

AIRCRAFT FLIGHT MANUAL

&

PILOT OPERATING HANDBOOK

CAP 10B

APPROVED AIRPLANE FLIGHT MANUAL & PILOT'S OPERATING HANDBOOK

Manufacturer APEX Aircraft 1, route de Troyes

21121 DAROIS FRANCE

Serial No.

316

Registration No.

HB-SBE

Type (CDN de type)

CAP 10B

Commercial denomination

CAP 10C

THIS DOCUMENT MUST BE CARRIED IN THE AIRPLANE AT ALL TIMES.

THIS HANDBOOK INCLUDES THE MATERIAL REQUIRED TO BE FURNISHED TO THE PILOT AND ADDITIONAL INFORMATION PROVIDED BY THE MANUFACTURER.

This airplane Flight Manual is the English translation of the French approved Airplane Flight Manual, which remains the reference in any case.

Date of approval and signature of certificating authority

27 JUIN 2002

IEAAC P. AURADE

LOG OF REVISIONS

Revision number	date	Revised pages	Description of revision
1	Feb. 2003	l 2-14	Section 2 – Limitations - Placards Placard concerning use of GPS.

Date of revision Name, title & signature 25 MAR 2003 IEEAC P. AURADE

CAP 10C

Page intentionaly left blank

Original issue: 31 january 2002 Revision: 0

Document : 1000809 GB

Page II LOG OF REVISIONS

CONTENTS

Sections

- 1 GENERAL -
- 2 LIMITATIONS
- 3 EMERGENCY PROCEDURES -
- 4 NORMAL PROCEDURES -
- 5 PERFORMANCE -
- WEIGHT AND BALANCE 6
- 7 AIRPLANE AND SYSTEMS DESCRIPTION _
- HANDLING, SERVICING AND MAINTENANCE 8 -
- 9 SUPPLEMENTS -

CAP 10C

Page intentionaly left blank

1. GENERAL

1.1	Introduction1-3
1.2	Presentation1-3
1.3	Three-view drawings1-4
1.4	Power plant1-7
1.5	Propeller1-7
1.6	Fuel1-7
1.7	Oil
1.8	Certified maximum weights1-8
1.9	Characteristic weights1-9
1.10	Cockpit Dimensions1-9
1.11	Characteristic loads1-9
1.12	Symbols, abbreviations and terminology1-9
1.13	Conversion

CAP 10C

Page intentionally left blank

Original issue: 31 January 2002 Document: 1000809 GB Revision: 0

Page 1-2 GENERAL

1 GENERAL

1.1 INTRODUCTION

This document contains information to be provided to the pilot as required by regulation JAR 23 and additional information provided by the manufacturer. It integrates the aircraft flight manual approved by the French Airworthiness Authorities (D.G.A.C.).

Unless otherwise stated, the speeds used in this flight manual are indicated air speeds.

1.2 PRESENTATION

The trade name CAP10C is the commercial denomination for the CAP10B as from serial number 300. This trade name is also associated with application of major change 000302 (SB No. 000302).

The CAP10B is certified in the "Utility" and "Aerobatics" categories in accordance with regulation AIR 2052 and its amendments dated 10 November 1969.

Major change 000302 to the CAP10C is certified in the "Utility" and "Aerobatics" categories in accordance with regulation JAR-23 and its amendments dated 11 March 1994.

The CAP10B is a two-seater training aircraft specially designed for advanced training and aerobatics instruction.

The side-by-side seat arrangement and comfort of its cockpit together with its high speed and long range make it a good travel aircraft. Its instrument panel can accommodate all the radio equipment needed for VFR navigation.

This is a low-wing single-engine aircraft with conventional landing gear. It is equipped with a 180 hp LYCOMING AEIO 360 B2F engine featuring an inverted flight tank.

1.3 THREE-VIEW DRAWINGS

1.3.1 Wings

Surface area	10.85 m²
Span	8.06 m
Wing aspect ratio	5.96
Dihedral	5°
Twist	0°
Profile	NACA 23012

1.3.2 Ailerons

Percentage of span	44 %
Mean relative width	29%
Deflection	$\pm 25^{\circ} \pm 2^{\circ}$
Unit area	0.67 m²

1.3.3 Flaps

Percentage of span	32 %
Mean relative width	25 %
Deflection	+15° / +40° ± 2°
Unit area	0.487 m²

1.3.4 Fuselage

Overall length	7 m
Internal width	1.054 m
Height	2.34 m
Unit area	0.487 m ²

1.3.5 Horizontal stabilizer

Span	2.90 m
Total surface area	1.86 m²
Horizontal stabilizer area	1.00 m²
Mobile area	0.86 m²
Aspect ratio	4.52
Deflection	± 25° ± 2°

1.3.6 Electrical elevator trim tab

Surface	.0.	057	m²
Deflection	. ±	17°	± 2°

1.3.7 Vertical stabilizer

Height	1.590 m
Total area	1.316 m²
Mobile area	0.659 m²
Deflection	± 18° ± 2°

1.3.8 Landing gear

Main		
	Track	.2.06 m
	Wheel dimension	.380 x 150
	Tyre inflation pressure	.2 bars
	Shock absorber inflation pressure	.8 bars
Auxilia	ary	
	Tyre dimension	.6 x 200

1.4 POWER PLANT

Manufacturer LYCOMING Model / type AEIO 360 B2F Power and rpm

	Power	Engine speed
nominal	180 hp	2 700 rpm
cruise	75 %	2 450 rpm
economy cruise	65 %	2 350 rpm

1.5 PROPELLER

Number	1	1
Manufacturer	HOFFMANN	EVRA
Model	HO 29 HM-180-170	CAP 3. 180-170-H5. F.
Number of blades	2	2
Diameter	180 cm (71 in)	180 cm (71 in)
Туре	Fixed pitch	Fixed pitch

1.6 FUEL

1.6.1 Grade

1.6.2 Quantities

Overall quantity	154 litres (41 US Gal)

(111 kg - 245 lb)

i	n	
	fwd tank	75 litres (20 US Gal)
		(54 kg - 119 lb)
	aft tank	79 litres (21 US Gal)

(56.9 kg - 125 lb)

AFT tank: 78 litres

1.7 OIL

1.7.1 Characteristics and grade

For longer engine life, you are advised to use:

Up to 50 hours mineral oil Subsequently detergent oil

Recommended viscosity according to air temperature:

Temperature	Viscosity
Above 15°C (59°F)	SAE 50
From - 1 to 32°C (30.2 to 89.6°F)	SAE 40
From -18 to 21°C (- 0.4 to 69.8°F)	SAE 30
Below - 12°C (10.4°F)	SAE 20

Oil capacity

	Cat. U	Cat. A
Minimum	2 qt (1.9 litres)	2 qt (1.9 litres)
Maximum	8 qt (7.6 litres)	6 qt (5.7 litres)

1.8 CERTIFIED MAXIMUM WEIGHTS

Moight	Categ	gory U	Category A		
weight	kg	lb	kg	lb	
Maximum takeoff weight	830	1 930	780	1 720	
Maximum landing weight	800	1 764	780	1 720	
Maximum load in	50	110	Forbiddon		
luggage compartment	50	110	FUIDIQUEIT		

1.9 CHARACTERISTIC WEIGHTS

Empty weight: 540 kg (1190 lb)

NOTE

These values are given for information. The empty weight specific to an aircraft is indicated in the weighting and centring report inserted in the Aircraft Individual Inspection Record (I.I.R.).

1.10COCKPIT DIMENSIONS

Width (maximum) 1.05 m (3.44 ft) Height (maximum) 0.98 m (3.21 ft)

1.11CHARACTERISTIC LOADS

Wing loading with weight of 83	0 kg (1930 lb)76.5 kg/m² (16	3.5 lb/Sq ft)
Weight – power ratio (180 hp)	4.5 kg/hp (10.	6 lb/hp)

1.12SYMBOLS, ABBREVIATIONS AND TERMINOLOGY

CAUTION: means that failure to observe the corresponding procedure may lead to immediate or significant degradation of flight safety.

REMARK: means that failure to observe the corresponding procedure may lead to a minor degradation of flight safety in the relatively longer term.

NOTE: used to draw attention to a point that has no direct consequences on safety, but that is important or out of the ordinary.

IAS	Indicated airspeed: speed read on the anemometer.						
CAS	Calibrated airspeed: indicated airspeed with instrument and						
	anemometric error corrected.						
TAS	True airspeed: calibrated airspeed with altitude, temperature and						
	compressibility taken into account.						
V_A	Manoeuvring speed: maximum speed at which you can fully deflect the						
	control surfaces.						
V_{AD}	Speed never to be exceeded for positive or negative snap manœuvres.						
V_{FE}	Maximum speed flaps extended.						
V_{NE}	Speed never to be exceeded.						
V_{NO}	Maximum speed in normal operation.						
V_{S}	Stalling speed						
V_{S0}	Stalling speed in landing configuration (flaps fully extended, maximum						
	weight).						
V_X	Best climb angle speed						
V_{Y}	Best rate of climb speed: speed allowing maximum climb speed to be						
	obtained (V _z max.).						
Vz	Vertical speed.						

