
Summary - I -

Summary

The main aim of this project was to produce an information system for AIS that would handle the

entry and case details for their clients. At the beginning of the project, the minimum requirements,

were defined as having to produce:

• An executable system

• Use Case Diagrams

• Appropriate UML diagrams

• A user manual

The actual information system was split into two parts, the database and the user interface. The

database was fully implemented and provided a firm basis for the data that AIS needed to record,

but the user interface was only partially accomplished, in that a prototype was produced. However,

a set of Use Case and UML diagrams were produced, as well as the user manual and even though

the user interface was not fully implemented, AIS decided to use the underlying database.

Acknowledgments - II -

Acknowledgments

I would like to thank all the staff at AIS who have been constantly bugged by my questions and

enquires. I would also like to thank all my friends who had to put up with me stressing out and who

I didn’t see for many weeks due to this project.

Table of Contents - III -

Table Of Contents

Chapter 1 Background 1

1.1 Introduction to Advocacy and Interpreting Service 1

1.1.1 Definition of Problem 1

1.1.2 Information Technology in the Organisation 2

1.2 Project Proposal 2

1.3 Project Objectives 3

Chapter 2 Background Research 5

2.1 Introduction 5

2.2 Brief History of Systems Development Methodology 5

2.2.1 Traditional Systems Development Life Cycle 5

2.2.2 Structured Methodologies 6

2.2.3 Object Oriented Development 7

2.3 Chosen Methodology 7

2.4 Method 9

Chapter 3 Analysis 11

3.1 Introduction 11

3.1.1 Analysis Techniques Used 11

3.2 Analysis of AIS 12

3.3 Functional Requirements and Non-Functional Requirements 13

Chapter 4 Design 14

4.1 Database Design 14

4.2 Conceptual Design: Entity Relationship Modelling 15

4.2.1 Entities and Attributes 15

4.2.2 Relationships 16

4.3 Logical Design 16

4.3.1 Primary Keys 16

4.3.2 Foreign Keys 16

4.3.3 Database Anomalies 17

4.3.4 Database Normalisation 17

4.3.4.1 First Normal Form 18

4.3.4.2 Second Normal Form 18

4.3.4.3 Third Normal Form 19

Table of Contents - IV -

4.3.4.4 Boyce Codd Normal Form 19

4.3.5 Logical Schema 19

4.4 User Interface Design 20

Chapter 5 Development and Testing 21

5.1 Choice of Development Package 21

5.2 Physical Design of Database 22

5.2.1 Schema Implementation 22

5.2.2 System Output Implementation 22

5.3 Interface Implementation 22

5.3.1 Structured Query Language 22

5.3.1.1 SQL within the system 23

5.3.2 Data Validation 23

5.3.3 Security 24

5.3.4 HCI issues 24

5.4 Testing 26

5.4.1 System Testing 26

5.4.2 Real Data Testing 26

Chapter 6 Evaluation 27

6.1 Evaluation of Prototype and Recommendations 27

6.2 Evaluation of Objectives 27

References 29

APPENDICES

Appendix A: Reflections

Appendix B: Documentation from AIS

Appendix C: UML Diagrams for Analysis

Appendix D: Initial ER Diagram

Appendix E: Logical Schema

Appendix F: UML Diagrams for Design

Appendix G: Implemented Tables with Attributes

Appendix H: Report Output

Appendix I: Data Validation Table

Appendix J: User Manual

Appendix K: Interface Screen Shots

Chapter 1 – Background - 1 -

1 Background

1.1 Introduction to Advocacy and Interpreting Service

Advocacy and Interpreting Service (AIS) is a charitable organisation. It was established in 1993

and is funded by the Health and Social Services. Based in Leeds, they mainly provide a

translation, interpreting and advocacy service to the Chinese, Bangladeshi and Pakistani

community in the Leeds area. They aim to develop greater access to health; social care and

community care services to these communities by liasing with voluntary and statutory

organisations. AIS’s main belief is that,

“everyone is entitled to receive a service in which their religious, cultural and social needs are

respected”.

 (AIS Annual Report 1999-2000)

AIS currently holds details on over 700 clients, with over 200 of them being regular clients. They

provide a drop-in service for clients to attend when they need help. Also, members of staff regularly

accompany clients to places where they may need the help of an interpreter, e.g. GP

appointments, hospital appointments and dental appointments. Currently there are seven full time

members of staff, which includes five bi-lingual co-ordinators, the AIS administrator and the service

manager Mussarat Khan. Due to the limited number of staff and the high demand for the service

that AIS provides, they also have a number of volunteers who help the bi-lingual co-ordinators.

These volunteers essentially carry out the same job as the co-ordinators (translation, interpreting

etc.) whilst also handling any day-to-day administration work.

1.1.1 Definition of Problem

I joined AIS in September 2000 as a voluntary worker. After a period of time it became apparent to

me that the majority of administration work was done on paper. I thought that this was a very

cumbersome method. All the client’s details and their case details were held in a file and were

stored alphabetically. Each time a client came to AIS they were marked down in a client entry

book. The staff encountered three major problems with this:

I. Sometimes the files were misplaced making it difficult to find.

II. At the end of every month a client entry sheet had to be filed in, showing the breakdown of

the clients that have come to AIS and their problems. The process of producing this

document was to go through the client entry book and mark down every client along with

Chapter 1 – Background - 2 -

his or her case details. This is a slow and tedious task, and sometimes problematic as the

client entry book is never filled in chronologically.

III. When AIS organises events, such as a talk on nutrition and diet, or the Annual General

Meeting, letters need to be sent out to all the regular clients. This involved going through

the client entry book to find the regular clients and then going to each client’s file to find

their address. This again was an extremely slow and cumbersome method.

Therefore after speaking to several members of staff and the service manager, Mussarat Khan,

they agreed that they needed a more efficient method of storing and retrieving client’s data.

1.1.2 Information Technology in AIS

Currently AIS has two computers. However after inspection they were discovered to be very old

and hence extremely slow. The specifications are detailed in figure 1.1

PC 1 PC 2

486 DX, 33Mhz Pentium 133

HDD: 400MB HDD: 808.91MB

3½ Floppy Disk Drive 3½ Floppy Disk Drive

5¼ Floppy Disk Drive 4xCD Rom

15 inch VGA Monitor 15inch VGA monitor

Printer: Hewlett Packard Deskjet 500C Printer: Hewlett Packard Deskjet 870Cxi

Windows 3.1, MS Works Windows 95, Office 95

Figure 1.1: Specifications of current computers in AIS

As a result of the low specifications of the two computers currently used in the office, they are

treated as ‘glorified typewriters’. They are only used for basic administration work, such as typing

reports and letters, and creating posters. However the organisation is currently in the process of

purchasing a new computer. After advice from me and in respect to the organisation’s budget a

new computer will be purchased. The specifications of this computer are detailed in figure 1.2.

1.2 Project Proposal

This project is the analysis and design of an information system for AIS. This involves two parts:

I. Designing and implementing a database for the clients details and their case details

Chapter 1 – Background - 3 -

II. Designing and implementing a user interface to access the database.

Due to the fact that AIS will be purchasing only one reasonable computer, with the other two

computers currently used in the organisation being extremely slow, the database and user

interface will run on the new computer only. This means that the database will be a simple client

side database.

