P57 10:16 (Pind. 1797
UNIVERSITI TEKNOLOGI MALAYSIA

BORANG PENGESAHAN STATUS TESIS®

Safety Cabinet Alarm System

JUDUL:
SESIPENGAJIAN: 2007/08
s FOO KON SIAN

(HURUT BESAR)

nengaku membenarkan tests (PSM/SanjanaDoktor Falsafah)® i distmpan di Perpustakaan
Untversit Teknologr Malavs:a dengan syarat-syarat kegunaan seperts benbut:

Tesis adalah haknulik Usrversin Teknologi Malavsta.

Perpustakaan Umversit: Telmologs Malaysia dibenarkan membuat salinasn uonmk fupuan
pengajian sahaja.

3. Perpustakaan dibenarkan membeat salinas tesis i sebagai bahan pertukaran antara
wmstiius: penganan wngg.

##5ila tandakan { 43

£

e

idengandungl maklumar vang berdarah keselamaran atau

SULIT .
= kepentmgan Malavsia sepertt vang termakmub di dalam
AKTA RAFISIA RASKI 1972}
Mengs raklun . vang telal ditentuk
TEREAD Mengandungt maklumat TERHAD vang twelal ditentukan

aleh organisasybadan di mana penyelidikan dyjalankan}

NI TIDAK TERHAD

Dhisahloan oieh

! = V_’K?
|

(TANDATANGAN PENULIS) {TANDATANGAN PENYELIA)

Alamat Tetap:

85, Jalan Sintok, EN ISMAIL BIN ARIFFIN
Pekan Baru,

06010 Changlun, Kedah.

Nanwa Penyelia

_ X 9 May 2008) 9 May 2008
Tanld: Tanikh:
CATATAN: * Potong vang tidzk berkenaan.
& Ika mi STULIT atau TERHAD, sz lampiskan surat dartpada pihak

betkuasa organizas: berkenaan dengan menvatakan sekali sebab dan tempoh tesiz mi periu
dikelaskan sebagai SULIT atav TERHAD.
v Tests dimak v osebagal tesis bazt Djazah Dodkor Fab

Laporan Prosel Sagana Muda (PSAI.

TianSiak
Placed Image

TianSiak
Text Box
9 May 2008

TianSiak
Text Box
9 May 2008

“I hereby declare that I have read this thesis and in my opinion this
thesis is sufficient in terms of scope and quality for the award of the

degree of Bachelor of Electrical Engineering”

Signature QPN = (TTSUS RIS] E R
Name of Supervisor : EN ISMAIL BIN ARIFFIN
Date . 25 APRIL 2008

TianSiak
Placed Image

111

SAFETY CABINET ALARM SYSTEM

FOO KON SIAN

A thesis submitted in fulfillment of the
requirements for the award of the degree of
Bachelor of Electrical Engineering

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

MAY 2008

I declare that this thesis entitled “Safety Cabiner Alarmed System “is the result of my
own research except as cited in the references. The thesis has not been accepted for

any degree and is not concurrently submitted in candidature of any other degree.

ot
S
Signature P e WN
Name : FOO KON STAN

Date - 16™ May 2008

Specially dedicated to my beloved family and friends

vi

ACKNOWLEDGEMENT

First of all, I would like to express my sincere appreciation to my supervisor,
Encik Ismail Bin Ariffin for his guidance, advice and assistance throughout the

process of fulfillment of this final year project.

I am very grateful to get the guidance and advice from other lecturers in

INSEED and the sources given by them are useful indeed.

I would also like to take this opportunity to thank my beloved parents and
siblings for always mentally and financially supporting me while completing this

project.

My fellow course mates should also be recognized for their support. My
sincere appreciation also extends to all my friends and others who have provided
assistance at various occasions. Their views and tips are useful indeed.

Unfortunately, it is not possible to list all of them in this limited space.

vii

ABSTRACT

In our country, Malaysia, there are many house breaking cases happen among
the citizen, especially at Johor Bharu. Because of these problems,
administrator/professional/resident from various sectors really needs the alarmed
system to ensure safety of their cash money or valuable things. As for this project, a
safety cabinet alarm system (Anti-thief System) will be set up to ensure total security
of cabinet or valuable things in various sectors. For lawyer, they need the alarm
system to keep the confidential contract or any agreement of their client. If in the
banking field, the banker will install alarm system to the safety locker. The safety
locker is set up as a place for keeping valuable things of their customer. Software
programming is implemented to build the controller system and make the system can
be function perfectly. Manufacturers can apply this alarm system to any sizes of
cabinets depend to requirement of customers. Hence, everyone in our country can

install the alarm system in their house or office and keep their things safe.

viii

ABSTRAK

Dalam negara kita, Malaysia, terdapat banyak kes pencerobohan rumah dan
kes pencurian berlaku di kalangan rakyat, terutamanya dalan daerah Johor Bharu.
Oleh kerana kes tersebut sering berlaku, golongan profesional, pentadbir and
penduduk tempatan dari bidang yang berlainan amat memerlukan sistem kawalan
untuk memastikan wang tunai dan barang-barang berharga mereka dalam keadaan
yang selamat. Dalam projek sarjana muda saya, Sistem Kawalan Keselamatan
Kabinet(Sistem Anti- Pencuri) akan didirikan untuk memastikan keselamatan
sepenuhnya bagi barangan berharga yang disimpankan dalam kabinet tertentu.
Peguam akan menggunakan sistem ini untuk menyimpan fail-fail pelanggan penting.
Dalam sektor kewangan pula, mereka memerlukan sistem ini untuk melindungi
barang yang disimpankan dalam kotak keselamatan. Perisian atau pengaturcaraan
juga memainkan peranan penting dalam Sistem Kawalan saya and membolehkan
sistem dapat beroperasi dengan sempurna. Usahawan boleh menggunakan sistem
keselamatan tersebut terhadap pelbagai size kabinet bergantung kepada keperluan
pengguna. Dengan adanya sistem ini, setiap rakyat boleh memilikinya di rumah atau
pejabat masing-masing dan tidak perlu membimbangkan kehilangan barang-barang

berharga lagi.

CHAPTER

TABLE OF CONTENTS

TITLE

DECLARATION
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT

ABSTRAK

TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS
LIST OF NOTATIONS

INTRODUCTION

1.1 Background of Study

1.2 Objectives

1.3 Problem Statement

1.4 Scope of Work
1.4.1 Hardware Development
1.4.2 Software Development

1.6 Thesis Outline

X

PAGE

il
i1

v

vi
Vil

iX

Xiil

Xiv

[T S N N S R NS

LITERATURE REVIEW

2.1 Digital Code Lock with LCD and Keypad
2.1.1 A Brief Description
2.1.2 User Side working
2.1.3 Using the Keypad

2.2 Security Keypad Lock

2.3 Simple Low-Cost Digital Code Lock

2.4 Nokia 3310 LCD Driver using a PIC

2.5 Nokia 3310 Graphical LCD Demo

THEORY AND PROPOSED SYSTEM
3.1 Flow Diagram
3.2 Application Tools
3.2.1 Microchip MPLAB ICD 2
3.2.1.1 Modular Interface Connections
3.2.1.2 Debug Mode
3.2.1.3 Programmer Mode
3.2.2 Protel SE 99
3.2.3 C compiler (CCSC compiler)
33 Components and Materials
3.3.1 PIC 16F876A (Microcontroller)
3.3.1.1 High-Performance RISC CPU
3.3.1.2 Special Microcontroller Features
3.3.1.3 Pin Diagrams
3.3.1.4 Memory Organization
3.3.1.5 Timerl Operation
332 LCD
3.3.2.1 Electrical Interface specification
3.3.3 ASI1117
3.3.3.1 Features
3.3.3.2 Product Description
3.3.3.2 Application External Capacitor
3.3.4 74LCX245
3.3.4.1 Features

o o0 o0

O O

17
17
20
20
21
22
24
25
27
28
29

29
30
31
31
32
33
34
34
34
35
35
37
37

3.4

335

3.3.4.2 Description

3.3.4.3 Pin Description

3.3.4.4 Absolute Maximum Ratings
3.3.4.5 Recommended Conditions
L293D

3.3.5.1 Features

3.3.5.2 Description

3.3.5.3 Block Diagram

3.3.5.4 Recommended Conditions

Schematic Diagram for Control System

34.1
34.2
343
3.44
345
3.4.6

Microcontroller (PIC16F876A)
Step down 5 volt to 2.8 volt for LCD

Interfacing between 74LCX245 and LCD

LED for Keypad
Keypad
L293D

SOFTWARE DEVELOPMENT

4.1
42
43
44

4.5

4.6

Overall Structure

Statements

Operators

Data Definitions

44.1

Basic Types

Firmware (Microcontroller)

4.5.1

Pseudo Code

Parts of My Software

RESULTS AND DISCUSSION

5.1
52

53

System Overview

Project Overview

5.2.1

User Manual

PCB Layout

5.3.1

Controller Layout (Top Layer)

X1

37
38
39
39
40
40
40
41
42
43
43
44
45
46
47
48

50
50
51
52.
54
54
58
58
59

64
64
65
66
68
68

5.3.2 Controller Circuit (Top Layer)
5.3.3 Controller Layout (Bottom Layer)
5.3.4 Controller Circuit (Bottom Layer)

54 Connector’s Board

6 CONCLUSION AND FUTURE SUGGESTIONS

REFERENCES
Appendices

xii

72

74
75 -108

xiii

LIST OF TABLES

TABLE NO TITLE PAGE
1.1 Specification of safety cabinet alarm system 17
3.1 List of components and materials 29
3.2 Pin Description 38
33 Absolute Maximum Ratings 39
34 Recommended Operating Conditions 39
3.5 Functional Table 41
3.6 Recommended Operating Conditions 42
4.1 Statements 52
4.2 Operators 53

43 Basic Types 54

FIGURE NO

2.1
2.2
23
24
2.5
2.6
2.7
3.1
3.2
33
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

LIST OF FIGURES

TITLE

Digital Code Lock System

E-5 Security Concept

Simple Low-Cost Digital Code Lock
Nokia 3310 LCD Driver using a PIC

Nokia 3310 PCD8544 Based Graphical LCD Demo

Nokia 3310 Pin Connector
LCD Nokia 3310
Flow diagram of the project

Pin Numbering for Modular Connector

MPLAB® ICD 2 Connection To Target Board

Proper Connections For Programming

[lustrates the MPLAB ICD 2 ready for debugging

Protel SE 99

Special Microcontroller Features

Pin Diagrams

Program Memory Map and Stack
Timer 1 Block Diagram

Electrical Interface specification
Application Notes External Capacitor
Pin Connection and IEC Logic Symbols
Block Diagram

Microcontroller (PIC16F876A)

Step down 5 volt to 2.8 volt for LCD

X1V

PAGE

11
12
14
15
15
16
18
21
22
23
24
25
30
31
32
33
34
36
38
41
44
45

3.17
3.18
3.19
3.20
5.1
52
53
54
5.5
5.6
5.7
5.8
5.9

Interfacing between 74LCX245 and LCD
LED for Keypad

Keypad

L293D

System Overview

Project Overview

Keypad

LCD Pages

Controller Layout (Top Layer)
Controller Circuit (Top Layer)
Controller Layout (Bottom Layer)
Controller Circuit (Bottom Layer)

Connector’s Board

46
47
48
49
64
65
66
66
68
69
70
70
71

XV

LED

&

Sdn Bhd
I/O
LCD
PCB
ROM
RAM
EPROM
EEPROM
FIFO
FILO

IC

VDD
SCK
SDI

D/C
SCE
GND
RES
MCLR
ALU
DC
WDT
ICD
ESR
AC

LIST OF ABBREVIATIONS

Light Emitting Diode

And

Private Limited

Input or Output

Liquid Crystal Display
Printed Circuit Board
Read-Only Memory
Random-Access Memory
Erasable Programmable Read Only Memory
Electrical Erasable Programmable Read Only Memory
First In First Qut

First In Last Qut

Integrated Circuit

Input Voltage

Serial Clock.

Serial Data Input.
Data/Command Input.

Chip Select.

Ground.

Reset.

Master Clear

Arithmetic Logical Unit
Direct Current

Watchdog Timer

In-Circuit Debug

Equivalent Series Resistance

Alternating Current

XVvi

DIR
ESD
EN

Direction

Electrostatic Discharge
Enable

High

Low

xXvii

LIST OF NOTATIONS

millimeter
centimeter
meter

volt

walt
percent
mega Hertz
pico Farad
micro Farad
ohm

kilo ohm

XViil

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Nowadays, safety cabinet alarm system becomes common and very important
to ensure total security of cabinet or valuable things from various sectors. The safety
cabinet alarm system (Electronic lock system) is a locking system which uses some
form of electronics to authenticate those accessing it. The alarm systems are typically
considered more secure than conventional mechanical locks and can include
additional features. The alarm system is simple to use and maintain and provide a

convenient method for controlling cabinet access for residents and professionals

It is known to provide electronic locks of various kinds. Such locks may
generally be viewed as being made up of three parts: an authorization module for
selectively allowing activation of the lock by certain keys or personnel; an
electromechanical actuation system for generating the required mechanical
movement of the lock mechanism; and a control system for controlling the functions

performed by the actuation system in response to authorized activation of the lock.

Perhaps the most prevalent form of safety cabinet alarm system is that using a

numerical code for authentication; the correct code must be entered in order for the

lock to deactivate. Such locks typically provide a keypad, and some feature an
audible response to each press. Combination lengths are usually between 4 and 6
digits long. This alarm system is an easy and quick retrofit for cam locks supplied as
standard on a wide range of lockers, cabinets and cupboards. It can easily be fitted to
lockers or cabinets, which don’t have a locking device already installed, giving the
user immediate and simple keypad access without the need for keys.

1.2 Objectives

The objective of this project is to develop a safety cabinet alarm system with

below specification:

i. Universal LCD | The users will be more easy and convenient to operate the

alarm system.

ii. Alarm System If someone tries to break in the cabinet, the alarm sire will
‘on’ and at the same time, a message will be sending out

to inform the owner.

iii. Keyless Using a numerical code for authentication, the correct

code must be entering in order for the lock to deactivate.

iv. Flexible The alarm system is suitable for any size or material of
cabinet.
v. Low Cost The components electronic and accessories in the alarm

system is cheap and quality.

vi. Repairable All the components in the alarm system are common and

easy to find in the market.

vii. Reprogrammable | If the users forget the deactivate code, the system can be
re-program to unlock the cabinet.

viii. Auto Reset If any interruption from power supply, the alarm system
will activate the auto reset function and still can operate

normally.

Table 1.1: Specification of safety cabinet alarm system

1.3 Problem Statement

In our country, Malaysia, there are many thieving and house breaking cases

happen among the citizen, especially at Johor Bharu.

For example, 2 month ago, two men, believed to be Indonesians, tried to
break into the house of former Inspector-General of Police Tan Sri Norian Mai in
Section 8, Shah Alam. And, they tried twice. In February, burglars broke into the
house of former Federal CID director Datuk Fauzi Saari and escaped with RM5,000

in cash and valuables.

That same month, former Penang police chief Datuk Albert Mah, 82, died
from injuries he suffered while single-handedly fighting off five men who broke into
his home in Section 5, Petaling Jaya. In Johor Bharu two men, suspected of breaking
into four houses between June 11 and 14, were arrested in a raid on Kampung

Melayu Pandan on Friday.

Because of these problems, administrator/ professional/ resident from various
sectors really need the alarm system to ensure safety of their cash money or valuable
things. For lawyer, they need the alarm system to keep the confidential contract or
any agreement of their client. If in the banking field, the banker will install alarm
system to the safety locker. The safety locker is set up as a place for keeping valuable
things of their customer. The system also can be very useful for the businessmen who

want to keep cash money, jewelry and financial reports.

Finally, with the safety cabinet alarm system, whole society will fell secure

for their valuable things.

1.4 Scope of Work

This project involves hardware and software development as explained below:

1.4.1 Hardware Development

This project consists of three parts
a) Input (keypad)
b) PIC microcontroller (PIC 16F876A)
c) Output (LCD display, alarm system, activation of cabinet)

PIC16F876A is choose to be the microcontroller to control the display of universal
LCD, setting/identify/change code, keypad, motor (unlock/lock cabinet) and alarm
system. In the alarm system include a internal cell phone which used to inform the

authorized personnel and a siren alarm.