International Standard atmosphere:								
- air is a perfect, dry gas								
- the sea level temperature is 15°C (59°F)								
- the sea level pressure is 1013.2 mb (29.92 inches of mercury)								
- the temperature gradient, from seal level to the altitude where T°								
is -56.5°C (-69.7 °F), is -0.00198°C/foot and 0°C above.								
Outside Ambient Temperature.								
Standard temperature: temperature of 15 °C (59°F) at sea level with a								
decrease of about 2°C/1000 feet (6.5 °C/1000 m).								
Pressure altitude: altitude measured using a barometer with the								
reference pressure equal to 1013.2 mb (29.92 inches of mercury).								
Density altitude: altitude at which a particular density is encountered in								
standard atmosphere. The density altitude takes the real temperature								
into account.								

1.13CONVERSION

Nautical miles (nm)	Х	1.852	=	kilometres (km)
Statute miles (mile)	Х	1.609	=	kilometres (km)
Feet (ft)	Х	0.305	=	metres (m)
Inches (in)	х	0.0254	=	metres (m)
Inches (in)	Х	25.4	=	millimetres (mm)
Feet/min (ft/min)	Х	0.00508	=	metres /second (m/s)
US gallons	Х	3.785	=	litres (I)
Gallons (imp)	Х	4.546	=	litres (I)
Quarts (US)	Х	0.946	=	litres (I)
Knots (kt)	Х	1.852	=	kilometres/hour (km/h)
Pounds per square inch (psi)	Х	0.0689	=	bars (bar)
Pounds per square inch (psi)	Х	68.95	=	hectopascals (hpa)
Inches of mercury (in Hg)	Х	33.86	=	millibars (mbar)
Pound (lb)	Х	0.453	=	kilogrammes (kg)
Degrees Fahrenheit (°F)- 32	Х	5/9	=	degrees Celsius (°C)
Kilometres (km)	Х	0.539	=	nautical miles (nm)
Kilometres (km)	Х	0.621	=	statute miles (mile)
Metres (m)	Х	3.281	=	feet (ft)
Metres (m)	Х	39.37	=	inches (in)
Millimetres (mm)	Х	0.03937	=	inches (in)
Metres /second (m/s)	Х	197	=	feet/min (ft/min)
Litres (I)	Х	0.264	=	US gallons
Litres (I)	Х	0.220	=	gallons (imp)
Litres (I)	Х	1.057	=	quarts (US)
Kilometres/hour (km/h)	Х	0.539	=	Knots (kt)
Bars (bar)	Х	14.51	=	pound / square inch (psi)
Hectopascals (hpa)	Х	0.0145	=	pound / square inch (psi)
Millibars (mbar)	Х	0.02953	=	inches of mercury (in Hg)
Kilogrammes (kg)	Х	2.205	=	pound (lb)
Degrees Celsius (°C)	Х	9/5 + 32	=	degrees Fahrenheit (°F)

Page intentionally left blank

2. LIMITATIONS

2.1	Presentation2-	.3
2.2	Limit speeds2-	.3
2.3	Anémometric markings2-	-5
2.4	Engine limitations2-	-5
2.5	Engine instrument markings2-	7
2.6	Miscellaneous instrument markings2-	·8
2.7	Weights2-	·8
2.8	C.G. Limits2-	.9
2.9	Flight2-	.9
2.10	Limit load Factors2-	·10
2.11	Crew2-	·10
2.12	Flight conditions2-	·10
2.13	Fuel2-	·10
2.14	Wing outer skin color requirement2-	·11
2.15	Various limitations2-	·11
2.16	Labels2-	·11

Page intentionally left blank

Original issue: 31 January 2002 Revision: 0

Document: 1000809 GB

Page **2-2** LIMITATIONS

CAP 10C

CAP 10C

2. LIMITATIONS

2.1 PRESENTATION

The limitations included in this section are approved by the French Airworthiness Authorities (D.G.A.C. - Direction Générale de l'Aviation Civile).

2.2 LIMIT SPEEDS

2.2.1 Category U

Spood		IAS		Observations	
Speed	km/h	kt	mph		
Maximum full	200	100	104	Maximum speed at which you can fully	
deflection V _A	200	100	124	deflect the control surfaces	
Maximum				Maximum speed with flaps extended	
flaps	160	86	99		
extended V _{FE}					
Never exceed	340	10/	211	Speed never to be exceeded	
V _{NE}	340	104	211		
Maximum				Speed not to be exceeded in normal	
normal	300	162	186	operation	
operation V_{NO}					

2.2.2 Category A

Speed	IAS			Observations
Speed	km/h	kt	mph	Observations
Maximum full deflection V_A	235	127	146	Maximum speed at which you can fully deflect the control surfaces
Maximum flaps extended V _{FE}	160	86	99	Maximum speed with flaps extended
Never exceed V_{NE}	340	184	211	Speed never to be exceeded
Maximum normal operation V _{NO}	300	162	186	Speed not to be exceeded in normal use
Never exceed for snap manoeuvres V _{AD}	160	86	99	Speed never to be exceeded for positive or negative snap manoeuvres

2.3 ANEMOMETRIC MARKINGS

All markings are only valid in Category A

Mark	Value or range indicated airspeed (IAS)	Meaning
White speed arc	79 to 160 km/h 43 to 86 kt 49 to 99 mph	Flaps extended range. The lower limit is the stalling speed at maximum weight in landing configuration (V_{SO}) The upper limit is the maximum speed with flaps extended (V _{FE})
Green speed arc	95 to 300 km/h 51 to 162 kt 59 to 186 mph	Normal operation range. The lower limit is the stalling speed at maximum weight (780kg) in clean configuration (V_S). The upper limit is the maximum cruising speed (V_{NO}).
Yellow speed arc	300 to 340 km/h 162 to 184 kt 186 to 211 mph	Must be flown with caution and only in smooth air. Lower limit: V_{NO} Upper limit: V_{NE}
Red limit line	340 km/h 184 kt 211 mph	Maximum speed for use V _{NE} .
Yellow limit line	235 km/h 127 kt 146 mph	V _A Maximum speed at which you can fully deflect the control surfaces.

2.4 ENGINE LIMITATIONS

Manufacturer:	LYCOMING
Model:	AEIO 360 B2F
Max. engine speed and max. continuous:	2 700 rpm

2.4.1 Oil pressure

Normal:	4.22 bar to 6.33 bar
Precaution:	1.76 bar to 4.22 bar
Maximum on start-up:	7.03 bar

2.4.2 Oil temperature

2.4.3 Oil capacity

	Cat. U	Cat. A
Minimum	2 qt (1.9 litre)	2 qt (1.9 litre)
Maximum	8 qt (7.6 litres)	6 qt (5.7 litres)

2.4.4 Cylinder temperature

2.4.5 Fuel pressure

Maximum at pump outlet:	3.16	bar
Minimum at pump outlet:	0.98	bar

2.4.6 Fuel quality

Minimum grade	/96
---------------	-----

2.4.7 Oil characteristics

Ambient temperature	Characteristic
above +15 °C (59 °F)	SAE 50
from -12 °C (10,4 °F) to +32 °C (90	SAE 40
°F)	
from -18 °C (-0,4 °F) to +21 °C (70	SAE 30
°F)	
below -12 °C (10,4 °F)	SAE 20

2.4.8 Propeller

Number	1		
Manufacturer	HOFFMANN	EVRA	
Propeller diameter	180 cm	180 cm	

2.5 ENGINE INSTRUMENT MARKINGS

	Red line	Yellow arc	Green arc	Yellow arc	Red line
Instrument	Lower	Fly with	Normal	Fly with	Upper
	limit	caution	operation	caution	limit
Engine speed (rpm)			500 to 2700		2 700
Oil temperature			60 to 118		118
°C (°F)			(140 to 244)		(244)
Cylinder temperature °C <i>(°F)</i>			66 to 204 (<i>151 to 399</i>)	204 to 260 (399 to 500)	260 (<i>500</i>)
Oil pressure (bar)		1.76 to 4.22	4.22 to 6.33		7.03

2.6 MISCELLANEOUS INSTRUMENT MARKINGS

2.6.1 Accelerometer

Green arc	Yellow arc	Red arc	
2 5 to 5	5 to 6	6 to 6.2	
- 3.5 10 5	- 3.5 to - 4.5	- 4.5 to - 6.2	

2.6.2 Voltmeter and ammeter

Instrument	Red line	Green arc	Yellow arc	Red line
	Lower limit	Normal use	Range for	l Inner limit
			caution	
Voltmeter (V)	12	12 – 13.8		13.8
Ammeter (A)	2	2 to 52	53 to 60	60

2.7 WEIGHTS

	Category U	Category A
Maximum takeoff weight	830 kg	780 kg
Maximum landing weight	800 kg	780 kg
Maximum load in luggage compartment	50 kg distributed evenly	forbidden
Pilots	2	2 with parachutes
Fuel	154 l (110.8 kg)	75 I (Fwd tank only) (54 kg)

2.8 C.G. LIMITS

Limits	Category U	Category A
Centre of gravity	20 % - 30 %	20 % - 26 %
Maximum weight	830 kg	780 kg

2.9 FLIGHT

- Cat. U: intentional spins forbidden
- Cat. A: aerobatics authorised - powered spins forbidden

CAUTION

For aerobatic flight, only the fwd tank must be used. The aft tank must be empty.

