediate and simple keypad access without the need for keys.

1.2 Objectives

The objective of this project is to develop a safety cabinet alarm system with

below specification:

i. Universal LCD The users will be more easy and convenient to operate the

alarm system.

ii. Alarm System If someone tries to break in the cabinet, the alarm sire will

‘on’ and at the same time, a message will be sending out

to inform the owner.

iii. Keyless Using a numerical code for authentication, the correct

code must be entering in order for the lock to deactivate.

iv. Flexible The alarm system is suitable for any size or material of

cabinet.

v. Low Cost The components electronic and accessories in the alarm

system is cheap and quality.

vi. Repairable All the components in the alarm system are common and

easy to find in the market.

vii. Reprogrammable If the users forget the deactivate code, the system can be

re-program to unlock the cabinet.

viii. Auto Reset If any interruption from power supply, the alarm system

will activate the auto reset function and still can operate

normally.

Table 1.1: Specification of safety cabinet alarm system

 3

1.3 Problem Statement

In our country, Malaysia, there are many thieving and house breaking cases

happen among the citizen, especially at Johor Bharu.

 For example, 2 month ago, two men, believed to be Indonesians, tried to

break into the house of former Inspector-General of Police Tan Sri Norian Mai in

Section 8, Shah Alam. And, they tried twice. In February, burglars broke into the

house of former Federal CID director Datuk Fauzi Saari and escaped with RM5,000

in cash and valuables.

That same month, former Penang police chief Datuk Albert Mah, 82, died

from injuries he suffered while single-handedly fighting off five men who broke into

his home in Section 5, Petaling Jaya. In Johor Bharu two men, suspected of breaking

into four houses between June 11 and 14, were arrested in a raid on Kampung

Melayu Pandan on Friday.

 Because of these problems, administrator/ professional/ resident from various

sectors really need the alarm system to ensure safety of their cash money or valuable

things. For lawyer, they need the alarm system to keep the confidential contract or

any agreement of their client. If in the banking field, the banker will install alarm

system to the safety locker. The safety locker is set up as a place for keeping valuable

things of their customer. The system also can be very useful for the businessmen who

want to keep cash money, jewelry and financial reports.

 Finally, with the safety cabinet alarm system, whole society will fell secure

for their valuable things.

 4

1.4 Scope of Work

This project involves hardware and software development as explained below:

1.4.1 Hardware Development

This project consists of three parts

a) Input (keypad)

b) PIC microcontroller (PIC 16F876A)

c) Output (LCD display, alarm system, activation of cabinet)

PIC16F876A is choose to be the microcontroller to control the display of universal

LCD, setting/identify/change code, keypad, motor (unlock/lock cabinet) and alarm

system. In the alarm system include a internal cell phone which used to inform the

authorized personnel and a siren alarm.

1.4.2 Software Development

 Microcontroller is a lump of plastic, metal and purified sand, which without

any software does nothing. When software controls a microcontroller, it has almost

unlimited applications. “C Programming” will be used to develop the firmware to

PIC microcontroller. CCS-C Compiler also used to compile the C-programming

Keypad
Setting code
Change code
Identify code

Microcontroller

Alarm System
Motor

LCD display

 5

before burn it into the PIC microcontroller. Another software tool that I will used is

‘Protel 99 SE’ to design the circuit and create the layout for PCB.

1.5 Thesis Outline

 The thesis consists of six chapters. Each chapter is described next.

 Introduction: Chapter 1 serves as an introduction to the report. This chapter

is the brief overview of the project where it includes the project background,

objectives, scope of work, research methodology and project plan.

 Literature Review: Chapter 2 discusses the literature review which is

relevant for focusing on the basic concept of safety cabinet alarm system. There are

some designed circuits and method will be discussed in this chapter.

 Theory and Proposed System: Chapter 3 will describe the methodology

taken to complete the entire project. Theory used in the safety cabinet alarm system

is further explained in this chapter. The proposed system with the components and

materials used is discussed here. Circuit diagram and the source code of the safety

cabinet alarm system are shown in this chapter

 Software Development: Chapter 4 guides to the system designed

implementation and software approach used to produce this project.

 Results and Discussion: Chapter 5 will show the results from the proposed

system. Instructions on how to use the safety cabinet alarm system are introduced in

this chapter.

 6

 Conclusion and Future Suggestions: Chapter 6 described the shortcomings

experienced and suggestions solution and the conclusion. The recommendation of the

project also will be discussed.

 7

CHAPTER 2

LITERATURE REVIEW

 Security is a prime concern in our day-today life. Everyone wants to be as

much secure as possible. An access control for cabinet forms a vital link in a security

chain. The microcontroller based digital lock for cabinet is an access control system

that allows only authorized persons to access certain cabinet. The system is fully

controlled by the 8 bit microcontroller AT89C2051 which has a 2Kbytes of ROM for

the program memory. The password is stored in the EPROM so that we can change it

at any time. The system has a Keypad by which the password can be entered through

it. When the entered password equals with the password stored in the memory then

the relay gets on and so that the door is opened. If we entered a wrong password for

more than three times then the Alarm is switched on.

 8

2.1 Digital Code Lock with LCD and Keypad using AT89C2051

2.1.1 A Brief Description

 This project is written in C language. Its a simple project with

efficient hacking prevention from Brute Force etc. The basic user lock is of 5 Digits

and Master Lock is of 10 digits so it’s not easy for an intruder to break the lock

unless you keep the code simple. The input is taken from a 4x3 Keypad (please see

the schematic for more information) and Display the user input on a 2x16 LCD. A

pin is assigned as output for activating and deactivating the lock. For demonstration i

have connected an LED to that pin.

2.1.2 User Side working

 The user has two options either he/she can use its own 5 digit code or use the

default 5 digit code. If user has to do setup his own code, then he has to enter

"12345" and press '#'. After this.controller will ask for 10 Digit master password

which is preprogrammed in the controller. Entering master lock, user can enter the

new 5 digit code for the lock and press '#' to save it.

 9

2.1.3 Using the Keypad

 Keypad has 12 keys (4x3) starting from 1,2,3,4,5,6,7,8,9,*,0,# (please see the

schematic for layout). Numeric keys are used for entering numbers. '*' is used as the

Cancel key and '#' is used as the Enter key.

Figure 2.1: Digital Code Lock System

2.2 Security Keypad Lock

The Security Keypad Lock Project is a basic access control system. The

"Code Lock" ability will allow the rightful user to deploy the platform to any

property that requires simple password-protection. The "AVR" RISC microcontroller

used ensures low costs. Possible applications may include: vehicle protection,

electronic safes, powered door locks. The following short treatise will explain how

the early version was engineered and how to use the controller to accept valid

passwords. With a little external hardware, the featured systems may easily be used

to disengage an electric door strike or similar system.

 10

Access Control(s) - this is any system designed to restrict access to some type of

property. Some access controls like tire spikes and boarded doors are indiscriminant

in that they bar access for everyone. More useful access controls are selective, which

is to say they operate on a pass-or-halt basis. This project is a selective access control.

Bypass Capacitor - any capacitor meant to absorb energy spikes by providing a low

impedance path to ground. A bypass usually has one pin tied to ground and the other

pin attached to some supply lead. In this non-precision application any capacitor type

can be used, including basic ceramics.

Debouncing - a noise-canceling method used to eliminate keypad noise. This noise

is inherent to most pushbuttons and switches and occurs as the contacts

break/complete the circuit. Debouncing methods will either filter the noise or mute

(ignore) it. This project uses software to wait for the key signals to stabilize.

EEPROM – EEPROM is a non-volatile data storage medium. Electronically

Erasable Programmable Read Only Memory can reside within the microcontroller in

the absence of electric power. This memory is accessible through the

microcontroller's 3 EEPROM registers. EEPROM will be used to store the passwords.

Floating Pin - an input pin is said to be floating if it is not connected to anything.

Floating pins may report random bit states that "float" between '1' and '0'.

Keypad - this is our input device. The keypad comprises 16 or 12 membrane buttons

on a 4x4 or 4x3 matrix. Key activity is detected by monitoring the keypad's output

pins and waiting for a closed circuit to appear between a row pin and a column pin.

The keypad is a passive device.

Queue - an array of integers in which data is shifted in on one side and deleted on

the other end. Queues follow FIFO ("First In First Out") behavior, whereas a stack

will use a FILO ("First In Last Out") scheme. This project will use the Queue to hold

key codes.

SRAM – SRAM is the volatile data storage medium. Static Random Access Memory

is destroyed during power-off and reset conditions. This memory is accessible

 11

through the microcontroller’s X and Y pointer-registers and by the "lds" and "sts"

commands. SRAM will contain the key press queue.

Volatility - this term will be associated with the system's memory types. The term

indicates whether the memory will retain its state after power has been removed. A

volatile system will be reset if power is removed. A non-volatile system will retain

its latest state.

Design Concept

This console project is intended to be a low-end and low-cost system that will

focus mainly on affordability and simplicity rather than connectivity or even ease-of-

use. Hence this will be a stand-alone system that will not need a special

communications interface. This limits the designing phase to four sub-systems:

keypad, encoder, controller, and visual/mechanical interface.

Figure 2.2: E-5 Security Concept

 12

2.3 Simple Low-Cost Digital Code Lock

Figure 2.3: Simple Low-Cost Digital Code Lock

In those circuits a set of switches (conforming to code) are pressed one by

one within the specified time to open the lock. In some other circuits, custom-built

ICs are used and positive and negative logic pulses are keyed in sequence as per the

code by two switches to open the lock.

A low-cost digital code lock circuit is presented in this article. Here the

keying-in code is rather unique. Six switches are to be pressed to open the lock, but

only two switches at a time. Thus a total of three sets of switches have to be pressed

in a particular sequence. (Of these three sets, one set is repeated.) The salient features

of this circuit are:

1. Use of 16 switches, which suggests that there is a microprocessor inside.

2. Elimination of power amplifier transistor to energize the relay.

3. Low cost and small PCB size.

An essential property of this electronic code lock is that it works in mono

stable mode, i.e. once triggered; the output becomes high and remains so for a period

of time, governed by the timing components, before returning to the quiescent low

state. In this circuit, timer IC 555 with 8 pins is used. The IC is inexpensive and

easily available. Its pin 2 is the triggering input pin which, when held below 1/3 of

the supply voltage, drives the output to high state. The threshold pin 6, when held

higher than 2/3 of the supply voltage, drives the output to low state. By applying a

 13

low-going pulse to the reset pin 4, the output at pin 3 can be brought to the quiescent

low level. Thus the reset pin 4 should be held high for normal operation of the IC.

Three sets of switches SA-SC, S1- S8 and S3-S4 are pressed, in that order, to

open the lock. On pressing the switches SA and SC simultaneously, capacitor C3

charges through the potential divider comprising resistors R3 and R4, and on

releasing these two switches, capacitor C3 starts discharging through resistor R4.

Capacitor C3 and resistor R4 are so selected that it takes about five seconds to fully

discharge C3.

 Depressing switches S1 and S8 in unison, within five seconds of releasing the

switches SA and SC, pulls pin 2 to ground and IC 555 is triggered. The capacitor C1

starts charging through resistor R1. As a result, the output (pin 3) goes high for five

seconds (i.e. the charging time T of the capacitor C1 to the threshold voltage, which

is calculated by the relation T=1.1 R1 x C1 seconds).

Within these five seconds, switches SA and SC are to be pressed momentarily

once again, followed by the depression of last code-switch pair S3-S4. These

switches connect the relay to output pin 3 and the relay is energized. The contacts of

the relay close and the solenoid pulls in the latch (forming part of a lock) and the

lock opens. The remaining switches are connected between reset pin 4 and ground. If

any one of these switches is pressed, the IC is reset and the output goes to its

quiescent low state. Possibilities of pressing these reset switches are more when a

code breaker tries to open the lock.

LED D5 indicates the presence of power supply while resistor R5 is a current

limiting resistor. The given circuit can be recoded easily by rearranging connections

to the switches as desired by the user.

 14

2.4 Nokia 3310 LCD Driver using a PIC

This library includes functions for controlling the Nokia 3310 LCD

(PCD8544 controller) and also a 5x7 font. Currently the table used only works on

16F, but should not take much to modify it to work with 18F PICs. It only uses 5 IO

pins, so a smaller PIC could be used. The font however takes up a lot of ROM (the

example program's code size is 1305). If the text print functions (and the font) is not

used it is of course much smaller, but also much less useful.

Figure 2.4: Nokia 3310 LCD Driver using a PIC

Showing the LCD connected to an 16F877 PIC. On the right is my DIY

Wisp628. The interface board between the LCD and the PIC consists of two caps

(required for the LCD controller), a few 1K resistors in series with the data lines, and

a LM317 to regulate the 5V down to 3V which the LCD requires.