Keypad > Alarm System
Setting code Microcontroller Motor
Change code [| LCD display
Identifv code

1.4.2 Software Development

Microcontroller is a lump of plastic, metal and purified sand, which without
any software does nothing. When software controls a microcontroller, it has almost
unlimited applications. “C Programming” will be used to develop the firmware to

PIC microcontroller. CCS-C Compiler also used to compile the C-programming

before burn it into the PIC microcontroller. Another software tool that | will used is
‘Protel 99 SE’ to design the circuit and create the layout for PCB.

1.5 Thesis Outline

The thesis consists of six chapters. Each chapter is described next.

Introduction: Chapter 1 serves as an introduction to the report. This chapter
is the brief overview of the project where it includes the project background,

objectives, scope of work, research methodology and project plan.

Literature Review: Chapter 2 discusses the literature review which is
relevant for focusing on the basic concept of safety cabinet alarm system. There are

some designed circuits and method will be discussed in this chapter.

Theory and Proposed System: Chapter 3 will describe the methodology
taken to complete the entire project. Theory used in the safety cabinet alarm system
is further explained in this chapter. The proposed system with the components and
materials used is discussed here. Circuit diagram and the source code of the safety

cabinet alarm system are shown in this chapter

Software Development: Chapter 4 guides to the system designed

implementation and software approach used to produce this project.

Results and Discussion: Chapter 5 will show the results from the proposed
system. Instructions on how to use the safety cabinet alarm system are introduced in

this chapter.

Conclusion and Future Suggestions: Chapter 6 described the shortcomings
experienced and suggestions solution and the conclusion. The recommendation of the

project also will be discussed.

CHAPTER 2

LITERATURE REVIEW

Security is a prime concern in our day-today life. Everyone wants to be as
much secure as possible. An access control for cabinet forms a vital link in a security
chain. The microcontroller based digital lock for cabinet is an access control system
that allows only authorized persons to access certain cabinet. The system is fully
controlled by the 8 bit microcontroller AT89C2051 which has a 2Kbytes of ROM for
the program memory. The password is stored in the EPROM so that we can change it
at any time. The system has a Keypad by which the password can be entered through
it. When the entered password equals with the password stored in the memory then
the relay gets on and so that the door is opened. If we entered a wrong password for

more than three times then the Alarm is switched on.

2.1 Digital Code Lock with LCD and Keypad using AT89C2051

2.1.1 A Brief Description

This project is written in C language. Its a simple project with
efficient hacking prevention from Brute Force etc. The basic user lock is of 5 Digits
and Master Lock is of 10 digits so it’s not easy for an intruder to break the lock
unless you keep the code simple. The input is taken from a 4x3 Keypad (please see
the schematic for more information) and Display the user input on a 2x16 LCD. A
pin is assigned as output for activating and deactivating the lock. For demonstration i

have connected an LED to that pin.

2.1.2 User Side working

The user has two options either he/she can use its own 5 digit code or use the
default 5 digit code. If user has to do setup his own code, then he has to enter
"12345" and press '#. After this.controller will ask for 10 Digit master password
which is preprogrammed in the controller. Entering master lock, user can enter the

new 5 digit code for the lock and press ‘#' to save it.

2.1.3 Using the Keypad

Keypad has 12 keys (4x3) starting from 1,2,3,4,5,6,7,8,9,*,0,# (please see the
schematic for layout). Numeric keys are used for entering numbers. *' is used as the
Cancel key and '#' is used as the Enter key.

16

s e
Al T 11

17
[1= S -
- " e :
‘Coumn e :
- TP 5] R = = .
Rows = v ATssca0s1
4x3 Keypad Matrix o1 s
- e

=}
N
LED 230.0hm

e Lock Pin can be connected to
Sme any lock activatosr.

ogic =1l=:

H oo

=4 Unloc 3

Figure 2.1: Digital Code Lock System

rll
B

0101010,

0101010
0101010

2.2 Security Keypad Lock

The Security Keypad Lock Project is a basic access control system. The
"Code Lock™ ability will allow the rightful user to deploy the platform to any
property that requires simple password-protection. The "AVR" RISC microcontroller
used ensures low costs. Possible applications may include: vehicle protection,
electronic safes, powered door locks. The following short treatise will explain how
the early version was engineered and how to use the controller to accept valid
passwords. With a little external hardware, the featured systems may easily be used

to disengage an electric door strike or similar system.

10

Access Control(s) - this is any system designed to restrict access to some type of
property. Some access controls like tire spikes and boarded doors are indiscriminant
in that they bar access for everyone. More useful access controls are selective, which

IS to say they operate on a pass-or-halt basis. This project is a selective access control.

Bypass Capacitor - any capacitor meant to absorb energy spikes by providing a low
impedance path to ground. A bypass usually has one pin tied to ground and the other
pin attached to some supply lead. In this non-precision application any capacitor type

can be used, including basic ceramics.

Debouncing - a noise-canceling method used to eliminate keypad noise. This noise
is inherent to most pushbuttons and switches and occurs as the contacts
break/complete the circuit. Debouncing methods will either filter the noise or mute

(ignore) it. This project uses software to wait for the key signals to stabilize.

EEPROM - EEPROM is a non-volatile data storage medium. Electronically
Erasable Programmable Read Only Memory can reside within the microcontroller in
the absence of electric power. This memory is accessible through the

microcontroller's 3 EEPROM registers. EEPROM will be used to store the passwords.

Floating Pin - an input pin is said to be floating if it is not connected to anything.

Floating pins may report random bit states that "float" between '1' and '0'.

Keypad - this is our input device. The keypad comprises 16 or 12 membrane buttons
on a 4x4 or 4x3 matrix. Key activity is detected by monitoring the keypad's output
pins and waiting for a closed circuit to appear between a row pin and a column pin.

The keypad is a passive device.

Queue - an array of integers in which data is shifted in on one side and deleted on
the other end. Queues follow FIFO (“First In First Out™) behavior, whereas a stack
will use a FILO (“First In Last Out") scheme. This project will use the Queue to hold

key codes.

SRAM - SRAM is the volatile data storage medium. Static Random Access Memory

is destroyed during power-off and reset conditions. This memory is accessible

11

through the microcontroller’s X and Y pointer-registers and by the "lds" and "sts"

commands. SRAM will contain the key press queue.

Volatility - this term will be associated with the system's memory types. The term
indicates whether the memory will retain its state after power has been removed. A
volatile system will be reset if power is removed. A non-volatile system will retain

its latest state.

Design Concept

This console project is intended to be a low-end and low-cost system that will
focus mainly on affordability and simplicity rather than connectivity or even ease-of-
use. Hence this will be a stand-alone system that will not need a special
communications interface. This limits the designing phase to four sub-systems:

keypad, encoder, controller, and visual/mechanical interface.

E-5 Security

Console Concept

4 Keypad:
Softdtouch or
Outdoor

I’ Relay Drive |
Interface

AVR
microcontroller

Source

Intemnal Relay
Driver

Rejectifccept
Indicators

[]
e=mra]
=]

Figure 2.2: E-5 Security Concept

12

2.3 Simple Low-Cost Digital Code Lock

SOLENCID

av mE £h - E sl
> L
(5

' 1 =
slv_ D4 g e 7 Kot O et
e B200 r ;,-NEEES

[2)
[+]
e
[+

1

POWER

%1
230V AL

-u;:-:‘:;ﬁ‘;w: C4 4| ol UF;' - 54) '!'I - lw lv lﬁ 155 LSF 159 Li" LS” LiF LF ._6::'.1|:0-1 supe
I R R U I el SR g g g o M i i
[|F] S s TaHHHHHHRh

= MOTE:ALL SWITCHES ARE PRESS-TO-ON TYPE

Figure 2.3: Simple Low-Cost Digital Code Lock

In those circuits a set of switches (conforming to code) are pressed one by
one within the specified time to open the lock. In some other circuits, custom-built
ICs are used and positive and negative logic pulses are keyed in sequence as per the

code by two switches to open the lock.

A low-cost digital code lock circuit is presented in this article. Here the
keying-in code is rather unique. Six switches are to be pressed to open the lock, but
only two switches at a time. Thus a total of three sets of switches have to be pressed
in a particular sequence. (Of these three sets, one set is repeated.) The salient features
of this circuit are:

1. Use of 16 switches, which suggests that there is a microprocessor inside.
2. Elimination of power amplifier transistor to energize the relay.

3. Low cost and small PCB size.

An essential property of this electronic code lock is that it works in mono
stable mode, i.e. once triggered; the output becomes high and remains so for a period
of time, governed by the timing components, before returning to the quiescent low
state. In this circuit, timer IC 555 with 8 pins is used. The IC is inexpensive and
easily available. Its pin 2 is the triggering input pin which, when held below 1/3 of
the supply voltage, drives the output to high state. The threshold pin 6, when held
higher than 2/3 of the supply voltage, drives the output to low state. By applying a

13

low-going pulse to the reset pin 4, the output at pin 3 can be brought to the quiescent
low level. Thus the reset pin 4 should be held high for normal operation of the IC.

Three sets of switches SA-SC, S1- S8 and S3-S4 are pressed, in that order, to
open the lock. On pressing the switches SA and SC simultaneously, capacitor C3
charges through the potential divider comprising resistors R3 and R4, and on
releasing these two switches, capacitor C3 starts discharging through resistor R4.
Capacitor C3 and resistor R4 are so selected that it takes about five seconds to fully

discharge C3.

Depressing switches S1 and S8 in unison, within five seconds of releasing the
switches SA and SC, pulls pin 2 to ground and I1C 555 is triggered. The capacitor C1
starts charging through resistor R1. As a result, the output (pin 3) goes high for five
seconds (i.e. the charging time T of the capacitor C1 to the threshold voltage, which
is calculated by the relation T=1.1 R1 x C1 seconds).

Within these five seconds, switches SA and SC are to be pressed momentarily
once again, followed by the depression of last code-switch pair S3-S4. These
switches connect the relay to output pin 3 and the relay is energized. The contacts of
the relay close and the solenoid pulls in the latch (forming part of a lock) and the
lock opens. The remaining switches are connected between reset pin 4 and ground. If
any one of these switches is pressed, the IC is reset and the output goes to its
quiescent low state. Possibilities of pressing these reset switches are more when a

code breaker tries to open the lock.

LED D5 indicates the presence of power supply while resistor R5 is a current
limiting resistor. The given circuit can be recoded easily by rearranging connections

to the switches as desired by the user.

14

2.4 Nokia 3310 LCD Driver using a PIC

This library includes functions for controlling the Nokia 3310 LCD
(PCD8544 controller) and also a 5x7 font. Currently the table used only works on
16F, but should not take much to modify it to work with 18F PICs. It only uses 5 10
pins, so a smaller PIC could be used. The font however takes up a lot of ROM (the
example program's code size is 1305). If the text print functions (and the font) is not

used it is of course much smaller, but also much less useful.

Figure 2.4: Nokia 3310 LCD Driver using a PIC

Showing the LCD connected to an 16F877 PIC. On the right is my DIY
Wisp628. The interface board between the LCD and the PIC consists of two caps
(required for the LCD controller), a few 1K resistors in series with the data lines, and
a LM317 to regulate the 5V down to 3V which the LCD requires.

15

2.5 Nokia 3310 Graphical LCD Demo

Figure 2.5: Nokia 3310 PCD8544 Based Graphical LCD Demo

Ah. Happy New Year!! This is one cool graphical LCD. Not only it is easy to
programmed, the Nokia 3310 LCD also consumes low power. The Nokia 3310 is
based on a PCD8544 Controller which is manufactured by Philips. With this
controller, you can easily interface any PICs to it via SPI.

7T 6 5 4 3 2 1 0

117111
\/ I—SCLK
— 5DIN
Power supply to D."_C
LCD SCE
RES

Figure 2.6: Nokia 3310 Pin Connector

Its pin out is as follows:-

1 - VDD ==> Input voltage.

2 - SCK ==> Serial Clock.

3-SDI ==> Serial Data Input.

4 - D/C ==> Data/Command Input.
5-SCE ==> Chip Select.

6 - GND ==> Ground.

7-VOUT ==>VLCD.

8- RES ==> Reset.

16

There are quite a few source codes available out there on how to control the
LCD with a PIC. One good instance can be found in Michel Bavin's website. His
firmware was coded in CCS-C. He has done a great job by providing good
explanations on the functions of his Nokia 3310 LCD codes. | do not have CCS-C,
therefore | decided to translate some of his codes to Hi-Tech C and add a little

feature to it. Both codes use 'bit-banging’ SPI.

Figure 2.7: LCD Nokia 3310

There, the picture to the left is another snapshot of it. Here, a function to plot
a smooth continuous line and its plot time is surprisingly rather fast. There's also the
typical bar plot as shown below. The firmware provided here runs a demo program at
main () to generate random numbers and plotting them on the LCD using both bar
and continuously line plot. Simply adjust the delay in the program to control the

speed of the plot. It's cool to see animation, rather than a still picture

17

CHAPTER 3

THEORY AND PROPOSED SYSTEM

This chapter presents the application tools and components of the project.
The schematic diagrams and software are used to describe the methodology to

complete this project.

3.1 Flow Diagram

The flow diagram as shown in Figure 3.1 shows the process flow of the
project. All the process mentioned are important in completing the project. First of
all, the project requires study of basic principles of safety cabinet and LCD display.
Next, Additional system consists of hardware and software is designed. Install the
safety alarm system to the cabinet. Safety cabinet alarm system will play the
important role to ensure total security of cabinet or valuable things for various

sectors. The project is considered done when all the requirements is fulfilled.

(START)

Literature review on safety cabinet
controll system and alarm system

(mechanism, power supply, application and software)

y

safety cabinet

alarm system design

Satisfied or
not?

YES

r

decide component electronics
and software tool for my project

Redesign and
improvement

19

develop the software
fort microcontroller

MPLAB or CCSC COMPILER
(Debugging and Testing)

Satisfied or
not?

Redesign or
improvement

YES

Hardware circuit design

Protel SE 99
(making layout for PCB)

NOT
Disired output? X

YES

Set up a front of
cabinet for demo

Install the safety
alarm system to the cabinet

NOT

Disired output?

Thesis writing

J

End Created by Paraben's Flow Charter (Unlicensed Scoftware).
Visit waww. paraben.com/html/flow html to register.

Figure 3.1: Flow diagram of the project

20

3.2 Application Tools

Application tools are the equipments that used to design and develop the
safety cabinet alarm system. There are including Microchip MPLAB ICD 2, Protel
SE 99, and C compiler (CCSC compiler).

3.2.1 Microchip MPLAB ICD 2

The MPLAB ICD 2 is a low-cost in-circuit debugger (ICD) and in-circuit
serial programmer. MPLAB ICD 2 is intended to be used as an evaluation,
debugging and programming aid in a laboratory environment. The MPLAB ICD 2
offers these features:

i. Real-time and single-step code execution
ii. Breakpoints, Register and Variable Watch/Modify
iii. In-circuit debugging
iv. Target VDD monitor
v. Diagnostic LEDs
vi. .MPLAB IDE user interface
vii. RS-232 serial or USB interface to a host PC

The MPLAB ICD 2 allows you to:
i. Debug your source code in your own application
ii. Debug your hardware in real-time

iii. A supported device using Microchip’s ICSP. Protocol

21

3.2.1.1 Modular Interface Connections

MPLAB ICD 2 is connected to the target PIC MCU with the modular
interface cable, which is a six conductor cable. The pin numbering for the MPLAB

ICD 2 connector is shown from the bottom of the target PC board in Figure 3-1.

Note: The ICD cable has mirror imaged connections on each end, and connections

on the MPLAB ICD 2 module are the opposite of connections shown here.

