RTI Connext DDS

Core Libraries
What's New in
Version 5.2.0

rt)

© 2015 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
June 2015.

Trademarks

Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, DataBus, Connext, Micro DDS, the
RTI logo, 1RTI and the phrase, “Y our Systems. Working as one,” are registered trademarks, trademarks
or service marks of Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license agree-
ment.

Technical Support

Real-Time Innovations, Inc.
232 E. Java Drive

Sunnyvale, CA 94089

Phone: (408) 990-7444

Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/

Chapter 1 What’s New in 5.2.0
L1 New Platforms L

1.3 Unified Directory StruCtUIe e
1.4 Backup Process

1.4.1 Special Backup of RTI Libraries
1.5 Changes to Installation Process ...
1.6 Modern CH APl il
1.7 Changes to Connext DDS Java Packaging on Windows Platforms
1.8 Support for Custom Content Filters in NET APl
1.9 Improved Liveliness QoS Policy Behavior ..
1.10 Support for Unbounded Built-in Types in C, C++, and NET APIs
1.11 Support for External Hardware Load Balancers in TCP Transport Plugin
1.12 Connection Liveliness Feature in TCP Transport Plugin
1.13 Full Support for Windows I/O Completion Ports with TLS
1.14 Added TCP USER TIMEOUT Support to Linux Architectures i
1.15 TCP Transport’s keep_alive time Property Now Supported on Mac Platforms_.
1.16 Improved TCP Transport Plugin Robustness Against Unexpected Control Messages

1.17 Logging Level for TCP Transport Windows IOCP Connection-Reset Errors Changed from Exception to
AN g

1.18 Improved Logging of Precondition Errors from TCP Transport Plugin in Debug Mode____.
1.19 Partial Support for DurabilityServiceQosPolicy’s service cleanup delay
1.20 Option to Release Resources Associated with Disposed Instance
1.21 Support for Application-Level Acknowledgment with Response Data
1.22 New DataWriter Status to Receive Notification when Sample is Application-Level Acknowledged
1.23 Ability to See if Sample has been Application-Acknowledged

1.24 Ability to Prevent Invocation of on_application acknowledgment() when Response Data Empty or
Invalid .

1.25 Performance Optimizations in Application-Level Acknowledgment Protocol
1.26 Ability to Provide Threads to Connext DDS in C/CH++ ...

1.27 New TypeSupport Operations in Built-in Types to Serialize Sample into Buffer and Deserialize Sample
oM BUI T |

1.28 New DynamicData Operations to Serialize Sample into Buffer and Deserialize Sample from Buffer—
C/CH APIS Only .

1.29 Out-of-Order Type Definitions in XML Configuration File are Now Allowed
1.30 Ability to Add Metadata Flags to Samples
1.31 Ability to Enable Manual Endpoint Discovery for Individual Participants_..

1.32 Ability to Configure Memory Allocation for Instance Keys in DataWriter and DataReader Queues .._.... 15
1.33 Ability to Configure Replacement Policy for Remote Participants Ignored by DomainParticipant ...__.... 16
1.34 Ability to Retrieve PropertyQosPolicy Values for Remote Entities Outside of Built-In Topic Callbacks .. 17

1.35 Exception Messages now include Underlying Errors—JAVA, Net, C++ APIsOnly_. 17
1.36 Host ID Automatically Generated when no IP Addresses Available 17
1.37 New API to Get Serialized Size for a Given TypeObject i, 17
1.38 New Field in DataReaderResourceLimitsQosPolicy: keep_minimum_state for instances_. 18
1.39 New Field in DataReaderProtocolQosPolicy: propagate_unregister of disposed_instances 18
1.40 New Method get_participants() for DomainParticipantFactory in C/C++ 18
1.41 New QoS Policy to Mark DataReaders and DataWriters as Part of Infrastructure Service ._....._....._..... 18
1.42 Support for source guid and related _source guid 19
1.42.1 New Fields in DDS_WriteParams_t and SampleInfo 19
1.42.2 related reader guid, and related _subscription_guid 19
1.42.3 source guid and related source guid 20
1.43 Transport Priority Configurable for Built-in and User-Created DataReaders 20
1.44 Improved Content Filter Evaluation Performance for Types Containing Sequences and Unions 20
1.45 Improved Memory Usage of Content Filters of Types Containing Strings In Some Cases _...._............. 21
1.46 Improved Performance for Key-Only QueryCondition set_query parameters() 21
1.47 Reader-Side Performance Improvements when Removing Association with Remote Writer . __....__....___. 21
1.48 Monitoring Libraries and Distributed Logger now Part of Connext DDS Bundle 22
1.49 Priority Inheritance used when Creating Semaphores on VxWorks Platforms 22
1.50 New Default Value for DiscoveryConfig Built-in Writer autopurge unregistered instances_delay 22
1.51 New Default Value for DDS DynamicProperty t's buffer max_size 22
1.52 New Defaults for DataReaderResourceLimits' dynamically allocate fragmented samples and max frag-
MENtS PET SAMPLE 22
1.53 Ability to Extend Internal CdrlnputStream and CdrOutputStream Classes by Inheritance in Java _....__... 23
1.54 Waming Logged when Setting Non-NULL Listener with STATUS MASK NONE 23
1.55 Java Libraries Tested with Java 1.8 .. . e 23
1.56 Deprecated Platforms .. 23
1.57 Sparse Value Types Deprecated 24

1.58 Separate Documentation for Code Generator ... 24

Chapter 1 What’s New in 5.2.0

This document highlights new features and improvements.

For details on fixed bugs, please see the R7I Connext DDS Core Libraries Release Notes.

1.1 New Platforms

This release adds support for the following target platforms:

Table 1.1 New Platforms

Operating System

CpPU

Compiler or SDK

RTI Architecture
Abbreviation

AIX 7.1

POWER class (32-

IBM xIC r for AIX v12.1

p7AIX7.1xIc12.1

bit mode)
gec 4.8
Android 2.3 - 4.4 ARMv7a Java Platform, Standard Edition armv7aAndroid2.3gcc4.8
JDK 1.7 or 1.8
. p4080Inty11.devtree-fsl-
Multi 6.1 €500mec.comp2012.1
P4080
INTEGRITY 11.0.4 . p4080Inty11.devtree-fsl-
Multi 6.1.4 ¢500me.comp2013.5.4
x86 Multi 6.1.4 pentiumlInty11.pcx86-smp
Mac OS X 10.10 x64 clang 6.0 x64Darwinclang6.0
x86 gec4.4.5 i86Linux2.6gcc4.4.5
Red Hat Enterprise Linux 6.5
x64 gec4.4.5 x64Linux2.6gcc4.4.5