 15

2.5 Nokia 3310 Graphical LCD Demo

Figure 2.5: Nokia 3310 PCD8544 Based Graphical LCD Demo

Ah. Happy New Year!! This is one cool graphical LCD. Not only it is easy to

programmed, the Nokia 3310 LCD also consumes low power. The Nokia 3310 is

based on a PCD8544 Controller which is manufactured by Philips. With this

controller, you can easily interface any PICs to it via SPI.

Figure 2.6: Nokia 3310 Pin Connector

Its pin out is as follows:-

1 - VDD ==> Input voltage.

2 - SCK ==> Serial Clock.

3 - SDI ==> Serial Data Input.

4 - D/C ==> Data/Command Input.

5 - SCE ==> Chip Select.

6 - GND ==> Ground.

7 - VOUT ==> VLCD.

8 - RES ==> Reset.

 16

There are quite a few source codes available out there on how to control the

LCD with a PIC. One good instance can be found in Michel Bavin's website. His

firmware was coded in CCS-C. He has done a great job by providing good

explanations on the functions of his Nokia 3310 LCD codes. I do not have CCS-C,

therefore I decided to translate some of his codes to Hi-Tech C and add a little

feature to it. Both codes use 'bit-banging' SPI.

Figure 2.7: LCD Nokia 3310

There, the picture to the left is another snapshot of it. Here, a function to plot

a smooth continuous line and its plot time is surprisingly rather fast. There's also the

typical bar plot as shown below. The firmware provided here runs a demo program at

main () to generate random numbers and plotting them on the LCD using both bar

and continuously line plot. Simply adjust the delay in the program to control the

speed of the plot. It's cool to see animation, rather than a still picture

 17

CHAPTER 3

THEORY AND PROPOSED SYSTEM

 This chapter presents the application tools and components of the project.

The schematic diagrams and software are used to describe the methodology to

complete this project.

3.1 Flow Diagram

The flow diagram as shown in Figure 3.1 shows the process flow of the

project. All the process mentioned are important in completing the project. First of

all, the project requires study of basic principles of safety cabinet and LCD display.

Next, Additional system consists of hardware and software is designed. Install the

safety alarm system to the cabinet. Safety cabinet alarm system will play the

important role to ensure total security of cabinet or valuable things for various

sectors. The project is considered done when all the requirements is fulfilled.

 18

 19

Figure 3.1: Flow diagram of the project

 20

3.2 Application Tools

 Application tools are the equipments that used to design and develop the

safety cabinet alarm system. There are including Microchip MPLAB ICD 2, Protel

SE 99, and C compiler (CCSC compiler).

3.2.1 Microchip MPLAB ICD 2

The MPLAB ICD 2 is a low-cost in-circuit debugger (ICD) and in-circuit

serial programmer. MPLAB ICD 2 is intended to be used as an evaluation,

debugging and programming aid in a laboratory environment. The MPLAB ICD 2

offers these features:

i. Real-time and single-step code execution

ii. Breakpoints, Register and Variable Watch/Modify

iii. In-circuit debugging

iv. Target VDD monitor

v. Diagnostic LEDs

vi. .MPLAB IDE user interface

vii. RS-232 serial or USB interface to a host PC

The MPLAB ICD 2 allows you to:

i. Debug your source code in your own application

ii. Debug your hardware in real-time

iii. A supported device using Microchip’s ICSP. Protocol

 21

3.2.1.1 Modular Interface Connections

MPLAB ICD 2 is connected to the target PIC MCU with the modular

interface cable, which is a six conductor cable. The pin numbering for the MPLAB

ICD 2 connector is shown from the bottom of the target PC board in Figure 3-1.

Note: The ICD cable has mirror imaged connections on each end, and connections

on the MPLAB ICD 2 module are the opposite of connections shown here.

Figure 3.2: Pin Numbering for Modular Connector

Figure 1.3 shows the interconnections of the MPLAB ICD 2 to the modular

connector on the target board. There are six pins on the ICD connector, but only five

are used. The diagram also shows the wiring from the connector to the PIC MCU

device on the target PC board. A pull-up resistor (usually around 10k Ohm) is

recommended to be connected from the VPP/MCLR line to VDD so that the line

may be strobe low to reset the PIC MCU. Although pin 2 (VDD) can supply a

limited amount of power to the target application under certain conditions, for the

purposes of these descriptions, pins 2 and 3 (VSS) are omitted. They are shown on

the diagram for completeness, but in the following descriptions only three lines are

active and relevant to core MPLAB ICD 2 operation: VPP/MCLR, PGC and PGD.

Not all PIC MCUs have the AVDD and AVSS lines, but if they are present on the

target PIC MCU, all must be connected in order for MPLAB ICD 2 to operate.

 22

Note: In the following discussions, VDD is ignored. But be aware that the target

VDD is also used to power the output drivers in MPLAB ICD 2. This allows level

translation for target low-voltage operation. If MPLAB ICD 2 does not have voltage

on its VDD line (pin 2 of the ICD connector), either from power being supplied to

the target by MPLAB ICD 2 or from a separate target power supply, it will not

operate.

Figure 3.3: MPLAB® ICD 2 Connection to Target Board

3.2.1.2 Debug Mode

There are two steps to using MPLAB ICD 2 as a debugger. The first requires

that an application be programmed into the target PIC MCU. The second uses the

internal in-circuit debug hardware of the target Flash PIC MCU to run and test the

application program. These two steps are directly related to the MPLAB IDE

operations:

1. Programming the code into the target.

2. Using the debugger to set breakpoints and run.

 23

If the target PIC MCU cannot be programmed correctly, MPLAB ICD 2 will

not be able to debug. Figure 3-3 shows the basic interconnections required for

programming. Note that this is the same as Figure 1-2, but for the sake of clarity, the

VDD and VSS lines from MPLAB ICD 2 are not shown.

Figure 3.4: Proper Connections For Programming

A simplified diagram of some of the internal interface circuitry of the

MPLAB ICD 2 is shown. For programming, no clock is needed on the target PIC

MCU, but power must be supplied. When programming, MPLAB ICD 2 puts

programming levels on VPP, sends clock pulses on PGC and serial data via PGD. To

verify that the part has been programmed correctly, clocks are sent to PGC and data

is read back from PGD. This conforms to the ICSP protocol of the PIC MCU under

development.

 24

Figure 3.5: Illustrates the MPLAB ICD 2 ready for debugging.

3.2.1.3 Programmer Mode

When using the Programmer>Program selection to program a device, the in-

circuit debug registers should be disabled in the MPLAB IDE so the MPLAB ICD 2

will program only the target application code and the Configuration bits (and

EEPROM data, if available and selected) into the target PIC MCU. The debug

executive will not be loaded. In this mode the MPLAB ICD 2 can only toggle the

MCLR line to reset and start the target. A breakpoint cannot be set, and register

contents cannot be seen or altered. The MPLAB ICD 2 programs the target using

ICSP. No clock is required while programming, and all modes of the processor can

be programmed, including code-protect, Watchdog Timer enabled and table read

protect.

Note: A header board is required to debug smaller pin count parts with the MPLAB

ICD 2. These parts can be programmed without the header by connecting the

VPP, PGC and PGD lines as described previously.

 25

3.2.2 Protel SE 99

Protel SE 99 includes a powerful design synchronization tool, that makes it

very easy to transfer design information from the schematic to the PCB (and back

again). The Synchronizer will automatically extract the component and connectivity

information from the schematic, locate the required footprints in the PCB libraries

and place them in the PCB workspace, then add the connection lines between

connected component pins. You use the synchronizer to initially transfer your design

from the schematic documents to a PCB design document, and also to synchronize

design changes made in either the PCB or the schematic documents.

Figure 3.6: Protel SE 99

1 Design Window

This is the main editing window. It displays the contents of open documents

and folders. Each open design database will have its own design window. To open a

document or folder, click on its name in the navigation tree. To split the design

window in order show multiple documents simultaneously, right-click on a document

 26

tab and select one of the Split options from the popup menu. To close a document,

right-click on its document tab and select Close from the popup menu.

2 Document tabs

Each open document or folder is shown by a tab in the design window. Click

on a document's tab to make it active. The active tab is indicated by a document or

folder icon in the tab area. To split the design window in order show multiple

documents simultaneously, right-click on a document tab and select one of the Split

options from the popup menu. To close a document, right-click on its document tab

and select Close from the popup menu.

3 Design Manager Panel

The Design Manager panel is used to display the Explorer navigation tree,

which provides a Windows Explorer-like hierarchical tree view of the design desktop,

allowing you to navigate the various documents and folders contained in each design

database. The Design Manager panel is also used to display document editor-specific

browse panels. Available panels are shown as tabs at the top of the Design Manager

panel. To show or hide the Design Manager panel, select View » Design Manager

from the menus.

4 Navigation Tree

 The Explorer navigation tree provides a Windows Explorer-like hierarchical

tree view of the design desktop, allowing you to navigate the various documents and

folders contained in each design database. Click on a document or folder in the

navigation tree to open it in the design window.

 27

5 Help Advisor

 Click the Help Advisor icon at the right-hand side of the status bar to open

the natural language help search facility.

3.2.3 C compiler (CCSC compiler)

The CCS C Compiler features provide ample function for your development

needs, including: standard C pre-processor directives, operators & statements, built-

in libraries supporting all chips, MPLAB® IDE integration, source code drivers,

automatic linking for multiple code pages and much more.

Features include:

- 1, 8, 16 and 32 bit integer types and 32 bit floating point.

- Standard one bit type (Short Int) permits the compiler to generate very efficient Bit

 oriented code.

- #BIT and #BYTE will allow C variables to be placed at absolute addresses to map

 registers to C variables.

- Bit Arrays

- Fixed Point Decimal

- Constants (including strings and arrays) are saved in program memory.

- Flexible Handling of Constant Data

- Variable Length Constant Strings

- Address mod Capability To Create User Defined Address Spaces In

 Memory Device

The CCS C Compiler for PIC10, PIC12, PIC14, PIC16, and PIC18

microcontrollers has over 180 Built-in Functions to access PIC® MCU hardware is

easy and produces efficient and highly optimized code. Functions such as timers,

A/D, EEPROM, SSP, PSP, USB,

 28

The compiler can handle inline or separate functions, as well as parameter

passing in re-usable registers. Transparent to the user, the compiler handles calls

across pages automatically and analyzes program structure and call tree processes to

optimize RAM and ROM Usage.

The compiler runs under Windows 95, 98, ME, NT4, 2000, XP, Vista, or

Linux. It outputs hex and debug files that are selectable and compatible with popular

emulators and programmers including the MPLAB® IDE for source level debugging.

3.3 Components and Materials

Please refer Table 3.1 for the list of components and materials used in traffic

light driver.

No List of Components or Materials Quantity

1. PIC 16F876A 1

2. 0.1uF capacitor 3

3. 10 uF capacitor 3

4. 1uF capacitor 2

5. 470 nF capacitor 1

6. 330 nF capacitor 1

7. 22 pF capacitor 2

8. 1.8k Ω resistor 1

9. 510Ω resistor 2

10. 470Ω resistor 8

11. 47kΩ resistor 1

12. 1N4148 diode 3

13. 20MHz crystal 1

14. 74LCX245 1

15. AS1117-2.85V 1

16. Connector 4 pin 1

 29

17. Connector 6 pin 1

18. LCD_3310 1

19. LED 8

20. NPN transistor 4

21. Casing Nokia Phone 3310 1

22. Hand Phone 1

23. L293D 1

24. PCB board 1

25. Header 2 pin 7

26. Header 3 pin 1

27. Stripe Board 1

Table 3.1: List of components and materials

3.3.1 PIC 16F876A (Microcontroller)

 A microcontroller (or MCU) is a computer-on-a-chip. It is a type of

microprocessor emphasizing self-sufficiency and cost-effectiveness, in contrast to a

general-purpose microprocessor (the kind used in a PC). The only difference

between a microcontroller and a microprocessor is that a microprocessor has three

parts - ALU, Control Unit and registers (like memory), while the microcontroller has

additional elements like ROM, RAM etc.

 30

3.3.1.1 High-Performance RISC CPU

i. Only 35 single-word instructions to learn

ii. All single-cycle instructions except for program branches, which are two-

cycle

iii. Operating speed: DC – 20 MHz clock input DC – 200 ns instruction cycle

iv. Up to 8K x 14 words of Flash Program Memory, Up to 368 x 8 bytes of Data

Memory (RAM), Up to 256 x 8 bytes of EEPROM Data Memory

3.3.1.2 Special Microcontroller Features

i. 100,000 erase/write cycle Enhanced Flash program memory typical

ii. 1,000,000 erase/write cycle Data EEPROM memory typical

iii. Data EEPROM Retention > 40 years

iv. Self-reprogrammable under software control

v. In-Circuit Serial Programming™ (ICSP™) via two pins

vi. Single-supply 5V In-Circuit Serial Programming

vii. Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable

operation

viii. Programmable code protection

ix. Power saving Sleep mode

x. Selectable oscillator options

xi. In-Circuit Debug (ICD) via two pins

Figure 3.7: Special Microcontroller Features

 31

3.3.1.3 Pin Diagrams

Figure 3.8: Pin Diagrams

3.3.1.4 Memory Organization

There are three memory blocks in each of the PIC16F87XA devices. The

program memory and data memory have separate buses so that concurrent access can

occur and is detailed in this section. The EEPROM data memory block is detailed in

Section 3.0 “Data EEPROM and Flash Program Memory”.

