The MOLA Tool

User Guide

Version 2.2

November, 2009

Table of Content

1 INtrOAUCHION. eetetiiieiiiie ittt 4
2 INStAllAtION. eeeetiiiiitiitii ettt 5
2.1 Installation of RepoSitOry BrOWSer. . .ooueieiiiiiiiiiiiiiiiiiiiiiiiiieiiiie e 5
2.2 Details for CHt VOTSION. eueeeeseiesieeitieiie ettt eeeeseeseeeseeieee e 5

3 QUICK SEAIt.. e 6
3.1 How to Create MOLA Transformation........eeeeeeseieseiniiiiiiiiiiiiiiiiiiieieiiieea, 6
3.2 How to Create a Class DIagraml.....oeeeeeeiieiiiiiiiiiiiiiiiiiiiiiiieieieie e 8
3.3 How to Create a MOLA Procedure.........cocoeeiieniiniiiiiiiiiiiiiieiiiceiiiieea 10
3.4 How to Compile MOLA Transformation......eeeeeeeeneeeneeineieiiiieiiiiiiiiiiiiiiiiinieeeenns 11
3.5 How to Execute MOLA transformation......ceeeeeeeeeiiniiniiiiiiiiiiiiiiiiiiiieeiiiiieeeens 12
3.5.1 Preparing data......ccceeeneiniiniiiiiiiiiiiiii e 12
3.5.2 Transforming data........ccceessiiiiiiiisiiiiiiiiieseeseese e, 13

4 MOLA TDE. .ottt 15
4.1 Metamodel EditOr. . .uuueuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiei et 16
4.1.1 Creating/Deleting PacKag@es.c..veeeieuiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiieiiieeiiiieeeeee 16
4.1.2 Creating/Deleting Class Diagrams......o.ueeeeeeeeeeesiiiiiiiiiiiieiieeeieeeiiiiieeeeeeee, 16
4.1.3 Creating/Deleting Class Diagram Elements........ccccceeeeeeeieiiiiiseieiiieiiiieeeeeee, 16
4.1.4 Importing Ecore MetamodelS.......eeueeniiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiiiieei 17

4.2 MOLA EditOr...cceeisiiiiiiiiiiiiiiieseieieiesee e 17
4.2.1 Creating/Deleting MOLA Packages (UNits).......coeeeveiueiiiiniiiiniiniiniiiinininennee, 17
4.2.2 Creating/Deleting MOLA Procedures........oeeeeeiieiiiiiiiiiieeiee 17
4.2.3 Editing MOLA Procedures.........ccooeeeiniiiniiiniiiiiniiiiiiiiiieiiiiiiiiiieiieciieeeee 17
4.2.4. Importing/Exporting MOLA Procedures.........coceeuuiiiniinieineiniiniiieiieineiniennne, 18

4.3 MOLA COMPIIOT. teitiiieiiiiiiieiiiiieiieiieieeiesees e, 18
4.3.1 Using MOLA to mii_rep (C++) Compiler......cooevviiiiieniiiiiiiiiiiiiiiiiiiiiiiiienee, 18
4.3.2 Using MOLA to JGralab Compiler.......ccceeeueiiiiiiiiiiiiiieiieieeieeieee e 18

4.3.3 Using MOLA t0 EMF COMPILET. . ceiiitiuiieieiiiiiiiiiiieeeeeee et eeeeteiiiieeeeieeeeeenaaeeeennaas 18

4.3.4 Part of MOLA Language Recognized by Compiler......couvveeiieiiiiiiiiiiiieaeiiiiiinennn. 18

5 MOLA TEE. . oottt e et e eeeeeee et eeeeeeeeeeeeeeeeeeeeereeeeeeees 20
5.1 Transformation RUNNET.......uuueueeeiiiiiiiiiiiiiiiiiiiiiiieeiieeeeeeeeeeeeeiieeieeeeeeieeeeeeeeeeees 20
5.2 RePOSItOrY BrOWSET . ouiiiiiiiiiiiiiiiiiiiiiiiieeennn, 20

Appendix A — Error Messages of the MOLA COmMPiler......oooiiiuieeiieeeeiiiiiiiiiieeeeeeeeeeeeeeeennn. 21

1 Introduction

This paper contains the main guidelines for the usage of MOLA Tool. It includes the
installation manual, the user manual and issues on the execution of the MOLA
transformations.

The MOLA Tool is used to create, compile, run and store MOLA transformations. The
MOLA Tool is designed as a freeware tool for supporting research in the MDA and MDSD
areas. It consists of two parts - the Transformation Development Environment (TDE) and
the Transformation Execution Environment (TEE).

The main components of TDE are:

* Graphical Editors for metamodel and MOLA procedures built using the
METAclipse tool building framework. The editors are syntax directed — they allow
creating mostly syntactic correct constructions and offering sophisticated prompters.
The integrity between metamodel and MOLA procedures are maintained
automatically.

e MOLA Compiler (a set of compilers) which checks the syntax correctness of MOLA
program and creates the executable. Compiler generates OOPL code from a MOLA
transformation, which after the compilation is capable of executing against an
appropriate model repository. Three different target repositories are available.
Compiler generates C++ code against the API of high performance custom model
repository mii_rep built by UL, IMCS. Two other compiler versions generate Java
code, one against the open source high performance graph/metamodel based
repository JGraLab built at the University of Koblenz. However, the most important
for wide usage of MOLA is the compiler version generating Java against the API of
Eclipse EMF, which is the most popular model repository kind so far. The result of
compilation is the executable file (jar or dll). The definition of corresponding
repository is also created by MOLA compiler.

Execution of MOLA transformations are performed using MOLA TEE. It consists of the
metamodel-based in-memory repository and the appropriately compiled transformation exe-
cutable. Repository must contain the respective metamodel (which also can be built by the
MOLA TDE). MOLA TEE offers several possibilities how to run transformations:

* Transformation Runner is built as an Eclipse plug-in. It allows executing MOLA
transformation on an EMF model.