1.2 Removed Platforms

Table 1.1 New Platforms

RTTI Architecture
Operating System CPU Compiler or SDK . L.
P g5y P Abbreviation
x86 gec4.8.2 i86Linux3gcc4.8.2
Red Hat Enterprise Linux 7.0
x64 gec 4.8.2 x64Linux3gcc4.8.2
SUSE Linux Enterprise Server I, o) gec4.3.4 X64Linux2.6gccd. 3.4

SP3 (2.6 kernel)

For Kernel Modules:
ppce5S00v2Vx6.9.4gcc4.3.3

VxWorks 6.9.4 PPC (e500v2) gec4.3.3
For Real-Time Processes:
ppce500v2Vx6.9.4gcc4.3.3 rtp
For Kernel Modules:
pentiumVx7.0gcc4.3.3
VxWorks 7.0 Pentium (32 bit) gcc4.3.3
For Real Time Processes:
pentiumVx7.0gcc4.3.3 rtp
x86 gec4.8.2 i86Linux3gcc4.8.2
Ubuntu 14
x64 gec4.8.2 x64Linux3gcc4.8.2
x86 Visual Studio 2013 i86Win32VS2013
Windows 8, 8,1
x64 Visual Studio 2013 x64Win64VS2013
x86 Visual Studio 2013 i86Win32VS2013
Windows Server 2012 R2
x64 Visual Studio 2013 x64Win64VS2013

Please see the updated RTI Connext DDS Core Libraries Platform Notes for details on using these plat-
forms.

1.2 Removed Platforms

These platforms are no longer supported:

o Fedora

INTEGRITY 10.0.2 for p4080

SELinux

o VxWorks MILS

Windows platforms using Visual Studio 2005

1.3 Unified Directory Structure

1.3 Unified Directory Structure

This release unifies the directory structure across all Connext DDS tools and libraries. Some files have
changed locations and may require you to update your build infrastructure to find scripts in the new loc-
ation.

« bin - Scripts to run tools, services, and utilities. These scripts set up the environment correctly for
RTTI’s applications.

o doc - Documentation for all installed products, including manuals and APIs
« include - Header files for all installed products
e lib - All Connext DDS libraries in the RTI SDK

« java Location of jar files in the classpath of Java applications

o <architecture> SDK libraries to link into your application.

o Java libraries (libnddsjava.so/nddsjava.dll): We now ship one Java shared library for
every supported compiler, instead of shipping a single version in a separate jdk folder.

o .NET libraries: There is no longer a separate architecture folder for NET architectures.
VS2008 has .NET 2.0 libraries, VS2010 has .NET 4.0 libraries, VS2012 has .NET 4.5
libraries, and VS2013 has .NET 4.5.1 libraries

« resource - Location of XML files, IDL files, example templates, additional installers
1.4 Backup Process

When installing new RTI packages that may overwrite the contents of previous packages—for example,
when installing a patch—the RTI Package Installer will create a zip file that contains a backup of all the
files that are overwritten.

To avoid using unnecessary disk space, the installer will delete the previous backup file after the latest
backup zip file is created. This means that there will only be one backup at a time.

To revert changes made by patching, you can unzip this file and copy files back to their original location.
Note that this manual step will not be reflected in RTI Launcher, which will still show the last installation
version.

1.4.1 Special Backup of RTI Libraries

When installing a new RTI package that overwrites the libraries in the <NDDSHOME>/lib/<ar-
chitecture> directory, a backup will be created of all the previous libraries in the
<NDDSHOME>/lib/<architecture> directory. That backup will be created in <NDDSHOME>/lib/<ar-
chitecture>/<current_installed_version>.

1.5 Changes to Installation Process

For example, if you install a patch version 5.2.0.1 to the RTI core libraries for i86Win32VS2010, your
5.2.0 libraries will be copied into the following directory before the 5.2.0.1 libraries are installed:
<NDDSHOME>/lib/i86Win32VS2010/5.2.0.

If you install another patch later, before overwriting the 5.2.0.1 libraries, they will be copied into
<NDDSHOME>/lib/i86Win32VS2010/5.2.0.1.

1.5 Changes to Installation Process

This release is packaged in a different structure than previous releases. There are still host and target
bundles. However, now the host bundle is a .run file and targets are .rtipkg files.

To install these bundles, you will run the host bundle (such as rti_connext dds-5.2.0-core-host-
x64Linux.run). The installer will walk you through installing the host bundle. Then you will install your
target(s). To do so, you can use the new RTI Package Installer utility that's available in RTI Launcher.
This utility allows you to select one or more packages to install. Or you can install from the command line
by using the rtipkginstall script in <install directory>/bin. For example, to install a target bundle from a
command line:

bin/rtipkginstall <target-bundle.rtipkg>

The Getting Started Guide has more details on installing.

1.6 Modern C++ API

This release includes a brand new C++ programming API: the RTI Connext DDS Modern C++ API. This
API is based on the ISO/IEC C++ 2003 Language DDS PSM (DDS-PSM-Cxx) specification and con-
tains the RTI extension features available in other languages. The “traditional” C++ API is still available.

The modern C++ API provides substantially different programming paradigms and patterns. The tra-
ditional API could be considered as simply "C with classes," while the modern API incorporates modern
C++ techniques, most notably:

Generic programming

Integration with the standard library

Automatic object lifecycle management, providing full value types and reference types

C++11 support (for some platforms), such as move operations, initializer lists, and support for range
for-loops.

RTI Code Generator includes two new language options that generate code for the new API: -language
C++03 and -language C++11. Using C++11 will generate a different example and include the flags to
activate C++11 in your compiler, if needed. To use the traditional API, continue using -language C++.

1.6 Modern C++ API

When you run <RTI Connext DDS installation directory>/bin/rtiddsgen -language C++11 -example
<your architecture> Foo.idl, you will get this example code:

Foo_publisher.cxx (example publisher):

void publisher main(int domain_id, int sample count)

{
// Create a DomainParticipant with default QoS
dds::domain::DomainParticipant partipant (domain_ id) ;

// Create a Topic -- and automatically register the type
dds::topic::Topic<Foo> topic (participant, "Example Foo");

// Create a DataWriter with default QoS (Publisher created inline)
dds: :pub::DataWriter<Foo>
writer (dds: :pub::Publisher (participant), topic);

Foo sample;

for (int count = 0; count < sample count || sample count == 0;
count++; {
// Modify the data to be written here

std::cout << "Writing Foo, count " << count << std::endl;
writer.write (sample) ;
rti::util::sleep(dds::core::Duration(4))

Foo_subscriber.cxx (example subscriber):

//

void subscriber main (int domain id, int sample count)

{
// Create a DomainParticipant with default QoS
dds::domain::DomainParticipant participant (domain id);

// Create a Topic == and automatically register the type
dds::topic::Topic<Foo> topic(participant, "Example Foo") ;

// Create a DataReader with default QoS (Subscriber created inline)
dds: :sub::DataReader<Foo>
reader (dds: :sub::Subscriber (participant), topic):;