1.3 Project Objectives

The objectives of the project are as follows:

I. Identify the requirements

The initiation of the project will begin with the analysis of the organisation so that the

requirements of the organisation can be identified.

II. Model the requirements

After studying Unified Modelling Language (UML), I believe that these concepts are

extremely useful in the development of an information system. Therefore a selection of UML

diagrams and entity-relationship diagrams will be used for the database. This will help the

modelling of the requirements for this project.

III. Design and implement an information system

An appropriate development methodology will be chosen and used throughout the project

(see chapter 2). The design of the information system is related to objective II (above) with

special emphasis placed on designing a database using Access 2000. Access 2000 has

Pentium 3, 800Mhz

128MB Memory

HDD: 20.4 GB

3½ Floppy Disk Drive

48x CD Rom

19 inch Monitor

Graphics Card: Volcano 32MB TNT2 M64 AGP

56K Modem

Iomega Internal 250MB Zip Drive

Windows ME, Office 2000 Premium Edition

Figure 1.2: Specifications of new computer

Chapter 1 – Background - 4 -

been chosen because the new computer will have Access 2000 installed, and also because I

am familiar with this software. The user interface will be developed using Visual Basic 6 (VB).

(There are more details on the two packages used in chapter 5). This is because the

University has VB on their machines and VB is the most widely used software development

package in the world. Also I have chosen VB, as I would like to learn the programming

language.

Chapter 2 – Background Research - 5 -

2 Background Research

2.1 Introduction

Before any analysis or design takes place, it is important that a development methodology is

chosen. This chapter will explain the importance of using a development methodology and also

briefly describe three different methodologies, Systems Development Life Cycle (section 2.2.1),

Structured Methodology (section 2.2.2) and Object Oriented Development (section 2.2.3). Finally in

section 2.3, an appropriate methodology will be chosen with the method described in section 2.4.

2.2 Brief History of Systems Development Methodology

Before the use of system development methodologies, systems development was a ‘hit or miss’

affair. Some development projects would succeed whilst some would fail. It was a big risk when an

organisation wanted to implement a systems development project. The main risks involved were:

• Time

• Money

• Probability of Failure

• Data Loss

Systems development methodologies were introduced in response to the need of reducing the

risks involved with systems development. This gave the designers a set of tools and techniques to

use which provided a more systematic approach, increased predictability in results, better

management of resources (thereby reducing the costs) and improved co-ordination between the

designers and the users. The result of the utilisation of a systems development methodology is that

everybody engaged in the project is working from the same methods, using the same

documentation and therefore no misunderstandings or miscommunication will occur, resulting in

fewer mistakes. This is extremely important in today’s business world as the business environment

is becoming more and more complicated whilst technological advances continue to accelerate.

2.2.1 Traditional Systems Development Life Cycle

One of the first systems development methodologies that were used was the traditional system

development life cycle (SDLC). Avison and Fitzgerald (1995) identify six main stages in the

traditional SDLC, where each stage has an output that leads onto the next stage. The stages are:

• Feasibility study

• Systems investigation

Chapter 2 – Background Research - 6 -

• Systems analysis

• Systems design

• Implementation

• Review and maintenance

This methodology has been used for over thirty years, and was considered better than having no

methodology at all. The documentation that accompanies each stage ensures that the original

specifications are correct and also ensures that there is good communication between the users

and the developers. Also, because of this continuous feedback between the user and developers,

the time and cost of the development process can be controlled.

However, the documentation that this methodology produced may become too complex for users

to understand. Also many developers felt that producing the documentation was a chore and

subsequently poor documentation was produced. The way that the outputs for each stage were

defined before the stages were complete made the methodology inflexible. And because the

methodology was step-by-step process with no iteration, if the investigation and analysis stages

were poorly executed, or the requirements of user changed, then the result would be a poor or

incomplete system.

2.2.2 Structured Methodologies

Structured methodologies are one of the most widely used approaches to designing information

systems. It takes a top-down view of an organisation and decomposes it into a set of modules,

which makes a complex organisation more manageable. The methodology is well documented with

a consistent set of procedures at all stages, which the users are also involved with. There are

many structured methodologies, each with it’s own set of procedures. For example SSADM

(Structured Systems Analysis and Design Method) has the following stages:

• Feasibility

• Investigation of the current environment

• Business systems options

• Definition of requirements

• Technical options

• Logical design

• Physical design

(Clark 1999)

Each of these stages has it’s own set of procedures and techniques that may use a number of

development tools. However these procedures are very strict, with the emphasis placed on the

Chapter 2 – Background Research - 7 -

documenting the whole process. This formalises the development process, and gives it structure,

thereby making the development of an information system for a complex organisation more

manageable. Unfortunately, the rigid structure of this methodology means that the development

cannot deviate from its original aim. It assumes that the needs of users can be defined from the

outset, as there is no iterative cycle to reassess the users’ requirements. Also, structured

methodologies tend to produce documentation that is too technical for the users to understand and

hence poor communication can occur between the users and developers.

2.2.3 Object Oriented Development

Object-oriented development (OOD) grew from object-oriented programming languages. Objects

are basically reflections of ‘things’ in the real world, e.g. a chair is an object. It may have different

attributes such as price, colour and weight, and it may belong to a higher class, or a generalisation,

such as ‘furniture’ that may contain other objects such as table and desk. This type of modelling of

the real world is the basic principle that OOD uses.

OOD has many of the principles contained in structured systems development, but with five main

differences:

• Encapsulation of process within data in both the systems structure and the development

methodology

• Objects in the system are assigned ‘responsibilities’

• Modelling of the problem domain throughout development

• Emphasis on design and code reuse with extensibility

• Incremental and iterative development

(Booch 1994)

Recently, OOD methodologies have been growing in usage due to the popularity of object-oriented

programming languages. The promises of reusable components, user involvement and a system

that can easily adapt to the users’ ever-changing needs, have enticed many developers. However,

it has been noted that OOD is not suitable for the redevelopment of legacy systems (Bruegge and

Dutoit 2000), where rebuilding them to object-oriented designs and retraining users would cost a

considerable amount of money and time.

2.3 Chosen Methodology

When choosing the methodology needed for this project I needed to consider the following points:

• Flexibility

• Time

Chapter 2 – Background Research - 8 -

• User interaction

Dearnley and Mayhew (1983) proposed the inclusion of prototyping into the SDLC. The use of

prototypes gives the user and designers a ‘taste’ of the system to come. Figure 2.1 shows how

prototyping can be integrated into the SDLC.

Use of prototyping can save time, especially for the analysis and design stages of development.

For a user to see and test a prototype gives them a feel for the system and can confirm that the

developers have captured the users requirements correctly. Whilst simply producing a final system

would mean that that would be the first time that they use, or even see, the system, and hence any

dissatisfaction with it, may be too late.

The use of prototypes can generate more information about the users and their requirements than

just analysing them. Also because of the continuous communication between the users and

developers there is increased user interaction.

Operation

Implement

Test

Program

User
request

Maintenance

Evaluation
Feasibility

Investigation

Consider
Prototyping?