* Repository Browser is built as Java application which allows browsing the content
of repository in tabular view and executing transformations. It is compatible with all
supported repositories for browsing, but only mii_rep (C++) transformations can be
run.

* Transformation can be integrated directly in your software. If your software uses one
of mii_rep, JGralab or EMF repositories, then transformations can be executed direct-
ly on models loaded in the memory. MOLA transformations are suitable for integra-
tion into a modelling tools as plug-ins, e.g. as Rational Software Architect plug-in (it
uses EMF) or Enterprise Architect plug-in (import/export facilities needed from EA
repository).

2 Installation

This chapter contains the installation guide of MOLA Tool. The MOLA Tool works on
Microsoft Windows XP and VISTA platforms. The MOLA Tool can be downloaded from the
MOLA web site http://mola.mii.lu.lv/TD/MOLA2Tool.zip . Simply unzip the archive file.
The folder MOLA2Tool vx.y contains METAclipse.exe executable file which must be
launched to start the MOLA TDE. Since MOLA TDE itself is an Eclipse plug-in, it includes
also part of MOLA TEE — Transformation runner.

2.1 Installation of Repository Browser

Repository browser allows you browsing supported repositories. You can download the
Repository Browser from http://mola.mii.lu.lv/TD/repBorwseris-0.4.0.zip . Unzip the archive.
There is a file start.bat which must be launched to start the Repository Browser. Java is
required for this tool.

2.2 Details for C++ version

Currently the Borland Turbo C++ Explorer is required to finish a compilation process of
MOLA transformation for mii_rep. If you do not plan using mii_rep, then you can omit this
step. More information about it is found in http://www.turboexplorer.com/cpp and
http://www.codegear.com/downloads/free/turbo . Note that a registration is required to obtain
the product activation key.

Download the full prerequisite install (228 MB zipped) from
ftp:/ftpd.codegear.com/download/bds/bds_2006 _trial/english/arch/disk?/preregs.zip . The
prerequisite installer will install the software necessary for your Turbo product to run,
including Microsoft .NET Framework v1.1 Redistributable, Microsoft .NET SDK vl.1,
Microsoft Visual J# v1.1 Redistributable, Microsoft Internet Explorer 6 SP1 and Microsoft
XML Core Services v4.0 SP2. If you already have any of these items installed, the installer

will skip them.
Download Turbo C++ Explorer installer (390 MB zipped) from

http://altd.codegear.com/akdlm/download/turbo/English/C+
+ Explorer/TCPP_EXPL,_EN DL.exe . Run it and follow the instructions.

http://altd.codegear.com/akdlm/download/turbo/English/C++_Explorer/TCPP_EXPL_EN_DL.exe
http://altd.codegear.com/akdlm/download/turbo/English/C++_Explorer/TCPP_EXPL_EN_DL.exe
ftp://ftpd.codegear.com/download/bds/bds_2006_trial/english/arch/disk2/prereqs.zip
http://www.codegear.com/downloads/free/turbo
http://www.turboexplorer.com/cpp
http://mola.mii.lu.lv/TD/repBorwseris-0.4.0.zip
http://mola.mii.lu.lv/TD/MOLA2Tool.zip

3 Quick Start

This chapter contains a short list of the main actions which are performed by a user of MOLA
Tool — starting MOLA project, creating MOLA transformation, creating class diagram,
creating MOLA procedure and compiling MOLA transformation. Since it is “a quick start”
this chapter does not contain detailed description of Metamodel Editor (see Chap. 4.1 for
details) and MOLA Editor (see Chap. 4.2 for details). We suppose that these editors are quite
intuitive.

3.1 How to Create MOLA Transformation

1) Launch METAclipse.exe
2) Choose a workspace folder, where MOLA projects are stored (see Fig.1).

3)

o Workspace Launcher

ﬁ

Select a workspace

METAclipse stores wour projects in a folder called a workspace,

Choose a waorkspace Folder ko use Far this session,

wiorkspace: | Cilworkspace|

[] Use this as the default and do not ask again

w Browse, .,

(0] 4] [Zancel

Figure 1 Selection of workspace

Right-click on the METAclipse Explorer, choose "New->Project..." (see Fig. 2).
& METAclipse - METAclipse

/o

Do

File Edit Mavigate Search Project Window Help

T . AN T L=
1 METaclipse Explarer 222 =8
=
==
Mew M Praject...
£ Impart... F¥ Other...
3 Expart... T
2 | Refresh F5

= Properties 53

Properties are not available,

oF outline 52 =0

An outling is not available,

0 items selected

Y | B METAdipse

Figure 2 Creation of MOLA project, step 1.

4) Choose "METAclipse->METAClIipse Project" in the tree, press "Next >" (see Fig. 3)

5}" Mew Project

Select a wizard

A

—-."\‘I.-"

Wizards;

kvpe filker bext

[= General
== METACclipse

Einish

Cancel

Figure 3 Creation of MOLA project, step 2

5) Name the MOLA project and press "Finish". (see Fig. 4)

ai." Hew Project

Mew METAclipse project

Project name: | Tutorial_Example

Idse default location

Location:

Erowse, ..