CAUTION

Flaps must be retracted for aerobatic flight.

CAUTION

Electrical flap system switched off in Category A. A/C equipped with an electrical tab: system switched off in Category A.

Document: 1000809 GB

2.10LIMIT LOAD FACTORS

At max. weight	Category U	Category A
Flaps retracted positive n	+ 4.4	+ 6
Flaps retracted negative n	- 1.8	- 4.5
Flaps extended positive n	+ 2	+ 2
Flaps extended negative n	- 1.8	- 2

2.11CREW

Minimum: 1 pilot in left seat Maximal: 1 pilot (or trainee) in left seat + 1 passenger or instructor

2.12FLIGHT CONDITIONS

Day VFR in non-icing conditions.

2.13FUEL

Total quantity:	154 litres	
	(75 litres Fwd tank	
	+ 79 litres Aft tank)	
Usable quantity	Fwd tank: 72 litres	
	Aft tank: 78 litres	
Unusable fuel	Fwd tank: 3 litres	
	Aft tank: 1 litre	
Minimum quantity for aerobatics	10 litres usable, in	
	Fwd tank	

The minimum quantity of petrol to ensure perfect engine operation on switches from positive flight to negative flight and vice versa is set at 10 litres (2.6 US Gal) (7.2 kg - 16 lb) usable quantity in the front tank.

2.14WING OUTER SKIN COLOR REQUIREMENT

In order to limit the temperature of the main spar, a white-colored area must cover the upper wing surface. This area must overlap the surface area of the spar by 50 mm on either side (see diagram below).

2.15VARIOUS LIMITATIONS

No smoking. Do not leave objects on the floor.

2.16LABELS

Flaps control

Document: 1000809 GB

Trim control

Manoeuvring speed VA

CAT U: VA = 200 km/h

Procedure to recover from unintentional spin

Unintentional spin recovery:

Full opposite rudder Pitch up

Ailerons in neutral.

As soon as you come out of spin, controls to neutral and pull-out gently

Limitations

		-06			
		-D2	0 A T 1 I		
CALA			CALU		
V _{NE}	340 km/h	(184 kt)	V_{NE}	340 km/h	(184 kt)
V _A	235 km/h	(127 kt)	VA	200 km/h	(108 kt)
Van	160 km/h	(86 kt)			
V _{so}	79 km/h	(43 kť)	V_{SO}	86 km/h	(46 kt)
		NCE			
CAT A			CAT U		
Maximum	weiaht	780 ka	Maximur	n weight	830 ka
Front balar	nce limit	20 %	Front bal	ance limit	20 %
Rear balan	ice limit	26 %	Rear hal	ance limit	30 %
		20 /0			00 /0
All aerobatic manoeuvres and idle spins are authorised.		All aerobatic manoeuvres, including spins, are forbidden except for stalls, lazy eights, zooms and turns not exceeding 60° bank angle.			
LOAD FAC	CTORS				
Flaps r	etracted	+ 6 / - 4.5	Flaps	retracted	+ 4.4 / - 1.8
OPERATIONAL LIMITATIONS					
CAP10 is certified for VFR condition only.					
Flight in known icing conditions is forbidden.					

Manoeuvres

	Single	-seater	Twin-	seater
Manoeuvres	km/h	kt	km/h	kt
Loop	220	119	230	124
Half roll	210	113	220	119
Slow roll	220	119	230	124
Dynamic manoeuvre	160	86	160	86
Inverted loop	250	135	270	146
Stall turn (Hammerhead)	200	108	200	108

Navaids

GPS limited to day VFR in view of the ground or the sea

3. EMERGENCY PROCEDURES

3.1	Presentation	3-3
3.2	Recommended speed	3-3
3.3	Check-lists	3-3
3.4	System failures	3-7
3.5	Spin	3-10
3.6	Evacuating the aircraft	3-11

Page intentionally left blank

Revision: 0

3. EMERGENCY PROCEDURES

3.1 PRESENTATION

This section is D.G.A.C. approved.

3.2 RECOMMENDED SPEED

Best glide speed: 140 km/h (76 kt)

3.3 CHECK-LISTS

3.3.1 Engine failure or loss of power on takeoff and in flight

Before takeoff

Engine speed less than 2 250 rpm or sudden drop interrupt takeoff

Loss of power after takeoff

 $RPM \ge 1.700 \text{ rpm}$ Integrate down wind leg, land immediately

RPM < 1 700 rpm $Z \le 300$ feet landing along A/C axis ± 30°

Original issue: 31 January 2002	Document: 1000809 GB	Page 3-3
Revision: 0	EMERGEN	CY PROCEDURES

300 < Z < 600 feet	quick troubleshooting,
	forced landing ahead of aircraft (120°)
Z > 600 feet	apply forced landing procedure (return to runway possible)

3.3.2 Engine shut-down during a spin

Immediately follow spin recovery procedure. After spin recovery, follow engine re-start instructions.

3.3.3 Re-starting engine at altitude

Tank selector switch	OPEN – FULLEST TANK
Master switch	CONNECTED (ON)
Magnetos	
Throttle lever	MID-TRAVEL
Mixture	FULL RICH
Dive to reach about 280 km/h	(151 kt) IAS.

	NOTE				
In all cases, loss of altitude	will be a	about 300	metres (′≈ 984 ft).	1

If the engine stalls at low altitude or if the propeller stops, accelerate the procedure using the starter.

3.3.4 Smoke and/or fire

On ground

Fuel selector switch CLOSED

Revision: 0

Original issue: 31 January 2002 Document: 1000809 GB Page **3-4** EMERGENCY PROCEDURES

Throttle lever	. PUSHED (FULL THROTTLE)
Mixture	. FULL RICH

After engine shut-down

Magnetos	OFF
Alternator	OFF
Master switch	OFF

EVACUTE AIRCRAFT WITHOUT PRECIPITATION

<u>In flight</u>

Fuel selector switch	CLOSED
Throttle lever	PUSHED (FULL THROTTLE)
Mixture	FULL RICH

After engine shut-down

Magnetos	OFF
Alternator	OFF
Master switch	OFF

MAKE A FORCED LANDING or EVACUATE AIRCRAFT

3.3.5 Landing in countryside with engine running

Choose a suitable landing area Transmit position message Harnesses	TIGHT	
Final approach	engine on, 100-105	km/h
	FULL FLAPS	
As soon as landing accomplished: Fuel selector switch	CLOSED	
Original issue: 31 January 2002 Revision: 0	Document: 1000809 GB EMERGENCY PRO	Page 3-5 CEDURES

Contacts	OFF
Master switch	OFF
Mixture	IDLE CUT-OFF
Normal landing, apply brakes with care	

3.3.6 Forced landing with engine shut-down

Speed	140 km/h
Choose a landing area	
Troubleshoot	
Try to re-start	
Transmit Mayday	
Harnesses	TIGHT
Use flaps to shorten final approach a	as appropriate
Final approach speed	120 km/h
Fuel selector switch	CLOSED
Magnetos	OFF
Alternator	OFF
Mixture	IDLE CUT-OFF
Master switch	OFF
Canopy	UNLOCKED

Normal landing, apply brakes with care

3.3.7 Ditching

Original issue: 31 January 2002	Document: 1000809 GB	Page 3-6
Revision: 0	EMERGENCY	PROCEDURES

Canopy	UNLOCKED
Touchdown	LINE OF FLIGHT
Face protection	Protect face
	(folded clothing)
Evacuation	if necessary, let cockpit fill to balance pressure so you can open the canopy
Life jackets	inflated

3.4 SYSTEM FAILURES

3.4.1 Landing without elevator control

If the elevator control breaks, you can make a landing using the elevator trim tab.

If balance is less than or equal to 21%, it is essential to land in clean configuration, without extending the flaps.

3.4.2 Landing without lateral control

If the aileron control breaks, you can control the aircraft using the rudder pedals on condition that you limit banking to a value of less than 15°. Use the left pedal to bank left and vice versa.

3.4.3 Propeller – Blade breaks

This leads to extremely strong vibrations.