// Create a ReadCondition for any data on this reader
// and associate it with a handler

int count = 0;

dds::sub::cond: :ReadCondition read condition (

1.6 Modern C++ API

reader,
dds:sub::status::DataState::any (),

[&reader, &count] ()

// Take all samples

dds::sub::LoanedSamples<Foo> samples = reader.take();
for (auto sample : samples) {
if (sample.info () .valid()) {
count++;

std: :cout << sample.data() << std::endl;

}

} // The LoanedSamples destructor returns the loan
) ;

// Create a WaitSet and attach the ReadCondition
dds::core::cond::WaitSet waitset;
waitset += read condition;

while (count < sample count || sample count == 0) {
// Dispatch will call handlers associated with waitset

// conditions when they activate

std::cout <<
"Foo subscriber sleeping for 4 sec..." << std::endl;

// wait up to 4s each time
waitset.dispatch(dds::core::Duration(4));

For more information about the Modern C++ API, see the API Reference HTML documentation:

RTI Connext Modern C++ API

RTI Connext
¥ Maodules
Documentation Roadmap
Mamespaces and headers
B RETlI Connext DDS AFI Reference

(: P Programming How-Tao's }

P Programming Tools

F Mamespaces
b Classes

P Examples

1.7 Changes to Connext DDS Java Packaging on Windows Platforms

In the RTI Connext DDS Core Libraries User’s Manual, the following sections describe aspects of the
API that differ significantly with respect to the other RTI Connext DDS language APIs:
o Section 3.3 Creating User Data Types with IDL
o Section 3.7 Interacting Dynamically with User Data Types
 Section 3.8 Working with DDS Data Samples
Section 4.1.1 Creating and Deleting DDS Entities
Section 7.4 Using DataReaders to Access Data (Read & Take)

Buildable source code examples are available from the RTI Community Portal (https:/-
community.rti.com/kb/modern-c-api-code-examples)

1.7 Changes to Connext DDS Java Packaging on Windows Platforms

In previous releases of Connext DDS, all Java applications for Windows platforms depended on the
Visual Studio® 2005 libraries, regardless of which Windows platform bundle you installed.

In this release, the version of Visual Studio libraries that the Connext DDS Java library depends on is
based on the specific Visual Studio version noted (in the Platform Notes) for your Windows target archi-

tecture, as long as the correct version of Connext DDS libraries path is in your PATH environment vari-
able.

To debug with the debug version of a Connext DDS DLL, you still need to have the full Visual Studio
package installed on your system. Otherwise, you only need the Visual Studio Redistributable C++ lib-
raries installed.

1.8 Support for Custom Content Filters in .NET API

This release adds support for custom content filters in the NET API. To implement a custom filter, create
a class that implements one of the following interfaces:

o IContentFilter: This is the minimum API that must be implemented by a custom filter

o IWriterContentFilter: This interface provides a set of APIs that allows you to implement scalable fil-
ters on the DataWriter side

For more information, please see the R7T1 Connext DDS Core Libraries User's Manual (Section 5.4.8,
Custom Content Filters) and the API Reference HTML documentation.

https://community.rti.com/kb/modern-c-api-code-examples
https://community.rti.com/kb/modern-c-api-code-examples

1.9 Improved Liveliness QoS Policy Behavior

1.9 Improved Liveliness QoS Policy Behavior

This release introduces changes to the LivelinessQosPolicy behavior to make it more robust and con-
figurable. In particular, this release introduces two main changes to Liveliness:

o The LivelinessQosPolicy has a new field, assertions_per_lease_duration. This parameter allows
you to configure the rate at which assertions are sent to remote entities when the liveliness kind is
DDS AUTOMATIC LIVELINESS QOS. For details, see the RTI Connext DDS Core Libraries
User's Manual (Section 6.5.13 LIVELINESS QosPolicy).

o Liveliness assertion messages are now sent using best-effort reliability (instead of using reliable reli-
ability). This change makes liveliness assertions more predictable and easier to configure.

It is possible to go back to the old behavior by using the field participant_message_reader_reli-
ability_kind in the DomainParticipant's DiscoveryConfigQosPolicy. To ensure backward com-
patibility with previous releases, the participant will automatically switch back to Reliable Liveliness
messages when communicating with a DDS Participant from a version prior to 5.2.0.

For details, see the RTI Connext DDS Core Libraries User's Manual (Section 8.5.3 DISCOVERY _
CONFIG QosPolicy (DDS Extension)).

1.10 Support for Unbounded Built-in Types in C, C++, and .NET APlIs

This release adds support for unbounded built-in types in the C, C++, and .Net APlIs.

To configure unbounded support, set the properties dds.builtin_type.*.max_size and dds.builtin_
type.*.alloc_size to 2147483647.

When unbounded support is configured, the middleware will not preallocate the DataReader queue's
samples to their maximum size. Instead, it will deserialize incoming samples by dynamically allocating and
deallocating memory to accommodate the actual size of the sample value.

In addition to setting the properties dds.builtin_type.*.max_size and dds.builtin_type.*.alloc_size to
2,147,483,647, you must also use the threshold QoS properties dds.data_writer.history.memory_ man-
ager.fast_pool.pool buffer max_size on the DataWriter and dds.data_reader.history.memory man-
ager.fast_pool.pool_buffer_max_size on the DataReader.Y ou must also set the QoS value reader_
resource limits.dynamically allocate fragmented samples on the DataReader to true.

For additional information on these QoS values, see the R7I Connext DDS Core Libraries User's Manual.

1.11 Support for External Hardware Load Balancers in TCP Transport
Plugin

For two Connext DDS applications to communicate, the TCP Transport plugin needs to establish 4-6 con-
nections between the two communicating applications.

1.12 Connection Liveliness Feature in TCP Transport Plugin

In previous releases, the TCP Transport plugin did not support external load balancers. This was because
external load balancers did not forward the traffic to a unique TCP Transport Plugin server, but they
divided the connections among multiple servers. Because of this behavior, when an application running a
TCP Transport plugin client tries to establish all the connections to an application running a TCP Trans-
port plugin server, the server may not receive all the required connections.

This release adds a new property to NDDS_ Transport TCPv4 Property t, negotiate _session_id. By
default, this property is set to FALSE. When set to TRUE, the TCP Transport Plugin will perform a ses-
sion negotiation that will help external load balancers identify all the connections associated with a par-
ticular session between two Connext DDS applications. This keeps the connections from being divided
among multiple servers and ensures proper communication.

For more information, see the R77 Connext DDS Core Libraries User's Manual (Support for External
Hardware Load Balancers in TCP Transport Plugin).

1.12 Connection Liveliness Feature in TCP Transport Plugin

The TCP Transport plugin now supports a new ‘connection-liveliness’ feature. This feature provides a
way to detect the disconnection of a connection without relying on notification from the operating system
(which may take several minutes, depending on the scenario and OS configuration).