 32

Figure 3.9: Program Memory Map and Stack

3.3.1.5 Timer1 Operation in Synchronized Counter Mode

Counter mode is selected by setting bit TMR1CS. In this mode, the timer

increments on every rising edge of clock input on pin RC1/T1OSI/CCP2 when bit

T1OSCEN is set, or on pin RC0/T1OSO/T1CKI when bit T1OSCEN is cleared. If

T1SYNC is cleared, then the external clock input is synchronized with internal phase

clocks. The synchronization is done after the prescaler stage. The prescaler stage is

an asynchronous ripple counter. In this configuration, during Sleep mode, Timer1

will not increment even if the external clock is present since the synchronization

circuit is shut-off. The prescaler, however, will continue to increment.

 33

Figure 3.10: Timer 1 Block Diagram

3.3.2 LCD

The Nokia 3310 LCD is a nice small graphical LCD, suitable for a lot of

various projects. The display is 38*35 mm, with an active display surface of 30*22

mm, and a 84*48 pixel resolution. The display is easy to interface, using standard

SPI communication. A 1-10 uF electrolytic capacitor from VOUT to GND, is the

only external component needed.

i. Logic supply voltage range VDD to VSS : 2.7 to 3.3 V

ii. Low power consumption, suitable for battery operated systems

iii. Temperature range: -25 to +70 °C

 34

3.3.2.1 Electrical Interface specification

Figure 3.11: Electrical Interface specification

3.3.3 AS1117

3.3.3.1 Features

i. Guaranteed 800mA Output

ii. Terminal Adjustable Or Fixed 1.5V, 2.5V, 2.85V, 3V, 3.3V & 5V

iii. Very Low Quiescent Current

iv. Low Dropout Voltage Of 1.2 Volts At Full Load

v. Extremely Tight Load And Line Regulation

vi. Very Low Temperature Coefficient

vii. Fixed 2.85V Device For SCSI-II Active Terminator

viii. Logic-Controlled Electronic Shutdown

ix. Internal Over current Limiting & Thermal Overload Protection

x. Surface Mount Package SOT-223, TO-252, TO-220, SOT-89, TO-263, &

SO-8

 35

3.3.3.2 Product Description

The ALPHA Semiconductor AS1117 is a low power positive-voltage

regulator designed to meet 800mA output current and comply with SCSI-II

specifications with a fixed output voltage of 2.85V. This device is an excellent

choice for use in battery-powered applications, as active terminators for the SCSI bus,

and portable computers. The AS1117 features very low quiescent current and very

low dropout voltage of 1.2V at a full load and lower as output current decreases.

AS1117 is available as an adjustable or fixed 2.85V, 3V, 3.3V, and 5V output

voltages. The AS1117 is offered in a 3-pin surface mount package SOT-223, TO-252,

TO-220, SOT-89 & TO-263. The output capacitor of 10mF or larger is needed for

output stability of AS1117 as required by most of the other regulator circuits. Use of

ALPHA Semiconductor’s design, processing and testing techniques make our

AS1117 superior over similar products.

3.3.3.2 Application Notes External Capacitor

To ensure the stability of the AS1117 an output capacitor of at least 10mF

(tantalum)or 50mF (aluminum) is required. The value may change based on the

application requirements on the output load or temperature range. The capacitor

equivalent series resistance (ESR) will effect the AS1117 stability. The value of ESR

can vary from the type of capacitor used in the applications. The recommended value

for ESR is 0.5W. The output capacitance could increase in size to above the

minimum value. The larger value of output capacitance as high as 100mF can

improve the load transient response.

 36

Figure 3.12: Application Notes External Capacitor

 37

3.3.4 74LCX245

3.3.4.1 Features

xi. 5V Tolerant Inputs and Outputs

xii. High Speed: TPD = 7.0 ns (MAX.) at VCC = 3V

xiii. Power Down Protection On Inputs And Outputs

xiv. Symmetrical Output Impedance: |IOH| = IOL = 24mA (MIN) at VCC = 3V

xv. PCI Bus Levels Guaranteed At 24 mA

xvi. Balance Propagation Delay: tPLH ≅ tPHL

xvii. Operating Voltage Range: VCC (OPR) = 2.0V to 3.6V

xviii. Pin and Function Compatible With 74 SERIES 245

xix. Latch-Up Performance Exceeds 500mA

xx. ECD Performance: HBM > 2000V, MM > 200V

3.3.4.2 Description

The 74LCX245 is a low voltage CMOS OCTAL BUS TRANSCEIVER (3-

STATE) fabricated with sub-micron silicon gate and double-layer metal wiring

C2MOS technology. It is ideal for low power and high speed 3.3V applications; it

can be interfaced to 5V signal environment for both inputs and outputs. It has same

speed performance at 3.3V than 5V AC/ACT family, combined with lower power

consumption. This IC is intended for two way asynchronous communication between

data buses; the direction of data transmission is determined by DIR input. The enable

input G can be used to disable the device so that the buses are effectively isolated.

All inputs and outputs are equipped with protection circuits against static discharge,

giving them 2KV ESD immunity and transient excess voltage. All floating bus

terminals during High Z state must be held HIGH or LOW.

 38

3.3.4.3 Pin Description

Figure 3.13: Pin Connection and IEC Logic Symbols

Table 3.2: Pin Description

 39

3.3.4.4 Absolute Maximum Ratings

Table 3.3: Absolute Maximum Ratings

3.3.4.5 Recommended Operating Conditions

Table 3.4: Recommended Operating Conditions

 40

3.3.5 L293D

3.3.5.1 Features

i. Wide Supply-Voltage Range: 4.5 V to 36 V

ii. Separate Input-Logic Supply

iii. Internal ESD Protection

iv. Thermal Shutdown

v. High-Noise-Immunity Inputs

vi. Functionally Similar to SGS L293 and SGS L293D

vii. Output Current 1 A Per Channel (600 mA for L293D)

viii. Peak Output Current 2 A Per Channel (1.2 A for L293D)

ix. Output Clamp Diodes for Inductive Transient Suppression (L293D)

3.3.5.2 Description

 The L293 and L293D are quadruple high-current half-H drivers. The L293 is

designed to provide bidirectional drive currents of up to 1 A at voltages from 4.5 V

to 36 V. The L293D is designed to provide bidirectional drive currents of up to 600-

mA at voltages from 4.5 V to 36 V. Both devices are designed to drive inductive

loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-

current/high-voltage loads in positive-supply applications. All inputs are TTL

compatible. Each output is a complete totem-pole drive circuit, with a Darlington

transistor sink and a pseudo- Darlington source. Drivers are enabled in pairs, with

drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN. When an

enable input is high, the associated drivers are enabled, and their outputs are

activated and in phase with their inputs. When the enable input is low, those drivers

are disabled, and their outputs are off and in the high-impedance state. With the

 41

proper data inputs, each pair of drivers forms a full-H (or bridge) reversible drive

suitable for solenoid or motor applications.

3.3.5.3 Block Diagram

Figure 3.14 Block Diagram

Table 3.5: Functional Table

 42

3.3.5.4 Recommended Operating Conditions

Table 3.6: Recommended Operating Conditions

 43

3.4 Schematic Diagram for Control System

3.4.1 Microcontroller (PIC16F876A)

Figure 3.17: Microcontroller (PIC16F876A)

The microcontroller PIC 16F876A is used to scan the keypad,

change/identify/set password, authorizes the lock and control the alarm system. In

order to burn the firmware to PIC processor, the pin 1 (MCLK), pin 8 (Vss), pin 20

(5V), pin 27 (RB6) and pin 28 (RB7) must connected to the Microchip ICD 2. Pin 2

(SCLK), pin 3 (SDIN), pin 4 (D/C), pin 5 (SEC), and pin 6 (RES) is connected to IC

74LCX245. This IC is intended for two way asynchronous communication between

data buses. Pin 11 (Scan 0), Pin 12 (Scan 1), and Pin 13 (Scan 3) is used to scan the

keypad for pressed by somebody. The pin 14 (Enable DC_Motor), pin 17 (motor1)

and pin 18 (motor2) are connected to L293D (driver for DC motor) for authorizing

the lock. Pin 15 (Buzzer) and Pin 16 (Phone) are used to activate the alarm system.

Then, pin 21 (KeyIn0), pin 22 (KeyIn1), pin 23 (KeyIn2), pin 24 (KeyIn3), pin 25

(KeyIn4) and pin 26 (KeyIn5) are used to pull up the voltage to 5 volt for keypad

scanning.

 44

3.4.2 Step down 5 volt to 2.8 volt for LCD

Figure 3.18: Step down 5 volt to 2.8 volt for LCD

The operating voltage for LCD is 2.7 volt to 3.3 volt. So the AS1117-2.85V

is used to step down 5 volt input voltage to 2.8 volt. The ALPHA Semiconductor

AS1117 is a low power positive-voltage regulator designed to meet 800mA output

current and comply with SCSI-II specifications with a fixed output voltage of 2.85V.

 45

3.4.3 Interfacing between 74LCX245 and LCD

Figure 3.19: Interfacing between 74LCX245 and LCD

74LCX245 is the driver for the LCD_3310 and operating at 2.8 volt. The pin

2 (SCLK), pin 3 (SDIN), pin 4 (D/C), pin 5 (SEC), and pin 6 (RES) are connected to

microcontroller (PIC 16F876A).

 46

3.4.4 LED for Keypad

Figure 3.20 LED for Keypad

 The base of the NPN Q1 is connected to microcontroller. When the pin BL is

high, the Vce will become zero and the LED1, LED2, LED3, LED4, LED5, LED6,

LED7, and LED8 will be ‘on’. It will make the keypad has been seen more clearly.

 47

3.4.5 Keypad

Figure 3.21: Keypad

 This is the schematic diagram of the keypad. The pin KeyIn 1, KeyIn 2,

KeyIn 3, KeyIn 4, KeyIn 5, and KeyIn 0 is always be ‘HIGH’. The control system

will scan the keypad every 10 ms. During the scanning period, the scan0 will be

‘LOW’ and follow by scan1 and scan 2. So if the SW! is pressed when the Scan0 is

‘LOW’, the KeyIn0 will become ‘LOW’ and the others KeyIn is ‘HIGH’. From here,

the microcontroller can detect what the switch is pressed by user.

 48

3.4.6 L293D

Figure 3.22: L293D

 The JP4, JP5, and JP6 are the connector for microcontroller and motor for the

lock. When the pin 1 (EN) is ‘H’, pin 2 (1A) is ‘L’ and pin 7 is ‘H’, the DC motor

will turn clockwise and the door will unlocked. For locking the door, pin 1 (EN) is

‘H’, pin 2 (1A) is ‘H’ and pin 7 is ‘L’, the DC motor will turn anti-clockwise.

However the Vcc1 and Vcc2 must connect to power supply.

 50

CHAPTER 4

SOFTWARE DEVELOPMENT

4.1 Overall Structure

 A program is made up of the following four elements in a file: Comment,

Pre-Processor Directive, Data Definition and Function Definition. Every C

program must contain a main function which is the starting point of the program

execution. The program can be split into multiple functions according to their

purpose and the functions could be called from main or the sub functions. In a large

project functions can also be placed in different C files or header files that can be

included in the main C file to group the related functions by their category. CCS C

also requires to include the appropriate device file using #include directive to include

the device specific functionality. There are also some preprocessor directives like

#fuses to specify the fuses for the chip and #use delay to specify the clock

speed. The functions contain the data declarations, definitions, statements and

expressions. The compiler also provides a large number of standard C libraries as

well as other device drivers that can be included and used in the programs. CCS also

provides a large number of built-in functions to access the various peripherals

included in the PIC microcontroller.

