CORECO
IMAGING

Coreco Imaging « 7075 Place Robert-Joncas, Suite 142 « St-Laurent, Quebec, Canada « H4M 272
http://www.imaging.com

WIT
Programmer’s Manual
Edition 8.0

Part number OC-WITM-PROGO

NOTICE
© 2003 Coreco Imaging Inc. All rights reserved.

This document may not be reproduced nor transmitted in any form or by any means, either electronic

or mechanical, without the express written permission of Coreco Imaging Inc. Every effort is made to
ensure the information in this manual is accurate and reliable. Use of the products described herein is
understood to be at the user’s risk. Coreco Imaging Inc. assumes no liability whatsoever for the use of
the products detailed in this document and reserves the right to make changesin specifications at any

time and without notice.

Microsoft and MS-DOS are registered trademarks; Windows, Windows 95, Windows NT, and
Windows XP are trademarks of Microsoft Corporation. All other trademarks or intellectual property
mentioned herein belong to their respective owners.

Printed on September 30, 2003

Document Number: OC-WITM-PROGO

Printed in Canada

Contents

g LA e e [N Tt o] o O UURUSTS 1
Custom Programs USING 1GraPRNS... ..ottt st sne e 3
Creating @WIT COUE FIlE ..ottt st s s b e neen 3
R aTN= L aTo = To I o] o 4
Loading and EXECUtING WIC FlES.......ciiieeeerere ettt e e et ne e e 6
Mapping DisplaySto WINAOWS.........cciiiieeeeieee st steseeaeseesee et sseeseeneessesseseessesnesnesneens 7
SEHING INPULS ...t ettt e e e tese e testesaesresneeseeseenseneessenseseessennnensenenns 8
LT 1] [111 0 U1 SR 9
Changing ParaimMELEr'S..........cooveeiiieeeeieeestes e sestesse e eeesees e sreste s e eseeseensensesaestesaeeseeneenseneessensenes 10
StAtUS ANA ETOF MESSAJES ...c.veveiueeieeieie ettt ettt et be st e bbb sae e e e e e e e s 11
R AT I I =g T 1 = TSPV RURURRRRN 13
USING VISUBI BASIC ..ottt ettt et et b e sb e b bt s ae e e e 13
APPLICALIONS ...ttt bttt b e et b e he e aeeae et e e seesbeebesaeeae e et e 14
ACHIVEX CONLIOIS ...ttt ettt sttt b et e e e e besb e e b e s aeeaeese e e enbeseesbesbesneene e e aneenee 14
EXAIMIDIES. .. .ttt bttt e et b e s bt e he bt et e st e e et e bRt e beeaeene e e et es 14

A SIMPIE EXAMPIE... ettt st neepe s 15
(@=L (0= ot 15

Create a Picture Object for Display Data.......c.ccovverereneneereereresese s s 16
DeClare VariahlES.......cocceiieeiiece ettt e 16
INIEEEIIZE .t e e bbb e 16

(O L= o 1 U o TSSO 16
Completing the rest Of the FOrM ..o e 17

USING @ Frame GralbErco.ooiiiiie ettt e sn s 17

S B (0] 0 =SSRV 17
DeClare Variahl€5.......cc.eiuieeeee ettt b e 18
CompPIEting the FOIM ..o e e 18

L= 1 1 o P 19

USiNg an [NtEraCtive OPEaLOrcccvieiueeereeeeeseeseesieseesteseeereseeeeeessesseseessessessessesnssssessens 19
Controlling an INteraCtive OPEraor........uivreeieereereereseseesteseeeeeeseeseesresesse e sseeseenseseenees 21
Automatic Notification to User AppliCation.........ccceeeeeererenienesese s 22
Passing Data To and From WiT ENQINE.......ccccccoveieererineireeseeeeseeseese e ssesseeseseeseesnesnens 24
Running Individual Operatorsin Script MOAEccccvvvvieiereeeeesese e 26
RUnNning ANy OPErator OF WICoouiiiiiie ettt sne s 27
FOrm LOad PrOCEAUNE..........oieeeceieeee ettt e s sn s 27

(@0 g 11 (0] I ST 11101 J SO PR USSR ST 28
Developing ACtIVEX CONLIOISottt sb e e 29

L0 LS T 0o O @ U 30

Multi-Threaded APPIICALIONScceeeeerese st st e e ne e e e 30

YL O T o o] = 31

F NS 4010 L= = 1 o 32
(O L Lo 1= ot USSR 32

Create aPicture CONLIOLcoiieee et s 33
INItTAlTIZE WIT ENQINE. ...ttt s sb e sn s 33

(O 1= o 11U o TP 33
Complete the APPIICALTON. ..o e 33

USING @ Frame Gralberc.coiiiie it bbb e 34
USiNg an INtEraCtive OPEraOrccviueeiereeeieeerieseeseesteseesteseeseeseeseeseesressessesresseensessessenseses 35
Controlling an INteraCtive OPEaLOrcceeveuereerereseseseeseeseeseeseessesesressesseesesaessesseseens 37
Automatic Notification to User APPliCatioN.........cccovvveereeeeiereere e 39
Passing Data To and From WiT ENQINE......ccccccvevierirevesiseceeeesiesie s e seenes e seesneens 41
Running Operatorsin SCriPt MOUE........civiieeeiee e eee e st 43
Running ANy OPErator OF WIC.......ccueeeeerisie e steceeeese st e et te e s e e eaesseseenns 45
WWIN32 EXAMPIES.....cceiieiitieee ettt sttt e bbb et ese e e e e e b sbesbesaeeneeneeneas 47

A SIMPIE EXAMPIE....ceee et e b e e 47

WIT ENQING ACHVEX ...ttt sttt ettt b et e e e se e beseesbesbesaeennens 48
/1= 1 0 L3O 48
BV .ttt e et e e Rt e b e e b e e a b e e Eesaeesheesheeaaeeneenreereen 50
00 o (=SSR 50

R AT =T 1 L= 0 S 51
Custom Programs using WiT C FUNCHONS.......cccueieriererisese s sese e seesesie st sre e eeeeesnenees 53
A SIMPIE EXAMPIE.....eceeceecee sttt et re et seenre e naennen 53
PrOgram SITUCLUIE.c.eieieeeesieee et ste et e st et e e e seesneesneesaeesseenseenseeneesneenseenseens 55
Headers and Link LiDIariesoociiirieerineeneseeste sttt neene s 55
Status CallbaCK FUNCHION ..ottt bbb s 56
L@ o 1= ot I o= YU 57
DISPIAY LIDIarY ..ottt sttt e bt e s 58
Image and Data DiSPlaYcccoererireie ettt sb e b s s 59
GetData - Entering GraphiCS Data........c.cccouererieriiniireeierie e 61
Interactive Image and Data Edit ..o e 62

[o110 I =T o] LS 63
USING Frame Grabhers..........ooioeiisiie et e e e sa et snesreene e e enaeneenes 64
o = = 1] o 1= 66
AddiNg OPerator STOWIT ..ottt b e ens 67
A SIMPIE EXAMPIE.....ceeeeeseee ettt st r et nee s re e nae e 67
L I I Y= =T S 67
Create CONFIQUIALTONoiiieeeeeee ettt st b e b bt ee e et e b sbesbesreeae e e eneees 68
(O s 1L o o= ol PR RRR 69
CrEaALE LIDIAIY ... ittt ettt bbbt a et e e b e e be bt b e e ae e e e e e e et e 71
DS (L TcT @] o< = (o] SRR 72
IMPIMENE OPEFALOT SOUMCE. .. .ctieeeueeterierte sttt ettt sb et ee et b b e s e ese e e e besbesbesaeeneenes 73
Update VAT CONQUIALION........ccieueeeeiesiesieseseeeeseesteseesreseeeessessesaesseeseeseenseseessessesseensessessenes 75
(@00 o T == g o B 1= 76

BUIIA REIEASE DLL ...t 77

WV (o @ g 1T g TC N = T o 77
¥o ol o o ST S TSRS 78
Programming CONVENTIONS.cccueiiriirierie ettt e b ae e e sae st et sbe e e eneeseeseeseeens 78
INPULS AN PArAMELENS.......eiieieeiese ettt ettt s ae bt seese et e saesbesbeeneeneeseebenes 78

(O 811 00 £SO OU PR TURTPRRTR 79
RELUINN VAIUBS.......ceeeee ettt bt e et e bbb e bt eae e e e e e 80
MEMONY MANAGEITIENTc..eiiie ettt ettt ettt st e bt e sbe e be e et eae e sbeeebeesbe e beebeenesnnesanas 82
FUNCLION HEAEK'S ...ttt bbbt bttt b e sb et e bt eb e e et e 83
L0031 SRS 83
[graph StatuS ChanQES..........oviiiiiriiie ettt e e e se et saesreese e e eneeneenes 85
Calling Other WIT OPEIalOrS......cceeveieeriereerieseesiesseseeseessessessessessessessesssssssssessessessessessessessssssenes 86
International Language SUPPOIccueieieieeeeeereeseseesteseeseeeesees e ssessesneeseeseesseseessessessesnsessenses 90
(= = WO o= £ 91
L@ o=t B 1Y o= 91
VECLOIS N0 IMBGES....c..eeueetete sttt ettt b et e e se e be bt sbesbe e st e seeseenbeseesbesbesreeneeneansesnens 92
(S =0 M@ o L= o £SO 93
(O o L= ot Y oT= T 1 5 SRR 94
MEMOPY ATTOCATON ...t b e b sb ettt et e sbesae e e 95
Dz = Y O o 1 SRR 96
I 0L T OO T 1Y o= TSP TU PR RRN 96
N E= T T o 0] 1Yo 98
AdAING NEW DAta TYPES...cueeveiereiriereeeeeeseeseeseestesessessesseessessessessessessesssessessessessessessesssessessenses 99
A SIMPIE EXAMPIE......vieeeeeeeee ettt ettt r e e e e e sae st e e reene e e e e enrees 99
DefiNe the NEW ODJECLocveeeeeeere ettt e e s 100
Modify the Operator DEfINItION........cccoiiiiie e 101
Modify the Operator SOUrCE COE.......cc.eiirieririereeie et e 102

Test the New Object and OPEIaLOrccceouerierereieniere et eeas 103
Examples of Using ObjectSin @ C Program.........c.ceeeeeierenenie et see e s 104
Processing ObjectS Of TYPE COPOD)]........oiueiuiruirieieie ettt se e sae e 104
User Defined Objects as Operator OQULPULS.........ccovererereeieeeeie et 105
AGVANCE ...ttt et b e bt a e et e e e b bt he e Rt et e e e sEeebesbeeaeehe e e eneeneen 107
Processing ObjECt FIEldS........ccueieiiie i 107
Adding Object TYpes DYNAMICAIY.......ccccoviiiiiecieeeere e 108
Code Generation from IgraphS ... enen 111
Generating C Code from an 1graphceeceiere e e 111
Building Generated COUE.........ovuereiirierieeeeeres e e e st e e ae e stesaeene e e eaeneesrenns 111
Limitations Of COOe GENEIBLION.........c.vureirrreiresee e eneae e 111
Adding Har War @ SUPPOITcueeieeeteie ettt st sae bt b e e se e b e be e sbenaas 115
A SIMPIE EXAMPIE ...ttt b ettt e b e enee 115
CrEatE LIDIAIY ...ceeeeeeeeee ettt e b e bttt e b e et e bt sb e st e e e e e e e b e 115
A ACQUITE OPEFALONeeeeieeieie sttt ettt sttt ebe e e e besaesbe st sbesae e s e sbeseesbesaesaeeneennan 116
IMPIEIMENT SOUFCE ...ttt bttt b e bt st be et et se e be s b sbesbe e e enaeseeneas 117
Test New Frame Grabher ..o 118

Hardware [nitialization and ClEaNUDcceeeeriere e enen 118

The AQVANCEA PaNELcoiiiice s 119
LIVE VITEO ...ttt n e 120
L070] 0] o1 1= g =S T =TSPTSRO 121
RUN TIME LIDIarTES. ...ttt ettt bbbt e e e 121
Dynamic Memory ATOCALIONccuiiiiieieieie ettt e b se e e 121
Other Visual StUAIO SEHINGSc.eeeeieierieseie et s b e 122
Shipping CUSLOM APPHICALIONSoveiiieirieeieeee ettt st e s b e st e e e neen 123
Manual Installation of Distribution WiT COMPONENES..........cceoeriuerereienenesieseseeee e see e 123
Installation of Custom WIiT COMPONENLS........ccvierereererrieseesieseeresseeseeseeseessessessesseessessessessenes 126
RUN TIME LICENSE. ...t 126
Coreco Imaging Contact INfOr Mationccecerereiereceereere s sne s 127

Introduction

This manual describes WiT from a programmer’s perspective. It describes how WiT processing
functions can be used in a standal one C/C++ program, how new processing functions can be
added as operatorsto Wi T, how new data object types can be created and used, the structure and
organization of operators and objects, and support for hardware resources. It assumes familiarity
with the C programming language and Microsoft Visual C/C++.

Custom Programs using
Igraphs

Igraphs are perfect for prototyping new and efficient algorithms. But when you need to deploy an
application or product, you probably don’t want your usersto have to run WiT or even to seethe
igraphs so they can copy your ideas. WiT can generate a non-displayablefile, called aWiT
Imaging Code (WIC) file, from an igraph. Y ou can then create your own applicationin VB or
C/C++ and link it with the WiT Engine. WiT Engine isaWindows DLL with an optional
ActiveX interface that has all the execution capabilites of WiT but without the igraph display
capabilities. WiT Engine cannot load igraphs, only WIC files. On the other hand, WiT cannot load
WIC files. So when you distribute WIC files together with your applications, there is ho danger
that an unauthorized person can view the algorithm. A WIC fileisjust binary data.

Creating a WIT Code File

When your igraph is complete and ready to run as part of alarger application, the first step to
performis conversion of theigraph into aWiT codefile (‘wic' file). This step is easily carried out
by selecting the Graph|Make WiT code menu item in WiT. Selecting the Make WiT code item
will cause WiT to generate awic file in the directory where the igraph is located named after the
igraph file but with a".wic' file extension. After selection, the menu item will have a check mark
indicating that WiT code file generation is enabled for thisigraph. Each time the igraph is saved,
the associated wic file will be updated. To remove the wic file, simply select the Make WiT code
item again. The menu item will become unchecked and the wic file will be removed. The wic file
isabinary file and cannot be loaded into WiT. The file can only be loaded by either the WiT
ActiveX control or the WiT DLL. In this manner, your intellectual property is protected since the
igraph file remains with the developer and not the customer who only has access to the wic file
that carries out the execution represented by the igraph.

=T 7.0 - Igeaphc Dawisl
Fla Edi Gugph Todr Aun Windowr Halp

e | i) ¢ |r]

Zidn

Ry i 2.

wm B FilFE M

Fiadixplag

ArrolEn .

A nubgaph. =

[LT Tt

w

4] | E |

Enabling WiT Code Generation

For this overview, we will work with the sample igraph named tutorial.igr located in the
$WITHOME\pro\demo\wic directory. Load thisigraph now and select the Make WiT code menu
item to create atutorial.wic file in the same directory.

Initializing and EXxiting

This section shows how to insert the WiT ActiveX control onto a Visual Basic form then initialize
and exit the control. Thisisthe first step before an application can begin using the WiT code file
generated from WiT.

Start Visual Basic 6.0 and use the wizard to create a Standard EXE project.

Select Project|Components... to bring up the Components dialog. Scroll down and select the WiT
Control. Select OK.

Selecting the WiT Control

Select the WiT Control icon from the components panel. Insert the control onto your form.

Inserting the WiT Control on a Form

Go to the Form_Load function and add the following initialization code:

Private Sub Form Load()

Di m status As Long

status = Wt1l. Init(Fornl. hwad, 0)
If status = 0 Then
MsgBox "W T failed to initialize!™
End If
End Sub

Go to the Form_Unload function and add the following exit code:

Private Sub Form Unl oad(Cancel As Integer)
Di m status As Long

status = Wtl Exit
If status = 0 Then
MsgBox "WT failed to exit!"
End If
End Sub

Save your Visual Basic project then run your form to ensure that the WiT control initializes and
exits properly. Remember to exit your form by selecting the close button at the top right of your
form. Don't use the Visual Basic run/stop toolbar to stop your form since that will not call your
Form_Unload function.

Loading and Executing WIC Files

At this point, we have a Visual Basic application that initializes and exits the WiT ActiveX control
and we have awic file generated from WiT. In this section, we will load and execute the wic file
just as you would load and execute an igraph from WiT.

Load your Visual Basic project developed in the previous section. Declare a global variable called
execld asfollows:

Di m execld As Long
Add the following code to your Form_Load function to load the sample "tutorial.wic" file:

Initialization goes here
execld = Wt1l. Load(Environ("WTHOVE") & "\pro\demo\wi c\tutorial.wc")
If execld = 0 Then

MsgBox "W T failed to | oad!"
End |f

Now add a button to your form. Call it 'Run’. Add the following code for the Run_Click function:

Private Sub Run_d i ck()

Di m status As Long

status = Wt 1. Control Exec(execld, WT_EXE FLASH, 0)
If status = 0 Then
MsgBox "W T failed to run!"
End If
End Sub

Save your project and run the form. When your form appears, the WiT control will have been
initialized and the tutorial .wic file loaded. Select the Run button to execute the WiT codefile. You
should see an image of the moon appear in a pop-up window with the title 'image’. The tutorial
igraph used to create the WiT code file reads an image file from disk and displays theimageto a
window. Since the window is not redirected anywhere, the window appears detached from our
form. In the next section, we will learn how to map this window to a PictureBox control so it
appears within our form.

Mapping Displays to Windows

A display is any window that pops up in WiT to show data or prompt for input. Igraph operators
that produce displays include display, overlayData, getData, surface, graph, prompt, etc. Asyou
saw in the previous section, the display operator in the tutorial .wic file caused detached windows
to pop-up just the way you would expect asif running the tutorial igraph from WiT. If we want to
redirect this window to our form, then we need to create a PictureBox control to map the display
operator. Follow this exercise to learn how thisis done.

Create a PictureBox control on your form. Call it Picturel. Picturel should be roughly the size of
the moon image (256x256 pixels). Now add the following code to your Form_Load function:

status = Wt 1. Set Di spl ayWhd("i nage", Picturel. hwd)
If status = 0 Then

MsgBox "W T failed to map di splay!"”
End If

Save and run your form. This time when the Run button is selected, the moon image will appear in
your PictureBox control! In order for this mapping to work, the first argument of the
SetDisplayWnd method must match the val ue of the name parameter of a display operator in the
WIT code file. The name parameter of a display operator will always appear as the name of the
pop-up window when run in WiT. Whenever the WiT engine finds a mapping between the title bar
name of awindow produced by a display operator and a valid window handle (Picturel.hWnd),
the display window will be directed to use the window handle instead of creating a detached
window.

To unmap awindow to a PictureBox control, use:

Wtl. RrDi splay("inmage")

Unmapping windows isimportant if the PictureBox control comes and goes as part of atemporary
formin your application. If you don't unmap from a PictureBox that no longer exists, then the WiT
engine will try to access a non-existent handle and crash.

Setting Inputs

Think of the WiT code file as an operator in WiT. Our application supplies input to the codefile,
the code file executes which generates outputs for transfer back to the application. We have so far
learned how to perform the computing part by loading and running aWiT code file. We also have
learned to redirect a display window to a PictureBox in our form for some visual feedback. This
section shows how to transfer datain and out of aWiT code file using Visual Basic.

Application data can be fed into aWiT code file by mapping the name of afilename parameter for
areadObj operator to an input event where the datais supplied. Typically, the readObj operator
reads data from afile specified by the filename parameter. When a mapping is established
between the filename parameter value, then the readObj operator invokes the input event of the
ActiveX control at which point datais provided by the application. The readObj operator returns
and uses this data as its output. To see how this works, lets map the filename parameter value,
"moon"”, of the readObj operator in the tutorial code file. In the input event, we will create a"Hello
There" string as the readObj output.

