
NSL
Neural Simulation Language1

Version 2.1

Alfredo Weitzenfeld

Technical Report 91-05
August 1991

Brain Simulation Laboratory
Center for Neural Engineering

University of Southern California

1 Preparation of this document was supported in part by grant 1R01 NS24926 from NINDS of the
National Institutes of Health (Michael A. Arbib, Principal Investigator), and in part by a grant from
Rockwell International to the USC Center for Neural Engineering.

NSL - Neural Simulation Language
Version 2.1

The software described in this document and the document itself are copyrighted and may not be copied
or otherwise distributed without the prior written consent of the Brain Simulation Laboratory.

The information in this document is subject to change. The Brain Simulation Laboratory assumes no
responsibility for any errors that may appear in this document. Users are requested to advise Alfredo
Weitzenfeld at the address given below of any comments or suggestions for improvements.

To get copies of the software contact :

Alfredo Weitzenfeld
Brain Simulation Laboratory
Center for Neural Engineering
University of Southern California
Los Angeles, CA 90089-2520
e-mail : alfredo@usc.edu

The lab will charge a fee of $50 for tape, user's manual and delivery.
(For FTP, send a request to the above e-mail address.)

Copyright 1991 Brain Simulation Laboratory All Rights Reserved

 Alfredo Weitzenfeld: NSL 2.1 3

 Table of Contents

1. Introduction... 6
2. NSL System Overview... 6

2.1. System Requirements ... 7
2.2. User Expertise ... 7
2.3. System Design ... 7

3. Neural Network Simulation .. 9
3.1. Neurons and Links.. 9
3.2. Layers and Masks .. 10
3.3. Numerical Methods... 12
3.4. Learning Methods.. 12

4. Amari/Arbib Maximum Selector (Didday) Model... 13
4.1. didday.c.. 13

4.1.1. Declarations.. 14
4.1.2. INIT_MODULE... 15
4.1.3. RUN_MODULEs... 15
4.1.4. Compilation.. 16

4.2. didday.nsl... 17
4.2.1. Simulation Parameters .. 17
4.2.2. Model Parameters.. 17
4.2.3. Graphics ... 18
4.2.4. Running the Simulation.. 19

5. NSL Model Language... 20
5.1. Object-Oriented Programming .. 20
5.2. Model Creation.. 20
5.3. Model Object Classes.. 20

5.3.1. Network.. 20
5.3.2. Layer .. 21
5.3.3. Module.. 23

5.4. Expressions.. 25
5.5. Layer Class Functions... 27

5.5.1. Transformations... 27
5.5.2. Sectors... 29
5.5.3. Other.. 29

5.6. Layer Library Functions ... 30
5.6.1. Addition ... 30
5.6.2. Subtraction.. 30
5.6.3. Multiplication... 31
5.6.4. Division.. 31
5.6.5. Convolution... 32
5.6.6. Threshold ... 34
5.6.7. Other.. 37

5.7. Numerical Methods... 38
5.7.1. Euler ... 38
5.7.2. Interpolation... 38
5.7.3. Runge-Kutta.. 39

5.8. Learning Methods.. 39
6. NSL Simulation Commands.. 39

6.1. Model Object Classes.. 40
6.1.1. network... 40
6.1.2. layer... 41
6.1.3. module .. 42

6.2. Simulation Processing .. 43

 Alfredo Weitzenfeld: NSL 2.1 4

6.3. Data files.. 44
6.4. Simulation Management .. 45
6.5. Numerical Methods... 45
6.6. Other.. 46

7. NSL Window Interface .. 46
7.1. Display Object Classes... 47

7.1.1. window_interface.. 47
7.1.2. display_frame .. 48
7.1.3. display_window ... 48
7.1.4. display_canvas... 50
7.1.5. display_panel... 52

7.2. Window Mouse Interaction... 53
7.2.1. Drawing Frame... 53
7.2.2. Drawing Canvas ... 54
7.2.3. Control Panel... 55

8. NSL Input Facility .. 55
8.1. Model Language... 56

8.1.1. input_layer... 56
8.1.2. processing.. 57

8.2. Simulation Commands ... 58
8.2.1. input_layer... 58
8.2.2. input_stim... 59

9. Advanced NSL Programming.. 61
9.1. Model Language... 61

9.1.1. network... 61
9.1.2. modules... 62
9.1.3. layers.. 62

9.1.3.1. data... 63
9.1.3.2. vector... 63
9.1.3.3. matrix.. 64

9.1.4. input_layers.. 65
9.1.4.1. input_data... 65
9.1.4.2. input_vector... 66
9.1.4.3. input_matrix.. 66

9.2. Adding NSL Language Functions... 67
9.3. Adding Simulation Commands ... 67
9.4. Adding Simulation Functions in C++... 68
9.4. Calling Simulation Commands from C++ .. 69
9.6. Adding Graphics ... 69

10. NSL Simulation Command Summary.. 69
10.1. help.. 69
10.2. create.. 70
10.3. disable.. 70
10.4. enable ... 71
10.5. exec... 71
10.6. exit ... 71
10.7. f i le.. 72
10.8. proc... 72
10.9. reset .. 72
10.10. set ... 72
10.11. shell ... 74
10.12. status .. 75
10.13. update... 75
10.14. user ... 75

 Alfredo Weitzenfeld: NSL 2.1 5

11. NSL Window Interface Command Summary.. 76
11.1. help.. 76
11.2. create.. 76
11.3. disable.. 76
11.4. enable ... 77
11.5. print.. 77
11.6. reset .. 78
11.7. set ... 78
11.8. status .. 79
11.9. update... 80

12. References ... 80
13. Appendices.. 81

13.1. NSL Environment... 81
13.2. NSL Library Functions ... 81

 Alfredo Weitzenfeld: NSL 2.1 6

1. Introduction
NSL (pronounced "Nissl"), Neural network Simulation Language, is a powerful yet easy to use

simulation language and development system. The simulator is designed and implemented following an
object-oriented paradigm; and includes NSL's high level language for describing neural networks, an
interactive command interpreter, and powerful visualization tools for analyzing models in different
ways.

The goal of NSL is to facilitate the description of models in relatively few 'human readable' lines
which be understood and appreciated both by users with little programming background and by those
with more extensive programming expertise. For this purpose we have designed the language in the
form of basic mathematical equations where the user may either program at a high level, or include
more sophisticated programming code.

Although NSL has been principally developed with a certain type of biological modelling in mind,
we have kept it as general as possible, letting the user define diverse types of networks, including those
concerned with learning. As will be discussed in more detail in later sections, any network that can be
described as a set of equations to be updated after each simulation iteration can be modelled by NSL.

The system includes the following features :

* An object-oriented simulation language with built-in model object classes.

* A library with the common neural network functions.

* A library with sample neural network models.

* Methodology for extending the libraries.

* A command language interpreter for describing the simulation environment.

* Interactive and batch processing of commands and data.

* Management of simulation versions.

* An interactive X windows graphical interface.

* Temporal and spatial displays.

* 2D and 3D graphics.

* The flexibility of a system written in the UNIX/C/C++ environment.

NSL 2.1, offered as public domain software, is the second release for the second generation NSL
language. NSL 2.0 [Weitzenfeld 1990] has been widely used in varied simulation applications giving
rise to an accompanying document with sample neural network models simulated in NSL. These second
generation versions are direct successors to the original NSL 1.0 [Weitzenfeld 1989] which has also been
extensively used in our research lab, and by students taking brain theory course given at USC.

2. NSL System Overview
This section gives an overview of NSL in terms of the requirements for its use, and an overview of

the overall system design.

 Alfredo Weitzenfeld: NSL 2.1 7

2.1. System Requirements
NSL 2.1, like NSL 2.0, is implemented in C++ [Stroustrup 1987], while NSL 1.0 was implemented in

C [Kernighan and Ritchie 1978]1.
The current system requires:
- an AT&T C++ (2.0) compiler,
- an X (X11R4) server2.

2.2. User Expertise
There are two levels of user expertise when developing NSL models:
- the basic level requires familiarity with NSL 'high level' language as described in the manual's

next sections; and there is no need to know either C or C++;
- the advanced level requires some basic understanding of C and C++, allowing great flexibility on

they type of models which can be described, as well as permitting communication with other software
tools3.

2.3. System Design
The system is composed of several modules, whose functionality is basically the same in the

different NSL versions, differing most importantly mainly in the object-oriented emphasis given to the
second generation system, which includes the evolution from C into C++ as the system's implementation
language. Two aspects of the simulator have been greatly enhanced by the objectization of the system;
first, the internal design now follows a very natural object-oriented design and implementation, and
second, the development of neural networks models is enhanced by the incorporation of special object
classes into the simulation language.

The structure of the simulator is shown in Figure 1. The system is divided into two independent sub-
systems:

- the Simulator , where model interaction and processing takes place;
- the Window Interface , where all graphics interaction takes place.

The Simulator is composed of:
- the Processing Module , where the network is fully processed;
- the Model Language Compiler , which together with the Model Language Libraries , translates

and links the user's Model File , loading it into the Processing Module;
- the Commands Interpreter executing the user's Command Files for setting up and controlling the

simulation.

The development of a simulation is then done in two separate steps by the creation of two different
types of files:

- Model File : The user describes the network model (a '.c' file to be compiled), which may include
any C or C++ code4.

- Command Files : The user describes the simulation environment (a '.nsl' file to be interpreted),
containing all the graphics descriptions, data assignments, and any other run time specifications5.

1 NSL has been developed on a SUN workstation platform.
2 The simulator may be run independent from a graphical interface, in that case the X server is not required. The X windows
system has been developed utilizing the XVIEW library.
3 NSL advanced programming section includes explanations directed to more advanced users with some basic knowledge of
C and C++.
4 C and C++ supporting code may be stored in separate files to be linked together with the model file.
5 Several command files may be assigned to a single model file.

 Alfredo Weitzenfeld: NSL 2.1 8

The Window Interface is composed of:
- the Graphical Displays , where all window and graphics interaction takes places;
- the Graphics Libraries , containing all display functions and object libraries.

Model Language
Compiler

Model Language
Libraries

Window Interface

Graphical
Displays

Simulator

Graphics
Libraries

Commands
Interpreter Model

File

Processing
Module

Command
Files

Figure 1
NSL Simulation System

One of the key consideration when designing these modules has been that of extensibility, where
new functions and objects may be added into any of these libraries, as will be described in later sections.

3. Neural Network Simulation

In general, neural network simulation can be divided into two distinct categories, biological neural
networks, designed to model the brain in a faithful way, and artificial neural networks, intended to
apply neural networks computing techniques, including different learning algorithms, into various
technological applications [Rumelhart and and McClelland 1986].

Different languages have been written for the simulation of neural networks, with different
modelling capabilities, and for different application areas [Goddard et al. 1987, Teeters 1989, Wilson
et al. 1989, Wang and Hsu 1990]. One important contrasting point is how networks are syntactically
described; in our particular simulation language, we describe neural networks in the form of
mathematical equations.

 Alfredo Weitzenfeld: NSL 2.1 9

3.1. Neurons and Links

A neural network is, in our abstraction, a set of interconnected concurrent processing units (neurons)
having a non-linear dynamic behavior. Therefore, a model description includes (1) declarations of the
units in the model, (2) connections between the units, (3) descriptions of inputs external to the network,
and (4) descriptions of network outputs.

A basic neuron is shown in Figure 2. It may receive input from many different neurons, while it has
only a single output.

input outputneuron

m M
Sm

Figure 2
A Basic Neuron

We will focus on neurons whose internal state is described by a single scalar quantity, its membrane
potential m, whose time course is described by a differential equation

om
dm(t)

d t = f(Sm,m,t)

depending on its input Sm. The choice of f defines the particular neural model utilized, including the
dependence of m on the neuron's previous history.

The firing rate or output of the neuron, M, is obtained by applying some "threshold function" to the
neuron's membrane potential,

M(t) = m(m(t))

where m could be, for example, a non-linear sigmoid saturation function.

When building neural networks, the output of a neuron serves as input to other neurons. Links among
neurons carry a connection weight which describes how neurons affect each other. Links are called
excitatory or inhibitory depending on whether the weight is positive or negative. The most common
formula for the input to a neuron is

Sm = -
i = 1

n
 wi Mi[t]

where Mi[t] is the firing rate of the neuron whose output is connected to the ith input line to the neuron,
and wi is the weight on that link.

 Alfredo Weitzenfeld: NSL 2.1 10

It is important to realize that neurons may be modelled with different levels of detail, from
sophisticated biophysical models to simple binary models where the neuron is either on or off at each
time step, such as the McCulloch-Pitts neuron model [McCulloch and Pitts 1943]. The Leaky Integrator
(see section 3.3) provides a simple yet more natural neuron model. In terms of more detailed neuron
models we have compartmental models [Kandel and Schwartz 1985], and the Hodgkin-Huxley model
[Hodgkin and Huxley 1952]. In any event, neurons are best suited to be treated as objects whose internal
details are completely hidden away from the rest of the network.

m1

m2

m3

S1

S2

S3 M3

M2

M1

W21

W31

Figure 3
A network of interconnected neurons.

For example, Figure 3 shows a network composed of three neurons, where the input to neuron m1 is
given by specifying S1 in the following manner,

S1 = W21*M2 + W31*M3

where W21 and W31 specify the connection weights for the links between m2 and m1, and the links
between m3 and m1 respectively. S1 adds together ('+') the factors from the output of neurons M2 and M3
multiplied ('*') by their respective connection weights.

3.2. Layers and Masks

As part of our modelling primitives, we have extended the basic neuron abstraction into neuron
layers and connection masks, describing spatial arrangements among homogeneous neurons and their
connections, respectively. The reason for defining such abstractions is that, in the brain as well as in
many neural engineering applications, we often find neural networks structured into two-dimensional
layers, with regular connection patterns between various layers.

The computational advantage of introducing such concepts when describing a neural network is tha t
neural layers and interconnection masks can then be concisely described as higher level data structures.
Instead of describing neurons on a one by one basis, a layer can be described as an array and, similarly,
the connections between layers can be described by a mask storing synaptic weights. An interconnection
among neurons would then be processed by computing a spatial convolution of a mask and a layer. For
example, if A represents an array of outputs from one layer of neurons, and B represents the array of
inputs to another layer, and if the mask W(k,l) (for -d)k,l)d) represents the synaptic weight from the
A(i+k,j+l) (for -m)k,l)m) elements to B(i,j)element for each i and j, we then have

B(i,j) = -
k=-d

d

 -
l=-d

d
 W(k,l)A(i+k,j+l)

which can be expressed by the single array operation of convolution

 Alfredo Weitzenfeld: NSL 2.1 11

B = W*A

giving greater computing power to a simple descriptive expression.

A

B

W - 3x3 weight mask

j

ij

i

Figure 4
A discrete spatial convolution among mask W and layer A, with B=W*A.