Analysis

Design

Final
proposed
design

Analyse

Use
prototype

Design
prototype

Yes

Investigate

Refinement
or new

prototype
required?

No

No
No

Figure 2.1: The revised system life cycle with prototyping [Dearnley and Mayhew 1983]

Chapter 2 – Background Research - 9 -

This methodology satisfies all three criterion outlined above. SDLC with prototyping is flexible as it

is an iterative approach to designing an information system. Any changes to the users

requirements or any errors or misunderstandings during the investigation phase can be identified

and rectified with the prototypes.

The limited time available to me means that development should be rapid, and Avgerou and

Cornford (1998) agree that the prototyping approach needs to,

“undertake extremely rapid construction and revision of systems”

I believe that successful user interaction is one of the fundamental aspects of designing a suitable

system. SDLC with prototyping provides this user interaction throughout the development process.

Dearnley and Mayhew also suggest that an added advantage to this approach is that the

developer can learn how to design and develop a system and learn how to overcome technical

problems. This would be ideal for me, as I have never taken on a project of this magnitude before.

2.4 Method

Figure 2.2 shows the stages that I will conduct throughout this project. It is a simplified diagram of

Figure 2.1. Here each of the stages lead onto the next stage, with each stage having a series of

outputs.

UML Diagrams
Functional Requirements

Physical Schema
Prototype

UML Diagrams
ER Diagrams

Logical Schema

Investigation

Design

Development

Test Prototype

Figure 2.2: Stages and outputs for project

Chapter 2 – Background Research - 10
-

As detailed in figure 2.2, the outputs for the investigation and design phases include UML (Unified

Modelling Language) diagrams. Using UML will help support the development of the system and

also enable documentation of the information acquired for future reuse. It is easy to use and

understand, whilst at the same time, also expressive of the system/organisation that it models.

UML is particularly suitable for object-oriented methodologies, but Priestley (2000) believes that

UML can be,

“… productively used with a wide range of processes”

Booch (1994) also suggests that UML is suitable for a methodology that is….

“…use case driven, architecture-centric, iterative and incremental”

Because of these factors, I believe that incorporating UML, in the prototyping methodology will be

ideal.

Chapter 3 – Analysis - 11 -

3 Analysis

3.1 Introduction

System analysis is one of the fundamental stages in systems development. Without a proper

understanding of the organisation the information system is intended for, and without proper

consultation of their requirements, the resulting information system may be useless. This chapter

will provide a brief overview of the analysis processes used and a summary of the findings.

3.1.1 Analysis Techniques Used

Investigations into AIS used interviews with the manager, Mussarat Khan, and staff members. Also

my own personal experience of working in the organisation was used to a limited extent. However,

it was important that I did not put too much emphasis on my voluntary work at AIS because I would

not be a long-term user of the system and also because my experience in the organisation was

limited to seven months. Existing documents and paperwork were used (see Appendix B:

Documentation from AIS) as a guideline for how AIS operated and what type of documentation AIS

needs to produce. Observations of how the staff operated also gave an insight into the workings of

AIS.

The information gathered from these investigations produced a number of key processes (section

3.2). These processes were then mapped onto Use Case diagrams and class diagrams. This

provided an abstract view of AIS, which could be developed further in the design stage.

3.2 Analysis Of AIS

Through the analysis techniques above, four key processes were identified:

I. New Clients – New clients need to be created and recorded using an appropriate method.

Currently a New Client Form is completed for any new clients wishing to use AIS.

II. Client Details – Details of clients should be able to be retrieved quickly. The current system

involves each client’s details, along with their case details held in a file. Every client is filed

alphabetically in a filing cabinet with each filing cabinet segregated by origin.

III. Case Details – Clients coming to AIS with problems need to have their case details

recorded along with the appropriate documentation to accompany the case, e.g.

photocopies of letters, forms and bills.

Chapter 3 – Analysis - 12 -

IV. Management information – monthly reports of client entries and client cases need to be

produced by the workers. Also, an annual report needs to be produced showing the

breakdown of client entries and cases throughout the year. Finally a list of clients name and

addresses need to be produced for mailing purposes.

Client Worker

Co-ordinator Volunteer

Create New
Client

Generate
Report

Create Case

View Client
Details

View Case
Details

Uses

Extends

AIS System

Figure 3.1: General Use Case for AIS system

Worker

Client List

Client Entry
Report

Annual
Report

Generate
Report

Includes

Includes

Includes

Figure 3.2: Generate Report Use Case

Chapter 3 – Analysis - 13 -

These four processes were first drawn up to provide two USE case diagrams (figure. 3.1 and figure

3.2). One represented an abstract representation of the system, whilst the other showed a slightly

lower level of abstraction for the Use Case Generate Reports.

A concept level class diagram was also drawn (Appendix C: UML Diagrams for Analysis). This was

based on the ER Diagram for the database (see Section 4.2.1: Entities and Attributes), where

entities are the same as classes.

3.3 Functional and Non-functional Requirements

From the four key processes detailed above and also the analysis of AIS, the functional and non-

functional requirements of the information system can be identified:

Functional Requirements

1. Client Details - The system must:

• Provide a record structure for the clients of AIS, which will include their personal and

case details.

• Allow client details to be created, modified, deleted, searched and printed.

2. Generation of Reports – The system must:

• Provide the utilities to preview and print the following reports:

I. Breakdown of overall client entries for the year (for the Annual Report)

II. Clients Monthly Record Sheets

III. Client List according to origin

Non-functional Requirements

1. Provide a user-friendly interface that will be easy to use for novice computer users.

2. Produce all reports automatically and therefore in a shorter period of time than the current

 paper based system.

3. Provide a user manual.

4. Provide a security system to prevent unauthorised access.

Chapter 4 – Design - 14 -

4 Design

4.1 Database Design

Atzeni and Ceri (1999) propose the phases of database design (figure 4.1) that should be followed.

Beginning at the definition of the application of requirements, as detailed in chapter 3, the three

step by step phases can be completed. The following sections will be concerned with the

conceptual and logical design of the AIS database. Whilst the physical design stage will be detailed

in the following chapter.

Figure 4.1: Phases of database design [Atzeni & Ceri 1999]

Conceptual Design

Logical Design

Physical Design

PHYSICAL SCHEMA

LOGICAL SCHEMA

CONCEPTUAL SCHEMA

Database
design

Application
requirements

Database structure
and related documents

Chapter 4 – Design - 15 -

4.2 Conceptual Design: Entity Relationship Modelling

This project used the Entity relationship (ER) model along with ER diagrams to graphically display

the conceptual model of the database. This gives a high level of abstraction of the organisation and

the data it needs to store. The output for this phase is the conceptual schema, which in the case of

ER modelling will be the ER diagram.

There are three main components of the ER diagram:

I. Entities – “a ‘thing’ in the real world with an independent existence” (Elmasri and Navathe

2000). For example, a car can be called an entity.

II. Attributes – these are the properties that describe the entity. For example, for a car the

associated attributes could be the make, model, engine size, colour etc.

III. Relationships – this is the relationship between two or more entities. For example, a person

may own a car.