Add the following code to your Form_Load procedure:

status = Wt 1. Regl nput Event ("noon", 1)
If status = 0 Then

MsgBox "W T failed to register an input event!"
End If

The code above creates a mapping between the "moon" filename value of areadObj operator in
the code file and the input event procedure called Wit1 _Onlnput. The code for Wit1 Onlnput
is:

Private Sub Wt1_Onl nput(nanme As String)
Di m status As Long

If nanme = "noon" Then
status = Wt1l. Setl nputData(nane, "Hello There", 0)
If status = 0 Then

MsgBox "W T failed to set input data!"

End If

El se
MsgBox " Unexpected nane!"

End |f

End Sub

Save the project and run your form. Thistime, instead of displaying an image of the moon in your
PictureBox controal, the text string "Hello There" is displayed. To unmap the input event from the
"moon" name, call:

status = Wt 1. Regl nput Event ("noon", 0)

The second argument determines whether the name is mapped to an input event or not. By
unmapping the name, the readObj operator whose filename value is "moon" behaves as expected,
i.e. reading afile from disk.

Getting Outputs

Outputs produced by a code file can be sent directly to an application for further processing. Like
inputs, an output is transferred by mapping the val ue of the name parameter of a display operator
to an output event. The output event then retrieves the data from the code file for use by the
application. To see how thisis done, we will map the display operator name parameter whose
value is"image" to an output event then retrieve the string data created by the input event carried
out in the previous step.

First, map the output event in the Form_L oad procedure:

status = Wt 1. RegQut put Event ("i mage", 1, W T_DATA FORVAT_NONE)
If status = 0 Then

MsgBox "W T failed to register an output event!"
End If

Second, add the output event code for the ActiveX control as follows:

Private Sub Wt _OnQut put(name As String, data As String, rawData As
Vari ant)

Dimstr As String

Di m pos As Integer

pos = InStr(1, data, " ")
str = Md(data, pos + 1, Len(data) - pos)
If name = "inmage" Then
MsgBox str
El se
MsgBox " Unexpected nane!"
End |f
End Sub

Save your project and run the form. Y ou will see a message box appear with the "Hello There"
text. The output event can be unmapped as follows:

status = Wt 1. RegQut put Event ("i mage", 0, W T_DATA FORVAT_NONE)

Since mapping a window, input or output event relies on the value of a key parameter to either a
display or readObj operator, it is possible to use several such operatorsinaWiT code file that
refer to the same name. For example, if an input event was mapped to the value "moon", then two
readObj operators which set their filename parameter to the value "moon" would trigger the same
input event.

Changing Parameters

Now that you can feed datainto the WiT engine and retrieve results from the engine, the last
important step is to be able to control parameter values belonging to operatorsin aWiT code file.
For example, you may wish to adjust athreshold or set a constant used in a comparison operation.
This ability requires two steps. First, you load your igraph in WiT and identify the parameter of an
operator you wish to control. Then you promote this parameter and give it a unique name which
will be exported to the WiT code file for later access. If the parameter you want to change belongs
to an operator in a nested subgraph, then you must promote the parameter up one level and
continue to promote the parameter up one level until it is promoted from the top-level for access
by the WiT code file. Save your igraph (ensuring the Make WiT code option is enabled to
generate a new wic file). Second, you issue a cal to the SetOpPar ams method to send a new
value to the promoted parameter from your Visual Basic application. Let's try this with our tutorial
Visual Basic project.

Start WiIT and load the tutorial .igr igraph. Split the link at the output of the start operator and
connect thisto the input of a constant operator. Connect the output of the constant operator to a
display operator with its name parameter set to "text". Set the constant parameter of the constant
operator to the value "Hello Again". When you run this igraph, you see the image of the moon
pop-up and you also see atext pop-up with the message "Hello Again”. If we wish to change the
value of the constant from your application, then the constant parameter must be promoted. Do
this by right clicking on the constant operator to get the property panel. Now select the promote up
arrow button to the | eft of the constant parameter. Set the promoted name to be "constant”. This
name must be unique across all promoted names to the WiT code file. Now save thisigraph to
update the associated wic file.

10

=0l =
B e Ll #| e 8]0 Deea) A o] g]

Fm comal Frogesse |

A

Epsoute: [Erotie =) Bhe[rove =)

1 G | [EET

il 1 (T (| _.|:|

o =

!ﬂ Il'l Proanids] Hane: | corctard

o |

A

Promoting an Operator Parameter

In your Visual Basic project, add this code to front of the Run_Click function:

status = Wt 1. Set OpParans("constant"”, "Goodbye")

If status = 0 Then
MsgBox "WT failed to set a paraneter!”
End If

The SetOpPar ams method will cause the value of the promoted parameter called "constant” to
change to "Goodbye". Save your project and run your form. Click on the Run button. Y ou will see
atext pop-up window with the message "Goodbye" instead of the message "Hello Again" since we
changed its value with SetOpParams.

Status and Error Messages

At this point in the development of our Visual Basic project, we may wish to finalize the interface
between the WiT code file and our application by registering events to retrieve status and error
messages from the WiT engine. Thisis easily done by adding the following code to your

Form_L oad procedure:

11

status = Wt 1. RegSt at eEvent (1)
If status = 0 Then
MsgBox "W T failed to register the status event!"
End |f
status = Wt 1. RegStatusMsgEvent (MSG_WARNI NG, 1)
status = Wt1l. RegSt at usMsgEvent (MSG_OTHER, 1)
If status = 0 Then
MsgBox "W T failed to register the status nessage event!"”
End If

The argument given to the RegStateEvent method determines whether the ActiveX control event
callback called Wit1_OnState will be invoked each time there is a state change with the WiT
engine. Add the code for Wit1l_OnState as follows:

Private Sub Wt1l OnState(ByVal state As W TLi b. enunExecSt at e)
If state = EXEC _STOPPED Then
MsgBox "W T engi ne stopped”
End If
If state = EXEC_RUNNI NG Then
MsgBox "W T engi ne runni ng"
End |f
If state = EXEC _PAUSED Then
MsgBox "W T engi ne paused"
End If
End Sub

The second argument given to the RegStatusM sgEvent method determines whether the ActiveX
control event callback called Witl OnStatusM sg will be invoked anytime there is a message of
the type set by the first argument is encountered during WiT code file execution. There are two
types of messages: warnings or other. Add the code for Witl OnStatusM sg as follows:

Private Sub Wt1 _OnStatusMsg(ByVal witcode As enumWtcode, nmsg As String)
If witcode = MSG_ WARNI NG Then
MsgBox "Warning: " + Md(nsg, 1, Len(nsg) - 1)
El se
MsgBox "Status: " + Md(nmsg, 1, Len(nsg) - 1)
End |f
End Sub

This concludes your introduction to the general use of the WiT ActiveX control. For further
information, follow the various examples given in the next chapters.

12

WIT Engine

The WIT Engine makes the execution functionality of WiT available to Microsoft Visual Basic,
Microsoft Visual C/C++, or any other programming tool that supports ActiveX technology or can
load Windows DLLs.

The WIT Engine can be used as either an ActiveX control or smply asaDLL. Several demo
applications for either flavor are included in the WiT package to make it faster and easier for you
to learn to use the WiT Engine.

1. ActiveX Control: For VB programmers, once the WiT ActiveX control has been added
to your VB project, it can be used like any other ActiveX control. It becomes part of your
development and run-time environment, providing your application with all the image
processsing capabilities of WiT. The WiT ActiveX control makesit easy and convenient
to load and run WiT code files, display datain pop-up windows or within your
application, and pass data to and from the WiT imaging engine. Y ou can also seamlessly
integrate WiT and other ActiveX controls from Microsoft or third party vendors, making
it easy to add features to your image processing application. Finally, since Visual Basic
has the ability to create ActiveX controls, you can create your own end-user ActiveX
controls that include the image processing power of WiT.

2. DLL: Your application only needsto call afew functionsto load and run WiT imaging
code files, display datain pop-up windows or within your application, and pass data to
and from the WiT Engine.

Using Visual Basic

Microsoft Visual Basic (VB) owes its popularity to two major characteristics: first, it provides a
flexible set of tools for the rapid design of graphical user interfaces (GUIs), and second, it
provides a simple and convenient environment for integrating ActiveX controlsand DLLs from
different suppliersinto asingle end-user application.

VB Programmers can use the WiT ActiveX control to access the full functionality of WiT for the
development of image processing applications, while providing their end-users with a custom
designed GUI. Oncethe WiT ActiveX control has been added to your VB project, it can be used
like any other ActiveX control. It becomes part of your development and run-time environment,
providing your application with the full image processsing power of WiT. The WiT ActiveX
control provides methods to load and run imaging code files generated by WiT, run individual
WIT operatorsin script mode, display datain pop-up windows or within your application, and
pass data to and from the WiT imaging engine. Its methods provide the same functionality asthe
WiT DLL functions but in a more convenient form for VB programmers.

13

Applications

Writing a VB application consists of the following steps (refer to the Visual Basic documentation
from Microsoft for more detail if necessary):

1. Createanew VB project of type 'Standard EXE'.

2. Addthe WiT Control to your VB project. From the Project menu, select the
Components option. Select the Control tab of the Components panel, and select the
WIiT Control. Close the Components panel.

3. Instantiate the WiT Control in the main Form. Note that since WiT is designed to control
hardware such as frame grabbers, only asingle WiT Control can be added to aVB
application.

4. Putinitialization codein the Load procedure of the main Form.

5. Call appropriate WiT Control methodsin the event procedures of various controls.

6. Put clean up code in the Unload procedure of the main Form.

When using the WiT ActiveX Control with a VB application, most of the computation should be
performed by Wi T, since it runs much faster than VB code.

ActiveX Controls

Creating your own VB ActiveX Control isjust as straightforward as creating a standalone
application. Follow the same steps described in Applications, except for step 1. Instead of creating
aproject of type "Standard EXE", create anew VB project of type "ActiveX Control".

Examples

These examples assume you have a basic familiarity with the VB development environment. If
any of the concepts discussed here seem unclear, please refer to your Visual Basic documentation
from Microsoft. This chapter describes the following demo projects. The functionality and
behavior of these applicationsis the same as the corresponding M FC examples. Source code for
each of these projects can be found in the engine\demo\vb subdirectory under the WiT installation
directory, which is‘ C:\Program Files\WiT’ by default.

1. simple: Load and run asimple WiT code file that reads a WiT image from afile and
displaysit in awindow within the VB form.

2. fg: Access aframe grabber board supported by WiT then perform live video display as

well as grabhing and processing of individual frames.

notify: Notify your VB application whenever WiT data changes, and set operator

parametersin aWiT codefile.

control: Control the behaviour of an interactive operator.

data: Pass data between the WiT engine and your VB application.

script: Execute individual operatorsusing WiT’ s script mode.

ops: Execute any WiT operator or aWiT codefile.

w

No ok

14

8. inter: UseaWiT interactive operator (getData), and retrieve data from an individual
operator.

9. simpleX: Build an ActiveX control that reads and displays a bitmap image, and performs
some simple image processing operations on it. Thisis an ActiveX control version of the
simple example.

A Simple Example

This example (engine\demo\vb\simple) is a simple application which allows you to read aWiT
object file and display the data in a window within the VB form. The application accomplishes
this task by loading and running a WiT imaging code file which reads an image from afile and
displaysthe result. The WiT imaging code file is enginé\demo\wic\s mple.wic.

VB Simple
The steps required to create this application are described below.
Create Project

Create a Standard EXE project. Add the WiT ActiveX Control to your project.

vy Project] - Microaoit Visusl Basic [desige]
Dh £ Bew [Projed Pgmst Debug Bun Guery
H i 7 =], Pk Bme 1

I.'-'il
ki
A [l

F "
F =

=]
!.lu=I

(o =]

I nsertTng the WiT ActiveX Control

15

Create a Picture Object for Display Data

Create a Pictur e object on the VB form where you want WiT to show images or data. The same
Picture object can be used for getData and other operators which normally display datain a pop-
up window. To make it easier to match image sizes, set the ScaleM ode of both the For m and the
Pictureto Pixel.

Declare Variables

WiT methods return a status code that can be checked to make sure the WiT engineis operating
successfully. Declare avariable as L ong type to store these return values. When aWiT codefileis
loaded, ahandle for later referral is returned. Declare avariable as L ong type to store this handle.
For example, put the following in the Declar ations section of the form:

Di m status As Long
Di m execl D As Long

Initialize

In the L oad procedure of the VB form, use the I nit method to initialize the WiT engine, and the
SetDisplayWnd method to map each VB Picture object to aWiT display name (the nameis
"image" in this example). Any WiT pop-up window which matches this name will be re-directed
to the VB Picture object. Finally, use the L oad method to load the "simple” WiT codefile:

Private Sub Form Load()
Di m answer As | nteger
status = 0
answer = vbYes
Do Wiile (status = 0 And answer = vbYes)
status = Wt.Init(Forml. hwhd, O0)
If (status = 0) Then
answer = MsgBox("Failed to initialize WT, try agai n?"
vbExcl amati on + vbYesNo, "VB Message")

End |f
Loop
If (status = 0) Then
End
End |f
status W t. SetDi spl aywhd("i nage", Picturel. hWhd)

execl D
End Sub

Clean Up

Wt . Load(Environ("w thome") & "\pro\denmo\w c\sinple")

Use the Exit method in the Unload procedure of the main form:

Private Sub Form Unl oad(Cancel As Integer)
status = Wt.Exit
End Sub

16

Completing the rest of the Form

To complete this example, create a Button object. In the Click procedure of the Button, use the
ControlExec method to run the WiT code file in flash mode.

Private Sub Conmandl_d i ck()
status = Wt. Control Exec(execl D, WT_EXE_FLASH, 0)
End Sub

That'sit! Save your VB application and run it!

Using a Frame Grabber

This example (engine\demo\vb\fg) demonstrates how to use the WiT ActiveX control to accessa
frame grabber board.

S

VB Frarh;Grabber

The VB formis still very simple: it consists of a Pictur e control for showing grabbed images, a
Grab button for grabbing a single frame and applying a Sobel filter to it, and a Live button for
showing live video.

Set Properties

Interfacing to aframe grabber from WiT issimple. All you needto doistouseaWiT
configuration file that loads frame grabber support. If you are already using a frame grabber board
in WiT and you have saved your WiT configuration then the WiT engine that runs from your VB
application will use the same defaultsas WiT. You can also set a configuration file to explicitly
load support with the config property of the WiT control. Set the value of the config property to
the path of aWiT configuration file you wish to use, e.g. ‘ C:\Program
Files\WiT\config\bandit.wrc’.

17

The showStatus property controls whether the WiT status window is hidden or displayed. For this
example, set the value of showStatus to FAL SE to hide the window, so that the application looks
more like a standal one program.

Declare Variables

Three variables are required by this example. Satus and execld serves the same purpose as it did
in the first example, liveState is used to keep track of whether live video is on or off;

DimliveState As Bool ean
Di m status As Long
Di m execl D As Long

Completing the Form

The Form Load procedure is very similar to that in the previous example. First, initialize the WiT
engine as usual, and then map both the display names "image" and "display" to the Windows
handle of the Picture control. "Display” isthe title of the display operator in the igraph. "Image"
is an arbitrary name chosen to represent the binding between the Pictur e control and the frame
grabber accessed by the LiveDisplay method. Finally, load the WiT codefile to run the grab and
image processing.

Private Sub Form Load()
Di m execNane As String

status = Wt1l. Init(Fornl. hwad, 0)
If (status = 0) Then
Call MsgBox("Failed to initialize WT", vbOKOnly, "VB Message")

End
End |f
status = Wt 1. Set Di spl ayWhd("i nage", Picturel. hwad)
status = Wt 1. Set Di spl ayWhd("di spl ay", Picturel. hWd)

execNane = Environ("w thome") & "\pro\deno\w c\fg.w c"
execl D = Wt1l. Load(execNane)
liveState = Fal se

End Sub

Thelive_Click procedure usesthe LiveDisplay method to toggle the display of live video.
LiveDisplay causes Wi T to continuously update the live video image in the background, but
returns execution to the application immediately. It may also utilize hardware features from the
frame grabber for high-speed live video display.

Private Sub live_dick()
If Not liveState Then
liveState = True
status = Wt1l. LiveD splay("image", 0, 1)
End If

18

End Sub

Thefirst argument to LiveDisplay specifies the window name to be used for displaying live video.
In this example it must be set to "image", because that is the name we chosein the call to
SetDisplayWnd during the form load step. The second argument specifies the name of the frame
grabber. A zero value passed uses the first frame grabber loaded by WiT. If you are using more
than one frame grabber, then the name of the frame grabber asit appearsin the WiT operator
explorer must be used. The third argument turns live video on (1) or off (0). Thegrab_Click
procedure checksif live video is active. If itis, then it is stopped by passing the LiveDisplay
method a zero (off) as the third argument. Then, it uses the ControlExec method to run the
specified WiT codefile. The WiT codefile, fg.wic, grabs a single frame, applies a Sobel filter, and
displaysthe result. Recall that the output of the display operator was mapped to the Picture
control's window.

Private Sub grab_dick()
If liveState Then
status = Wt1l. LiveDi splay("image", 0, 0)
liveState = Fal se
End If
status = Wt1l. Control Exec(execl D, WT_EXE_FLASH, 0)
End Sub

Clean Up

The Form_Unload procedure checks if the live video is active. If it is, then it is stopped by
passing the LiveDisplay method a zero (off) argument. The Exit method is then used.

Private Sub Form Unl oad(Cancel As I|nteger)
If liveState Then
status = Wt1l.LiveVideo("inage", 0, 0)
liveState = Fal se
End |f
Wt1l. Exit
End Sub

Using an Interactive Operator

This example (engine\demo\vblinter) demontrates the use of aWiT interactive operator (getData
in this case) and how to retrieve data values from a script mode register.

19

I |
=
e ——

W

L

Running an I nteractive Operator
The declar ations and For m Unload sections are standard.

All thereal work isdoneinthe Witl OnOutput procedure. First, readObj iscalledtoreadina
sample image. Then, getData is called. Because the name "getData' has been mapped to the
Pictur e control, the image appears inside the Pictur e control and the user can enter graphical data
in this window. When the user has finished entering data, they can bring up the pop-up menu on
the image (by pressing the right mouse button) and select OK. At this point, the getData operator
returns. Then, ScriptGetReg is used to retrieve data from the output register of getData (register
"data'). The value DATA_FORMAT_DISPLAY for the format argument tells ScriptGetReg to
return the data in the same format that WiT usesto display objects. In this example, the datais
simply displayed in the "statuswin" control. WiT returns multi-line data with only aline-feed
character between lines. Because a VB edit control requires both aline-feed and carriage return
character for each new line, the carriage return characters are added to the text beforeit is
displayed.

Private Sub Wt1_OnQutput(nane As String, buf As String, rawbData As
Vari ant)
"l ocal declarations

statusWn. Text = ""
buf1 = Md(buf, 9, 9)
If bufl Like "CorVector" Then
buf1 = Md(buf, 19, 10)
If bufl Like "CorG aphic" Then
' process graphic objects

El se
statusWn. Text = statusWn. Text + "Warning: Data error"
End | f
El se
statusWn. Text = statusWn. Text + "Warning: Data error"
End If
End Sub

20

Controlling an Interactive Operator

This example (engine\demo\vb\control) demonstrates how to control an interactive operator from
the user application, suppressing the normal menu or pop-up panel provided by the WiT engine. It
loads the file enginé\demo\wic\contr ol .wic.