As shown in Figure 4, mask 'W' stores the different connection or synaptic weights performing a
discrete spatial convolution over 'A' to obtain 'B'. In this example both the layers and the mask are
square although they could be of any size (as a matter of fact, a layer may have any shape, while 2D
rectangular shapes are the most commonly used ones).

In terms of syntax, the equations for the network shown in Figure 2 would be exactly the same if i t
was describing neuron layers instead of single neurons. The only difference would be that now the factors
representing connection weights will now represent connection masks, and the variables representing
neurons will now represent neuron layers. The multiplication operator now means convolution.

It is important to realize that there are different ways for treating edge effects, which is basically
the convolution with out of bound layer elements. We will address the following three main
alternatives:

- treat edges effects as 'zero',
- do a wrap around of layer elements,
- replicate boundary layer elements.
NSL deals with these three types of convolution, as will be described more details in later sections.

3.3. Numerical Methods

Up until now we have left out the internal neural model detail. One widely used neuron model is
the 'leaky integrator' [Arbib 1989], whose membrane potential is described by the following
differential equation

 Alfredo Weitzenfeld: NSL 2.1 12

om
dm(t)

d t = - m(t) + Sm(t)

where Sm(t) incorporates the input from all the other cells, and om is the time constant. The overall
dynamics will depend upon the actual choice of excitatory and inhibitory weights in each Sm(t) and of
the time constants.

While different numerical methods may be used to solve a particular neuron model, the neural
network architecture and connection weights should not have to change depending on this. Different
numerical methods keep on evolving and they may be more appropriate according to the sophistication
of the model and the processing power of the computing machine.

Many methods use a constant time step 6t. As an example consider two different methods, the
'Euler' method and 'interpolation' method, for solving the previous differential equation. The 'Euler'
method replaces the differential equation by

m(t+6t) = (1 -
6 t
om

) m(t) +
6 t
om

 Sm(t)

while the 'interpolation' method replaces the differential equation by

m(t+6t) = (p) m(t) + (1 - p) Sm(t)

where p = e - 6t/t

3.4. Learning Methods

An important part of neural network modelling is to be able to introduce learning in a model. There
are many different learning algorithms commonly utilized in neural network simulation, among the
most popular being back propagation [Rumelhart et al. 1986]. This learning algorithm is not biological
and thus differentiates biological modelling, which is primarily concerned with modelling the brain in
a faithful way, from the study of artificial neural networks, otherwise known as connectionism or
neural engineering, where the main concern is in applying neural network computing techniques to
varied technological applications. Artificial neural networks take advantage of newly developed
neural learning algorithms to approach problem domains where traditional programming approaches
may not have been very successful. Biological learning can be exemplified by Hebbian learning [Hebb
1949].

4. Amari/Arbib Maximum Selector (Didday) Model

In this section we present the 'Maximum Selector' model [Amari and Arbib 1977] based on the
Didday model for prey selection [Didday 1976]. This model uses a competition mechanism to obtain a
single winner in the network, and will serve as sample network to be simulated in NSL. Figure 5 shows
the network's connectivity among the different layers.

 Alfredo Weitzenfeld: NSL 2.1 13

S

U

V

Figure 5

Layers and interconnections as defined by the sample network.

The model represents an array of 10 cells with membrane potential u and firing rate U, connected to
a single inhibitory cell, with firing rate V and membrane potential v. The circuit is driven by an input
array S.

 The mathematical description of the model is

ou
dui(t)

dt = -ui + w1 f(ui) - w2 g(v) - h1+ si 1) i) n

ov
dv
dt = -v + -

i=1

n
 f(ui) - h2

 where

f(u) = ª©̈
1 u > 0
0 u) 0

and

g(Si) =
ª
©
¨Si Si > 0

0 Si) 0

The model has the parameters w1, w2, h1, h2, with the restriction that 0) hl, and 0) h2 < 1, and n
= 10 (see Arbib 1989, Sec. 4.4 for a full exposition).

4.1. didday.c

Let's take the previously described 'Didday' model as our sample model.

(As in C++ comments are preceded by either '//', and take effect until the end of the line; or as in
both C and C++ they start with '/*' until a '*/' is used to close the comments. ';' marks the end of the
expression.)

 Alfredo Weitzenfeld: NSL 2.1 14

4.1.1. Declarations

We start by providing comments to name the program, a line to tell the compiler that it should use
the library 'nsl_include.h'6, and a line to name the program, declaring that it is a network and that its
name is DIDDAY.

In NSL we use two layers of elements to represent one layer of neurons. The first layer holds the
membrane potentials, while the second layer holds the firing rates. The mapping from the first layer
to the second is simply the neuron's nonlinearity (e.g. a step, ramp, or sigmoidal function). A convention
is to use the same name for each layer, in lower case for the membrane potential layer and in upper case
for the firing rate layer. This convention aids the user, but is not enforced by the compiler. In NSL 2.1,
an array x is declared as DATA(x) if it has a single element, VECTOR(x,n) if it one-dimensional with n
elements, and ARRAY(x,m,n) if it is a 2-dimensional mxn array. Each declaration is terminated by a
semi-colon. Thus the "introduction" to the model looks as follows:

/********************************/
/* didday.c */
/********************************/

include "nsl_include.h"

NETWORK(DIDDAY);

VECTOR(S,10); // network input
VECTOR(u,10); // membrane potential
VECTOR(U,10); // firing rate

DATA(v); // membrane potential
DATA(V); // firing rate

We next declare some of the constants needed to define the model (whose values will be set in
didday.nsl). If a constant is "really" constant, we may write the numerical value directly into the
program. However it is often good practice to name these model parameters (a) so that the user may
better understand the role that it plays in the model; and (b) to make it easy to change values when
running experiments on how different features of the model affect its behavior.

DATA(k);
DATA(tu);
DATA(tv);
DATA(h1); // threshold for u
DATA(h2); // threshold for inhibitory unit
DATA(w1);
DATA(w2);

The description of the model is now given in two parts, the INIT_MODULE and the
RUN_MODULEs:

6 The current release requires the user to include the line:

include "nsl_include.h"
 at the beginning of the file. This line tells NSL to incorporate all object declarations and macro definitions.

 Alfredo Weitzenfeld: NSL 2.1 15

4.1.2. INIT_MODULE

INIT_MODULE(didday_init) tells the program how to initialize appropriate variables and
constants [we shall later discuss how other parameters are initialized]. INIT_MODULE runs just once,
at the beginning of a run of the model [and we shall later discuss how the length and "grain" of the run
is specified]. Following the header, INIT_MODULE(didday_init) starts with { and ends with }. Each
line is terminated with a semi-colon. Note that, in the spirit of array processing, we may, where
appropriate, specify all values of an array in a single assignment.

INIT_MODULE(didday_init)
{
 u = 0;
 v = 0;
 U = 0;
 V = 0;
}

These expressions are called every time the model is 're-run' and should include any model
initialization lines such as resetting layer values to zero.

4.1.3. RUN_MODULEs

RUN_MODULE(didday_x) has as many parts as there are "natural" submodules which comprise
the module. We could have an x for every variable in the module, or one x for the whole module.
However, in this example, we specify two RUN_MODULEs, one called didday_U to specify how u and
U are updated, and another called didday_V for v and V.

RUN_MODULE(didday_U)
{
 DIFF.eq(u,tu) = - u + w1 * U - w2 * V - h1 + S;
 U = NSLstep(u,k);
}

RUN_MODULE(didday_V)
{
 DIFF.eq(v,tv) = - v + U.sum() - h2;
 V = NSLramp(v);
}

Note the NSL syntax for a differential equation. We simply rewrite

 tau*du/dt = f(u,x)
as

DIFF.eq(u,tau) = f(u,x)

where the differentiated variable u is followed by its time constant tau on the left hand side, and f(u,x)
is simply the right hand side of the differential equation rewritten in NSL syntax. In the present

 Alfredo Weitzenfeld: NSL 2.1 16

example, the only convention to be noted is that -
i=1

n
 f(ui) — which is just -

i=1

n
 Ui — is rewritten as

U.sum() with the sigma/summator written as a layer 'member' function.
 The nonlinear functions that transform a membrane potential into its firing rate are provided by

functions that are included in the NSL library. Thus

f(u) = ª©̈
1 u > 0
0 u) 0

is given by NSLstep(u,0), while

g(Si) =
ª
©
¨Si Si > 0

0 Si) 0

is given by NSLramp(v).

This completes didday.c, the actual specification of the model in NSL. The INIT_MODULE
initializes the state of the computer for the run. An actual run has a given time step and a given
duration and proceeds by running each of the RUN_MODULEs at each time step in order to update the
values of all the variables from the start to the end of the time step. The user may specify which
numerical method is to be used in approximating the solution of each differential equation in going from
u(t) to u(t+6t), etc. The code in didday.nsl, to be described in section 4.2, provides the missing
information for a given run of the model, as well as the information on how to set up the graphics for
displaying the results of the simulation.

4.1.4. Compilation

We will name the model file 'didday.c', although more generally a model file should be called
'file.c'; where 'file' is a totally arbitrary name, and what's important is the '.c' suffix. Compilation7

and linkage of this file is done by executing the following line (the file 'nsl_main.c' should be present in
the directory where compilation is taking place8) :

nsl_link file.c

The system will then create an executable file called 'nsl', if no errors were made in the model file,
which is ready for running9. (Several model files may be linked with NSL by simply adding their
names to the 'nsl_link' command file list10.)

At this point the model has been linked with NSL and it can be run by typing 'nsl',

7 This compilation requires the availability of a C++ compiler.
8 'nsl_main.c' contains the C/C++ 'main' routine where nsl initialization takes place. Linking to any other C/C++
programs can be included inside this file as explained in the advanced programming section. A copy of this file should exist
in the directory where compilation is taking place, and can be obtained by running 'nsl_init' which also copies the sample
didday model files.
9 If running graphics remotely run nsl as follows: 'nsl -display [hostname]:0' where [hostname] is the name of the machine
physically displaying the graphics.
10 A single 'nsl_main.c' is required even if multiple model files are compiled together.

 Alfredo Weitzenfeld: NSL 2.1 17

nsl

The NSL prompt will appear,

nsl>

Although we could set up the simulation environment interactively, it is more convenient to have i t
stored in a batch file (a '.nsl' file).

4.2. didday.nsl

The simulation set up is provided in the form of simulation parameters, model parameters,
including network input, and graphics.

4.2.1. Simulation Parameters

In the first part of didday.nsl, we tell the compiler to set up the network DIDDAY (i.e., it should
link the DIDDAY network stored in didday.c to the material that follows), to use the EULER
integration method, and to run the model from time 0 to time 20.0 using a time step delta of 0.1, thus
making a total of 200 iterations of the model.

// didday.nsl simulation set up

set network DIDDAY

// network
set integration EULER
set delta 0.1
set end_time 20.0

4.2.2. Model Parameters

We also tell it to set those network parameters whose values were not specified in didday.c.

set data_value tu
1.0
set data_value tv
1.0
set data_value k
0.1
set data_value w1
1.0
set data_value w2
1.0
set data_value h1
0.1
set data_value h2
0.5

 Alfredo Weitzenfeld: NSL 2.1 18

Next, we specify the input to be used in this simulation. In this case, we hold the input constant
throughout the run. All values of the S array are 0 except for 1.0 in the fourth entry (arrays start at the
zeroth entry) and 0.5 in the sixth entry.

set data_value S
0 0 0 0 1.0 0 0.5 0 0 0

4.2.3. Graphics

Finally, we specify the windows to be used in displaying the input S and the membrane potential u.

Figure 6
The Didday model window set up

We specify that both displays will be contained in a frame called FW1, which will have two rows:

// graphics

create window_interface

set frame_name FW1
set frame_X0 250
set frame_Y0 100
set frame_width 510
set frame_height 335
set frame_rows 2
create display_frame

The first row contains a window WN11 which displays the vector S, with each element shown as
an "area level graph"; while the second row contains a window WN12 which displays the vector u,
with each element shown as a "temporal graph".

 Alfredo Weitzenfeld: NSL 2.1 19

set window_name WN11
set window_layer S
set window_graph area_level_graph
set window_wymin 0
set window_wymax 2
create display_window

set window_name WN12
set window_layer u
set window_graph temporal_graph
set window_wymin -3
set window_wymax 3
set window_t1 20
create display_window

4.2.4. Running the Simulation

The previous commands could have been loaded interactively into NSL's command interpreter. I f
the commands were stored into a file called 'didday.nsl', then this file can be loaded by typing

nsl> load didday

To run the model simply type (the output of a simulation is shown in Figure 7)

nsl> run

Figure 7
The output of Didday model

The user may stop the simulation at any time by typing '^C'. To resume the simulation from the
interrupt point type,

 Alfredo Weitzenfeld: NSL 2.1 20

nsl> cont

5. NSL Model Language
NSL is built following an object-oriented programming paradigm. NSL provides a set of basic

network object classes intended to give the user simple yet powerful constructs without restricting in any
way the complexity and the type of models which can be described. It is the goal of NSL to provide
tools in a bottom-up fashion, where future system versions will incorporate more sophisticated network
structures built on top of the currently available ones. The following sections will give the user an
introduction to NSL basic object structures.

5.1. Object-Oriented Programming
Since NSL is designed as an object-oriented language, it is worth understanding the concepts behind

this kind of programming methodology. We will put emphasis on C++ due to its important role as
NSL's implementation language. Specifically the reader may want to become familiar with C++ as a
programming language by referencing C++ from Stroustrup [1989] or any other C++ textbook.

5.2. Model Creation
Writing a simulation in NSL consists of several steps. The first step is to describe the model as a set

of NSL equations, stored into the model file ('.c' file). The second step consists of writing a simulation
environment and stored into simulation files, as many as needed ('.nsl' files). Simulation files contain
input and parameter assignments which may vary during different simulation runs. They also include
any graphical set ups.

5.3. Model Object Classes
NSL basic network objects are of three types: NETWORK, MODULE, and LAYER. These classes

serve as super-classes (utilizing C++ terminology) for other derived classes, meaning that any other
classes inherit their respective characteristics. These names define macros, which get translated into
internal NSL object class declaration, as will be explained in the advanced programming section in
further detail.

(In what follows, characters shown in bold letters are meant to be typed exactly as they appear,
and should not be used as variable names; words appearing in italics are user supplied strings, either
names or values.)

5.3.1. Network
A model is described by a NETWORK object, which points to a list of LAYERs and processing

MODULEs. Figure 8 shows the network structure.

 Alfredo Weitzenfeld: NSL 2.1 21

LAYER list

NETWORK

MODULE list

next

next

next

next

Figure 8
NETWORK class.

The declaration of the network object should always precede all other declarations in the model
file,

NETWORK(model_name);

where model_name is the name to be used when identifying this particular model11.

For our sample network, the first line of the '.c' file would be:

NETWORK(DIDDAY);

(Note that this entry is required in every model file. Without it the model file will not be
translated.)