Mexk = Eirish

®

] [Cancel

Figure 4 Creation of MOLA project, step 3

6) There may be several projects in the workspace. To create another METAclipse project,
close the opened one — right-click on the project node and choose “Close Project”(see
Fig. 5) and follow this instruction (steps 3-5)

1 METAclipse - METAclipse Mi=<|
File Edit Mawigate Search Project Window Help
| W . R o i | E METAdipse
] METAclipse Explorer &3 =8 =8
=
==
+ 1= Tutorial_Fwammnla
e 4
=| Copy Chrl+C
¥ Delete Delete
Rename F&
£ Impart...
£ Expart. ..
| Refresh FS
= Close Project:
E: Cutline &3 L
&n outling is not &
METAdlipse 4
Properties Al+Enter Lrties 52 = =0
i == Tukorial_Example

Figure 5 How to close a MOLA project

3.2 How to Create a Class Diagram
1) Right-click on the metamodel node and choose “Add class diagram”. (see Fig. 6)

)" METAclipse - METAclipse M= %]

File Edit Mavigate Search Project ‘Window Help
O3~ N = i | B METadipse
1 METAdipse Explorer 22 =0 =8
-~
o &,
= = Tutorial_Example
+ 'E‘]' MetaMode’
+ 'E‘]' Malatodel Add package
add class diagran
add class
Add enumeration
Delete model
of Cut
=| Copy
2 Paste
o= outline &2 =0
An outline is not available,
E Properties 53 = =0
0+ {41 1 items selected

Figure 6 Creation of class diagram

2) Double-click on the class diagram node to open the metamodel editor (see Fig. 7). The

metamodel may contain several class diagrams. The elements of the metamodel (classes,
associations, etc. ...) may be displayed in any class diagram. Note, if you plan using
EMF, then all classes should be packaged. Every root package (included directly under
MetaModel node) will become distinct ecore file.

&) METAC lipse - ClasslHagram - METAclipse E]@
File Edit Mavigate Search Project Diagram “Window Help
W ¥ i - o [| B METAdpse
1 METAclpse Explorer 53 =0 3‘;" ClassDiagram &3 =d
= <‘;==(> = ‘h — Ptalette
elec
= 1= Tutorial_Example e "
7}, Marquee
= 'E} MetaMadel +
mappedA 1
By @ Class (© Alode pp @ BMode
G sEdge = Enumeration | |1 mappeds
© ahiods / Assaciation 1 |startNode 1|endNode 1|node node |«
© BEdge A Generalization
© Bhode = Maote
© end " Mate link, connectedStart |* 1 | connectedEnd
© start [@start | [©Ena |
/" connectedstart:Start - node:Bl
/" eEnd:End - incoming:BEdgs outgoing (* incoming |*
/" endNode: ANode - incoming: AE (3 AEdge
/" &Start:Start - outgoing:BEdge | ¥
< ¥
EE Outline 22 =08

y

)
i

i 1@ 1 items selected

] Properties 52 ¥ =04

Figure 7 Editing of class diagram

3.3 How to Create a MOLA Procedure
1) Right-click on the MOLA model node and choose “Add procedure”. (see Fig. 8)

ST METAclipse - METAclipse = 2E3

File Edit Mavigate Search Project ‘Window Help

Ay -

=4 . < i | B METAdipse
R

1 METAclipse Explorer &4 = 0O = O

=l T=* Tutorial_Example
+ 'E} Metaodel

+ 'E} Malalodel
Campile all

Compile

Add package
add procedure
Delete model
Export

Import

"I =
o= Cutline 29 of Cut

=| Copy

‘2 Paste E Properties 52 = = H

An outline is not avai

0+ {5} 1 items selected

Figure 8 Creation of MOLA procedure

2) Double-click on the MOLA procedure node to open the MOLA editor (see Fig.9). Note,

that one procedure in the transformation must be the main.

& METAclipse - MolaProcedure - METAclipse E]@
File Edit Navigate Search Project Diagram Window Help

2 - . = : [| [METAcipse
[METAlipse Explorer £ = 0| [&M MolsProcedure 5% =—
o b 7| 4 palette
= = Tutorial_Example [l st .
& {5} MetaModel £, Marquee '
=4 MolaModel [Fareach loop
B Compller messages @ Rule
& MalaPracedure 5 Class element
£ External procedures = Corment
————— Mote link
® start
) End
1, Flow line
> Parameter -

Text Statement
53 Call Statement
ihile loop

2 External cal
/" Association link

3 Yariable ;
 dter ik {connectedStart tconnectedEnd
node | node |
[eniBn : Eriode]
[| [|
mappedB mappedB
0% outline &2 =0
= Properties 53 ¥ =0
~
General Procedure:
Marme: MolsProcedure
Is main:
v

o [@ 1 items selscted

Figure 9 Editing of MOLA procedure

3.4 How to Compile MOLA Transformation

1) Right-click on the MOLA model node and choose “Compile All — Compile toEMF” (see
Fig. 10). If syntax check is successful, then ant script is launched automatically.

&M METAclipse - umiToRDBMS - METAclipse oo e |
File Edit Mavigate Search Project Diagram Run Window Help
i AL R ~H e A 7 [E METAclipse
[T METAclipse Explorer &3 = B |[&" umIToRDEMS 52 =0
= (5 e |1 Palette -~
LT Tutorial_Example - .-[3\51 Select -
2 22 uml2rdbmsF L.+ Marquee .
- F MetaModel [Foreach loop :
Ma— PR
“ E\}_B}E Compile Al > Syntax check Schemaf)
B Compile 3 Compileto C++ c
E Debug off Compile to EMF
Y
% Debug on Compile to JGraLab
% Add package Compileto TG
E Add procedure Compile tg
™
3 Delete model
= AssocToFKey()
<] Export
™ H
é Import & ;‘, -
=
a of Cut =]
— =RKe |
8% Outline &4 =
3 | Paste Molahodel
C ile thi
& ompile this:
-
—— 1
@
o* {1 items selected

Figure 10 The compilation of a MOLA transformation

2) If compilation fails, choose the compiler messages node in the METAclipse Explorer (see
Fig. 11). The list of errors is shown in the properties tab. Double-click on the list item

navigates to the appropriate MOLA procedure (if possible). The “problematic” elements
are highlighted in the MOLA editor.

a"METAcIipse - MolaProcedure - METAclipse E]@
Fle Edt Mavigate Zearch Project Diagram Window Help