MPLAB® ICD 2
Connector

- = PGD
Voo —--_._.__g ;é PaC
oee—
Lad Target
YeRMCLR \igg FC Board

Bottom Side

Figure 3.2: Pin Numbering for Modular Connector

Figure 1.3 shows the interconnections of the MPLAB ICD 2 to the modular
connector on the target board. There are six pins on the ICD connector, but only five
are used. The diagram also shows the wiring from the connector to the PIC MCU
device on the target PC board. A pull-up resistor (usually around 10k Ohm) is
recommended to be connected from the VPP/MCLR line to VDD so that the line
may be strobe low to reset the PIC MCU. Although pin 2 (VDD) can supply a
limited amount of power to the target application under certain conditions, for the
purposes of these descriptions, pins 2 and 3 (VSS) are omitted. They are shown on
the diagram for completeness, but in the following descriptions only three lines are
active and relevant to core MPLAB ICD 2 operation: VPP/MCLR, PGC and PGD.
Not all PIC MCUs have the AVDD and AVSS lines, but if they are present on the
target PIC MCU, all must be connected in order for MPLAB ICD 2 to operate.

22

Note: In the following discussions, VDD is ignored. But be aware that the target
VDD is also used to power the output drivers in MPLAB ICD 2. This allows level
translation for target low-voltage operation. If MPLAB ICD 2 does not have voltage
on its VDD line (pin 2 of the ICD connector), either from power being supplied to
the target by MPLAB ICD 2 or from a separate target power supply, it will not

operate.

User Reset Application
7 PC Board

VDD
PICXXXX

VPR/MCLR

':*__."*“3&

1 5

W *’: e
3

WSS

AVDD

MPLAB® ICD 2 Interface AVSS

Connector

Figure 3.3: MPLAB® ICD 2 Connection to Target Board

3.2.1.2 Debug Mode

There are two steps to using MPLAB ICD 2 as a debugger. The first requires
that an application be programmed into the target PIC MCU. The second uses the
internal in-circuit debug hardware of the target Flash PIC MCU to run and test the
application program. These two steps are directly related to the MPLAB IDE

operations:

1. Programming the code into the target.

2. Using the debugger to set breakpoints and run.

23

If the target PIC MCU cannot be programmed correctly, MPLAB ICD 2 will
not be able to debug. Figure 3-3 shows the basic interconnections required for

programming. Note that this is the same as Figure 1-2, but for the sake of clarity, the
VDD and VSS lines from MPLAB ICD 2 are not shown.

Programming
* Volfage

+5V - - -
< MPLAB®ICD 2

Y Internal Circuits

éd.ﬂ(ﬂ
-%-MKQ

Figure 3.4: Proper Connections For Programming

A simplified diagram of some of the internal interface circuitry of the
MPLAB ICD 2 is shown. For programming, no clock is needed on the target PIC
MCU, but power must be supplied. When programming, MPLAB ICD 2 puts
programming levels on VPP, sends clock pulses on PGC and serial data via PGD. To
verify that the part has been programmed correctly, clocks are sent to PGC and data
is read back from PGD. This conforms to the ICSP protocol of the PIC MCU under

development.

24

Interna
Debug [he

Registers unning
for Debug
Executive
v vl 1CD 2 Delbug to Function
Internal Circuits Executive

Area

for Debag
or Debug
e 2
| . Program Executive

Memaory

Hardware: -
Stack Shared
by Debug Exec

About 0x50
Bytes Used by
Debug Exec

Figure 3.5: Illustrates the MPLAB ICD 2 ready for debugging.

3.2.1.3 Programmer Mode

When using the Programmer>Program selection to program a device, the in-
circuit debug registers should be disabled in the MPLAB IDE so the MPLAB ICD 2
will program only the target application code and the Configuration bits (and
EEPROM data, if available and selected) into the target PIC MCU. The debug
executive will not be loaded. In this mode the MPLAB ICD 2 can only toggle the
MCLR line to reset and start the target. A breakpoint cannot be set, and register
contents cannot be seen or altered. The MPLAB ICD 2 programs the target using
ICSP. No clock is required while programming, and all modes of the processor can
be programmed, including code-protect, Watchdog Timer enabled and table read

protect.

Note: A header board is required to debug smaller pin count parts with the MPLAB
ICD 2. These parts can be programmed without the header by connecting the
VPP, PGC and PGD lines as described previously.

25

3.2.2 Protel SE 99

Protel SE 99 includes a powerful design synchronization tool, that makes it
very easy to transfer design information from the schematic to the PCB (and back
again). The Synchronizer will automatically extract the component and connectivity
information from the schematic, locate the required footprints in the PCB libraries
and place them in the PCB workspace, then add the connection lines between
connected component pins. You use the synchronizer to initially transfer your design
from the schematic documents to a PCB design document, and also to synchronize

design changes made in either the PCB or the schematic documents.

e, Diesign Enplinies

A Bl E M Bl Deagn ook debo Aoue Repoti Wiedow Hep
b SRS PPEE £:-Iid+ v WY | a9
Esploem | Biowrn PCE | - :
Comnagn [1eskion
*? e Dhessagn Shstoni Pholagols [y "“D""ml a I
Phadophotied [by |
1) B Do T
B AacrcieBin . R
) [L -
Bl Elsconics ™ ul
(L] Mg Elecoonis Bos &
] Flestodwanl e I . -—.\'
Pholotasd Pats Lo & =
£ [l Pt il b
=1 Powr 5 b
] = - .-
Fosan iz Lt
Posven Supple sch —_—
= {221 Wiaktp By Sl
B Eusocmd Terwpisie pob
Bl Lon E v pob
Bl Shok Exdeniion geb
#H3 Enclonaw
#-) Progct W sragsment T30 |
o
il Machy
oo [Mok
Rl Poioplofies [ich % Aeer Al
Poctaplcrte [1db by vt AOE_|
Apediss Dvivel ool \Eleooracd\Pholihesd ek AOE_
Pridahesd pob bkscypracs Probohasd Exjrer RO
Sazimmn D T samh. AOE_
4
|
o A A - . G

Figure 3.6: Protel SE 99

1 Design Window

This is the main editing window. It displays the contents of open documents
and folders. Each open design database will have its own design window. To open a
document or folder, click on its name in the navigation tree. To split the design

window in order show multiple documents simultaneously, right-click on a document

26

tab and select one of the Split options from the popup menu. To close a document,

right-click on its document tab and select Close from the popup menu.

2 Document tabs

Each open document or folder is shown by a tab in the design window. Click
on a document's tab to make it active. The active tab is indicated by a document or
folder icon in the tab area. To split the design window in order show multiple
documents simultaneously, right-click on a document tab and select one of the Split
options from the popup menu. To close a document, right-click on its document tab

and select Close from the popup menu.

3 Design Manager Panel

The Design Manager panel is used to display the Explorer navigation tree,
which provides a Windows Explorer-like hierarchical tree view of the design desktop,
allowing you to navigate the various documents and folders contained in each design
database. The Design Manager panel is also used to display document editor-specific
browse panels. Available panels are shown as tabs at the top of the Design Manager
panel. To show or hide the Design Manager panel, select View » Design Manager

from the menus.

4 Navigation Tree

The Explorer navigation tree provides a Windows Explorer-like hierarchical
tree view of the design desktop, allowing you to navigate the various documents and
folders contained in each design database. Click on a document or folder in the

navigation tree to open it in the design window.

27

5 Help Advisor

Click the Help Advisor icon at the right-hand side of the status bar to open

the natural language help search facility.

3.2.3 C compiler (CCSC compiler)

The CCS C Compiler features provide ample function for your development
needs, including: standard C pre-processor directives, operators & statements, built-
in libraries supporting all chips, MPLAB® IDE integration, source code drivers,

automatic linking for multiple code pages and much more.

Features include:

- 1, 8, 16 and 32 bit integer types and 32 bit floating point.

- Standard one bit type (Short Int) permits the compiler to generate very efficient Bit
oriented code.

- #BIT and #BYTE will allow C variables to be placed at absolute addresses to map
registers to C variables.

- Bit Arrays

- Fixed Point Decimal

- Constants (including strings and arrays) are saved in program memory.

- Flexible Handling of Constant Data

- Variable Length Constant Strings

- Address mod Capability To Create User Defined Address Spaces In

Memory Device

The CCS C Compiler for PIC10, PIC12, PIC14, PIC16, and PICI18
microcontrollers has over 180 Built-in Functions to access PIC® MCU hardware is
easy and produces efficient and highly optimized code. Functions such as timers,

A/D, EEPROM, SSP, PSP, USB,

28

The compiler can handle inline or separate functions, as well as parameter
passing in re-usable registers. Transparent to the user, the compiler handles calls
across pages automatically and analyzes program structure and call tree processes to

optimize RAM and ROM Usage.

The compiler runs under Windows 95, 98, ME, NT4, 2000, XP, Vista, or

Linux. It outputs hex and debug files that are selectable and compatible with popular

emulators and programmers including the MPLAB® IDE for source level debugging.

3.3 Components and Materials

Please refer Table 3.1 for the list of components and materials used in traffic

light driver.
No | List of Components or Materials | Quantity
1. | PIC 16F876A 1
2. | 0.1uF capacitor 3
3. | 10 uF capacitor 3
4. | 1uF capacitor 2
5. | 470 nF capacitor 1
6. | 330 nF capacitor 1
7. | 22 pF capacitor 2
8. | 1.8k Q resistor 1
9. | 510Q resistor 2
10. | 470Q resistor 8
11. | 47kQ resistor 1
12. | 1N4148 diode 3
13. | 20MHz crystal 1
14. | 74LCX245 1
15. | AS1117-2.85V 1
16. | Connector 4 pin 1

17. | Connector 6 pin 1
18. | LCD_3310 1
19. | LED 8
20. | NPN transistor 4
21. | Casing Nokia Phone 3310 1
22. | Hand Phone 1
23. | L293D 1
24. | PCB board 1
25. | Header 2 pin 7
26. | Header 3 pin 1
27. | Stripe Board 1

Table 3.1: List of components and materials

3.3.1 PIC 16F876A (Microcontroller)

29

A microcontroller (or MCU) is a computer-on-a-chip. It is a type of

microprocessor emphasizing self-sufficiency and cost-effectiveness, in contrast to a

general-purpose microprocessor (the kind used in a PC). The only difference

between a microcontroller and a microprocessor is that a microprocessor has three

parts - ALU, Control Unit and registers (like memory), while the microcontroller has

additional elements like ROM, RAM etc.

30

3.3.1.1 High-Performance RISC CPU

ii.

1il.

1v.

Only 35 single-word instructions to learn

All single-cycle instructions except for program branches, which are two-
cycle

Operating speed: DC — 20 MHz clock input DC — 200 ns instruction cycle
Up to 8K x 14 words of Flash Program Memory, Up to 368 x 8 bytes of Data
Memory (RAM), Up to 256 x 8 bytes of EEPROM Data Memory

3.3.1.2 Special Microcontroller Features

ii.

1il.

100,000 erase/write cycle Enhanced Flash program memory typical
1,000,000 erase/write cycle Data EEPROM memory typical
Data EEPROM Retention > 40 years

iv. Self-reprogrammable under software control
v. In-Circuit Serial Programming™ (ICSP™) via two pins
vi. Single-supply 5V In-Circuit Serial Programming
vii. Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable
operation
viil. Programmable code protection
ix. Power saving Sleep mode
Xx. Selectable oscillator options
xi. In-Circuit Debug (ICD) via two pins
. Program Memoty | Data |- eorom| | 10bit | ccp s Timers
Device Bytes | Single Word ;Ef‘e':ﬁ (Bytes) | " | (ch) | (Pwm) | gp, Master USART | g16.pit | “omparators
Instructions I“C
PIC1BFE7BA [14.3K| 8122 %8 | 256 | 22| 5 2 |ves| Yes | ves | 2n 2

Figure 3.7: Special Microcontroller Features

3.3.1.3 Pin Diagrams

28-Pin PDIP, SOIC, SSOP

MCLRAver —= [

RADIAND =—= []

RA1ANT =— [
RA2IAN2AREFJCVREF =—= [
RA/AM3MVREF+ == [
Ra4/TOCKIC1oUT =—=
RASIANA/SSIC20UT *—= [
g —=

oscucLK —= [
oscicLko =— [
RCOMIOSOMicK =—= [
RCUTIOSICCR? =—= [
ROICCPY =—= [

RCUSCKISCL =—s[]

B0 =] £ LR Jds L P —

2o

12
13
14

¢

PIC16F873A/8T6A

28
27
26
25
24
23
21
20
19
18
17
16
15

:l-—-
:I-i—u-
] =+
]H
:I-q—n-
]H
:I-i—l-
[] =
] =
] =-—
:l"_"
]-i—h-
]-i—h-
:l-—-.-

Figure 3.8: Pin Diagrams

3.3.1.4 Memory Organization

31

RETIPGD
RE&IPGC
RES

FB4
REIFPGM
REZ

REB1
RENIMNT
VDO

W55
RCTIRX/DT
RCB/TXICK
RCSSDO
RCASDIS0A

There are three memory blocks in each of the PIC16F87XA devices. The

program memory and data memory have separate buses so that concurrent access can

occur and is detailed in this section. The EEPROM data memory block is detailed in
Section 3.0 “Data EEPROM and Flash Program Memory”.

32

PC=12:0=
7
CRLL, EETUEREN P 13 ;
EETFIE, EETLW I;r
\
Stack Lewal 1
Stack Lewel 2
L]
-
L
Stack Lewel 8
Reset Vector 0000k
L]
] —
Interrupt Yector DDD4h
0005h
Page O
7FFh
200h
Fage 1
On-Chip | g ——
Program -, .
Memory 1000R
Page 2
17FFh
1800h
Page 3
1FFFh

Figure 3.9: Program Memory Map and Stack

3.3.1.5 Timerl Operation in Synchronized Counter Mode

Counter mode is selected by setting bit TMRI1CS. In this mode, the timer
increments on every rising edge of clock input on pin RC1/T1OSI/CCP2 when bit
T1OSCEN is set, or on pin RCO/T1IOSO/T1CKI when bit TIOSCEN is cleared. If
T1SYNC is cleared, then the external clock input is synchronized with internal phase
clocks. The synchronization is done after the prescaler stage. The prescaler stage is
an asynchronous ripple counter. In this configuration, during Sleep mode, Timerl
will not increment even if the external clock is present since the synchronization

circuit is shut-off. The prescaler, however, will continue to increment.

33

Set Flag bit
TMRAIF on .
Overfiow G Synchronized
L‘ TR P Clock Input
TMR1H TMRIL
| — |
TMR1ON i
________ On/Off o e
Tose TISYNC

RCOT10SOITICKI IE Ly P [: S
:J L Prescaler Sl
‘2 /N-TIOSCEN Eosci 1.2.4.8 f et
15 /N Enable 0 —
. I L EhE q Intemal— 0 |
remiosicer2® a7 Oscilator Ciocy }2 Q Clock

........ T1CKPS1:TICKPS0
TMRICS

Mote 1: When the T1OSCEN bit iz clearsd, the inverter is turned off. This eliminates power drain.

Figure 3.10: Timer 1 Block Diagram

332 LCD

The Nokia 3310 LCD is a nice small graphical LCD, suitable for a lot of
various projects. The display is 38*35 mm, with an active display surface of 30*22
mm, and a 84*48 pixel resolution. The display is easy to interface, using standard
SPI communication. A 1-10 uF electrolytic capacitor from VOUT to GND, is the

only external component needed.

1. Logic supply voltage range VDD to VSS : 2.7t0 3.3 V
ii. Low power consumption, suitable for battery operated systems

iii. Temperature range: -25 to +70 °C

3.3.2.1 Electrical Interface specification

34

Pin |Signal |\ Description Port
1 |WDD |Power Input. Logic supply woltage range VDD to GID - 27 to 3.3V Power
2 |5CLE |Senal clock. Input for the clock signal: 0.0 to 4.0 Ibats/s. Input
3 |5DIN |Senal data Input for the data line. Input
4 |IvC | Mode Select. To select etther commandfaddress or data mput. Input
5 |5CE |Chip enable nput. The enable pin allows data to be clocked in The signal 15 actrve LOW. Input
& |GHND | Ground Power
7 VOUT Ouptut woltage. Add external 1-10 uF electrolytic capacitor from YOUT to GIND Power
2 |RES Extemal reget. This signal will reset the dewice and must be applied to properly wutiahze the chap. Tnput

signal 15 active OV
Figure 3.11: Electrical Interface specification
3.3.3 AS1117

3.3.3.1 Features

11.
1il.