Magnetos..... OFF

Original issue: 31 January 2002 Document: 1000809 GB Page **3-7** Revision: 0 EMERGENCY PROCEDURES

When IAS < 100 km/h, the propeller stops

Speed	140 km/h
Mixture	IDLE CUT-OFF
Fuel selector switch	CLOSED

MAKE FORCED LANDING or EVACUATE AIRCRAFT

3.4.4 Engine – high cylinder temperature

Climbing

Stop climb	
Engine speed	reduce
Mixture	full rich
Oil temperature	monitor
Return to airfield	

Level flight

Engine speed	REDUCE
Mixture	INCREASE RICHNESS
If t° fails to drop	land as soon as possible

3.4.5 Oil failure

Pressure zero, temperature normal or rising

Engine speed	. REDUCE to 1 700 rpm
	Avoid accelerations and engine speed changes

Troubleshoot for possible electrical failure

Return to closest airfield while monitoring parameters If engine seizes before airfield land in countryside

Pressure zero, temperature zero, light off

Fuel gauges	check
If gauges on 0	check circuit breaker

3.4.6 Fuel

Low reading on fuel flow meter

Electric pump	ON
Mixture	full rich
Engine speed	optimum to avoid vibrations
Return to closest airfield with engine out	type integration

High reading or fuel flow fluctuations

Engine speed	avoid vibrations
	(if necessary)
Return to closest airfield while	monitoring cylinder temperature

3.4.7 Mechanical pump failure

Stand-by electric pump ON

If the engine stops, apply instructions from § "Engine restart".

3.4.8 Electrical failure

Alternator failure and battery discharged

Symptoms: ammeter discharge Oil pressure dropping to 0 or unstable

Original issue: 31 January 2002	Document: 1000809 GB	Page 3-9
Revision: 0	EMERGENCY	PROCEDURES

Horizon & directional gyro warning flags

Electrical equipment off-load as much as possible Fuel immediately switch to front tank

Fly back to airfield

No further oil pressure and temperature reading. No operation: gauge, stall warning, horizon, turn and bank indicator, heading indicator, radio, VOR, Pitot heating, stand-by electric pump, electronic accelerometer.

Alternator failure

Symptoms: ammeter discharge

Electrical equipment off-load as much as possible Return to airfield while monitoring oil pressure

Battery failure

No way to detect in flight. Only starter is disabled.

3.5 SPIN

Instructions for recovery from positive or negative unintentional spin.

Rudder	full opposite rudder (opposite direction of rotation)
Elevator	nose-up sector
Lateral control	neutral

Original issue: 31 January 2002	Document: 1000809 GB	Page 3-10
Revision: 0	EMERGENO	Y PROCEDURES

CAP 10C

As soon as spin stops, set controls to neutral and pull out gently.

3.6 EVACUATING THE AIRCRAFT

Opening and releasing the canopy

Seize the red handle on the canopy Pull the handle slightly downwards Tilt the handle 90° to the left and forward Raise the canopy while pushing it upward

Evacuation

Release the seat belt Evacuation

NOTES

If the aircraft is in a spin or a turn, evacuation must where possible be in the outward direction, on the trailing edge of the wing.

Pilot and passenger are to stay "bunched up" as long as possible to avoid being caught by the aircraft when the parachute opens.

Page intentionally left blank

Revision: 0

4. NORMAL PROCEDURES

4.1	Presentation	
4.2	Speeds	4-3
4.3	Check-list of normal procedures	4-4
4.4	Spins	

Page intentionally left blank

4. NORMAL PROCEDURES

4.1 PRESENTATION

This section describes the procedures for normal operation.

NOTE

Normal procedures associated with optional systems are in section 9. Supplements.

4.2 SPEEDS

Takeoff: 110 km/h (59 kt)
Normal climb: 160 km/h (86 kt)
Best climb angle (Vx): 130 km/h (70 kt) (cat. U)
120 km/h (65 kt) (cat. A)
Optimum climb (Vy) allowing for
Best climb rate (Vz max.): 150 km/h (81 kt) 15° flap
160 km/h (86 kt) clean config.
Descent: 200 km/h (108 kt)
Approach: 150 km/h (81 kt) 15° flap
120 km/h (65 kt) Full flaps
Recommended speed
for turbulence penetration: 200 km/h (108 kt)
Maximum demonstrated crosswind: 37 km/h (20 kt)

4.3 CHECK-LIST OF NORMAL PROCEDURES

4.3.1 Pre-flight inspection

<u>Cockpit</u>

Make certain cockpit is clean.	
Master switch	OFF
Alternator switch	OFF
Magnetos	OFF
Fuel selector switch	OPEN, FWD TANK

CAUTION

For aerobatics, the rear tank must be empty and the ELT must be removed.

Flight controls	. FREE, in CORRECT DIRECTION
Engine controls	. FREE
Battery contact	. ON
Stall warning indicator	. CHECKED
Warning lights	. CHECKED
Fuel gauges	. CHECKED
Battery contact	. OFF
Seat belts and harnesses	. CHECKED
Canopy attachment	. CHECKED
Release handle	. CHECKED
Before getting down from aircraft Fuel tank	visual inspection
Fuel cap	. closed and locked

Left wing

Flap	hinges and control
Aileron	hinges and control
	Balance plates and
	deflection
Pitot	clean, not clogged
Main landing gear	shock absorber checked and tyre inflated
Underwing inspection door	locked

Fwd fuselage

Tank drain	checked
Exhaust	checked
Lower inspection door	closed and locked
Cowl left door	closed and locked
Propeller	condition and attachment
Spinner	condition and attachment
Air inlet	free
Oil level	checked
	(6 qt maximum for aerobatics)
Cowl right door	closed and locked

Right wing

Main landing gear	shock absorber checked and
	tyre inflated
Underwing inspection door	locked

Aileron	hinges and control
	Balance plates and
	deflection
Flap	hinges and control

Rear right fuselage

Static port	clean and not clogged
Antennas	VISUAL INSPECTION
Door	locked

Horizontal stabiliser

Horizontal stabiliser	ATTACHMENT
Elevator and vertical stabiliser	hinges and control
	Deflection and cable tension
Rudder tab	hinges and control
Elevator tab	hinges and control

Tail wheel

Tail wheel rubber	Good condition
Conjugation springs	Condition and operation

Aft left fuselage

Static port	. CLEAN, NOT CLOGGED
Tank drains (qty: 2)	. CHECKED
Inspection door under fuselage	. Closed and locked
Tank cap	CLOSED and LOCKED

4.3.2 Before starting-up

. ON
ADJUSTED and LOCKED
. ATTACHED
. OFF
. OFF
. OFF
OFF
. ON
. ON
LEAN
CLOSED

4.3.3 Starting up cold engine

Master switch	ON
Flaps	RETRACTED - CHECKED
Anti-collision light	ON
Throttle lever	PUSHED (FULL THROTTLE)
Mixture	FULL RICH
Tank selector switch	FWD
Electric pump	ON
Fuel flow meter	CHECKED
Electric pump	STOP
Throttle lever	1 cm
Mixture	LEAN
Magnetos	1 + 2
Starter	on request

Mixture	RICH as soon as engine is
	running
Throttle lever	set for 1 000 rpm

4.3.4 Starting up hot engine

ON
. ON
. 4 to 5 cm
LEAN
. 1 + 2
on request
RICH as soon as engine is
running
set for 1 000 rpm
-

4.3.5 Engine heating

Engine speed...... 1 000 to 2 000 rpm

NOTE Do not exceed 1 000 rpm for the first minute.

Oil pressure CHECKED (4 to 6 bars)

NOTE

If the oil pressure did not rise to above 1.8 bar within 30 seconds after startup, stop the engine and proceed with verification.

Fuel pressure	CHECKED
Cut-off test (magnetos)	DONE
Alternator switch	ON

Battery charge	CHECKED
Electrical equipment	ON
Rear tank test	5 min (if use intended)

NOTE

Takeoff is authorised when the oil temperature reaches the green zone.

4.3.6 Taxiing

Parking brake RELEASED

Brakes and conjugation test DONE

NOTE

When starting off, make certain the tail wheel conjugation is operative by checking that the aircraft responds correctly to rudder pedal movements.

4.3.7 Run-up

Brakes		APPLIED
		(use the pedals)
Temperatures and pressures	S	CHECKED
Mixture		FULL RICH
Magnetos check at 1 800 rp	m	1, then 1 + 2
		2, then 1 + 2
	NOTE	
Permitted engine drop: 125 rpm per magneto. Maximum difference between magnetos: 50 rpm.		
Idle		test
Magnetos		cut-off test
Mixture		LEAN then RICH

4.3.8 Vital actions before takeoff

Engine

Tank selector switch	FWD
Autonomy	CHECKED
Mixture	SET MAX POWER
Master switch	ON
Alternator switch	ON
Battery charge	CHECKED
Magnetos	1 + 2

Flight controls

Elevator	free in correct direction
Lateral control	free in correct direction
Rudder pedals	free in correct direction
Elevator tab	CHECKED then NEUTRAL
Flaps	FULL FLAPS then 15°

<u>Equipment</u>

Mechanical accelerometer	reset
Altimeter	SET
VHF	SET

<u>Cockpit</u>

Canopy	Closed and locked
Seat belt and harnesses	ATTACHED
Brakes	RELEASED

4.3.9 Takeoff

Throttle lever	FULL THROTTLE
Maximum engine speed	CHECKED 2 250 ± 50 rpm
Tail up	from 50 km/h (27 kt)
Takeoff speed	110 km/h (59 kt)

NOTE

Propeller torque is to the left on this aircraft.