This feature is useful for systems running TCP Transport plugin clients on hosts that do not support the
keep-alive or user-timeout features. For details, see the RTI Connext DDS Core Libraries User's Manual's
section on TCP/TLS Transport Properties.

Enabling this feature will break backward compatibility with TCP Transport plugins that do not
include this feature. To enable this feature, use the connection_liveliness property, as in the
following example:

<element>
<name>
dds.transport.TCPv4.tcpl.connection liveliness.enable
</name>
<value>1</value>
<propagate>false</propagate>
</element>

1.13 Full Support for Windows I/0 Completion Ports with TLS

Connext DDS 5.1.0 added partial support of Windows I/O Completion Ports when using the TLS trans-
port. In particular, the force_asynchronous_send property was not supported.

This release provides full support of Windows I/O Completion Ports. Now you can enable force asyn-
chronous_send while using the TLS transport with Windows I/O Completion Ports socket monitoring.

1.14 Added TCP USER TIMEOUT Support to Linux Architectures

1.14 Added TCP USER TIMEOUT Support to Linux Architectures

The TCP Transport plugin now supports the Linux OS's TCP User Timeout socket option. For details,
please see the RTI Connext DDS Core Libraries User’s Manual's section on TCP/TLS Transport Prop-
erties.

This new feature can be enabled through the user_timeout property as in the following example:

<element>
<name>dds.transport.TCPvé4.tcpl.user timeout</name>
<value>5</value>
<propagate>false</propagate>

</element>

1.15 TCP Transport’s keep_alive_time Property Now Supported on
Mac Platforms

This release adds support on Mac platforms for the TCP transport property, keep_alive time (see Table
36.1, Properties for NDDS Transport TCPv4 Property t, in the RTI Connext Core Libraries User’s
Manual). This property was previously only available for Linux platforms.

1.16 Improved TCP Transport Plugin Robustness Against
Unexpected Control Messages

In previous releases, the TCP Transport plugin would shutdown upon receipt of an unexpected control
message. In this release, the TCP Transport plugin is more robust. In particular, if the plugin receives an
unexpected control message, it will print an error message and close the associated connection, but it will
not trigger a shutdown.

1.17 Logging Level for TCP Transport Windows IOCP Connection-
Reset Errors Changed from Exception to Warning

When enabling IOCP monitoring with the property socket_monitoring_kind, the TCP Transport plugin
logging was too verbose when reporting disconnection errors like the following:

NDDS Transport TCP SocketGroup waitForCompletionPacket:error returned
by GetQueuedCompletionStatus in SocketGroup wait issuing recvZero:
(errno: 10054) - An existing connection was forcibly closed by the
remote host.

In this release, the logging verbosity for those errors has been changed from Exception to Warning.

10

1.18 Improved Logging of Precondition Errors from TCP Transport Plugin in Debug Mode

1.18 Improved Logging of Precondition Errors from TCP Transport
Plugin in Debug Mode

Starting with this release, when using the TCP Transport plugin in debug mode, any logged precondition
errors will also include the failing precondition expression.

1.19 Partial Support for DurabilityServiceQosPolicy’s service_
cleanup_delay

This release includes the ability to purge instances from Persistence Service. The service_cleanup_delay
field of the DurabilityServiceQosPolicy controls when Persistence Service is able to remove all inform-
ation regarding a data instance. The currently supported values for service_cleanup_delay are zero or
INFINITE. The default service cleanup_delay value is 0, meaning that when an instance is disposed, it
will be purged from the persistence service immediately. This will only happen if Persistence Service has
been configured with use_durability service=true. A value of INFINITE disables the purging of dis-
posed instances.

1.20 Option to Release Resources Associated with Disposed Instance

A new feature offers a way to release the resources associated with a disposed instance in both
DataWriters and DataReaders. When applied to a DataWriter, historical samples are also removed poten-
tially saving bandwidth usage.

This feature is enabled in a DataWriter through a new field in the WriterDataLifecycleQosPoliy: autop-
urge_disposed_instances_delay. When this feature is enabled, the middleware will clean up all the
resources associated with a disposed instance (most notably, the sample history of non-volatile
DataWriters) when all the instance’s samples have been acknowledged by all its live DataReaders, includ
ing the sample that indicates the disposal.

By default, autopurge disposed_instances_delay is disabled (the delay is INFINITE). If the delay is set
to zero, the DataWriter will clean up as soon as all the samples are acknowledged after the call to dispose
(). A non-zero value is currently not supported. This feature is supported in both the ODBC and in-
memory writer-history configurations.

In a DataReader, this feature is enabled through a field in ReaderDataLifecycleQosPolicy with the same
name. The autopurge disposed_instances delay in the ReaderDataLifecycleQosPolicy also currently
only supported values of zero or INFINITE, with INFINITE being the default. If the delay is set to zero,
instances that have been disposed and have no outstanding unread samples, including the dispose sample
itself, will be immediately purged from the DataReader's queue. The default value of INFINITE disables
this feature, and instances will be purged from the DataReader's queue under the same conditions as they
have been in previous releases. See Section 7.6.3 READER _DATA LIFECYCLE QoS Policy in the
User's Manual for a description of when resources associated with samples and instances in the
DataReader queue can be reclaimed.

11

1.21 Support for Application-Level Acknowledgment with Response Data

1.21 Support for Application-Level Acknowledgment with Response
Data

These release adds the ability to add response data to these DataReader operations:

o acknowledge sample()

o acknowledge all()

The response data is provided as a sequence of octets. The maximum size is configurable using the max_
app_ack response_length in the DataReaderResourceLimitsQosPolicy.

For additional information, see the RTI Connext DDS Core Libraries User's Manual (Section 7.4.4, Using
DataReaders to Access Data (Read & Take)) and the API Reference HTML documentation.

1.22 New DataWriter Status to Receive Notification when Sample is
Application-Level Acknowledged

This release includes a new DataWriter status to receive notification when a sample is application-level
acknowledged by a DataReader. This status triggers a new DataWriter's listener callback named on_
application_acknowledgment().

For more information, see the RTI Connext DDS Core Libraries User's Manual and the API Reference
HTML documentation.

1.23 Ability to See if Sample has been Application-Acknowledged

There is a new DataWriter operation, is_sample _app_acknowledged(). You can use it to see if a sample
has been application-acknowledged by all matching DataReaders that were alive when the sample was
published.

If a DataReader does not enable application acknowledgment (by setting the ReliabilityQosPolicy's
acknowledgment_Kind to a value other than DDS PROTOCOL ACKNOWLEDGMENT MODE),
the sample is considered application-acknowledged for that DataReader.

1.24 Ability to Prevent Invocation of on_application_acknowledgment
() when Response Data Empty or Invalid

The DataWriterProtocolQosPolicy contains a new field called propagate app ack with _no_response.
When this field is set to FALSE, the callback on_application_acknowledgment() will not be invoked if
the sample being acknowledged has an empty or invalid response. The default setting is TRUE.