1v.

V1.
vil.
viid.

iX.

Guaranteed 800mA Output
Terminal Adjustable Or Fixed 1.5V, 2.5V, 2.85V, 3V, 3.3V & 5V

Very Low Quiescent Current

Low Dropout Voltage Of 1.2 Volts At Full Load

Extremely Tight Load And Line Regulation

Very Low Temperature Coefficient

Fixed 2.85V Device For SCSI-II Active Terminator

Logic-Controlled Electronic Shutdown

Internal Over current Limiting & Thermal Overload Protection
Surface Mount Package SOT-223, TO-252, TO-220, SOT-89, TO-263, &
SO-8

35

3.3.3.2 Product Description

The ALPHA Semiconductor AS1117 is a low power positive-voltage
regulator designed to meet 800mA output current and comply with SCSI-II
specifications with a fixed output voltage of 2.85V. This device is an excellent
choice for use in battery-powered applications, as active terminators for the SCSI bus,
and portable computers. The AS1117 features very low quiescent current and very
low dropout voltage of 1.2V at a full load and lower as output current decreases.
AS1117 is available as an adjustable or fixed 2.85V, 3V, 3.3V, and 5V output
voltages. The AS1117 is offered in a 3-pin surface mount package SOT-223, TO-252,
TO-220, SOT-89 & TO-263. The output capacitor of 10mF or larger is needed for
output stability of AS1117 as required by most of the other regulator circuits. Use of
ALPHA Semiconductor’s design, processing and testing techniques make our

AS1117 superior over similar products.

3.3.3.2 Application Notes External Capacitor

To ensure the stability of the AS1117 an output capacitor of at least 10mF
(tantalum)or 50mF (aluminum) is required. The value may change based on the
application requirements on the output load or temperature range. The capacitor
equivalent series resistance (ESR) will effect the AS1117 stability. The value of ESR
can vary from the type of capacitor used in the applications. The recommended value
for ESR is 0.5W. The output capacitance could increase in size to above the
minimum value. The larger value of output capacitance as high as 100mF can

improve the load transient response.

36

? v
285V
’ AS1117-2.85 I
—10uF I'.EUF
Po = {10V - 2. 85)(105mA) = (7.13)}105m4) = 730mW
y ALPHA y
* ™| AS1117 |ouT T ouT
1 G G
T o]
i Lany ¢
JuA
Ve Voo . E Ry
our= Vezp(1TR2Ry) Hlapr By

Typical Adjustable Regulator =

Figure 3.12: Application Notes External Capacitor

37

3.3.4 T74LCX245

3.3.4.1 Features

xi. 5V Tolerant Inputs and Outputs
xii. High Speed: Tep = 7.0 ns (MAX.) at VCC =3V
xiii. Power Down Protection On Inputs And Outputs
xiv. Symmetrical Output Impedance: |lon| = oL = 24mA (MIN) at VCC = 3V
xv. PCI Bus Levels Guaranteed At 24 mA
xvi. Balance Propagation Delay: teun = tenc
xvil. Operating Voltage Range: Vcc (OPR) =2.0V to 3.6V
xviii. Pin and Function Compatible With 74 SERIES 245
xix. Latch-Up Performance Exceeds S00mA
xx. ECD Performance: HBM > 2000V, MM > 200V

3.3.4.2 Description

The 74LCX245 is a low voltage CMOS OCTAL BUS TRANSCEIVER (3-
STATE) fabricated with sub-micron silicon gate and double-layer metal wiring
C2MOS technology. It is ideal for low power and high speed 3.3V applications; it
can be interfaced to 5V signal environment for both inputs and outputs. It has same
speed performance at 3.3V than 5V AC/ACT family, combined with lower power
consumption. This IC is intended for two way asynchronous communication between
data buses; the direction of data transmission is determined by DIR input. The enable
input G can be used to disable the device so that the buses are effectively isolated.
All inputs and outputs are equipped with protection circuits against static discharge,
giving them 2KV ESD immunity and transient excess voltage. All floating bus
terminals during High Z state must be held HIGH or LOW.

3.3.4.3 Pin Description

- B3 F

M EW

* BN

Al Ew' -
[.

A% Ew.

Af EV

A? EW—F

e o]

B3

B

ar

38

Figure 3.13: Pin Connection and IEC Logic Symbols

PIN N*® SYMBOL NAME AND FUNCTION
1 DIR: Directional Control
2,3,4,56 7,809 Alto Al Data Inputs/Cuiputs
18, 17,16, 15, 14,13, 12, 11 B1toBa Data Inputs/Cuiputs
149 G Qutput Enable Input
10 GMWD Ground (0V)
20 Vee Positive Supply Voltage

Table 3.2: Pin Description

3.3.4.4 Absolute Maximum Ratings

39

Symbol Parameter Value UInit
Ve Supply Voltage D5t0+7.0 v
Y DC Input Volage D5t0+7.0 v
Vo DC Output Voltage (OFF State) D5t0+7.0 \
Vo DC Cutput “oltage (High or Low State) (note 1) D5t0 Ve +05)
” DC Input Diode Current -50 mé
I DC Output Diode Current (note 2) -50 ma,
ln DC Cutput Current +50 mA
loc DC Supply Cumrent per Supply Pin + 100 mA
lznD DC Ground Current per Supply Fin + 100 mA
Teig Storage Temperature A5 to +150 *C
T, Lead Temperaiure (10 s2c) 300 °C
Table 3.3: Absolute Maximum Ratings
3.3.4.5 Recommended Operating Conditions
Symbol Parameter Value Unit
Voo Supply Voltage (note 1) 2010 36 \
V) Input Voltage Dio 55 W
Vo Cuiput Voltage (OFF State) Dtob5 ')
Vi Output Voltage (High or Low State) 0toVee Y
loes: o | High or Low Level Output Current (V¢ = 3.0 to 3.6V) +24 A
lom. lp | High or Low Level Qutput Current (Ve = 2.7V) +12 mA
Top Cperating Temperature -5510 125 C
difdv Input Rise and Fall Time (note 2) Oto 10 nsM

Table 3.4: Recommended Operating Conditions

40

3.3.5 L293D

3.3.5.1 Features

1. Wide Supply-Voltage Range: 4.5 V to 36 V
ii. Separate Input-Logic Supply
iii. Internal ESD Protection
iv. Thermal Shutdown
v. High-Noise-Immunity Inputs
vi. Functionally Similar to SGS L293 and SGS L293D
vii. Output Current 1 A Per Channel (600 mA for L293D)
viii. Peak Output Current 2 A Per Channel (1.2 A for L293D)
ix. Output Clamp Diodes for Inductive Transient Suppression (L293D)

3.3.5.2 Description

The L293 and L293D are quadruple high-current half-H drivers. The L293 is
designed to provide bidirectional drive currents of up to 1 A at voltages from 4.5 V
to 36 V. The L293D is designed to provide bidirectional drive currents of up to 600-
mA at voltages from 4.5 V to 36 V. Both devices are designed to drive inductive
loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-
current/high-voltage loads in positive-supply applications. All inputs are TTL
compatible. Each output is a complete totem-pole drive circuit, with a Darlington
transistor sink and a pseudo- Darlington source. Drivers are enabled in pairs, with
drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN. When an
enable input is high, the associated drivers are enabled, and their outputs are
activated and in phase with their inputs. When the enable input is low, those drivers

are disabled, and their outputs are off and in the high-impedance state. With the

41

proper data inputs, each pair of drivers forms a full-H (or bridge) reversible drive

suitable for solenoid or motor applications.

3.3.5.3 Block Diagram

Ve
]
1T, (
2
1r !
T

Veea

Figure 3.14 Block Diagram

FUMCTION TABLE
{each driver)

INFUTST OUTPUT
EM v
H H H
X L Z
H = high level, L = low level, X = imelevant,

Z = high impedance {(off)

T In the thermal shutdown mode, the output is
n the high-impedance state, regardless of
the input levels.

Table 3.5: Functional Table

3.3.5.4 Recommended Operating Conditions

42

MIN ~ MAX | UNIT

Voot 45 7
Supply volta Y

e Vg2 Vogt 38
Voo =7V 23 Voot W

Y High-level inout

Vi High-level ingut vaoltags Vo127V 23 - v
Vi Lowdevel output voltage -3t 15] v
Ta Operating free-air temperature 0 i) =

1 The algebraic convention, in which the least positive {most negative) designated minimum, is used in this data sheet for logic voltage levels.

Table 3.6: Recommended Operating Conditions

43

3.4 Schematic Diagram for Control System

3.4.1 Microcontroller (PIC16F876A)

L]

“r=1H
-

m
1 28 EET
MCLEND EET/PGD
SCLE 2 FAD FEGDGE a7 EE
SDIH 3 FAL FES 26 o]
oI) 25 Heyhnd
SEC 5 - LS 24 Heyhs
43 EEZPEM
FES] s BB a3 Heyll
EL 7 gy FE1 22 Heyhl
g 2l Heyhl
|:+|7g Ves EED o
4 T oSl dd T sy
T i p— 0sCa Wss " it
201 —== - | Reo RCT/RYE O
Scanl 12 EC1 RC6ITY 17 motorl
7 g Srwz 13 16 Thome
2p 2p — s | Re2 RLS -
= = B DE I RC3/50L REC4/SDi
PIC16FET6A

Figure 3.17: Microcontroller (PIC16F876A)

The microcontroller PIC 16F876A is wused to scan the keypad,
change/identify/set password, authorizes the lock and control the alarm system. In
order to burn the firmware to PIC processor, the pin 1 (MCLK), pin 8 (Vss), pin 20
(5V), pin 27 (RB6) and pin 28 (RB7) must connected to the Microchip ICD 2. Pin 2
(SCLK), pin 3 (SDIN), pin 4 (D/C), pin 5 (SEC), and pin 6 (RES) is connected to IC
74LCX245. This IC is intended for two way asynchronous communication between
data buses. Pin 11 (Scan 0), Pin 12 (Scan 1), and Pin 13 (Scan 3) is used to scan the
keypad for pressed by somebody. The pin 14 (Enable DC Motor), pin 17 (motorl)
and pin 18 (motor2) are connected to L293D (driver for DC motor) for authorizing
the lock. Pin 15 (Buzzer) and Pin 16 (Phone) are used to activate the alarm system.
Then, pin 21 (KeyIn0), pin 22 (KeyInl), pin 23 (KeyIn2), pin 24 (KeyIn3), pin 25
(KeyIn4) and pin 26 (KeyIn5) are used to pull up the voltage to 5 volt for keypad

scanning.

44

3.4.2 Step down 5 volt to 2.8 volt for LCD

2
VIN Q
vOUT—2 \ e
ADIGND _Xlll 4 14

10u

£51117-285V

o

Figure 3.18: Step down 5 volt to 2.8 volt for LCD
The operating voltage for LCD is 2.7 volt to 3.3 volt. So the AS1117-2.85V
is used to step down 5 volt input voltage to 2.8 volt. The ALPHA Semiconductor
AS1117 is a low power positive-voltage regulator designed to meet 800mA output

current and comply with SCSI-II specifications with a fixed output voltage of 2.85V.

45

3.4.3 Interfacing between 74LCX245 and LCD

T
1T 1
U2 10 .
TALCH245 i u
SCLK é TR vee fg : : 1 o
== =1 A0 OF G V18 =— VDD
A1 B0 SCLK
DIC 3 T7 3
42 Bl SDIN
SEC 5 16 4
RES g | B 5 2%
— Ad B3 —3 =~ SEC
= A5 B4 —7 Gb——— vss
> X BS —5¢ lT YLOD
— A&7 B§ 7 e, RES
1T oD B >~ LCD_3310

]

Figure 3.19: Interfacing between 74LCX245 and LCD

74LCX245 is the driver for the LCD 3310 and operating at 2.8 volt. The pin
2 (SCLK), pin 3 (SDIN), pin 4 (D/C), pin 5 (SEC), and pin 6 (RES) are connected to
microcontroller (PIC 16F876A).

46

3.4.4 LED for Keypad

LEDO LED'1 LED2 LEDZ
LE'? 1 LEE'I LE?rDl LEHDI
EZ A a8 A R

LED4 LEDS LEDG LEDT

LED1 LED'1 LED] LED1
'\:Z - AT A A
—— -7 a7 a7 ~

R2
EL o1
izt HPH1

Figure 3.20 LED for Keypad

The base of the NPN Q1 is connected to microcontroller. When the pin BL is
high, the Vce will become zero and the LED1, LED2, LED3, LED4, LEDS, LED6,
LED7, and LEDS will be ‘on’. It will make the keypad has been seen more clearly.

47

3.45 Keypad
Kiylns
Heyhd
]
Keyla
Heyhl
]
lﬁ L 'l—] l—]
4,300 {3501 {ya02 {y50a
e EE{J]S‘M ls‘-m ls‘m 51
k] . .
1H4 142
Iﬁ i_j 1—] I—] |ﬁ 1_]
{510 {511 {i512 1,513 1,514 {515
5 D11 lswl Js\m ls\m lswl]S‘-m ISWI
canl
k]
1H4142
1Jszu 11521 11522 11523 -|J524 11325
Dz el Js'm ls'm ls'm]s'm]s'm
Scand 11
K
1H4142

Figure 3.21: Keypad

This is the schematic diagram of the keypad. The pin Keyln 1, Keyln 2,
Keyln 3, Keyln 4, Keyln 5, and KeyIn 0 is always be ‘HIGH’. The control system
will scan the keypad every 10 ms. During the scanning period, the scan0 will be
‘LOW’ and follow by scanl and scan 2. So if the SW! is pressed when the Scan0 is
‘LOW”, the KeyInO will become ‘LOW’ and the others Keyln is ‘HIGH’. From here,

the microcontroller can detect what the switch is pressed by user.

48

3.4.6 L293D
TP T4 JPi
R Y R Y
1 - RES 1 [o—
LaosD L PIC1GFETEL
PIC1GFETOA
D Motor Driver
L EM/ECE WCCLMHSY 16
2 1AECE 44 L
s 1% lotorl LYY 14
: GHD GHD 13
> GHD GHD 12
g 2 lotor2 Exy 11
T ANECT 34 L
W2 3AEN »
LI9ZD

Figure 3.22: L293D

The JP4, JP5, and JP6 are the connector for microcontroller and motor for the

lock. When the pin 1 (EN) is ‘H’, pin 2 (1A) is ‘L’ and pin 7 is ‘H’, the DC motor

will turn clockwise and the door will unlocked. For locking the door, pin 1 (EN) is

‘H’, pin 2 (1A) is ‘H’ and pin 7 is ‘L’, the DC motor will turn anti-clockwise.

However the Vccl and Vee2 must connect to power supply.

50

CHAPTER 4

SOFTWARE DEVELOPMENT

4.1 Overall Structure

A program is made up of the following four elements in a file: Comment,
Pre-Processor Directive, Data Definition and Function Definition. Every C
program must contain a main function which is the starting point of the program
execution. The program can be split into multiple functions according to their
purpose and the functions could be called from main or the sub functions. In a large
project functions can also be placed in different C files or header files that can be
included in the main C file to group the related functions by their category. CCS C
also requires to include the appropriate device file using #include directive to include
the device specific functionality. There are also some preprocessor directives like
#fuses to specify the fuses for the chip and #use delay to specify the clock
speed. The functions contain the data declarations, definitions, statements and
expressions. The compiler also provides a large number of standard C libraries as
well as other device drivers that can be included and used in the programs. CCS also
provides a large number of built-in functions to access the various peripherals

included in the PIC microcontroller.