Engine speed	check 2300 rpm ± 50rpm
Initial climb	140 km/h (76 kt)
Flaps	RETRACTED (91 m - 300 ft)
Normal climb	160 km/h (86 kt) clean config.

4.3.10 Climb speed

Best climb angle (Vx)	130 km/h (70 kt) (cat. U)
	120 km/h (65 kt) (cat. A)
Optimum climb (Vy) allowing for	
Best climb rate (Vz max.)	160 km/h (86 kt) clean config.

NOTE

To obtain the best rate of climb (Vz max.), keep full power and check the engine speed for 2 350 rpm, retract flaps, check pressures and temperatures.

4.3.11 Cruise

In cruising flight, you are advised to use the mixture control at all altitudes. Consumption is then reduced and can be diminished by about 15 %.

The maximum continuous engine speed of 2 700 rpm must in no event be exceeded.

To obtain the best mixture, slowly reduce the mixture going from the full rich position until you obtain maximum power: in the case of a fixed pitch propeller, gradually reduce the mixture until the tachometer shows start of engine speed loss.

If the aircraft is equipped with an EGT indicator, this point represents the maximum temperature. We advise enriching the mixture until the temperature is 50°F (generally 2 graduations) below the maximum observed temperature.

Where there is no EGT, we advise you to enrich the mixture by rotating the mixture knob over two complete turns.

REMARK Also see the Engine User's Manual.

4.3.12 Descent

Mixture	FULL RICH
Tank	THE FULLEST
Engine speed	1 700 to 1 800 rpm
Recommended speed	200 km/h (108 kt)
Pitot heat	according to weather conditions

4.3.13 Approach

Speed flaps 15 ° 150 km/h (81 kt) Speed flaps 40 ° 120 km/h (65 kt)

4.3.14 Interrupted landing

Go-around

NOTE

To obtain the best rate of climb (Vz max.), keep full power and check the engine speed for 2 350 rpm, retract flaps, adjust speed for best rate of climb, i.e. 160 km/h (86 kt) and check pressures and temperatures.

NOTE

In category A, these performance levels are improved in relation to reduction in weight.

4.3.15 Engine shut-down

Parking brake ON

NOTE

If brakes are used intensively during landing and taxiing up to the parking area, <u>do not apply the parking brake before the wheels have cooled down;</u> use chocks.

Electrical equipment OFF

Cut-off test (1 000 rpm)..... DONE then 1 + 2

REMARK

For a short taxiing period before shut-down, let the engine run for 1 (one) minute at 1 100 rpm.

Engine speed 1 100 rpm

MixtureLEAMagnetosOFFAlternator switchOFFAnti-collisionOFFFlapsEXT	.N .
MagnetosOFF Alternator switchOFF Anti-collisionOFF FlapsEXT	:
Alternator switch OFF Anti-collision OFF Flaps EXT	
Anti-collision OFF Flaps EXT	:
Flaps EXT	:
	ENDED
Master switch OFF	:
Tank selector switch CLC	

4.3.16 Manoeuvres

For any aerobatics manoeuvre:

- the overall weight of the aircraft must be less than 780 kg (1 720 lb);
- centre of gravity must be forward of 26 %;
- aft tank must be empty (use fwd tank).

Minimum recommended speeds when beginning trick

-	Single	-seater	Two-seater	
Manoeuvres	km/h	kt	km/h	kt
Loop	220	119	230	124
Split S	210	113	220	119
Slow roll	220	119	230	124
Snap manoeuvre	140	76	140	76
Inverted loop	250	135	270	146
Wingover	200	108	200	108

Caution

Electrical flaps system switched off in category A. A/C equipped with an electrical tab: switch system off in category A.

4.3.17 Stalls

You can perform stalls with or without engine in all permitted weight and C.G. configurations.

Generally, stalling is not preceded by warning signs. Only the indicator light comes on in a positive stall.

In negative flight, stalls must always happen in clean configuration.

4.3.18 ELT

The emergency beacon must be removed by the pilot or a mechanic before any aerobatic flight.

4.4 SPINS

Spinning on CAP10 is authorised with engine on idle in category A.

The loss of altitude is about 400 feet per rotation, i.e. 120 metres. Each spin rotation takes about 2 seconds.

4.4.1 Instructions for recovery from positive or negative spin

Positive spin

Rudder	full opposite rudder (opposite to direction of rotation)
Elevator	nose-up sector
Lateral control	roll towards spin

Negative spin

Rudder	. full opposite rudder (opposite
	to direction of rotation)
Elevator	. nose-up sector
Lateral control	. neutral

If the rudder, elevators or ailerons are not kept in the position indicated above, recovery still remains possible but will tend to take more time.

In all events you must:

BE SURE TO KEEP DIRECTION OF RUDDER FULL OPPOSITE TO DIRECTION OF ROTATION

4.4.2 Influence of centre of gravity

CAUTION

Mainly by acting on the aircraft's attitude, the centre of gravity has tremendous influence on CAP10's behaviour in spin.

Aft C.G. (24 to 26%)

Flat attitude, about 50°, indicated airspeeds of about 150 km/h, tendency to level out more to left than to right.

Fwd C.G (22 to 20%)

Dive attitude up to 70° indicated airspeed being capable of exceeding 180 km/h, tendency to dive more to right than to left.

Risk of Va being exceeded during spin and recovery. Immediately apply instructions for recovery as soon as speed reaches 180 km/h.

4.4.3 Influence of stick position

CAUTION

The stick position (roll control) has an influence on the CAP10's behaviour during spin.

Stick to counter spin

For example, in left spin, the stick to the right tends to level spin out and, as a result, reduce the indicated airspeed.

CAUTION

In the case of spin with centre of gravity aft, this manoeuvre may prove to be dangerous by exacerbating the tendency to level out and delaying the recovery time.

Stick in direction of spin

For example, in left spin, the stick to the left tends to agitate and/or deepen the spin and, as a result, increase the indicated airspeed.

CAUTION

Whatever the centre of gravity, this manoeuvre may prove to be dangerous due to the increased risk of:

- turbulent to very turbulent spin;
- increase in speed;
- transition to a flick roll.

In all cases listed above, apply the instructions for recovery (see § 4.4.1).

NOTE

In the event of engine shut-down during spin, immediately apply the instructions for recovery from spin then apply the instructions for engine restart (SECTION 3).

Summary

CAP10's behaviour in spin can be summarised as follows:

Spin stick against direction of spin

- calm
- low speed
- long recovery time

Spin stick in direction of spin

- turbulent to very turbulent
- high speed and unstable
- short recovery time

5.1 PERFORMANCE

5.1	Presentation	5-3
5.2	Anemometric calibration	5-3
5.3	Safety factors	5-5
5.4	Stall speed	5-6
5.5	Takeoff distance	5-6
5.6	Rate of climb	5-8
5.7	Level flight performance (cruise)	5-8
5.8	Landing distance	5-9
5.9	Glide characteristics	5-9
5.10	Performance in icing conditions	5-9

Page intentionally left blank

Original issue: 31 January 2002 Revision: 0 Document. 1000809 GB

CAP 10C

CAP 10C

5 PERFORMANCE

5.1 PRESENTATION

Unless otherwise indicated, the parameters given in this section are valid at sea level in standard atmosphere and with a weight of 830 kg.

5.2 ANEMOMETRIC CALIBRATION

NOTE

For aircraft equipped with an AN 5812 type (USA) pitot probe, the stalling speeds indicated in landing configuration (full flaps) are significantly lower. Thus, the new speeds vary from 60 km/h (32 kt) to 65 km/h (35 kt). Moreover, the difference between the two types of probes (USA-standard) is proportional to the deflection of the flaps. For zero degrees, we measure 85 km/h (46 kt) for probe AN 5812 as against 95 km/h (51 kt) for the standard probe. In inverted flight, these speeds are respectively 79 km/h (43 kt) as

against 114 km/h (62 kt).

5.3 SAFETY FACTORS

	Takeo	ff	Landing					
Conditions	Increase in distance to 15 m obstacle	Factor	Increase in distance from 15 m obstacle	Factor				
10% aircraft weight increase	20 %	1.2	10 %	1.1				
Increase of airfield altitude by 1000 ft	10 %	1.1	5 %	1.05				
10 °C increase in ambient temperature	10 %	1.1	5 %	1.05				
Dry grass (1) short (13 cm) length 13-25 cm	20 % 25 %	1.2 1.25	20 % 30 %	1.2 1.3				
Wet grass (1)								
short long	25 % 30 %	1.25 1.3	30 % 40 %	1.3 1.4				
2 % slope	Rising 10 %	1.1	Dropping 10 %	1.1				
Tailwind component, 10 km/h	20 %	1.2	20 %	1.2				
Wet or snow covered ground	25 % or more	1.25 or +	25 % or more	1.25 or +				
Additional safety factor (if raw data)		1.33		1.43				
(1) Increased effect for taxiing distances on takeoff-landing.								

Any change in the technique normally used in operation is likely to lead to increased distances.

Factors are accumulative and must be multiplied.