 51

4.2 Statements

STATEMENT

EXAMPLE

if (expr) stmt; [else

stmt;]

if (x==25)

x=1;

else

x=x+1;

while (expr) stmt;

while (get_rtcc()!=0)

putc(‘n’);

do stmt while (expr);

do {

putc(c=getc());

} while (c!=0);

for (expr1;expr2;expr3)

stmt;

for (i=1;i<=10;++i)

printf(“%u\r\n”,i);

switch (expr) {

case cexpr: stmt; //one

or more case

[default:stmt]

... }

switch (cmd) {

case 0: printf(“cmd 0”);

break;

case 1: printf(“cmd 1”);

break;

default: printf(“bad cmd”);

break; }

return [expr];

return (5);

goto label;

goto loop;

label: stmt; loop: I++;

 52

break;

break;

continue;

continue;

expr;

i=1;

; ;

{[stmt]}

Zero or more

{a=1;

b=1;}

Table 4.1 Statements

4.3 Operators

+ Addition Operator

+= Addition assignment operator, x+=y, is the same as x=x+y

&= Bitwise and assignment operator, x&=y, is the same as x=x&y

& Address operator

& Bitwise and operator

^= Bitwise exclusive or assignment operator, x^=y, is the same as

x=x^y

^ Bitwise exclusive or operator

l= Bitwise inclusive or assignment operator, xl=y, is the same as

x=xly

l Bitwise inclusive or operator

?: Conditional Expression operator

 53

- - Decrement

/= Division assignment operator, x/=y, is the same as x=x/y

 Division operator

== Equality

> Greater than operator

>= Greater than or equal to operator

++ Increment

* Indirection operator

!= Inequality

<<= Left shift assignment operator, x<<=y, is the same as x=x<<y

< Less than operator

<< Left Shift operator

<= Less than or equal to operator

&& Logical AND operator

! Logical negation operator

ll Logical OR operator

%= Modules assignment operator x%=y, is the same as x=x%y

% Modules operator

= Multiplication assignment operator, x=y, is the same as x=x*y

* Multiplication operator

~ One's complement operator

>>= Right shift assignment, x>>=y, is the same as x=x>>y

>> Right shift operator

-> Structure Pointer operation

-= Subtraction assignment operator

- Subtraction operator

sizeof Determines size in bytes of operand

Table 4.2: Operators

 54

4.4 Data Definitions

This section describes what the basic data types and specifiers are and how

variables can be declared using those types. In CCS C all the variables should be

declared before it is used. They can be defined inside a function (local) or outside all

functions (global). This would affect the visibility and life of the variables.

4.4.1 Basic Types

Type Specifier

int1 Defines a 1 bit number

int8 Defines an 8 bit number

int16 Defines a 16 bit number

int32 Defines a 32 bit number

char Defines a 8 bit character

float Defines a 32 bit floating point number

short By default the same as int1

Int By default the same as int8

long By default the same as int16

void Indicates no specific type

Table 4.3: Basic Types

Note: All types, except float, by default are unsigned; however, maybe preceded by

unsigned or signed. Short and long may have the keyword INT following them with

no effect. Also see #TYPE to change the default size.

 55

SHORT is a special type used to generate very efficient code for bit operations and

I/O. Arrays of bits (INT1 or SHORT) in RAM are now supported. Pointers to bits

are not permitted

4.4.2 Declarations

A declaration specifies a type qualifier and a type specifier, and is followed

by a list of one or more variables of that type.

For e.g.:

int a,b,c,d;

mybit e,f;

mybyte g[3][2];

char *h;

colors j;

struct data_record data[10];

static int i;

extern long j;

Variables can also be declared along with the definitions of the special types.

For eg:

enum colors{red, green=2,blue}i,j,k; // colors is the enum type and i,j,k are

variables of that type

 56

4.4.3 Using Program Memory for Data

CCS C Compiler provides a few different ways to use program memory for

data. The different ways are discussed below:

Constant Data:

The const qualifier will place the variables into program memory. The syntax is

const type specifier id [cexpr] = {value}

If the keyword CONST is used before the identifier, the identifier is treated as a

constant. Constants should be initialized and may not be changed at run-time. This

is an easy way to create lookup tables.

For e.g.:

const int table[16]={0,1,2...15}

For placing a string into ROM

const char cstaring[6]={"hello"}

You can also create pointers to constants

const char *cptr;

cptr = string;

The #org preprocessor can be used to place the constant to specified

address blocks.

For eg:

#ORG 0x1C00, 0x1C0F

CONST CHAR ID[10]= {"123456789"};

This ID will be at 1C00.

Note: some extra code will proceed the 123456789.

A new method allows the use of pointers to ROM. The new keyword for

compilation modes CCS4 and ANSI is ROM and for other modes it is _ROM. This

method does not contain extra code at the start of the structure.

For e.g:

char rom commands[] = {“put|get|status|shutdown”};

 57

The function label address can be used to get the address of the constant. The

constant variable can be accessed in the code. This is a great way of storing constant

data in large programs. Variable length constant strings can be stored into program

memory.

For PIC18 parts the compiler allows a non-standard c feature to implement a constant

array of variable length strings. The syntax is:

 const char id[n] [*] = { "strint", "string" ...};

Where n is optional and id is the table identifier. For example:

const char colors[] [*] = { "Red", "Green", "Blue"};

 #ROM directive:

Another method is to use #rom to assign data to program memory, the usage is #rom

address ={data, data,..,data}.

For eg:

#rom 0x1000={1,2,3,4,5} //will place 1,2,3,4,5 to rom addresses starting at

0x1000

This can be used for strings #rom address={"hello"}

 // the string will be null terminated

This method can only be used to initialize the program memory.

 Built-in-Functions:

The compiler also provides built-in functions to place data in program memory, they

are:

i. write_program_eeprom(address,data)- writes 16 bit data to program

memory

ii. write_program_memory(address, dataptr, count); writes count bytes of

data from dataptr to address in program memory.

 58

Please refer to the help of these functions to get more details on their usage and

limitations regarding erase procedures. These functions can be used only on chips

that allow writes to program memory. The compiler uses the flash memory erase and

write routines to implement the functionality.

 The data placed in program memory using all the three methods above can be read

form user code using:

- read_program_eeprom (address)- reads 16 bits data from the address in

 program memory.

- read_program_memory (address, dataptr, count) -Reads count bytes from

 program memory at address to RAM at dataptr.

These functions can be used only on chips that allow reads from program memory.

The compiler uses the flash memory read routines to implement the functionality

4.5 Firmware (Microcontroller)

4.5.1 Pseudo Code

1. Setup – initialize LCD and alarm system

2. Hold for keystroke.

3. match keystroke to EEPROM password

4. Check the length password.

5. if 6 digits entered, begin validation

else goto step[3]

 6. if correct code, disengage lock.

 else check number failures.

 7. if 3rd failures, defensive lockout and activate alarm system

 8. goto setup(step[1])

 59

4.6 Parts of My Software

//***

// Source Code for Safety Cabinet alarm System

// Firmware for Microcontroller (PIC 16F876A)

//***

#include <16F876A.h>

#device *=16 ADC=8 //16bit pointer, 8-bit ADC

#use delay(clock=20000000) //20M Hertz

//Initial Configuration Bits

#fuses HS,NOWDT,PROTECT,PUT,NOWRT,BROWNOUT,NOLVP

//*************************************

//Constant Data be plced in ROM

//*************************************

//Display Number '1','2','3','4','5','6',7'','8','9','0'

const int8 bmpc[10][7] = {{0, 0x3e, 0x51, 0x49, 0x45, 0x3e, 0},

 {0, 0x00, 0x42, 0x7f, 0x40, 0x00, 0},

 {0, 0x42, 0x61, 0x51, 0x49, 0x46, 0},

 {0, 0x21, 0x41, 0x45, 0x4b, 0x31, 0},

 {0, 0x18, 0x14, 0x12, 0x7f, 0x10, 0},

 {0, 0x27, 0x45, 0x45, 0x45, 0x39, 0},

 {0, 0x3c, 0x4a, 0x49, 0x49, 0x30, 0},

 {0, 0x01, 0x71, 0x09, 0x05, 0x03, 0},

 {0, 0x36, 0x49, 0x49, 0x49, 0x36, 0},

 {0, 0x06, 0x49, 0x49, 0x29, 0x1e, 0}};

 60

Examples

{0, 0x3e, 0x51, 0x49, 0x45, 0x3e, 0}

 Display ‘0’

Hex binary

{0, 0x00, 0x42, 0x7f, 0x40, 0x00, 0}

 Display ‘1’

Hex binary

{0, 0x42, 0x61, 0x51, 0x49, 0x46, 0}

 Display ‘2’

Hex binary

{0, 0x21, 0x41, 0x45, 0x4b, 0x31, 0}

 Display ‘3’

Hex binary

0x00 = 0000 0000
0x3e = 0011 1110
0x51 = 0101 0001
0x49 = 0100 1001
0x45 = 0100 0101
0x3e = 0011 1110
0x00 = 0000 0000

0x00 = 0000 0000
0x00 = 0000 0000
0x42 = 0100 0010
0x7f = 0111 1111
0x40 = 0100 0000
0x00 = 0000 0000
0x00 = 0000 0000

0x00 = 0000 0000
0x42 = 0100 0010
0x61 = 0110 0001
0x51 = 0101 0001
0x49 = 0100 1001
0x46 = 0100 0110
0x00 = 0000 0000

0x00 = 0000 0000
0x21 = 0010 0001
0x41 = 0100 0001
0x45 = 0100 1001
0x4b = 0100 1011
0x31 = 0110 0001
0x00 = 0000 0000

 61

//Display "Mark"

const int8 bmpc_2b[7] = {0, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0}; // display all

const int8 bmpc_2c[7] = {0, 0x02, 0x01, 0x51, 0x09, 0x06, 0}; // display '?'

const int8 bmpc_2d[7] = {0, 0x00, 0x60, 0x60, 0x00, 0x00, 0}; // display '.'

const int8 bmpc_2e[7] = {0, 0x08, 0x08, 0x08, 0x08, 0x08, 0}; // display '-'

const int8 bmpc_2f[7] = {0, 0x00, 0x41, 0x22, 0x14, 0x08, 0}; // display '>'

const int8 bmpc_30[7] = {0, 0x08, 0x14, 0x22, 0x41, 0x00, 0}; // display '<'

const int8 bmpc_31[7] = {0x49, 0x2a, 0x1c, 0x7f, 0x1c, 0x2a, 0x49}; // display '*'

const int8 bmpc_32[7] = {0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18}; // display '--'

const int8 bmpc_33[7] = {0x18, 0x18, 0xf8, 0xf8, 0, 0, 0}; // display '-|'

const int8 bmpc_34[7] = {0, 0, 0xf8, 0xf8, 0x18, 0x18, 0x18}; // display '|-'

const int8 bmpc_35[7] = {0, 0, 0x1f, 0x1f, 0x18, 0x18, 0x18}; // display '|_'

const int8 bmpc_36[7] = {0x18, 0x18, 0x1f, 0x1f, 0, 0, 0}; // display '_|'

const int8 bmpc_37[7] = {0, 0, 0xff, 0xff, 0, 0, 0}; // display '|'

const int8 bmpc_40h[7] = {0, 0, 0, 0, 0, 0, 0};// display 'blank'

//Display Character from 'A' to 'Z'

const int8 bmpc_AAMM[13][7] = { {0, 0x7e, 0x11, 0x11, 0x11, 0x7e, 0}, //A...M

 {0, 0x7f, 0x49, 0x49, 0x49, 0x36, 0},

 {0, 0x3e, 0x41, 0x41, 0x41, 0x22, 0},

 {0, 0x7f, 0x41, 0x41, 0x22, 0x1c, 0},

 {0, 0x7f, 0x49, 0x49, 0x49, 0x41, 0},

 {0, 0x7f, 0x09, 0x09, 0x09, 0x01, 0},

 {0, 0x3e, 0x41, 0x49, 0x49, 0x7a, 0},

 {0, 0x7f, 0x08, 0x08, 0x08, 0x7f, 0},

 {0, 0x00, 0x41, 0x7f, 0x41, 0x00, 0},

 {0, 0x20, 0x40, 0x41, 0x3f, 0x01, 0},

 {0, 0x7f, 0x08, 0x14, 0x22, 0x41, 0},

 {0, 0x7f, 0x40, 0x40, 0x40, 0x40, 0},

 {0, 0x7f, 0x02, 0x0c, 0x02, 0x7f, 0}};

 62

const int8 bmpc_NNZZ[13][7] = { {0, 0x7f, 0x04, 0x08, 0x10, 0x7f, 0}, //N...Z

 {0, 0x3e, 0x41, 0x41, 0x41, 0x3e, 0},

 {0, 0x7f, 0x09, 0x09, 0x09, 0x06, 0},

 {0, 0x3e, 0x41, 0x51, 0x21, 0x5e, 0},

 {0, 0x7f, 0x09, 0x19, 0x29, 0x46, 0},

 {0, 0x46, 0x49, 0x49, 0x49, 0x31, 0},

 {0, 0x01, 0x01, 0x7f, 0x01, 0x01, 0},

 {0, 0x3f, 0x40, 0x40, 0x40, 0x3f, 0},

 {0, 0x1f, 0x20, 0x40, 0x20, 0x1f, 0},

 {0, 0x3f, 0x40, 0x38, 0x40, 0x3f, 0},

 {0, 0x63, 0x14, 0x08, 0x14, 0x63, 0},

 {0, 0x07, 0x08, 0x70, 0x08, 0x07, 0},

 {0, 0x61, 0x51, 0x49, 0x45, 0x43, 0}};