5.3.2. Layer

The LAYER is a super-class from which three data layer classes are derived: DATA, VECTOR, and
MATRIX classes. These three classes vary according to the number of dimensions they contain. A data
layer represents a layer with a single unit, a vector layer represents a one dimensional array of units,
and a matrix layer represents a two dimensional array of units. (Higher numbers of dimensions may be
incorporated into new data structures, if so desired; similarly, a user may define classes of objects which
may have a structure other than the traditional rectangular ones, although this is beyond the scope of
this manual.) Figure 9 shows the layer class hierarchy.

11 model_name doesn't have to be the same as the name of the file. model_name is used to refer to the model from the
simulation environment.

 Alfredo Weitzenfeld: NSL 2.1 22

MATRIXVECTORDATA

LAYER

Figure 9
NSL layer classes.

The LAYER super-class is not directly utilized in specifying a network, instead the user utilizes the
derived layer classes, DATA, VECTOR, and MATRIX. The following is the syntax for each class
declaration,

Data layer:

DATA(layer_name);

DATA(S); // a data layer with a single element

 Vector layer:

VECTOR(layer_name,size)12;

VECTOR(INP,10); // a 10 element vector layer

Matrix layer:

MATRIX(layer_name,rows,columns);

MATRIX(A,10,8); // a 10x8 element layer

where layer_name specifies the name of the layer, size specifies the length of the vector, rows
specifies the number of rows of a matrix layer, and columns represent the number of columns of a matrix
layer.

For our sample model, we should enter the following declarations after the NETWORK line.

VECTOR(S,10); // network input S
VECTOR(u,10); // membrane potential u
VECTOR(U,10); // firing rate U

DATA(v); // membrane potential v
DATA(V); // firing rate V

12 Vectors may also be declared as column vectors,

COL_VEC(layer_name,size);
or row vectors (which corresponds to the default VECTOR declaration type),

ROW_VEC(layer_name,size);

 Alfredo Weitzenfeld: NSL 2.1 23

S is the network input layer while u and U represent the membrane potential and firing rate layer
respectively, and v and V represent the membrane potential and firing rate layer respectively. (The
convention followed here, which is not enforced, is to name membrane potential layers with lower case
letters, while firing layers are named with upper case letters.)

The following seven declarations, although similar to those of v and V, represent network
parameters.

DATA(tu); // u time constant
DATA(tv); // v time constant
DATA(k); // step function threshold
DATA(w1);
DATA(w2);
DATA(h1);
DATA(h2);

These parameters will be assigned values through the '.nsl' file to be read by the commands
interpreter.

5.3.3. Module
The MODULE class is utilized by declaring any of the following (in the form of macro

declarations): MODULE, INIT_MODULE, and RUN_MODULE. The module contains the code
describing the equations that are to be processed by NSL, differing only in the time intervals on which
the modules are applied, depending on the above declaration types. (If there are no modules, no
processing will be done !!) There may be as many modules as desired, having any number of equations in
each of them, including having a single module for all the equations, or one module per equation13. The
order of processing is the same order in which the modules are declared. (Currently these modules are
serially processed, although the goal in the future is to distribute them and take advantage of their
concurrent nature.) In what follows module_name is the name of the module14.

MODULEs are processed for every time iteration, "t*0".

MODULE(module_name)
{

...layer dynamics...
}

INIT_MODULEs are processed only at "t=0" and should contain initialization code which gets
called every time the model is 'reset'.

INIT_MODULE(module_name)
{

...layer initialization...
}

13 The current version doesn't support layer declarations inside a module, only expressions.
14 Since several model files may be compiled together, it is required to name each module differently (this requirement is for
the present system release, and will be discarded in the future). Different naming can be achieved by concatenating the
particular model name with a local separate name. For example, for a model called 'didday', a module could be called
'didday_mod1'.

 Alfredo Weitzenfeld: NSL 2.1 24

RUN_MODULEs are processed during the entire simulation with the exception of the
initialization time, when "t>0".

RUN_MODULE(module_name)
{

...layer dynamics...
}

For our sample model, and after having declared the layers in the network, we define the
processing modules.

The first one is an INIT_MODULE resetting the dynamic layers to zero every time the network is
re-computed.

INIT_MODULE(didday_init)
{

u = 0;
v = 0;
U = 0;
V = 0;

}

Two RUN_MODULEs are declared for the didday model, one for layer U and another one for layer
V. Each module calculates new membrane potentials and firing rates.

The layer dynamics are all in the form of mathematical descriptions. These expressions will be
explained in the next sections.

RUN_MODULE(didday_U)
{

DIFF.eq(u,tu) = - u + w1*U - w2*V -h1 + S;
U = NSLstep(u,k);

}
RUN_MODULE(didday_V)
{

DIFF.eq(v,tv) = - v + U.sum() - h2;
V = NSLramp(v);

}

Processing is sequential, so in this case layer U would get computed before layer V. If we wanted to
simulate parallel neural update, we can do this by defining the modules in a different way, so input to
layers will get processed first, and only after all layers have their input processed, will the output
then get computed.

RUN_MODULE(didday_mem_pot)
{

DIFF.eq(u,tu) = - u + w1*U - w2*V - h1 + S;
DIFF.eq(v,tv) = - v + U.sum() - h2;

}
RUN_MODULE(didday_firing)
{

U = NSLstep(u,k);
V = NSLramp(v);

}

 Alfredo Weitzenfeld: NSL 2.1 25

By combining the update of all neuron firing layers layers into the last module, we simulate
parallel update, since no output values will be computed until every layer has its input processed.

5.4. Expressions
Layer dynamics, in the form of mathematical equations, describe the interactions among the

different layers in the network. On the left hand side of the equation the layer being described is
specified. On the right hand side of the equation, an expression is given specifying the particular input
for that layer, where the expression may be composed of sub-expressions. Positive sub-expressions
describe an excitatory effect while negative sub-expressions describe an inhibitory effect on the layer.

For example, equations can be as follows:

DIFF.eq(u,tu) = -u + w1*U - w2*V - h1 + S;
U = NSLstep(u,k);

The general form of the equation is,

lhs= expression

where lhs is the left hand side of the equation and may be one of the following,

lhs ->layer
lhs -> var
lhs -> dif f

where

layer is either a data, vector or matrix structure,
var is a low level C/C++ variable structure such as 'float',
diff is a differential type of equation, which will be further described in the numerical method

section.15

expression is defined as follows,

expression -> (expression)
expression -> expression operator expression
expression -> term

operator is defined as follows,

operator -> + | - | * | ^ | /

where,

'+' is the layer addition operator
'-' is the layer subtraction operator
'*' is the layer convolution operator
'^' is the pointwise layer multiplication operator16

15 Both sides of the equality should return compatible value types, in particular, if the left hand side is of 'var' type, the
right hand side should also return a 'var' type.
16 Due to its current implementation, the '^' has the lowest precedence, requiring parenthesis around the partial expression

 Alfredo Weitzenfeld: NSL 2.1 26

'/' is the pointwise layer division operator

term is defined as any of the following:

term -> layer
term -> var
term -> val
term -> function

where,

layer -> data | vector | matrix
var is a variable returning a 'float' type
val is a 'float' number
function -> function_name(par1, par2, ..., parN)

where parj (1)j)N) can be any layer type (data, vector, or matrix), or a number value depending on the
function argument specification.

(All operators have a corresponding function performing the same operation. In the C++
implementation, operators are overloaded to provide the right functionality. For example adding two
matrices, 'a+b' operators is similar to calling 'NSLadd(a,b)' which returns a matrix containing the
added pointwise matrix values.)

Operations not covered here by the above operators (e.g. regular matrix multiplication) are
achieved by function calling. Some of these functions provide the nonlinear mappings (between the
neuron's membrane potential and firing rate) which are needed in neural net modeling.

Direct value assignment to layers may be achieved in two ways:

- By specifying a single value for the whole layer, available to all layer types (as included in the
above description).

layer_name = value

e.g. S = 1.5;

- By specifying a value for a particular layer unit, and depending on the type of layer.

Data layer:

layer_name.elem() = value

Vector layer:

layer_name.elem(index) = value

Matrix layer:

layer_name.elem(row_index,col_index) = value

in order to ensure proper operation. This shortcoming should be overcome in the next NSL release.

 Alfredo Weitzenfeld: NSL 2.1 27

where index specifies a vector element, row_index specifies a matrix row element, and col_index
specifies a matrix column element. (All indices start from '0').

5.5. Layer Class Functions

There are two types of functions, layer class functions and layer library functions. Layer class
functions are of the form: layer.function(), while layer library function are of the form: function(layer).
Layer class function are basically functions applied to a particular layer, while layer library functions
are routines taking any number of layer arguments (not all arguments have to be of layer type). The
following sections describe the most relevant layer class functions.

5.5.1. Transformations

While there are three basic types of layers, it is important to be able to do transformations among
them. Figure 10 shows row and column transformations among vectors and matrices.

B

A

i

C

i

j

j

Figure 10
Vector and Matrix Transformations

Transforming from vectors into matrices (either as a row or column vector expansion)17.

matrix = row_vector.expand_row(n);
matrix =col_vector.expand_col(n);

From Figure 10:

B = A.expand_row(n)

17 Previously know as NSLcol_vec_to_mat and NSLrow_vec_to_mat.

 Alfredo Weitzenfeld: NSL 2.1 28

B(i,j) = A(j)

B = C.expand_col(n)

B(i,j) = C(i)

Transforming from matrices into vectors (either as a row or column vector reduction)18.

row_vector = matrix.reduce_row();
col_vector = matrix.reduce_col();

From Figure 10:

A = B.reduce_row()

A(j) = -
i

 B(i,j)

C = B.reduce_col()

C(i) = -
j

 B(i,j)

Since vectors may be row-wise or col-wise, it is important to have a transformation from one to the
other19. To transpose row vectors and columns vectors20:

To set a vector as a row vector, do,

row_vector = vector.transpose_row()

To set a vector as a column vector, do

col_vector = vector.transpose_col()

To switch a vector from its current form, row or col, to the opposite one, do,

vector = vector.transpose()

(applying it twice consecutively brings the vector to its original form).

Other functions set or get matrix rows and columns:

vector = matrix.get_row(i)

vector = matrix.get_col(j)

18 Previously known as NSLmat_to_row_vec and NSLmat_to_col_vec.
19 NSL will automatically draw vectors on the screen in the direction they are defined. Internally all vectors are stored a
unified way, having simply an internal flag which tells what type they are row or column vectors.
20 Currently there is no matrix transpose function.

 Alfredo Weitzenfeld: NSL 2.1 29

matrix = matrix.set_row(vector,i)

matrix = matrix.set_col(vector,j)

where i is a row index, and j is a column index.

For example, if A = B.set_row(b,i) then

A[i,j] = b[j]

while

A[k,j] = B[k,j] for k & i

5.5.2. Sectors

Sector functions deal with parts of layers, either for setting them or to get part of them.

'get_sector' returns a sector of the respective vector or matrix, while 'put_sector' returns a larger
vector or matrix with a copy of the specified vector or matrix inside, and the rest of the elements left to
zero. The return layers are of size equal to the layer in front of the member function. (Currently the
sector's starting point is specified and the whole sector is either copied or retrieved from the layer.)

Vector sectors:

vector = vector.get_sector(i0,j0);

vector = vector.put_sector(vector0,i0);

where i0,i1 specifies a vector sector.

Matrix sectors:

matrix = matrix.get_sector(i0,i1,j0,j1);

matrix = matrix.put_sector(matrix0,i0,j0);

where i0,i1,j0,j1 specifies a matrix sector.

5.5.3. Other

To get the sum of all elements in either a data, vector or matrix layer ,returning a 'num_type'
('float') value:

num_type = layer.sum();

To get the max or min values from either data, vector, or matrix layers, and returning a 'num_type'
('float') value:

num_type = layer.max();
num_type = layer.min();

 Alfredo Weitzenfeld: NSL 2.1 30

5.6. Layer Library Functions

The layer library includes a list of functions which usually take more than one layer as argument to
the functions. These functions are independent from the layer classes themselves, and provide further
extensibility. Among these functions there are arithmetic functions, including convolution, and
threshold functions.

Efficiency of these functions is of major importance since the system spends most of its CPU time
around these functions. All functions have a 'NSL' prefix to distinguish them from any user defined
functions.

The user may define additional functions, to be written in either C++ [Stroustrup 1987], or C
[Kernighan and Ritchie 1978], as will be explained in the advanced NSL programming section.

5.6.1. Addition

Addition (operator '+') is a pointwise addition among corresponding elements of similar layers. The
NSL function corresponding to it is 'NSLadd(a,b)'.

Vectors can be added with other vectors of the same size, or with data and with 'float' values.
Matrices can be added with other matrices of the same size, with data and with 'float' values.
Vectors and matrices cannot be added together.
When a vector or matrix is added to a data or 'num_type' value, this value is added to every

component of the vector or matrix.

For example, having matrices X and Y21

X = 1,1,1 Y = 2,2,2
1,2,1 1,3,1
1,1,2 2,2,2

X + Y = 3,3,3 X + 1 = 2,2,2
2,5,2 2,3,2
3,3,4 2,2,3

5.6.2. Subtraction

Subtraction (operator '-') is a pointwise subtraction among corresponding elements of similar layers.
The NSL function corresponding to it is 'NSLsub(a,b)'.

Vectors can be subtracted from other vectors of the same size, from data and from 'float' values.
Matrices can be subtracted from other matrices of the same size, from data and from 'float' values.
Vectors and matrices cannot be subtracted from each other.
When a vector or matrix is subtracted from/to a data or 'num_type' value, this value is subtracted

from/to every component of the vector or matrix.

5.6.3. Multiplication

Multiplication can be of different forms.

21 Matrix values are entered row by row.

 Alfredo Weitzenfeld: NSL 2.1 31

 Pointwise multiplication (operator '^'22) among corresponding elements of similar layers. The NSL
function corresponding to it is 'NSLmult(a,b)'.

Vectors can be multiplied with other vectors of the same size, with data and with 'float' values.
Matrices can be multiplied with other matrices of the same size, with data and with 'float' values.
Vectors and matrices cannot be pointwise multiplied together .
When a vector or matrix is pointwise multiplied to a data or 'num_type' value, this value is

multiplied to every component of the vector or matrix.

NSL also supports vector dot product and matrix multiplication (scalar multiplication is supported
by both). The NSL function corresponding to it is 'NSLprod(a,b)'.

If X and Y are two vectors of the same size, then

NSLprod(X ,Y) = XTY

returns a data value (size 1) equal to the dot product of the two vectors.

If X and Y are two matrices of sizes nxm and mxr, respectively, then

NSLprod(X ,Y) = X Y

returns a matrix of size nxr.

5.6.4. Division

Pointwise division (operator '/') among corresponding elements of similar layers. The NSL function
corresponding to it is 'NSLdiv(a,b)'.