5.4 STALL SPEED

Configu	iration	Flaps	: clean	Thro	Throttle: idle				
Weight		Level-flight		Turn 30°		Turn	145°	Turn	160°
kg	lb	km/h	kt	km/h	kt	km/h	kt	km/h	kt
830	1830	99	54	106	57	118	64	140	76

Configu	figuration Flaps: 15°			Thro	Throttle: idle				
Weight		Level	el-flight Turn		Turn 30°		145°	Turn	1 60°
kg	lb	km/h	kt	km/h	kt	km/h	kt	km/h	kt
830	1830	91	49	98	53	108	58	129	70

Configu	uration	Flaps	: 40°	Throttle: idle							
Weight		Level-flight		Turn 30°		Turn 30°		Turn	145°	Turn	60°
kg	lb	km/h	kt	km/h	kt	km/h	kt	km/h	kt		
830	1830	86	46	92	50	102	55	122	66		

5.5 TAKEOFF DISTANCE

Sea level – standard atmosphere– weight of 830 kg – paved runway

Takeoff speed...... 110 km/h (59 kt)

15 m clearance speed. 115 km/h (62 kt)

Takeoff run

and 15 m	clearance.	450 m	(1 4	476 1	ft)
----------	------------	-------	------	-------	-----

5.5.1 Influences of altitude and temperature

Zp. pressure altitude T°. temperature in degrees Celsius

	Temp.		Weight: 680 kg (1 500 lb)			Weight: 730 kg (1 609 lb)				
Zp			Takeoff run		15 m		Takeoff run		15 m	
	°C	°F	m	ft	m	ft	m	ft	m	ft
0	-15	5	258	847	353	1158	272	892	352	1155
	0	32	275	902	354	1161	290	951	374	1227
	15	59	297	974	381	1250	313	1027	402	1319
	30	86	356	1168	455	1493	376	1234	480	1575
760 m 2493 ft 2500 ft	-15	5	288	945	370	1214	304	997	390	1280
	0	32	341	1119	437	1434	360	1181	461	1513
	15	59	410	1345	527	1729	432	1417	556	1824
	30	86	499	1637	646	2119	526	1726	682	2238
1520 m 4987 ft 5000 ft	-15	5	386	1266	497	1631	407	1335	524	1719
	0	32	469	1539	609	1998	495	1624	643	2110
	15	59	576	1890	755	2477	607	1992	797	2615
	30	86	713	2339	953	3127	751	2464	1005	3297

	Temp.		Weight: 780 kg (1 720 lb)			Weight: 830 kg (1 830 lb)				
Zp			Takeoff run		15 m		Takeoff run		15 m	
	°C	°F	m	ft	m	ft	m	ft	m	ft
0	-15	5	287	942	372	1221	304	997	394	1293
	0	32	306	1004	395	1296	324	1063	418	1371
	15	59	330	1083	425	1394	350	1148	450	1476
	30	86	396	1299	502	1647	420	1378	538	1765
760 m 2493 ft 2500 ft	-15	5	320	1050	413	1355	340	1116	437	1434
	0	32	380	1247	487	1598	403	1322	516	1693
	15	59	455	1493	587	1926	483	1585	622	2041
	30	86	554	1818	721	2366	588	1929	763	2503
1520 m 4987 ft 5000 ft	-15	5	429	1408	554	1818	455	1493	587	1926
	0	32	521	1709	680	2231	553	1814	720	2362
	15	59	640	2100	842	2763	679	2228	892	2927
	30	86	792	2598	1063	3488	840	2756	1125	3691

5.6 RATE OF CLIMB

Sea level – standard atmosphere– weight of 830 kg (1 830 lb)

Optimum climbing speed (Vy)..... 160 km/h (86 kt)

Full power 5.1 m/s (1 004 ft/min)

The operational ceiling is limited to 5 000 m (16 404 ft).

5.6.1 Climb time

Standard atmosphere– weight 830 kg (1 830 lb)

Altitu	Climb time		
(m)	(ft)	(min)	
0	0	0	
1 000	3 280	4	
2 000	6 560	7	
3 000	9 840	12	
4 000	13 120	22	

5.7 LEVEL FLIGHT PERFORMANCE (CRUISE)

Conditions: Weight 800 kg Standard atmosphere +10°C

Engine	Vi								
speed	Zp = :	500 ft	Zp = 5	000 ft	Zp = 10 000 ft				
(rpm)	km/h	kt	km/h	kt	km/h	kt			
2 350	232	125	205	111	197	106			
2 450	242	131	217	117	208	112			
2 700	270	146	247	133	237	128			

5.8 LANDING DISTANCE

Sea level – standard atmosphere– weight of	f 830 kg – paved runway
Touchdown speed	100 km/h (54 kt)
15 m clearance speed	120 km/h (65 kt)
Landing run and 15 m clearance	600 m (1 969 ft)
Landing run	

5.9 GLIDE CHARACTERISTICS

Vi	140 km/h (76 kt)
	(flaps retracted)
Sink rate	4 m/s (787 ft/min)
L/D ratio	about 10

5.10PERFORMANCE IN ICING CONDITIONS

Flight in known icing conditions is forbidden.

Page intentionally left blank

6. WEIGHT AND CENTRE OF GRAVITY

6.1	Presentation	6-3
6.2	Register of weight and centre of gravity	6-3
6.3	Weighing procedure	6-3
6.4	Weight and centre of gravity breakdown	6-5
6.5	List of equipment	6-12

CAP 10C

Page intentionally left blank

6. WEIGHT AND CENTRE OF GRAVITY

6.1 PRESENTATION

This section is approved by the French Airworthiness Authorities (D.G.A.C. - Direction Générale de l'Aéronautique Civile).

It contains necessary and useful information to fly the aircraft in complete safety.

6.2 REGISTER OF WEIGHT AND CENTRE OF GRAVITY

Changes (in structure or equipment) that affect the weight and centre of gravity are listed in the A/C Individual Inspection Record (I.I.R.) to allow for permanent monitoring of aircraft changes throughout its service life.

6.3 WEIGHING PROCEDURE

Longitudinal levelling: left horizontal canopy rail.

The weighing procedure is described in the A/C Individual Inspection Record.

The aircraft weighing and centre of gravity report is included in the A/C Individual Inspection Record (IIR).

6.3.1 Example of weighing and centre of gravity report

Fime:		REGISTRE	E INDIVIDUEL	DE CONTROLE		Avion : CAP1	00	Feuille :
Usine :		PROCES VEF	XBAL DE PESI			N° de serie :		Date :
			<u>iistance du C.G</u>	j. (m)	PC	oids à vide + h	uile moteur (kg)
	REF	4	A (c.a.m.) :	= 1,500		Poids lu	Tare	Poids net
			" " 0 -		Roue gauche			
<u> </u>		' 	- aux roue	s principales	Roue droite			+
σ			11 = P2 x [D / (P2 + P1) =	Roue AR			+
Niveau : rail horizor Référence : bord d' symétrie	P1	P2 du plan de d	à la référe 12 = d1 – c	ence d =		Poids à vide	e = P2 + P1	
Résultats	Poids à vide (kg)	Bras de levier (m C.G. à vio) Distance de	Moment à vide (par r	apport à la référ	ence) m.kg	Centrage e aérodynan (c	n % de la corde nique moyenne .:a.m.)
							Centrag	e =
	Pour informatio	n : essence résiduelle	e comprise dar	ns la masse à vide			d2	
	Poids (kg)	Bras de levier (m)		Moment par rapport à l	a référence (m.h	kg)	$\frac{1500}{1500}$)0 =
Avant = 3 litres	2,16	- 0,243		- 0,52	5		1,200	
Arrière = 1 litre	0,72	1,26		0,907			$\frac{\ldots}{1,500}$	100 = %
850		•	Limites de	: centrage et de chargei	nent :			
²²⁰				Catégorie	Centrage	(%)	Masse (kg	
) 9226M 860 860 860					20 - 20		780	
18 19 20	21 22 23 24 25 26 27	28 29 30 31 32						
	Centrage (%)							
Visa da contrôla :			Visa de co	ntrâle - GSAC				
			אופע תב הר					

Original issue: 31 January 2002 Document: 1000809 GB Revision: 0 WEIGHT AND 0

6.4 WEIGHT AND CENTRE OF GRAVITY BREAKDOWN

The centre of gravity reference is defined by the leading edge of the reference profile located 1.30 m from the aircraft plane of symmetry. The reference chord length is 1.50 m.

C of G limit	Categ	ory U	Categ	ory A
Front C of G	0.30 m	20 %	0.30 m	20 %
Rear C of G	0.45 m	30 %	0.39 m	26 %

6.4.1 Method

- Assess weights. Make certain that the maximum weight is not exceeded.
- Calculate the centre of gravity. Make certain that balance is within limits.
- Locate the point (total weight and centre of gravity) on the graph. The point will then be within the weight and centre of gravity envelope.
- Loading is acceptable if the point remains in the weight and centre of gravity envelope throughout the flight. To make certain that the point remains within the envelope throughout the flight, the pilot will calculate the centre of gravity at the end of the flight, taking the fuel consumed into account.