//Display Character from 'a' to 'z'

const int8 bmpc_am[13][7] = {{0, 0x20, 0x54, 0x54, 0x54, 0x78, 0}, //a...m

 {0, 0x7f, 0x48, 0x44, 0x44, 0x38, 0},

 {0, 0x38, 0x44, 0x44, 0x44, 0x20, 0},

 {0, 0x38, 0x44, 0x44, 0x48, 0x7f, 0},

 {0, 0x38, 0x54, 0x54, 0x54, 0x18, 0},

 {0, 0x08, 0x7e, 0x09, 0x01, 0x02, 0},

 {0, 0x0c, 0x52, 0x52, 0x52, 0x3e, 0},

 {0, 0x7e, 0x08, 0x04, 0x04, 0x78, 0},

 {0, 0x00, 0x44, 0x7d, 0x40, 0x00, 0},

 {0, 0x20, 0x40, 0x44, 0x3d, 0x00, 0},

 {0, 0x7f, 0x10, 0x28, 0x44, 0x00, 0},

 {0, 0x00, 0x41, 0x7f, 0x40, 0x00, 0},

 {0, 0x7c, 0x04, 0x18, 0x04, 0x78, 0}};

 63

const int8 bmpc_nz[13][7] = { {0, 0x7c, 0x08, 0x04, 0x04, 0x78, 0},

 {0, 0x38, 0x44, 0x44, 0x44, 0x38, 0},

 {0, 0x7c, 0x14, 0x14, 0x14, 0x08, 0},

 {0, 0x08, 0x14, 0x14, 0x18, 0x7c, 0},

 {0, 0x7c, 0x08, 0x04, 0x04, 0x08, 0},

 {0, 0x48, 0x54, 0x54, 0x54, 0x20, 0},

 {0, 0x04, 0x3f, 0x44, 0x40, 0x20, 0},

 {0, 0x3c, 0x40, 0x40, 0x20, 0x7c, 0},

 {0, 0x1c, 0x20, 0x40, 0x20, 0x1c, 0},

 {0, 0x3c, 0x40, 0x30, 0x40, 0x3c, 0},

 {0, 0x44, 0x28, 0x10, 0x28, 0x44, 0},

 {0, 0x0c, 0x50, 0x50, 0x50, 0x3c, 0},

 {0, 0x44, 0x64, 0x54, 0x4c, 0x44, 0}};

 The programming ‘C’ has been used to develop the firmware for the

microcontroller 16F876A. ‘C’ language has been chosen because it is the high level

language and can be compiled to any type of assembly languages which is suitable to

the microcontroller that been used.

CHAPTER 5

RESULTS AND DISCUSSION

Chapter 5 will show the results from the proposed system. Instructions on

how to use the safety cabinet alarm system are introduced in this chapter.

5.1 System Overview

Figure 5.1: System Overview

Keypad

Setting code
Change code
Identify code

Alarm System
 Alarm siren “on”

 inform authorized
 personnel (SMS).

Motor (unlock cabinet)

LCD Display

Microcontroller

 65

I used PIC microcontroller be main controller in my control system. First PIC

used to identify what button that is press on the keypad. The keypad is the Nokia

phone keypad and used to enter the safety code. There are 2 parts in the alarm system.

If someone tries to break in the cabinet, the alarm siren will be on and at the same

time a message (SMS) will be send out to inform the authorized personnel through

the internal cell phone at the safety cabinet. PIC also programmed to identify/

change/ set the code. With the display of LCD, the owner will be more easy or

convenient to operate the control system. When the code is right, the motor will be

trigger to unlock the cabinet.

5.2 Project Overview

Figure 5.2: Project Overview

 66

5.2.1 User Manual

Figure 5.3: Keypad

main page

next page

Figure 5.4: LCD Pages

When the power supply is ‘on’, the LCD will display “UNEVERSITI

TEKNOLOGI MALAYSIA” for 3 seconds. It aims to promote the company name

and identify the model of the products. After the 3 seconds, the LCD will display the

main page and ask for password. If you need to activate the cabinet lock, you need to

enter the correct password and press “Enter” button by using the keypad. The

combination length is 6 digits long. When the correct password is entered, the LCD

will display “unlock” that means the lock already activated and you can access the

cabinet now.

 67

 If the password is wrong, the LCD will display “INVALID CODE” for 1

second, and then you need to enter the password again to activate the cabinet lock.

If the invalid code is entered for 3 times, the LCD will display “WARNING”, the

alarm system will be on. The alarm siren will be ‘on’ and at the same time, a

message will be sending out to inform the authorized person through the mobile

phone. In order to switch off the alarm system, button “ * ” must be pressed and the

LCD will display will main page again. At this time, you need to enter correct

password to switch off the alarm system.

For the password changing, the button “ # ” must be pressed. The LCD will

display next page” Change Password ?”. If you want to change password, the button

“Enter” must be pressed. The system will ask for old password. When the password

is right, you need to enter the new password for 2 times to confirm the new password.

After the password changed successfully, the LCD will display “Password Changed”

for 1 second, the main page will display again.

 68

5.3 PCB Layout

5.3.1 Controller Layout (Top Layer)

Figure 5.5: Controller Layout (Top Layer)

 69

5.3.2 Controller Circuit (Top Layer)

Figure 5.6: Controller Circuit (Top Layer)

 70

5.3.3 Controller Layout (Bottom Layer)

Figure 5-7: Controller Layout (Bottom Layer)

5.3.4 Controller Circuit (Bottom Layer)

Figure 5-8: Controller Circuit (Bottom Layer)

 71

5.4 Connector’s Board

 This connector’s board has 7 pieces 2-pin header (3 controller header, 2 DC

power supply header, mobile phone header, buzzer header, and motor header).

Figure 5.9: Connector’s Board

 From this chapter, the safety cabinet alarm system has been fully explained.

Hence the users can understand the whole development of this alarm system.

CHAPTER 6

CONCLUSION AND FUTURE SUGGESTIONS

6.1 Conclusion

As a conclusion, the project is to come out with the hardware of safety cabinet

alarm system. The safety cabinet alarm system will increase the security cabinet and

make society feel secure to their valuable things. The specifications of the safety cabinet

alarm system are universal LCD alarm system, keyless, flexible, low cost, repairable,

reprogrammable auto reset.

 73

6.1 Future Suggestions / Projection

In this project there are plenty of rooms for improvement to further enhance the

project in terms of functionality and reliability. Due to time constraint and lack of

sources, a few suggestions are suggested here for better advancement on the safety

cabinet alarm system in future.

a) Manual Authentication

If black out occurs, the users still can certain manual key to activate the

lock and access the cabinet.

b) Second Authentication

In order to increase security of the cabinet, this system need second

authentication such as fingerprint or image processing to access the cabinet.

c) Improve The Mechanical Part.

The cabinet must be built by certain concrete materials that are not easy to

break in. The cabinet should be fire and water proof to make the safety of

valuable things.

d) Continuous Power Supply

Actually the safety cabinet alarm system need continuous power supply to

operate continually. Rechargeable battery as the backup power supply to

make sure the system is working in 24 hour per day.

The knowledge I acquired from this project from this project will be essential for

me to equip myself for the future electronic industry which is changing rapidly.

 74

REFERENCES

[1] Huang, Han-Way, “PIC microcontroller: an introduction to software and

hardware interfacing”, Clifton Park, NY : Thomson Delmar Learning, 2004

[2] Iovine, John, “PIC microcontroller project book”, New York : McGraw-Hill,

2000.

[3] Smith, Jack R, “Programming the PIC microcontroller with MBasic”,

Amsterdam: Elsevier/Newnes, 2005

[4] Sanchez, Julio, “Microcontroller programming : the microchip PIC”, Boca

Raton, FL : CRC Press, 2007

[5] Burkhard, Walter A, “C for programmers”, Belmont, Calif: Wadsworth Pub.,

1988

[6] Weber, Thad L, “Alarm systems and theft prevention”, Boston : Bitterworths

Pub., 1985

[7] Rakes, Charles D, “Alarms : 55 electronic projects and circuits”, Blue Ridge

Summit, PA : TAB Bks., 1988

[8] http://us.geocities.com

[9] http://www.patentstorm.us

[10] http://www.codelock.us

 75

APPENDIX

Source Code

//***
// Source Code for Safety Cabinet Control System
// Firmware for Microcontroller (PIC 16F876A)
//***

//Name : FOO KON SIAN
//IC Number : 840905025205
//Matric No : AE040061
//Course : 4SEE
//Department : INSEED, FKE
//Supervisor : EN Ismail Bin Ariffin

#include <16F876A.h>
#device *=16 ADC=8 //16bit pointer, 8-bit ADC
#use delay(clock=20000000) //20M Hertz
//Initial Configuration Bits
#fuses HS,NOWDT,PROTECT,PUT,NOWRT,BROWNOUT,NOLVP

typedef struct {
 int1 bit0;
 int1 bit1;
 int1 bit2;
 int1 bit3;
 int1 bit4;
 int1 bit5;
 int1 bit6;
 int1 bit7;
} flags;

//*************************
//Initial value for Port A
//Initial value for Port B
//Initial value for Port C
//*************************
#define TRISA 0b00000000
#define TRISB 0b11111111
#define TRISC 0b10000000
#define Port_Ai 0b00001000
#define Port_Bi 0b00000000
#define Port_Ci 0b00000000

//*************************************
//Label for Port A, Port B, and Port C
//*************************************

//PortA
#define SCLK_H output_high(PIN_A0)
#define SCLK_L output_low(PIN_A0)
#define SDIN_H output_high(PIN_A1)

 76

#define SDIN_L output_low(PIN_A1)
#define DC_H output_high(PIN_A2)
#define DC_L output_low(PIN_A2)
#define SEC_H output_high(PIN_A3)
#define SEC_L output_low(PIN_A3)
#define RES_H output_high(PIN_A4)
#define RES_L output_low(PIN_A4)
#define BL_H output_high(PIN_A5)
#define BL_L output_low(PIN_A5)
//Port B
#define KeyIn0 input(PIN_B0)
#define KeyIn1 input(PIN_B1)
#define KeyIn2 input(PIN_B2)
#define KeyIn3 input(PIN_B3)
#define KeyIn4 input(PIN_B4)
#define KeyIn5 input(PIN_B5)
//Port C
#define Scan0_H output_high(PIN_C0)
#define Scan0_L output_low(PIN_C0)
#define Scan1_H output_high(PIN_C1)
#define Scan1_L output_low(PIN_C1)
#define Scan2_H output_high(PIN_C2)
#define Scan2_L output_low(PIN_C2)
#define EN_H output_high(PIN_C3)
#define EN_L output_low(PIN_C3)
#define Buzer_L output_low(PIN_C4)
#define Buzer_H output_high(PIN_C4)
#define Phone_L output_low(PIN_C5)
#define Phone_H output_high(PIN_C5)
#define motor1_L output_low(PIN_C6)
#define motor1_H output_high(PIN_C6)
#define motor2_L output_low(PIN_C7)
#define motor2_H output_high(PIN_C7)

flags sys01;
#define flg_10ms sys01.bit0

//*************************************
//Declare for Integer
//*************************************

int8 tmp;
int8 tmp00 ;
int8 tmp01 ;
int8 tmp02 ;
int8 cnt01 ;
int8 cnt02 ;
int8 cnt03 ;
int8 Dgt_cnt;
int8 bmp_org;
int8 bmp_Bcnt;
int8 tmr10ms;
int8 counter;
int8 change;
int8 keyNew;

 77

int8 KeyFlag;
int8 skip;
int8 Skip_2;
int8 SKIP_3;
int8 loop;
int8 keytmp;
int8 keyCnt;
int8 keyNew_2;
int8 keyNew_1;
int8 reset;
int8 shf;
int8 shftmp;
int8 shfct;
int8 cursor;
int8 CsrMarker;
int8 confirm;
int8 code;
int8 try;
int8 DispPg;
int8 bUpdateLCD;
int8 i, k;
int8 W_REG;
int8 page;
int8 FSR;
int8 INDF;
int8 PCLATH;
int8 Temp;

//*************************************
//Constant Data be plced in ROM
//*************************************

//Display Number '1','2','3','4','5','6',7'','8','9','0'
const int8 bmpc[10][7] = {{0, 0x3e, 0x51, 0x49, 0x45, 0x3e, 0},
 {0, 0x00, 0x42, 0x7f, 0x40, 0x00, 0},
 {0, 0x42, 0x61, 0x51, 0x49, 0x46, 0},
 {0, 0x21, 0x41, 0x45, 0x4b, 0x31, 0},
 {0, 0x18, 0x14, 0x12, 0x7f, 0x10, 0},
 {0, 0x27, 0x45, 0x45, 0x45, 0x39, 0},
 {0, 0x3c, 0x4a, 0x49, 0x49, 0x30, 0},
 {0, 0x01, 0x71, 0x09, 0x05, 0x03, 0},
 {0, 0x36, 0x49, 0x49, 0x49, 0x36, 0},
 {0, 0x06, 0x49, 0x49, 0x29, 0x1e, 0}};