Vectors can be divided with other vectors of the same size, with data and with 'float' values.
Matrices can be divided with other matrices of the same size, with data and with 'float' values.
Vectors and matrices cannot be pointwise divided together .
When a vector or matrix is pointwise divided with/to a data or 'num_type' value, this value is

divided with/to every component of the vector or matrix.

For example, having matrices X and Y

X = 1,1,1 Y = 2,2,2
1,2,1 1,3,1
1,1,2 2,2,2

X / Y = 0.5,0.5,0.5
 1,0.67,1
0.5,0.5,1

X / 2 = 0.5,0.5,0.5
0.5,1,0.5
0.5,0.5,1

22 Due to the current implementation, the '^' has lower precedence than the other arithmetic operators, making it necessary
to add parentheses around the multiplication expression.

 Alfredo Weitzenfeld: NSL 2.1 32

5.6.5. Convolution

Three types of convolution edge effect are treated by NSL:

 zero effect

The edge effect is treated as '0'. (Default action.)

For example, having layer X and mask M as follows

X = 1,1,1,1,1
1,2,2,2,2
1,2,4,4,4
1,2,4,8,8
1,2,4,8,0

M = 1,1,1
1,2,1
1,1,1

will result in Y = M*X as follows,

- first a larger matrix is created with 0 values for the edges (the size of the new matrix depends on
both the size of the mask and the convolved matrix; for example for a (2d+1)x(2d+1) mask, the border
of zeroes must be d-deep):

X0 = 0,0,0,0,0,0,0
0,1,1,1,1,1,0
0,1,2,2,2,2,0
0,1,2,4,4,4,0
0,1,2,4,8,8,0
0,1,2,4,8,0,0
0,0,0,0,0,0,0

- second we overlap M on the left top corner of X0 with M[0,0] on top of X0[0,0] so the first
convolution will be given by

Y[0,0] = 0*1 + 0*1 + 0*1 + 0*1 + 1*2 + 1*1 + 0*1 + 1*1 + 2*1 = 6

and so on for the other elements.

The function for this kind of effect would be called as:

Y = NSLconv_zero(M,X);

or

Y = M*X

since the '*' default operation is the zero-edge convolution.

 wrap around

 Alfredo Weitzenfeld: NSL 2.1 33

The layer is replicated successively so values are wrapped around.

For example, having layer X and mask M as before will result in Y = M*X as follows

- first a larger matrix is created with wrapped around values for the edges (the size of the new
matrix depends on both the size of the mask and the convolved matrix)23:

X0 = 0,1,2,4,8,0,0
1,1,1,1,1,1,1
2,1,2,2,2,2,1
4,1,2,4,4,4,1
8,1,2,4,8,8,1
0,1,2,4,8,0,1
0,1,1,1,1,1,0

- second we overlap M on the left top corner of X0 with M[0,0] on top of X0[0,0] so the first
convolution will be given by

Y[0,0] = 0*1 + 1*1 + 2*1 + 1*1 + 1*2 + 1*1 + 2*1 + 1*1 + 2*1 = 12

and so on for the other elements.

The function for this kind of effect would be called as:

Y = NSLconv_wrap(M,X);

 copy edge

The edge element values of the layers are replicated as if it was an infinite layer.

For example, having layer X and mask M as before will result in Y = M*X as follows

- first a larger matrix is created with copied values for the edges (the size of the new matrix
depends on both the size of the mask and the convolved matrix):

X0 = 1,1,1,1,1,1,1
1,1,1,1,1,1,1
1,1,2,2,2,2,2
1,1,2,4,4,4,4
1,1,2,4,8,8,8
1,1,2,4,8,0,0
1,1,2,4,8,0,0

- second we overlap M on the left top corner of X0 with M[0,0] on top of X0[0,0] so the first
convolution will be given by

Y[0,0] = 1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 1*1 + 1*1 + 1*1 + 2*1 = 11

and so on for the other elements.

23 Edge corners are currently assigned zero.

 Alfredo Weitzenfeld: NSL 2.1 34

The function for this kind of effect would be called as:

Y = NSLconv_copy(M,X);

As can be seen when comparing the results, and as the name implies, the differences are shown on
the edges; the further away from the edges, the less the importance of edge effects.

5.6.6. Threshold

Figure 11 shows the available threshold functions. These functions are applied to every element in
the layer independently. The return layer type is similar to the first argument given in the function,
where B indicates the returning value, while A indicates the input value. The function may be
overloaded, i.e. its arguments may be of different types. The different argument types are given in
Appendix 13.2.

 step

NSLstep(layer0)

For example,

B = NSLstep(A)

corresponds to an iteration over all i,j for

if A[i,j] < 0 B[i,j] = 0
else if A[i,j] * 0 B[i,j] = 1

 ramp

NSLramp(layer0)

For example

B = NSLramp(A)

corresponds to an iteration over all i,j for

if A[i,j] < 0 B[i,j] = 0
else if A[i,j] * 0 B[i,j] = A[i,j]

 saturation

NSLsaturation(layer0)

For example,

B = NSLsaturation(A)

corresponds to an iteration over all i,j for

if A[i,j] < 0 B[i,j] = 0
else if 0) A[i,j] < 1 B[i,j] = A[i,j]

 Alfredo Weitzenfeld: NSL 2.1 35

else if A[i,j] * 1 B[i,j] = 1

 sigmoid

NSLsigmoid(layer0)

For example,

B = NSLsigmoid(A)

corresponds to an iteration over all i,j for

if A[i,j] < 0 B[i,j] = 0
else if 0) A[i,j] < 1 B[i,j] = A[i,j]2(3 - 2A[i,j])
else if A[i,j] * 1 B[i,j] = 1

NSLstep NSLramp

1.0 1.0
NSLsaturation NSLsigmoid

B

A A

A A

B

B B

1.0

1.0 1.0

1.0

1.0

Figure 11
NSL threshold functions

To get arbitrary threshold functions as shown in Figure 12, the following function call can be given:

 step

B = (ky2-ky1)*NSLstep(A-kx1) + ky1, or
B = NSLstep(A,kx1,ky1,ky2)

corresponds to an iteration over all i,j for

if A[i,j] < kx1 B[i,j] = ky1

 Alfredo Weitzenfeld: NSL 2.1 36

else if A[i,j] * kx1 B[i,j] = ky2

 ramp

B = (ky2-ky1)*NSLramp(A-kx1) + ky1,or
B = NSLramp(A,kx1,ky1,ky2)

corresponds to an iteration over all i,j for

if A[i,j] < kx1 B[i,j] = ky1
else if A[i,j] * kx1 B[i,j] = A[i,j] - kx1 + ky2

 saturation

B = (ky2-ky1)*NSLsaturation((A-kx1)/(kx2-kx1)) + ky1, or
B = NSLsaturation(A,kx1,kx2,ky1,ky2)

corresponds to an iteration over all i,j for

if A[i,j] < kx1 B[i,j] = ky1
else if kx1) A[i,j] < kx2 B[i,j] = (ky2-ky1)(A[i,j]-kx1)/(kx2-kx1) + ky1
else if A[i,j] * kx2 B[i,j] = ky2

 sigmoid

B = (ky2-ky1)*NSLsigmoid(s2*(3 - 2s)) + ky1, where s = (A-kx1)/(kx2-kx1), or
B = NSLsigmoid(A,kx1,kx2,ky1,ky2)

corresponds to an iteration over all i,j for

if A[i,j] < kx1 B[i,j] = ky1
else if kx1) A[i,j] < kx2 B[i,j] = s2(3 - 2s)
where s = (A[i,j]-kx1)/(kx2-kx1)
else if A[i,j] * kx2 B[i,j] = ky2

 Alfredo Weitzenfeld: NSL 2.1 37

kx1 kx1

ky2

ky1

NSLstep NSLramp

kx1 kx2 kx1 kx2

ky1

ky2

ky1

ky2

NSLsaturation NSLsigmoid

ky2

B

A A

A A

B

B B

ky1

Figure 12
Arbitrary threshold functions

5.6.7. Other

Other functions include the max and min between to layers of the same size:

 max

Function returning a layer containing the pointwise maxima, where both function arguments have to
be of the same size,

NSLmax(layer1,layer2)

For example,

B = NSLmax(A1,A2)

corresponds to an iteration over all i,j of

B[i,j] = max(A1[i,j],A2[i,j])

 min

Functions returning a layer containing the pointwise minima, where both function arguments have
to be of the same size,

NSLmin(layer1,layer2)

For example,

 Alfredo Weitzenfeld: NSL 2.1 38

B = NSLmin(A1,A2)

corresponds to an iteration over all i,j of

B[i,j] = min(A1[i,j],A2[i,j])

5.7. Numerical Methods

NSL provides a library of numerical methods for integration of differential equations. The syntax
for a differential equation is as follows:

DIFF.eq(u,tm) = f(u)

which translates to

tm*du/dt = f(u).

NSL will then apply the appropriate numerical method (euler, etc.) at run time, as specified by
the user.

For example, in the case of the leaky integrator model, we would write

DIFF.eq(u,tm) = -u+S

for

f(u) = -u + S,

where S is the input to the neuron layer.

While different numerical methods may be used to solve a particular neuron model, the neural
network architecture and connection weights should not have to change depending on this. For this
reason we treat numerical methods as orthogonal object classes totally independent from network
specification. A numerical method is instantiated only after the neural network has been completely
described. Different numerical methods keep on evolving and they may be more appropriate according
to the sophistication of the model and the processing power of the computing machine.

5.7.1. Euler

The 'Euler' method, which is the default NSL method, replaces the above differential equation by

m(t+dt) = (1 - dt/tm)) m(t) + (dt/tm) Sm(t)

where dt is the integration time step (delta).

5.7.2. Interpolation

The 'interpolation' method replaces the above differential equation by

m(t+dt) = (p) m(t) + (1 - p) Sm(t)

 Alfredo Weitzenfeld: NSL 2.1 39

where p = exp(-dt/t)

5.7.3. Runge-Kutta

The 'Runge-Kutta' numerical method is included as a separate document.

5.8. Learning Methods

Learning methods are included as NSL libraries built on top of the main layer structures. Back-
propagation sample networks are included as a separate document.

6. NSL Simulation Commands

In order to process and interact with the model, it is necessary to set up a suitable simulation
environment, including the window interface for graphics displays. This section will concentrate on
how model parameters are interactively assigned, the simulation is run, and other simulation related
commands are used; the window interface will be described in the next section.

Commands may be read from batch files, or interactively entered; and any number of command files
can be associated with a single model file. ('//' precedes all comments.)

The most important commands will be described in these sections, while a summary of a l l
simulation commands is included at the end of the manual.

There are three important commands worth mentioning here, before getting into any of the other
ones:

 command description

help on-line help.

quit or exit exit the simulator.

load file load a '.nsl' file to be interpreted.

 help

Provides extensive on-line information, where information is available as a general command
listing,

help

or per command, giving more detailed information on each command,

help command

 exit / quit

Provides the way of exiting the simulator24.

24 'control-C' ('^C') is used to interrupt simulation runs.

 Alfredo Weitzenfeld: NSL 2.1 40

 load

The load command is used to read in any '.nsl' files containing simulation commands.

For example, a file called 'didday.nsl' may be loaded as follows (the '.nsl' suffix may be omitted):

load didday

6.1. Model Object Classes
Interaction with NSL's model language objects is done via the simulation environment.

In these sections we will provide a sample simulation file for the previously described 'DIDDAY'
model (stored in 'didday.c').

6.1.1. network
The following are commands affecting initial network setup.

 set

To set up the desired simulation model include the following line,

set network name

where name matches the one in 'NETWORK(name)' for the corresponding model.

Since this file is interpreted, the order of commands is very important (the 'set network' command
should precede all other commands in the file).

The simulation file for the previously described 'DIDDAY' model should then begin with,

set network DIDDAY

 status

The interpreter provides status information on different aspects of the system. If several models
have been compiled together, the 'status' command can give a listing of them, showing their names and
indices, and information on which one is currently enabled25.

In what follows 'nsl>' is the system's prompt,

nsl> status system

A sample response would look as follows,

// total linked models: 11
// 1: TUTORIAL (disabled)
// 2: TECTUM_88 (disabled)
// 3: TECTUM_11 (disabled)
// 4: STRETCH (disabled)

25 Currently, NSL 2.1 lets only one model be run at any time; in the future several model could be run together.

 Alfredo Weitzenfeld: NSL 2.1 41

// 5: RETINA (disabled)
// 6: LOOM21 (disabled)
// 7: LIMULUS (disabled)
// 8: DIDDAY (enabled)
// 9: DEV (disabled)
// 10: CUE_INTERACTION (disabled)
// 11: BEKESY (disabled)

6.1.2. layer
The following are commands affecting network layers.

 set

Layers can be assigned data interactively at any time during the simulation. Data may also be
assigned through the graphics interface, as will be explained in the window interface section.

To assign data,

set data_value name value [value, ...]

where name is the name of an existing layer. Immediately following is a list of values (separated by
spaces), with the list size matching the number of elements in the layer. In the case of a data layer only
one value would be entered, in the case of a vector, a list of values matching the number of elements in
the vector would be entered, and in the case of a matrix, a list of values, row wise, and starting with
row '0', followed by row '1', and son on would be entered, until all the elements have been assigned.26

For example, for the didday model one can assign the following values to its variables,

set data_value tu 1.0
set data_value tv 1.0
set data_value k 0.1
set data_value w1 1.0
set data_value w2 1.0
set data_value h1 0.1
set data_value h2 0.5

set data_value S
0 0 0 0 1.0 0 .5 0 0 0

assigning 1.0 to S[4] and .5 to S[6].

Layers can be assigned a single data value for the complete layer by using,

set all_data_value name value

For example

set all_data_value S 1

26 NSL 2.2 will include assignment operators at the interpreter level, so the same operation would be written as 'name =
value' for data, 'name = { value, ... }' for vectors, and 'name = {{value, ...},...}' for matrices.

 Alfredo Weitzenfeld: NSL 2.1 42

is equivalent to

set data_value S
1 1 1 1 1 1 1 1 1 1

Layers can be assigned single element data values by

set elem_i index
set elem_j index
set elem_data_value name value

elem_i specifies the vector element index or the matrix row index, while elem_j specifies the matrix
column index.27

For example

set all_data_value S 0
set elem_i 4
set elem_data_value S 1
set elem_i 6
set elem_data_value S 0.5

is equivalent to

set data_value S
0 0 0 0 1.0 0 .5 0 0 0

 status

To show the data values,

status data_value name

For example, if we want to show the values of layer S then,

nsl> status data_value S

The system response would be as follows,

set data_value S
0 0 0 0 1 0 0.5 0 0 0

6.1.3. module
The following are commands affecting network modules.