Bl

ki W bl Bl B e i i i s
cimri e g Db b 00 nme. sois
VR e el e e Tl e
- g = g e g

Pk o | Byt e | i i i i [|

] o] s]]
n---r P | 5 ot | S
f el

Interactive Operator Control

In this example, you are prompted to enter a variety of graphic objects on top of an image. When
you are satisfied with the graphic objects, hit the OK button, and the number of objectsis
reported. Then if you hit the Next Set button, you are prompted to enter a second set of graphic
objects. The first set is still maintained but can no longer be deleted or modified. Keep on hitting
OK and Next Set to enter more graphics and the total number of objects will be reported each
time. Press Stop to stop the editing session.

low mam mmerar
i Balalhl

Interactive Operator Control Igraph

The getData2 operator's display is mapped as usual using SetDisplaywnd.
RegDisplayActiveEvent is used to ensure that OnDisplayActiveiscalled whenever getData2 is
created. ControlDisplay is used to suppress the getData2 operator's pop-up menu and Graphics
Editor panel. RegStateEvent is used to ensure that OnState is called whenever the igraph
execution state changes.

status = Wt 1. RegQut put Event ("di spl ay", 1, DATA FORVAT_TEXT)
status = Wt 1. RegSt at eEvent (1)

status = Wt 1. Set Di spl ayWhd(" get Dat a2", Picturel. hWd)

status = Wt 1. RegDi spl ayActi veEvent ("get Dat a2", 1)

status = Wt 1. Control Di spl ay("getData2", "suppressPopupMenu 1")

21

Next, SetDisplayWnd and RegDisplayActiveEvent are used to ensure that OnDisplayActiveis
called whenever the prompt operator named "NextSet" is created, which suppresses display of the
normal pop-up dialog. Thisway the user can control when to move on to the next set of inputs.

st at us
stat us

Wt1l. Set Di spl ayWwhd(" Next Set", 0)
Wt1l. RegDi spl ayActi veEvent (" Next Set", 1)

Load and Contr ol Exec are used to load and run the chosen WiT code file. When getData2 is run,
OnDisplayActiveis called and all the appropriate buttons are enabled. User inputs to getData2
can be executed the normal way using the mouse.

The controls OK, Stop, Select, Line, Constrast, etc., al use the ControlDisplay function to
execute various actions for the getData2. See the methods reference section for details concerning
the operation of ControlDisplay.

Automatic Notification to User Application

This example (engine\demo\vb\notify) demonstrates how to get the WiT engine to notify your
VB application whenever data change, and how to set parametersin aWiT codefile.

i |
Notification of Change and Setting Operator Parameters

The declarations and For m Unload sections are standard.

In Form Load, the RegOutputEvent method is used to make sure the OnOutput event
procedure is called when data in the window named "data" changes. Similarly, RegStateEvent is
used to ensure that the OnState event procedure is called whenever the WiT code execution state
changes (e.g. from idle to running to stopped).

22

stat us
st at us

Wt1l. RegQut put Event ("data", 1, DATA FORVAT_NONE)
Wt1l. RegSt at eEvent (1)

The L oad button loads the Wi T code file specified by the WiT code edit control, which defaults to
\wit\engine\demo\wic\notify on startup, using the environment variable $WITHOME internally.
If you click the Load button and the WiT code file is successfully loaded, the Run button is
enabled. The Run button demonstrates how to set simple parametersin an igraph and promoted
parameters from a subgraph. The parameter values are read from the | mage, L oop, and Smooth
controls:

Private Sub runButton_dCick()
dataWn. Text = ""

runButt on. Enabl ed = Fal se
pauseBut t on. Enabl ed = True
st opBut t on. Enabl ed = True

"*** exanpl e of setting a sinple paraneter
status = Wt1l. Set OpParans("fil enane”, i mNameWjt. Text)
If status = 0 Then
MsgBox "Cannot set image name", 48, "Run"
End If

'*** exanpl e of setting a pronoted paraneter
status = Wt1l. Set OpParans("count"”, | oopWt. Text)
If status = 0 Then

MsgBox "Cannot set |oop count", 48, "Run"
End | f

'*** exanpl e of setting paraneters in a sub-graph
status = Wt1l. Set OpParans("w dt h", snoot hWjt . Text)
If status = 0 Then

MsgBox "Cannot set smooth width", 48, "Run"
End | f
status = Wt 1. Set OpParans("hei ght", snoot hWjt. Text)
If status = 0 Then

MsgBox "Cannot set smooth height", 48, "Run"
End I f

status = Wt 1. Control Exec(execl D, WT_EXE_FLASH, 0)
If status = 0 Then
MsgBox "Cannot run WT code!", 48, "Run"
End If
End Sub

While the igraph is running, the Pause and Stop buttons are enabled. If you press Pause, the
Continue button is enabled. When the igraph terminates by itself or after your press Stop, the
application goes back to itsinitia state: Load and Run are enabled, Pause, Continue, and Stop
are disabled. These buttons simply use Control Exec with different argumentsto control the
execution.

23

Passing Data To and From WiT Engine

This example (engine\demo\vb\data) demonstrates how to pass data between WiT and a user
application. It usesthe file engine\demo\wic\data.wic.

i Main S w1

=
o e i m— T '.'“_j

=]

Data Passing

In this example, when you click Run, some datais sent from the user application to the WiT
engine and then processed by WiT, and some data is sent from WiT to the user application and
processed by the user application.

Datais passed from the user application to WiT by using the readObj operator. Datais passed
from WiT to the user application by using the display operator.

Data Passing I graph

The display window is mapped to the name "data" as usual. RegOutputEvent is used to ensure
that the OnOutput event procedure is called whenever the display operator named
dataFromWiT iscreated. The dataformat is set to WIT_DATA_FORMAT_HYBRID, because
we are going to send image data from WiT to the user-application, and the hybrid type is most
efficient for images. Then Regl nputEvent is used to ensure that Onlnput is called whenever any
readObj operator with its filename parameter set to "sample” is created.

Status = Wt1l. SetDi spl ayWwhd("data", Picturel. hWid)
Status = Wt1l. Regl nput Event ("sanple", 1)
Status = Wt1l. RegQut put Event ("dataFromW T", 1, DATA FORVAT_HYBRI D)

24

The function OnOutput processes the data it receives from WiT:

Private Sub Wt1 _OnQutput(nane As String, data As String, rawbData As
Vari ant)

m obj Header As String
mstr As String
mstrl As String

mc As String

m i mageData As Vari ant
mtotal As Doubl e

mi As Long

mj As Long

m poz As | nteger

m pozEnd As | nteger

ojvlvivivivivivlvlu)

str

(LI |

pos InStr(1, data, "Corlmage")
If pos 0 Then
‘fetch i mage data
Status = Wt1l. Get Qut putDat a("dataFronW T", obj Header, imageDat a,
DATA_FORMAT_HYBRI D)

‘replace linefeed with carriage return/line feed

' conput e nmean

' show mean
Forml. I nProp. Caption = str & ", nean: " & Format(total / 65536,
"0.00")
End If
End Sub

Because the data format was specified as HY BRID when RegOutputEvent was called, the data
for theimageis split into two sections. The header, which contains information about the image
size and type, is stored as text (ASCII) in character buffer data. WiT returns multi-line data with
only aline-feed character between lines. Because a VB edit control requires both aline-feed and
carriage return character for each new line, the carriage return characters are added to the text
before it is displayed. The actual image datais stored in raw format in rawData. The raw datais
processed by OnOutput to compute the mean value of all the pixels.

The WiT code contains areadObj operator with the filename set to "sample". Because thisfile
name has been mapped with Regl nputEvent, when the readObj operator is executed, Onlnput
will be called. In the event procedure, if the value of DataToWiT is TRUE it means the user
chose to send an image, so asimple grayscale ramp image is prepared and passed to WiT using
SetlnputData. Otherwise the datain the text window on the right of the application is sent to
WiT. The format of the data should be the same as the text format supported by the writeObj
operator (seethe WIT User Manual for details about this format).

25

Private Sub Wt1_Onl nput(name As String)
Di m i mageDat a(255, 255) As | nteger
Dimi As Integer
Dimj As Integer

If Forml. dataToWt (0).Val ue = True Then

"*** send inmage data to wit
k =0
For i = 0 To 255

For j = 0 To 255

imageData(j, i) =j

Next j

Next i

Status = Wt1l. SetlnputData("sanple", "OBJ_B H CorObj 2D ushort 256

256", imageDat a)
El se
Status = Wt1l. Setlnput Dat a("sanpl e", Forml. Text 1. Text, 0)
End If
If Status = 0 Then
MsgBox "Error in object data"
End |f
End Sub

A mapping for readObj can be unregistered at any time by calling Regl nputEvent with avalue

of 0 for the onOff parameter. In this example, if Data from this application is unchecked, the
event is unregistered and the readObj operator will read from file "sample" instead.

Running Individual Operators in Script Mode

This example (engine\demo\vb\script) uses the ScriptExec and ScriptGetReg methods to
execute a sequence of WiT operators in script mode.

E ELES iy

Script mode execution

The declarations and For m Unload sections are standard.

26

The Form L oad procedure maps the display name "display" to the Windows handle of the
Picture box:

status = Wt. Set Di spl ayWwhd("di spl ay", Picturel. hWd)

The Click procedure of the Run button executes three WiT operatorsin sequence: readObj,
invert, and display. Notice how the data is passed from readObj to invert, and from invert to
display. Because the display name "display" was mapped, the image is displayed in the Picture
box.

status = Wt. Script Exec("readCbj (param fil ename=sanpl e; out put
Qut =nyDat al)")

status = Wt. ScriptExec("invert (input In=nyDatal; output Qut=nyData)")
status = Wt. Script Exec("display(input In=nmyData)")
status = Wt. Script Get Reg("nyData", str, buffer,

W TLi b. DATA_FORVAT HYBRI D)

See the ‘ Script File Format’ chapter in the User section of theReferences Manual for details
concerning script syntax.

Running Any Operator or WIC

This example (engine\demo\vb\ops) can execute any WiT operator or WiT codefile. As such, it
isfunctionally almost as powerful as WiT, but with an entirely different user interface!

i

VB General 6berator and WiT imaging code Test

The declar ations and For m Unload sections are standard.
Form Load Procedure

The Form L oad procedure maps the following display names to the Windows handle of the same
Picture control:

27

image data display

getData overlay graph
Graph 3d-surface surface
terrain volume

This means that any WiT pop-up data window with any of these names will be redirected to the
Picture control. This mapping is achieved by using SetDisplayWnd with different names but the
same Window handle:

Private Sub Form Load()
status = Wt1l. Init(Fornml. hwad, 0)
If (status = 0) Then
Call MsgBox("Failed to initialize WT", vbOKOnly, "VB Message")

End If

status = Wt1l. Set Di spl ayWhd("i nage", Picturel. hWhd)
status = Wt 1. Set D spl ayWwhd("data", Picturel. hWd)
status = Wt 1. Set Di spl ayWhd("di spl ay", Picturel. hWd)
status = Wt 1. Set Di spl ayWwhd("getData", Picturel. hWid)
status = Wt 1. Set Di spl ayWhd("overl ay", Picturel. hWd)
status = Wt 1. Set Di spl ayWhd("graph", Picturel. hwd)
status = Wt1l. Set D spl ayWhd(" G aph", Picturel. hWd)
status = Wt 1. Set Di spl ayWhd("surface", Picturel. hWid)
status = Wt 1. Set Di spl ayWhd("3d-surface", Picturel. hWd)
status = Wt1l. SetDi spl ayWhd("terrain", Picturel. hWid)
status = Wt 1. Set Di spl ayWhd("vol une", Picturel. hwd)
status = Wt 1. RegStat usMsgEvent (MSG_WARNI NG, 1)
status = Wt1l. RegSt at usMsgEvent (MSG_OTHER, 1)

execNane. Text = Environ("WTHOVE") & "\ pro\deno\w c\sinple"
End Sub

RegStatusM sgEvent is used twice to redirect all WiT warning messages and other messages:
whenever WiT issues a message originally destined for the status window, it will be passed to the
OnStatusM sg event procedure, which simply displays the message in the text window txtw. This
isasimple use of message redirection. Y ou can do something more elaborate by parsing the
messages and provide user feedback in a more graphical way, such as flashing lights or showing
different picturesto indicate the status.

Finally, the execName textbox is assigned a default path to a sample WiT code file.
Control Buttons

The"Run WIT code" button is used to run WiT code files. The runExecButton_Click procedure
calls Load with the text in the execName text window as argument. If the file exists, and the WiT
code file loads successfully, then ControlExec is called to run the file in 'flash’ mode.

28

The"Run script" button is used for executing WiT scripts. The runScriptButton_Click procedure
calls ScriptExec with the text in the "scriptCmd" text window as argument. See chapter 'Script
Mode' in the User Manual for more information on script mode.

Data objectsin script registers can be displayed by clicking the "Display data' button. The
displayButton_Click procedure reads the text in the "scriptRegName" control and calls
ScriptExec to execute the display operator to display the object.

Instead of displaying a data object, you can also fetch its value by clicking the "Fetch data” button.
The fetchButton_Click procedure reads the text in the " scriptRegName" control and calls
ScriptGetReg to fetch the object. In this example, ScriptGetReg is set to retrieve unformatted
data. This meansthat only data values are reported, without labels. Unformatted data values are
usually easier to process by a VB application. The data values are reported in the Text control
"objVawin".

The Delete button is used to delete script mode registers that are no longer needed. It uses
ScriptDelReg to do the job.

Developing ActiveX Controls

This example (engine\demo\vb\simpleX) creates a simple ActiveX control which has the same
functionality as the simple application example. It uses the file enginé\demo\wic\simple.wic.

all s
iy B e Fowis T -
- = o]] e et -
R [0 g Pyt op i .l v wr] P | i ™

s

:i]

e i

Simple ActiveX Control Used in Internet Explorer

The steps required to create this control are the same as those for the application, except that a
project of type 'ActiveX Control' should be selected when creating the new project.

When the project has been built, it will create the file simple.ocx which can be installed and
registered just like any other ActiveX control. Of course the control requires that a properly
installed copy of the WiT runtime environment be present on the target machine before it can be
used.

29

Using C/C++

The WiT Engine DLL isaDynamic Link Library (DLL) that has functions for running WiT code
files or operators, redirecting specific data displays to windows within your application GUI,
transferring data between WiT and your application, etc. The functionality provided by the WiT
Engineisidentical to WiT with the GUI removed. The WiT Engineretains all the power of WiT,
including interfaces to frame grabbers and accel erators, the ability to run WiT code files that
contain hundreds or thousands of operators, and parallel processing on multi-processors or
networked computers. It provides the same capabilities asthe WiT ActiveX control, but in the
form of alibrary of C functions.

The WiT Engine can be used to run either scripts or WiT code files. Unlike the WiT GUI, the WiT
Engine does not require the user to set the execution mode: functions from aWiT codefile are run
with witControl Exec while functions that are executed immediately like a script are run with
witScriptExec.

The WiT Engine can be used by any programming environment which can call DLL functions.
For C programmers, a header file (witdll.h) is available which contains all the declarations
necessary to call the functionsin the WiT Engine.

Writing an MFC or Win32 C/C++ program consists of the following steps:

1. Includethe WiT Engine header file in your project.

2. Cdl witDllInit3 to initialize the WiT engine before making any other WiT Engine
function calls.

3. Cdl WIT Engine functions as required by your application.

4. Call witDIIExit clean up and exit the WiT engine when finished. Do not make any
subsequent callsto WiT Engine functions.

Multi-Threaded Applications

If you are creating a multi-threaded application, then you must make sure that the following WiT-
DLL functions are called only from the main thread:

witDIlInit3 (and all older versions: witDllI nit2, witDllI nit)
witControlExec (and al older versions: witRunlgr, witControllgr)
witSetDisplaywnd

witWndRepaint

Thereason isthat WiT-DLL aways runs with multiple internal threads. One of these threads
handles all operators that require a GUI, such as display and getData, so this must be the main
application thread. WiT uses Windows messaging to communicate and synchronize between this
thread (the main thread) and the other WiT threads. This communication is kept to a minimum,

30

since Windows messaging is slow. However, the starting and stopping of a WIC program requires
the use of Windows messages, even if the WIC program contains no GUI operators.

WitControlExec can be called from any thread if the Block parameter is FALSE. But if the Block
parameter is TRUE and witControlExec is called from athread other than the main thread, it will
never return because in blocking mode, witControlExec uses an internal loop to get and dispatch
Windows messages.

If it is necessary to call witControlExec from athread other than the main thread in your
application, set the Block parameter to FALSE, and register a state callback function using
witSetStateCallback. By having appropriate code for the case when the stateis
EXEC_STOPPED in the callback function, your program can accurately and efficiently handle
the end of WIC program execution. One of things you can do is to put a semaphore wait right after
the witContr olExec call. The semaphore is signaled when the WIC execution state has changed to
EXEC_STOPPED. E.g.:

nmai nThread()

witDilInit3(...);

Wi t Set St at eCal | back(wi t St at eCal | back) ;

create w cStoppedSerma as binary semaphore with initial value 0
spawn t hreadCode as thread

} S
t hr eadCode()
{

while (1) {
wi t Cont r ol Exec(execHandl e, W T_EXE FLASH, FALSE);
semaphor eWai t (Wi cSt oppedSena) ;

}
}

wi t St at eCal | back(const ExecState state)

if (state == EXEC_STOPPED)
semaphor eSi gnal (w cSt oppedSens) ;

MFC Examples

These examples illustrate the use of WiT Engine DLL with C++. All were produced using
Microsoft's DevStudio AppWizard to make a dialog based application (exe). They assume you
have a basic familiarity with the DevStudio development environment. If any of the concepts
discussed here seem unclear, please refer to your documentation from Microsoft. Each of the
samples can be loaded, built, and run using the provided source code and project files. The
functionality and behavior of the applicationsis the same as the corresponding VB examples.

31

Source code for these examples can be found in the directory engine\demo\mfc under the WiT
installation directory, which is‘ C:\Program Files\WiT’ by default.

e simple: Load and run asimple WiT code file that reads aWiT image from a file and
displaysit in awindow within the applications main window.

» fg: AccessaWiT frame grabber for live video display as well as grabbing and processing
of individual frames.

» inter: UseaWiT interactive operator (getData), and retrieve data from an individual
operator.

» control: Control the behavior of an interactive operator.

» notify: Notify your MFC application whenever WiT data changes, and set parametersin
aWiT codefile.

e data: Pass data between WiT and your MFC application.

e script: Executeindividual operators using WiTs script mode.

e ops: Execute any individual WiT operator or Wit codefile.

A Simple Example

This simple example (engine\demo\mfc\simple) allows the user to read aWiT object file and
display the datain a window within the application’s main window.

[=1 troer o

The stepsto create this application are described below.
Create Project

Create adialog based EXE project called 'Simple’. Add #include's for witDIl.h and gT ools.h to
simple.cpp and simpledlg.cpp:

#i ncl ude "gtool s. h"
#include "witdll.h"

The witDll.h header file contains prototypes for the WiT DLL functions while gTools.h contains
needed macro definitions. Do not modify either of these files.

32

Create a Picture Control

Create a Picture control in the dialog resource of your project. Size and position it where you want
WIT to show images. Set the ID of the Picture control to IDC_PIC_FRAME. The same Picture
control can be used for getData and other operators which normally display datain a pop-up
window.

Initialize WiT Engine

Create the onl nitDialog member function to handle CSimpleDlg’'s WM_INITDIALOG
messages. Add the following code to initialize the WiT engine, map the display name "image" to
the Windows handle of your Picture control, and load the desired WiT codefile;

if (!(mwitDilHandle = witDIllnit3((void *)GetSaf eHand(), 0, NULL)))
MessageBox("witDilInit failed!");

wi t Set Di spl aywhd("i mage", GetDi gltem(|DC_PlI C_FRAME) - >Cet Saf eHwnd());
char *wi thome = getenv("w t home");
CString execPat h;

execPat h. Format ("%\ \ pro\\demo\\w c\\sinple", wthone);

m execl D = wi t Load(execPat h. Get Buffer (0));
Clean Up

Call the witDIIExit function in the DestroyWindow member function:

BOOL CSi npl eDl g: : Dest r oyW ndow()

/1 TODO Add your specialized code here and/or call
/'l the base cl ass
witDl | Exi t(mw tD | Handl e);

return CDial og:: DestroyW ndow() ;

}
Complete the Application

Create a Button control, to control running of the WiT codefile. Set the ID of the Button to
ID_READ. Create the message handler onRead for the BN_CLICKED message for this control.

voi d CSi npl eD g: : OnRead()

wi t Control Exec(m execld, WT_EXE _FLASH, 0);
}

That’sit. Y ou can now build and run your application!

33

Using a Frame Grabber

This example (engine\demo\mfc\fg) demonstrates the use of aframe grabber with the WiT DLL.

AT i
el =

In this example the project is ill very simple: it consists of a Grab button for grabbing single
frames, a Live button for controlling live video, and a Pictur e control for showing the grabbed
images or live video.