4.2 Statements

STATEMENT EXAMPLE
if (expr) stmt; [else if (x==25)
stmt;] x=1;

else
X=x+1;

while (expr) stmt;

while (get_rtcc()!=0)
putc(‘n’);

do stmt while (expr);

do {

putc(c=getc());
} while (c!=0);

for (exprl;expr2;expr3)

stmt;

for (i=1;i<=10;++i)
printf(*%u\r\n”,i);

switch (expr) {

case cexpr: stmt; //one
or more case
[default:stmt]

.}

switch (cmd) {

case 0: printf(*cmd 07);
break;

case 1: printf(“cmd 17);
break;

default: printf(“bad cmd”);
break; }

return [expr]; return (5);
goto label; goto loop;
label: stmt; loop: 1++;

51

break; break;
continue; continue;
expr: i=1;
{[stmt]} {a=1,

b=1;}
Zero or more

Table 4.1 Statements

4.3 Operators

+ Addition Operator

+= Addition assignment operator, x+=y, is the same as x=x+y

&= Bitwise and assignment operator, x&=y, is the same as X=x&y

& Address operator

& Bitwise and operator

= Bitwise exclusive or assignment operator, x"=y, is the same as
X=Xy

A Bitwise exclusive or operator

= Bitwise inclusive or assignment operator, xl=y, is the same as
x=xly

I Bitwise inclusive or operator

?: Conditional Expression operator

52

Decrement

Division assignment operator, x/=y, is the same as x=x/y

Division operator

Equality

Greater than operator

Greater than or equal to operator

Increment

Indirection operator

Inequality

Left shift assignment operator, x<<=y, is the same as x=x<<y

Less than operator

Left Shift operator

Less than or equal to operator

Logical AND operator

Logical negation operator

Logical OR operator

Modules assignment operator x%=y, is the same as x=x%y

Modules operator

Multiplication assignment operator, x*=y, is the same as x=x*y

Multiplication operator

One's complement operator

>>=

Right shift assignment, x>>=y, is the same as x=x>>y

>>

Right shift operator

Structure Pointer operation

Subtraction assignment operator

Subtraction operator

sizeof

Determines size in bytes of operand

Table 4.2: Operators

53

54

4.4 Data Definitions

This section describes what the basic data types and specifiers are and how
variables can be declared using those types. In CCS C all the variables should be
declared before it is used. They can be defined inside a function (local) or outside all

functions (global). This would affect the visibility and life of the variables.

4.4.1 Basic Types

Type Specifier

intl Defines a 1 bit number

int8 Defines an 8 bit number
intl6 Defines a 16 bit number
int32 Defines a 32 bit number
char Defines a 8 bit character
float Defines a 32 bit floating point number
short By default the same as intl

Int By default the same as int8
long By default the same as int16
void Indicates no specific type

Table 4.3: Basic Types

Note: All types, except float, by default are unsigned; however, maybe preceded by
unsigned or signed. Short and long may have the keyword INT following them with
no effect. Also see #TYPE to change the default size.

55

SHORT is a special type used to generate very efficient code for bit operations and
1/0. Arrays of bits (INT1 or SHORT) in RAM are now supported. Pointers to bits

are not permitted

4.4.2 Declarations

A declaration specifies a type qualifier and a type specifier, and is followed
by a list of one or more variables of that type.
Fore.g.:
inta,b,c,d;
mybit e,f;
mybyte g[3][2];
char *h;
colors j;
struct data_record data[10];
static int i;

extern long j;

Variables can also be declared along with the definitions of the special types.
For eg:
enum colors{red, green=2,blue}i,j,k; // colors is the enum type and i,j,k are

variables of that type

56

4.4.3 Using Program Memory for Data

CCS C Compiler provides a few different ways to use program memory for

data. The different ways are discussed below:

Constant Data:

The const qualifier will place the variables into program memory. The syntax is
const type specifier id [cexpr] = {value}
If the keyword CONST is used before the identifier, the identifier is treated as a
constant. Constants should be initialized and may not be changed at run-time. This
is an easy way to create lookup tables.
Fore.g.:
const int table[16]={0,1,2...15}
For placing a string into ROM
const char cstaring[6]={"hello"}
You can also create pointers to constants
const char *cptr;
cptr = string;
The #org preprocessor can be used to place the constant to specified
address blocks.
For eg:
#ORG 0x1C00, 0x1COF
CONST CHAR ID[10]= {"123456789"};
This ID will be at 1C0O0.

Note: some extra code will proceed the 123456789.

A new method allows the use of pointers to ROM. The new keyword for
compilation modes CCS4 and ANSI is ROM and for other modes it is _ROM. This
method does not contain extra code at the start of the structure.

Fore.g:

char rom commands[] = {*put|get|status|shutdown™};

57

The function label address can be used to get the address of the constant. The
constant variable can be accessed in the code. This is a great way of storing constant
data in large programs. Variable length constant strings can be stored into program

memory.

For PIC18 parts the compiler allows a non-standard c feature to implement a constant

array of variable length strings. The syntax is:

const char id[n] [*] = { "strint", "string" ...};

Where n is optional and id is the table identifier. For example:

const char colors[] [*] = { "Red", "Green", "Blue"};

#ROM directive:

Another method is to use #rom to assign data to program memory, the usage is #rom
address ={data, data,..,data}.
For eg:

#rom 0x1000={1,2,3,4,5} //will place 1,2,3,4,5 to rom addresses starting at
0x1000

This can be used for strings #rom address={"hello"}

/I the string will be null terminated

This method can only be used to initialize the program memory.

Built-in-Functions:

The compiler also provides built-in functions to place data in program memory, they
are:
I. write_program_eeprom(address,data)- writes 16 bit data to program
memory
ii. write_program_memory(address, dataptr, count); writes count bytes of

data from dataptr to address in program memory.

58

Please refer to the help of these functions to get more details on their usage and
limitations regarding erase procedures. These functions can be used only on chips
that allow writes to program memory. The compiler uses the flash memory erase and

write routines to implement the functionality.

The data placed in program memory using all the three methods above can be read
form user code using:
- read_program_eeprom (address)- reads 16 bits data from the address in
program memory.
- read_program_memory (address, dataptr, count) -Reads count bytes from

program memory at address to RAM at dataptr.

These functions can be used only on chips that allow reads from program memory.

The compiler uses the flash memory read routines to implement the functionality

45 Firmware (Microcontroller)

45.1 Pseudo Code

Setup — initialize LCD and alarm system
Hold for keystroke.

match keystroke to EEPROM password
Check the length password.

o M N

if 6 digits entered, begin validation
else goto step[3]
6. if correct code, disengage lock.
else check number failures.
7. if 3" failures, defensive lockout and activate alarm system

8. goto setup(step[1])

4.6 Parts of My Software

59

”***

/I Source Code for Safety Cabinet alarm System
/I Firmware for Microcontroller (PIC 16F876A)

”***

#include <16F876A.h>

#device *=16 ADC=8//16bit pointer, 8-bit ADC

#use delay(clock=20000000) //20M Hertz

/lnitial Configuration Bits

#fuses HS,NOWDT,PROTECT,PUT,NOWRT,BROWNOUT,NOLVP

”*************************************

/[Constant Data be plced in ROM

/*************************************

//Display Number '1','2','3''4''5','6',7",'8','9",'0'

const int8 bmpc[10][7] = {{0, 0x3e, 0x51, 0x49, 0x45, 0x3e, 0},
{0, 0x00, 0x42, 0x7f, 0x40, 0x00, 0},
{0, 0x42, 0x61, 0x51, 0x49, 0x46, 0},
{0, 0x21, 0x41, 0x45, 0x4b, 0x31, 0},
{0, 0x18, 0x14, 0x12, 0x7f, 0x10, 0},
{0, 0x27, 0x45, 0x45, 0x45, 0x39, 0},
{0, 0x3c, Ox4a, 0x49, 0x49, 0x30, 0},
{0, 0x01, 0x71, 0x09, 0x05, 0x03, 0},
{0, 0x36, 0x49, 0x49, 0x49, 0x36, 0},
{0, 0x06, 0x49, 0x49, 0x29, Ox1e, 0}};

60

Examples

{0, Ox3e, 0x51, 0x49, 0x45, 0x3e, 0}

0x00 | = | 0000 0000
Ox3e | =]00111110
0x51 = 0101 0001
0x49 = 01001001 Display ‘0’
O0x45 = 01000101
Ox3e = 00111110
0x00 = 0000 0000
Hex binary

{0, 0x00, 0x42, 0x7f, 0x40, 0x00, 0}

0x00 |=]00000000 |)

0x00 | = | 0000 0000

0x42 = 01000010

ox7f = 01111111 > Display ‘1’
0x40 = 0100 0000

0x00 = 0000 0000

0x00 = 0000 0000

—— e

Hex binary

{0, 0x42, 0x61, 0x51, 0x49, Ox46, 0}

0x00 | = [0000 0000

0x42 | =1{01000010

0x61 = 01100001

0x51 = 01010001 > Display ‘2’
0x49 = 0100 1001

Ox46 = 01000110

0x00 = 00000000

—— ———

Hex binary

{0, 0x21, Ox41, 0x45, 0x4b, 0x31, 0}

0x00 | = [0000 0000

0x21 | = {0010 0001

0x41 = 0100 0001

0x45 = 0100 1001 > Display ‘3’
Ox4b = 0100 1011

0x31 = 01100001

0x00 = 0000 0000)

LY_) H_J
Hex binary

61

/[Display "Mark™

const int8 bmpc_2b[7] = {0, 0x7f, Ox7f, 0x7f, Ox7f, Ox7f, O}; // display all

const int8 bmpc_2c[7] = {0, 0x02, 0x01, 0x51, 0x09, 0x06, 0}; // display '?'

const int8 bmpc_2d[7] = {0, 0x00, 0x60, 0x60, 0x00, 0x00, 0}; // display "'

const int8 bmpc_2e[7] = {0, 0x08, 0x08, 0x08, 0x08, 0x08, 0}; // display -'

const int8 bmpc_2f[7] = {0, 0x00, 0x41, 0x22, 0x14, 0x08, 0}; // display '>'

const int8 bmpc_30[7] = {0, 0x08, 0x14, 0x22, 0x41, 0x00, 0}; // display '<'

const int8 bmpc_31[7] = {0x49, 0x2a, 0x1c, 0x7f, Ox1c, 0x2a, 0x49}; // display ™'
const int8 bmpc_32[7] = {0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18}; // display '--'
const int8 bmpc_33[7] = {0x18, 0x18, 0xf8, 0xf8, 0, 0, O}; // display '-|

const int8 bmpc_34[7] = {0, 0, 0xf8, Oxf8, 0x18, 0x18, 0x18}; // display '|-'

const int8 bmpc_35[7] = {0, 0, 0x1f, Ox1f, 0x18, 0x18, 0x18}; // display '|_'

const int8 bmpc_36[7] = {0x18, 0x18, 0x1f, 0x1f, 0, 0, O}; // display ' |

const int8 bmpc_37[7] = {0, 0, Oxff, Oxff, O, 0, 0}; // display '

const int8 bmpc_40h[7] = {0, 0, 0, 0, 0, 0, 0};// display 'blank’

/[Display Character from'A"to 'Z'

const int8 bmpc_ AAMM([13][7] = { {0, Ox7e, 0x11, 0x11, Ox11, Ox7e, O}, //A..M
{0, 0x7f, 0x49, 0x49, 0x49, 0x36, 0},
{0, Ox3e, 0x41, 0x41, 0x41, 0x22, 0},
{0, 0x7f, Ox41, 0x41, 0x22, 0x1c, 0},
{0, Ox7f, 0x49, 0x49, 0x49, 0x41, 0},
{0, 0x7f, 0x09, 0x09, 0x09, 0x01, 0},
{0, 0x3e, 0x41, 0x49, 0x49, 0x7a, 0},
{0, Ox7f, 0x08, 0x08, 0x08, 0x7f, 0},
{0, 0x00, 0x41, 0x7f, 0x41, 0x00, 0},
{0, 0x20, 0x40, 0x41, 0x3f, 0x01, 0},
{0, Ox7f, 0x08, 0x14, 0x22, 0x41, 0},
{0, Ox7f, 0x40, 0x40, 0x40, 0x40, 0},
{0, Ox7f, 0x02, 0x0c, 0x02, 0x7f, 0}};

62

const int8 bmpc_NNZZ[13][7] = { {0, Ox7f, 0x04, 0x08, 0x10, 0x7f, 0}, /IN...Z
{0, 0x3e, 0x41, 0x41, 0x41, Ox3e, 0},
{0, Ox7f, 0x09, 0x09, 0x09, 0x06, 0},
{0, 0x3e, 0x41, 0x51, 0x21, Ox5e, 0},
{0, 0x7f, 0x09, 0x19, 0x29, 0x46, 0},
{0, 0x46, 0x49, 0x49, 0x49, 0x31, 0},
{0, 0x01, 0x01, 0x7f, 0x01, 0x01, O},
{0, Ox3f, 0x40, 0x40, 0x40, 0x3f, 0},
{0, 0x1f, 0x20, 0x40, 0x20, Ox1f, 0},
{0, 0x3f, 0x40, 0x38, 0x40, 0x3f, 0},
{0, 0x63, 0x14, 0x08, 0x14, 0x63, 0},
{0, 0x07, 0x08, 0x70, 0x08, 0x07, 0},
{0, Ox61, 0x51, 0x49, 0x45, 0x43, 0}};

/[Display Character from 'a’ to 'z'

const int8 bmpc_am[13][7] = {{0, 0x20, 0x54, 0x54, 0x54, 0x78, 0}, //a...m
{0, 0x7f, 0x48, 0x44, 0x44, 0x38, 0},
{0, 0x38, 0x44, 0x44, 0x44, 0x20, 0},
{0, 0x38, 0x44, 0x44, 0x48, 0x7f, 0},
{0, 0x38, 0x54, 0x54, 0x54, 0x18, 0},
{0, 0x08, 0x7e, 0x09, 0x01, 0x02, 0},
{0, 0x0c, 0x52, 0x52, 0x52, 0x3e, 0},
{0, 0x7e, 0x08, 0x04, 0x04, 0x78, 0},
{0, 0x00, 0x44, 0x7d, 0x40, 0x00, 0},
{0, 0x20, 0x40, 0x44, 0x3d, 0x00, 0},
{0, 0x7f, 0x10, 0x28, 0x44, 0x00, 0},
{0, 0x00, 0x41, Ox7f, 0x40, 0x00, 0},
{0, 0x7c, 0x04, 0x18, 0x04, 0x78, 0}};

63

const int8 bmpc_nz[13][7] = { {0, 0x7c, 0x08, 0x04, 0x04, 0x78, 0},
{0, 0x38, 0x44, 0x44, 0x44, 0x38, 0},
{0, 0x7c, 0x14, 0x14, 0x14, 0x08, 0},
{0, 0x08, 0x14, 0x14, 0x18, 0x7c, 0},
{0, 0x7c, 0x08, 0x04, 0x04, 0x08, 0},
{0, 0x48, 0x54, 0x54, 0x54, 0x20, 0},
{0, 0x04, 0x3f, 0x44, 0x40, 0x20, 0},
{0, 0x3c, 0x40, 0x40, 0x20, Ox7c, 0},
{0, Ox1c, 0x20, 0x40, 0x20, Ox1c, 0},
{0, 0x3c, 0x40, 0x30, 0x40, 0x3c, 0},
{0, 0x44, 0x28, 0x10, 0x28, 0x44, 0},
{0, 0x0c, 0x50, 0x50, 0x50, Ox3c, 0},
{0, 0x44, 0x64, 0x54, Ox4c, 0x44, 0}};

The programming ‘C’ has been used to develop the firmware for the
microcontroller 16F876A. ‘C’ language has been chosen because it is the high level
language and can be compiled to any type of assembly languages which is suitable to
the microcontroller that been used.

CHAPTER 5

RESULTS AND DISCUSSION

Chapter 5 will show the results from the proposed system. Instructions on

how to use the safety cabinet alarm system are introduced in this chapter.

5.1 System Overview

he 4 Alarm System O @

o v Alarm siren “on”
Keypad v : L
yp inform authorized '

personnel (SMS).

Setting code Microct:roller
Change code

Identify code \

Motor (unlock cabinet)

LCD Display

Figure 5.1: System Overview

65

I used PIC microcontroller be main controller in my control system. First PIC
used to identify what button that is press on the keypad. The keypad is the Nokia
phone keypad and used to enter the safety code. There are 2 parts in the alarm system.
If someone tries to break in the cabinet, the alarm siren will be on and at the same
time a message (SMS) will be send out to inform the authorized personnel through
the internal cell phone at the safety cabinet. PIC also programmed to identify/
change/ set the code. With the display of LCD, the owner will be more easy or
convenient to operate the control system. When the code is right, the motor will be

trigger to unlock the cabinet.