Initially all modules are enabled for processing, yet the user has the option to disable or enable
individual modules from being processed.

 enable

To enable module processing,

27 NSL 2.2 will have single element assignment in the form of v[i]=val for vectors, and m[i][j]=val for matrices.

 Alfredo Weitzenfeld: NSL 2.1 43

enable module name

where name is optional, and should match an existing module name.

 disable

To disable module processing,

disable module name

where name is optional, and should match an existing module name.

6.2. Simulation Processing

The following are commands affecting network simulation processing.

 set

To set the simulation time step or delta,

set delta value

value specifies the simulation delta time step

To set the simulation end time,

set end_time value

value specifies the simulation end time, which divided by 'delta', gives the total number of steps the
simulation is going to run.

For example, for the didday model we have,

set delta 0.1
set end_time 20.0

which gives a total of 200 (20.0/0.1) simulation steps.

 processing

To process a simulation there are the following commands,

 command description

init process 'INIT_MODULE's and 'MODULE's for t = 0.

run [n] process all modules from t=0 (similar to 'init'), and
all 'RUN_MODULE's and 'MODULE's for t>0
until t=n or t = end_time, if no n is specified.

step [n] process modules n steps or step for one iteration, if no n is
specified.

 Alfredo Weitzenfeld: NSL 2.1 44

cont [n] continue module processing from current t until t=n
or t = end_time, if no n is specified.

'Control-C' ('^C') serves as processing interrupt.

6.3. Data files

Data produced by a simulation may be stored into external files. The data stored in these files can
be used as input to other simulations or simply as a means of analyzing the simulation output in
numerical detail.

Besides the 'load' command, the user has available commands for opening and closing files, either
for input or output.

 output data file

In order to create a a file for output the user may execute the following command:

open OUTPUT file_name

where file_name is the name of the file to be created. If the command is executed without a file name,
then the current model name is used as file name. If the 'file_auto_name' flag is 'ON' ('set
file_auto_name ON') then NSL will append an increasing numerical index suffix to every newly
opened data file.

For example, if the currently simulated model is called 'DIDDAY' then a call to 'open' without
arguments will create an output data file named 'DIDDAY.nsl.0'; the next call to 'open' without
arguments will create an output data file named 'DIDDAY.nsl.1'; and so on.

The information stored into these data files is basically all the data values computed during the
simulation. NSL will store data from all those layers currently 'enabled', where enable layer refers to
which layer is enabled for file interaction. To enable a layer specified by name to be written, do,

file_enable layer name

(Layers may be disabled by using the 'file_disable' command in a similar way. The 'ALL' reserved
string serves as name modifier specifying all layers in the network).

To close file execute the following command:

close file_name

where file_name is the name of the file to be close. If the command is executed without a file name,
then the current open file is closed.

 input data file

In order to create a a file for input the user may execute the following command:

open INPUT file_name

 Alfredo Weitzenfeld: NSL 2.1 45

where file_name is the name of the file to be created. If the command is executed without a file name,
then the current model name is used as file name.

The information to be read is basically depends on what's stored in the file and what layers are
currently 'enabled'. NSL will read data to all those layers currently 'enabled', where enable layer
refers to which layer is enabled for file interaction. To enable a layer specified by name to be read, do,

file_enable layer name

The only other aspect to be considered is that if there are modules which originally computed those
layers, they should be 'disabled' from processing.

To close the file execute the following command:

close file_name

where file_name is the name of the file to be close. If the command is executed without a file name,
then the current open file is closed.

6.4. Simulation Management

One important aspect of the system is the ability to record automatically any interaction done by
the user, so it can be reproduced at any time in the future.28

6.5. Numerical Methods

NSL current release provides two different numerical methods for integration.29

 set

To choose the appropriate numerical method NSL provides with the following command,

set integration type

where type may be EULER or INTERPOLATION.

For example, to use the didday model with the EULER method, which is also the default one,
write

set integration EULER

6.6. Other

Other commands are included in section 10.

28 Simulation management is under current development and will be available with the next system release.
29 Future releases will extend upon the number and types of numerical methods available. Yet, the user may include new
numerical methods with any NSL model.

 Alfredo Weitzenfeld: NSL 2.1 46

7. NSL Window Interface
The window interface comprises a set of display object classes and graphics libraries. In order to be

able to efficiently interact with the window interface the user should become familiar with the
different types of display objects available.

In the following sections we will explain how to design such a graphics interface by either storing
all commands on a '.nsl' file or by interactively typing into the nsl interpreter.

Figure 12 shows the window interface created for the didday model, at the end of the simulation.

Figure 12
The window interface for the didday simulation model

The code creating this frame is as follows:

set frame_name FW1
set frame_X0 200
set frame_Y0 100
set frame_width 500
set frame_height 335
set frame_rows 2
create display_frame

set window_name WN11
set window_layer S
set window_graph area_level_graph
set window_wymin 0
set window_wymax 2
create display_window

set window_name WN12
set window_layer u
set window_graph temporal_graph
set window_wymin -3

 Alfredo Weitzenfeld: NSL 2.1 47

set window_wymax 3
set window_t1 20
create display_window

The next sections will describe the different interface object classes and describe their manipulation
via the command interpreter. A summary of all available window interface commands is given in
section 11.

7.1. Display Object Classes
There are five types of display object classes: window_interface, display_frame, display_window,

display_canvas, and display_panel.

7.1.1. window_interface

The window_interface is a 'non-visual' object type, instantiated automatically by the system's
graphical environment. Figure 13 shows the window interface structure, composed of a list of display
frames. Each display frame is made up of a list of display windows, which themselves are composed of
a display canvas where graphs are drawn, and a data panel where the user can interface with the
window control attributes.

display_frame

display_window

display_canvas

window_interface

display_panel

next

next

Figure 13
NSL display classes.

In order to initialize a window interface the following call should be entered (if the call doesn't
appear, new frames will be added to any currently existing ones),

create window_interface

 Alfredo Weitzenfeld: NSL 2.1 48

7.1.2. display_frame

A display_frame is a 'visual' display unit manipulated as a single entity on the screen which can
be moved, resized, and printed. A display frame can be physically composed of any number of display
windows as will be explained in the next section.

For example, the display frame on Figure 12, FW1, is created by the following commands:

set frame_name FW1
set frame_X0 200
set frame_Y0 100
set frame_width 500
set frame_height 335
set frame_rows 2
create display_frame

 set

The set command assigns values to the different environment variables:

- frame_name specifies the name to be used for the display frame.
- frame_width specifies the width of the display frame.
- frame_height specifies the height of the display frame.
- frame_X0 specifies the left pixel location of the display frame, where the coordinate is zero

on the left of the screen and increments towards the right until the monitor's maximum width is
reached.

- frame_Y0 specifies the top pixel location of the display frame, where the coordinate is zero
on the top of the screen and increments towards the bottom until the monitor's maximum height is
reached.

- frame_rows specifies the number of rows of display windows to be included inside the display
frame (graphs are assigned row-wise).

- frame_cols specifies the number of columns of display windows to be included inside the
display frame.

 create

The create command creates a new display frame according to the specified setting.

 update

The update command updates an existing display frame according to the specified settings.

7.1.3. display_window

A display_window is a 'non-visual' object containing two types of of 'visual' objects: a
display_canvas, where all graphics takes place, and a display_panel, a special window used for
controlling the display canvas. The display window also contains an internal database storing all the
window parameters.

In the the sample frame of Figure 12, two display windows are created with the following
commands:

set window_name WN11

 Alfredo Weitzenfeld: NSL 2.1 49

set window_layer S
set window_graph area_level_graph
set window_wymin 0
set window_wymax 2
create display_window

set window_name WN12
set window_layer u
set window_graph temporal_graph
set window_wymin -3
set window_wymax 3
set window_t1 20
create display_window

The first window, WN11, will display layer S as an 'area_level_graph' with a y axis value range
between 0 and 2. The second window, WN12, will display layer u, as a 'temporal_graph' with y axis
value range between -3 and 3. The time scale for the temporal graph is from 0 to 20,

Each window automatically opens a display panel (control panel) on an independent screen
frame30.

 set

The set command assigns values to the different environment variables:

- window_name specifies the name to be used for the display window.
- window_width specifies the width of the display canvas contained in the display window.
- window_height specifies the height of the display canvas contained in the display window.
- window_X0 specifies the left pixel location of the display canvas contained in the display

window, where the coordinate is zero on the left of the frame and increments towards the right until
the frame's maximum width is reached.

- window_Y0 specifies the top pixel location of the display canvas contained in the display
window, where the coordinate is zero on the top of the frame and increments towards the bottom until
the frame's maximum height is reached.

- window_layer specifies the particular layer to be displayed.
- window_graph specifies the particular type of graph to utilize for displaying.

 create

The create command creates a new display window according to the current settings.

 update

The update command update an existing display window according to the current settings.

7.1.4. display_canvas

A display_canvas is the 'visual' display object where graphics are actually drawn. There are
different kinds of graphics items which may be drawn on a canvas: graphs, grids, lines, and text, as
shown by the class structure tree in Figure 14.

30 When we talk about a frame, we talk about an X windows screen frame; while a display frame refers to NSL's window
interface display entity.

 Alfredo Weitzenfeld: NSL 2.1 50

canvas_item

graph grid line

area_level_graph

spatial

spatial_graph_2 spatial_graph_3temporal_graph

temporal

text

Figure 14
NSL display canvas item classes.

 set

The set command assigns canvas related parameters:

- window_graph specifies the type of graph to be used for the display window. Graphs may be
either temporal or spatial, and there are three different types of spatial graphs.

Figure 15

 Alfredo Weitzenfeld: NSL 2.1 51

vector area_level_graph vs. spatial_graph_2

Spatial graphs:

- area_level_graph displays a layer as levels of rectangular area representing the activity of
the different elements in the layer31.

- spatial_graph_2 displays a layer as a two dimensional graph (only vector layers should be
displayed with this option). Figure 15 shows an area_level_graph and a spatial_graph_2 for a
similar vector layer.

- spatial_graph_3 displays a layer as a three dimensional graph (only matrix layers should be
displayed with this option). Figure 16 shows an area_level_graph and a spatial_graph_3 for a
similar matrix layer.

Temporal Graphs (a vector temporal graph is shown in Figure 12 inside window WN12):

- temporal_graph displays temporal layer information. Every layer element is displayed as an
independent temporal graph, where the complete graph will contain as many rows and columns as
there are elements in that layer (i0<->i1, j0<->j1), each graph being a temporal display (t0<->t1)
of the respective layer's element.32

Figure 16
matrix area_level_graph vs. spatial_graph_3

31 An area_level_graph may be used both for displaying and reading input as will be described later in more
detail.

32 For efficiency considerations, the model data produced is not automatically stored by the system. For this reason,
temporal graphs can only be fully displayed while the simulation is being run. At the end of a simulation all layer temporal
data is lost.

 Alfredo Weitzenfeld: NSL 2.1 52

7.1.5. display_panel

The display_panel contains varied window control items. There are four classes of panel items:
text, menus. buttons, and messages, The panel class structure is shown in Figure 17.

panel_item

textmessagebutton menu

Figure 17
NSL display panel item classes.

A typical control panel, as the one controlling window WN11 (in Figure 12) is shown in Figure 18.
The different entries are control parameters which can also be set from the window interface
interpreter33.

33 These parameters are preceded by 'window_' when called from the commands interpreter. The control panel functions and
parameters are a subset from those available from the commands interpreter.

 Alfredo Weitzenfeld: NSL 2.1 53

Figure 18
NSL display window control panel

To disable the control panel from the command interpreter do,

disable display_panel name

and to enable it do,

enable display_panel name

where name is the name of the window to which the control panel belongs.

7.2. Window Mouse Interaction

Until now we have described the window interface display objects, and how they can be
manipulated from the command interpreter. In these sections we explain how to interact with the
window interface in a graphical way.

7.2.1. Drawing Frame

Every frame includes a frame menu along its boundary. The Frame Menu contains the regular X
windows menu (e.g. for moving, resizing, and closing, the frame).

 resize

The graphs in the different displays may be automatically resized when the frame itself is
resized. For this purpose, ff 'set frame_auto_resize' is 'ON' (which is the default), then every time a
frame is resized, all the windows will be automatically resized according to the number of rows and
columns that have been specified for the particular frame. If the option is 'OFF' no internal window
resizing will take place, even though the frame will change its size.

7.2.2. Drawing Canvas

The following are different types of interactive commands which may be activated through the
help of the mouse while inside a display canvas.

 Obtaining a Window Dump

A 'Window Dump', a display picture snapshot, may be obtained from any display frame at any
time. A window dump can be saved into a raster file ('ras'), a postscript file ('ps'), or directly be sent to
a printer. The menu containing these options is found by moving the mouse over the desired frame, and
pressing the mouse's right button which will show a menu with three entries: WinDump ,
 UpdateGraph , and ControlPanel .

Drag the mouse to the right of the WinDump menu entry, while still holding down the right button,
a new menu will appear with the following choices:

- WindowDump -> Printer - Send the window dump directly to the printer without having to
store it first in a file.

 Alfredo Weitzenfeld: NSL 2.1 54

- WindowDump -> RasterFile - Save the window dump into a rasterfile ('ras'), specified by the
dump_file variable. 'raster' format is the local workstation picture format.

- WindowDump -> PostScript - Save the window dump into a postscript file ('ps'), specified by
the dump_file variable. 'postscript' is the standard printer language.

where dump_file is a file name automatically generated by NSL, composed of a number suffix, an inffix
of 'ras' or 'ps' depending on what type of file it represents, and a preffix containing the model's name.

For example the first time a raster ('ras') is created from the didday model, the following name
will be generated,

didday.ras.1

The other two entries in the menu are as follows,

- The UpdateGraph entry is used for updating the window with any new information.

- The ControlPanel entry is used for recalling the Control Panel window if not present.

 Interactive input assignment

The user may interactively modify the values ('data_value') from any layer in the network. This
can be done with the help of the two mouse buttons when pressed over any window displaying a layer
as an 'area_level_graph' type of graph. By clicking the left button over a layer element, the value
specified by the window control panel's 'val_in' entry is assigned; while by clicking the middle button,
the layer's element value is reset to 0.0. To assign a value other than the one currently shown in
'val_in', simply modify the text entry to the right of 'val_in' and the new value will be used instead.
To find out the values, or the element's index, of the different layer elements, simply drag the mouse,
without clicking any button, over the different units, and their respective values with their respective
unit locations will be shown on 'val_out' (this entry value cannot be modified by the user).

7.2.3. Control Panel

The control panel, as shown in Figure 14, contains two sections, a 'static' top section, and a 'dynamic'
bottom section.

The top section contains the following entries:

- The UpdateGraph button used for updating the corresponding display window with new
information.

- The Layer menu from which a layer is selected.
- The Graph menu from which a graph is selected.

The lower section is scrollable and contains different entries depending on the Layer and Graph type
currently selected.