12

1.25 Performance Optimizations in Application-Level Acknowledgment Protocol

1.25 Performance Optimizations in Application-Level
Acknowledgment Protocol

This release introduces significant performance optimizations in the application-level acknowledgment pro-
tocol.

1.26 Ability to Provide Threads to Connext DDS in C/C++

Applications can now provide the threads needed by the middleware (i.e., receiving threads, database
thread, etc.). By default, these threads are created by Connext DDS using a specific framework and are
configured via QoS. A new interface, ThreadFactory, can be implemented and plugged into DomainPar-
ticipants to create the required threads by Connext DDS. This gives applications full control over how
these threads are created and managed. The new APIs are available only in C/C++.

1.27 New TypeSupport Operations in Built-in Types to Serialize
Sample into Buffer and Deserialize Sample from Buffer

This release provides two new TypeSupport operations in the Built-in Types to serialize a sample into a
buffer and deserialize a sample from a buffer. The sample serialization/deserialization uses CDR rep-
resentation. This feature is supported in the following languages: C, C++, Java, and .NET.

For example, for the Octets built-in type these operations are:

C:

DDS OctetsTypeSupport serialize data to cdr buffer(...)
DDS OctetsTypeSupport deserialize data from cdr buffer(...)

C++

DDS: :OctetsTypeSupport: :serialize data to cdr buffer(...)
DDS: :OctetsTypeSupport: :deserialize data from cdr buffer(...)

Java:

import com.rti.dds.type.builtin.BytesTypeSupport;
BytesTypeSupport.get instance() .serialize to cdr buffer(...)
BytesTypeSupport.get instance () .deserialize from cdr buffer(...)

C++/CLIL

DDS: :BytesTypeSupport::serialize data to cdr buffer(...)
DDS: :BytesTypeSupport: :deserialize data from cdr buffer(...)

C#:

13

1.28 New DynamicData Operations to Serialize Sample into Buffer and Deserialize Sample from Buffer—

using DDS;
BytesTypeSupport.serialize data to cdr buffer(...)
BytesTypeSupport.deserialize data from cdr buffer(...)

1.28 New DynamicData Operations to Serialize Sample into Buffer
and Deserialize Sample from Buffer—C/C++ APIs Only

This release provides two new DynamicData operations to serialize a DynamicData sample into a buffer
and deserialize a DynamicData sample from a buffer:

e to_cdr_buffer()

e from_cdr_buffer()

These operations are only supported in the C and C++ languages. For more information, see the C or C++
API Reference HTML documentation.

1.29 Out-of-Order Type Definitions in XML Configuration File are Now
Allowed

This release allows you to define types and constants out-of-order in the XML configuration files. For
example, now you can have this:
<struct name="Structurel">
<member type="boolean" name="ml"/>
<member type="nonBasic" nonBasicTypeName="Structure2"

name="m2" />
</struct>

<struct name="Structure2">
<member type="boolean" name="ml"/>
</struct>

In previous releases, the above XML would have caused a parsing error.

1.30 Ability to Add Metadata Flags to Samples

This release adds the ability to add flags to a sample.

The DDS WriteParams_t structure, used by the DataWriter’s write_w_params() operation, includes a
new field named flag, which can be used to set the sample flags. On the DataReader side, the flags can be
inspected using the field flag in the DDS Samplelnfo structure.

RTI reserves the first eight least-significant bits for middleware-specific usage. Of these eight bits, four are
already used:

14

1.31 Ability to Enable Manual Endpoint Discovery for Individual Participants

« REDELIVERED SAMPLE (Bit 1): This bit is used by RTI Queuing Service to mark a sample as
redelivered.

o INTERMEDIATE REPLY SEQUENCE SAMPLE (Bit 2): With the Request-Reply com-
munication pattern, this bit can be used to indicate that a response sample is not the last one for a
given request. When a request generates multiple responses from a Replier, the Replier should mark
all the responses except the last one as INTERMEDIATE REPLY SEQUENCE SAMPLE. If the
replier is a DataWriter, this flag can be set by updating the flag member of the DDS WriteParams
t parameter that is passed into the DataWriter’s write_w_params() operation. If the replier is a Con-
next DDS Replier, this flag can be set in the WriteSample provided to the Replier's send_reply()
operation.

« DDS REPLICATE SAMPLE (Bit 3): Indicates if a sample must be broadcast by one RTI
Queuing Service replica to other replicas.

« DDS LAST SHARED READER QUEUE SAMPLE (Bit 4): Indicates that a sample is the last
sample in a SharedReaderQueue for a QueueConsumer DataReader.

For more information, please see the RTI Connext DDS Core Libraries User's Manual and the API Refer-
ence HTML documentation.

1.31 Ability to Enable Manual Endpoint Discovery for Individual
Participants

This release adds a new field to the DiscoveryQosPolicy, enable_endpoint_discovery. By default, this
field is set to TRUE, meaning endpoint discovery is automatically performed with all discovered par-
ticipants. When set to FALSE, endpoint discovery is initially disabled and a call to the DomainParticipant's
new resume_endpoint_discovery() operation is required to enable endpoint discovery for a given dis-
covered participant. For more information, see the updated RTI Connext DDS Core Libraries User's
Manual (Section 16.4.5, Supervising Endpoint Discovery).

1.32 Ability to Configure Memory Allocation for Instance Keys in
DataWriter and DataReader Queues

This release introduces configuration settings that allow more flexible memory-allocation schemas for the
key that is stored with every instance in DataWriter and DataReader queues.

In previous releases, the Connext DDS core pre-allocated the memory for keys in the DataWriter and
DataReader queues. Although this memory allocation policy is suitable for real-time systems where
determinism and predictability are key, it leads to higher memory usage.

With the new configuration settings, you can control when to use pre-allocation versus dynamic memory
allocation from the heap.

15

1.33 Ability to Configure Replacement Policy for Remote Participants Ignored by DomainParticipant

For more details on these configuration parameters, see Chapter 20, Sample-Data and Instance-Data
Memory Management, in the R71 Connext DDS Core Libraries User's Manual (Sections 20.3 and 20.4).

1.33 Ability to Configure Replacement Policy for Remote Participants
Ignored by DomainParticipant

Connext DDS provides a way to ignore remote entities by invoking any of the following DomainPar-
ticipant operations: ignore_participant(), ignore publication(), and ignore_subscription().

When an entity is ignored, Connext DDS adds it to an internal ‘ignore’ table. The resource limits for this
table are configured using the DomainParticipantResourceLimitsQosPolicy’s ignored_entity allocation.
Every time Connext DDS receives a message from an ignored entity, it will check this table; if the entity is
ignored, it will filter the message.

In previous releases, the ignore operation failed if ignored_entity allocation.max_count was exceeded.