Appendix D: Initial ER Diagram, shows the ER diagram based on the information in section 4.2.1

and section 4.2.2.

4.2.1 Entities and Attributes

To identify the entities and attributes, documentation from AIS was used along with advice from

staff at AIS. The following three points details the entities and attributes that should be modelled.

• Each client’s details must be stored; Name, address, date of birth, ethnic origin, language,

partner, children and phone number. The main source of this came from the Client Details

form (Appendix B: AIS Documentation).

(Note that the Client Details form contains extra information, but staff told me that this

information was rarely if ever filled in)

• Each client’s case details must be stored. The case details include: Case date, case

summary, case type, abbreviation of the case type and if there are any photocopy details

with the case. This information was taken from the client entry book.

• Workers details must be stored: Name and worker status, that is, is he or she a volunteer or

a co-ordinator. Also, if the worker is a volunteer, who is his or her co-ordinator.

From the above descriptions, the three entities, CLIENT DETAILS, CASE DETAILS and

WORKERS could be identified, along with their associated attributes.

Chapter 4 – Design - 16 -

4.2.2 Relationships

The relationship between each entity is described below. These relationships are derived from

interviews with the staff and general observation.

• CLIENT to CASE (one to many) - A client can have many cases, but case can only belong

to one customer

• WORKER to CASE (one to many) – A worker can work on many cases, but a case is only

handled by one worker

4.3 Logical Design

The next stage in database design is to map the conceptual design of the ER diagram to the actual

database to produce the logical schema (see Appendix E: Logical Schema). As a relational

database will be used, normalisation of the logical schema should be carried out to verify the

integrity of the design.

4.3.1 Primary Keys

It is important when developing a relational database that all tuples within a table are unique. This

is to avoid any ambiguity or confusion. Therefore, primary keys are used to preserve the

uniqueness of tuples. The primary key in a table is the one attribute that must have a value that is

unique for each tuple. Any attribute can be a primary key, however it must be chosen carefully. For

example, people’s names might not always be unique.

For the Client Details Table, the original primary key was intended to be the national insurance

number (NI attribute) as this is unique for every person. However it became apparent after

analysing the current client records that the NI number is not always known. This is a problem as a

primary key can never be a null value. Therefore, separate primary key attributes were created for

each relation to preserve database integrity.

4.3.2 Foreign Keys

As shown in the E-R diagram in Appendix E: Logical Schema, each entity is related to another

entity. To represent this in a database a table must reference another table. The method of

achieving this is to create a foreign key that references the primary key in the appropriate table.

For example, to map the relation Client Details to Case Details, a foreign key called CaseID is

created in Client Details. This references the primary key in the Case Details table , which is also

called CaseID)

Chapter 4 – Design - 17 -

4.3.3 Database Anomalies

When designing a database it is important that the tables do not contain too many attributes as

problems and inefficiencies of the database may occur. Ullman and Widom (1997) identify the

following three problems; I have used figure 4.2 to illustrate these problems:

I. Update anomalies

This problem can occur when information for one tuple is changed, whilst the same information

in another tuple remains unchanged resulting in an inconsistent database. For example, if the

case abbreviation for benefits is changed from ‘B’ to ‘BEN’, and only CaseID 2 is changed,

there would be an update anomaly, as the applicable information for CaseID 3 has not been

changed. Also, inserting a new client in this relation may prove problematic as he or she may

not have any case details and so the other attributes in that tuple will need to contain null

values.

II. Deletion anomalies

When some attributes for a tuple need to be deleted then other information for that tuple may

be lost. For example, if the case details for CaseID1 were to be deleted then the case type,

Housing along with the abbreviation, H, would be removed from the database, unless there

was another case that involved housing.

III. Redundancy

Tuples may contain the repeated information. For example, in the above table attributes such

as Case Type and Abbreviation are repeated unnecessarily.

4.3.4 Database Normalisation

To limit the problems identified in database design as described in section 4.3.3, it is important to

adopt the process of normalisation. There are six normal forms, each with increasingly stringent

tests to compare tables to. This section will deal with the first three forms and Boyce Codd normal

Figure 4.2 The relation Case Details with anomalies

CaseID Case Type Abbreviation Case Date Summary Photocopies

1 Housing HG 12/01/01
Advice on council
housing

No

2 Benefits B 01/03/01 Filled in JSA form Yes

3 Benefits B 18/04/00
Made enquires about
Income Support

No

4 Immigration IM 21/3/01 Translated statement Yes

5 Health H 30/1/01
Doctor’s appointment
at LGI

No

Chapter 4 – Design - 18 -

form, as fourth normal form and fifth normal form are for multivalued dependencies and join

dependencies respectively and hence are irrelevant to this project’s database design

4.3.4.1 First Normal Form (1NF)

Elmasri and Navathe (200) describe 1NF as concerned with ‘relations within relations’. That is,

values of attributes within a relation should be atomic and not multivalued. When considering the

design of the AIS database, it came to my attention that client’s may speak more than one

language. For example Chinese clients may speak both Cantonese and Mandarin. Therefore the

situation in figure 4.2 may occur in the database

To place this relation in 1NF the following steps were taken:

I. A new table, Language, was created. This will hold the languages that each client speaks.

II. The primary key of ClientDetails table, ClientID was referenced in the Language table,

using ClientID as a foreign key.

III. Now, if a client speaks more than one language, the details are simply entered in the

Language table. As both tables cannot contain multiple values, they are in 1NF.

4.3.4.2 Second Normal Form (2NF)

For a relation to be in 2NF, it must be in 1NF and also the non-trivial dependencies in that relation

must be full functional dependencies. That is, the functional dependencies within a relation, if

broken down, should not be able to form other functional dependencies. For the design of the AIS

database, primary keys, with single attributes, were created for each table. Therefore the tables

are automatically in 2NF, as the other attributes in each table depend on that primary key.

Consider the table ClientDetails. Here the primary key is ClientID. Therefore if ClientID is known

then the rest of the Clients Details will be known. Since ClientID can only contain single values,

and there are no other keys that determine the other attributes, this table is in 2NF.

Client Name Address DOB Sex Origin Language

Liu Jia Wen 19 Regent Park 12/04/56 F Chinese Cantonese, Mandarin

Simon Chan
167 Bellvue
Road

01/06/45 M Hong Kong Cantonese

Miran Dodd
5 Stanway
View

30/9/65 M Pakistani Urdu

Lin Biao 85 Burley Road 14/05/72 M Chinese Mandarin

Figure 4.3: Client Details Table not in 1NF

Chapter 4 – Design - 19 -

4.3.4.3 Third Normal Form (3NF)

3NF tests to see if any attributes in a relation are determined by attributes which are not keys. If

this is true then the relation is not in 3NF. On observation of the current relations it was discovered

that just one relation was not in 3NF.

Case Details relation – here, apart from the primary key determining all the other attributes, the

attribute Case Type also determined the attribute TypeAbbreviation.

To place this table in 3NF it was necessary to decompose them into further tables. This method is

described below:

I. For every dependency that is determined by a nonkey attribute, introduce a new relation.

For the CaseDetails relation a new relation CaseType was created.

II. Place the all the nonkey attributes and the attributes that they determine into the new

relation. The new relation CaseType contained the attributes Type and TypeAbbreviation.