8. NSL Input Facility
NSL 2.1 includes a facility for dealing with a special type of INPUT_LAYER. An input layer

serves as the 'world' where many different objects or stimuli may be set, with constrains on their
location and time on which they are valid. While this functionality may be obtained using regular
NSL language constructs, such a task is greatly simplified by the use of NSL's input facility. In the next
sections we explain how to interact with this module.

 Alfredo Weitzenfeld: NSL 2.1 55

For example, Figure 19 shows an 'area_level_graph' of an input layer ('INPUT_MAT') made of
32x32 elements, containing an object of size 8x4.

Figure 19
NSL input stim objects.

Figure 20 shows a 'temporal graph' of an input layer ('INPUT_DAT') made of a single element,
containing an object appearing at two different time intervals.

Figure 20
NSL input stim objects.

These and many other object specifications may be done with the help of NSL's input facility, as
will be shown in the following sections.

8.1. Model Language
In this section we will describe the input layer class declarations and expressions included in NSL

model language ('.c' file).

8.1.1. input_layer
The input_layer classes are derived from the basic layer classes, data, vector, and matrix, giving

rise to: INPUT_DAT, INPUT_VEC, and INPUT_MAT classes. These three classes vary according to the
number of dimensions they contain. Figure 21 shows the layer class hierarchy.

 Alfredo Weitzenfeld: NSL 2.1 56

Since the input_layer is derived from the regular layer, it includes all the basic functionality of
the layer, extended with its own private functionality. Thus, for example, an input layer may be added
with regular layers, and so on. What's characteristic to the input layer is its ability to be map external
objects into itself. These objects, or stimuli, have special characteristics, such as movement, and may be
assigned time intervals on when to appear. This facility thus provides a means for assigning external
object specifications into a layer which at any moment may be incorporated into regular layer
expressions.

MATRIXVECTORDATA

LAYER

INPUT_MATINPUT_VECINPUT_DAT

Figure 21
NSL input layer classes.

The following are the different classes of input layers.

Data layer:

INPUT_DAT(layer_name)

e.g INPUT_DAT(S); // a data layer

Vector layer:

INPUT_VEC(layer_name,size)

e.g. INPUT_VEC(INP,10); // a 10 unit vector layer

Matrix layer:

INPUT_MAT(layer_name,rows,columns)

e.g INPUT_MAT(A,10,8); // a 10x8 layer

where layer_name specifies the name of the layer, size specifies the length of the vector, rows
specifies the number of rows of a matrix layer, and columns represent the number of columns of a matrix
layer.

 Alfredo Weitzenfeld: NSL 2.1 57

8.1.2. processing
Processing of any stimuli specifications (done from the '.nsl' file) is achieved by including the

following line inside a RUN_MODULE ,

input_layer.run();

where layer_name specifies the name of the layer, and 'run' is the function which will process any
existing stimuli specification.

8.2. Simulation Commands
Once an input layer has been declared in the model file, it is necessary to give the input object

specifications in the command file. For example, the object shown in Figure 19 was created with the
following script:

set input_layer IN
set input_xz 0
set input_yz 16
set input_dx 1
set input_dy 1
reset stim_list
set stim_val 1.5
set stim_x0 4
set stim_y0 0
set stim_dx 8
set stim_dy 4
create block_stim

The object shown in Figure 20 was created with the following script:

set input_layer IN
reset stim_list
set stim_val 1.0
create block_stim
set stim_t0 0.0
set stim_t1 0.3
create time_stim
set stim_t0 3.0
set stim_t1 3.3
create time_stim

These lines will be explained in the next sections.

8.2.1. input_layer
The first step in describing an input object is to set the appropriate input layer, e.g.

set input_layer IN

then, the mapping characteristics between the layer and the input stimulus coordinates have to be
given.

For example,

 Alfredo Weitzenfeld: NSL 2.1 58

set input_xz 0
set input_yz 16
set input_dx 1
set input_dy 1

specify the origin of the coordinate system to lie over IN[0,16] (element 0,16 of layer IN), while the
distance among adjacent layer elements is equivalent to '1' either in x or y. Figure 22 shows the general
schematics of an input layer and input stimulus specification characteristics.

(input_xz,input_yz)

input_dx

input_dy

stim_dx
stim_dy

stim_xc
stim_yc

x

y

j j+1j-1

i

i-1

i+1

j+2

stim_x1
stim_y1

stim_x0
stim_y0

x,y origin

Figure 22
NSL input stim objects.

The summary of input layer specifications is given in section 10 (the input stimulus specifications
will be explained in the next section).

8.2.2. input_stim
The following is the input object specification as shown in Figure 19,

reset stim_list

which resets the stimuli list to a new one,

set stim_val 1.5

 Alfredo Weitzenfeld: NSL 2.1 59

which assigns the value of 1.5 to the input layer elements corresponding to the current input object
location,

set stim_x0 4
set stim_y0 0

which sets the input object upper left corner location to (4,0) on the input layer coordinate system, and
which maps to layer elements [4,16],

set stim_dx 8
set stim_dy 4

which sets the input object size to 8x4, and

create block_stim

which actually creates the specified object.

The object shown in figure 20 is specified by,

reset stim_list

which resets the stimuli list to a new one,

set stim_val 1.0

which assigns the value of 1.0, which is really the default value,

create block_stim

which creates the specified object (since this is a single element layer, there is no need to specify
stimulus size or location),

set stim_t0 0.0
set stim_t1 0.3
create time_stim

this creates a time interval between 0.0 and 0.3 (simulated time),

set stim_t0 3.0
set stim_t1 3.3
create time_stim

while this creates a time interval between 3.0 and 3.3. The temporal output is shown in Figure 20.

The location of the stimulus may be specified either by using its corner or its center as reference
position, where the relation among them in a any rectangular object is as follows,

stim_xc = stim_x0 + (stim_dx)/2
stim_yc = stim_y0 + (stim_dy)/2

Objects may also be specified with velocity,

stim_vx

 Alfredo Weitzenfeld: NSL 2.1 60

stim_vy

where the object's velocity is calculated as distance per simulated time, or in other words, the current
stimulus position at any given time is computed by (in the case of the corner location) :

tx0 = ts*stim_vx + stim_x0
ty0 = ts*stim_vy + stim_y0

where 'ts' is the current simulated time.

The summary of input stimulus specifications is given in section 10.

9. Advanced NSL Programming
To write more developed code in NSL, the user is encouraged to become familiar with the C++

language. The current release compiles NSL an extended version of C++, so user written C++ code should
compile in a straight forward manner, and may be integrated with any NSL code. In these sections we
will describe NSL classes and their most important public methods. Calls to these methods can be done
from the model language, by writing any C++ expressions inside the different processing modules, or by
writing totally independent C++ routines which may be called from an expression.

Many files may be linked together, the only requirement is that each contain an '# include
"nsl_include.h"' line, which contains all the header and macro definitions necessary for linking NSL
code.

9.1. Model Language
Following C++ conventions, an object's public method is called as follows,

object.method();

where object is the name of the object and method is the desired 'member' function. (If the object is
referenced as a pointer to it, then the call would be: 'object->method()'.)

9.1.1. network
The macro declaration of 'NETWORK(name)' translates to a C++ declaration of

nsl_network name("name")
where nsl_network is the name of the object class, and name is the name of the instantiation variable.
"name" is used the name to be stored internally for linking the compiled code with the run time
interpreted environment.

The network class definition is as follows:

class nsl_network
{

char name[NAME_SIZE]; // model name

float DELTA; // time step
float CURRENT_TIME; // current time
float END_TIME; // end time

int layer_total; // total number of layers
int module_total; // total number of modules

 Alfredo Weitzenfeld: NSL 2.1 61

public:
nsl_network(char*);
~nsl_network();

float get_delta(); // get delta time step
float get_time(); // get current simulation time
float get_end_time(); // get simulation end time

void set_delta(float); // set time step
void set_time(float); // set current simulation time
void set_end_time(float); // set simulation end time

void reset_time(); // reset time to 0

int get_layer_total(); // total number of layers
nsl_layer* get_layer(char*); // name search
nsl_layer* get_layer(int); // index search

int get_module_total(); // total number of modules

void print_status(); // print model information
} ;

For example, to get the value for the delta do (and having a network called 'DIDDAY'),

float dt = DIDDAY.get_delta();

9.1.2. modules
The macro declaration of 'MODULE(name)' translates to a C++ declaration of

nsl_module name("name")
where nsl_module is the name of the object class, and name is the name of the instantiation variable.
"name" is used the name to be stored internally for linking the compiled code with the run time
interpreted environment.

The module class definition is as follows:

class nsl_module
{

char name[NAME_SIZE]; // module name
int index; // module index number

public:
nsl_module();
~nsl_module();

char* get_name(); // return module name
int get_index(); // return module index number

} ;

9.1.3. layers
The layer class, which is the super-class for the derived data, vector, and matrix classes,

definition is as follows:

 Alfredo Weitzenfeld: NSL 2.1 62

class nsl_layer
{

char name[NAME_SIZE];
int index;
int layer_type; // 1 - nsl_data, 2 - nsl_vector, 3 - nsl_matrix
public:
nsl_layer(int);
nsl_layer(char*,int);

void set_name(char*) ;
void set_index(int);
void set_layer_type(int);

char* get_name();
int get_index();
int get_layer_type();

} ;

9.1.3.1. data
The macro declaration 'DATA(name)' translates to

nsl_data name("name")
where nsl_data is the name of the object class, and name is the name of the instantiation variable.
"name" is used for linking the compiled code with the run time interpreted environment.

The data structure is as follows:

class nsl_data : public nsl_layer
{

num_type v;
public:

nsl_data();
nsl_data(nsl_data&);
nsl_data(nsl_model&,char*);
nsl_data(nsl_model*,char*);
nsl_data(char*);
~nsl_data();

num_type& get_data();

num_type& elem();

void operator=(nsl_data&);
void operator=(num_type);

void print();
void print_status();

} ;

9.1.3.2. vector
The macro declaration of 'VECTOR(name,size)' translates to

nsl_vector name("name",size)

 Alfredo Weitzenfeld: NSL 2.1 63

where nsl_vector is the name of the object class, and name is the name of the instantiation variable.
"name" is used for linking the compiled code with the run time interpreted environment. size is simply
the size of the vector which also gets passed as argument to the 'nsl_vector' class constructor.

The vector structure is as follows:

class nsl_vector : public nsl_layer
{

num_type* v;
int i0,i1;
int size;

public:
nsl_vector(int);
nsl_vector(nsl_vector&);
nsl_vector(nsl_model*,char*,int);
nsl_vector(nsl_model&,char*,int);
nsl_vector(char*,int);
~nsl_vector();

int get_i0();
int get_i1();
int get_size();

num_type* get_vector();
num_type& elem(int);

void operator=(nsl_vector&);
void operator=(nsl_data&);
void operator=(num_type);

num_type max();
num_type min();

num_type sum();

nsl_vector get_sector(int,int);
nsl_vector put_sector(nsl_vector&,int);

void print();
void print(int,int);
void print_status();

} ;

9.1.3.3. matrix
The macro declaration of MATRIX(name,rows,columns) translates to

nsl_matrix name("name",rows,columns)
where nsl_matrix is the name of the object class, and name is the name of the instantiation variable.
"name" is used for linking the compiled code with the run time interpreted environment. rows and
columns are simply the size of the matrix which also gets passed as arguments to the 'nsl_matrix' class
constructor.

The matrix structure is as follows:

class nsl_matrix : public nsl_layer

 Alfredo Weitzenfeld: NSL 2.1 64

{
num_type** v;
int i0,i1,j0,j1;
int rows,cols;

public:
nsl_matrix(int,int);
nsl_matrix(nsl_matrix&);
nsl_matrix(nsl_model*,char*,int,int);
nsl_matrix(nsl_model&,char*,int,int);
nsl_matrix(char*,int,int);
~nsl_matrix();

int get_i0();
int get_i1();
int get_j0();
int get_j1();
int get_rows();
int get_cols();

num_type** get_matrix();
num_type& elem(int,int);

void operator=(nsl_matrix&);
void operator=(nsl_data&);
void operator=(num_type);

num_type max();
num_type min();

num_type sum();

nsl_matrix get_sector(int,int,int,int);
nsl_matrix put_sector(nsl_matrix&,int,int);

void print(); // print layer data
void print(int,int,int,int); // print layer data sector
void print_status(); // print layer information

} ;

9.1.4. input_layers
There are three types of input layers, derived from the regular layer classes.

9.1.4.1. input_data
The macro 'INPUT_DAT(name)' translates to

nsl_input_data name("name")
where nsl_input_data is the name of the object class, and name is the name of instantiation variable.
"name" is utilized for linking the compiled code with the run time interpreted environment.

The data structure is as follows:

class nsl_input_data : public nsl_data
{

int stim_total;

 Alfredo Weitzenfeld: NSL 2.1 65

nsl_stim_list* stim_list;
public:

nsl_input_data(char*);
~nsl_input_data();

int get_stim_total();
} ;

9.1.4.2. input_vector
The macro 'INPUT_VEC(name,size) translates to

nsl_input_vector name("name",size)
where nsl_input_vector is the name of the object class, and name is the name of instantiation variable.
"name" is utilized for linking the compiled code with the run time interpreted environment. size is
simply the size of the vector which get also passed as argument to the 'nsl_vector' class constructor.

The vector structure is as follows:

class nsl_input_vector : public nsl_vector
{

int stim_total;
nsl_stim_list* stim_list;

public:
nsl_input_vector(char*,int);
~nsl_input_vector();

int get_stim_total();
} ;

9.1.4.3. input_matrix

The macro 'INPUT_MAT(name,rows,columns)' translates to
nsl_input_matrix name("name",rows,columns)

where nsl_input_matrix is the name of the object class, and name is the name of instantiation variable.
"name" is utilized for linking the compiled code with the run time interpreted environment. rows and
columns simply the size of the matrix which get also passed as arguments to the 'nsl_matrix' class
constructor.

The matrix structure is as follows:

class nsl_input_matrix : public nsl_matrix
{

int stim_total;
nsl_stim_list* stim_list;

public:
nsl_input_matrix(char*,int,int);
~nsl_input_matrix();

int get_stim_total();
} ;

9.2. Adding NSL Language Functions
New NSL language functions can be written by following C++ syntax. Any NSL data structure can be

used inside functions and as arguments to the function. The only restriction is that no NSL macros may be

 Alfredo Weitzenfeld: NSL 2.1 66

declared (DATA, VECTOR, MATRIX, etc.), only the raw nsl structures (nsl_data, nsl_vector,
nsl_matrix, etc.). It is also important that any nsl structures be declared by specifying its size and not
the optional name, thus making it unknown from the global nsl structures34.