5.2 Project Overview

DC Motor

Demo Door

Power Supply

Controller Connectors Board g, ... Mobile Phone

Figure 5.2: Project Overview

66

5.2.1 User Manual

—

/ﬁ/ Locking

- .
Enter - } Digits
= (0’ to ‘9’)

T

Next Page
(Change Password)

247%
LR

Main Page
(Enter Password)

Figure 5.3: Keypad

LA

main page next page

Figure 5.4: LCD Pages

When the power supply is ‘on’, the LCD will display “UNEVERSITI
TEKNOLOGI MALAYSIA” for 3 seconds. It aims to promote the company name
and identify the model of the products. After the 3 seconds, the LCD will display the
main page and ask for password. If you need to activate the cabinet lock, you need to
enter the correct password and press “Enter” button by using the keypad. The
combination length is 6 digits long. When the correct password is entered, the LCD
will display “unlock” that means the lock already activated and you can access the

cabinet now.

67

If the password is wrong, the LCD will display “INVALID CODE” for 1
second, and then you need to enter the password again to activate the cabinet lock.
If the invalid code is entered for 3 times, the LCD will display “WARNING”, the
alarm system will be on. The alarm siren will be ‘on’ and at the same time, a
message will be sending out to inform the authorized person through the mobile
phone. In order to switch off the alarm system, button “ * ” must be pressed and the
LCD will display will main page again. At this time, you need to enter correct
password to switch off the alarm system.

For the password changing, the button “ # ” must be pressed. The LCD will
display next page” Change Password ?”. If you want to change password, the button
“Enter” must be pressed. The system will ask for old password. When the password
is right, you need to enter the new password for 2 times to confirm the new password.
After the password changed successfully, the LCD will display “Password Changed”
for 1 second, the main page will display again.

5.3 PCB Layout

5.3.1 Controller Layout (Top Layer)

Figure 5.5: Controller Layout (Top Layer)

68

69

5.3.2 Controller Circuit (Top Layer)

Programming Port
- \oltage
Regulator
Microcontroller =
PIC 16F8B76A
LCD Driver

Figure 5.6: Controller Circuit (Top Layer)

5.3.3 Controller Layout (Bottom Layer)

Figure 5-7: Controller Layout (Bottom Layer)

5.3.4 Controller Circuit (Bottom Layer)

70

LCD
Connector

Keypad
Connector

Figure 5-8: Controller Circuit (Bottom Layer)

71

5.4 Connector’s Board

This connector’s board has 7 pieces 2-pin header (3 controller header, 2 DC

power supply header, mobile phone header, buzzer header, and motor header).

Contraller
DC Power

© Supply, +5 volt

DC Motor
Driver

Buzzer Mobile Motor & Buzzer LUt
Phone Power Supplhy,
+6 Yolts

Figure 5.9: Connector’s Board

From this chapter, the safety cabinet alarm system has been fully explained.

Hence the users can understand the whole development of this alarm system.

CHAPTER 6

CONCLUSION AND FUTURE SUGGESTIONS

6.1 Conclusion

As a conclusion, the project is to come out with the hardware of safety cabinet
alarm system. The safety cabinet alarm system will increase the security cabinet and
make society feel secure to their valuable things. The specifications of the safety cabinet
alarm system are universal LCD alarm system, keyless, flexible, low cost, repairable,

reprogrammable auto reset.

73

6.1 Future Suggestions / Projection

In this project there are plenty of rooms for improvement to further enhance the

project in terms of functionality and reliability. Due to time constraint and lack of

sources, a few suggestions are suggested here for better advancement on the safety

cabinet alarm system in future.

a)

b)

d)

Manual Authentication
If black out occurs, the users still can certain manual key to activate the

lock and access the cabinet.

Second Authentication
In order to increase security of the cabinet, this system need second

authentication such as fingerprint or image processing to access the cabinet.

Improve The Mechanical Part.
The cabinet must be built by certain concrete materials that are not easy to
break in. The cabinet should be fire and water proof to make the safety of

valuable things.

Continuous Power Supply
Actually the safety cabinet alarm system need continuous power supply to
operate continually. Rechargeable battery as the backup power supply to

make sure the system is working in 24 hour per day.

The knowledge | acquired from this project from this project will be essential for

me to equip myself for the future electronic industry which is changing rapidly.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

74

REFERENCES

Huang, Han-Way, “PIC microcontroller: an introduction to software and

hardware interfacing”, Clifton Park, NY : Thomson Delmar Learning, 2004

lovine, John, “PIC microcontroller project book”, New York : McGraw-Hill,
2000.

Smith, Jack R, “Programming the PIC microcontroller with MBasic”,

Amsterdam: Elsevier/Newnes, 2005

Sanchez, Julio, “Microcontroller programming : the microchip PIC”, Boca
Raton, FL : CRC Press, 2007

Burkhard, Walter A, “C for programmers”, Belmont, Calif: Wadsworth Pub.,
1988

Weber, Thad L, “Alarm systems and theft prevention”, Boston : Bitterworths
Pub., 1985

Rakes, Charles D, “Alarms : 55 electronic projects and circuits”, Blue Ridge
Summit, PA : TAB Bks., 1988

http://us.geocities.com

http://www.patentstorm.us

http://www.codelock.us

APPENDIX

Source Code

/ AAKAAAKRAAAAARAAARAAKAAAAAAR A A AR A AR A A AR A XA A AdAAhdkx

/I ' Source Code for Safety Cabinet Control System
/I Firmware for Microcontroller (PIC 16F876A)

// *hkkkk ik *% * *% *% * *hkkkkkkk * %

//Name : FOO KON SIAN

//1IC Number : 840905025205
/IMatric No : AE040061

/ICourse :4SEE

//Department : INSEED, FKE
/ISupervisor : EN Ismail Bin Ariffin

#include <16F876A.h>

#device *=16 ADC=8 //16bit pointer, 8-bit ADC
#use delay(clock=20000000) //20M Hertz

/Mnitial Configuration Bits

#fuses HS,NOWDT,PROTECT,PUT,NOWRT,BROWNOUT,NOLVP

typedef struct {
intl bit0;
intl bitl;
intl bit2;
intl bit3;
intl bit4;
intl bit5;
intl bit6;
intl bit7;

} flags;

/ B R R R R S R S S e S S e e e

/Nnitial value for Port A
//Initial value for Port B
/Nnitial value for Port C

// *hkkkkkkk *% * * %

#define TRISA 0b00000000
#define TRISB 0b11111111
#define TRISC 0b10000000
#define Port_Ai 0b00001000
#define Port_Bi 0b00000000
#define Port_Ci 0b00000000

// *kkkhhkhkkk *% * *% *% * *hkxk

/ILabel for Port A, Port B, and Port C

// *hkkkkkkk *% * * % * % * *hkxk

/[PortA
#define SCLK_H output_high(PIN_AOQ)
#define SCLK_L output_low(PIN_AO0)

#define SDIN_H output_high(PIN_A1)

75

#define SDIN_L output_low(PIN_A1)

#define DC_H
#define DC_L
#define SEC_H
#define SEC_L
#define RES_H
#define RES_L
#define BL_H
#define BL_L
//Port B

#define KeyIn0
#define Keyinl
#define KeylIn2
#define KeyIn3
#define Keyln4
#define KeyInb

output_high(PIN_A2)
output_low(PIN_A2)
output_high(PIN_A3)
output_low(PIN_A3)
output_high(PIN_A4)
output_low(PIN_A4)
output_high(PIN_A5)
output_low(PIN_AS5)

input(PIN_BO0)
input(PIN_B1)
input(PIN_B2)
input(PIN_B3)
input(PIN_B4)
input(PIN_B5)

/lPort C

#define Scan0_H
#define Scan0_L
#define Scanl_H
#define Scanl L
#define Scan2_H
#define Scan2_L
#define EN_H
#define EN_L
#define Buzer_L
#define Buzer_H
#define Phone_L
#define Phone_H
#define motorl_L
#define motorl_H
#define motor2_L
#define motor2_H

flags sys01;
#define flg_10ms

output_high(PIN_CO0)
output_low(PIN_CO)
output_high(PIN_C1)
output_low(PIN_C1)
output_high(PIN_C2)
output_low(PIN_C2)
output_high(PIN_C3)
output_low(PIN_C3)
output_low(PIN_C4)
output_high(PIN_C4)
output_low(PIN_C5)
output_high(PIN_C5)
output_low(PIN_C6)
output_high(PIN_C6)
output_low(PIN_C7)
output_high(PIN_C7)

sys01.hit0

//*************************************

/IDeclare for Integer

//*************************************

int8 tmp;

int8 tmp00 ;
int8 tmp01 ;
int8 tmp02 ;
int8 cnt01 ;
int8 cnt02 ;
int8 cnt03 ;
int8 Dgt_cnt;
int8 bmp_org;

int8 bmp_Bcnt;

int8 tmr10ms;
int8 counter;
int8 change;
int8 keyNew;

int8 KeyFlag;
int8 skip;

int8 Skip_2;
int8 SKIP_3;
int8 loop;
int8 keytmp;
int8 keyCnt;

int8 keyNew 2;
int8 keyNew_1;

int8 reset;
int8 shf;
int8 shftmp;
int8 shfct;

int8 cursor;
int8 CsrMarker;
int8 confirm;

int8 code;

int8 try;

int8 DispPg;
int8 bUpdateLCD;
int8 i, K;

int8 W_REG;
int8 page;

int8 FSR;

int8 INDF;
int8 PCLATH;
int8 Temp;

/ AAAAAAARAAAAARAAAAAAAAAAAA AR AAAAAAdhh ik

/IConstant Data be plced in ROM

//*************************************

/[Display Number '1','2','3','4"'5','6',7",'8','9",'0'

const int8 bmpc[10][7] = {{0, 0x3e, 0x51, 0x49, 0x45, 0x3e, 0},
{0, 0x00, 0x42, 0x7f, 0x40, 0x00, 0},
{0, 0x42, 0x61, 0x51, 0x49, 0x46, 0},
{0, 0x21, 0x41, 0x45, Ox4b, 0x31, 0},
{0, 0x18, 0x14, 0x12, 0x7f, 0x10, 0},
{0, 0x27, 0x45, 0x45, 0x45, 0x39, 0},
{0, 0x3c, Ox4a, 0x49, 0x49, 0x30, 0},
{0, 0x01, 0x71, 0x09, 0x05, 0x03, 0},
{0, 0x36, 0x49, 0x49, 0x49, 0x36, 0},
{0, 0x06, 0x49, 0x49, 0x29, 0x1e, 0}};

/IDisplay "Mark"

const int8 bmpc_2b[7] = {0, Ox7f, 0x7f, Ox7f, Ox7f, Ox7f, 0}; // display all

const int8 bmpc_2c[7] = {0, 0x02, 0x01, 0x51, 0x09, 0x06, 0}; // display '?'

const int8 bmpc_2d[7] = {0, 0x00, 0x60, 0x60, 0x00, 0x00, 0}; // display ".'

const int8 bmpc_2e[7] = {0, 0x08, 0x08, 0x08, 0x08, 0x08, 0}; // display '-'

const int8 bmpc_2f[7] = {0, 0x00, 0x41, 0x22, 0x14, 0x08, 0}; // display >'

const int8 bmpc_30[7] = {0, 0x08, 0x14, 0x22, 0x41, 0x00, 0}; // display '<'

const int8 bmpc_31[7] = {0x49, 0x2a, 0x1c, 0x7f, Ox1c, 0x2a, 0x49}; // display "*'
const int8 bmpc_32[7] = {0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18}; // display '--'
const int8 bmpc_33[7] = {0x18, 0x18, 0xf8, 0xf8, 0, 0, 0}; // display '-|

const int8 bmpc_34[7] = {0, 0, 0xf8, 0xf8, 0x18, 0x18, 0x18}; // display |-

const int8 bmpc_35[7] = {0, 0, 0x1f, Ox1f, 0x18, 0x18, 0x18}; // display '|_'

77

const int8 bmpc_36[7] = {0x18, 0x18, 0x1f, Ox1f, 0, 0, 0}; // display ' |
const int8 bmpc_37[7] = {0, 0, Oxff, Oxff, 0, 0, 0}; // display '
const int8 bmpc_40h[7] = {0, 0, 0, 0, 0, 0, 0};//dislay’'blank’

/IDisplay Character from'A'to 'Z'

const int8 bmpc_ AAMMI[13][7] = { {0, 0x7e, 0x11, Ox11, 0x11, Ox7e, 0}, //A..M
{0, 0x7f, 0x49, 0x49, 0x49, 0x36, 0},
{0, 0x3e, 0x41, 0x41, 0x41, 0x22, 0},
{0, Ox7f, 0x41, 0x41, 0x22, Ox1c, 0},
{0, 0x7f, 0x49, 0x49, 0x49, 0x41, 0},
{0, 0x7f, 0x09, 0x09, 0x09, 0x01, 0},
{0, Ox3e, 0x41, 0x49, 0x49, 0x7a, 0},
{0, 0x7f, 0x08, 0x08, 0x08, 0x7f, 0},
{0, 0x00, 0x41, 0x7f, 0x41, 0x00, 0},
{0, 0x20, 0x40, 0x41, 0x3f, 0x01, 0},
{0, Ox7f, 0x08, 0x14, 0x22, 0x41, 0},
{0, 0x7f, 0x40, 0x40, 0x40, 0x40, 0},
{0, 0x7f, 0x02, 0x0c, 0x02, Ox7f, 0}};

const int8 bmpc_NNZzZ[13][7] = { {0, Ox7f, 0x04, 0x08, 0x10, Ox7f, 0}, //N...Z
{0, Ox3e, 0x41, 0x41, 0x41, 0x3e, 0},
{0, 0x7f, 0x09, 0x09, 0x09, 0x06, 0},
{0, Ox3e, 0x41, 0x51, 0x21, 0x5e, 0},
{0, 0x7f, 0x09, 0x19, 0x29, 0x46, 0},
{0, 0x46, 0x49, 0x49, 0x49, 0x31, 0},
{0, 0x01, 0x01, 0x7f, 0x01, 0x01, 0},
{0, 0x3f, 0x40, 0x40, 0x40, Ox3f, 0},
{0, Ox1f, 0x20, 0x40, 0x20, Ox1f, 0},
{0, 0x3f, 0x40, 0x38, 0x40, 0x3f, 0},
{0, 0x63, 0x14, 0x08, 0x14, 0x63, 0},
{0, 0x07, 0x08, 0x70, 0x08, 0x07, 0},
{0, 0x61, 0x51, 0x49, 0x45, 0x43, 0}};

/IDisplay Character from 'a' to 'z’

const int8 bmpc_am[13][7] = {{0, 0x20, 0x54, 0x54, 0x54, 0x78, 0}, //a...m
{0, 0x7f, 0x48, 0x44, 0x44, 0x38, 0},
{0, 0x38, 0x44, 0x44, 0x44, 0x20, 0},
{0, 0x38, 0x44, 0x44, 0x48, 0x7f, 0},
{0, 0x38, 0x54, 0x54, 0x54, 0x18, 0},
{0, 0x08, 0x7e, 0x09, 0x01, 0x02, 0},
{0, 0x0c, 0x52, 0x52, 0x52, 0x3e, 0}
{0, 0x7e, 0x08, 0x04, 0x04, 0x78, 0}
{0, 0x00, 0x44, 0x7d, 0x40, 0x00, 0},
{0, 0x20, 0x40, 0x44, 0x3d, 0x00, 0},
{0, Ox7f, 0x10, 0x28, 0x44, 0x00, 0},
{0, 0x00, 0x41, 0x7f, 0x40, 0x00, 0},
{0, 0x7c, 0x04, 0x18, 0x04, 0x78, 0}};

const int8 bmpc_nz[13][7] = { {0, 0x7c, 0x08, 0x04, 0x04, 0x78, 0},
{0, 0x38, 0x44, 0x44, 0x44, 0x38, 0},
{0, O0x7c, 0x14, 0x14, 0x14, 0x08, 0},
{0, 0x08, 0x14, 0x14, 0x18, 0x7c, 0},
{0, 0x7c, 0x08, 0x04, 0x04, 0x08, 0},
{0, 0x48, 0x54, 0x54, 0x54, 0x20, 0},