9|~ ¥ - =

] METAdlipse Explorer 2 = O &8 molaProcedure 51

[| B METAdipse

o b v 4 Palette
Select
5 & Tutorial_Example iy E .
-} MetaModel £, Marquee
=&} MolaModel [Forsach loop
-+ \Compiler messages (=L
@ MolaProceduwre | B Classelemenc || ee———mein o
@] MolaProcedure B Class element TR I —
H External procedures 5 Camment o Ablocke] T
— ate link L
& Fart
&) End
4 Flow line

> Parameter

= Text Statement
52 Call Statement

while loop

2 External cal

/ Bssodiation link
o Variable

/" After link

incoming

GEd : Afdge

endlode

lendhl . Aklode|
{"cld"=name}

[strtEn: Bricde | ‘endBN. Bhiade|

mappeds mappeds

BE outline 532 =8

E Properties &2 ¥ =4

Compiler messages Compilerr messages

essoge oo | essage
Error:

A delete or normal association link is ko a create dlass element!
Errar: An unknown identifier "name" |

njd £ 1 items selected

Figure 11 Error handling in MOLA Editor

3) The result of compilation result (LO CompRes.jar, *.ecore files) is stored in
result/MolaModel. (see. Fig. 12)

& METAClipse - umIToRDBMS - METAclipse

(S S
File Edit Mavigate Search Project Diagram Run Window Help
v E ~ Q- & - L= - - - - = |81 METAclipse
= *METAclipse Explorer 2 = O |[&" *umIToRDEMS 52 =4
== [Palette -
LT Tutorial_Example E Select =
a 21 umi2rdbmsF [Bldastes .
. & MetaModel [Foreach loop :
@ Rule v
.} MolaModel PackageToSchemal)
a4 (= result 3 Class element
4 [= MolaModel s Comment E H =
|&] L0_CompResjar || Note link =
#] simplrdbms.ecore @ Start ClassTaTabls)
#] simpluml.ecore) End
1 Flow line :
= Parameter Vi
52 Call Statement T
£ While loop 2 . 2
] Properties &3 =
5% Outline &2 =B
Properties are not available.
.
=
P
(——
P
—
@
o = uml2rdbmsF/result/MolaModel
=

Figure 12 Compilation result

3.5 How to Execute MOLA transformation

This section contains a brief description, how to prepare data for transformation using means
by Eclipse EMF and run transformation using Transformation runner.

3.5.1 Preparing data

1) Open ecore file by double-clicking on it. Right-click on the class, which is instantiated,
and choose “Create dynamic instance ...” (see. Fig. 13). Choose the name of XMI file and
press OK.

&N METAclipse - re - METAclipse e 5 o
File Edit Navigste Search Project Run SampleEcoreEditor Window Help
i v QO F PHrEvooroy [[&M METAclipse
1 "METAclipse Explorer &3 = O|[&1 «um(ToRDBMS &) simpluml.ecore &3 =g
0% 7| «@0 efuml ecore
7 Tutorial Example 4 # simplum|
& umizrdbmeF » B Association -» PackagableElement
£} MetaModel > 8P - UML
23 MolaModel » B PrimitiveDataType -> Classifier
= resuk » H UMLMedelElement
K 01 sl
(= MolaModel > g Pad F—— "
ew Chil
4] L0_CompResjar > B Attribu
&) simplrdbms.ccore » [Classifi New Sibling 3
&) simpluml.ecore > B Class - o -
Redo Ctrle¥
of Cut
5 Copy
Paste
i Delete
Validate
Contral
Create Dynamic Instance...
Run As v
5 Outline 52 = 0|/ properties 2 = 4 B v=
An outline is not available Property Ermpzliin 4 -
Replace With » m
Abstract e H
Default Value Load Resource...
ESuper Types ent
Instance Class Nan Refresh
o [mms=Teestis Show Properties View .
o® Selected Object: Package -> UMLModelElement

Figure 13 Dynamic instantiation of Ecore class

2) Use EMF Model Editor to create instances (see. Fig. 14).

= | B]

&M METAclipse - umiZrdbmsF/result/MolzModel/data.xmi - METAclipse

File Edit Mavigate Search Project Run Sample Reflective Editor Window Help
(Bt v Q- F B - 57 | &1 METAdlipse
1 *METAclipse Explorer &2 = O |[&" *umIToRDEMS (I:] simpluml.ecore [@ dataxmi] =0
S5 V| 4 & platformi/resource/umli2rdbmsF/result/MolaModel/data xmi
- Pach
17 Tuterial Example + . -
& umi2rdbmsF &) platform: New Child » %¢ Elements Association
f % MetaModel - &) platform: Undo CtrleZ %% Elements Packagable Element
£ MolaModel Redo Chrle¥ ¥4 Elements Primitive Data Type
(= result 4% Elements Classifier
= MolaModel R #E Elements Class
L& dataxmi [Copy
|| LO_CompRes jar Paste
#] simplrdbms.ecore
@ simpluml.ecore # Delete
Validate
Contral...
Run As 3
Team 3
= Properties Compare With 3 = =5
5% Outline 52 = 8| Property Repkeepiin '
An outline is not available. Kind Load Resource...
Narne
Package To Refresh
Show Properties View
o® Selected Object: Package

Figure 14 EMF Model Editor

3.5.2 Transforming data
1) Select “Run — Run Configurations ...” (see Fig. 15).

£ METAclipse - test002_firstnext - METAclipse.

|F|\E Edit Navigate Search Project Diagram [Run| Window Help

- HBrO~ A 1@, RunLast Launched Ctrl+F11 | ES (81 METAclipse
=0

— %, Debug Last Launched FI1
=] METAclipse Explorer &3 =
l 4 12 TestCase_cloned Run History 4
l a £} MetaModel Run As 3
£ rDB Run Configurations... pack_el : Pa..| packagedHigmemackag; el : Element
3 oumL kel o package | (Kernel {Kemned
[&) ClassDiagrami Debug History » t |