Interfacing to a frame grabber through the WiT DLL issimple. All you needto doistouseaWiT
configuration file which uses a frame grabber. If you have installed a frame grabber from
supported by WiT and saved your configuration then WiT will automatically use the frame
grabber on startup by default. Y ou can also explicitly set the server configuration with the "-config
initialization switch when calling witDIII nit3. For example:

mw tDl Il Handle = witD I I nit3((void *)Get Saf eHwnd(),
"-config c:\wit\config\bandit.wc");

In this example, it is assumed you have already installed a supported frame grabber and the WiT
configuration file has been set to use the frame grabber, so the "-config" switch is not necessary.
Instead, this example illustrates use of the "-showStatus' option to turn off the WiT status
window, so that the application looks more like a completely standalone program. Y ou can pass
the same command line arguments to witDIlI nit3 as you passto WiT.

Create the project, add the #include's, and create the Pictur e control asin the previous example.
Add the initialization code, and load the WiT codefile:

if (!(mwitDilHandle = witDilInit3((void *)GetSafeHwmnd(),
"-showStatus 0", NULL)))
MessageBox("witDilInit failed!");

wi t Set Di spl aywhd("i mage", GetDl glten(|DC_QUTPUT) - >Get Saf eHwnd());

34

wi t Set Di spl aywhd("di spl ay", GetDl gltem(| DC_OUTPUT) - >Get Saf eHwnd()) ;
mlive = 0;

char* wi thome = (char *)getenv("w thone");
char execNane[256] ;
sprintf(execNanme, "%\\pro\\denp\\wi c\\fg", withone);

m execl D = wi t Load(execNane) ;
Add the witDIIExit function call to the destroyWindow function asin the previous example.

Create the message handler onLive for the BN_CLICKED message of the Live button, and
onGrab for the Grab button. The onLive function sets a status flag to keep track of whether live
video ison or off, and callsthe WiT-DLL function witL ive Display to display live video.
WitLive Display causes WiT to continuously update the live video image in the background, but
returns execution to the application immediately. It may also utilize hardware features from the
frame grabber for high-speed live video display.

Thefirst argument to witLiveDisplay specifies the window name to be used for displaying live
video. In this example it must be set to "image", because that is the name used when
witSetDisplayWnd is called. The second argument sets the name of the frame grabber. This
argument can be set to a zero value to select the first frame grabber loaded by the WiT
configuration file. The third argument turns live video on (1) or off (0).

voi d CFgD g:: OnLive()
{

mlive = 1;

wi tLi veDi spl ay("i mage", 0, 1);
}

The onGrab function checks if live video is active. If it is, then it is stopped by calling witLive
Display with a zero (off) argument. Then, the previously loaded WiT codeisrun to grab and
display asingle frame.

void CFgDl g:: OnGrab()
if (mlive) {
mlive = 0;
wi tLi veVi deo("image", 0, 0);

}
wi t Cont r ol Exec(m execl D, WT_EXE_FLASH, 0);

Using an Interactive Operator

This example (engine\demo\mfclinter) shows how to use WiT interactive operators (getData in
this case) from your application, and how to retrieve data val ues from a script mode register.

35

Theinitialization and cleanup are standard.

All the real work is donein the onRun message handler. First, readObj iscalled toread ina
sample image. Then, getData is called. Because the name "getData" has been mapped to the
Picture control, the image appears inside the Pictur e control and the user can enter graphical data
in this window. When the user has finished entering data, they can bring up the pop-up menu on
the image (by pressing the right mouse button) and select OK. At this point, the getData operator
returns. Then, witScriptGetReg is used to retrieve data from the output register of getData
(register "data'). The value DATA_FORMAT _DISPLAY for the format argument tells
witScriptGetReg to return the datain the same format that WiT uses to display objects. In this
example, the datais simply displayed in the "statuswin" control.

void ClnterD g:: OnRun()
{

}

wi t Control (mexecl D, WT_EXE _FLASH, 0);

36

Controlling an Interactive Operator

This example (engine\demo\mfc\control) shows how to control an interactive operator from the
user application, suppressing the normal menu or pop-up panel provided by the WiT engine. It
usesthe WiT code file engine\demo\wic\contr ol.wic.

BT 1= 1]
ey

Cai B P o B m i e @
riaLi ml ol i L B Ol] e
[o e e e T]
e @l e ey oo

re l Imi b i v
___I:I_JI_I_I__II_I

| Jter]
.-\-—| Fom | |
g [r
i Furery

In this example, you are prompted to enter a variety of graphic objects on top of an image. When
you are satisfied with the graphic objects, hit the OK button, and the number of objectsis
reported. Then if you hit the Next Set button, you are prompted to enter a second set of graphic
objects. The first set is still maintained but can no longer be deleted or modified. Keep on hitting
OK and Next Set to enter more graphics and the total number of objects will be reported each
time. Press Stop to stop the editing session.

q 3 - §
.. s LU ! L - |
= - T - - = e B &
L - i L | o
rrum

o — ==n

In onlnitDialog, the image window is mapped to a getData2 operator using witSetDisplayWnd.
Then, witSetDisplayActiveCallback is called to register the getDataActive callback function.
Then witControlDisplay is called to suppress the pop-up menu and the Graphics Editor of the
getData2 operator:

HWAD hwnd = Get Dl glten{ |DC_PlI C_FRAME) - >Get Saf eHwnd() ;
wi t Set Di spl aywhd(" get Dat a2", (voi d*)hwnd);
wi t Set Di spl ayActi veCal | back("get Dat a2",
(const void (__cdecl *)(const char *,const int))getDataActive);
wi t Contr ol Di spl ay("get Dat a2", "suppressPopupMenu 1");

37

Next, witLoad is called to load the desired WiT codefileif possible:

sprintf(execNanme, "%\\pro\\denp\\wi c\\control", wi thone);
if (!'(mexeclD = witLoad(execNane))) {
char nsg[256] ;
sprintf(nmsg, "Cannot |oad WT code %", execNane);
MessageBox(nsgq) ;
}

Then, witSetDisplayWnd and witSetDisplayActiveCallback are called to map the
nextSetActive callback function to the prompt operator called "NextSet", so that the WiT engine
will call the callback instead of displaying the normal pop-up dialog:

wi t Set Di spl ayWhd(" Next Set", 0);
wi t Set Di spl ayActi veCal | back(" Next Set", (const void (__cdecl *)(const char
*, const int))nextSetActive);

In the onRun message handler, the name of the image file is retrieved, and the value passed to the
WIT using witSetOpParams. Then, the WiT codeis run, using witContr ol Exec:

char obj Name[256] ;
GetDi gltem | DC_EDI T_SAMPLE) - >Get W ndowText (obj Nane, 256);

if (!'witSetQpParans("fil enane", obj Nane))
MessageBox(" Cannot set image nanme\n");

if (!'witControl Exec(mexecl D, WT_EXE_FLASH, 0))
MessageBox(" Cannot run WT inmagi ng code\n");

During WiT code execution, when getData2 executes the callback function getDataActive, all the
appropriate buttons are enabled. User inputs to getData2 can be executed the normal way using
the mouse.

The controls OK, Stop, Select, Line, Contrast, etc. all use witControlDisplay to execute various
actions for getData2.

38

Automatic Notification to User Application

This example (engine\demo\mfc\notify) shows how to get the WiT engine to notify your MFC
application whenever data change, and how to set parametersin aWiT code file.

| 3 =

Theinitialization and clean-up callsin onlnitDialog and Destr oyWindow are standard. In
onlnitDialog, the function witSetOutputCallback is used to tell the WiT engine to call
dataChanged when data in the window named "data' changes. Similarly, witSetStateCallback is
used to tell the WiT engineto call stateChanged whenever the WiT code execution state changes
(e.g. fromidle to running to stopped.). Also, the default WiT code file path is set, using the
$SWITHOM E environment variable.

char args[1024];

sprintf(args, "-showStatus 0 ");
if (!(mwitDIlHandle = witDilInit3((void *)GetSafeHwmd(), args, NULL)))
MessageBox("witDilInit failed!");

char *wi thome = getenv("w thome");
m_ExecPat h. For mat (" %s/ pro/ deno/ wi ¢/ noti fy", w thone);
Get Dl gl tenm(| DC_EDI T_EXEC_PATH) - >Set W ndowText (m_ExecPat h) ;

m_i mNane. For mat (" sanpl e") ;
Get Dl gl t en{ | DC_I MG_NAME) - >Set W ndowText (m_i mNane) ;

m FilterSzText. Format ("%", 3);
Get Dl gl ten(| DC_STATI C FI LT_SZ) - >Set W ndowText (m Fil t er SzText) ;

m Loop. Format (" %", 5);
Get Dl gl t en{ | DC_LOOP) - >Set W ndowText (m_Loop) ;

wi t Set Di spl ayWhd("i mage", GetDl gltenm(|DC_PlI C_FRAME) - >Cet Saf eHwnd()) ;
wi t Set Qut put Cal | back("data", dataChanged, W T_DATA FORVAT_NONE) ;

39

wi t Set St at eCal | back(St at eChanged) ;

The L oad button loads the WiT code file specified in the m_ExecPath edit contral. If the user
clicks the L oad button and the WiT code file loads successfully, then the Run button is enabled:

Get Dl glten(| DC_EDI T_EXEC PATH) - >Get W ndowText (m_ExecPat h) ;
if (mexeclD = wtLoad(LPCTSTR (m ExecPath)))
Get Dl gl t en{ | DC_RUN) - >Enabl eW ndow TRUE) ;
el se {
char nes[256];
sprintf(nes, "Cannot |oad WT code %\n", m ExecPath);
MessageBox(nes) ;

}

The code for the Run button demonstrates how to set simple WiT code parameters. In this
example, the parameter values are read from the | mage, L oop, and Smooth controls:

voi d CNotifyDl g:: OnRun()
{
Get Dl gl t en{ | DC_RUN) - >Enabl eW ndow(FALSE) ;
Get DI gl t en(| DC_PAUSE) - >Enabl eW ndow(TRUE) ;
Get Dl gl t en{ | DC_STOP) - >Enabl eW ndow TRUE) ;
Get Dl gl ten(| DC_EDI T_QOUTPUT) - >Set W ndowText (" ") ;

Get Dl gl ten(| DC_| MG_NAME) - >Get W ndowText (m_i nNane) ;
if ('witSetQpParans("fil enane", m.inNane))
MessageBox (" Cannot set image nanme\n");

Get Dl gl ten(| DC_LOOP) - >Get W ndowText (m_Loop) ;
if (!'witSetQpParans("count”, m.Loop))
MessageBox (" Cannot set | oop count\n");

Get Dl gl ten(| DC_STATI C FI LT_SZ) - >Get W ndowText (m Fil t er SzText) ;
if (!'witSetQpParans("wi dth", mFilterSzText))
MessageBox(" Cannot set smooth w dth\n");

if (!'witSetQpParans("height”, mFilterSzText))
MessageBox(" Cannot set snooth height\n");

if (!'witControl Exec(mexeclD, WT_EXE FLASH, 0))
MessageBox(" Cannot run WT inmagi ng code\n");

/* witControl Exec returns inmredi ately, so you can poll for

* data values here if you don't want to use call backs

*/

Whilethe WiT code is running, the Pause and Stop buttons are enabled. If the user presses Pause,
the Continue button is enabled. When the WiT code terminates by itself or after the user presses
Stop, the application goes back to itsinitial state: Load and Run are enabled, Pause and Stop are

40

disabled. These buttons simply call witControlExec with different arguments to control the
execution.

Passing Data To and From WiT Engine

This example (engine\demo\mfc\data) demonstrates how to pass data between WiT and a user
application. It uses the file engine\demo\wic\data.wic.

== n'.SI‘Ei

4 | &)

In this example, when you click Run, some datais sent from the user application to the WiT
engine and then processed by WiT, and some data is sent from WiT to the user application and
processed by the user application.

. =
§ - e m— ==
ul
.
o, " g 2
o

Datais passed from the user application to WiT by using the readObj operator. Data is passed
from WiT to the user application by using the display operator.

There are two ways to pass data between a C/C++ application and the WiT Engine. Y ou can either
pass an address to a Cor Obj data object, or you can use buffers to pass the values. Either
technique works for both inputs and outputs. Passing a Cor Obj address is much more efficient
than passing data values in a buffer. The buffer techniqueis primarily used for programming
languages that don't use compatible data structures with C. In this example, we'll use the address
technique to pass data from WiT to the application, and the buffer technique to pass data from the
application to WiT.

The display window is mapped to the name data as usual. witSetOutputHandleCallback is used
to map the dataChanged callback function to the display operator named dataFromWiT. Then
witSetl nputCallback is used to map the witNeedData callback function to the readObj file
name "sample":

wi t Set Di spl aywhd("data", hwnd);
wi t Set Cut put Handl eCal | back(" dat aFr omW T", dat aChanged);
wi t Set | nput Cal | back("sanpl e", w t NeedDat a) ;

41

| oadExec();

The callback function dataChanged processes the data it receives from WiT:

static const void _cdecl
dat aChanged(const char *name, const void *ref, const CorQbj *handle)

/1 handle is the address to the object, ref is the reference
/1 that nust be used when calling wtFreeQj ()
Chi al og* pDl g = (CD al og*) Af xGet Mai nWhd() ;

if (CorQoj_type(handle) == COR_OBJ_I MAGE) {
Corlnmage *im = CorQoj _i mage((Cor Gbj *)handl e);
int width, height;
float total;
unsi gned char *dp, *dataEnd;
char str[1024];

if (CorObj_ndType(im == COR_OBJ_UBYTE) {
width = CorObj _width(im;
hei ght = Cor Obj _hei ght (i m;
dp = (unsigned char *) CorQoj _ndData(im;
dataEnd = dp + wi dt h*hei ght;
total = 0;
while (dp < dtaEnd) {
total += *dp++;
}
sprintf(str, "%lx%, nean: % 2f", w dth, height,
total / (w dt h*hei ght));
pDl g- >Get DI gl t en(| DC_I NFO) - >Set W ndowText (str);
} else
pDl g- >Get DI gl t en(| DC_I NFO) - >Set W ndowText (
"Not an 8-bit unsigned i nage");
} else
pDl g->Get Dl gl t en(| DC_I NFO) - >Set W ndowText (
"Data is not an inmage");

/1l tell WT that our app doesn't need this object any nore
wit FreeQbj (ref);
}

Because the data format was specified as HYBRID when RegOutputEvent was called, the data

for theimageis split into two sections. The header, which contains information about the image

size and type, is stored as text (ASCII) in character buffer buf. The actual image datais stored in
raw format in rawBuf. The raw datais processed to compute the mean value of all the pixels.

ThisWIT code contains areadObj operator with the file name set to "sample". Because this file
name has been mapped with witSetl nputCallback, when thisreadObj operator is executed, the
callback function witNeedData will be called. In the callback function, if Data To Send WiT is
set to Text Window the data in the text window on the right of the application is sent to WiT.

42

Otherwise, the user chose to send an image, so a simple grayscale ramp image is prepared and
passed to Wi T using witSetl nputData. The format of the data should be the same as the text
format supported by the writeObj operator (see Referencesin the WiT User Manual for details
about this format).

const int _cdecl
wi t NeedDat a(const char *nane)
{
char data[1024];
CDi al og* pDl g = (CDi al og*) Af xGet Mai nWhd() ;

if ((((CButton*)pD g->CGetD glten(|DC_TEXT)))->Get Check()) {
/* send text */
pDl g->Get Dl gl t en(| DC_EDI T) - >Get W ndowText (data, 1024);
if (!witSetlnputData(nane, data, strlen(data), 0, 0))
pDl g- >MessageBox("Error in object data");
} else {
/* send i mage */
int i, j;
int headerLen;
char inHeader[128];
char *inBuf, *datap;

sprintf (i nHeader,
"OBJ B "
e
"Cor |l mage "
"Cor UByte "
"256 "
"256 ");
headerLen = strlen(i nHeader);
imBuf = (char *)nall oc(65536);
datap = i nBuf;
for (i=0; iMessageBox("Error in inage data");
free(i mBuf);
}

return O;

}

A mapping for readObj can be unregistered at any time by calling witSetl nputCallback with a
value of NULL for the callback function parameter. For this example, thisis donein the onCheck
message function. If Data from this application is unchecked, the event is unregistered and the
readObj operator will read from the file sample instead.

Running Operators in Script Mode

This example (engine\demo\mfc\script) uses the witScriptExec and witStriptGetReg functions
to execute a sequence of WiT operatorsin script mode.

43

L

Al 0
| .= I [P T = [

Initialization and cleanup are performed in the onlnitDialog and Destr oyWindow functions,
respectively, as usual. The display named "display” is mapped to the Windows handle.

When the user presses the Run button, the onRun message procedure executes three WiT
operatorsin sequence: readObj, invert, and display. Notice how the datais passed from readObj
toinvert and frominvert to display. Because the display name "display” was mapped, the image
is displayed in the application’s Pictur e control. Then, witScriptGetReg is used to get the image
data from the output of the invert operator.

wi t Script Exec("readObj (param fil ename=sanpl e; output Qut=nyDatal)");
wit Scri pt Exec("invert (input |n=nyDatal; output Qut=nyData)");

wi t Scri pt Exec("di spl ay(i nput In=nyData)");

Wit Script Get Reg(" nyData", buf, 1024, rawbData, 65544,

W T_DATA _FORMAT_HYBRI D) ;

44

Running Any Operator or WIC

This example (engine\demo\mfc\ops) demonstrates an application that can execute any WiT
operator or WiT code file. As such, it is functionally aimost as powerful as WiT, but with an
entirely different user interface.

=Bl

ot i
Topm e ins m o rr——
o A e il

l:':'.,,.... 8

sl U bbb e
i
|

¢ 5

T] H-I
im 1 o e E iy

T oy . o e s B
e Vi i b o] B i
b el

Pagiee [nomian [|

I._._I| 2l

Initialization and cleanup are performed in the onlnitDialog and Destr oyWindow functions
respectively, as usual.

The onlnitDialog function maps the following display names to the Windows handle of the same
Picture control:

image data display
getData overlay graph
Graph 3d-surface surface
terrain volume

This means that any WiT pop-up data window with any of these names will be redirected to the
Picture control. This mapping is achieved by using witSetDisplayWnd with different names but
the same Window handle:

/* map nmultiple nanes to the sane di splay w ndow */
wi t Set Di spl ayWhd("i mage", hwnd);

wi t Set Di spl aywhd("di spl ay", hwnd);

wi t Set Di spl aywhd("data", hwnd);

wi t Set Di spl aywhd("get Data", hwnd);

wi t Set Di spl ayWhd("overl ay", hwnd);

wi t Set Di spl aywhd(" Graph”, hwnd);

wi t Set Di spl aywhd(" graph", hwnd);

wi t Set Di spl aywhd(" 3d-surface", hwnd);

45

wi t Set Di spl aywhd("surface", hwnd);

wi t Set Di spl ayWhd("terrain", hwnd);

wi t Set Di spl aywad("vol une", hwnd);

/* handl e all status and warni ng nessages */
wi t Set St at usCal | back(st atusProc);

wi t Set War ni ngCal | back(war ni ngProc) ;

Then, witSetStatusCallback and witSetWarningCallback are used to redirect all WiT warning
messages and other messages: whenever WiT issues a message originally destined for the status
window, it will be passed to the appropriate callback function, which in this example simply
displays the message in the text window txtw. Thisis a simple use of message redirection. You
can do something more elaborate by parsing the messages and provide us er feedback in a more
graphical way, such as flashing lights or showing different pictures to indicate the status.

The"Run" button is used to run WiT code files. The onRun message handler callswitL oad with
the text in the igName text window as argument. If the file exists, and the WiT code file loads
successfully, then witControlExec is called to run the WiT code filein ‘flash’ mode.

The"Run script" button is used for executing WiT scripts. The onRunScript message handler
callswitScriptExec with the text in the "scriptCmd" text window as argument. See the previous
example for more on script mode.

Data objectsin script registers can be displayed by clicking the "Display data' button. The
onDisplayData message handler reads the text in the " scriptRegName" control and calls
witScriptExec to execute the display operator to display the object.