{0, 0x04, 0x3f, 0x44, 0x40, 0x20, 0},
{0, 0x3c, 0x40, 0x40, 0x20, 0x7c, 0},
{0, Ox1c, 0x20, 0x40, 0x20, Ox1c, 0},
{0, 0x3c, 0x40, 0x30, 0x40, 0x3c, 0},
{0, 0x44, 0x28, 0x10, 0x28, 0x44, 0},
{0, 0x0c, 0x50, 0x50, 0x50, 0x3c, 0},
{0, 0x44, 0x64, 0x54, Ox4c, 0x44, 0}};

/[display "UNIVERSITI"

const char con_solel1[12] = {'U', 'N','I', 'V', 'E', 'R",'S", 'I', 'T', 'I', 0xa2, Oxa2};
/[display "TEKNOLOGI"

const char con_sole2[12] = {'T', 'E', 'K', 'N', 'O', 'L', 'O", 'G", 'I', 0xa2, 0xa2, 0xa2};
/ldisplay "MALAYSIA"

const char con_sole3[12] = {'M", 'A", 'L', 'A", "Y', 'S", 'I', 'A’, Oxa2, 0xa2, 0xa2, 0xa2};

#define rd RdFlg.bit0
#define sentRd RdFlg.bit4

hna *k * *hkkkkhkhkhk *hkkhkkhkhkhk * * *% * *% *hkk*k *

/I RAM variables (Array)
/ *hkkhkhkhkhkhhkhkhkhhkhhkhkkhkhkhihkhhhkhkhhkhhhkhhhkhhhhhhhhhihkhihhhihhihhhhhhhiixk
int8 LCDRow0[12];
int8 LCDRow1[12];
int8 LCDRow2[12];
int8 LCDRow3[12];
int8 LCDRow4[12];
int8 LCDRow5[12];
int8 digit[6];

int8 second[6];

int8 save[6];

/ hhkhhkkhhkkhhkhkhhkkhkhhkhhkhhhkhhkhkhhkhhhrhhkhhkhhhkhhkhhhkkhhkhhhkrhkhkihkkhhkihkhikikx

/I LCD Display Program

hna *k * *hkkkkhkhkhk *hkkhkkhkhkhk * * *% * * *hkkk *

void dly0()

cnt01 = W_REG;
dly01:

cnt02 = Ox1f;
dly02:

cnt03 = Oxff;
dly03:

cnt03--;

if (cnt03 1= 0) goto dly03;
dly04:

cnt02--;

if (cnt02 1= 0) goto dly02;
dly05:

cnt0l--;
if (cnt01 != 0) goto dly01;

80

void dly1()
{
W_REG = §;
dly0();
}
void dly2()
{
W_REG = 2;
dly0();
void dly3()
W_REG = 1;
dly0();
}
void shf8()
{
W_REG = §;
shfct = W_REG;
Shf8a:
SCLK_L;
Temp = shf;
rotate_left(&shf,1);
if(Temp < 0x80)
{
goto shfbo;
}
SDIN_H; //bit 1
goto shfclk;
shfb0:
SDIN_L; //bit 0
shfclk:
SCLK_H;
ckshfct:
shfct--;
if(shfct 1= 0)
{
goto shf8a;
shf8b:
SCLK_L;
SDIN_L;
}
void ShfCmd()
{
shf =W_REG;

DC_L;

shf8();
}
[Ishift
void shfdata()
{
shf = W_REG;
DC_H;
shf8();
}
void sdly1()
/Inop
return;
}
/Irow data
void d_row()
{
shftmp = W_REG,; //row data
cnt03 = 0x54;
d_row2:
W_REG = shftmp; //row data
ShfData();
cnt03--;
if(cnt03 1= 0)
{
goto d_row2;
}
}
void Init_LCD_row() //cmd
{
W_REG = (W_REG + 0b01000000);
SEC_L,; /lenable clk
ShfCmd();
W_REG = 0b10000000;
ShfCmd();
SEC_H; //disable clk
SEC_L; //disable clk
W_REG = 0b10101100; //initial data
i W_REG = 0; //initial data
d_row();
SEC_H; //disable clk
}
/Init LCD

void Init_LCD()
{

81

/Init LCD starts here
dly2();
SEC_H; //disable clk
DC_H;
sdly1();
RES_H; //release reset
dly3();

go00:
SEC_L; // enable clk
W_REG = 0b00100100;
ShfCmd();
for(i=0; i<6; i++)
{
W_REG =;
Init_LCD_row();
}

SEC_L,; /lenable clk
W_REG = 0b00100000;
ShfCmd();

SEC_H; //disable clk
dly1();
dly1();

SEC _L; //enable clk
W_REG = 0b00100000;
ShfCmd();
W_REG = 0b00001100;
ShfCmd();
SEC_H; //disable clk
dly1();
dly1();

}

/Update 1 digit LCD Data
void LCD_dgt()

Nxt_ CHAR_B:
bmp_org++;
if(--bmp_Bcnt != 0) goto Nxt. CHAR_B;
return;

LCD_dgt_num:;
W_REG = 0x08;
PCLATH = W_REG;
bmp_Bcnt = 0x07;

Nxt_num_B:
W_REG = bmp_org;
W_REG =W _REG + CsrMarker;
ShfData();
bmp_org++;
if (--bmp_Bcnt 1= 0)

82

{
}

return;

goto Nxt_num_B;

Chk_cursor_pos:
return;
}

/[Update 1 row
void Udp_row()

W_REG =W_REG + 0x40;
SEC_L,; /lenable clk
ShfCmd();

W_REG = 0x80;

ShfCmd();

SEC_H; //disable clk
W_REG = 0x0c; //dgt count
Dgt_cnt=W_REG;
SEC_L,; /lenable clk

Nxt_dgt:
CsrMarker = 0;
if (DispPg != 0) goto Nxt_dgt0;

if (cursor == FSR)

CsrMarker = 0x80;
}

Nxt_dgto:
#asm
movf INDF,W
#endasm
LCD_dgt();
#asm
incf FSR,F
#endasm

/ILCD Display Program
void Udp_LCD()

Udp_row();

void Udp_LCDO0()
{

Udp_LCD();

83

”*************************************

/I To Interupt Every 10 m

h *kkkhhhkkk *% * *% *% * *hkxk

#INT_TIMER1

void IRQ_T1()

{
set_timer1(0xe796); //10ms (0xe796)
enable_interrupts(INT_TIMERZY);
flg_10ms = 1;

}

”*************************************

/I Functions for LCD Display

/*************************************

void display_blank()

{
for (i=0; i<7; i++) {
W_REG = bmpc_40h[i];
shfdata();
}
}
void display_ AAMM(int8 x)
{
for (i=0; i<7; i++) {
W_REG = bmpc_ AAMMIX][i];
shfdata();
}
}
void display_NNZZ(int8 x)
{
for (i=0; i<7; i++) {
W_REG = bmpc_NNZZ[X][i];
shfdata();
}
}

void display_am(int8 x)
for (i=0; i<7; i++) {

W_REG = bmpc_am[x][il;
shfdata();

}
void display_nz(int8 x)
for (i=0; i<7; i++) {

W_REG = bmpc_nz[X][i];
shfdata();

void display(int8 x)
{
for (i=0; i<7; i++) {

W_REG = bmpc[X][i];
shfdata();

}

void display_cursor()
for (i=0; i<7; i++) {

W_REG = bmpc_40h[i] | 0x80;
shfdata();

}
void display_all()
{
for (i=0; i<7; i++) {

W_REG = bmpc_2Db[i];
shfdata();

}

void display_question()
for (i=0; i<7; i++) {

W_REG = bmpc_2c[i];
shfdata();

}
void display_dot()
{

for (i=0; i<7; i++) {
W_REG = bmpc_2d[i];

shfdata();
}
}
void display_minus()
{
for (i=0; i<7; i++) {
W_REG = bmpc_2e[i];
shfdata();
}
}

void display_greater()

for (i=0; i<7; i++) {
W_REG = bmpc_2f[i];

85

shfdata();
}
}
void display_lower()
{
for (i=0; i<7; i++) {
W_REG = bmpc_30[i];
shfdata();
}

void display_line()
{

for (i=0; i<7; i++) {
W_REG = bmpc_32][i];

shfdata();
}
}
void display_vertical()
{
for (i=0; i<7; i++) {
W_REG = bmpc_37[il;
shfdata();
}
}
void display_box45()
{
for (i=0; i<7; i++) {
W_REG = bmpc_33[i];
shfdata();
}
}
void display_box135()
{
for (i=0; i<7; i++) {
W_REG = bmpc_34[i];
shfdata();
}
}
void display_box225()
{

for (i=0; i<7; i++) {
W_REG = bmpc_35[i];
shfdata();

86

}
}
void display_box315()
{
for (i=0; i<7; i++) {
W_REG = bmpc_36[i];
shfdata();
}
}

void display_star()
{

for (i=0; i<7; i++) {
W_REG = bmpc_31[il;

shfdata();
}
}
void show_char()
{

if (W_REG ==0xa2) {
display_blank();
return; }

if (W_REG >= 0x41) && (W_REG <= 0x4D)) {

W_REG -= 0x41,
display AAMM(W_REG);
return;

}

if (W_REG >= 0x4E) && (W_REG <= 0x5A)) {
W_REG -= 0x4E;
display_NNZZ(W_REG);
return;

}

if (W_REG >=0x61) && (W_REG <= 0x6d)) {
W_REG -= 0x61;
display_am(W_REG);
return;

}

if (W_REG >= 0x6e) && (W_REG <= 0x7a)) {
W_REG -= 0x6e;
display_nz(W_REG);
return;

}

if (W_REG >=0x30) && (W_REG <= 0x39)) {
W_REG -=0x30;

IIA.M

/IN...Z

/la..m

IIn...z

110..9

87

display(W_REG);
return;

¥
if (W_REG == 0x3f) {

display_question();

return; }

if (W_REG == 0x2e) {
display_dot();
return; }

if (W_REG == 0x2d) {
display_minus();
return; }

if (W_REG == 0x3e) {
display_greater();
return; }

if (W_REG == 0x3c) {
display_lower();
return; }

if (W_REG == 0x2a) {
display_star();
return; }

if (W_REG ==0x11) {
display_box45();
return; }

if (W_REG ==0x12) {
display_box135();
return; }

if (W_REG == 0x13) {
display _box225();
return; }

if (W_REG ==0x14) {
display_box315();
return; }

if (W_REG ==0x15) {
display_line();
return; }

if (W_REG == 0x16) {
display_vertical();
return; }

88

void display_char()
{

for(k=0; k<12; k++){
W_REG = LCDRowoO[K];
show_char();

}

for(k=0; k<12; k++){
W_REG = LCDRow1[K];
show_char();

for(k=0; k<12; k++){
W_REG = LCDRow2[K];
show_char();

}

for(k=0; k<12; k++){
W_REG = LCDRow3[K];
show_char();

}

for(k=0; k<12; k++){
W_REG = LCDRow4[K];
show_char();

}

for(k=0; k<12; k++){
W_REG = LCDRow5[K];
show_char();

}
}
void clear()
{
for(i=0; i<12; i++){
LCDRow?2[i] = 0xa2;
LCDRowa3[i] = 0xa2;
LCDRow4][i] = 0xa2;
LCDRow5[i] = 0xaz;
}
}

void upper_box()
{

LCDRow1[0] = 0xa2;

LCDRow1[1] = 0x12;

for(i=2; i<10; i++){
LCDRow1[i] = 0x15;

}
LCDRow1[10] = Ox11;
LCDRowl[11] = Oxa2;

clear();

LCDRow2[0] = 0xa2;

89

LCDRow2[1] = 0x16;
for(i=2; i<10; i++){

LCDRowZ[i] = Oxa2;
}

LCDRow?2[10] = 0x16;
LCDRow?2[11] = Oxaz;

LCDRow3[0] = 0xa2;
LCDRow3[1] = 0x13;
for(i=2; i<10; i++){

LCDRow3Ji] = 0x15;
}

LCDRow3[10] = 0x14;
LCDRow3[11] = 0xa2;

for(i=0; i<12; i++){
LCDRow4[i] = Oxa2;
LCDRow5[i] = 0xa2;

/I Pages In LCD display

// *hkkkkkkk *% * *% * % *

void page_0()
{

for(i=0; i<12; i++){
LCDRowO[i] = con_solel[i];
LCDRowl][i] = con_sole2[i];
LCDRow2[i] = con_sole3[i];
}

for(i=0; i<12; i++){

LCDRow3[i] = 0xa2;
LCDRow4[i] = 0xa2;
LCDRows5[i] = Oxa2;

}

void page_1() //Password ?
{

LCDRowO[0] =P}
LCDRowO[1] ="a’;
LCDRow0[2] ='s";
LCDRowOQ[3] ='s';
LCDRowO[4] ='W
LCDRow0[5] ="0';
LCDRowO[6] ="t
LCDRowO[7] ='d,
LCDRow0[8] = 0xa2;

90

LCDRowO0[9] = 0x3f; //'?"
LCDRow0[10] = Oxa2;
LCDRowO0[11] = Oxa2;
upper_hox();

void page_2() //Change password ?
{

}

LCDRow0[0] ='C';
LCDRowO[1] ='h";
LCDRow0[2] =&
LCDRowO[3] ='n;
LCDRow0[4] =g
LCDRowO0[5] ="e";
for(i=6; i<12; i++) {

LCDRowO[i] = Oxa2;

}
LCDRow1[0] ="'P’;
LCDRowl[1] ="a’;
LCDRowl[2] ='s"
LCDRowl[3] ='s';
LCDRowl[4] ='W
LCDRowl[5] ='0;
LCDRowl[6] ="'
LCDRowl[7] ='d;
LCDRowl[8] = 0xa2;
LCDRow1[9] = 0x3f; //'?"
LCDRow1[10] = 0xa2;
LCDRow1[11] = Oxa2;
clear();

void password()

LCDRowl[0] ="'P};
LCDRowl[1] ="a’;
LCDRowl[2] =s";
LCDRowl[3] ='s';
LCDRowl[4] ='w"
LCDRowl[5] ="0';
LCDRowl[6] ="'
LCDRowl[7] ="d}
LCDRowl[8] = 0xa2;
LCDRow1[9] = 0x3f; //'?"
LCDRow1[10] = 0xa2;
LCDRow1[11] = Oxa2;

LCDRow?2[0] = 0xa2;
LCDRow?2[1] = 0x12;
for(i=2; i<10; i++){

LCDRow?2[i] = 0x15;
}

LCDRow?2[10] = Ox11;

91

LCDRow?2[11] = Oxa2;

LCDRow3[0] = 0xa2;

LCDRow3[1] = 0x16;

for(i=2; i<10; i++){
LCDRow3[i] = 0xa2;

}
LCDRow3[10] = 0x16;
LCDRow3[11] = Oxa2;

LCDRow4[0] = 0xa2;
LCDRow4[1] = 0x13;
for(i=2; i<10; i++){

LCDRowA4[i] = 0x15;
}

LCDRow4[10] = 0x14;
LCDRow4[11] = 0xa2;

for(i=0; i<12; i++){
LCDRow5[i] = 0xa2;
}

void page_3() //Old Password ?
{

LCDRow0[0] ='O7;

LCDRowO[1] ="I';

LCDRow0[2] ='d";

for(i=3; i<12; i++){
LCDRowO[i] = 0xa2;

}

password();

void page_4() //New Password ?

¥

try = 0;

LCDRowO[0] ='N";

LCDRowO[1] ="¢;

LCDRow0[2] = 'W';

for(i=3; i<12; i++){
LCDRowO[i] = 0xa2;

}

password();

void page_9() //Confirm ?
{

92

¥

void page_5()
{

}

LCDRow0[0] ='C';
LCDRowO[1] ="0';
LCDRowO[2] ='n";
LCDRowO[3] ="f
LCDRowO[4] ="i";
LCDRowO[5] ="
LCDRow0[6] ='m’;
LCDRowO[7] = 0xa2;

LCDRowO[8] = 0x3f; //'?"