/ column:Calumn - tableTable Debug As b

/' toUML:Element - toRDE:Element. Debug Configurations... el.isKindOf(UML:Kernel::NamedElem|(=
Column ---> Element

F Table ---» Element Ca Comment :

a £} MolaModel —- Note link @c Class v
2} Compiler messages @5t E IiKermnen C printElementtame(@pack &)] (printElementName(UML: Kernel=Namec
c:=UML:Kernel:Class(f

.

iy
@ mainProc

[@ printElementName © End

[8) testD01_create 4 Flow line

[©) test002 firstnext
[@) testD03_delete
[@) testD0d_setVars

O Parameter

== Text Statement @c:Class

[@ test005_strings 52 Call Statement {Kernel
[@) testD0B_action 1 While loop EECes
[@ testParams = External cal Kernel t: Type
3 External procedures = {Kernel)}
= result ./ Association link - m—

11 testforhest e = |
= = [Properties 52 B Console =~ =0
oZ Outline 2 (]

Procedure:
General Name: test002,_firstnext
Is main: 0o

Do not compile:]

Debug on: a

Package:)

Figure 15 Opening Run configurations dialog

2) Create new launch configuration by selecting “Lx / MOLA Transformation” and pressing
“New” button (see Fig. 16)

&1 Run =X

Create, manage. and run configurations ; I

o b I
| = 5 Configure launch settings from this dialog:

%

ty{ MNew launch configuration } - Press the 'New' button to create a configuration of the selected type.

L* Lx/ MOLA Transformation

- Press the 'Duplicate’ button to copy the selected configuration.

¥ - Press the 'Delete’ button to remove the selected configuration.

= - Press the 'Filter' button to configure filtering options.

=+,
—+

- Edit or view an existing configuration by selecting it.

Configure launch perspective settings from the Perspectives preference page.

Filter matched 1 of 1 items

Figure 16 Creating new launch configuration

3) Choose transformation jar file, metamodel ecore files and model xmi files (see Fig. 17).
Press “Run” to launch transformation. Model file should be reopened to see the result.

ri’." Run

- ey

Create, manage, and run configurations

Filter matched 2 of

CEX B3-
type filter text

I¥ L/ MOLA Transformation

I* New_cuniiaula’(inn

Name: Mew_configuration

1 Configuration .] Common}

a" Metamodel Selec... E@lg

2 12 uml2rdbmsF
4 [result
4 [= MolaModel
&) simplrdbms.ecor|
@] simpluml.ecore

Transformation Selection

S{workspace_loc:/umli2rdbmsF/result/MolaModel/L0_CompRes,jar}

Metamodel Selection

kaspace...] [Eﬂemal...] [Reglshy...]

Model Selection

S{workspace_loc:/uml2rdbmsF/result/MolaModel,

Wulkspace...] [E}ﬂemal...] [Regislry...]

S{workspace_loc/uml2rdbmsF/result/MolaModel,

Wulkspace...] [Enemal...] [Regisny...]

S{workspace loc:/uml2rdbmsF/resul

4 LU (3

Add

Remove

S{workspace loc:/umi2rdbmsF/resul

Add

Remove

J

Figure 17 Configuring transformation runner

4 MOLA TDE

MOLA Transformation Development Environment (TDE) has been built on the basis of
METAclipse tool building framework, which also has been developed by the University of
Latvia, IMCS. METAclipse is a metamodel and transformation based tool building platform,
which is specially fit for the support of complicated graphical domain specific languages, and
MOLA is such a language. From the technical point of view, METAclipse is a set of Eclipse
plugins which extend the functionality of standard Eclipse components EMF, GEF and
partially, GMF. It contains advanced presentation engines, which support graphical diagram
building, property editing and all other diagram and model related facilities. More precisely,
the engines perform all the various visualisation and user interaction related tasks in a
standard way typical to Eclipse environment, they do these jobs on the basis of a fixed
presentation metamodel. However, the main functionality of a tool based on METAclipse is
defined by transformations, which link the domain and presentation (visualisation) models in
the tool, fill up property dialogs, and process the updated property values. In METAclipse
framework these tool-specific transformations are built in MOLA.

O Foreach loop
! TestCase

name:="University"

£ name:="Person” £*

&M METAclipse - ClassDiagram1 - METAclipse I
File Edit Navigate Search Project Diagram Run Window Help
S - - E A GO B - - 5 [EM METAclipse

B METAclipse Explorer &2 55~ = Of [test0l create &% =g

1 QVTRelation - Palette

[showMessageProject 1 [Select i ([

7 splitTest || Marquee D{K:;‘:D“ ¢l Class cl2 - Class e

51 TemplateMOLATool GHECe ol {Kernef

i Kemep !

[PrimitiveTypeomi

B Outline &2

= Properties :2

0.1 opposite 0.1 |inv_opposite

Class: MetaModel-UML:Kemel::Property

[Plme i g e Sudent e Course”
i MetaModel B Cless element o isAbstracti=true ¢ sisAbstracti=false I L in potract—false §
£ RDB o Comment St PrimitiveT.5 tpi_int PrimitiveTyps b]
@ Column — Note link i {Kemnef) {Kernel H I H
@ Element? g owningPackage © g
o name b I—— [& Toeoes Jomngpaniene;
@ Table On owningPackage |___{Kemnel
o 1 Flow line i
> O Parameter
[@ ClassDiagram1 e ot P
=
/ column:Column - table:Table - atemen P
/ toUML:Element - toRDE:Element 3 Call Statement (Kernel D Keme)
 Column -—> Element E W""E'”DF‘ =---: g e
Table ---> Element i Bternal call [s
£} MolaModel # Association link ©<] _%ﬂ_ljl_qegr_‘y ._ID-
2 Compiler messages 1 Variable iname
@ mainProc / Ater link B e
@ printElementName | M0 | (Keme) ipn.q [@ptincP] | @ci2 Classytype 3 ... :
=
3 test001_create En
T ClassD 128
3] test002_firstnext ‘s Hasstiagram.
3 test003_delete M Palette
O] test004 _setVars h Select
= [} Marquee Gn
[&) test005_strings L+ Marq TypedEiement =2
@) test006_action @ Cless O 1 typed 0.1
[@ testParams := Enumeration = type
3 Extemal procedures / Association
(= result 7 Generalization 2
(& MolsModel = Note
] generatedGralabRepahiM.jar 5" Note link © Property (3 Class © PrimitiveType
0.1
4] L0_CompResjar Jawergound : Integer perty - isAbstract: Boolean
IL ;ﬂi"‘”t‘tg upperBound : Integer
L Packagexmi