Instead of displaying a data object, you can also fetch its value by clicking the "Fetch data" button.
The onFetchData message handler reads the text in the "scriptRegName” control and calls
witScriptGetReg to fetch the object. In this example, witScriptGetReg is set to retrieve
unformatted data. This means that only data values are reported, without labels. Unformatted data
values are usually easier to process by an application. The data values are reported in the T ext
control "objVawin".

The"Delete" button is used to delete script mode registers that are no longer needed. It uses
witScriptDelReg to do the job.

46

Win32 Examples

A Simple Example

This example (engine\demo\win32\simple) creates a simple Win32 application with the same
functionality asthe VB and MFC version of A Simple Example. It also loads and runsthe WiT
code file engine\demo\wic\simple.wic.

Most of winMain istaken up with creation of the application's GUI. Then witDllInit3 iscalled to
initialize the WiT engine, witSetDisplayWnd is called to map the display name "image" to the
Windows handle, and witL oad is called to load the application’s WiT codefile:

if (!'(witDlHandle = witD | 1nit3(hwWwd, NULL, NULL))) {
MessageBox(hwd, "witDilInit failed!'", appName, MB_OK);
exit(1);

wi t Set Di spl ayWhd("i mage", pictureWd);

wi thome = getenv("w t hone");

sprintf(fn, "%/ pro/deno/wc/sinmple.wic", wthone);
execl D = wi tLoad(fn);

Finally, the main message |oop is entered. The callback function msgProc was registered to
handle Windows messages. It ssmply calls witContr ol Exec when the user presses the
application’s"Run" button:

case WW_COVIVAND:

{
int id = (int)LONRD(wParam;

switch (id) {

case | D_READ BUTTON:
wi t Control Exec(execl D, WT_EXE_FLASH, 0);
br eak;

}
}
return Def W ndowPr oc(hwid, nsg, wParam | Paranj;

47

When the user presses the window's "Close" button, witDIIEXit is called to exit the WiT engine
before quitting:

case VWM DESTROY:
witD | Exit(wtD I Handle);
Post Qui t Message(0);
return Def W ndowPr oc(hwid, nsg, wParam | Paranj;

WIT Engine ActiveX

Methods

The methods can be classified into the following groups. All the methods that register and
unregister events are listed in both their own group and in whichever other group is appropriate.

Setup

M ethod

‘Init |Initia|izetheWiT engine.

‘Exit |Clean up and exit the WiT engine.

‘ RegStatusM sgEvent | Register event for WiT status messages of a particular type.

WiT Code File Execution

Load Load WiIT code file.

‘Control Exec |C0ntro| the execution of the current WiT code file, with optional blocking.
‘GetState |Get current WiT code state.

‘SetOpParams |Set parameter valuesin WiT code file.

‘RegStateEvent |Register event for changesin WiT code execution state.

48

Script M ode Execution

‘ ScriptExec ‘ Execute a script.

‘ ScriptDelReg ‘ Free a script mode register.

‘ ScriptGetReg ‘ Get data values from a script mode register.

Display and Data M anagement

‘ SetDisplaywnd ‘Associ ate a window with a display name.

‘ Control Display ‘ Control the behaviour of some interactive operators.
‘GetOutputData ‘Get datafromaWiT codefile in a specified format.
‘Setl nputData ‘Set dataused by aWiT codefile.

‘LiveDispIay ‘Turn live video on or off.

‘RegOutputEvent ‘Register event for changes to data of a mapped display.

‘RegDispI ayActiveEvent ‘Register event for display window being created or destroyed.

‘Regl nputEvent ‘Register event for execution of any readObj operator.

Registering of Events

‘RegOutputEvent ‘Register event for changesto a display operator.

‘RegDispI ayActiveEvent ‘Register event for display window being defined or deleted.
‘RegStateEvent ‘Register event for changesin WiT code execution state.
‘Regl nputEvent ‘Register event for execution of any readObj operator.

‘ RegStatusM sgEvent ‘ Register event for status messages of a particular type.

49

Events

There are 5 event procedures.

‘ OnOutput | Data sent to a mapped display has changed.

‘OnDispI ayActive |Disp|ay window has been defined or deleted.

‘ OnState |The execution state of the WiT code file has changed.

‘ Onlnput A readObj operator with a specified value of its filename parameter is about to
execute.

‘ OnStatusMsg |WiT has issued a status message of a specified type.

Properties

There are several properties of the ActiveX control, corresponding to the WiT command line
arguments. Refer to the Configuration chapter of the WiT User Manual for a complete description

of the command line parameters.

Mehod |Descripton |

‘autoCIr ‘Automatically clear pop-up object windows

[bell | Enable/disable audible bell

‘config ‘WiT configuration file

‘ launchSvr ‘ Enable/disable auto server launch

‘ ngray ‘ Number of gray scales to be used to display grayscale images
‘ showStatus ‘ Display/hide the status window

50

WIT Engine DLL

The functions provided by the WiT DLL can be classified into the following groups. All the
functions that register callbacks are listed both in their own group and in whichever other group is

appropriate.

Setup

Fncion ——— [omoripton
|WitDIlnit3 |Initialize the WiT engine.

‘WitDIIExit |Clean up and exit the WiT engine.

‘witSetWarni ngCallback |Set callback to call when awarning message isissued to status window.
‘witSetStatusCaIlback Set callback to call when a non-warning message isissued to status

window.

WiT Code File Execution

Fucion—— Joesrpron

‘witLoad ‘Load WIT code from afile.
‘WitControl Exec ‘Control execution of the current WiT code, with optional blocking.
‘Wi tGetState ‘Get current WiT code state.

‘WitSetOpParams ‘Set parameter valuesin WiT code file.
‘Wi tSetStateCallback ‘Set callback to call when WiT code execution state changes.

Script M ode Execution

‘witScri ptExec ‘Execute an operator.

‘wi tScriptDelReg ‘ Free aregister.

‘wi tScriptGetReg ‘Get data values from aregister.

51

Display and Data M anagement

Funcion————— oosrpuon

‘wi tSetOutputwWnd |Associ ate a window with a display name.
‘Wi tControl Display |C0ntr0| the behavior of some interactive operators.
‘WitGetOutputData |Get data from a displayed object.

‘Wi tSetlnputData

|Set the data values for a readObj operator.

‘WitLiveDispIay

|Turn live video on or off.

|witSetOutputCal lback

|Set callback to call when data in a mapped display changes.

|witSetDisplayActiveCallback

|Set callback to call when a display operator is created or destroyed.

|witSetinputCallback

|Set callback to call when areadObj operator is executed.

Callback Handling

Funcion———— oowrpon

witSetWarningCallback

Set callback to call when awarning message isissued to status
window.

witSetStatusCallback

Set callback to call when a non-warning message isissued to status
window.

|witSetOutputCal lback

|Set callback to call when data in a mapped display changes.

witSetDisplayActiveCallback

Set callback to call when a display operator starts or finishes
executing.

|witSetinputCallback

|Set callback to call when areadObj operator is executed.

|witSetStateCallback

|Set callback to call when WiT code execution state changes.

52

Custom Programs using WiT
C Functions

All WIT operators are implemented as C functions in Windows dynamic link libraries (DLLS). As
aprogrammer, you have the option of calling WiT functions directly from any C/C++ program, or
designigraphsin WiT Studio and run the WIC file using the WiT Engine. The advantages of
calling WiT functions directly instead of using the WiT Engine are:

» Lower execution overhead. WiT Engine interprets WIC files at the function level.
» More compact and easier to distribute executables.
» Easier to mix data processing using both WiT functions and user application code.

There are some disadvantages that you have to be aware though:
* No automatic multi-threaded, multi-CPU parallelism.

» Other languages not supported, particularly Visual Basic.
e Cannot easily switch between igraph development and end user application.

A Simple Example

Following isasimple C example ($WITHOM E/samples/programs/simple) that uses WiT
processing functions. It reads an image and reportsits size.

#i ncl ude "cor bj . h"
#i ncl ude "wSystem h"

mai n(voi d)

{
Corl mage im

Cor Qbj I ni t (NULL, NULL);
if (cor_rdinmage(& m "../data/sanple2.bmp", 0) !'= COR OP_XK) {
printf("Failed\n");
} else {
int x, vy;
Cor UByte m n, nax;
int w= CorQhj _width(& m;
int h = Corhj _height (& n);
CorUByte *ip = CorQoj _ndData(& nj;

53

mn = max = *ip;
for (y=0; y<h; ++y) {
for (x=0; x<w, ++x) {
if (*ip<mn) mn
if (*ip > max) max
++i p;

}

}

printf("Size: %x%l, range: %l-%d\n",
w, h, mn, max);

Cor | mageFree(& m ;

}
Cor Obj Exi t () ;
}

The function Cor ObjInit checksif you have a proper runtime license for the WiT libraries, and, if
successful, initializes the libraries. The first argument is reserved for future use, and should always
be NULL. The second argument is a function pointer for error messages. For this simple example,
we set it to NULL so that all error messages are ignored.

The 'Cor' prefix, which stands for Coreco, is used for al utility functions and macros. Processing

functions are all prefixed by 'cor .

Thereal work is done by cor_readl mage. It takes the name of the file as the first argument and
the image format as the second argument. cor_readl mage can usually detect the image format by
reading the first few lines of the file, so normally you can set the second argument to 0, which
means auto-detect. The remaining 8 arguments are for specific image formats. For auto type
detect, they can all be set to 0.

WIT provides several macros to access fields within data objects. Access macros are preferable to
directly specifying the field names in case the internal implementation changesin the future. In
this example, we used the macros Cor Obj_width and Cor Obj_height to retrieve the width and
height values for the image.

Before exiting the program, you must call Cor Obj Exit to clean up. Otherwise your application
may leak memory, potentially causing your computer to slow down over time.

WIT utility functions are declared in the header file cor Obj.h, and file I/O functions are declared
in the header file wSystem.h.

Compile and link this program with the libraries wObj.lib and wSystem.lib, in the directory
$WITHOME\ib. You can find aready to build Visua C project for this example under
$WITHOM E\samples\pr ograms\simple.

54

Program Structure

First you need to initialize the WiT environment with the function Cor ObjInit at the beginning of
the program, before calling any WiT functions, Then you can call the processing functions.
Finally, before the program terminates, you have to clean the WiT environment with the function
Cor Obj Exit. Conceptually, the program structure will always ook like this:

mai n()

{
Cor Obj I ni t (NULL, NULL):

. do processing, e.g.
cor_readl mage(& m "nyl mage");
cor_| opass2d(& m &l opass, 3, 3);

Cor Obj Exi t () ;
oo

If any graphics (GUI) WiT functions (such as cor_displayCr eate are used, then Cor Guil nit and
Cor GuiExit should be used instead.

The first argument for Cor Objl nit or Cor Guil nit should be the Windows handle (HWND) of the
main application window. Cor Guilnit and all graphics WiT functions can only be used with a
windowed application. Cor ObjInit can be used in all applications, including console based
applications. When calling Cor ObjInit from a console based application, passa NULL pointer or
0 asthe first argument.

The second argument for Cor ObjInit or Cor Guil nit is the address of a status callback function.
This callback function is called when aWiT operator fails or otherwise need to pass a message
back.

Headers and Link Libraries

WIT header files are mostly stored in $WITHOME\h. Some low level function headers arein
SWITHOME\g\h. In general, you should add these two paths to 'Project settings' dialog, 'C/C++'
tab, 'Category/Preprocessor, 'Additional include directories field.

Y ou also need to add the appropriate import libraries for the linker. The simplest way to do that is
to add the import libraries files to the project'sfile list. All the WiT libraries are stored in
SWITHOMENib. Y ou will always need 'wObj.lib'. Other libraries are only required if you directly
use afunction from it. For example, if in your application you call the function 'cor_readlmage’,
then you will need to add 'wSystem.lib' to your filelist, and add

55

#i ncl ude "wSystem h"

to you source file. The operator documentation will tell you which include file and import library
you need.

Status Callback Function

A C/C++ function normally can only return a simple error code if something went wrong during
its execution. Often times thisis not enough. For example, suppose you called a function to read
an image from afile by passing it arelative path name, and the function failed because the file
does not exist. Rather than simply returning an error code, it is more helpful if the function returns
an error message with the file name expanded to the absolute path. In addition, some complex
functions may want to report warnings and feedback information during processing.

The WIT libraries support a multi-thread safe error and status report mechanism that allows any
WIT function to pass a message back to the caller in addition to returning a status code. All you
need to do isto register a status callback function at the start of your application. The status
callback function is registered using either Cor Objlnit or Cor Guilnit. It will be called with a
code and message when one of the following conditions occur during execution of aWiT
function:

‘ Condition ‘ Code

‘The function wants to display a message. ‘COR_OP_M SG
‘Thefunction encountered an unexpected but non-critical condition. ‘COR_OP_WARNI NG
| The function failed. |COR_OP_ERROR

The function encountered a fatal error and the whole application should |COR_OP_FATAL
be terminated.

If the status function addressis NULL, all status messages will be ignored. The Codeis returned
by the function and is a so passed to the status function.

Following is a simple example (wit/samples/programs/status) which has a status callback function
registered. The name of the file passed to cor_rdlmageis deliberately set to a non-existing file.
When you run this program, the error message returned by cor_rdl mage will be passed to the
statusCallback function and displayed in the console.

#i ncl ude "cor bj . h"
#i ncl ude "wSystem h"

static int
st at usFunc(Cor OpRt n code, char *nsQ)
{

56

switch (code) {

case COR_OP_MsSG
printf(nsg);
br eak;

case COR_OP_WARNI NG
printf("\007Warning: ");
printf(nsg);
br eak;

case COR_OP_ERROR
printf("\007Error: ");

printf(nsg);
br eak;
return OK;
}
mai n(voi d)
{
Corl mage im

Cor Qbj I ni t (NULL, statusFunc);
if (cor_rdlimage(& m "../datal/sanple_bad. bnp", 0) != COR_OP_OK)
printf("Failed\n");
el se
printf("lmge size is %x%l\n", CorCbj_width(& m,
Cor Obj _height (& m));
Cor Obj Exit ();
}

Object Library

WiT has a sophisticated data object system that simplifies the handling of complex data types,
dealing with issues such as allocating and freeing memory, caching, saving and reading datafiles,
etc. When writing stand-alone C/C++ applications, usually only a small subset of the object
systemis necessary. You will need to use the object library to alocate and free image and vector
memory, and use the access macros to retrieve or set datafields.

The functions and macros that you will most likely need are:

CorlmageAlloc alocate data for an image

CorlmageRelease release allocated data for an image
CorVectorAlloc alocate data for a vector (1-dimensional array)
CorVector Release release alocated data for a vector
CorObj_mdData retrieve data pointer from an image or vector
CorObj_mdType element type of animage or vector

57

CorObj_width width of animage, or size of a vector
CorObj_height height of animage

Object library functions and macros are declared in the header file cor Obj.h, Type specific
macros are in cor Obj Primitive.h and cor ObjCompound.h.

For example, the following code fragment uses the function Cor Vector Alloc to all ocate a vector
(1-dimensional array) of Cor Fpoint objects, then subsequently uses the access macro
CorObj_mdSize to retrieve the size of the vector, and the macro Cor Obj_mdData to get the data
pointer from the vector.

Cor Fpoi nt Vect or vec;
Cor Fpoi nt *pp;

int i;

int size;

if (CorVectorAlloc((CorVector *)& pts, COR OBJ_FPO NT, 10) < 0)
return Cor OpStatus(COR_OP_ERROR, COR OP_ERR USER, "Allocation
failed");

size = Cor bj _w dth(&vec);
pp = (CorFpoi nt *)Cor Obj _ndDat a(&vec);
for (i=0; i<10; ++i, ++pp)

printf("(%, %)\n", pp->X, pp->Y);

For more information about more advanced uses of the WiT object system, refer to Data Objects.

Display Library

Functionsin the WiT display library use graphics windows to display data or receive user inputs.
When such functions are used, the application must call Cor Guil nit instead of Cor ObjInit at the
beginning of the program. Only windowed applications can use WiT graphics functions.

The following code fragment uses the functions from cor_display to display an image.

Cor | mage i mage;

Cor Di spl ay di spl ayHandl e;
voi d *cor Gui Handl e;

HWAD mai nHwnd;

cor Gui Handl e = Cor Gui I ni t (mai nHwnd, statusCal | back);
cor_rdlmage(3, "sanple.bnp", 0);
di spl ayHandl e = cor _di spl ayCr eat e(pi ct ur eWd,

COR_DI SPLAY_I MAGE, 7,

COR_DI SPLAY_DONE_PRCC, di spl ayDonePr oc,

0);

58

cor _rdl mage(3, "anotherSanple. bnp", 0);
cor _di spl aySet (di spl ayHandl e,

COR_DI SPLAY_I MAGE, 7,

0);

|f (di spl ayHandl e) cor _di spl ayDestroy(di spl ayHandl e) ;
Cor Gui Exi t (cor Gui Handl e) ;

Display library functionstypically consists require alarge number of parameters. Many of these
parameters are interrelated and often default values are appropriate for most uses. So instead of
providing asimple single function interface as used in all other WiT operators, these display
functions use a variable argument 'object-oriented' application programming interface (API). This
API style allows C programs to take advantage of some object-oriented features, such as
inheritance, default parameter values, and implicit action when setting parameters.

Windows created by WiT display functions are implemented as 'objects. Once created, each
instance of these objects can be controlled individually using the Set and Get functions, and
destroyed using the Destr oy function.

‘ Function | Description ‘ Example

‘ Create | Create the object ‘ cor_displayCreate
‘Set |Set data values ‘cor_displ aySet

‘ Get | Get data values ‘ cor_displayGet

‘ Destroy | Destroy the object ‘ cor_displayDestroy

Function prototypes and attribute enums are declared in wDisplayUsr .h.

Image and Data Display

The display operator displays images or other data object types. It can also show overlay graphics
on top of images and vectors of images can be handled as well. Once displayed, several tools are
provided to study the data, such as X and Y profiles, contrast enhancement, changing fonts for
data objects, etc. Display windows can be embedded in a window inside a user application, or can
be popped up as separate windows.

Following are some code fragments that use the display function. Complete examples can be
found in '$WITHOM E\samples\programs\displayMfc' and 'displayWin32'.

di spl ayHandl e = cor _di spl ayCr eat e(i mnageWhd. Get Saf eHwnd(),

59

COR_DI SPLAY_DONE_PRCC, di spl ayDonePr oc,
0);
cor _di spl aySet (di spl ayHandl e,
COR_DI SPLAY_| MAGE, 3,
COR_DI SPLAY_SCALE, 0.5, 0.5,
0);

Following are some examples of displays:

PO LD

b

o, S

.;:i‘i
-

Image

= dsplaTB

Simple Non-Image Data

g™ | 4%

Compound Non-I mage Data

60

Image Properties

i L
e

L i beai
B i il

Data Properties

GetData - Entering Graphics Data

The getData operator allows a user to enter graphics data using an image as background. The user
can thus enter data with locations in image coordinates. GetData pops up a mini drawing toolbox
to allow the user to change the graphic type, stacking order, etc. Thistoolbox can be suppressed so
that getData can be seamlessly integrated into a user window. Attributes can be used to effect the
same actions as from the toolbox. GetData inherits all the properties from the display operator.
Any attribute supported by display and applicable to image data are a so supported implicitly by

61

getData. For example, X and Y profiles, contrast enhancement, etc., can al be applied to the
getData operator.

Following are some examples of getData:

GetData with Toolbox

Okl W B s Bt o i i s
el & e g Db oo 0 e, soiis
e < i wrue - e rasen Tl Raa
ey w1 e e = g

!l:l| |H [Toge I_

(8] rare] et g e S P |
lm',rnl-i'ljngr-:l'—:l#
Pk from Fpei rromem | vy o] P i | |

o | s]
Gt 850 e |2 L E e [AUEEE
g o
e e el

Embedded with Suppressed Toolbox

Interactive Image and Data Edit

The edit operator allows a user to modify data interactively at run time. If the object being edited
isanimage, edit presentsitself asamini painting tool. If the object is not an image, edit presents
the object with nested controls (usually text entry boxes).