//Display "Mark"
const int8 bmpc_2b[7] = {0, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0}; // display all
const int8 bmpc_2c[7] = {0, 0x02, 0x01, 0x51, 0x09, 0x06, 0}; // display '?'
const int8 bmpc_2d[7] = {0, 0x00, 0x60, 0x60, 0x00, 0x00, 0}; // display '.'
const int8 bmpc_2e[7] = {0, 0x08, 0x08, 0x08, 0x08, 0x08, 0}; // display '-'
const int8 bmpc_2f[7] = {0, 0x00, 0x41, 0x22, 0x14, 0x08, 0}; // display '>'
const int8 bmpc_30[7] = {0, 0x08, 0x14, 0x22, 0x41, 0x00, 0}; // display '<'
const int8 bmpc_31[7] = {0x49, 0x2a, 0x1c, 0x7f, 0x1c, 0x2a, 0x49}; // display '*'
const int8 bmpc_32[7] = {0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18}; // display '--'
const int8 bmpc_33[7] = {0x18, 0x18, 0xf8, 0xf8, 0, 0, 0}; // display '-|'
const int8 bmpc_34[7] = {0, 0, 0xf8, 0xf8, 0x18, 0x18, 0x18}; // display '|-'
const int8 bmpc_35[7] = {0, 0, 0x1f, 0x1f, 0x18, 0x18, 0x18}; // display '|_'

 78

const int8 bmpc_36[7] = {0x18, 0x18, 0x1f, 0x1f, 0, 0, 0}; // display '_|'
const int8 bmpc_37[7] = {0, 0, 0xff, 0xff, 0, 0, 0}; // display '|'
const int8 bmpc_40h[7] = {0, 0, 0, 0, 0, 0, 0};//dislay'blank'

//Display Character from 'A' to 'Z'
const int8 bmpc_AAMM[13][7] = { {0, 0x7e, 0x11, 0x11, 0x11, 0x7e, 0}, //A...M
 {0, 0x7f, 0x49, 0x49, 0x49, 0x36, 0},
 {0, 0x3e, 0x41, 0x41, 0x41, 0x22, 0},
 {0, 0x7f, 0x41, 0x41, 0x22, 0x1c, 0},
 {0, 0x7f, 0x49, 0x49, 0x49, 0x41, 0},
 {0, 0x7f, 0x09, 0x09, 0x09, 0x01, 0},
 {0, 0x3e, 0x41, 0x49, 0x49, 0x7a, 0},
 {0, 0x7f, 0x08, 0x08, 0x08, 0x7f, 0},
 {0, 0x00, 0x41, 0x7f, 0x41, 0x00, 0},
 {0, 0x20, 0x40, 0x41, 0x3f, 0x01, 0},
 {0, 0x7f, 0x08, 0x14, 0x22, 0x41, 0},
 {0, 0x7f, 0x40, 0x40, 0x40, 0x40, 0},
 {0, 0x7f, 0x02, 0x0c, 0x02, 0x7f, 0}};

const int8 bmpc_NNZZ[13][7] = { {0, 0x7f, 0x04, 0x08, 0x10, 0x7f, 0}, //N...Z
 {0, 0x3e, 0x41, 0x41, 0x41, 0x3e, 0},
 {0, 0x7f, 0x09, 0x09, 0x09, 0x06, 0},
 {0, 0x3e, 0x41, 0x51, 0x21, 0x5e, 0},
 {0, 0x7f, 0x09, 0x19, 0x29, 0x46, 0},
 {0, 0x46, 0x49, 0x49, 0x49, 0x31, 0},
 {0, 0x01, 0x01, 0x7f, 0x01, 0x01, 0},
 {0, 0x3f, 0x40, 0x40, 0x40, 0x3f, 0},
 {0, 0x1f, 0x20, 0x40, 0x20, 0x1f, 0},
 {0, 0x3f, 0x40, 0x38, 0x40, 0x3f, 0},
 {0, 0x63, 0x14, 0x08, 0x14, 0x63, 0},
 {0, 0x07, 0x08, 0x70, 0x08, 0x07, 0},
 {0, 0x61, 0x51, 0x49, 0x45, 0x43, 0}};

//Display Character from 'a' to 'z'
const int8 bmpc_am[13][7] = {{0, 0x20, 0x54, 0x54, 0x54, 0x78, 0}, //a...m
 {0, 0x7f, 0x48, 0x44, 0x44, 0x38, 0},
 {0, 0x38, 0x44, 0x44, 0x44, 0x20, 0},
 {0, 0x38, 0x44, 0x44, 0x48, 0x7f, 0},
 {0, 0x38, 0x54, 0x54, 0x54, 0x18, 0},
 {0, 0x08, 0x7e, 0x09, 0x01, 0x02, 0},
 {0, 0x0c, 0x52, 0x52, 0x52, 0x3e, 0},
 {0, 0x7e, 0x08, 0x04, 0x04, 0x78, 0},
 {0, 0x00, 0x44, 0x7d, 0x40, 0x00, 0},
 {0, 0x20, 0x40, 0x44, 0x3d, 0x00, 0},
 {0, 0x7f, 0x10, 0x28, 0x44, 0x00, 0},
 {0, 0x00, 0x41, 0x7f, 0x40, 0x00, 0},
 {0, 0x7c, 0x04, 0x18, 0x04, 0x78, 0}};

const int8 bmpc_nz[13][7] = { {0, 0x7c, 0x08, 0x04, 0x04, 0x78, 0},
 {0, 0x38, 0x44, 0x44, 0x44, 0x38, 0},
 {0, 0x7c, 0x14, 0x14, 0x14, 0x08, 0},
 {0, 0x08, 0x14, 0x14, 0x18, 0x7c, 0},
 {0, 0x7c, 0x08, 0x04, 0x04, 0x08, 0},
 {0, 0x48, 0x54, 0x54, 0x54, 0x20, 0},

 79

 {0, 0x04, 0x3f, 0x44, 0x40, 0x20, 0},
 {0, 0x3c, 0x40, 0x40, 0x20, 0x7c, 0},
 {0, 0x1c, 0x20, 0x40, 0x20, 0x1c, 0},
 {0, 0x3c, 0x40, 0x30, 0x40, 0x3c, 0},
 {0, 0x44, 0x28, 0x10, 0x28, 0x44, 0},
 {0, 0x0c, 0x50, 0x50, 0x50, 0x3c, 0},
 {0, 0x44, 0x64, 0x54, 0x4c, 0x44, 0}};

//display "UNIVERSITI"
const char con_sole1[12] = {'U', 'N', 'I', 'V', 'E', 'R', 'S', 'I', 'T', 'I', 0xa2, 0xa2};
 //display "TEKNOLOGI"
const char con_sole2[12] = {'T', 'E', 'K', 'N', 'O', 'L', 'O', 'G', 'I', 0xa2, 0xa2, 0xa2};
 //display "MALAYSIA"
const char con_sole3[12] = {'M', 'A', 'L', 'A', 'Y', 'S', 'I', 'A', 0xa2, 0xa2, 0xa2, 0xa2};

#define rd RdFlg.bit0
#define sentRd RdFlg.bit4

//**
// RAM variables (Array)
//**
int8 LCDRow0[12];
int8 LCDRow1[12];
int8 LCDRow2[12];
int8 LCDRow3[12];
int8 LCDRow4[12];
int8 LCDRow5[12];
int8 digit[6];
int8 second[6];
int8 save[6];

//**
// LCD Display Program
//**

void dly0()
{
 cnt01 = W_REG;

dly01:
 cnt02 = 0x1f;
dly02:
 cnt03 = 0xff;
dly03:
 cnt03--;
 if (cnt03 != 0) goto dly03;
dly04:
 cnt02--;
 if (cnt02 != 0) goto dly02;
dly05:
 cnt01--;
 if (cnt01 != 0) goto dly01;
}

 80

void dly1()
{
 W_REG = 8;
 dly0();
}

void dly2()
{
 W_REG = 2;
 dly0();
}

void dly3()
{
 W_REG = 1;
 dly0();
}

void shf8()
{
 W_REG = 8;
 shfct = W_REG;

Shf8a:
 SCLK_L;
 Temp = shf;
 rotate_left(&shf,1);
 if(Temp < 0x80)
 {
 goto shfb0;
 }
 SDIN_H; //bit 1
 goto shfclk;

shfb0:
 SDIN_L; //bit 0

shfclk:
 SCLK_H;

ckshfct:
 shfct--;
 if(shfct != 0)
 {
 goto shf8a;
 }
shf8b:
 SCLK_L;
 SDIN_L;
}

void ShfCmd()
{
 shf = W_REG;
 DC_L;

 81

 shf8();
}

//shift
void shfdata()
{
 shf = W_REG;
 DC_H;
 shf8();
}

void sdly1()
{
 //nop
 return;
}

//row data
void d_row()
{
 shftmp = W_REG; //row data
 cnt03 = 0x54;

d_row2:
 W_REG = shftmp; //row data
 ShfData();
 cnt03--;
 if(cnt03 != 0)
 {
 goto d_row2;
 }
}

void Init_LCD_row() //cmd
 {
 W_REG = (W_REG + 0b01000000);
 SEC_L; //enable clk
 ShfCmd();
 W_REG = 0b10000000;
 ShfCmd();
 SEC_H; //disable clk
 SEC_L; //disable clk
 W_REG = 0b10101100; //initial data
// W_REG = 0; //initial data
 d_row();
 SEC_H; //disable clk
}

//Init LCD
void Init_LCD()
{

 82

//Init LCD starts here
 dly2();
 SEC_H; //disable clk
 DC_H;
 sdly1();
 RES_H; //release reset
 dly3();

go00:
 SEC_L; // enable clk
 W_REG = 0b00100100;
 ShfCmd();
 for(i=0; i<6; i++)
 {
 W_REG = i;
 Init_LCD_row();
 }

 SEC_L; //enable clk
 W_REG = 0b00100000;
 ShfCmd();

 SEC_H; //disable clk
 dly1();
 dly1();

 SEC_L; //enable clk
 W_REG = 0b00100000;
 ShfCmd();
 W_REG = 0b00001100;
 ShfCmd();
 SEC_H; //disable clk
 dly1();
 dly1();
}

//Update 1 digit LCD Data
void LCD_dgt()
{

Nxt_CHAR_B:
 bmp_org++;
 if(--bmp_Bcnt != 0) goto Nxt_CHAR_B;
 return;

LCD_dgt_num:
 W_REG = 0x08;
 PCLATH = W_REG;
 bmp_Bcnt = 0x07;

Nxt_num_B:
 W_REG = bmp_org;
 W_REG = W_REG + CsrMarker;
 ShfData();
 bmp_org++;
 if (--bmp_Bcnt != 0)

 83

 {
 goto Nxt_num_B;
 }
 return;

Chk_cursor_pos:
 return;
}

//Update 1 row
void Udp_row()
{
 W_REG = W_REG + 0x40;
 SEC_L; //enable clk
 ShfCmd();
 W_REG = 0x80;
 ShfCmd();
 SEC_H; //disable clk
 W_REG = 0x0c; //dgt count
 Dgt_cnt = W_REG;
 SEC_L; //enable clk

Nxt_dgt:
 CsrMarker = 0;
 if (DispPg != 0) goto Nxt_dgt0;

 if (cursor == FSR)
 {
 CsrMarker = 0x80;
 }

Nxt_dgt0:
 #asm
 movf INDF,W
 #endasm
 LCD_dgt();
 #asm
 incf FSR,F
 #endasm
}

//LCD Display Program

void Udp_LCD()
{
 Udp_row();

}

void Udp_LCD0()
{
 Udp_LCD();
}

 84

//*************************************
// To Interupt Every 10 ms
//*************************************
#INT_TIMER1
void IRQ_T1()
{
 set_timer1(0xe796); //10ms (0xe796)
 enable_interrupts(INT_TIMER1);
 flg_10ms = 1;
}

//*************************************
// Functions for LCD Display
//*************************************

void display_blank()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_40h[i];
 shfdata();
 }

}

void display_AAMM(int8 x)
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_AAMM[x][i];
 shfdata();
 }
}

void display_NNZZ(int8 x)
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_NNZZ[x][i];
 shfdata();
 }
}

void display_am(int8 x)
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_am[x][i];
 shfdata();
 }
}

void display_nz(int8 x)
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_nz[x][i];
 shfdata();
 }
}

 85

void display(int8 x)
{
 for (i=0; i<7; i++) {
 W_REG = bmpc[x][i];
 shfdata();
 }
}

void display_cursor()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_40h[i] | 0x80;
 shfdata();
 }
}

void display_all()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_2b[i];
 shfdata();
 }

}

void display_question()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_2c[i];
 shfdata();
 }

}

void display_dot()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_2d[i];
 shfdata();
 }

}

void display_minus()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_2e[i];
 shfdata();
 }

}

void display_greater()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_2f[i];

 86

 shfdata();
 }

}

void display_lower()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_30[i];
 shfdata();
 }

}

void display_line()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_32[i];
 shfdata();
 }

}

void display_vertical()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_37[i];
 shfdata();
 }