For example, to write a function that takes two nsl_matrix arguments, and,
- checks if both matrix arguments are of the same size,
- declares a new matrix m of equal size,
- assigns to the corresponding elements of the new matrix either '1' if both argument matrices have

an equal corresponding element value or '0' otherwise,
- the newly created matrix containing the result is then returned.

nsl_matrix function(nsl_matrix& m1,nsl_matrix& m2)
{

int rows = m1.get_rows();
int cols = m1.get_cols();

nsl_matrix m(rows,cols); // initializes the matrix with '0'

if ((rows != m2.get_rows() || cols != m2.get_cols())
 cmd_error("Bad matrix sizes in function");
else
{
 for (int i = 0; i < rows; i++) // 'i' index go from '0' to 'rows-1'

for (int j = 0; j < cols; j++) // 'j' index goes from '0' to 'cols-1'
 if (m1.elem(i,j) == m2.elem(i,j))

m.elem(i,j) = 1;
 else // this 'else' part is not really necessary since 'm' was initialized to '0'

m.elem(i,j) = 0;
}

return m;
}

Note that structures can be passed by value or by reference. In this case the matrices were passed by
reference, permitting any changes on the argument matrices to take effect outside the function, although
this was not the case. Passing by reference is also more efficient than passing by value, where the
structure gets copied (for passing by value omit the '&' in the argument declaration).

9.3. Adding Simulation Commands
New simulation commands may be added to NSL command interpreter. This is achieved by writing

the following command reading function in a file to be linked via 'nsl_link'.

include "nsl_include.h"

extern int new_command_function(istream&); // C++ declaration of your command function

int my_command_function(istream& in)
{

string str;
int status = 0;

34 NSL keeps global structures independent from locally declared structures.

 Alfredo Weitzenfeld: NSL 2.1 67

if (nsl_get_str(in,str) == 0)
{

cmd_error("Empty command string");
return -1;

}

if (strcmp(str,"new_command") == 0)
status = new_command_function(in);

else
cmd_error("Unknown command: ",str);

return status;
}

Every time 'nsl_get_str' gets called, a new string is read from the interpreter.
'new_command_function' will contain the code that actually performs the command, including reading
any other command line parameters via more 'nsl_get_str'. The name of the command is
'new_command'.

The file 'nsl_main.c' has to be edited so it would look as follows:

include "nsl_include.h"

extern int my_command_function(istream&);

main(int argc,char** argv)
{

NSLinit(argc,argv);

NSL_USER_CMD = my_command_function;

NSLmain(argc,argv);
}

These commands may then be called from the interpreter with the following syntax,

user new_command [optional modifiers]

9.4. Adding Simulation Functions in C++
In order to permit greater flexibility from the command interpreter, NSL permits the addition of

general purpose simulation command functions to be written in C++ code. This is achieved by declaring a
special type of module in the model file, called FUNC_MODULE. The purpose of this module is to
provide the link between the model language and the command interpreter. A FUNC_MODULE may
include any C++ code, or it may call regular simulation commands (see next section). The interpreter
itself would call the function by 'exec function_name'. (No arguments may be passed to the function.)
Any C++ expressions may be included inside this module, such as conditionals and iterative loops.

The syntax is as follows,

FUNC_MODULE(function_name)
{

...function specification...

 Alfredo Weitzenfeld: NSL 2.1 68

}

Calling simulation commands from inside a module is described in the next section.

9.4. Calling Simulation Commands from C++
Simulation commands may be called from the model file in the following manner,

NSL << command [<< command...] << ENDL;

where NSL is the command interpreter, command is the desired command, and ENDL specifies the end
of an expression (without ENDL the command wouldn't be processed). There may be as many ' < <
command' as necessary; this is particularly useful for sending commands composed of part string and
part numerical values.

For example you could execute a status command from inside a FUNC_MODULE by having the
following expression:

NSL << "status data_value ALL" << ENDL;

which will show the data values for all layers when the function containing this line gets executed.

9.6. Adding Graphics

New graphics libraries may be incorporated as part of NSL35.

10. NSL Simulation Command Summary

The next sections provide a summary of all NSL simulation commands.

10.1. help

help 'command' ['command option']

NSL help on simulation related commands

 command description

help - help command
create - create model objects
disable - disable objects
enable - enable objects
exec - execute a particular function module
exit,quit - exit NSL
fi le - file info

file_enable - enable layer filing
file_disable - disable layer filing
close - close a file

35 A separate document will show a sample creation of new types of graphics libraries.

 Alfredo Weitzenfeld: NSL 2.1 69

load,read - read a file
open - open a file
write - write a file

proc - processing info
cont - process modules starting at current time
init - process modules for t=0
run - process modules for t*0
step - process once through all modules

reset - reset commands
set - set commands
shell - unix shell commands

cd - change model directory
csh - execute a c-shell command
sh - execute a shell command

status - print status information on the model
update - update model objects
user - call a user defined command

10.2. create

The create command is utilized for creating model class objects. The syntax is as follows,

create 'type'

 type description

block_stim create block-type stim object
icon_stim create icon-type stim object
time_stim create time interval for existing stim object

10.3. disable

disable 'type' ['option']

disable processing for object type

 type option description

network disable current model
'name' disable a particular model by name
'index' disable a particular model by index

module disable current module
'name' disable a particular module by name
'index' disable a particular module by index

layer disable current layer update
'name' disable a particular layer update by name
'index' disable a particular layer update by index

input_layer disable current input layer
'name' disable an input layer by name
'index' disable an input layer by index

input_stim disable current input stim
'name' disable an input stim by name

 Alfredo Weitzenfeld: NSL 2.1 70

'index' disable an input stim by index

- 'name' is either a string name or 'ALL'
- 'index' is an integer

10.4. enable

enable 'type' ['option']

enable processing for object type

 type option description

network enable current model
'name' enable a particular model by name
'index' enable a particular model by index

module enable current module
'name' enable a particular module by name
'index' enable a particular module by index

layer enable current layer update
'name' enable a particular layer update by name
'index' enable a particular layer update by index

input_layer enable current input layer
'name' enable an input layer by name
'index' enable an input layer by index

input_stim enable current input stim
'name' enable an input stim by name
'index' enable an input stim by index

- 'name' is either a string name or 'ALL'
- 'index' is an integer

10.5. exec

exec - execute a function module defined in the model file

10.6. exit

exit,quit - exit NSL

10.7. file

'cmd' ['option'] 'name'

commands for dealing with external i/o

 cmd option description

 Alfredo Weitzenfeld: NSL 2.1 71

file_enable enable layer 'name' for file in/out
file_disable disable layer 'name' for file in/out
load,read read from file 'name'
write write into 'filename'
open open file 'name' according to current 'file_type'

INPUT open file 'name' for input
OUTPUT open file 'name' for output

close close file 'name'

10.8. proc

'cmd' ['option']

process model

 cmd option description

init process modules for t=0
run process modules for 0<=t<end_time

'ts' process modules for 0<=t<=ts
cont process modules for current time<t<=end_time

'ts' process modules for current_time<t<ts
step process modules 1 iteration

'n' process modules n iterations

10.9. reset

reset 'type'

reset object type

 type description

stim_list reset stimuli list

10.10. set

set 'type' ['option']

set buffer for objects in the next categories

 type class description

network network information
module module information
layer layer information
input_layer input layer information
input_stim stimulus information

 network

 Alfredo Weitzenfeld: NSL 2.1 72

set 'modifier' 'option'

 modifier option description

network current network
'name' network by name
'index' network by index

end_time current end_time
'value' set simulation 'end_time' to 'value'

current_time current time
'value' set simulation 'current_time' to 'value'

delta current delta time step
'value' set simulation 'delta' to 'value'

integration current integration numerical method
'method' set simulation numerical method to 'method'

 module

set 'modifier' 'option'

 modifier option description

module current module
'name' module by name
'index' module by index

 layer

set 'modifier' 'option'

 modifier option description

layer current layer
'name' layer by name
'index' layer by index

data_value 'name' layer name followed by all values
all_data_value 'name' layer name followed by single data value

for whole layer
elem_i 'index' layer row element index
elem_j 'index' layer col element index
elem_data_value 'name' layer name followed by elem data value

used in conjunction with elem_i and elem_j

 input_layer

set 'modifier' 'option'

 modifier option description

input_layer current input layer
'name' input layer by name
'index' input layer by index

input_xz 'index' zero coordinate x layer element, default is 0
input_yz 'index' zero coordinate y layer element, default is 0
input_dx 'value' distance between adjacent x layer elements,

 Alfredo Weitzenfeld: NSL 2.1 73

default is 1.0
input_dy 'value' distance between adjacent y layer elements,

default is 1.0

 input_stim

set 'modifier' 'option'

 modifier option description

input_stim current stim
'index' stim by index

stim_index 'index' stim index
stim_dx 'value' stim x size (width), default is 1.0
stim_dy 'value' stim y size (height), default is 1.0
stim_xc 'value' stim x center initial location, default is 0.0
stim_yc 'value' stim y center initial location, default is 0.0
stim_x0 'value' stim x left initial location, default is 0.0
stim_y0 'value' stim y top initial location, default is 0.0
stim_spec 'type' CENTER or CORNER
stim_type 'type' BLOCK or ICON
stim_val 'value' stim value (used for BLOCK type), default is 1.0
stim_mat 'matrix' stim icon matrix (used for ICON type)
stim_vx 'value' stim velocity, positive going right
stim_vy 'value' stim velocity, positive going up
stim_t0 'value' beginning of stim time interval
stim_t1 'value' end of stim time interval

10.11. shell

'cmd' 'option'

execute a unix shell command

 cmd option descr iption

cd 'dir_name' change the model directory to 'dir_name'
csh 'cmd_line' execute a csh 'cmd_line'
sh 'cmd_line' execute a sh 'cmd_line'

10.12. status

status 'type' ['option']

print status information for object type

 type option description

system list all linked models
files list all active data files
current current system status
network status on current model

 Alfredo Weitzenfeld: NSL 2.1 74

'name' status on a model by name
'index' status on a model by index

module status on current module
'name' status on a module by name
'index' status on a module by index

layer status on current layer
'name' status on a layer by name
'index' status on a layer by index

data_value current layer data values
'name' current layer data values by name
'index' current layer data values by index

input_layer status on current input_layer
'name' status on an input_layer by name
'index' status on an input_layer by index

input_stim print all input layer stimuli
'name' print stimuli of an input layer by name
'index' print stimuli of an input layer by index

- 'name' is either a string name or 'ALL'
- 'index' is an integer

10.13. update

The update command is utilized for updating model class objects. The syntax is as follows,

update 'type'

 type description

block_stim update block-type stim object
icon_stim update icon-type stim object
time_stim update time interval for existing stim object

10.14. user

user 'cmd' user written command

11. NSL Window Interface Command Summary

There are several types of display class commands including the creation of objects, and the
modification of object parameters.

11.1. help

help 'command' ['command option']

NSL help on window interface commands

 command description

 Alfredo Weitzenfeld: NSL 2.1 75

help - this command
create - create model objects
disable - disable objects
enable - enable objects
print - printing commands

print_dump - print a screen dump
win_dump - get a screen dump

reset - reset options
set - set options
status - status information on display objects
update - update display objects

11.2. create

The create command is utilized for creating display class objects. The syntax is as follows,

create 'type'

 type description

display_frame create display frame
display_window create display window

11.3. disable

disable 'type' ['option']

disable window object type

 type option description

display_panel disable current display panel
'name' disable display panel by name
'index' disable display panel by index

canvas_item disable current canvas item
'index' disable canvas item by index

panel_item disable current panel item
'index' disable panel item by index

- 'name' is either a string name or 'ALL'
- 'index' is an integer

11.4. enable

enable 'type' ['option']

enable window object type

 type option description

 Alfredo Weitzenfeld: NSL 2.1 76

display_panel enable current display panel
'name' enable display panel by name
'index' enable display panel by index

canvas_item enable current canvas item
'index' enable canvas item by index

panel_item enable current panel item
'index' enable panel item by index

- 'name' is either a string name or 'ALL'
- 'index' is an integer

11.5. print

A window dump may also be generated from the command interpreter as follows,

'cmd' 'option'

 cmd option description

win_dump do a window dump on the current 'frame_name'
'frame_name' do a window dump on the specified 'frame_name'

print_dump print the current 'dump_file'
'dump_file' print the specified 'dump_file'

The win_dump command may be instructed to generate automatic file names by using the following
commands,

set 'modifier' 'option'

 modifier option description

dump_file 'name' name of file used for window dumps.
dump_type PRINTER output will be sent directly to printer

RASTER output will be saved as raster ('ras') file
POSTSCRIPT output will be saved as postscript ('ps') file

dump_ras_index 'n' 'ras' dump file suffix number.
dump_ps_index 'n' 'ps' dump file suffix number.
dump_auto_name ON output file name is composed: 'dump_file.dump_type.index'

OFF output file name is same as 'dump_file'.

11.6. reset

reset 'type'

reset display objects

 type description

window_interface reset window interface

 Alfredo Weitzenfeld: NSL 2.1 77

11.7. set

set 'type' ['option']

set buffer for objects in the next categories

 type class description

display_frame display frame information
display_window display window information
window_item window item information
canvas_item canvas item information
panel_item panel item information

 display_frame

set 'modifier' 'option'

 modifier option description

display_frame current display frame
'name' display frame by name
'index' display frame by index

frame_name 'name' frame's name.
frame_X0 'n' frame's left corner's location on the screen (# pixels).
frame_Y0 'n' frame's top corner's location on the screen (# pixels).
frame_width 'n' frame's width (# pixels).
frame_height 'n' frame's height (# pixels).
frame_auto_resize 'type' ON - automatic resize, OFF - no automatic resize.
frame_rows 'n' number of window rows (automatic redraw).
frame_cols 'n' number of window columns (automatic redraw).

 display_window

set 'modifier' 'option'

 modifier option description

display_window current display window
'name' display frame by name
'index' display frame by index

window_name 'name' window's name
window_X0 'n' window's left corner's location on the screen (# pixels)
window_Y0 'n' window's top corner's location on the screen (# pixels)
window_width 'n' window's width (# pixels)
window_height 'n' window's height (# pixels)
window_step 'n' window update step (default 1)
window_layer 'name' layer's name to be displayed
window_layer_i0 'n' layer's i0 unit to be displayed
window_layer_i1 'n' layer's i1 unit to be displayed
window_layer_j0 'n' layer's j0 unit to be displayed
window_layer_j1 'n' layer's j1 unit to be displayed
window_graph 'type' area_level_graph

 Alfredo Weitzenfeld: NSL 2.1 78

spatial_graph_2
spatial_graph_3
temporal_graph

window_wymin 'value' graph's min layer unit value
window_wymax 'value' graph's max layer unit value
window_t0 'value' temporal graph starting time
window_t1 'value' temporal graph ending time
window_val_in 'value' interactive mouse input value
window_pulse 'type' draw using 'pulse' type lines (ON/OFF)
window_vec_type 'type' vector drawing type (HORIZONTAL/VERTICAL)
window_hidden_line 'type' draw 3D with hidden line removal (ON/OFF)
window_ax 'value' 3D graph x reference point
window_by 'value' 3D graph y reference point
window_cz 'value' 3D graph z reference point
window_sx 'value' 3D graph x scale
window_sy 'value' 3D graph y scale
window_sz 'value' 3D graph z scale

11.8. status

status 'type' ['option']

print status information for object type

 type option description

window_interface interface status information
display_frame frame status information

'name' display frame status by name
'index' display frame status by index

display_window window status information
'name' display window status by name
'index' display window status by index

display_canvas canvas status information
'name' display canvas status by name
'index' display canvas status by index

display_panel panel status information
'name' display panel status by name
'index' display panel status by index

window_item window item status information
'name' window item status by name
'index' window item status by index

canvas_item canvas item status information
'name' canvas item status by name
'index' canvas item status by index

panel_item panel item status information
'name' panel item status by name
'index' panel item status by index

- 'name' is either a string name or 'ALL'
- 'index' is an integer

 Alfredo Weitzenfeld: NSL 2.1 79

11.9. update

The update command updates current display information,

update 'type'

 type description

window_interface update all display frames and display windows
display_frame update display frame
display_window update display window
display_canvas update display canvas
display_panel update display panel
canvas_item update canvas item
panel_item update panel item

12. References
Amari, S., Arbib, M.A., 1977, Competition and Cooperation in Neural Nets, Systems Neuroscience (J.

Metzler, ed.), pp. 119-165, Academic Press.
Arbib, M.A., 1989, The Metaphorical Brain 2: Neural Networks and Beyond, Wiley.
Didday, R.L., 1976, A Model of Visuomotor Mechanisms in the Frog Optic Tectum, Math. Biosci., Vol.