This release adds a new field to the DomainParticipantResourceLimitsQosPolicy, ignored_entity replace-
ment_kind. By default, this field is set to DDS_ NO_REPLACEMENT_IGNORED_ENTITY _
REPLACEMENT, meaning that a call to the DomainParticipant’s ignore_participant()/ignore_pub-
lication()/ignore_subscription() operations will fail if the DomainParticipant has ignored more entities
than the limit set in ignored_entity allocation.max_count.

When ignored_entity replacement kind is set to DDS NOT_ALIVE_FIRST IGNORED
ENTITY_REPLACEMENT, a call to ignore_participant() will not fail when ignored_entity_alloc-
ation.max_count is exceeded, as long as there is one DomainParticipant already ignored. Instead, the call
will replace one of the existing DomainParticipants in the internal table. The remote DomainParticipant
that will be replaced is the one for which the local DomainParticipant had not received any message for
the longest time.

When a remote DomainParticipant is replaced in the ‘ignore’ table, it becomes un-ignored. Thus, the
DomainParticipant would have to call to ignore_participant() again to re-ignore the replaced entity.

Note that in this release ignored publications and subscriptions are never replaced in the ‘ignore’ table.
Since this table also contains the ignored DomainParticipants, a call to ignore_participant() will fail if
ignored_entity allocation.max_count is reached and none of the ignored entities is a DomainParticipant.

The following XML snippet shows how to configure the new replacement policy:

<gos profile name="IgnoredEntityReplacement Profile">
<participant gos>
<resource limits>
<ignored entity replacement kind>
NOT ALIVE FIRST IGNORED ENTITY REPLACEMENT
</ignored entity replacement kind>
<!-- Very restrictive example, only 1 ignored entity allowed -->
<ignored entity allocation>
<initial count>1</initial count>

16

1.34 Ability to Retrieve PropertyQosPolicy Values for Remote Entities Outside of Built-In Topic

<incremental count>0</incremental count>
<max count>1</max count>
</ignored entity allocation>
</resource limits>
</participant gos>
</qos_profile>

For more information, please see the R7TI Connext DDS Core Libraries User's Manual (Section 16.4.4,
Resource Limits Considerations for Ignored Entities) and the API Reference HTML documentation.

1.34 Ability to Retrieve PropertyQosPolicy Values for Remote Entities
Outside of Built-In Topic Callbacks

In previous releases, the only way to retrieve the PropertyQosPolicy value of a remote entity (DataWriter-
/DataReader/DomainParticipant) was within corresponding built-in topic callbacks.

In this release, the properties can be retrieved at any time by invoking the DataWriter’s get_matched_sub-
scription_data(), the DataReader’s get_matched_subscription_data(), and the DomainParticipant’s
get_discovered_participant_data() operations.

1.35 Exception Messages now include Underlying Errors—JAVA, .Net,
C++ APIs Only

Previously when the Java, .Net, or C++ APIs threw an exception, the exception message was empty. Now
those messages will include the underlying errors.

1.36 Host ID Automatically Generated when no IP Addresses
Available

Starting with this release, when no interface IP addresses are available, the host ID will be automatically
generated (by configuring the WireProtocol QoS policy’s rtps_host id to DDS RTPS AUTO_ID).

1.37 New API to Get Serialized Size for a Given TypeObiject

A new API, get type object_serialized_size() (for a TypeCode), allows you to get the serialized size of
the TypeObject. The default buffer size used for storing a TypeObject is 3,072 bytes. For a larger TypeOb-
ject, this API can be used to determine the size that needs to be set in the type_object max_serialized
length field of the DomainParticipantResouceLimitsQosPolicy.

17

1.38 New Field in DataReaderResourceLimitsQosPolicy: keep minimum_state for instances

1.38 New Field in DataReaderResourceLimitsQosPolicy: keep_
minimum_state_for_instances

A new field in the DataReaderResourceLimitsQosPolicy, keep _minimum_state for instances, indicates
whether or not a minimum state will be kept for deleted instances. This minimum state is used to support
features and services such as multi-channel DataWriters, Durable Reader State and Persistence Service.

When this field is set to TRUE (the default), the minimum state will be kept for up to max_total
instances (another DataReaderResourceLimitsQosPolicy resource limit). When set to FALSE, no min-
imum state will be kept for instances which are purged from the DataReader.

Instances are purged from a DataReader in two cases:
1. When there are no more known DataWriters for an instance and no samples for that instance in the
DataReader's queue.

2. When an instance has been disposed, there are no more samples for it in the DataReader's queue
and the ReaderDataLifecycleQosPolicy's autopurge disposed_instances delay has been set to a
finite duration.

1.39 New Field in DataReaderProtocolQosPolicy: propagate_
unregister_of_disposed_instances

A new field in the DataReaderProtocolQosPolicy, propagate_unregister of disposed_instances, indic-
ates whether or not an instance can move to the DDS NOT_ALIVE NO_WRITERS INSTANCE
STATE state without being in the DDS ALIVE INSTANCE STATE state. When set to TRUE, the
DataReader will receive ‘unregister’ notifications even if the instance is not alive.

1.40 New Method get_participants() for DomainParticipantFactory in
C/C++

There is a new method, get_participants(), which returns a sequence of pointers to all the DomainPar-
ticipants within the DomainParticipantFactory.

1.41 New QoS Policy to Mark DataReaders and DataWriters as Part
of Infrastructure Service

This release adds a new QoS policy named ServiceQosPolicy. It is used to mark DataWriters and
DataReaders as part of an infrastructure service. User applications should not modify this policy’s value.

The possible values for this policy are:

18

1.42 Support for source guid and related source guid

« DDS_NO_SERVICE_QOS

« DDS_PERSISTENCE_SERVICE_QOS

. DDS_QUEUING_SERVICE QOS

. DDS ROUTING SERVICE QOS

. DDS_RECORDING_SERVICE_QOS

. DDS REPLAY SERVICE QOS

. DDS DATABASE INTEGRATION SERVICE QOS

An application can determine the kind of service associated with a discovered DataWriter and
DataReader by looking at a new field named service in the PublicationBuiltinTopicData and Sub-
scriptionBuiltinTopicData structures.

For more information, see the updated R71 Connext DDS Core Libraries User's Manual, Section 6.5.21
(ServiceQosPolicy).

1.42 Support for source_guid and related_source_guid
1.42.1 New Fields in DDS_WriteParams_t and Samplelnfo

There are new fields in DDS_WriteParams_t, which is used by the write_w_params() operation:
related reader_guid, source guid and related_source guid.

There are corresponding new fields in DDS_Samplelnfo, which is available when you read/take samples:
related_subscription_guid, source_guid, and related_source_guid.

1.42.2 related_reader_guid, and related_subscription_guid
The value of the related_reader_guid field identifies a DataReader that is logically related to the sample
that is being written.

A DataReader can inspect the related_reader guid of a received sample by inspecting the content of the
related_subscription_guid field in the Samplelnfo structure.