6.4.2 Loading category A

	Weight	Lever arm	Moment
	(kg)	(m)	(m.kg)
Empty weight	a1	b1	c1 = a1 x b1
Pilot	a2	0,55 to 0,65	$c2 = a2 \times b2$
Passenger	a3	0,55 to 0,65	c3 = a3 x b3
Usable fuel FWD tank	a4	- 0,243	c4 = a4 x b4
Totals weight and moment	A = Σan	B = C/A	C = Σcn
Balance in kg, m and m.kg	(B/1.5) x 100 =		%

Balance must be between 20 % and 26 % (category A).

Maximum weight: 780 kg (1 720 lb)

Empty weight (a1): use of aircraft data in its real configuration. Take residual quantities (unusable) of oil and fuel into account.

The empty weight (a1), the lever arm (b1) and the moment (c1) must be taken from the aircraft weight and centre of gravity report in the A/C Individual Inspection Record (I.I.R - R.I.C.).

Weight of fuel: use 0.72 kg/litre (6 lb/gal)

Hourly consumption in aerobatics: about 44 l/h

Moment = weight x lever arm

A: sum of a1 to a4 C: sum of c1 to c4

6.4.3 Example of maximum forward balance in category A

CAUTION

An extremely light pilot, flying alone, with the main tank full, may reach the forward balance limit.

	Weight	Lever arm	Moment
	kg	m	m.kg
Empty weight	550	0.297	163.4
Pilot	83	0.6	49.8
Passenger	0	0.6	0
Usable fuel FWD tank	40	- 0.243	- 9.72
Totals weight and moment	673	0.302	203,4
Balance (% of MAC) in kg, m and m.kg	(B/1.5) x	20.2 %	

6.4.4 Example of maximum aft balance in category A

CAP10s with battery aft have higher aft balance.

Pilot:	85 kg
Co-pilot:	75 kg
FWD tank:	40 kg (about 55 litres)
Fuel consumption p	planned during flight: 25 kg (about 35 litres)

Weight and centre of gravity assessment before flight:

	Weight	Lever arm	Moment	
	kg	m	m.kg	
Empty weight	546.5	0.346	189.09	
Pilot	85	0.6	51	
Passenger	75	0.6	45	
Usable fuel FWD tank	40	- 0.243	- 9.72	
Totals weight and moment	746.5	0.3688	275.37	
Balance (% of MAC)	$(B/1.5) \times 100 = 24.59 \%$			
in kg, m and m.kg	$(D/1.3) \times 100 - 24.39\%$			

5,	3		
	Weight	Lever arm	Moment
	kg	m	m.kg
Empty weight	546.5	0.346	189.09
Pilot	85	0.6	51
Passenger	75	0.6	45
Usable fuel FWD tank	15	- 0.243	-3.65
Totals weight and moment	721.5	0.39	281.44
Balance (% of MAC)	(D/1 5)	x 100 - 0	06 01 0/
in kg, m and m.kg	$(B/1.5) \times 100 = 26.01 \%$		

Weight and centre of gravity assessment after flight:

6.4.5 Loading in category U

	Weight	Lever arm	Moment
	(kg)	(m)	(m.kg)
Empty weight	a1	b1	c1 = a1 x b1
Pilot	a2	0.55 to 0.65	c2 = a2 x b2
Passenger	a3	0.55 to 0.65	c3 = a3 x b3
Usable fuel FWD tank	a4	- 0.243	c4 = a4 x b4
Usable fuel AFT tank	a5	1.26	c5 = a5 x b5
Luggage	a6	1.1	$c6 = a6 \times b6$
Totals weight and moment	A = Σan	B = C/A	C = Σcn
Balance (% of MAC) in kg, m and m.kg	(B/1.5	%	

Balance must be included between 20 % and 30 % (category U). Maximum weight: 830 kg (1 830 lb)

Empty weight (a1): use of aircraft data in its real configuration. Take residual quantities (unusable) of oil and fuel into account.

The empty weight (a1), the lever arm (b1) and moment (c1) must be taken from the aircraft weight and centre of gravity register.

Weight of fuel: use 0.72 kg/litre (6 lb/gal)

Standard hourly consumption:

180 hp to 2 700 rpm	14.5 Gal/h	55 l/h
135 hp to 2 450 rpm (75%)	11 Gal/h	42 l/h
117 hp to 2 350 rpm (65%)	8.5 Gal/h	32 l/h

REMARK

The maximum load in the luggage hold is 50 kg evenly distributed.

Moment = weight x lever arm A: sum of a1 to a6 C: sum of c1 to c6

6.4.6 Example of calculation in category U

Pilot:	85 kg
Co-pilot:	75 kg
Réservoir avant:	25 kg (about 35 litres)
AFT tank:	45 kg (about 63.5 litres)
Luggage:	50 kg
Fuel consumption p	lanned during flight: 60 kg (about 83 litres)

Weight and centre of gravity assessment before flight:

	Weight	Lever arm	Moment
	(kg)	(m)	(m.kg)
Empty weight	550	0.297	163.35
Pilot	85	0.6	51
Passenger	75	0.6	45
Usable fuel FWD tank	25	- 0.243	-6,08
Usable fuel AFT tank	45	1.26	56,7
Luggage	50	50 1.1 55	
Totals weight and moment	830 0.440		364.98
Balance (% of MAC) in kg, m and m.kg	(0.440/1.5) x 100 = 2		29.32 %

Weight and centre of gravity assessment after flight:

	Weight	Lever arm	Moment
	(kg)	(m)	(m.kg)
Empty weight	550	0.297	163.35
Pilot	85	0.6	51
Passenger	75	0.6	45
Usable fuel FWD tank	10	- 0.243	-2.43
Usable fuel AFT tank	0	1.26	0
Luggage	50	1.1	55
Totals weight and moment	770	0.405	311.92
Balance (% of MAC) in kg, m and m.kg	(0.405/1.5	5) x 100 = 2	27.01 %

6.5 LIST OF EQUIPMENT

The list of airborne instruments is included in the A/C Individual Inspection Record (I.I.R.).

7. AIRCRAFT AND SYSTEMS DESCRIPTION

7.1	Airframe	7-3
7.2	Flight controls	7-4
7.3	Flight instruments	7-5
7.4	Landing gear and ground handling	7-5
7.5	Habitability	7-6
7.6	Power plant	7-6
7.7	Propeller	7-9
7.8	Fuel system	7-9
7.9	Electrical equipment	7-10
7.10	Lighting and beacon lights	7-10
7.11	Heating and ventilation	7-11
7.12	Pressure sample	7-11
7.13	Stall warning system	7-11
7.14	Avionics	7-11
7.15	Instrument panel	7-13

Page intentionally left blank

Original issue: 31 January 2002 Revision: 0

7. AIRCRAFT AND SYSTEMS DESCRIPTION

7.1 AIRFRAME

7.1.1 Fuselage

The fuselage made of spruce or hemlock is a truss-type construction. It comprises two sides assembled using four main frames including the vertical stabiliser, the firewall and the fuselage-wing junction frame.

In the forward part, the truss-type structure is reinforced by an inner skin of African mahogany plywood three millimetres thick. The structure is covered with a dome of African mahogany plywood 2 millimetres thick.

7.1.2 Wings

The wings are made of a single part and are of the single spar type with two torsion boxes located on either side of the main spar. The main spar has a wood-carbon structure.

The ailerons and the flaps are secured to a secondary spar. This comprises two booms made of spruce or hemlock joined by two birch plywood webs.

The ribs are built according to a truss-type structure made of spruce or hemlock.

A birch plywood skin 1.5 millimetres thick covers the wings.

The ailerons occupy 43.8 % of the wingspan. Two pallets, on each aileron, ensure static balance.

7.1.3 Horizontal stabiliser

The horizontal stabiliser is of conventional design and comprises a stabiliser and an elevator equipped with an electrically controlled tab.

The single-spar type stabiliser features a torsion box and is secured to the fuselage at four points. It rests on a spruce or hemlock cradle allowing for its setting to be adjusted.

The spar, built of spruce or hemlock, is also conventionally designed. It includes two booms joined by two birch plywood webs to which the ribs are glued.

The skin is made of African mahogany plywood.

The elevator is designed identically and is made of a single part hinged at three points on the stabiliser. It is completely coated in plywood and has a recessed tab electrically controlled by the pilot. It is partially balanced and is aerodynamically compensated by two horn balances.

7.1.4 Vertical stabiliser

The vertical stabiliser, which belongs through its construction to the fuselage, is of the single-spar type with a torsion box.

7.2 FLIGHT CONTROLS

The **elevator control** is of the combined type with rods and cables. A central rod located in the forward part of the fuselage is connected through a bellcrank to two cables connected directly to the elevator. The elevator is equipped with an irreversible tab.

The **lateral control system** is of the rigid type. The ailerons are controlled by rods and the spar has a torque tube running through it.

The **yaw control** comprises two rudder pedals that actuate the rudder through two cables.

The rudder pedals, equipped with stirrups to retain the feet in inverted flight, are not adjustable. The rudder, designed in identical fashion to the vertical stabiliser, is aerodynamically compensated by a horn balance. It is equipped with a recessed automatic tab.