}

void display_box45()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_33[i];
 shfdata();
 }

}

void display_box135()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_34[i];
 shfdata();
 }

}

void display_box225()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_35[i];
 shfdata();

 87

 }

}

void display_box315()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_36[i];
 shfdata();
 }

}

void display_star()
{
 for (i=0; i<7; i++) {
 W_REG = bmpc_31[i];
 shfdata();
 }

}

void show_char()
{

 if (W_REG == 0xa2) {
 display_blank();
 return; }

 if ((W_REG >= 0x41) && (W_REG <= 0x4D)) { //A...M
 W_REG -= 0x41;
 display_AAMM(W_REG);
 return;
 }

 if ((W_REG >= 0x4E) && (W_REG <= 0x5A)) { //N...Z
 W_REG -= 0x4E;
 display_NNZZ(W_REG);
 return;
 }

 if ((W_REG >= 0x61) && (W_REG <= 0x6d)) { //a...m
 W_REG -= 0x61;
 display_am(W_REG);
 return;
 }

 if ((W_REG >= 0x6e) && (W_REG <= 0x7a)) { //n...z
 W_REG -= 0x6e;
 display_nz(W_REG);
 return;
 }

 if ((W_REG >= 0x30) && (W_REG <= 0x39)) { //0..9
 W_REG -= 0x30;

 88

 display(W_REG);
 return;
 }

 if (W_REG == 0x3f) {
 display_question();
 return; }

 if (W_REG == 0x2e) {
 display_dot();
 return; }

 if (W_REG == 0x2d) {
 display_minus();
 return; }

 if (W_REG == 0x3e) {
 display_greater();
 return; }

 if (W_REG == 0x3c) {
 display_lower();
 return; }

 if (W_REG == 0x2a) {
 display_star();
 return; }

 if (W_REG == 0x11) {
 display_box45();
 return; }

 if (W_REG == 0x12) {
 display_box135();
 return; }

 if (W_REG == 0x13) {
 display_box225();
 return; }

 if (W_REG == 0x14) {
 display_box315();
 return; }

 if (W_REG == 0x15) {
 display_line();
 return; }

 if (W_REG == 0x16) {
 display_vertical();
 return; }

}

 89

void display_char()
{
 for(k=0; k<12; k++){
 W_REG = LCDRow0[k];
 show_char();
 }

 for(k=0; k<12; k++){
 W_REG = LCDRow1[k];
 show_char();
 }

 for(k=0; k<12; k++){
 W_REG = LCDRow2[k];
 show_char();
 }

 for(k=0; k<12; k++){
 W_REG = LCDRow3[k];
 show_char();
 }

 for(k=0; k<12; k++){
 W_REG = LCDRow4[k];
 show_char();
 }

 for(k=0; k<12; k++){
 W_REG = LCDRow5[k];
 show_char();
 }
}

void clear()
{
 for(i=0; i<12; i++){
 LCDRow2[i] = 0xa2;
 LCDRow3[i] = 0xa2;
 LCDRow4[i] = 0xa2;
 LCDRow5[i] = 0xa2;
 }
}

void upper_box()
{
 LCDRow1[0] = 0xa2;
 LCDRow1[1] = 0x12;
 for(i=2; i<10; i++){
 LCDRow1[i] = 0x15;
 }
 LCDRow1[10] = 0x11;
 LCDRow1[11] = 0xa2;

 clear();

 LCDRow2[0] = 0xa2;

 90

 LCDRow2[1] = 0x16;
 for(i=2; i<10; i++){
 LCDRow2[i] = 0xa2;
 }

 LCDRow2[10] = 0x16;
 LCDRow2[11] = 0xa2;

 LCDRow3[0] = 0xa2;
 LCDRow3[1] = 0x13;
 for(i=2; i<10; i++){
 LCDRow3[i] = 0x15;
 }
 LCDRow3[10] = 0x14;
 LCDRow3[11] = 0xa2;

 for(i=0; i<12; i++){
 LCDRow4[i] = 0xa2;
 LCDRow5[i] = 0xa2;
 }

}

//*************************************
// Pages In LCD display
//*************************************

void page_0()
{
 for(i=0; i<12; i++){
 LCDRow0[i] = con_sole1[i];
 LCDRow1[i] = con_sole2[i];
 LCDRow2[i] = con_sole3[i];
 }

 for(i=0; i<12; i++){
 LCDRow3[i] = 0xa2;
 LCDRow4[i] = 0xa2;
 LCDRow5[i] = 0xa2;
 }

}

void page_1() //Password ?
{
 LCDRow0[0] = 'P';
 LCDRow0[1] = 'a';
 LCDRow0[2] = 's';
 LCDRow0[3] = 's';
 LCDRow0[4] = 'w';
 LCDRow0[5] = 'o';
 LCDRow0[6] = 'r';
 LCDRow0[7] = 'd';
 LCDRow0[8] = 0xa2;

 91

 LCDRow0[9] = 0x3f; //'?'
 LCDRow0[10] = 0xa2;
 LCDRow0[11] = 0xa2;
 upper_box();

}

void page_2() //Change password ?
{
 LCDRow0[0] = 'C';
 LCDRow0[1] = 'h';
 LCDRow0[2] = 'a';
 LCDRow0[3] = 'n';
 LCDRow0[4] = 'g';
 LCDRow0[5] = 'e';
 for(i=6; i<12; i++) {
 LCDRow0[i] = 0xa2;
 }
 LCDRow1[0] = 'P';
 LCDRow1[1] = 'a';
 LCDRow1[2] = 's';
 LCDRow1[3] = 's';
 LCDRow1[4] = 'w';
 LCDRow1[5] = 'o';
 LCDRow1[6] = 'r';
 LCDRow1[7] = 'd';
 LCDRow1[8] = 0xa2;
 LCDRow1[9] = 0x3f; //'?'
 LCDRow1[10] = 0xa2;
 LCDRow1[11] = 0xa2;
 clear();
}

void password()
{
 LCDRow1[0] = 'P';
 LCDRow1[1] = 'a';
 LCDRow1[2] = 's';
 LCDRow1[3] = 's';
 LCDRow1[4] = 'w';
 LCDRow1[5] = 'o';
 LCDRow1[6] = 'r';
 LCDRow1[7] = 'd';
 LCDRow1[8] = 0xa2;
 LCDRow1[9] = 0x3f; //'?'
 LCDRow1[10] = 0xa2;
 LCDRow1[11] = 0xa2;

 LCDRow2[0] = 0xa2;
 LCDRow2[1] = 0x12;
 for(i=2; i<10; i++){
 LCDRow2[i] = 0x15;
 }
 LCDRow2[10] = 0x11;

 92

 LCDRow2[11] = 0xa2;

 LCDRow3[0] = 0xa2;
 LCDRow3[1] = 0x16;
 for(i=2; i<10; i++){
 LCDRow3[i] = 0xa2;
 }
 LCDRow3[10] = 0x16;
 LCDRow3[11] = 0xa2;

 LCDRow4[0] = 0xa2;
 LCDRow4[1] = 0x13;
 for(i=2; i<10; i++){
 LCDRow4[i] = 0x15;
 }
 LCDRow4[10] = 0x14;
 LCDRow4[11] = 0xa2;

 for(i=0; i<12; i++){
 LCDRow5[i] = 0xa2;
 }

}

void page_3() //Old Password ?
{
 LCDRow0[0] = 'O';
 LCDRow0[1] = 'l';
 LCDRow0[2] = 'd';
 for(i=3; i<12; i++){
 LCDRow0[i] = 0xa2;
 }

 password();
}

void page_4() //New Password ?
{
 try = 0;
 LCDRow0[0] = 'N';
 LCDRow0[1] = 'e';
 LCDRow0[2] = 'w';
 for(i=3; i<12; i++){
 LCDRow0[i] = 0xa2;
 }

 password();
}

void page_9() //Confirm ?
{

 93

 LCDRow0[0] = 'C';
 LCDRow0[1] = 'o';
 LCDRow0[2] = 'n';
 LCDRow0[3] = 'f';
 LCDRow0[4] = 'i';
 LCDRow0[5] = 'r';
 LCDRow0[6] = 'm';
 LCDRow0[7] = 0xa2;
 LCDRow0[8] = 0x3f; //'?'
 LCDRow0[9] = 0xa2;
 LCDRow0[10] = 0xa2;
 LCDRow0[11] = 0xa2;

 upper_box();

}

void page_5() //Password Changed
{
 try = 0;
 code = 0;
 LCDRow0[0] = 'P';
 LCDRow0[1] = 'a';
 LCDRow0[2] = 's';
 LCDRow0[3] = 's';
 LCDRow0[4] = 'w';
 LCDRow0[5] = 'o';
 LCDRow0[6] = 'r';
 LCDRow0[7] = 'd';
 LCDRow0[8] = 0xa2;
 LCDRow0[9] = 0xa2;
 LCDRow0[10] = 0xa2;
 LCDRow0[11] = 0xa2;

 LCDRow1[0] = 'C';
 LCDRow1[1] = 'h';
 LCDRow1[2] = 'a';
 LCDRow1[3] = 'n';
 LCDRow1[4] = 'g';
 LCDRow1[5] = 'e';
 LCDRow1[6] = 'd';
 for(i=7; i<12; i++){
 LCDRow1[i] = 0xa2;
 }
 clear();

}

void page_6() //Invalid Code
{
 try++;
 counter = 0;

 for(i=0; i<12; i++){
 LCDRow0[i] = 0xa2;

 94

 LCDRow1[i] = 0xa2;
 LCDRow3[i] = 0xa2;
 LCDRow4[i] = 0xa2;
 LCDRow5[i] = 0xa2;
 }

 LCDRow2[0] = 'I';
 LCDRow2[1] = 'n';
 LCDRow2[2] = 'v';
 LCDRow2[3] = 'a';
 LCDRow2[4] = 'l';
 LCDRow2[5] = 'i';
 LCDRow2[6] = 'd';
 LCDRow2[7] = 0xa2;
 LCDRow2[8] = 'C';
 LCDRow2[9] = 'o';
 LCDRow2[10] = 'd';
 LCDRow2[11] = 'e';

}

void page_7() //Warning !
{

 for(i=0; i<12; i++){
 LCDRow0[i] = 0xa2;
 LCDRow1[i] = 0xa2;
 LCDRow3[i] = 0xa2;
 LCDRow4[i] = 0xa2;
 LCDRow5[i] = 0xa2;
 }

 LCDRow2[0] = 0xa2;
 LCDRow2[1] = 0xa2;
 LCDRow2[2] = 'W';
 LCDRow2[3] = 'a';
 LCDRow2[4] = 'r';
 LCDRow2[5] = 'n';
 LCDRow2[6] = 'i';
 LCDRow2[7] = 'n';
 LCDRow2[8] = 'g';
 LCDRow2[9] = 0xa2;
 LCDRow2[10] = 0xa2;
 LCDRow2[11] = 0xa2;

}

void page_8() //Unlock !
{
 try = 0;
 code = 0;

 for(i=0; i<12; i++){
 LCDRow0[i] = 0xa2;

 95

 LCDRow1[i] = 0xa2;
 LCDRow3[i] = 0xa2;
 LCDRow4[i] = 0xa2;
 LCDRow5[i] = 0xa2;
 }

 LCDRow2[0] = 0xa2;
 LCDRow2[1] = 0xa2;
 LCDRow2[2] = 'U';
 LCDRow2[3] = 'n';
 LCDRow2[4] = 'l';
 LCDRow2[5] = 'o';
 LCDRow2[6] = 'c';
 LCDRow2[7] = 'k';
 LCDRow2[8] = 0xa2;
 LCDRow2[9] = 0xa2;
 LCDRow2[10] = 0xa2;
 LCDRow2[11] = 0xa2;

}

void pages()
{
 if(page == 1) page_1();
 if(page == 2) page_2();
 if(page == 3) page_3();
 if(page == 4) page_4();
 if(page == 9) page_9();

}

//*************************************
// Count Numbers of Entered Digit
//*************************************

void counter_1()
{
 if(change == 0){
 switch(counter){
 case 0: digit[0] = tmp;
 counter++;
 break;
 case 1: digit[1] = tmp;
 counter++;
 break;
 case 2: digit[2] = tmp;
 counter++;
 break;
 case 3: digit[3] = tmp;
 counter++;
 break;
 case 4: digit[4] = tmp;
 counter++;
 break;
 case 5: digit[5] = tmp;

 96

 counter++;
 break;
 case 6: counter++;
 }
 }
 if(change == 1){
 switch(counter){
 case 0: second[0] = tmp;
 counter++;
 break;
 case 1: second[1] = tmp;
 counter++;
 break;
 case 2: second[2] = tmp;
 counter++;
 break;
 case 3: second[3] = tmp;
 counter++;
 break;
 case 4: second[4] = tmp;
 counter++;
 break;
 case 5: second[5] = tmp;
 counter++;
 break;
 case 6: counter++;
 change = 0;
 }
 }
}