The main use-case for this field is point-to-point sample distribution using ContentFilteredTopics.
DataReaders install a ContentFilteredTopic on this metadata field using a unique GUID. For example:

@related reader guid.value = &hex(00000000000000000000000000000001)
Then a DataWriter that wants to send the sample to DataReader 'n' will call write_w_params() and set
the field related_reader_guid in DDS WriteParams_t to the value used by DaftaReader 'n' in its filter

expression. RTI Queuing Service uses this field to distribute a sample to only one of the Consumer's
DataReaders attached to a SharedReaderQueue.

19

1.42.3 source guid and related source guid

For more information, see the RTI Connext DDS Core Libraries User's Manual (Table 6.16, DDS _
WriteParams_t and Table 7.18, DDS_Samplelnfo).

1.42.3 source_guid and related_source_guid

The new source_guid field in DDS_WriteParams_t identifies the application logical data source asso-
ciated with the sample being written.

The new related_source_guid identifies the application logical data source that is related to the sample
being written.

A DataReader can inspect the source_guid and related_source_guid of a received sample by inspecting
the content of the fields source guid and related_source guid in the Samplelnfo structure.

The source_guid and related_source guid fields are used by RTI Queuing Service in a request/reply
scenario to direct a response to the QueueProducer that generated the request. In this scenario, the
QueueProducer's DataWriter sends requests by setting the source_guid to a unique value. This value is
always the same for a QueueProducer even if it is restarted. The QueueProducer's DataReader receiving
responses install a CFT on the related_source_guid.

For more information, see the RTI Connext DDS Core Libraries User's Manual (Table 6.16, DDS _
WriteParams_t and Table 7.18, DDS_Samplelnfo).

1.43 Transport Priority Configurable for Built-in and User-Created
DataReaders

Previously, transport priority was not configurable for built-in DataReaders or user-created DataReaders.
Now, the metatraffic_transport_priority field in the DiscoveryQosPolicy configures the transport pri-
ority of all data sent from built-in DataWriters and DataReaders too. Also, the TransportPriorityQosPolicy
has been added to the DataReaderQos to configure the transport priority of all messages sent from user-cre-
ated DataReaders.

The TransportPriorityQosPolicy is only supported on a subset of the available platforms, please
refer to the RTI Connext DDS Core Libraries Platform Notes for which platforms support this

QoS policy.

1.44 Improved Content Filter Evaluation Performance for Types
Containing Sequences and Unions

ContentFilteredTopics containing sequences with a large maximum length or complex unions evaluate
much faster than in the previous release, 5.1.0.

20

1.45 Improved Memory Usage of Content Filters of Types Containing Strings In Some Cases

Before, the maximum length of the sequence determined the order of complexity of the filtering algorithm;
now the actual length of each sample determines the order of complexity. As for unions, the complexity
now depends on the currently selected member (instead of the most-complex one as happened before).

This performance improvement applies to the following situations:
o Applications using DynamicDataReaders

« Java applications

o Content filters in Routing Service

C, C++, and .NET rtiddsgen-generated DataReaders were not affected.

1.45 Improved Memory Usage of Content Filters of Types Containing
Strings In Some Cases

ContentFilteredTopics containing strings with a large maximum length consume less memory now (note:
this was a regression in 5.1.0).

Before, the memory usage was determined by the maximum length of the string; now memory usage is
determined by the actual length of each sample.

This memory-usage improvement applies to the following situations:
o Applications using DynamicDataReaders

« Java applications

o Content filters in RTI Routing Service

C, C++ and .NET rtiddsgen-generated DataReaders were not affected.

1.46 Improved Performance for Key-Only QueryCondition set_query_
parameters()

This release reduces the CPU consumption of the QueryCondition set_query_parameters() operation for
key-only QueryConditions. This improvement is more significant when the DataReader is receiving
samples from a high number of instances.

1.47 Reader-Side Performance Improvements when Removing
Association with Remote Writer

The algorithm used to remove a remote, keyed DataWriter from a DataReader has been improved to be
more efficient. When a DataReader detects that a DataWriter has left the system, it purges information

21

1.48 Monitoring Libraries and Distributed Logger now Part of Connext DDS Bundle

about the DataWriter and the instances that it was writing. The algorithm that performed that purge was
inefficient and if the DataWriter had a finite lifespan for its data and had written many instances, this
action could take a long time, delaying the DataReader from otherwise continuing to process incoming
data.

1.48 Monitoring Libraries and Distributed Logger now Part of Connext
DDS Bundle

Libraries for Monitoring and Distributed Logger are now shipped as part of the Connext DDS bundle.
Everyone who has access to the Connext DDS core libraries now also has access to the Monitoring and
Distributed Logger libraries—you no longer need to install separate bundles to obtain these libraries.

1.49 Priority Inheritance used when Creating Semaphores on
VxWorks Platforms

Starting with Connext DDS 5.2.0, semaphores are created with priority inheritance on VxWorks Plat-
forms.

1.50 New Default Value for DiscoveryConfig Built-in Writer
autopurge_unregistered_instances_delay

The default value for autopurge_unregistered_instances_delay in the DiscoveryConfigQosPolicy's
.publication_writer_data_lifecycle and subscription_writer_data_lifecycle ficlds has been changed
from an INFINITE duration to 0. This new default eliminates a possible unbounded memory growth in
applications where DataWriters may enter and exit a system frequently.

1.51 New Default Value for DDS_DynamicProperty_t's buffer_max_
size

The default setting for the DynamicData property buffer max_size has changed from 65,536 to DDS
LENGTH_UNLIMITED in order to provide a better out-of-the-box experience. The old setting did not
work with samples greater than 65 KB.

1.52 New Defaults for DataReaderResourcelLimits' dynamically_
allocate_fragmented_samples and max_fragments_per_sample

Starting with Connext DDS5.2.0, the default values for dynamically allocate fragmented_samples and
max_fragments_per_sample in the DataReaderR esourceLimitsQosPolicy and DDS_Built-
inTopicReaderResourceLimits _t have changed.

22

1.53 Ability to Extend Internal CdrInputStream and CdrOutputStream Classes by Inheritance in Java

o The default value for dynamically_allocate_fragmented_samples has changed from FALSE to
TRUE in the DataReaderResourceLimitsQosPolicy (it was already TRUE by default in DDS_Built-
inTopicReaderResourceLimits_t).

o The default value for max_fragments per_sample has changed from 512 to unlimited in both the
DataReaderResourceLimitsQosPolicy and the DDS BuiltinTopicReaderResourceLimits_t.

These changes have been made in order to provide a better out-of-the-box experience. By default, the mid-
dleware will no longer allocate memory up-front for storing fragments; instead it will allocate memory
from the heap when it receives the first fragment of a new sample.

1.53 Ability to Extend Internal CdrinputStream and CdrOutputStream
Classes by Inheritance in Java

The internal classes CdrInputStream and CdrOutputStream no longer include the ‘final’ modifier. This
change allows you to extend these classes by inheritance.