62

Following are some examples of display output:

fabas T | FECS m®W Mo
e —
AEln==|

Editing an Image

Editing non-Image Data

Plotting Graphs

The graph operator plots data values for visualization. It is primarily intended for fast monitoring
of data values, not as a fancy graphing tool. Curves (lines) on the graph can be displayed in
different styles, you can zoom and pan, set the axis ranges manually, etc.

63

Following are some examples of graphs:

FTTE—— BLE

| v
| S | [
St | |
|
3 PR T T LR
Simple Graph
P m
. Freymeer e
[Rl t o] Ry
o |
o ___.-I-Trli_.,_
- '
Frzl Vakw

Multiple Curveswith Legend

Graph without Labels

Using Frame Grabbers

Frame grabbers usually require initialization and cleanup. WiT has a consistent operator set for
interfacing with frame grabbers. All functions start with a unique name for the frame grabber type.
For example, all Bandit frame grabber functions have a'bandit’ prefix, and al emulator frame
grabber functions have a'emu’ prefix. To use any frame grabber functionsin a C/C++ program,
the Open function from the WiT frame grabber library must be called prior to any other frame
grabber functions, and the Close function should be called before the application terminates. The

64

following example shows a simple program that uses the emulator frame grabber to acquire a
frame:

#i ncl ude "cor vj . h"
#i ncl ude "wEnu. h"

mai n(voi d)

Cor Obj i mObj ;
Corlnmage *im
Cor Li bCaps emuCaps;
Cor Cont ext cont ext;

Cor Qbj I ni t (NULL, NULL);

emuOpen(NULL, &enuCaps);
context.libContext = enuCaps.contexts[0];
cont ext . opCont ext = NULL;

emuAcqui re(&ontext, & mObj, NULL, 1, 0);
im= CorQbj _i nage(& nhj) ;
printf("lImage size is %x%l\n", CorObj _wi dth(im, CorObj_height(im);

Cor Obj Free(& noj);
emuCl ose(&muCaps) ;
Cor Obj Exi t();

}

Since we are using the emulator frame grabber in this example, the Open call isemuOpen. The
first argument to Open isthe GUI handle returned by Cor Guil nit, which are only called from
windowed applications. Since this example is a console application, we pass NULL for this
handle.

The second argument to Open isthe address of aWiT server capability object, where all the
information about the frame grabber is returned. For this simple example, the only field we need
from the capabilitiesis the context.

All WIT frame grabbers has library context. Some frame grabber servers have multiple contexts.
For example, aframe grabber may be connected to a number of camerainputs. Each of these
inputs constitute a different context. When the Acquir e function is executed, you need to tell it
which context it should acquire from. In this example, we simply use the first context,
emuCaps.contextg0].

The Close function requires the address of the capability object passed back to it so that it can
terminate the frame grabber properly.

65

More Examples

Under the directory $WITHOME/samples/programs are several examples which range from a
very simple console application to fairly sophisticated windowed applications:

Name Description
simple Simple console application, servesas a"Hello World" type example to introduce
you to the basics of using WiT functions.
simpleMfc Similar to 'simple’, but uses MFC instead to create a windowed application,
instead of a console based application.
‘displanyc ‘Us&the cor_display function set to display an image in an MFC application.
displayWin32 |Similar to ‘displayMfc’, but uses Win32 instead.
‘al ignSimple ‘S| mple console based exampl e of using the FastAlign tool.
alignSimpleMfc | Simple MFC example of using FastAlign. Allows interactive selection of search
areato reduce search time.
ocrPerim Simple console example of using FastOCR to recognize characters using the
perimeter based technique. The perimeter technique is most robust than the area
technique.
ocrGray Simple console example of using FastOCR to recognize characters using the
area based technique. The area technique is most robust than the perimeter
technique. It can also deal with arbitrary character symbols, whereas the
perimeter can only deal with characters defined by a single contour.
barsPostnet Simple console example of using FastBars to recognize Postnet barcode.

66

Adding Operators to WIiT

Y ou can extend the power of WiT by adding your own operators. Even if you create your own
applications in C/C++, when you need to create a new function for your application or project,
consider making the function into aWiT operator. Y ou can still call your function from a C/C++
program without any speed penalty, but you gain the possibility of experimenting how your new
function works by combining it with other WiT operatorsin an igraph. New operators are added
by using the WIT Manager.

Therestrictions of aWiT operator function are few:

* You must arrange the arguments to your function in the order: inputs, outputs, and
parameters. Thisis hardly arestriction! In fact, this may be considered a good design
because it creates regularity in implementation, which improves ease of maintenance and
user acceptance.

e All argumentsto your functions must be avalid WiT object type.

* Input objects should not be modified. Thisis good programming practice anyway.

* Noglobal variables should be used. Again, thisis good programming practice anyway.

Most image processing algorithms work with a certain degree of trial-and-error. Being able to test
out a new function with different algorithms quickly using WiT will aimost always increase your
productivity. Giveit atry!

A Simple Example

In this simple example, we will create a new operator called mylnvert. The mylnvert operator
will take an unsigned 8-bit greyscale image and invert each pixel, producing an image that |ooks
like the negative of the original.

WiT Manager

New WiT operators are added by using the WIT Manager program. Start the WiT Manager from
the WiT program group in the Programs folder of the Start menu.

67

[| E M = Veoreolt e T 5 W
E B [riemet Epbs
] 3 ootz ¥ [Wit Pover o
1 21 Caood Express
é & Sedfieegs 'E oot e T
— ;] Sagch v B Wioresolt Bacel = Heln v
:"E Q’ . BH Meorrlt FrontPags W Licane Mg
T Wcrierdt Caook
E ﬂ A B Vet wond SN AT RS
£
E njp - 3 Wiorierdt Ceseioper Fistrait, F |
P — —— i |

The Manager will appear with a menu bar, atool bar, and alibrary setup area, and a status
window. When the Manager starts, it loads the current WiT configuration. The Manager title
indicates the current configuration file (default in this case), and the status window shows a
message indicating that the configuration file was read successfully.

o 1 P BB Hanager [dudt] =1a =i
3 8 E
i sl o’ claln b | | |
wuT E H B
sk B | st elecd e
Blots [
Cabs il Croarpdan
iy ek
oot craut | ppa
Coungples il |
Cordans Fitm
Cioadd Coorest
Coreuet Tppa il Hlﬂ.ll':rﬂl'l
= e
: TRy - |
Evuking X|eo
Fitm Sumach
Tmrmsiny SRR inn
Lina A prian
Wk = Tiwkave

Manager Main Panel and Status Window

WiT groups functionally related operatorsin libraries (DLLS), related librariesin projects, and
related projects in configurations. For this example, we just want to add one new operator. Since
we need a place to put this operator, we will need to create a project and a configuration too.

Create Configuration

Y ou should never modify the default WiT configuration, becasue you may need to revert back to it

in the future, in case something goes wrong with your custom configurations. So you should create
anew one for this exercise.

The simplest way to create a new configuration is to save the default configuration under a new
name, then modify the new configuration. Select the File/Save Config As... menu item. The Save

68

Config dialog appears. By default the browser shows the $WI1THOM E\config directory. Enter
tutorial and press Save.

If SWITHOME isnot awritable directory (such as when you installed WiT on ashared file

server), navigate to adirectory that you can write to, set the file name to tutorial, then press Save.

ST & THET]

iy i =Moo
i - Nenmrigra=n WMo
e el (i s e Ty P

T b = Brge LT
L= i T o

T rer == g

gL T I ey == L o
e T i
o T an
== v =

[S T = [~

riEm

Save Configuration Dialog

The Manager title now shows that tutorial.wr c is the current configuration. Since you have not
yet made any changesto it, this configuration is still identical to the default configuration.

Create Project

Next we need to create a project to put our library in. A WIT project is astorage place for a
collection of libraries. It is simply a directory with sub-directories of a standard structure.

69

Select the Projects... item from the Edit menu. The Project Editor dialog appears.

.|
Bropd by Cperstor Ofied

Puogsa:

ST HOME Muideams
BT H I E st

P]
Project Editor Dialog

Select Project/New.... The New Project dialog appears. Here you can enter the name of a
directory for your new project. The expression ${WITUSR} refersto the directory where all WiT
related files are to be placed, which is usually the same as the root installation directory for WiT.

For thistutorial, leave the project name as ${WITUSR}\custom, and click the | button. The
Manager will create the new directory, and add it to the Projectslist.

BT

ot sy o s o 0 e LT
iy s e

(L r=pr—
™ o P o il

Ll
New Project Dialog

Select the new project by clicking on the ${WITUSR}\custom itemin the Projectslist. Notice
that the Libraries, Operators, and Objects windows are all empty for this project at thistime.

70

Bropad Lbey Dpewsior O

1] H U HE Paap
T HOME Pusideams
BTl T H 0 E ot

After New Project is Created

Create Library

Next we need to create library to put our operator in. Select Library/New... from the Proj ect
Editor dialog. The New Library dialog appears.

EETTTTEE =
Lk 45 Litss

Myee fedi

g

I 'w Pl boid apie]

™ Sngl thrwad [et rerzagan

I Tk wasienns [Conlest

™ Fioa puabbar [~ Shamz sliccsls ouputs

[smoriplorn
i W =]

~%|

New Library Dialog

The Label isadescriptive label used for display purposes, and the Name is a short name used for
naming files and directories. Label may contain spaces and non-al phabetic characters, whereas
Name must contain no spaces and can only have a phanumeric characters. For thistutorial, enter
My Library for Label and myLib for Name. The check boxes are for more advanced use. For
this tutorial, leave them all unchecked. Click the #I button.

71

The Manager creates a directory named myL ib under the project directory ${WITUSR}\custom,
and the following sub-directories under myL ib:

‘ Directory ‘ Contents

‘ help ‘ On-line help files for the operatorsin this library.

‘ icons ‘ Icon files for the operatorsin this library.

‘src Source code and all related files for the Microsoft Visual Studio project to implement
thelibrary.

Define Operator

Now that we have alibrary, we can proceed to add our new operator. First we need to defineit:
specify what inputs it requires, what output it produces, and what parameters it can use. After that
we can proceed to implement the actual function.

Select Operator/New... from the Project Editor. The New Operator dialog appears. The Name
field specifies the display name for the operator. The I mplement field specifies the name of the C
function that implements the operator. Usually the operator and its function have the same name.
But sometimesit is convenient to use a different name for the function to reduce name conflicts
when linking with other libraries. For example, all standard WiT operator functions have a‘cor_’
prefix. Enter mylnvert in the Name field and myCo_mylnvert for the Implement field.

TR =
Hiara: [l reves o | % |8
Irnplerment |n|l|:|:\-_n|-|mi W
| 0 | Pan| Pared | W Frose
5 ™ Chaclsla
™ FreOn A
M Coroursshia
[T
Thread
F Ry
™ Schadulm
g glil e
=l
=l
-ll"'l.!'.l

New Operator Dialog

Next we need to define the inputs and outputs for our new operator. With the ‘in’ tab selected,

click the E button. Enter a name for the inputs, say inputl mage. Set the Type to I mage, and the
Vec. Typeto uint8. Leave the Vec. Colsfield at 0. Thisfield is not used for inputs and outputs.

72

Click the ~| button. This defines the operator to have one input named inputl mage whichisan
unsigned 8-bit image. one output named out which isaso an image.

ECE =
M |ronad vage

T |lvage

vz Tpp |uric
W Cok |-

wlx)

Ll

For the output, click to select the ‘out’ tab. Then click the E button. Enter the out for name,

Image for Type, and uint8 for Vec. Type. Click the 2] button. Y ou should have an output
defined as follows:

n] Oul]F‘lm]F‘nl]

There are many other options offered by the WiT Manager, but for now, let usjust keep it smple

and leave all the other settings at their default values. Click the ~| button. Y ou should see your
new operator mylnvert added to the operator list for myLibrary, asfollows

1T HIME o
BT HIOHE H handesmn
1T H I BAE s parnit

Implment Operator Source

The next step isto add the body of the function. The WiT Manager only supports Microsoft Visual
C/C++ for implementing operators. It is possible to use other C compilers and IDEs, but some of
the steps performed by the Manager will have to be done manually.

73

If you have Microsoft Visual C properly installed on your computer, do the following:

1. Select the mylnvert operator in the operator list.

2. Select Library/Load. The Manager will launch Microsoft Visual Studio and load the
myL.ib library project. If Studio isalready running, myLib will be loaded in the running
Studio.

Select the FileView tab in the Studio workspace.

Open the myLib filesfolder.

Openthe WiT Filesfolder.

Double click on the mylnvert.c item. Studio will load the source code for the mylnvert
operator.

o0k w

[o e rmesid i s eyt) alois|
[0 o g o froer il [ke s =8
Hlagad|: e - - OmEE @l

T = S ETT]

rii L=
B it i b | Cooiplin wylosas |Coxlnsme wi

BT ke b
= o= Wive
=5 'l Fie

s
EiE

i
] =

a
| :
T L n M

A - TR T FoN M
HEREER. e ST e T A il =

bail s 1.Lard

Microsoft Visual Studio

The Manager has aready generated skeleton code for the mylnvert function. Y ou need to
complete the body of the function. Enter the following code to the Studio myl nvert.c window
(you can copy and paste if you are reading this manual on-line).

#i ncl ude "wwlLi b. h"

Cor OpRt n
nmyl nvert (Corl nage *in, Corlnage *out)
{
Cor UByte *srcp, *dstp, *dstEnd;
int w h;

/1 Only handl e unsigned 8-bit imges
if (CorQbj_mdType(in) !'= COR _OBJ_UBYTE)
return Cor OpSt at us(COR_OP_ERROR, COR_OP_ERR_USER,
"mylnvert: only unsigned 8-bit images supported\n");

/1 The output is NULL if the operator's output port is not connected,
/1 in that case we can return w thout processing.
if (lout) return COR OP_CK;

/1 Allocate storage for output inage with the same size and type
/1 as the input.
w = Cor Obj _wi dth(in);

74

h = CorObj _height(in);
if (CorlmageAlloc(out, CorQbj_nmdType(in), w, h) <= 0)
return Cor OpSt at us(COR_OP_ERROR, COR_OP_ERR _USER,
"mylnvert: failed to allocate output inmage\n");

/1 Add "amount" to each pixel value of the source image "
/1 and save the result in the destination inage "out".
srcp = (CorUByte *) Cor Cbj _ndDat a(in);
dstp = (CorUByte *)Cor Cbj _ndDat a(out);
dstEnd = dstp + wrh;
while (dstp < dstEnd) {
*dst p++ = 255 - *srcp++;
}

return COR OP_CX;

Update WIT Conguration

Now you haveto tell WiT to include your new library next time it runs. Close the Project Editor

dialog. You will seethat My Library has now been added to the Available list.

i
Be R Behs Took
EHz=|
A vndboabile: B Trptaled Rbwies
Eralaisd A T
i il Lok
Crmarmatyy e
Lins Cond Doy
H ks et | ves
M e aersnd il Dol
M ribm
]

-] il Yo
EE“EB 3-:-:?\-:

dardri. smch

.3

PNl _I Pund
PLLracan famch
FL o St
FOYVmanf o Sugium,
Fisd Progess. =] Tipesl o

Adding MyLib to WiT Configuration

Do the following:

Select the My Library itemin the Available list.
Click the =l button to add My Library to the Installed list.

Click M to save the tutorial configuration.
Select Tools/Activate to make this configuration the active WiT configuration.

AW PE

The Manager’sjob is now done. Y ou can close the Project Editor and shut down the Manager.

75

Compile and Test

Compile your new operator by clicking the =2l button in Microsoft Visual Studio. If you have
copied the source code correctly, there should be no errors, and Visual Studio will create a new
DLL named wMyLib.dll in the $WITUSR\bin\debug directory.

Now you are ready to test how your new operator worksinside WiT. To do this, you must first tell
Visual Studio to use WiT as the executable for debugging your DLL. Do the following:

1. Select Project/Settings....
2. Select the Debug tab.
3. Select General for Category.
4. Enter the debug version of WiT for the executable. For example, if WiT wasinstalled at
c:\wit, then enter c:\wit\bin\debug.
5. Click OK.
I LAY
gt [CeSTmg S| G | beg | D04 | Dk | s 73]
HE-{ Cepm == |
[Y
| E=Tr=w——pp—— ._|
L

Vg g
=

ey e i e b g

o] o |
Setting Debug Executablein Studio

Now start debugging your DLL by clicking the =% button in Visual Studio. WiT will be launched
automatically. Notice that at the top of the status window, WiT reportsthat it is using the tutorial
configuration. Also noticethat My Library isnow in the library list.

Create the following test igraph in WiT:

T
O
-

- e

Test Igraph

Run the igraph and check that the image isindeed inverted.

76

Build Release DLL

When you are convinced that your operator is working properly, build the release version in
Visual Studio. Studio will create anew wMyLib.dll DLL in the $WITUSR\bin directory.

Add On-line Help

If you bring up the on-line help for the mylnvert in WiT, you will see apicture of the icon with
the input, output and parameter types listed, the operator function's C prototype, and a description
of the operator's parameters. This shell for an operator's help entry is generated automatically. You
can add a description to make the help more useful.

Do the following:

1.

Inthe WiT Manager Project Editor, choose the project and library. Then double-click at
the operator you want to add help to.
Type the one-line summary in the Summary field.

Click the ﬂbutton. An editor dialog appears in which you can enter HTML text to
describe the operator. Y ou can use any HTML commands to format your text.
Select the File/Save menu item.

Select File/Close. The Help Sour ce dialog disappears.

=
[

Panmnan= ey st

L] L \Pwagran Fls VW pistnandnm L ibAsoiongl reest i
SUmaTiarEl el cpmston

[

AT L R ey gl revedigr

L b=

Descriptism

-
[
Thearw mw e v k2 ramdt an rage, bul i WY reap

Help Editor Dialog

77

Add Icon

WiIT operators are perfectly usable without a graphic icon. However, having a graphic icon will
greatly enhance the readability of igraphs. Y ou can add an icon for the myl nvert operator by
doing the following:

1
2.
3.

Double-click the mylInvert operator in the Project Editor.

Click the =1 button. The WiT Icon Editor comes up.

Draw the icon. Press and hold the left mouse button to draw in the foreground color, the
right button for the background color. The purple color (more precisely, magenta) isthe
transparent color. It will show up it WiT as the background color of theicon. Y ou can
also move ports and set the hotspot with the Icon Editor, and it is possible to use other
more powerful bitmap editorsto create WiT icons, but for this exercise, modify only the
graphics. and just do some simple graphics using the WiT Icon Editor. Y ou can click the

il button to change the icon size if desired.
When you are satisfied with the icon, click the ~| button on the tool box window.

i |

Icon Editor

Programming Conventions

All WIT operators follow a set of conventions governing their behavior. Therefore, every function
that implements aWiT operator must adhere to the following guidelines to ensure proper operator
behavior. Failure to meet these requirements may result in unstable behavior, including program

crashes.

Inputs and Parameters

1.

78

The calling code must guarantee that all inputs and parameters are well formed objects of
the correct type, including any dynamically allocated memory required by the object. The
calling code must therefore perform any necessary error checking to ensure that this

guarantee is met. However, this does not imply that the actual data values are necessarily
meaningful or appropriate.

2. Thefunctionisresponsible for all necessary testing to determine whether the input datais
appropriate or meaningful. For example, a function that performs an operation on
unsigned 8-bit images can assume that its input is a well-formed image but not that the
image is unsigned or 8-bit.

3. Thefunction must treat its inputs as read-only. Datain an input object must not be
modified by the function under any circumstances.

4. Thecalling code must guarantee that parameters have val ues consistent with the
parameter specification in the operator definition. In particular, if the parameter specifies
a gadget, the value of the corresponding argument must be consistent with the gadget
specification. The calling code must therefore perform all necessary validity checking to
ensure that this guarantee is met.

Outputs

1. Anoperator may produce al, some, or none of its outputs, depending on circumstances.

2. Thecalling code tells the function which outputs it expects to be produced: if it passes a
NULL value for an output, the function must not produce that output. If the calling code
passes anon-NULL value, then thisis guaranteed to be the address of avalid object of
the correct type. It isthe responsibility of the calling code to ensure that this guaranteeis
met.