//*************************************
// Display 'Star' for each entered code
//*************************************

void set_star_1() //In page_1
{
 switch(counter){
 case 0: LCDROW2[3] = 0X2a;
 break;
 case 1: LCDROW2[4] = 0X2a;
 break;
 case 2: LCDROW2[5] = 0X2a;
 break;
 case 3: LCDROW2[6] = 0X2a;
 break;
 case 4: LCDROW2[7] = 0X2a;
 break;
 case 5: LCDROW2[8] = 0X2a;
 break;
 }
}

void set_star_2() //In page_3
{
 switch(counter){

 97

 case 0: LCDROW3[3] = 0X2a;
 break;
 case 1: LCDROW3[4] = 0X2a;
 break;
 case 2: LCDROW3[5] = 0X2a;
 break;
 case 3: LCDROW3[6] = 0X2a;
 break;
 case 4: LCDROW3[7] = 0X2a;
 break;
 case 5: LCDROW3[8] = 0X2a;
 break;
 }
}

//***
// Make Sure Only 6 Digits for Any Password
//***

void check_counter()
{
 if(counter >= 7){
 page_6();
 SEC_L;
 display_char();
 SEC_H;
 delay_ms(1000);
 if(page == 1)page_1();
 if(page == 3)page_3();
 if(page == 4 || page == 9)page_4();
 counter = 0;
 }
}

//***************************
// Save Digits For Password
//***************************

void save_digit()
{
 save[0] = 0x32;
 save[1] = 0x33;
 save[2] = 0x34;
 save[3] = 0x35;
 save[4] = 0x36;
 save[5] = 0x37;
}

//*****************
// Check Password
//*****************

void check_password()
{
 code = 0;

 98

 read_program_memory(0x1800, save, 6);
 if(save[0] == 0xff){save_digit();}
 if(digit[0] == save[0]) code++;
 if(digit[1] == save[1]) code++;
 if(digit[2] == save[2]) code++;
 if(digit[3] == save[3]) code++;
 if(digit[4] == save[4]) code++;
 if(digit[5] == save[5]) code++;
 digit[0] = 88;

}

void check_new_password()
{
 confirm = 0;
 if(digit[0] == second[0]) confirm++;
 if(digit[1] == second[1]) confirm++;
 if(digit[2] == second[2]) confirm++;
 if(digit[3] == second[3]) confirm++;
 if(digit[4] == second[4]) confirm++;
 if(digit[5] == second[5]) confirm++;

}

//*****************
// Change Password
//*****************

void change_password()
{
 save[0] = digit[0];
 save[1] = digit[1];
 save[2] = digit[2];
 save[3] = digit[3];
 save[4] = digit[4];
 save[5] = digit[5];
 write_program_memory(0x1800, save, 6);
}

//***
// Identify The Pressed Button at Keypad
//***

void press_1()
{
 tmp = 0x31;
 counter_1();
 check_counter();
}

void press_2()
{
 tmp = 0x32;
 counter_1();
 check_counter();
}

 99

void press_3()
{
 tmp = 0x33;
 counter_1();
 check_counter();
}

void press_4()
{
 tmp = 0x34;
 counter_1();
 check_counter();
}

void press_5()
{
 tmp = 0x35;
 counter_1();
 check_counter();
}

void press_6()
{
 tmp = 0x36;
 counter_1();
 check_counter();
}

void press_7()
{
 tmp = 0x37;
 counter_1();
 check_counter();
}

void press_8()
{
 tmp = 0x38;
 counter_1();
 check_counter();
}

void press_9()
{
 tmp = 0x39;
 counter_1();
 check_counter();
}

void press_0()
{
 tmp = 0x30;
 counter_1();
 check_counter();
}

 100

void confirm_page_next()
{
 page = 2;
 pages();
}

void confirm_page_back()
{
 page = 1;
 pages();
}

void keytest()
{
 int8 x;
 for (x=0; x<6; x++) {
 if (bit_test(keytmp, 0) == 0) {
 keyNew = keyCnt;
 skip_2 = 1;
 KeyFlag = 1;
 }
 shift_right(&keytmp,1,1);
 keyCnt++;
 }
}

void identify_key()
{
 KeyFlag = 0;
 keycnt = 0;
 keytmp = tmp00;
 keytest();
 if(KeyFlag == 0) {
 keytmp = tmp01;
 keytest();
 }
 if(KeyFlag == 0) {
 keytmp = tmp02;
 keytest();
 }
}

void confirm_key()
{

 if(keyNew == 6) {
 bUpdateLCD = 1;
 if (page == 1) {set_star_1();
 press_1(); }

 if (page == 3) { set_star_2();
 press_1(); }

 if (page == 4 || page == 9) {

 101

 if(page == 4) set_star_2();
 if(page == 9) set_star_1();
 press_1();
 }
 }

 if(keyNew == 7) {
 bUpdateLCD = 1;
 if (page == 1) { set_star_1();
 press_2(); }

 if (page == 3) { set_star_2();
 press_2(); }

 if (page == 4 || page == 9) {
 if(page == 4) set_star_2();
 if(page == 9) set_star_1();
 press_2();
 }
 }

 if(keyNew == 8) {
 bUpdateLCD = 1;
 if (page == 1) {
 set_star_1();
 press_3();
 }
 if (page == 3) { set_star_2();
 press_3(); }
 if (page == 4 || page == 9) {
 if(page == 4) set_star_2();
 if(page == 9) set_star_1();
 press_3();
 }
 }
 if(keyNew == 9) {
 bUpdateLCD = 1;
 if (page == 1) { set_star_1();
 press_4(); }

 if (page == 3) { set_star_2();
 press_4(); }

 if (page == 4 || page == 9) {
 if(page == 4) set_star_2();
 if(page == 9) set_star_1();
 press_4();
 }
 }

 if(keyNew == 10) {
 bUpdateLCD = 1;
 if (page == 1) {set_star_1();
 press_5(); }

 if (page == 3) { set_star_2();

 102

 press_5(); }

 if (page == 4 || page == 9) {
 if(page == 4) set_star_2();
 if(page == 9) set_star_1();
 press_5();
 }
 }

 if(keyNew == 11) {bUpdateLCD = 1;
 if (page == 1) { set_star_1();
 press_6(); }

 if (page == 3) { set_star_2();
 press_6(); }

 if (page == 4 || page == 9) {
 if(page == 4) set_star_2();
 if(page == 9) set_star_1();
 press_6();
 }
 }

 if(keyNew == 12) {bUpdateLCD = 1;
 if (page == 1) {set_star_1();
 press_7(); }

 if (page == 3) { set_star_2();
 press_7(); }

 if (page == 4 || page == 9) {
 if(page == 4) set_star_2();
 if(page == 9) set_star_1();
 press_7();
 }
 }

 if(keyNew == 13) {bUpdateLCD = 1;
 if (page == 1) { set_star_1();
 press_8(); }
 if (page == 3) { set_star_2();
 press_8(); }
 if (page == 4 || page == 9) {
 if(page == 4) set_star_2();
 if(page == 9) set_star_1();
 press_8();
 }
 }

 if(keyNew == 14) {bUpdateLCD = 1;
 if (page == 1) {
 set_star_1();

 103

 press_9();
 }
 if (page == 3) { set_star_2();
 press_9(); }
 if (page == 4 || page == 9) {
 if(page == 4) set_star_2();
 if(page == 9) set_star_1();
 press_9();
 }
 }

 if(keyNew == 16) {bUpdateLCD = 1;
 if (page == 1) {set_star_1();
 press_0(); }

 if (page == 3) { set_star_2();
 press_0(); }

 if (page == 4 || page == 9) {
 if(page == 4) set_star_2();
 if(page == 9) set_star_1();
 press_0();
 }
 }
}

void confirm_key2()
{
 if(keyNew == 1) {bUpdateLCD = 1;//enter
 if (page == 1) {
 check_password();
 if(code == 6) { page_8();
 Buzer_L;
 motor1_H;
 motor2_L;
 EN_H;
 delay_ms(12);
 EN_L;}

 else {page_6();
 SEC_L;
 display_char();
 SEC_H;
 delay_ms(1000);
 pages();}
 }

 if (page == 9) {
 change = 0;
 if(counter == 6){
 counter = 0;
 check_new_password();
 if(confirm == 6) {
 change_password();

 104

 page_5();
 SEC_L;
 display_char();
 SEC_H;
 delay_ms(1000);
 page = 1;
 pages();
 }
 else { page_6();
 SEC_L;
 display_char();
 SEC_H;
 delay_ms(1000);
 page = 4;
 pages();
 return;
 }
 }
 else {
 page_6();
 SEC_L;
 display_char();
 SEC_H;
 delay_ms(1000);
 page = 4;
 pages();
 return;
 }
 }

 if (page == 4) {if(counter == 6) {
 page = 9;
 pages();
 change = 1;
 }
 else {
 page_6();
 SEC_L;
 display_char();
 SEC_H;
 delay_ms(1000);
 page_4();
 }
 }
 if (page == 3) {
 check_password();
 if(code == 6) {page = 4;
 pages();
 }
 else {
 page_6();
 SEC_L;
 display_char();
 SEC_H;
 delay_ms(1000);
 pages();

 105

 }
 }

 if (page == 2) {page = 3;
 pages();
 return;}
 counter = 0;
 }

 if(keyNew == 2) { //press down
 bUpdateLCD = 1;
 counter = 0;
 confirm_page_back();
 motor1_L;
 motor2_H;
 EN_H;
 delay_ms(12);
 EN_L;

 }

 if(keyNew == 5) { //press up
 bUpdateLCD = 1;
 Phone_H;
 delay_ms(1000);
 Phone_L;
 }

 if(keyNew == 15){ //
 bUpdateLCD = 1;
 counter = 0;
 confirm_page_back();
 }

 if(keyNew == 17) { //press next
 bUpdateLCD = 1;
 counter = 0;
 confirm_page_next();
 }
}

//**************
// Scan for key
//**************

void scan_key()
{
 Scan0_L;
 delay_us(10);
 tmp00 = input_b()| 0xC0;
 Scan0_H;

 Scan1_L;
 delay_us(10);
 tmp01 = input_b()| 0xC0;

 106

 Scan1_H;

 Scan2_L;
 delay_us(10);
 tmp02 = input_b()| 0xC0;
 Scan2_H;
}

//****************************
// Activate Alarm System
//****************************

void security()
{
 if(try == 3) { page_7();
 SEC_L;
 display_char();
 SEC_H;
 Phone_H;
 delay_ms(1000);
 Phone_L;
 Buzer_H;
 try = 0;
 }
}

//*******************
// Initiation System
//*******************

void Init()
{
 port_b_pullups(TRUE);
 output_a(PORT_Ai);
 output_b(PORT_Bi);
 output_c(PORT_Ci);
 set_tris_a(TRISA);
 set_tris_b(TRISB);
 set_tris_c(TRISC);
 Init_LCD();
 SEC_L;
 page_0();
 SEC_L;
 display_char();
 SEC_H;
 Phone_L;
 Buzer_L;
 EN_L;
 BL_H;
 delay_ms(3000);
 page_1();
 SEC_L;
 display_char();
 SEC_H;
 Scan0_H;
 Scan1_H;

 107

 Scan2_H;
 save_digit();
 page = 1;
 counter = 0;
 code = 0;
 change = 0;
 try = 0;
 setup_timer_1(T1_INTERNAL | T1_DIV_BY_8);
 set_timer1(0xe796); //10ms
 enable_interrupts(INT_RDA);
 enable_interrupts(GLOBAL);
 enable_interrupts(INT_TIMER1);
}

void main()
{
 Init();

 mainloop:
 do {
 } while (!flg_10ms);
 flg_10ms = 0;
 if (skip_3 == 0){ scan_key();
 identify_key();
 }
 if (loop == 0) keyNew_1 = keyNew;
 if (loop == 1) { keyNew_2 = keyNew;
 reset = 1;
 }
 loop++;
 if (reset == 1) {
 loop = 0;
 reset = 0;
 }
 if (skip_2 == 1){
 skip_2 = 0;
 if(keyNew_1 == keyNew_2) skip = 1;
 }
 if (skip == 1){
 confirm_key();
 confirm_key2();
 keyNew_1 = 21;
 keyNew_2 = 22;
 skip = 0;
 skip_3 = 1;
 }
 tmr10ms++;
 if(tmr10ms <= 9) goto mainloop;
 security();
 tmr10ms = 0;
 skip = 0;
 skip_3 = 0;
 loop = 0;
 keyCnt = 0;

 108

 keyNew = 20;
 keyNew_1 = 21;
 keyNew_2 = 22;

 if (bUpdateLCD) {
 SEC_L;
 display_char();
 SEC_H;
 bUpdateLCD = 0;
 }

check_key:
 scan_key();
 if (tmp00 == 0xff){
 if (tmp01 == 0xff){
 if(tmp02 == 0xff) { goto mainloop;}
 }
 }
 goto check_key;
}