The **high lift device** comprises high lift flaps located on each half wing, on the trailing edge, close to the root section.

7.3 FLIGHT INSTRUMENTS

As required by French Civil Aviation Requirements, the CAP10 must at least be equipped with the following flight instruments for day V.F.R. and for aerobatics:

- an airspeed indicator
- a side-slip indicator(ball) for normal flight
- an altimeter
- a magnetic compass
- an (electronic) accelerometer

The following instruments can also be installed:

- a vertical speed indicator
- a side-slip indicator (ball) for inverted flight
- an artificial horizon
- a turn-and bank indicator
- a directional gyro
- a turn-and bank indicator (ball and needle)
- a stopwatch
- a second (mechanical) accelerometer

7.4 LANDING GEAR AND GROUND HANDLING

The landing gear is conventional:

- main landing gear,
- auxiliary tailwheel.

7.4.1 Main landing gear

The hydropneumatic main landing gear, with a track of 2.06 metres, has two wheels equipped with disc brakes and associated hydraulic controls. The wheels are equipped with 380x150 mm tyres inflated to 2 bars.

You can activate the parking brake using a handle on the instrument panel.

7.4.2 Auxiliary landing gear

The auxiliary landing gear is equipped with a solid tyre tailwheel measuring 6 x 200 mounted on a rubber shock absorber.

Orientation of the tailwheel is controlled by deflection of the rudder. Slaving is ensured through two springs.

For ground manoeuvres, the roller is automatically disconnected as soon as its orientation exceeds twenty degrees.

7.5 HABITABILITY

You access the cockpit through the jettisonable canopy by sliding it backwards. Two handles on the forward central part, one on the inside and the other on the outside, mean you can open it and close/lock it. A single red handle on the inside can be used to jettison the canopy in a single movement.

The cockpit has two seats side by side between which there is the electric elevator trim control and its indicator.

Each seat is equipped with a longitudinal adjustment.

7.6 POWER PLANT

7.6.1 Description

The CAP10B is equipped with an American LYCOMING AEIO 360 B2F engine.

Characteristics: 4 flat cylinders, with direct drive and air cooling.

This injection engine develops a nominal power of 180 hp at 2 700 rpm for a fuel consumption of 14.5 GPH (55 l/h).

It develops:

- 135 hp at 2 450 rpm (75%), consumption: 11 GPH (42 l/h)
- 117 hp at 2 350 rpm (65%), consumption: 8.5 GPH (32 l/h)

It is secured to a welded steel tubular craddle and drives a fixed pitch propeller.

The engine cowl is made of glass fibre laminate and self-extinguishing resin. Two side doors allow for customary inspections. Disassembly of the cowl is quick and easy.

7.6.2 Engine controls

Engine management involves throttle, mixture, start button and magneto selector switch.

The **throttle control** comprises two slide levers located:

- against the wall for the left seat,
- on the central part of the instrument panel for the right seat.

A knurled wheel located on the lower axis of the left seat throttle lever means you can adjust the unit's stiffness.

The **mixture control lever** (red) located at the left end of the instrument panel allows fine adjustment of the mixture ratio. Setting is implemented using a micrometric screw. Press the central part of the knob to disconnect this screw.

The far rear position of this control corresponds to the leanest mix ("choke").

The **start button** is a pushbutton activating the electric starter.

This pushbutton, which is located on the lower central part of the instrument panel, is not accessible when the tank selector switch is in the "closed" position.

The **magneto selector switch**, controlled by a removable key, is placed above the starter pushbutton. It has four positions:

- 0 off
- 1 magneto 1
- 2 magneto 2
- 1+2 magnetos 1 and 2

CAUTION

You can only withdraw the key when it is in the 0 position.

7.6.3 Engine instrumentation

The CAP10B must be equipped with the following instruments at least:

- tachometer (rev counter)
- fuel flow indicator
- manifold pressure indicator
- oil pressure indicator
- oil temperature indicator
- fuel gauges

It can be equipped optionally with:

- a cylinder temperature indicator
- an exhaust gas temperature indicator
- an ammeter
- a voltmeter

7.6.4 Lubrication system

The lubrication system allows for normal lubrication of the engine in inverted flight with minimum loss of oil, including during advanced aerobatic manoeuvres with significant and frequent negative load factors. The quantity of lubricant is 8 qt (7.6 l).

Note

For longer engine service life, you are advised to use mineral oil for the first 50 hours flight then dispersant oil.

7.6.5 Ignition

The engine is equipped with an ignition system for which high voltage is sent directly to the sparking plugs.

7.6.6 Cooling

The engine is designed to be air cooled. Deflectors ensure overpressure on one side of the cylinders. Overpressure forces the air through the cooling fins.

7.6.7 Exhaust

The CAP10B is equipped with a open exhaust.

7.7 PROPELLER

Two fixed pitch propellers are certified to be installed on the aircraft:

- Hoffmann HO 29 HM-180-170
- Evra 3.180-170-H5.F

7.8 FUEL SYSTEM

The CAP10B is equipped with two tanks located in the fuselage.

The main tank is placed forward, behind the firewall. This tank is equipped with a valve device allowing for fuel supply in inverted flight.

The auxiliary tank is placed in the fuselage to the aft of the cockpit, under the luggage hold.

Overall capacity is 154 litres (41 US Gal), representing 111 kg (245 lb) fuel weight.

The FWD tank capacity is 75 litres (20 US Gal), while that for the AFT tank is 79 litres (21 US Gal).

The FWD tank filling hole is located in front of the windshield, along the aircraft axis. The AFT tank filling hole is located behind the canopy, on the left side.

The stand-by electric pump comes into operation by flicking a switch located on the lower panel of the instrument panel.

CAUTION

The AFT tank must be empty for any Aerobatic manoeuvres.

7.9 ELECTRICAL EQUIPMENT

Electrical generation is obtained from an alternator that supplies a 12-volt battery through a voltage regulator.

The installation is of the single-wire type with return by the ground (earth).

The battery allows for autonomous start-up of the aircraft.

If necessary, you can check operation of the electrical circuit through an ammeter located on the instrument panel.

7.10 LIGHTING AND BEACON LIGHTS

The CAP10B can be equipped with the following lights:

- Anti-collision (Rotating)
- Landing light
- Navigation lights

7.11 HEATING AND VENTILATION

Heating in the cockpit is obtained by letting in air heated by the exhaust manifold.

A pull knob placed on the lower left part of the instrument panel controls the flow of hot air let into the cockpit.

Two ventilation holes, placed on either side of the windshield or the canopy let in outside air.

7.12 PRESSURE SAMPLE

7.12.1 Static

Static pressure is sampled through two pressure ports placed on either side of the fuselage.

7.12.2 Dynamic (total)

Dynamic pressure is sampled through a Pitot type head located on the left underwing.

You can heat up the Pitot tube using an electrical resistor.

7.13 STALL WARNING SYSTEM

A red light on the upper left panel of the instrument panel warns of onset of stall.

7.14 AVIONICS

The originally fitted radionavigation equipment includes as a minimum:

- a VHF transceiver

The aircraft can also be equipped with the following instruments:

- transponder
- alticoder
- intercom

- GPS
- VOR / ILS

An ELT is offered as an option.

Note

The equipment configuration for each CAP10 forms part of its Individual Inspection Record (I.I.R.).

The instruments specific to an aircraft are described in section 9 "Supplements".

7.15INSTRUMENT PANEL

This section is customised according to the aircraft.

7.15.1 Upper panel

CAP 10C Serial nr 316

1	Stall warning light	17	Stopwatch
2	Manifold pressure / fuel flow	18	VOR / ILS indicator
3	Tachometer RPM	19	not used
4	Turn and bank indicator	20	Mike / headset jacks
5	Airspeed indicator	21	Master / alternator switches
6	Directional gyro	22	Alternator breaker
7	Gyro horizon	23	Parking brakes
8	Altimeter	24	Cabin heat
9	Vertical speed indicator	25	Switches
10	Annunciator lights	26	Trim flaps switch

11	G-meter	27	Flap control
12	G-meter indicator	28	Throttle
13	Side slip indicator (inverted flight)	29	Panel light / warning light
			dimmer
14	Audio panel, COM1 NAV GPS VHF2, XPDR	30	Circuit breakers
15	Fuel gauges, voltmeter, ammeter	31	Avionics master switch
16	Oil temperature, oil pressure, EGT, CHT	32	Instrument post lights

7.15.2 Tanks selector switch

The tank selector switch is located on the central lower part of the instrument panel. It has three positions:

- Closed
- FWD tank
- AFT tank

In the position where no tank is selected, the tank selector pallet prevents access to the start pushbutton.

8. HANDLING, SERVICING AND MAINTENANCE

Page intentionally left blank

CAP 10C

1.1 INTRODUCTION

Writing in progress

9. SUPPLEMENTS

1.1	Introduction	3	3
-----	--------------	---	---

CAP 10C

Page intentionally left blank

CAP 10C

1.1 INTRODUCTION

Writing in progress