The type-plugin deserialization and serialization functions use these classes to read and write from/to the
CDR buffer. You can extend their behavior by inheriting from them.

(This is an advanced, undocumented use case.)

1.54 Warning Logged when Setting Non-NULL Listener with
STATUS_MASK_NONE

If a create_<dds_entity>(), create_<dds_entity> with_profile(), or set_listener() operation is called
with a non-NULL Listener and STATUS MASK_ NONE, Connext DDS should have logged a warning.
In this release, a warning is logged with this message:

"Warning: setting a listener with STATUS MASK NONE will disable all callbacks"

1.55 Java Libraries Tested with Java 1.8

In this release, the Java libraries have been tested with JDK 1.8 (in addition to JDK 1.7).

1.56 Deprecated Platforms

Connext DDS 5.2.0 will be the last release that supports the platforms in Table 1.2 Deprecated Platforms.
Please contact the RTI Sales team if you have any questions.

Table 1.2 Deprecated Platforms

23

1.57 Sparse Value Types Deprecated

Operating System CPU Compiler or SDK RTI Architecture Abbreviation
Yellow Dog 4.0 PPC 74xx | gcc3.3.3 ppc7400Linux2.6gcc3.3.3
Vista, 2003, XP Pro SP2 x86 VS 2008 SP1 i86Win32VS2008
Vista x64, 2003 x64, XP Pro SP2 x64 x64 VS 2008 SP1 x64Win64VS2008

1.57 Sparse Value Types Deprecated

Sparse value types have been deprecated in this release. Users are encouraged to use Mutable Types and

Optional Members in place of sparse value types. Please see the RTI Connext DDS Core Libraries Getting
Started Guide Addendum for Extensible Types for details on Mutable Types and Optional Members.

1.58 Separate Documentation for Code Generator

Details on RTI Code Generator, rtiddsgen, now appear in a separate R7/ Code Generator User’s Manual.
There is also a separate RTI Code Generator Release Notes document.

24

	Chapter 1 What’s New in 5.2.0
	1.1 New Platforms
	1.2 Removed Platforms
	1.3 Unified Directory Structure
	1.4 Backup Process
	1.4.1 Special Backup of RTI Libraries

	1.5 Changes to Installation Process
	1.6 Modern C++ API
	1.7 Changes to Connext DDS Java Packaging on Windows Platforms
	1.8 Support for Custom Content Filters in .NET API
	1.9 Improved Liveliness QoS Policy Behavior
	1.10 Support for Unbounded Built-in Types in C, C++, and .NET APIs
	1.11 Support for External Hardware Load Balancers in TCP Transport Plugin
	1.12 Connection Liveliness Feature in TCP Transport Plugin
	1.13 Full Support for Windows I/O Completion Ports with TLS
	1.14 Added TCP USER TIMEOUT Support to Linux Architectures
	1.15 TCP Transport’s keep_alive_time Property Now Supported on Mac Platforms
	1.16 Improved TCP Transport Plugin Robustness Against Unexpected Control Messages
	1.17 Logging Level for TCP Transport Windows IOCP Connection-Reset Errors Changed from Exception to Warning
	1.18 Improved Logging of Precondition Errors from TCP Transport Plugin in Debug Mode
	1.19 Partial Support for DurabilityServiceQosPolicy’s service_cleanup_delay
	1.20 Option to Release Resources Associated with Disposed Instance
	1.21 Support for Application-Level Acknowledgment with Response Data
	1.22 New DataWriter Status to Receive Notification when Sample is Application-Level Acknowledged
	1.23 Ability to See if Sample has been Application-Acknowledged
	1.24 Ability to Prevent Invocation of on_application_acknowledgment() when Response Data Empty or Invalid
	1.25 Performance Optimizations in Application-Level Acknowledgment Protocol
	1.26 Ability to Provide Threads to Connext DDS in C/C++
	1.27 New TypeSupport Operations in Built-in Types to Serialize Sample into Buffer and Deserialize Sample from Buffer
	1.28 New DynamicData Operations to Serialize Sample into Buffer and Deserialize Sample from Buffer—C/C++ APIs Only
	1.29 Out-of-Order Type Definitions in XML Configuration File are Now Allowed
	1.30 Ability to Add Metadata Flags to Samples
	1.31 Ability to Enable Manual Endpoint Discovery for Individual Participants
	1.32 Ability to Configure Memory Allocation for Instance Keys in DataWriter and DataReader Queues
	1.33 Ability to Configure Replacement Policy for Remote Participants Ignored by DomainParticipant
	1.34 Ability to Retrieve PropertyQosPolicy Values for Remote Entities Outside of Built-In Topic Callbacks
	1.35 Exception Messages now include Underlying Errors—JAVA, .Net, C++ APIs Only
	1.36 Host ID Automatically Generated when no IP Addresses Available
	1.37 New API to Get Serialized Size for a Given TypeObject
	1.38 New Field in DataReaderResourceLimitsQosPolicy: keep_minimum_state_for_instances
	1.39 New Field in DataReaderProtocolQosPolicy: propagate_unregister_of_disposed_instances
	1.40 New Method get_participants() for DomainParticipantFactory in C/C++
	1.41 New QoS Policy to Mark DataReaders and DataWriters as Part of Infrastructure Service
	1.42 Support for source_guid and related_source_guid
	1.42.1 New Fields in DDS_WriteParams_t and SampleInfo
	1.42.2 related_reader_guid, and related_subscription_guid
	1.42.3 source_guid and related_source_guid

	1.43 Transport Priority Configurable for Built-in and User-Created DataReaders
	1.44 Improved Content Filter Evaluation Performance for Types Containing Sequences and Unions
	1.45 Improved Memory Usage of Content Filters of Types Containing Strings In Some Cases
	1.46 Improved Performance for Key-Only QueryCondition set_query_parameters()
	1.47 Reader-Side Performance Improvements when Removing Association with Remote Writer
	1.48 Monitoring Libraries and Distributed Logger now Part of Connext DDS Bundle
	1.49 Priority Inheritance used when Creating Semaphores on VxWorks Platforms
	1.50 New Default Value for DiscoveryConfig Built-in Writer autopurge_unregistered_instances_delay
	1.51 New Default Value for DDS_DynamicProperty_t's buffer_max_size
	1.52 New Defaults for DataReaderResourceLimits' dynamically_allocate_fragmented_samples and max_fragments_per_sample
	1.53 Ability to Extend Internal CdrInputStream and CdrOutputStream Classes by Inheritance in Java
	1.54 Warning Logged when Setting Non-NULL Listener with STATUS_MASK_NONE
	1.55 Java Libraries Tested with Java 1.8
	1.56 Deprecated Platforms
	1.57 Sparse Value Types Deprecated
	1.58 Separate Documentation for Code Generator