30, pp. 169-180.
Goddard, N., Lynne, K.J., Mintz, T., 1987, Rochester Connectionist Simulator, (User's Manual),

University of Rochester, Department of Computer Science.
Hebb, D.O., 1949, The Organization of Behavior, Wiley.
Hodgkin, A.L, Huxley, A.F., 1952, A Quantitative Descriptionof Membrane Current and its Application

to Conduction and Excitation in Nerve, J. Physiol., London, Vol. 117, pp. 500-544.
Kandel, E.R., Schwartz, J.H., 1985, Principles of Neural Science, Elsevier.
Kernighan, B.W., Ritchie, D.M., 1978, The C Programming Language, Prentice-Hall.
McCulloch, W.S., Pitts, W.H., 1943, A Logical Calculus of the Ideas Immanent in Nervous Activities ,

Bull. Math. Biophys., Vol. 5, pp. 115-133.
Rumelhart, D.E., McClelland, J.L., 1986, Parallel Distributed Processing, Vol I & II, MIT Press.
Stroustrup, B., 1987, The C++ Programming Language, Addison Wesley.
Teeters, J., 1989,A Simulation System for Neural Networks and Model for the Anuran Retina, TR 89-01

(PhD Thesis), Center for Neural Engineering, University of Southern California.
Wang, D., Hsu, C., 1990, SLONN: A Simulation Language for modeling of Neural Networks, Simulation

pp. 69-83.
Weitzenfeld, A., 1989, NSL, Neural Simulation Language, Version 1.0, TR 89-02, Center for Neural

Engineering, University of Southern California.
Weitzenfeld, A., 1990, NSL, Neural Simulation Language, Version 2.0, TR 90-01, Center for Neural

Engineering, University of Southern California.
Wilson, M.A., Bhalla, U.S., Uhley, J.D., Bower, J.M., 1989, GENESIS: A System for Simulating Neural

Networks, Advances in Neural Network Information Processing System, Morgan Kauffman.

13. Appendices

The following appendices give have been added to the manual to give further explanations.

 Alfredo Weitzenfeld: NSL 2.1 80

13.1. NSL Environment

To start an NSL session, one including graphics, make sure you have initialized the appropriate
windowing environment. (Due to the fact that NSL's current window interface release runs under the X
window environment. The regular 'xstart' or 'xinit' can be used to enter the environment. In a Sun, there
is also the option to run the openwinodws environment by executing 'openwin'. 'nsl' can be run from any
'c-shell' window, or any 'xterm'.)

If this is the first time you are going to run a model in NSL, execute first the 'nsl_init' command to
create default settings, and copy the sample models from the NSL directories.

13.2. NSL Library Functions

The following is a list of the different library functions available in NSL describing the number and
type of arguments accepted by each one of them. nsl_data, nsl_vector, and nsl_matrix are NSL layer
classes, while num_type is a simple data type, currently defined to be a 'float'.

// arithmetic

// addition
nsl_data operator+(nsl_data&);
nsl_data operator+(nsl_data&,nsl_data&);
nsl_data operator+(nsl_data&,num_type);
nsl_data operator+(num_type,nsl_data&);
nsl_vector operator+(nsl_vector&,nsl_vector&);
nsl_vector operator+(nsl_vector&);
nsl_vector operator+(nsl_vector&,num_type);
nsl_vector operator+(num_type,nsl_vector&);
nsl_vector operator+(nsl_vector&,nsl_data&);
nsl_vector operator+(nsl_data&,nsl_vector&);
nsl_matrix operator+(nsl_matrix&);
nsl_matrix operator+(nsl_matrix&,nsl_matrix&);
nsl_matrix operator+(nsl_matrix&,nsl_data&);
nsl_matrix operator+(nsl_data&,nsl_matrix&);
nsl_matrix operator+(nsl_matrix&,num_type);
nsl_matrix operator+(num_type,nsl_matrix&);

// subtraction
nsl_data operator-(nsl_data&);
nsl_data operator-(nsl_data&,nsl_data&);
nsl_data operator-(nsl_data&,num_type);
nsl_data operator-(num_type,nsl_data&);
nsl_vector operator-(nsl_vector&);
nsl_vector operator-(nsl_vector&,nsl_vector&);
nsl_vector operator-(nsl_vector&,num_type);
nsl_vector operator-(num_type,nsl_vector&);
nsl_vector operator-(nsl_vector&,nsl_data&);
nsl_vector operator-(nsl_data&,nsl_vector&);
nsl_matrix operator-(nsl_matrix&);
nsl_matrix operator-(nsl_matrix&,nsl_matrix&);
nsl_matrix operator-(nsl_matrix&,nsl_data&);
nsl_matrix operator-(nsl_data&,nsl_matrix&);

 Alfredo Weitzenfeld: NSL 2.1 81

nsl_matrix operator-(nsl_matrix&,num_type);
nsl_matrix operator-(num_type,nsl_matrix&);

// pointwise multiplication
nsl_vector operator^(nsl_vector&,nsl_vector&);
nsl_vector operator^(nsl_vector&,num_type);
nsl_vector operator^(num_type,nsl_vector&);
nsl_vector operator^(nsl_vector&,nsl_data&);
nsl_vector operator^(nsl_data&,nsl_vector&);
nsl_matrix operator^(nsl_matrix&,nsl_matrix&);
nsl_matrix operator^(nsl_matrix&,nsl_data&);
nsl_matrix operator^(nsl_data&,nsl_matrix&);
nsl_matrix operator^(nsl_matrix&,num_type);
nsl_matrix operator^(num_type,nsl_matrix&);

// pointwise division
nsl_data operator/(nsl_data&,nsl_data&);
nsl_data operator/(nsl_data&,num_type);
nsl_data operator/(num_type,nsl_data&);
nsl_vector operator/(nsl_vector&,nsl_vector&);
nsl_vector operator/(nsl_vector&,num_type);
nsl_vector operator/(num_type,nsl_vector&);
nsl_vector operator/(nsl_vector&,nsl_data&);
nsl_vector operator/(nsl_data&,nsl_vector&);
nsl_matrix operator/(nsl_matrix&,nsl_matrix&);
nsl_matrix operator/(nsl_matrix&,nsl_data&);
nsl_matrix operator/(nsl_data&,nsl_matrix&);
nsl_matrix operator/(nsl_matrix&,num_type);
nsl_matrix operator/(num_type,nsl_matrix&);

// convolution
nsl_data operator*(nsl_data&,nsl_data&);
nsl_data operator*(nsl_data&,num_type);
nsl_data operator*(num_type,nsl_data&);
nsl_vector operator*(nsl_vector&,nsl_vector&);
nsl_matrix operator*(nsl_vector&,nsl_matrix&);
nsl_vector operator*(nsl_vector&,nsl_data&);
nsl_vector operator*(nsl_data&,nsl_vector&);
nsl_vector operator*(nsl_vector&,num_type);
nsl_vector operator*(num_type,nsl_vector&);
nsl_matrix operator*(nsl_matrix&,nsl_matrix&);
nsl_matrix operator*(nsl_vector&,nsl_matrix&); // row vector convolution
nsl_matrix operator*(nsl_matrix&,nsl_vector&); // column vector convolution
nsl_matrix operator*(nsl_matrix&,nsl_data&);
nsl_matrix operator*(nsl_data&,nsl_matrix&);
nsl_matrix operator*(nsl_matrix&,num_type);
nsl_matrix operator*(num_type,nsl_matrix&);

// threshold functions

// NSLmax
num_type NSLmax(nsl_vector&);
num_type NSLmax(nsl_matrix&);
nsl_data NSLmax(nsl_data&,nsl_data&);

 Alfredo Weitzenfeld: NSL 2.1 82

nsl_data NSLmax(nsl_data&,num_type);
nsl_vector NSLmax(nsl_vector&,nsl_vector&);
nsl_vector NSLmax(nsl_vector&,nsl_data&);
nsl_vector NSLmax(nsl_vector&,num_type);
nsl_matrix NSLmax(nsl_matrix&,nsl_matrix&);
nsl_matrix NSLmax(nsl_matrix&,nsl_data&);
nsl_matrix NSLmax(nsl_matrix&,num_type);

// NSLmin
num_type NSLmin(nsl_vector&);
num_type NSLmin(nsl_matrix&);
nsl_data NSLmin(nsl_data&,nsl_data&);
nsl_data NSLmin(nsl_data&,num_type);
nsl_vector NSLmin(nsl_vector&,nsl_vector&);
nsl_vector NSLmin(nsl_vector&,nsl_data&);
nsl_vector NSLmin(nsl_vector&,num_type);
nsl_matrix NSLmin(nsl_matrix&,nsl_matrix&);
nsl_matrix NSLmin(nsl_matrix&,nsl_data&);
nsl_matrix NSLmin(nsl_matrix&,num_type);

// NSLstep
num_type NSLstep(num_type);
nsl_data NSLstep(nsl_data&);
nsl_vector NSLstep(nsl_vector&);
nsl_matrix NSLstep(nsl_matrix&);

num_type NSLstep(num_type,num_type,num_type,num_type);
nsl_data NSLstep(nsl_data&,nsl_data&,nsl_data&,nsl_data&);
nsl_vector NSLstep(nsl_vector&,nsl_vector&,nsl_vector&,nsl_vector&);
nsl_vector NSLstep(nsl_vector&,nsl_vector&,nsl_data&,nsl_data&);
nsl_vector NSLstep(nsl_vector&,nsl_data&,nsl_data&,nsl_data&);
nsl_matrix NSLstep(nsl_matrix&,nsl_matrix&,nsl_matrix&,nsl_matrix&);
nsl_matrix NSLstep(nsl_matrix&,nsl_matrix&,nsl_data&,nsl_data&);
nsl_matrix NSLstep(nsl_matrix&,nsl_data&,nsl_data&,nsl_data&);

// NSLramp
num_type NSLramp(num_type);
nsl_data NSLramp(nsl_data&);
nsl_vector NSLramp(nsl_vector&);
nsl_matrix NSLramp(nsl_matrix&);

num_type NSLramp(num_type,num_type,num_type,num_type);
nsl_data NSLramp(nsl_data&,nsl_data&,nsl_data&,nsl_data&);
nsl_vector NSLramp(nsl_vector&,nsl_vector&,nsl_vector&,nsl_vector&);
nsl_vector NSLramp(nsl_vector&,nsl_vector&,nsl_data&,nsl_data&);
nsl_vector NSLramp(nsl_vector&,nsl_data&,nsl_data&,nsl_data&);
nsl_matrix NSLramp(nsl_matrix&,nsl_matrix&,nsl_matrix&,nsl_matrix&);
nsl_matrix NSLramp(nsl_matrix&,nsl_matrix&,nsl_data&,nsl_data&);
nsl_matrix NSLramp(nsl_matrix&,nsl_data&,nsl_data&,nsl_data&);

// NSLsaturation
num_type NSLsaturation(num_type);
nsl_data NSLsaturation(nsl_data&);
nsl_vector NSLsaturation(nsl_vector&);

 Alfredo Weitzenfeld: NSL 2.1 83

nsl_matrix NSLsaturation(nsl_matrix&);

num_type NSLsaturation(num_type,num_type,num_type,num_type,num_type);
nsl_data NSLsaturation(nsl_data&,nsl_data&,nsl_data&,nsl_data&,nsl_data&);
nsl_vector NSLsaturation(nsl_vector&,nsl_vector&,nsl_vector&,nsl_vector&,nsl_vector&);
nsl_vector NSLsaturation(nsl_vector&,nsl_vector&,nsl_vector&,nsl_data&,nsl_data&);
nsl_vector NSLsaturation(nsl_vector&,nsl_data&,nsl_data&,nsl_data&,nsl_data&);
nsl_matrix NSLsaturation(nsl_matrix&,nsl_matrix&,nsl_matrix&,nsl_matrix&,nsl_matrix&);
nsl_matrix NSLsaturation(nsl_matrix&,nsl_matrix&,nsl_matrix&,nsl_data&,nsl_data&);
nsl_matrix NSLsaturation(nsl_matrix&,nsl_data&,nsl_data&,nsl_data&,nsl_data&);

// NSLsigmoid
num_type NSLsigmoid(num_type);
nsl_data NSLsigmoid(nsl_data&);
nsl_vector NSLsigmoid(nsl_vector&);
nsl_matrix NSLsigmoid(nsl_matrix&);

num_type NSLsigmoid(num_type,num_type,num_type,num_type,num_type);
nsl_data NSLsigmoid(nsl_data&,nsl_data&,nsl_data&,nsl_data&,nsl_data&);
nsl_vector NSLsigmoid(nsl_vector&,nsl_vector&,nsl_vector&,nsl_vector&,nsl_vector&);
nsl_vector NSLsigmoid(nsl_vector&,nsl_vector&,nsl_vector&,nsl_data&,nsl_data&);
nsl_vector NSLsigmoid(nsl_vector&,nsl_data&,nsl_data&,nsl_data&,nsl_data&);
nsl_matrix NSLsigmoid(nsl_matrix&,nsl_matrix&,nsl_matrix&,nsl_matrix&,nsl_matrix&);
nsl_matrix NSLsigmoid(nsl_matrix&,nsl_matrix&,nsl_matrix&,nsl_data&,nsl_data&);
nsl_matrix NSLsigmoid(nsl_matrix&,nsl_data&,nsl_data&,nsl_data&,nsl_data&);