III. Now the original relation (CaseDetails) and the new relation (CaseType) are in 3NF.

4.3.4.4 Boyce Codd Normal Form (BCNF)

This is the strongest normal form as it eliminates all anomalies. If a relation has more than one

attribute that could be the primary key (the candidate key) then each attribute value should depend

on both the primary key and the candidate key.

For the majority of relations in 3NF are also in BCNF. After inspection of my tables all of the

relations were in BCNF.

4.3.5 Logical Schema

Along with the changes made in the above sections, the following changes were also made to the

conceptual schema, to produce the logical schema:

• The Client entity was renamed ClientDetails to be more descriptive of the information it

contained.

• The Case entity was renamed CaseDetails to be more descriptive of the information it

contained.

• The Name attribute of ClientDetails was split into FirstName and Surname. This was to limit

the problems with Chinese names, where people’s surnames come first. It was deemed

more ‘safe’ to explicitly declare a first name and surname. Also these two attributes can be

used as a search criterion separately.

• The Address attribute of ClientDetails was split into Address1, Address2, Address3, and

Postcode. Splitting this attribute allowed increased consistent input by the users and also

because the postcode was to be one of the search criterions.

Chapter 4 – Design - 20 -

• An extra entity MobPhone (mobile phone number) was placed in the ClientDetails table.

This was to reflect the ever-increasing use of mobile phones.

• TypeAbbreviation in CaseType was shortened to TypeAbbrev as the original name was too

long.

• Looking at the initial ER diagram there was a problem with the Workers entity. Going back

to the analysis stage, both volunteers and co-ordinators can work on a case, with each

volunteer being supervised by a co-ordinator. There are also reports that are generated for

each Coordinator and their associated case. If a coordinator supervised a volunteer and a

volunteer handles a case, the case also belongs to the volunteer’s coordinator. I decided to

split the Worker entity into Volunteer and Coordinator, each being referenced by the

CaseDetails table. Then a new entity, Vol_Coord, was introduced to map volunteer to the

co-ordinator.

4.4 User Interface Design

In the design stage, class methods need to be identified for the different classes (see Appendix F:

UML Diagrams for Design). Looking at these methods, it was noted that the methods for the class

Client and the class Case were identical. The same functions, such as AddNew() and Save(),

would need to be implemented in both classes. Therefore it was logical to simply create these

functions once and reuse them for different classes.

VB6 provides the encapsulation principles that are associated with object oriented programming

languages. A class module can be created which can contain data types and methods, called

properties in VB, and then instances of this class, called objects, can be created which can access

these methods.

Therefore two new classes were created, NavigateButtons and Toolbar (see figure 4.4). They had

no attributes, just methods. These methods could then be used on the client details and case

details.Other functions and methods were simply taken from the use cases and activity diagrams

that had been drawn up (see Appendix F: UML Diagrams for Design).

Toolbar

AddNew()
Undo()
Edit()
Save()
Print()

NavigateButtons

MoveFirst()
MovePrevious()
MoveNext()
MoveLast()

Figure 4.4: NavigateButtons and Toolbar class with methods

Chapter 5 – Development and Testing - 21 -

5 Development and Testing

5.1 Choice of development package

As described in Chapter 1, the development of the information system had two sides,

• The development of the database

• The development of a user interface for the database.

I

It was decided that separate development packages would be used for the database and the user

interface respectively. The database would be developed using Access 2000 and the interface with

Visual Basic 6.

• Access 2000

Access 2000 is a powerful, yet easy to use, relational database management system. It

incorporates many functions that were extremely beneficial to the implementation of the AIS

database. For example, primary keys could be automatically created; validation rules and input

masks could be easily created using the wizards; and a large selection of data types could be

used.

• Visual Basic 6

Visual Basic (VB) is a high level, event driven programming language, which has evolved from

BASIC. VB was chosen mainly because of the limited time available for the development of the

information system and because using the prototyping methodology needed to use a

“powerful, interactive, high level language, which is easy to write and modify”

Dearnley and Mayhew (1983)

The graphical user interface that VB uses, provides the programmer with quick and rapid

response to code. The drag and drop methods of adding objects, saves hours of programming

time, whilst the effects can be seen straight away. Also, one of main objectives of this project

was to use and learn VB.

For my user interface to connect to the Access database, VB provides ActiveX Data Objects

(ADO). This new feature of VB6 has been promoted by Microsoft to become the de facto standard

for accessing data sources. ADO is an application interface that accesses the OLE DB, which in

turn accesses the underlying data. This is shown diagrammatically as a component diagram, in

Appendix F: UML Diagrams for Design

Chapter 5 – Development and Testing - 22 -

5.2 Physical Design of Database

5.2.1 Schema Implementation

The logical schema (section 4.3) provided the basis for the AIS database. During the physical

design of the database, the logical schema was mapped onto Access to create the database.

However, apart from the actual implementation of the schema, extra details needed to be added,

such as the data type of each attribute and if the attribute is required or not. Appendix G:

Implemented Tables with Attributes, details each table with their attributes and the appropriate

details. Also, with regard to the search function that was detailed as one of the functional

requirements, indexes were created for certain attributes so that when searching for certain details,

quicker access could be gained. Finally, validation rules, for some attributes, were set so that

erroneous values are not entered into the database (for more details see section 5.2.5)

5.2.2 System Output Implementation

As detailed in chapter 3, reports need to be generated on the client entries and their cases. This

was implemented by firstly coding the SQL query in Access and then using the report function in

Access I was able to able to create and format the look of the report. This was then linked to the

appropriate query. VB provided functions to access other Microsoft products such as Access.

Therefore using this function it allowed the interface to access the chosen report, preview it and

print it if necessary. Appendix I: Report Output shows some sample reports and figure 5.1 shows

the SQL query to list all the Bengali client details.

5.3 Interface Implementation

5.3.1 Structured Query Language

SQL is currently the standard for RDBMS. It is both a data definition language (DDL) and a data

manipulation language (DML). The former part allowing users to create tables, indexes, constraints

and other database objects. The DML side allows data to be edited, deleted and created. SQL is

used throughout this system to create, edit and delete client details and case details, however this

section deals with the search function within the system.

SELECT [ClientDetails].[Surname], [ClientDetails].[Firstname],
[ClientDetails].[Sex], [ClientDetails].[Address1],
[ClientDetails].[Address2], [ClientDetails].[Address3],
[ClientDetails].[Postcode], [ClientDetails].[HomePhone]FROM
ClientDetails WHERE [Origin]=3;

Figure 5.1: Query selecting all the Bengali ClientDetails

Chapter 5 – Development and Testing - 23 -

As detailed in chapter 3, one of the functional requirements was that users of the system would be

able to search the database for specific clients. Without this search function, users would have to

cycle through the entire database until they found the client that they needed.

5.3.1.1 SQL within the System

Currently the system can handle four search criteria, first name, surname, National Insurance

number and postcode. It was originally planned that only one of each criteria could be used by

itself, however after consultation with the staff at AIS, it was suggested that first names and

surnames may not be unique to a particular client, whilst the NI number and postcode may be.