*|sub

m

n

General Name: Type Multiplicity: s temporary:
1o Integer :
Style 2 upperBound Integer

Figure 18 MOLA TDE

Since TDE has been built using Eclipse components, MOLA editors are similar to other tools
built upon Eclipse. Therefore MOLA TDE uses the same workspace principle as any other
Eclipse-based tool. MOLA workspace may contain any number of MOLA transformations. In
fact, a single MOLA transformation is represented as an Eclipse project in MOLA TDE. It
consists of metamodel and a set of MOLA procedures. Several editors in MOLA TDE are

used to edit MOLA transformation:

* METACclipse Explorer (see Figure 18-1) is a tree-based editor which is used to
manage MOLA transformations. It allows creating package hierarchy of metamodel
and unit structure of MOLA transformation.

* Graphical Editors (see Figure 18-2) are graph-based editors which are used to edit
metamodel elements (classes, associations, etc.) in class diagrams and MOLA
elements (loops, rules, etc.) in MOLA procedures.

* Property Editor (see Figure 18-3) is a form-based editor which is used to manage
property values of metamodel and MOLA elements selected in other editors.

There are two graphical editors in MOLA TDE — Metamodel Editor and MOLA Editor.
They are used to edit class diagrams and MOLA diagrams (procedures) accordingly. The
Metamodel Editor is described in Section 4.1 and MOLA Editor is described in Section 4.2.

Another important part of MOLA TDE is MOLA Compiler. It compiles MOLA
transformation to C++ or Java code which can be run against mii_rep, JGralab or EMF
repositories. MOLA Compiler is described in Section 4.3.

4.1 Metamodel Editor

4.1.1 Creating/Deleting Packages

Use METAclipse Explorer to create or delete a package. The tree node MetaModel represents
a container for metamodels used by MOLA transformation. Packages can be created using
context menu item Add package of any other package or MetaModel tree node. To delete a
package use Delete package context menu item. All child elements of package are deleted
too.

Note! Tree Editor may be used also to create and delete classes and enumerations. Use
appropriate context menu items.

4.1.2 Creating/Deleting Class Diagrams

Use METAclipse Explorer to create or delete a class diagram. Class diagrams can be created
using context menu item Add class diagram of any package or MetaModel tree node. To
delete a class diagram use Delete class diagram context menu item.

Note! Deleting class diagram does not delete contained metamodel elements.

4.1.3 Creating/Deleting Class Diagram Elements

Use METAclipse Explorer to open class diagram. Double-click on class diagram node to
open the appropriate diagram.

Use appropriate palette element to create a new metamodel element (class, enumeration,
association, generalization or note). The new class or enumeration is added to package which
contains the class diagram. Class attributes and enumeration literals can be added using
appropriate context menu item or tab in the property editor.

Note! Class or enumeration can be moved to another package using Package property in the
General tab.

Use Delete from model context menu item to permanently delete a metamodel element. It is
removed from all diagrams where it appears.

Use Delete from diagram context menu item to remove a metamodel element (class,
enumeration, association or generalization) representation from class diagram. A

Note! Metamodel element (class, enumeration, association or generalization) may appear in
more than one class diagram. Use Visualize in current diagram context menu item on
appropriate tree node in the METAclipse Explorer to add this metamodel element (class,
enumeration, association or generalization) to the currently active class diagram. Use
Visualize class related context menu item for class to add also associations and
generalizations between this class and classes in the class diagram.

4.1.4 Importing Ecore Metamodels

Use ECore Metamodel Import Wizard (File | Import ... |Metamodel Import | Ecore
Metamodel Import) to import Ecore metamodel into MOLA TDE.

Note! Use METAclipse | Visualize invisible elements context menu item on project node to
visualize imported metamodel in the METAclipse Explorer tree.

4.2 MOLA Editor

4.2.1 Creating/Deleting MOLA Packages (Units)

Use METAclipse Explorer to create or delete a MOLA package. The tree node MolaModel
represents a container for MOLA procedures. MOLA packages can be created using context
menu item Add package of any other MOLA package or MolaModel tree node. To delete a
package use Delete package context menu item. All child elements of package are deleted
too.

Note! Package can be set as MOLA unit using Is unit property.

4.2.2 Creating/Deleting MOLA Procedures

Use METAclipse Explorer to create or delete a MOLA procedure. MOLA procedures can be
created using context menu item Add procedure of any package or MolaModel tree node. To
delete a MOLA procedure use Delete procedure context menu item.

Note! Use Add external procedure context menu item on the External procedures tree node to
create an external procedure. The actual implementation of external procedure should be
added to UserCodePlaceHolde.cpp or java file depending on target platform.

4.2.3 Editing MOLA Procedures

Use METAclipse Explorer to open MOLA diagram. Double-click on MOLA procedure node
to open the appropriate diagram.

Use appropriate palette element to create a new MOLA element.

Use property editor to set properties of MOLA elements.

4.2.4. Importing/Exporting MOLA Procedures

Use Export context menu item on MOLA procedure node or MOLA package node to export
procedure or package to XML file.