LCDRowO[9] = 0xa2;
LCDRow0[10] = Oxa2;
LCDRow0[11] = Oxa2;

upper_box();

try =0;

code =0;
LCDRow0[0] ="'P’;
LCDRowO[1] ="a’
LCDRow0[2] ='s";
LCDRowOQ[3] ='s";
LCDRowO0[4] ='W
LCDRow0[5] ="0';
LCDRowO[6] ="
LCDRowQ[7] ="d';
LCDRowO[8] = 0xa2;
LCDRowO[9] = 0xa2;
LCDRowO0[10] = Oxa2;
LCDRow0[11] = Oxa2;

LCDRowl[0] ='C';
LCDRowl[1] ="h"
LCDRowl[2] ="a’;
LCDRowl[3] ='n';
LCDRowl[4] ='g};
LCDRowl[5] ="e";
LCDRowl[6] ="d';
for(i=7; i<12; i++){

LCDRowl[i] = 0xa2;

clear();

void page_6() //Invalid Code
{

try++;
counter = 0;

for(i=0; i<12; i++){

LCDRowO[i] = 0xa2;

/IPassword Changed

93

LCDRowl[i] = 0xa2;

LCDRow3Ji] = 0xa2;

LCDRow4[i] = Oxa2;

LCDRow5[i] = 0xa2;
}

LCDRow2[0] ="I';
LCDRow2[1] ='n";
LCDRow2[2] ='V';
LCDRow2[3] ="a}
LCDRow2[4] ="I';
LCDRow2[5] ="i';
LCDRow2[6] ='d"
LCDRow2[7] = 0xa2;
LCDRow2[8] ='C';
LCDRow2[9] ="0';
LCDRow?2[10] = 'd’;
LCDRow2[11] ="e’;

}
void page_7() //Warning !
{

for(i=0; i<12; i++){
LCDRowO[i] = 0xa2;
LCDRowl[i] = 0xa2;
LCDRow3Ji] = 0xa2;
LCDRow4[i] = 0xa2;
LCDRow5[i] = 0xa2;
}

LCDRow2[0] = 0xa2;
LCDRow2[1] = 0xa2;
LCDRow2[2] ='W
LCDRow2[3] ="a}
LCDRow2[4] ="'
LCDRow2[5] ='n';
LCDRow2[6] ="i;
LCDRow2[7] ="n';
LCDRow2[8] ='g;
LCDRow2[9] = 0xa2;
LCDRow?2[10] = Oxaz;
LCDRow2[11] = Oxa2;

}
void page_8() //Unlock'!
{

try =0;

code =0;

for(i=0; i<12; i++){
LCDRowO[i] = 0xa2;

LCDRowl[i] = 0xa2;
LCDRow3Ji] = 0xa2;
LCDRow4[i] = Oxa2;
LCDRow5[i] = 0xa2;

}

LCDRow2[0] = 0xa2;
LCDRow2[1] = 0xa2;

LCDRow2[2] ="
LCDRow2[3] ="
LCDRow2[4] ="'
LCDRow2[5] ="
LCDRow2[6] ="
LCDRow2[7] ="'

U’
n'

0%
c;
k'

LCDRow2[8] = 0xa2;
LCDRow2[9] = 0xa2;

LCDRow2[10] = Oxa2;
LCDRow2[11] = Oxa2;

}

void pages()

{
if(page == 1) page_1();
if(page == 2) page_2();
if(page == 3) page_3();
if(page == 4) page_4();
if(page == 9) page_9();

}

aeieiaiaiaials

/I Count Numbers of Entered Digit

[k ialeiaaas
void counter_1()

if(change == 0){
switch(counter){
case 0:

case 1:

case 2:

case 3:

case 4.

case 5:

*% *% *

digit[0] = tmp;
counter++;
break;
digit[1] = tmp;
counter++;
break;
digit[2] = tmp;
counter++;
break;
digit[3] = tmp;
counter++;
break;
digit[4] = tmp;
counter++;
break;
digit[5] = tmp;

95

counter++;
break;
case 6. counter++;

}

}
if(change == 1){
switch(counter){
case 0: second[0] = tmp;
counter++;
break;
case 1: second[1] = tmp;
counter++;
break;
case 2: second[2] = tmp;
counter++;
break;
case 3: second[3] = tmp;
counter++;
break;
case 4: second[4] = tmp;
counter++;
break;
case 5: second[5] = tmp;
counter++;
break;
case 6: counter++;
change = 0;

h *hkkkkkkk *% * * % * % * *hk*k

/I Display 'Star' for each entered code
/*************************************

void set_star_1() //In page_1

{
switch(counter){
case 0: LCDROW2[3] = 0X23;
break;
case 1: LCDROW2[4] = 0X2a;
break;
case 2. LCDROW2[5] = 0X2a;
break;
case 3: LCDROW?2[6] = 0X23;
break;
case 4: LCDROW?2[7] = 0X2a;
break;
case 5: LCDROW2[8] = 0X2a;
break;
}
}
void set_star_2() //In page_3
{

switch(counter){

case 0: LCDROW3[3] = 0X2a;
break;

case 1: LCDROWS3[4] = 0X23;
break;

case 2: LCDROWS3[5] = 0X23;
break;

case 3: LCDROW3[6] = 0X2a;
break;

case 4. LCDROW3[7] = 0X2a;
break;

case 5: LCDROW3[8] = 0X2a;
break;

/I,u\ *% * *hkkkkhkhkhk *hkkhkkhkhkhk * * *

/l Make Sure Only 6 Digits for Any Password

/ B R e S S S 2 2 e 2 e

void check_counter()

{
if(counter >= 7){
page_6();
SEC_L;
display_char();
SEC_H;
delay_ms(1000);
if(page == 1)page_1();
if(page == 3)page_3();
if(page == 4 || page == 9)page_4();
counter = 0;
}
}

//*'k*************************

/I Save Digits For Password

// *hkkkkkkk *% * * % * %

void save_digit()

save[0] = 0x32;
save[1] = 0x33;
save[2] = 0x34;
save[3] = 0x35;
save[4] = 0x36;
save[5] = 0x37;

//*****************

/I Check Password
[[FFA A KAk *x

void check_password()

{

code = 0;

98

read_program_memory(0x1800, save, 6);
if(save[0] == Oxff){save_digit();}
if(digit[0] == save[0]) code++;

if(digit[1] == save[1]) code++;

if(digit[2] == save[2]) code++;

if(digit[3] == save[3]) code++;

if(digit[4] == save[4]) code++;

if(digit[5] == save[5]) code++;

digit[0] = 88;

}

void check_new_password()

{
confirm =0;
if(digit[0] == second[0]) confirm++;
if(digit[1] == second[1]) confirm++;
if(digit[2] == second[2]) confirm++;
if(digit[3] == second[3]) confirm++;
if(digit[4] == second[4]) confirm++;
if(digit[5] == second[5]) confirm++;

}

//*****************

/I Change Password
[k ok

void change_password()
{
save[0] = digit[0];
save[1] = digit[1];
save[2] = digit[2];
save[3] = digit[3];
save[4] = digit[4];
save[5] = digit[5];
write_program_memory(0x1800, save, 6);

}

//***

/' ldentify The Pressed Button at Keypad

// *hkkkkkkk *% * * % * % * *hkkkkkkhk

void press_1()
{

tmp = 0x31,;
counter_1();
check_counter();

}
void press_2()
tmp = 0x32;

counter_1();
check_counter();

void press_3()

tmp = 0x33;
counter_1();
check_counter();

}
void press_4()

tmp = 0x34;
counter_1();
check_counter();

}
void press_5()

tmp = 0x35;
counter_1();
check_counter();

}
void press_6()

tmp = 0x36;
counter_1();
check_counter();

}
void press_7()

tmp = 0x37,;
counter_1();
check_counter();

}
void press_8()
{

tmp = 0x38;
counter_1();
check_counter();

}
void press_9()
{

tmp = 0x39;
counter_1();
check_counter();

}
void press_0()
tmp = 0x30;

counter_1();
check_counter();

99

100

void confirm_page_next()

{
page = 2;
pages();

void confirm_page_back()

{
page = 1;
pages();

void keytest()

int8 x;
for (x=0; x<6; x++) {
if (bit_test(keytmp, 0) == 0) {
keyNew = keyCnt;

skip_2=1,
KeyFlag = 1;
}
shift_right(&keytmp,1,1);
keyCnt++;
}
}
void identify_key()
{
KeyFlag = 0;
keycnt =0;
keytmp = tmp00;
keytest();

if(KeyFlag ==0) {
keytmp = tmp01;
keytest();

}
if(KeyFlag == 0) {
keytmp = tmp02;

keytest();
}
}
void confirm_key()
{

if(keyNew == 6) {
bUpdateLCD = 1;
if (page == 1) {set_star_1();

press_1(); }
if (page == 3) { set_star_2();
press_1(); }

if (page == 4 || page == 9) {

if(page == 4) set_star_2();
if(page == 9) set_star_1();

if(keyNew ==7) {

press_1();
}
}
bUpdateLCD = 1;
if (page == 1) { set_star_1();
press_2(); }
if (page == 3) { set_star_2();
press_2(); }

if (page == 4 || page == 9) {
if(page == 4) set_star_2();
if(page == 9) set_star_1();
press_2();
}

}

if(keyNew == 8) {

bUpdateLCD = 1;

if (page == 1) {
set_star_1();
press_3();

}
if (page == 3) { set_star_2();
press_3(); }
if (page == 4 || page == 9) {
if(page == 4) set_star_2();
if(page == 9) set_star_1();

if(keyNew == 9) {

}

press_3();
}
}
bUpdateLCD = 1;
if (page == 1) { set_star_1();
press_4(); }
if (page == 3) { set_star_2();
press_4(); }

if (page == 4 || page == 9) {
if(page == 4) set_star_2();
if(page == 9) set_star_1();
press_4();
}

if(keyNew == 10) {

bUpdateLCD = 1;
if (page == 1) {set_star_1();
press_5(); }

if (page == 3) { set_star_2();

101

press_5();

if (page == 4| page == 9) {

102

}

if(page == 4) set_star_2();
if(page == 9) set_star_1();

press_5();

if(keyNew == 11) {bUpdateLCD = 1;
if (page == 1) { set_star_1();
press_6();

if (page == 3) { set_star_2();
press_6();

if (page == 4 || page == 9) {

}

}

}

if(page == 4) set_star_2();
if(page == 9) set_star_1();

press_6();

if(keyNew == 12) {bUpdateLCD = 1;
if (page == 1) {set_star_1();
press_7();

if (page == 3) { set_star_2();
press_7();

if (page == 4 || page == 9) {

¥

}

}

if(page == 4) set_star_2();
if(page == 9) set_star_1();

press_7();

if(keyNew == 13) {bUpdateLCD = 1;
if (page == 1) { set_star_1();
press_8();
if (page == 3) { set_star_2();
press_8();
if (page == 4 || page == 9) {

¥

¥
}

if(page == 4) set_star_2();
if(page == 9) set_star_1();

press_8();

if(keyNew == 14) {bUpdateLCD = 1;
if (page == 1) {
set_star_1();

}

103

press_9();
}
if (page == 3) { set_star_2();
press_9(); }
if (page == 4| page == 9) {
if(page == 4) set_star_2();
if(page == 9) set_star_1();

press_9();
}
}
if(keyNew == 16) {bUpdateLCD = 1,
if (page == 1) {set_star_1();
press_0(); }
if (page == 3) { set_star_2();
press_0(); }

if (page == 4 || page == 9) {
if(page == 4) set_star_2();
if(page == 9) set_star_1();
press_0();
}

}

void confirm_key2()

if(keyNew == 1) {bUpdateLCD = 1;//enter
if (page == 1) {

check_password();

if(code == 6) { page_8();
Buzer_L;
motorl_H;
motor2_L;
EN_H;
delay_ms(12);
EN_L;}

else {page_6();
SEC_L;
display_char();
SEC _H;
delay_ms(1000);
pages();}

if (page == 9) {
change = 0;
if(counter == 6){
counter = 0;
check_new_password();
if(confirm ==6) {
change_password();

104

page_5();
SEC_L,;
display_char();
SEC_H;
delay_ms(1000);
page = 1;
pages();
}
else { page_6();

SEC_L;

display_char();

SEC_H;

delay_ms(1000);

page = 4;

pages();

return;

else {
page_6();
SEC_L;
display_char();
SEC_H;
delay_ms(1000);
page = 4;
pages();
return;

}
}

if (page == 4) {if(counter == 6) {

¥
if (page == 3) {

page = 9;
pages();
change = 1;

}

page_6();
SEC_L;
display_char();
SEC_H;
delay_ms(1000);
page_4();

else {

check_password();
if(code == 6) {page = 4;
pages();

else {
page_6();
SEC_L,;
display_char();
SEC_H;
delay_ms(1000);
pages();

}
}
if (page == 2) {page = 3;
pages();
return;}
counter = 0;
}

if(keyNew == 2) { //press down
bUpdateLCD = 1;
counter = 0;
confirm_page_back();
motorl_L,;
motor2_H;
EN_H;
delay_ms(12);
EN_L;

}

if(keyNew == 5) { //press up
bUpdateLCD = 1;
Phone_H;
delay_ms(1000);
Phone_L;
}

if(keyNew == 15){ //
bUpdateLCD = 1;
counter = 0;
confirm_page_back();

}

if(keyNew == 17) { /lpress next
bUpdateLCD = 1;
counter = 0;
confirm_page_next();

}

//**************

/I Scan for key

/ dkkhkkkhkhkhkikhkhk

void scan_key()

Scan0_L;

delay_us(10);

tmp00 = input_b()| 0xCO;
Scan0_H;

Scanl_L;
delay_us(10);
tmpO01 = input_b()| 0xCO;

105

Scanl_H;

Scan2_L;
delay_us(10);
tmp02 = input_b()| 0xCO;
Scan2_H;
}

/ B R R R T S R S T S S e e S S e

/I Activate Alarm System

//****************************

void security()

if(try ==3){ page_7();
SEC_L;
display_char();
SEC_H;
Phone_H;
delay_ms(1000);
Phone_L;
Buzer_H;
try =0;

[k Hokkkkk
/I Initiation System

/ hhkkhhkhkhkhkhkhhkhkhkikhkhiikkx

void Init()

{
port_b_pullups(TRUE);
output_a(PORT_Ai);
output_b(PORT_Bi);
output_c(PORT_Ci);
set_tris_a(TRISA);
set_tris_b(TRISB);
set_tris_c(TRISC);
Init_LCD();
SEC_L;
page_0();
SEC_L;
display_char();
SEC_H;
Phone_L;
Buzer L;
EN_L;
BL_H;
delay_ms(3000);
page_1();
SEC_L;
display_char();
SEC_H;
Scan0_H;
Scanl_H;

106

107

Scan2_H;

save_digit();

page = 1;

counter = 0;

code = 0;

change = 0;

try =0;
setup_timer_1(T1_INTERNAL | T1_DIV_BY_8);
set_timer1(0xe796); //10ms
enable_interrupts(INT_RDA);
enable_interrupts(GLOBAL);
enable_interrupts(INT_TIMERLY);

}
void main()
{
Init();
mainloop:
do {
} while (1flg_10ms);
flg_10ms = 0;

if (skip_3==0){ scan_key();
identify_key();

}
if (loop == 0) keyNew_1 = keyNew;
if (loop == 1) { keyNew_2 = keyNew;

reset =1,
}
loop++;

if (reset==1) {
loop =0;
reset = 0;

}

if (skip_2==1){
skip_2=0;
if(keyNew_1 == keyNew_2) skip = 1;

}

if (skip == 1){
confirm_key();
confirm_key2();
keyNew_1 =21;
keyNew 2 = 22;
skip =0;
skip_3 =1,

}

tmriOms++;

if(tmr10ms <= 9) goto mainloop;

security();

tmrl0ms = 0;

skip = 0;

skip_3=0;

loop =0;

keyCnt = 0;

keyNew = 20;
keyNew_1=21;
keyNew 2 = 22;

if (bUpdateL.CD) {
SEC_L;
display_char();
SEC_H;
bUpdateLCD = 0;
}

check_key:
scan_key();
if (tmp00 == Oxff){
if (tmp01 == Oxff){
if(tmp02 == 0xff) { goto mainloop;}
}

}
goto check_key;

108