However the NI number and postcode may not always be know. Therefore it was proposed that

any number of combinations of the four criteria could be used to search for a client.

There were two options of implementing the search function. The SQL statements could be

embedded into the code, with one statement for each possible combination of searches, or SQL

statements could be implemented at runtime, constructing an SQL statement dynamically.

With the use of UML, the approach to my information systems design meant that the code must be

reusable, therefore I chose the latter option.

The basic SQL statement, “SELECT * FROM ClientDetails Where…” is created and, depending on

which search criterion are chosen, the appropriate details are added on to the SQL statement to

complete it. Any combination of search criteria can be used and adding extra criteria is simple. If I

used the method whereby each SQL statement is coded into the program then adding extra criteria

would mean that many more SQL statements would need to be added. For example with four

search criteria, fifteen SQL statements would need to be created, if an extra criteria was added

then the total number of SQL statements needed would increase to thirty-one, if two more criteria

were added then sixty-three SQL statements would be need. An activity diagram in Appendix F:

UML diagrams for Design shows how this function works.

5.3.2 Data Validation

It is important that values entered into the database are validated. This is so that data throughout

the database remains consistent and comprehensible to the organisation, as well as avoiding any

user error. For example, a user may, accidentally, enter a client’s date of birth as 12/13/78, or a

user, when entering the ethnic origin of a client, may misspell the origin. Implementing data

validation involved two methods. Firstly, in the underlying database, validation rules were set for

the required attributes. Access had a facility for this, which made the creation of these rules simple.

Chapter 5 – Development and Testing - 24 -

Secondly, validation rules were implemented in the user interface, through Visual Basic. This was

more complicated as some validation rules need to be coded. However Visual Basic does supply

some facilities that can aid validation. For example, the use of combo lists was used for the origin

and language, to avoid misspelling. Therefore when the user enters the first letter of the origin or

language a drop down list appears to show the possible values. Also the use of a mask box was

used so that only specific values, either letters or numbers, are entered in the correct format. For

some data validation activities, such as checking if a text has been entered, VB provided a Validate

event procedure, which is accessed before the information is passed on to the actual database.

Here the appropriate code was programmed into this procedure and called every time a button was

clicked, e.g. the Save records button.

Appendix I: Data Validation Table, shows the fields that needed data validation rules and how they

were implemented in Access and Visual Basic.

5.3.3 Security

One of the non-functional requirements of the system was that it would prevent unauthorised users

access the system. This was easy to implement, as the ADO control, when accessing the

database can specify a password. This was simply left as a text data type called Password. When

a user opens the program he or she is asked to enter the password. This is then passed to the

ADO control and used to open the database.

5.3.4 HCI issues

IBM produces a document with eleven design principles that a user interface should adopt. These

were followed during the design of the interface as described below.

• Simplicity: Don’t compromise usability for function

The user interface must not be cluttered and users should be able to access the basic

functions easily and quickly. This was taken into account when implementing the main

command buttons. A toolbar, in the ClientDetails form was created which contained the most

used functions. Also the navigation buttons, for cycling through the client records was placed

below the data so that it was pleasing to the eye and easy to access.

• Support: Place the user in control and provide proactive assistance

This was not implemented in the prototype but it is hoped that further prototypes can provide a

help function.

• Familiarity: Build on users’ prior knowledge

Chapter 5 – Development and Testing - 25 -

Through the analysis stage (chapter 3) it was discovered that all members of staff had previous

working knowledge of the Windows operating system. Therefore I sought to provide an

interface that had the same ‘feel’ to Windows and the programs that ran on this particular

platform. Menus were created in similar orders and graphical representations for icons and

buttons used similar pictures.

• Obviousness: Make objects and their controls visible and intuitive

Using real world graphical representations for different functions means that users can learn

commands quickly and intuitively. For example in my user interface a picture of a printer for the

command ‘Print’ was used along with the text name of that command. Also the use of message

boxes, with the appropriate icon, e.g. an exclamation mark for a ‘warning message’, a question

mark for a message querying the user, was used so that users can, intuitively, understand the

message that the system is trying to portray.

• Encouragement: Make actions predictable and reversible

The use of graphical representation, as described above, makes certain commands

predictable. For example, on the toolbar a computer disk icon is used to represent the save

function. As many other applications use the same icon for their save function, a user seeing

this icon would instinctively know it’s function and hence be predictable. Implementation of an

‘Undo’ function whilst editing or creating a client record and the use of message boxes asking

for confirmation of certain actions, makes actions reversible.

• Satisfaction: Create a feeling of progress and achievement

Feedback from the interface reported on what the user had achieved. For example, after

saving a client’s details, a message box appeared which reported that the client’s details had

been saved.

• Availability: Make all objects available at all times

It was not possible to implement this principle in the design of the user interface because

certain actions lead on to other actions. For example, you can only save a client’s details after

you have inputted them in.

• Safety: Keep the user out of trouble

It is a fact that all users may make mistakes. Therefore it is important that user errors should be

reduced to the minimum. Chapter 5.1.3 describes the importance of data validation, and how

user error is controlled when entering data. Also confirmation of some actions, such as print,

save, delete is needed so that the users are sure of what they are doing.

Chapter 5 – Development and Testing - 26 -

• Versatility: Support alternate interaction techniques

As well as using the mouse, keyboard shortcuts were created for each button. Also the use of

the tab button could move the user from one control to the other.

• Personalisation: allow users to customise

This principle was not implemented for the system as it was beyond the scope of what was

required. However, a recommendation for further prototypes would be the choice to change the

display of the interface according to the user’s preference.

• Affinity: Bring objects to life through good visual design

A toolbar was used to prevent clutter in the main form. Also changes in colour of the input fields

meant that the user new that he or she was in the editing mode.

5.4 Prototypes

5.5 Testing

Even though I was using a prototyping methodology, testing of the system was ongoing throughout

the development process. After implementing a method I would test it to see if the functionality was

what was required.

At the end of the development of the first prototype, system testing and real data testing

(section5.5.1) was conducted (section 5.5.2). This was then compared to the functional and non-

functional requirements detailed in section 3.3.

5.5.1 System Testing

Some members of staff at AIS tested the system. They essentially ‘played around’ with the system

and also tried to do their day-to-day activities on the system. The problems that they encountered

and the recommendations that they made are detailed in chapter 6.

5.5.2 Real Data Testing

A selection of client details and case details were entered into the system and the underlying

database. This was to trap any errors in the design of the database and the interface and to make

sure that data validation worked on both levels.

Chapter 6 – Evaluation - 27 -

6 Evaluation

6.1 Evaluation of Prototype and Recommendations

After the testing of the prototype, the staff at AIS agreed that they liked the way that they could

navigate through the client records and client details. Also the save, edit and undo functions

worked fine. However the output of the print function for the client details and case details did not

produce the results that the staff were hoping for. When clicking the print button a print out of the

client or case details screen would be outputted. Staff noted that what needed to be outputted were

a few lines of text, and not the whole screen. One member of staff noted that using this print

function would waste a lot of ink. Also when printing the case details, it was expected that all the

client’s case details would be printed out and not just the case detail that you were currently

viewing.