Note! Use this option on MolaModel node to export all MOLA transformations.

Use Import context menu item on MOLA package to import MOLA procedures into the
MOLA transformation.

Note! The metamodel fragment used by imported MOLA procedures should be a subset of
metamodel used by MOLA transformation in this project.

4.3 MOLA Compiler

MOLA compiler creates the executable file of transformation depending on the target
platform. Use Compile All | Compile to * context menu item on MolaModel tree node to
compile whole MOLA transformation.

4.3.1 Using MOLA to mii_rep (C++) Compiler

Use Compile to C++ to compile MOLA transformation against mii_rep repository. The C++
project is created in the project folder .mola\MolaModel\compres\comp result MII. Open the
L0 _CompRes wgb_mii.bpr file using Borland Turbo C++ Explorer. You can edit the
userCodePlaceHolder.cpp file (add external procedure definitions). Build the project — the
results are L0 _CompRes_wgb mii.dll file (executable) and metamodel. xml file (repository
definition).

4.3.2 Using MOLA to JGralab Compiler

Use Compile to JGralab to compile MOLA transformation against JGralab repository. The
results are generatedGralabRepoMM . jar (repository implementation classes), L0 Script.tg
(repository definition) and L0 CompRes.jar (executable). These files are stored in the project
folder result\MolaModel.

Note! If result folder does not appear in the METAclipse Explorer, then use File | Refresh
menu item.

4.3.3 Using MOLA to EMF Compiler

Use Compile to EMF to compile MOLA transformation against EMF repository. The results
are set of * ecore files (repository definition) and L0 CompRes.jar (executable). These files
are stored in the project folder result\MolaModel.

Note! If result folder does not appear in the METAclipse Explorer, then use File | Refresh
menu item.

4.3.4 Part of MOLA Language Recognized by Compiler
Currently the MOLA compiler supports:
A MOLA procedure may contain statements: start, end, rule, text statement, call statement

(also external), for-each loop (while loop is not supported). Statements may be connected
with control flows accordingly to their semantics.

A MOLA procedure may contain every kind of the referencable elements (variable,
parameter, class element)

MOLA constructions (fext statement, class element, call statement) may contain expressions.
The MOLA compiler does not support set expressions and emptiness verification operations
on attribute value. The left part of a relation in a constraint may not be the foEnum/()
function and the NULL constant. The negative integer constants are also not supported.

There are other constraints that are not listed here, but they are rarely used constructions.
Therefore, they will be implemented in the next versions of MOLA compiler.

5 MOLA TEE

5.1 Transformation Runner

Use Run | Run Configurations ... menu item to invoke Transformation Runner. Create Lx/
MOLA Transformation launch configuration. Fill required fields in the configuration form.

* Transformation Selection — executable (LO_CompRes.jar)

* Metamodel Selection — repository definition for EMF (*.ecore) or repository
implementation classes for JGralab (generatedGralabRepoMM.jar) .

* Model Selection — model definition for EMF (*.xmi) or repository definition for
JGralab (*.tg)

Press Run to launch transformation.

5.2 Repository Browser

Use repository browser to view model and execute MOLA transformations. The main
advantage of this tool is the capability to open all supported repository files.

Appendix A - Error Messages of the MOLA Compiler

1 - "The parameter has no type specification!"

The type has not been set for a parameter of an external procedure.

2 - "The parameter has no type specification!"

The type has not been set for a parameter of a MOLA procedure.

3 - "The variable has no type specification!"

The type has not been set for a variable.

4 - "The function toEnum used in a non-enumeration expression!"

The function toEnum used in a non-enumeration expression.

5 - "Too much parameters in a call of the toEnum!"

A call of the function toEnum in an expression has more than one call parameter.

6 - ""No parameters in a call of the toEnum!"

A call of the function toEnum in an expression has no call parameters.

7 - "There are multiple identical outgoing flows from the flowend!"

The graphical statement has more then one outgoing control flows of the same type. (More
than one ELSE or non-ELSE flow)

8 - "Too much parameters in a call of the function name function!"

A call of a one-argument function (tolnteger, size, toString, toUpper, toLower, toBoolean) in
an expression has more than one call parameter.

9 - "No parameters in a call of the function_name function!"

A call of a one-argument function (tolnteger, size, toString, toUpper, toLower, toBoolean) in
an expression has no call parameter.

10 - "Not enough parameters in a call of the indexOf function!"

A call of the function indexOf in an expression has less than two call parameters.

11 - "Too much parameters in a call of the indexOf function!"

A call of the function indexOf in an expression has more than two call parameters.

12 - "Not enough parameters in a call of the substring function!"

A call of the function substring in an expression has less than two call parameters.

13 - "Too much parameters in a call of the substring function!"

A call of the function substring in an expression has more than three call parameters.

14 - "Expression formation error in a call of the toString function!"

15 - "String expression in a call of the toString function!"

A string expression is supplied as a call parameter to the toString function.

16 - "Class-typed expression in a call of the toString function!"

A class-typed expression is supplied as a call parameter to the toString function.

17 - "A simple expression contains prohibited symbol
>,<>=,<=,=,<>,.,comma(,),and,or,not)!"

Keywords and, or, not or symbols >,<,<=>==<>is used in an expression (in an assignment
or a call parameter). Also a wrong usage of the comma (,) or the dot (.) in any expression may
cause this error.

18 — “A type mismatch in an expression by attribute specification “atfribute_name” !”

The attribute of a wrong type is used. Only the name of the attribute is displayed in the error
message (also when a pointer with dot is specified before it)

19 - "A type mismatch in an expression by referencable element specification
"referencable_element_name" "

A variable, parameter or class element used in an expression of an incompatible type.

20 - "An unknown identifier "identifier" "

The unknown identifier is used in non-enumeration expression.