3. Thefunction tellsthe calling code which outputs were actually produced, through the
return status code and the Cor OpStatus function.

4. Itisthe function’sresponsibility to ensure that its outputs are well formed. In general, the
calling code allocates storage for the top-level output object, while the function
completes the object by setting field values, including pointer fields. For pointer fields,
the function must allocate the required memory.

79

Return Values
A WIT operator function must return one of the following four Cor OpRtn values:

« COR_OP _OK
« COR_OP _ERROR

« COR_OP_OUTPUTS

« COR_OP_NO_OUTPUT

Functions which complete successfully may return COR_OP_OK directly. Otherwise the
CorOpStatus function should be used to return the appropriate value and error message.

Normally a function should produce al of its (hon-NULL) outputs, and return COR_OP_OK. By
returning this status the function tells the calling code that execution was successful and al (hon-
NULL) outputs were produced. This status can be returned directly (that is, it is not necessary to
call CorOpStatusfirst). Note that if the function is passed NULL values for al of its outputs, the
most common behaviour isto return COR_OP_OK immediately.

If the function has executed successfully but for some reason has not produced any outputs, it can
return COR_OP_NO_OUTPUT instead of COR_OP_OK. This also indicates to the calling code
that execution was successful, but that no outputs were produced. This status can also be returned
directly.

If an error is encountered during processing then the function should normally produce no outputs,
and return COR_OP_ERROR. This should not be returned directly, but only after calling
CorOpStatus, which communicates the error condition to WiT. Remember that in this case the
outputs must still be well formed. If an output has been partially produced, then all memory
allocated by the function for that output should be freed and the top-level structure cleared (all
fields set to 0). Since the top-level structure was allocated by the calling code, the function must
not attempt to freeit.

If the function executes correctly but for some reason has produced only some of its (non-NULL)
outputs, it can return COR_OP_OUTPUT Sto indicate this. This status must not be returned
directly, but only after calling Cor OpStatus to indicate which outputs were produced.

The function prototype for CorOpStatusiis:
Cor OpRt n Cor QpSt at us(Cor OpRt n code, ...)

The Cor OpStatus function returns the value passed to it in its first argument. The remainder of its
arguments vary depending on the value of the first argument.

If the first argument is COR_OP_OUTPUTS, then Cor OpStatus takes one more argument,
which must be a string containing a space separated list of integers, where each integer represents

80

one of the outputs that was produced by the function. Outputs are numbered from 1, in the order in
which they appear in the function's formal parameter list. For example, if an operator hasfive
outputs, but under some circumstances only produces the first, second, and fifth outputs, then in
that case the function implementing that operator should use the following statement to return:

return Cor OpStatus(COR OP_QUTPUTS, "0 1 4");

Notice that because Cor OpStatus returns the value of its first argument, this resultsin the
function returning COR_OP_OUTPUT S after calling Cor OpStatus, as required.

If the first argument to CorOpStatus is COR_OP_ERROR, then the second argument must be
one of ERR_USER, or ERR_MEM ORY, which indicates the nature of the error. If the second
argument hasthe value ERR_USER, then the rest of the arguments consist of a printf style
format string, followed by any valuesit requires. For example, the following statement is taken
from the implementation of the "brighten" operator created in the tutorial:

return Cor OpSt at us(COR_OP_ERROR, ERR_USER,
"brighten: cannot process inmages of type %\n",
Cor Obj Get Name(Cor Obj _i mType(in)));

Here, the brighten function returns the value returned by Cor OpStatus, which isjust the value of
itsfirst argument, COR_OP_ERROR. Thethird argument is the format string, which contains
the one format specifier %s. The fourth argument is the value required by the format string (the
value isreturned by the function Cor ObjGetName).

If the second argument to CorOpStatusis ERR_MEM ORY, then the third argument is a string
containing the name of an object for which memory allocation failed, and the fourth argument is
the size (in bytes) of the object.

The Cor OpStatus function can also be called smply to send aregular or warning message to
WiT, without returning. In these cases, the first argument has the value COR_OP_M SG, or
COR_OP_WARNING, respectively. In both cases the remaining arguments consist of a printf
style format string followed by any values it requires.

81

The following table illustrates the calling conventions for these uses of Cor OpStatus:

|COR_OP_OK Ireturn COR_OP_OK;

|COR_OP_NO_OUTPUT |return COR_OP_NO_OUTPUT;

|COR_OP_OUTPUTS |return CorOpStatus(COR_OP_OUTPUTS, char *list);
‘COR_OP_WA RNING ‘CorOpStatus(COR_OP_WARNI NG, char *format, argl, ...);

|COR_OP_MSG | CorOpStatus(COR_OP_MSG, char *format, argl, ...);

COR_OP_ERROR return CorOpStatus(COR_OP_ERROR, ERR_USER, char *format,
argl, ...);

COR_OP_ERROR return CorOpStatus(COR_OP_ERROR, ERR_MEMORY, char
*name, int size);

Memory Management

1. Normally, an operator function should not access (for reading or writing) any global
variables. If alibrary contains any globally accessed data, then the single thread
capability flag should be selected for the library.

2. For simple output objects (e.g. int, float, etc.) the calling code must allocate memory for
the object, and pass the address to the function. The function must not allocate memory
for the output object.

3. For structured output objects (e.g. Image, Vector, Object, etc.), the calling code must
allocate memory for the object's top-level structure only, and pass the address to the
function. The function must not allocate the top-level sturcture, but it must allocate any
memory pointed to by any pointer fieldsin that structure.

4. For user-defined output objects, the calling code must allocate memory for a pointer to
the object, and pass the address of the pointer (that is, a double pointer to the object) to
the function. Therefore the function must allocate the memory for the object (including
the top level structureif it exists), and set the output to point to the object. That is, the
function must set the output (which is a double pointer) to the address of the allocated
memory.

5. Theresult of any attempt inside the function to allocate memory dynamically (e.g. using
malloc or calloc) must be checked. If memory alocation fails, the function must:

1. freeall memory already allocated in the function (including memory for output
objects), and
2. return COR_OP_ERROR, preferably viaacall to opStatus.

6. If afunction allocates memory for internal use, for example atemporary buffer, then it
must free that memory before returning under all circumstances.

7. Memory for input objects must not be freed or modified by the function under any
circumstances.

8. After afunction returns, the calling code must free al of that function's output objects
that were produced (when they are no longer needed). The calling code should check the

82

function's return value to determine which outputs were produced. See Output Behavior
for more details. Such objects should be freed using the appropriate function from the
Object Library.

Function Headers

The WiT manager automatically generates the C header files which contain the prototypes of the
functions that implement operators. The prototypes for all operators defined in alibrary are
maintained in that library’s header file, which is kept in the $WITUSR\h directory (or
$WITHOM E\h in the case of the libraries included with WiT). The manager parses an operator's
definition to determine the number and order of the corresponding function's parameters, as well
as the name and type of each. By default, the order of the function's parameters follows the order
in the operator definition, except that all inputs come first, followed by all outputs, followed by all
parameters. For this reason operator definitions (by convention) usually list their inputs, outputs
and parametersin this order also.

Because the header files are generated automatically, WiT relies on the fact that operator
definitions and their functions always correspond properly. Therefore they should never be edited
independently.

When an operator is created, the Manager creates the source code (.c) file for the function
definition, with a stub for the function. The source code files for all the operatorsin alibrary are
kept in that library's src subdirectory. (Recall that the WiT Manager creates adirectory in
$WITUSR for each project you create, and a subdirectory for each library you create in that
project. For example, in the tutorial, the $WITUSR\tutorial directory was created for the tutoria
project, and the $WITUSR\tutorial\customPoint directory was created for the customPoint
library. The source code for the brighten operator isin

$WITUSR\tutorial\customPoint\sr c\brighten.c.) If the operator definition is changed, the
manager updates the function prototype in the header file, but never modifies the source code file.
Therefore the devel oper has responsibility for updating the function definition when necessary, to
maintain the correct correspondence with the function declaration in the header file.

Contexts

In some cases an operator may need to maintain state or context information that persists between
invocations. This requirement may be purely local (that is, the operator needs to access and
maintain information only about its own state) or shared (that is, a group of operators needs to
access and maintain information that is shared among all operatorsin the group). WiT provides a
mechanism to support this.

In the first case, the operator can be defined to have operator context. Thisis accomplished by
including the "context" keyword in the operator definition. For example, the webRowExtend
operator (part of the SmartWeb package) requires operator context:

83

oper at or webRowExt end

{
cont ext ;
i nput 1 mage (0, 20);
out put | mage (60, 20);
paramint "rows" = 2;
summary "Extend images in a streamfor
key "pad", "neighbourhood", "linescan";

nei ghbour hood operati ons"”;

In the second case the library containing the group of operators can be defined to have library
context. Thisisaccomplished by checking the "Context" capability in the Manager's Edit
Library panel:

Labsak 5 Libsp
Myes ol
Dipkica
r

I Cirghe Frmad
™ Tk resiage
™ Fioa puabbar
[gsripdeie
Lk b ik el

]

[T lgragi renrzagan
= Conleat
[~ Shamz sliccsls ouputs

o x|
Specifying Library Context

In either case, the prototype generated by the WiT Manager for the function that implements an
operator that requires context will have a context parameter. Specifically, the first formal
parameter will be a pointer to a Cor Context structure:

typedef struct {

Cor Li bCont ext *1i bCont ext;
Cor OpCont ext *opCont ext ;
} Cor Cont ext;

The Cor Context structure contains two fields: a pointer to a Cor LibContext structure and a
pointer to a CorOpContext structure. Which of these fields contains avalid pointer depends on
whether the operator has library context, operator context, or both.

For example, libraries that implement frame grabber support normally require context to maintain
hardware state information. Since this information must be shared by all the operators that access

84

the hardware, library context isrequired. As a specific example, the acqStart operator starts
continuous acquisition of images on a frame grabber board:

Operator Definition:

operator acqStart

{

iconSi ze (40, 40);

i nput sync (0, 20);

out put sync (40, 20);

param int "skipFrames" = 0 (20, 40);

sunmmary "Start continuous acquisition on frane grabber”;
}
Prototype:

Cor OpRt n vDi gStart (Cor Context *context, int skipFranes);

Thisfunction's first formal parameter is a pointer to a context structure, even though the operator
definition contains no reference to it. The Manager inserts this parameter when generating
function prototypes since the library containing the operator indicates that context is required. The
prototype for the function to implement the webRowEXxtend operator defined above also has a
context parameter, in this case because the operator definition itself specifiesit:

Cor OpRt n cor _webRowExt end(Cor Cont ext *cont ext,
Corlmage *In, Corlmage *Qut, int rows);

In either case, at run-time WiT constructs the appropriate Cor Context structure for that function
each timeit is called, and passesit to the function.

In the case of library context, an initialization routine (called once when the library is loaded)
normally allocates memory for a custom structure to hold whatever state information is required,
and setsthe libContext field in the Cor Context structure to point to it. See the chapter on
Hardware Initialization and Cleanup for more information.

In the case of operator context, the operator normally checks the value of the opContext field of
the context argument it was passed. It will be NULL if the operator isbeing called for the first
time, in which case the function normally allocates memory for a custom structure, and sets the
opContext field in the Cor Context structure to point to it. All subsequent calls to this function
will be passed the pointer to this structure.

Igraph Status Changes

Sometimes you want your library to be notified when the igraph state changes. Thisis particularly
useful when your library has contexts, such as memory of different states. By checking the I graph

85

messages box in the library propertiesin the WiT Manager, you instruct WiT to notify your
library when an igraph is starting or when it has stopped. The WiT Manager does this by
generating a‘Msg’ callback function in your caps.c file. The following is an example of the ‘Msg’
callback function:

voi d
emuMsg(Cor Li bCont ext *1i bContext, CorLibMg msg, char *arg)
{

Thi sCont ext *context = (ThisContext *)IlibContext;

Cor Cont ext cont ext Arg;

COR LI B_CONTEXT(&ont ext Arg) = | i bContext;
switch(msg) {
case COR LI B _MSG | G_START:
/1 TODO, handle igraph starts...
br eak;
case COR_LIB MG | G STOP_REQ
/1 TODO, handl e stop request. ..
if (context->useTrigger)
context->triggered = YES;
br eak;
case COR LI B MsG | G STOP:
/1 TODO, handl e igraph stops...
br eak;
case COR_LI B_MsG _DEBUG
/1 TODO, debug node. ..
br eak;

Calling Other WIiT Operators

All WIT operators are implemented as C functions, and therefore can be executed directly by
calling the C functions that implement them. This also means that one operator can execute other
operators to perform some of its data processing tasks.

Recall that the prototype for an operator function is found in the $WITUSR\h directory (or
SWITHOME in the case of libraries included with WiT) in afile named for the library that
contains the operator. For example, invert isin the point library and so its prototype can be found
in the header file SWITHOME\h\wPoaint.h.

Toillustrate how one operator calls another WiT operator, the definition and code for the r educe
operator (in the pyramid library) is shown. Image reduction is accomplished by smoothing
followed by decimation. For the purposes of this example, it is sufficient to know that the gauss
operator smoothes an image and the decimate operator creates an output image by copying the
pixelsin every alternate row and column of the input image. This creates an output image of one
half the height and width of the input. To reduce a color or complex image, it must be split into its
component image planesfirst using the rgbSplit or complexSplit operator, and then merged back

86

again using the rgbM er ge or complexM er ge operator, so these functions are required also since

reduce handles these image types. The source code aso illustrates the use of the object access

macro Cor Obj_mdType, as well as the Cor I mageFr ee function from the object library (see
chapter Utility Library Functions for more information).

Here are the prototypes for the operator functions called by reduce:

Cor OpRt n cor_gauss(Corlmage *In, Corlmage *Qut, int filterSize);

Cor OpRt n cor_gauss_consune(Corlmage *In, int filterSize);

Cor OpRt n cor_deci mate(Corl mage *In, Corlnmage *Qut, int useRows, int
useCol ums) ;

Cor OpRtn cor_rgbSplit(Corlmge *RGB, Corlmage *red, Corlnage *green,
Cor |l mage *bl ue);

Cor OpRt n cor_rgbMerge(Corl mage *red, Corlnage *green, Corlmage *bl ue,
Cor | mage *00);

Cor OpRt n cor_conpl exSplit(Corlmage *in, Corlnmage *Real Mg, Corlnage
*| mag_Phase, int output);

Cor OpRt n cor _conpl exMer ge(Cor | mage *Real _Mag, Corl mage *| mag_Phase,
Corl mage *out, int input);

Operator definition:

operator reduce {
input Image "in" (0,20);
out put | mage "out" (60, 20);
paramint filter;
summary "Filter and deci mate an i nage";

Operator Source Code:

/* reduce.c
* for WT 3/9/93

Image UWilites in C

Copyright Charles H Anderson

Dept. of Anatony and Neurobi ol ogy

Box 8108

Washi ngt on University School of Medicine
660 South Euclid Ave.

St. Louis, MO 63110

cha@hifter.wstl . edu
*
* 13sep93: tjd nodified - Brought into WT style.
#i ncl ude "wPyram d. h"
#i nclude "wFilter.h"
*/
#i ncl ude "l ocal . h"

87

Wt code
cor_reduce(Wtlmage *in, Wtlmage *out, int filter)
{

W t code r;

Wt nage t enp;

i f(!authAccess())
return opStatus(WT_ERROR, ERR_USER, "reduce: Authentication
failed\n");

nenset (& enp, 0, sizeof (Wtlnage));
if (filter > 0)
switch(WT_i nType(in)){
case COR_OBJ_RGB:
case COR OBJ_HSV:
case COR_OBJ_YUvV:
{
Wtlnage red, green, blue;
i nt out TypeCode;

switch(WT_i nType(in)){

case COR_OBJ_RGB: out TypeCode
case COR_OBJ_HSV: out TypeCode
case COR_OBJ_YWV: out TypeCode

}

Cor Obj _ndDat a(& ed) =
Cor Obj _ndDat a(&gr een) 0;
Cor Obj _ndDat a(&l ue) = 0;

0; break;
1; break;
2; break;

0;

r = cor_splitChannel s(in, & ed, &green, &blue);
if(= WT_K)
cor _gauss_consunme(& ed, filter-1, NO;
=WT_OK)
cor _gauss_consunme(&green, filter-1, NO;
=WT X))
cor _gauss_consune(&bl ue, filter-1, NO;
=WT X))
cor _mer geChannel s(& ed, &green, &blue, &t enp,
out TypeCode) ;
freeWtl mage(& ed);
freeWtl mage(&green);
freeWtl mage(&bl ue);

i f(
i f(
i f(

=== = =S ===

}
br eak;

case WT_COWLEX:
{

Wtlnmage real, imaginary;

Cor Obj _ndData(®) = O;
Cor Obj _ndDat a(& magi nary) = 0;

r = cor_conplexSplit(in, % & maginary, 0);

88

if(r == WT_OK)
r = cor_gauss_consune(®, filter-1, NO;
if(r == WT_OK)
r = cor_gauss_consune(& naginary, filter-1, NO;
if(r == WT_OK)
r = cor_conpl exMerge(R, & magi nary, & enp, 0);
freeWtl mge(R);
freeWtl mage(& nmagi nary);
}
br eak;
def aul t:
r = cor_gauss(in, &enp, filter - 1, NO;
br eak;

}
if (r 1= WT_OK
return opStatus(WT_ERROR, ERR_USER,
"reduce: failed filtering i nage\n");
r = cor_deci mate(& enp, out, 0, 0);
freeWtl mage(&t enp);
}

el se
r = cor_decimate(in, out, 0, 0);

if(r 1= WT_OX)
return opStatus(WT_ERROR, ERR _USER, "reduce: failed decimating
i mge\n");

return WT_CK;
}

First, the output is checked to seeif it is connected (non-NULL). If it isn't then the operator returns
immediately.

Next, thefilter parameter istested. If it is 0 then no filtering is required so decimateiscalled
directly. Otherwise, the appropriate Gaussian filter is called and then the image is decimated. If
the input image is either color or complex, then it is split into its component image planes before
decimation, and the decimated sub-images are merged.

Note the following characteristics of the code:

1. After every call to aWiT operator, the return code is verified. If the return codeis not
COR_OP_OK then the function aborts processing and returns the error (via an opStatus
cal).

2. The CorObj_mdType object access macro is used to retrieve the value of the type field
of the input image structure. An object's fields should not be accessed directly by name,
since the structure's implementation is subject to change.

3. If theinput image is a color image then four temporary images are required: red, green,
blue, and temp. All fields of these image structures are set to 0 (by the memset calls) to
ensure that they are well-formed objects before being passed as arguments to other

89

functions (recall that it is the calling code's responsibility according to the coding
Conventions to ensure this). This also applies to temporary images used if the input
image is complex.

4. Thetemporary images are always freed, if necessary, using the Cor | mageFr ee function,
when they are no longer needed. Note for example that temp is always freed if and only if
cor_gauss succeeds, no matter what happens later, sincein this case cor_gauss would
have allocated memory for the datain temp. If cor_gaussfails, then its outputs do not
need to be freed since according to the coding conventions cor _gauss should not have
produced them.

Calling operators that have a context parameter requires specia consideration.

International Language Support

WIT supportsinternational languages for operators names, parameter names and val ues, and
library names. Refer to section * Configuration/International Language Support’ in the User’s
Manual for details.

90

Data Objects

Asimage processing operations progress through pre-processing to the analysis phase, the objects
that are created at each stage become increasingly more sophisticated. For example, animageis
binarized and blobs are collected. The major axes of the blobs are converted to aline, whichis
then used to find a step change in the image along the line. In this case a blob data type and aline
data type are needed to represent the processed information, so that these objects can be passed to
further processing functions, displayed on screen, saved to afile, etc.

WIT provides arich standard set of object types from primitives such as integers, floats, and
strings, to structures like images, blobs, features, lines, edges, and graphics. Y ou can also augment
this data type set by adding your own object types using the WiT Manager.

Each WiT data object has adisplay name and a programming name. The programming name
must be avalid C identifier. The display name may contain spaces and other non-al phanumeric
characters. This being the WiT Programmer’s Manual, we will mostly refer to objects by their
programming names.