Generation of reports was adequate, but a preview function should have been incorporated. Also

two types of reports had not been implemented yet, breakdown of overall client entries for the year

and the clients monthly record sheets.

Every body agreed that the search function worked well, but staff suggested that a further search

criterion be implemented. This was to search clients who had been to AIS within certain dates.

6.2 Evaluation of Objectives

Section 1.3 outlined the three main objectives for this project:

I. Identify the requirements.

II. Model the requirements.

III. Design and Implement an information system.

With regard to identifying and modelling the requirements, I believe that a thorough job was carried

out, even though the end prototype had several features that were lacking. I think that this was a

problem of time and a rush to produce the prototype. This was one of the disadvantages of using

the prototyping methodology which I seemed to fall for. However I still believe that the prototyping

methodology was extremely appropriate to this project. However as these objective were outlined

before a methodology was chosen, the third objective changed to “Design and implement a

prototype information systems”. However the minimum requirements did not change:

• An executable system

Chapter 6 – Evaluation - 28 -

• Use case Diagrams

• Appropriate UML diagrams

• User Manual

It was originally hoped that at least two iterations of the prototype cycle would be followed.

However due to technical difficulties with Visual Basic on the Computers within Computing

department, the development process was delayed. Many of the components for Visual Basic,

such as the ADO interface, which was essential to the connection of the interface to the database

was inoperable. After inquiring with support about this problem they told me that they were fixing

the problem. Unfortunately the problem took about two weeks to resolve, therefore putting my

project behind schedule.

In the end only one iteration of the prototype was produced. However this prototype has given AIS

and me, a good understand and a good feel for the potential of the system.

References - 29 -

References

AIS, AIS Business Plan 1999-2004, March 1999

AIS, AIS Annual Report 1999-2000, March 2000.

Angell I.O and Smithson, S, Information Systems Management Opportunities and Risks,

Macmillan, 1991.

Avgerou, C. and Cornford, T., Developing Information Systems Concepts, Issues and Practice,

Macmillan, 2nd edition, 1998.

Avison, D.E., and Fitzgerald, Information System Development: Methodologies, Techniques and

Tools, McGraw-Hill, 2nd Edition, 1995

Booch, G., Object-Oriented Analysis and Design, Addison-Wesley, 2nd edition. 1994.

Bruegge, B. and Dutoit, A.H, Object Orientated Software Engineering – Conquering Complex and

Changing Systems, Prentice Hall, 2000

Clark, M., Introduction to Information Systems (Lecture notes), School of Computing, Leeds

University, 1999.

Conell, J., Beginning Visual Basic 6 Database Programming, Wrox Press, 1998

Dearnley, P.A. and Mayhew, P.J., In favour of system prototypes and their integration into the

systems development life cycle, Computer Journal, Vol. 26 No.1, pp36-42, February 1983

Ekedhal, M. and Newman, W., Programming with Microsoft Visual Basic 6.0 An Object Oriented

Approach, Course Technology, 1999.

Elmasri, R. and Navathe, S.B., Fundamentals of Database Systems, Addison-Wesley, 3rd edition,

2000

IBM, Design Basics, www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/6

Johnson, O., Object Orientated Analysis and Design (Lecture notes), School of Computing, Leeds

University, 2000.

References - 30 -

Larman, C., Applying UML and Patterns An Introduction to Object-Oriented Analysis And Design,

Prentice Hall, 1998

Roberts, S.A., Database Principles and Practice (Lecture notes), School of Computing, Leeds

University, 2000.

Stevens, P. and Pooley, R., Using UML Software engineering with objects and components,

Addiso-Wesley, Updated Edition, 2000.

Senn, J.A., Analysis and Design of Information Systems, McGraw-Hill Publishing Company, 2nd

edition, 1989

Ullman, J.D. & Widom, J., A First Course in Database Systems, International Edition, Prentice Hall,

1997

Appendix A: Personal Evaluation

Overall I think that my project was suitable and appropriate to what I wanted to do, but I did not

realise the amount of work that I would need to put in. I have never taken on a project of this size

before and I think that my lack of experience hindered my progress.

Time management is one of the areas that I was severely lacking in. It was not just that I never had

enough time to do a certain stage, but sometimes I spent too long on one stage. For example for

the database design stages, I constantly drew and redrew many ER diagrams.

Also because of my unfamiliarity with VB, I sometimes got stuck. I think that if I were to spend

more time at the beginning learning some VB and playing around with some of it’s controls then

when it comes to the actually development stage I would have been more prepared.

One of the fundamental requirements of using a prototyping methodology was that prototypes

should be created quickly.

Using the UML diagrams was extremely useful to me. I, personally, always seem to see things

more complicated than other people, but the UML diagrams were extremely helpful in providing an

abstract view.

Appendix B: Documentation From AIS

Appendix C: UML Diagrams for Analysis

General Use Case for AIS System

Extends

Client Worker

Co-ordinator Volunteer

Create New
Clients

Generate
Reports

Create
Cases

View Client
Details

View Case
Details

Uses

Extends

AIS System

Use Case for View Client Details

Use Case for Generate Reports

Worker

Client List

Client Entry
Report

Annual
Report

Generate
Reports

Includes

Includes

Includes

Worker

Navigate
Client Details

Print Client
Details

Search Client
Details

View Client
Details

Includes

Includes

Includes

Delete Client
Details

Edit Client
Details

Includes

Includes

Concept Class Diagram for AIS

Client

Name

Address

DOB

Phone No

Origin

Language

Children

Partner

Case

Date

Type

Type Abbreviation

Summary

Photocopy Details

Worker

Name

Status

Co-ordinator Name

1

0…*

0…*

1

works
on

has a

Appendix D: Initial ER Diagram

Client

Case

has

works on

Name Address

Date of Birth

Origin
Language

Partner

Children

Name

Date

Summary

Photocopy
details

Case Type

Phone No.

Type
abbreviation

Worker

Worker Status

Coordinator
Name

Appendix F: UML Diagrams for Design

Activity Diagram for Use Case New Client

Clear fields Click New
Client Button

Enter
Details

Error
Check

Write to
database

[No Errors]

Undo

Save

[Click Save]

[Errors]

[Click Undo]

Activity Diagram for the Find Method

Enter search
criteria

Generate
full SQL

Error
Check

Check
database

[1 criteria]

Check no.
of search
criteria

Check which
search

criterion

[No errors]

[errors]

 [1> criteria]

Generate
part SQL

[No. of part SQL
statements does
not equal no of
search criterion]

[No. part SQL = No.
criterion]

Sequence Diagram for Use Case New Client

:Worker :Interface :Database

Create new client

Display New
Client Form

Enter client details

Save client details

Error check
client details

Add new client

Ask for confirmation

Confirm save new client

Save client
details

Component Diagram Showing Runtime Dependencies

 User

Interface

 ADO

Interface

 ODBC

Driver

Database

Appendix G: Implemented Tables with Attributes

Table: CaseType

Name Type Size Details
TypeID Long Integer 4 Primary Key
Type Text 50 -
TypeAbbrev Text 5 -