21 — “An unknown enumeration literal “literal’” !”

The unknown identifier is used in an enumeration expression.

22 - "No left side in a relation!"

The left side of a relation (to the left from <,>,...) is missing in a constraint.

23 - "No right side in a relation!"

The right side of a relation (to the right from <,>,...) is missing in a constraint.

24 - “Bracket error in a Boolean expression!"

There are bracket mismatch (no enclosing or opening bracket or ...) in an expression.

25 - "OR has no right operand!”

An OR-expression has no right operand.

26 - "OR has no left operand!"

An OR-expression has no left operand.

27 - "AND has no right operand!"

An AND-expression has no right operand.

28 - "AND has no left operand"

An AND-expression has no left operand.

29 - "NOT has no operand!"

A NOT-expression has no operand.

30 - "An expression ends with the dot!"

There is an incorrect usage of dot (°.”) symbol in an expression — it is the last symbol in the
expression.

31 - "The keyword SELF used not in a class element!"

The keyword ‘self” is used not in class element (e.g. in text statement or call statement). Note,
‘self” keyword can be used in a class element only.

32 - "An unknown identifier "identifier" before a dot!"

An identifier before a dot (‘.”) symbol is unknown. It must be a valid pointer name.

33 -"A referencable element "referencable element name' before a dot is not class-
typed (pointer)!"

An identifier before a dot (°.”) symbol is referencable element name, but not pointer. There is
no dot operand for primitive-typed or enumeration elements.

34 -" An identifier "identifier' after a dot is not attribute specification!"

An identifier after a dot (°.”) symbol is not the attribute specification (current version of
compiler does not support set-expressions, therefore only attribute specifications are allowed)

35 - "Type mismatch by attribute specification "attribute specification" "
An attribute specification is used in expression of different type.

36 - "Incorrect syntax of the "method name" method!"

37 - "Unknown type specification "identifier'" in a isTypeOf() method!"

An argument in the *isTypeOf” method is not a valid type specification.

38 - "Type mismatch by downcast "type_specification" !"

A type specified in the downcast is not compatible with type of expression.

39 -"Unknown type specification "identifier" in a isKindOf() method!"

An argument in the ’isKindOf” method is not a valid type specification.

40 -"Missing a pointer in a downcast "identifier" "

41 - "An unknown identifier "identifier" in downcast!"

42 - "The type of the referencable element "identifier" is not a class!"

" '"

43 - "Type mismatch in a downcast by referencable element "identifier

44 - "Missing right bracket in a downcast "identifier" "

45 - "Type mismatch by function "identifier" "

46 - "Type mismatch by constant "identifier" "

47 - "Type mismatch by operator "identifier" "

48 - "Bracket error!"

49 - "Right bracket missing in isTypeOf/isKindOf method!"

50 - "There are more than one main procedure!"

51 - "No called procedure set!"

52 - "The call parameter "identifier" and the actual parameter have incompatible types!"

53 - "Not enough call parameters!"

A call statement has less call parameters than specified by the called procedure. A call
statement has wrong numbering of call parameters.

54 - "Too many call parameters!"

55 - "No loop variable in the loophead"

56 - "A delete or normal association link is to a create class element!"

57 - "A rule is empty!"

58 - "A class element has no class specified!"

59 - "An association link has no association specified!"

60 - "A loop variable is reference!"

61 - "A NOT-element must be a normal class element!"

62 - "A NOT-link must be a normal association link!"

63 - "No loophead in a foreach loop!"

64 - "Nothing selected to compile!”

65 - "An unknown identifier identifier in a constraint!"

66 — "No incoming control flow!"

67 — "The alternative(ELSE) outgoing control flow is not permitted!"

68 — "No outgoing control flow!"

69 — "The incoming control flow not permitted to loophead!"

70 — "No identifier after arrow(->) in an expression!"

71 —"An unknown identifier "identifier" after arrow(->) in an expression!"

72— "An identifier "identifier” used in the isEmpty or notEmpty method is not property
name!!"

73 — "The opening bracket missing after isSEmpty or notEmpty method!!"

74 — "The closing bracket missing after isEmpty or notEmpty method!"

75 — "There is no loophead in a while-loop!"

76 - ""Assigned element not set!"

Assignment created in a text statement, but variable has not been set. Active, empty row is
found in the grid.

77 - " Assigned property not set!"

Assignment created in a class element, but property has not been set. Active, empty row is
found in the grid.

78 - "Class element with non-class type!"

79 - "Creating instance of abstract class!"

	1 Introduction
	2 Installation
	2.1 Installation of Repository Browser
	2.2 Details for C++ version

	3 Quick Start
	3.1 How to Create MOLA Transformation
	3.2 How to Create a Class Diagram
	3.3 How to Create a MOLA Procedure
	3.4 How to Compile MOLA Transformation
	3.5 How to Execute MOLA transformation
	3.5.1 Preparing data
	3.5.2 Transforming data

	4 MOLA TDE
	4.1 Metamodel Editor
	4.1.1 Creating/Deleting Packages
	4.1.2 Creating/Deleting Class Diagrams
	4.1.3 Creating/Deleting Class Diagram Elements
	4.1.4 Importing Ecore Metamodels

	4.2 MOLA Editor
	4.2.1 Creating/Deleting MOLA Packages (Units)
	4.2.2 Creating/Deleting MOLA Procedures
	4.2.3 Editing MOLA Procedures
	4.2.4. Importing/Exporting MOLA Procedures

	4.3 MOLA Compiler
	4.3.1 Using MOLA to mii_rep (C++) Compiler
	4.3.2 Using MOLA to JGralab Compiler
	4.3.3 Using MOLA to EMF Compiler
	4.3.4 Part of MOLA Language Recognized by Compiler

	5 MOLA TEE
	5.1 Transformation Runner
	5.2 Repository Browser

	Appendix A – Error Messages of the MOLA Compiler