Table: CaseDetails

Name Type Size Details
ClientID Long Integer 4 Primary Key
CaseID Long Integer 4 Foreign key
CaseDate Date/Time 8 -
CaseSummary Memo - -
VolunteerID Long Integer 4 -
CoordinatorID Long Integer 4 Foreign Key
TypeID Long Integer 4 -
Photocopies Yes/No 1 -

Table: ClientDetails

Name Type Size Details
ClientID Long Integer 4 Primary key
Surname Text 30 Indexed
Firstname Text 30 Indexed
DOB Text 8 Input mask
Sex Text 7 Validation rule
NI Text 9 Input mask
Partner Yes/No 1 -
Children Yes/No 1 -
MobPhone Text 10 -
Address1 Text 50 -
Address2 Text 50 -
Address3 Text 50 -
Postcode Text 7 Indexed
HomePhone Text 20 -
Origin Long Integer 4 -
LanguageID Long Integer 4 Foreign key

Table: Co-ordinators

Name Type Size Details
Co-ordinatorID Long Integer 4 Primary key
Co-ordinatorName Text 50 -

Table: Language

Name Type Size Details
ClientID Long Integer 4 Foreign key
Language Text 50 -

Table: Volunteer

Name Type Size Details

VolunteerID Long Integer 4 Primary key
VolunteerName Text 50 -
CoordinatorID Long Integer 4 -

Table: Coordinator

Name Type Size Details
CoordinatorID Long Integer 4 Primary key
CordinatorName Text 50 -

Table: Vol_Coord

Name Type Size Details
VolunteerID Long Integer 4 Primary key
CoordinatorID Long Integer 4 Foreign key

Appendix H: Report Output

Appendix I: Data Validation Table

Table Field Validation Rule Method in Access Method in Visual Basic

ClientDetails Sex Only allow male or female "m" Or "M" Or "F" Or "f"

Or "Male" Or "male" Or

"Female" Or "female"

Code

ClientDetails DOB Format should be in the

form dd/mm/yy

Input mask: 00/00/00;0; Mask Box

ClientDetails Postcode Format should be in the

form

Input mask: LL00\ 0LL Mask Box

ClientDetails Origin Choice from the Origin

table only

None Combo List

ClientDetails Language Choice from Language

table only

None Combo List

CaseDetails Date Format should be in the

form: dd/mm/yy

Input mask: 00/00/00;0; Mask Box

CaseDetails CaseType Choice from Case table

only

None Combo List

CaseDetails Worker Choice from Worker table

only

None Combo list

Appendix K: Interface Screen Shots

Appendix J: User Manual

 - 1 -

 ���������
	�����

Main screen

On opening of the Client Details interface, the main menu screen is displayed (see below).

Figure 3: Main Screen

There are five option buttons that you can choose between, each opening a separate window, apart

from ‘Exit’, which exits the program. The following sections will detail each option button and it’s

associated window.

Create New Client

To add a new client, click the Add button. This will bring up the client details window. Notice that

all the test boxes are yellow and blank. This shows that you can now add a new client. Enter the

details of the client and then click the Save button to add the client to the database.

When entering the details you must:

1. Enter the details for First name, surname, sex, date of birth (DOB), origin and language.

2. Date of Birth must be in the format – day/month/year. For example for someone who was

born on the 18th April 1978 you would enter the details 18/4/78.

 - 2 -

If at any time you decide not to add a new client, click the Undo button. This will take you back to

the Client Details screen.

Client Details

On clicking of the Client Details button, the Client Details screen (Error! Reference source not

found.) will appear.

Figure 2: Client Details Screen

Here you can do several things:

1. Add a new Client

(see Create New Client)

2. Navigate through the client records.

The buttons shown below are the main navigational buttons

 - 3 -

Figure 3: Navigation Buttons

You can also use the directional arrows on the keyboard to navigate through the records:

 This takes you to the first record on the database

 This takes you to the last record on the database

 This takes you to the previous record

 This takes you to the next record.

Note

• If you are at the beginning of the database then the move to first record button and

first record button is disabled.

• If you are at the end of the database then the move to last record button is disabled,

as is the move next record button.

• Whilst in navigation mode, the save and undo options are disabled on the toolbar.

3. Edit client details

To edit the current client’s details, click the Edit button. You will notice that all the fields turn

yellow. Now you can edit the details of the client as you please. (see Create New Client) for the

input details that you need to have for a client.

If you want to save the edited client details, click the Save button.

If you do not want to save the edited client details, then click the Undo button.

4. View the case details for the client.

Move to
previous record

Move to next
record

Move to last
record

Move to first
record

 - 4 -

Clicking on Case Details button will take you to the Case Details screen (figure 2). This shows

the case details for the client. The controls are detailed in the Case Details Screen.

5. Print the client’s details

Click on Print will print the current client details screen to the attached printer.

6. Find a client

Clicking on Find will bring up the Find Client screen (see Find Client)

7. Delete the client’s details

This will delete the details of the client that are currently on the screen.

Warning – If you delete a client’s details then you will delete his or her case details as well.

8. Exit the window

Clicking on Done will exit this window and take you back to the Main Screen.

Case Details

On clicking of the Case Details button, the Case Details screen (figure 2) will appear.

Here you can do several things:

1. Add a new case

Clicking on the Add New button will, turn all the fields yellow and blank. Now you can add the

new case details for the client. To save the new case details, click the Save button.

When entering the details you must enter the details for case date, case type and case

abbreviation.

If at any time you decide not to add a new case, click the Undo button. This will take you back

to the first case’s details.

 - 5 -

2. Edit case details

Clicking on the Edit button will, turn all the fields yellow. Now you can edit the current case

details for the client. To save the changes that you have made, click the Save button.

If at any time you decide not to edit the case details, click the Undo button. This will take you

back to the first case’s details.

3. Navigate through the Case records.

The main navigational buttons are exactly the same as the navigation buttons for the Client

Details screen (see Navigate through Client Details for more information).

4. View the client details for the case.

Clicking on Client Details button will take you back to the Client Details screen

5. Print the case’s details

Click on Print will print the current case details screen to the attached printer.

6. Delete the case details

This will delete the details of the case that are currently on the screen.

If there are any further cases for the client, the case details screen will be displayed, with the

next case’s detail.

If there are no more cases for the client, you will be returned to the Client Details screen.

7. Exit the window

Clicking on Done will exit this window and take you back to the Client Details screen.

Find Client

Clicking on the Find Client button on the Main screen, and also the Find button on the Client

Details screen will take you to the Find Client screen.

This screen allows you to search for a client depending on the criteria that you set it.

 - 6 -

Figure 4: Find Client Screen

The criteria that can be used are:

• First name

• Surname

• Postcode

• NI (National Insurance Number)

Any combination of the above criteria can be used. Simply click on the associated check button(s)

and then enter the details. Next click the Find button. The number of client details matching the

criteria that you specified will be displayed, along with th option to view them. Clicking on Yes will

take you to the Client Details screen. This will only display the results of your search. To return to

the whole list of client details click View All.

Reports

Clicking on the Reports button on the Main screen, will take you to the Reports screen. Here you

can choose which reports you want to create and print.

The available reports are:

• Client List

• Client List by origin – this provide you the possible client origins currently in the database.

Select the report that you would like to print and then click the Print button to print out that report.