Object Types

There are two categories of WiT object types: simple and compound. Simple objects include basic
data types such as integers, strings, images, floating-point numbers, etc. Compound objects are
made by combining simple objects, similar to and in fact implemented with C structures.
Following is an example of a compound object:

t ypedef struct

int x;

int y;

short val ue;
} nmyQoj;

Y ou can add new object typesto the WiT abject system using the WiT Manager. User-defined
objects are handled exactly like standard compound objects. Y ou can then use many of the
standard utility functions and WiT operators to write and read your data object to and from afile,
display it in awindow, send it through TCP/IP, etc. New functions that you create can also use
your new object types to reduce the number of function arguments.

91

Vectors and Images

WIT has special object types to represent vectors (1-D arrays) or images (2-D arrays). The element
type of avector or image can be any WiT object type, even vectors or images. Thisrecursively
definition can be carried to any arbitrary depth.

For example, you can the following definitions, where the object level2 contains a vector and an
image whose element typeisalevell object. A level 1 object in turn contains an image whose
element type is a 16-bit short integer.

typedef struct {
fl oat other Stuff;
Cor Shortl mage im
} level 1;

t ypedef struct {

| evel 11 mage i m

| evel 1Vector vec;
} level 2;

WIT has the predefined object types Cor Vector and Cor I mage for generic vectors and images
respectively. The datafield of these generic array datatypesis declared as avoid pointer (void *).
WIT also creates specific array data types for each object type. These objects have the data field
pre-defined to point to the specific data type. Each object type has a corresponding vector and
image type with the suffix Vector and | mage, respectively. For example, by using the WiT
Manager to create the level 1 object type above, the WiT Manager will create the corresponding
array types level1Vector and level 1l mage. In the case of the simple objects which use standard C
type names, a Cor prefix is aso added to reduce the likelihood of type name conflicts, such asthe
Cor Shortl mage type for the short object used in the above example.

Most image processing functions support a small subset of object types as the pixel type. The
following are the most commonly supported image types:

« CorUByte
* CorByte

e ushort

e short

o float

e CorRGB

* CorComplex

Access macros are available and should always be used to access the size and data pointer of a
vector or image object. Using access macros will make your code more portable in case the
underlying implementation of vectors and images change over time.

92

‘Field ‘Macro ‘Applicable
‘ Element type ‘ CorObj_mdType ‘Vectors and images

‘ Data ‘ CorObj_mdData ‘ Vectors and images
‘Wi dth ‘ CorObj_width ‘ Vectors and images
‘ Height ‘ CorObj_height ‘ Images only

Nested Objects

Compound abjects can be nested. For example, the Cor Geom object contains the field plist,
which isavector of Cor Fpoint compound objects, and afield text which isapointer to a
CorGeomText compound object.

typedef struct {
float x;
float vy;

} Cor Fpoint;

typedef struct {
String data;
String fontFanmly;
char fontStyl e;
ushort fontSize;

} Cor GeonText ;

typedef struct ({
int type;
Cor Fpoint plist[];
Cor GeonText *text;
} Cor Geom

WIT does not support the inclusion of an unnamed structure inside an object. For example, to
implement the following C structure:

typdef struct {
struct {
int x, vy;
} position;
Cor Vect or dat a;
} Obj X

Y ou must first define the nested structure as a named object:

typedef struct {
int x;

int y;
} Dat aPosition;

typedef struct {
Dat aPosi ti on position;
Cor Vect or dat a;

P i X

Object Type ID

For efficiency reasons, every WiT object has a unique integer 1D in addition to its unique name.
Most program code uses the | D to recognize the object type. The function Cor ObjGetld from the
object library ($WI THOME/h/corObj.h) returns the ID of an object given its name, and

Cor ObjGetName does the opposite.

All the standard WiT simple and compound object types have constant predefined integer IDs and
can be used directly wherever an object ID isrequired. For example, to allocate a vector of 10
Graphic objects, you can write:

Cor Vector Al l oc(vec, COR_OBJ_GRAPHI C, 10);

Standard IDs are formed by stripping the Cor prefix (if it is there) from the programming name,
capitalize the string, then adding the prefix COR_OBJ_. For example, the ID for the object
CorEdgeisCOR_OBJ_EDGE, and the ID for short is COR_OBJ_SHORT. The complete list
of standard objects IDs can be found in the Reference Manual.

In addition to the standard object IDs, there are three special 1Ds:

COR_OBJ_GENERIC Indicates an empty or uninitialized object.

COR_OBJ_FIRST_COMPOUND_TYPE |The D of the first compound object type. If an
object’stype ID isless than or equal to this, then it
isasimple object.

COR_OBJ_LAST BUILTIN_TYPE The ID of the last built-in (or standard) object type.
If an object’stype ID is greater than this, thenitisa
user-defined object.

When WiT builds the object system at start-up, it constructs a mapping which assigns an integer to
each object type in the object system at that time. The standard types are always assigned the same
values, since they are always created in the same order. But because user-defined objects may be
loaded in different orders, a particular integer value may not always represent the same user-
defined object type. It may even change during asingle WiT session (if the object system is
reinitialized and changed by the user at run time). It is therefore mandatory to use Cor ObjGetld
to determine the ID of a user-defined object.

94

For example, if you have a custom object myObj and you want to allocate a 10x10 image of this
type, you should write;

Cor | mageAl | oc(i mage, Cor Obj Getld("nyCbj "), 10, 10);

Memory Allocation

The WiT object system facilitates the creation and destruction of any object type. Simple objects
of course can be allocated and freed directly, or simply declared as variables. But array objects
(vectors and images), as well as compound objects with embedded pointers or array objects, can
be handled much more easily with the WiT object system.

There are functions to facilitate the allocation and freeing of array objects:

‘Type |AI locate ‘ Free |

‘Vector | CorVectorAlloc ‘ CorVectorRelease |

‘Image |Cor|mageAIIoc ‘CorlmageRelease |

In addition, the functions Cor Vector AllocSafe and Cor I mageAllocSafe will alocate memory
and zero the entire block. The function CorVector AllocAndSet allows you to set the values of the
vector within the same call. Thisis very useful when creating short fixed-val ue vectors.

For compound objects, the function Cor ObjDataCr eate and Cor ObjDataReleasel can be used
to alocate and free the memory. While the usefulness of Cor ObjDataCreateis limited because it
can only allocate the memory for one level of storage, Cor ObjDataReleasel is much more
powerful because it recursively traverses down an object and free all nested pointers and arrays.
The function Cor ObjDataCopy provides an equally powerful copy mechanism that also traverses
all nested pointers and arrays. Examples:

Cor Geom *geom
Cor Edge edge;
int i;
Cor Fpoi nt *pp;
geom = (Cor Geom *) Cor Obj Dat aCr eat e(COR_OBJ_GEOM ;
Cor Vect or Al | oc((Cor Vector *)&geom >plist, COR_FPO NT, 10);
pp = Cor Qbj _ndDat a(&geom >pl i st);
for (i=0, ix =i;
pp->y = 0;

Cor Obj Dat aRel easel(geom COR OBJ_GEOM 0, YES);

geom = &edge. geom
Cor Vect or Al | oc((Cor Vector *)&geom >plist, COR_FPO NT, 10);

95

Cor Obj Dat aRel easel(&dge, COR _OBJ_EDGE, 0, NO;

Data Cache

Memory allocation and freeing can take up a significant amount of time. One way to avoid that is
to use preallocated buffers and never free the buffers until the program isready to exit. This works
fine for small loops and relatively simple logic. But when an algorithm becomes very complex, the
implementation is often safer and more readable and dataiis freed (or released) as soon asthey are
no longer needed. WiT has a data cache for vector and image data blocks to make dynamic
memory management more efficient.

If the WIT data cacheis enabled and a vector or image is allocated using Cor Vector Alloc or
CorlImageAlloc, the data cache is searched for a block large enough to fit the requested size. If a
match is found, the addressiis returned without allocating new memory. If no match is found (such
as when the cache is new), a new block is allocated and returned to the caller.

When a vector or image is released, the data block is not freed, but simply added to the data cache
and marked as free.

Usually, enabling the WiT data cache either makes a program run faster or at the worst has no
effect on execution speed. However, under some circumstances the cache may actually degrade
performance if not set up correctly. For example, if you need to allocate and free some very large
images mixed with some small data blocks, repeated allocation and freeing may cause internal
fragmentation of the cache, causing the available physical memory to be tied up and resulting in
slower execution speed or even crashes. By raising the minimum cacheable block size, such
problems can be avoided.

To avoid any 'unexpected' behavior, the WiT data cache is disabled by default.

The CorObj Type

The Cor Obj object is special. It isused as a container to allow processing functions to handle
different object types at run time. It can also be used as the element type of an image or vector
object to support the representation of heterogenous element types within a vector or image.

CorObj has the following fields:

‘Field ‘AcceesMacro

‘Type of object ‘CorObj_type

‘Val ue of primitive ‘ CorObj_name, where name is the name of the object. E.g. CorObj_Byte,

96

‘ CorObj_int

Pointer to CorObj_data
compound

Primitive object types are stored directly inside the Cor Obj structure, whereas only a pointer to
the object itself is stored for compound objects. Thisis because compound objects can be user-
defined and they can be as large as the user wants. Therefore, if an object of type CorObj is
declared or alocated, the storage for any primitive object will be available also, whereas storage
for compound object types must be declared or allocated separately. Examples:

Cor Obj obj, obj1;
Cor Col or *col orp;

Cor Qbj _type(&obj) = COR_OCBJ_I NT;
Cor bj _i nt (&obj) =
Cor Qbj _type(&obj 1) COR_OBJ_COLOR;

Cor Obj _dat a(&obj 1) mal | oc(si zeof (Cor Col or));
colorp = (CorCol or *)CorObj _dat a(&obj1);

e

col or p->r = 255;
colorp->g = O;
colorp->b = O;

Some primitive object types, such as CorVector, Cor I mage, and Cor String, have pointersin
them. These pointers are not initialized when a Cor Obj is declared or allocated. They must be
allocated separately also. Examples:

Cor Obj obj, obj1;
CorString str;
Cor |l mage *i mage;
CorByte *ip;

Cor Obj _type(&obj) = COR_OBJ_STRI NG

str = CorQbj _string(&obj) = (char *)mall oc(10*si zeof (char));
strncpy(str, "Hello", 10);

Cor Obj _type(&obj 1) = COR_OBJ_| MAGE;

i mge = Cor Obj _i mage(&obj 1) ;

Cor | mageAl | oc(i mage, COR _OBJ_BYTE, 10, 10);

ip = (CorByte *)Cor Cbj _ndDat a(i nage) ;

The function Cor Obj Cr eate should be used to allocate compound objects. It issimpler and less
error prone than setting the type and data fields directly. Examples:

Cor Obj obj;
Cor Graphi ¢ *graphic;

Cor Obj Creat e(&bj, COR_OBJ_GRAPHI Q) ;
graphic = (Cor Graphic *)Cor Obj _dat a(&obj);

97

CorObjCreate only allocates the top level of acompound object. If the object has nested pointers
or arrays, they must be allocated or declared separately.

Naming Conventions

Most standard Wi T object type names start with a‘Cor’ prefix. The only exceptions are the simple
types which are standard C types: short, ushort, int, uint, float, and double. WiT usesthe
standard C names for these types.

The standard C type ‘char’ is somewhat ambiguous, since it sometimes represents an arbitrary 8-
bit integer, but other times it may represent a character in an a phabet. Because of this ambiguity,
WIT does not use the type char. Instead, it uses the type Cor Char to represent a character, and
the types Cor Byte and Cor UByte to represent a signed and unsigned 8-bit integer respectively.

An array type name is formed by appending the word Vector and I mage to the base object name.
In the case of the simple objects which use standard C type names, a‘ Cor’ prefix is also added to
reduce the likelihood of type name conflicts. Examples:

‘ Base Object |Vector Type ‘ Image Type

‘ CorColor | CorColorVector ‘ CorColorlmage

‘CorGeom |C0rGeomVector ‘CorGeomImage
‘float |C0rFIoatVect0r ‘CorFIoatImage
‘short |C0rShortVector ‘CorShortI mage

98

Standard object IDs are formed by stripping the * Cor’ prefix (if it's there) from the programming
name, capitalizing the string, then adding the prefix ‘COR_OBJ . Examples:

| Base Object |ID

CorPoint |COR_OBJ_POINT
(CorEdge |COR_OBJ_EDGE

|short |COR_OBJ_SHORT

User defined objects have no pre-defined | Ds, because their values depend on which objects are
loaded and the order they are loaded.

Access macros of primitive objects from a Cor Obj are formed by dropping the ‘Cor’ prefix (if it's
there) and prepending the prefix ‘ CorObj_’. Examples:

‘ Base Object |Access Macro
‘ CorUByte | CorObj_UByte
‘ CorString | CorObj_String
‘ int | CorObj_int

The complete list of standard objects names and IDs can be found in the Reference Manual.

Adding New Data Types

Y ou can add your own data typesto WiT using the WiT Manager. User-defined data types are as
efficient as standard WiT object types, and they can be manipulated with the same tools in igraphs
or with the same utility functionsin C/C++.

A Simple Example

This example assumes that you have gone through the simple example of adding the mylnvert
operator earlier. If you haven’t gone through that example, please do so now.

In this example we will create a new object name myStats which will consist of two fields:

» average: afloating-point number for the average pixel value in the image.
* max: an unsigned 8-bit value representating the maximum pixel value in the image.

99

We will then modify the mylnvert operator so that it will output a myStats object as well asthe
inverted image.

First reload the custom project:

1. Startthe WiT Manager if it is not already running. Ensure that custom is the loaded

configuration.

2. Select Edit/Projects.... The Project Editor dialog appears.

3. Select the custom project. The Libraries panel will list the myLib library and the
Operators panel will list the mylnvert operator. The Objects panel will be blank, since

no objects have been added to this project yet.

Define the New Object

Select Object/New... from the Project Editor. The New Object dialog appears.

EEITTm =
I e]
Cieplag: My Siabrte:
Fumiche

5

Ly
New Object Dialog

The Name field is the name of the C field, and must follow C identifier naming conventions. Enter
myStats. The Display field is for displaying the object in WiT. You can use nicer looking names
with spaces and other characters not allowed in a C identifer. Enter My Statistics for this

example.

Click the 2] button to add afield to this object. The Field dialog appears. Enter aver age for
Name. Choose float32 for the Type.

(=
Mamx: |25
T |Pos 2 =
!Iiﬁ.|

100

Click theﬂ button. The Field dialog disappears. Click A again to add the next field. Enter max
for Name and int8 for Type.

Click the # button on the New Object dialog. The dialog disappears and the new object is now
listed in the Object list in the Project Editor.

Projst Lbisry Cpewsbor Ohiedt

Puogsa:

B 1| HL M Faape
ST HOME Muideams
ERTT H I E st

[F Opmnica Obmet
PN [T

Select Project/Update prototypesto generate all header files for the selected project (should
be' custom’ at this point). A new file named wCustom.h in the directory $WITUSR\h will be
generated which will contain the corresponding C structure for myStats

Modify the Operator Definition

Next we'll modify the mylnvert operator definition to add an output to it. Double click on the
mylnvert operator from the Operatorslist. The operator definition editor window comes up.

Click the Out tab, then click the Ebutton. The Output dialog comes up. Enter stats for the
Name of the output, and My Statistics for Type.

e

Haarac |40

Topes My Bkcbor |

¥l

Click 2 on the Out and Operator Editor panels. Then select Library/Update prototypesto
generate a new function prototype in the file SWI TUSR/h/wMyL.ib.h.

101

Modify the Operator Source Code

Now we need to modify the mylnvert source code to compute the field values in the stats outpuit:

1. Click to select mylnvert from the Operatorslist.
2. Select the Operator/Source... menu item. Microsoft Visual Studio is started and the file

SWITUSR\custom\myL ib\src\mylnvert.c is opened.

3. Closethe Manager.

Modify the file to the following. Note particularly that the function prototype has changed. When
an operator isfirst created, WiT Manager generates the correct function prototype automatically.
But if an operator definition is modified later, the Manager updates the header file but not the
source code. After you have made the changes, recompile the myLib library in Visua Studio.

#i ncl ude "wWwlLi b. h"

Cor OpRt n
nyl nvert (Corlmage *in, Corlnmage *out, nmyStats **stats)

102

Cor UByte *srcp, *dstp, *end;
int w h;

/1 Only handl e unsigned 8-bit images
if (CorQoj _nmdType(in) !'= COR_OBJ_UBYTE)
return Cor OpSt at us(COR_OP_ERROR, COR_OP_ERR USER,
"mylnvert: only unsigned 8-bit inmages supported\n");

/1 The output is NULL if the operator's output port is not connected,
if (out) {

/1 Al'locate storage for output inmage with the sane size and type

/1 as the input.

w = CorCbj _width(in);

h = Cor Qbj _height(in);

if (CorlmageAlloc(out, CorCbj_ndType(in), w, h) <= 0)

return Cor OpSt at us(COR_OP_ERROR, COR _OP_ERR USER,
"mylnvert: failed to allocate output inmage\n");

/1 Add "anount" to each pixel value of the source image "in",
/1 and save the result in the destination inage "out".
srcp = (CorUByte *)Cor Cbj _ndDat a(in);
dstp (CorUByte *) Cor Obj _ndDat a(out);
end = dstp + w'h;
while (dstp < end) {
*dst p++ = 255 - *srcp++;
}

}

if (stats) {
float total;
Cor UByt e mex;

*stats = (nmyStats *)mal | oc(sizeof (nyStats));
total = O;
max = O;
srcp = (CorUByte *)Cor Cbj _ndDat a(in);
end = srcp + wrh;
while (srcp < end) {

if (*srcp > max)

max = *srcp;
total += *srcp;
++srcp;

}
(*stats)->average = total/(wh);
(*stats)->nax = nax;

}
return COR_OP_CX;

Test the New Object and Operator

Now we can test our new myStats object. We will display it to check if the values are reasonable.
Just by being displayable shows that the object has been incorporated into the WiT object system.

If you have followed the steps in the mylnvert operator tutorial, custom is till the active WiT
configuration. Start WiT and create the following igraph:

A
. B - =2

— Ly} = — |
';.‘1 Ty 1 ! :'_'l\.'.'

T immie [

5
T
ﬂl 1
il

2%

Igraph for Testing the New Object

Run the igraph and you should see the following display:

=
myStats
average 99 6355
max 255
New Object Values

103

Examples of Using Objects in a C Program

Processing Objects of Type CorObj

The following example illustrates how a Wi T container object isinterpreted as input and produced
as output. It also demonstrates the use of some of the access macros and functions from the Object
Library.

The flipSign operator converts an input object of type Cor Byte, float, or Cor I mage with pixel
type Cor Byte and flips the sign of the scalar value or each pixel value.

#i ncl ude "wWlLi b. h"
CorOpRtn flipSign(CorGhj *in, CorChj *out)

{

int inType = CorObj _type(in); // what type of object does 'in'
contain?

if ('out) return COR OP_OK; // return imediately if output is NULL

I
/1 Do the conversion. Note that the type of 'out' nust
/1 be set before the contained object is accessed.
I
if (inType == COR_OBJ_BYTE) {
Cor Obj _type(out) = COR_OBJ_BYTE;
Cor Obj _Byte(out) - Cor Qbj _Byte(in);
} else
if (inType == COR_OBJ_FLOAT) {
Cor Obj _type(out) = COR_OBJ_FLQAT;
CorObj _float(out) = -CorQbj _float(in);
} else
if ((inType == COR_OBJ_I MAGE)) {
Corlnmage *inlm = CorObj_i mage(in);
if (CorQoj_mdType(inlm == COR_OBJ_BYTE) {
Cor |l mage *outlm
CorByte *srcp, *dstp, *end;
int w= CorObj_width(inlm;
int h Cor Obj _hei ght (i nlny;

Cor Obj Creat e(out, COR OBJ_I| MAGE);

outl m= Corbj _i mage(out);

if (CorlmageAlloc(outlm COR OBJ_BYTE, w, h) < 0)
return Cor OpSt at us(COR_OP_ERROR, COR_OP_ERR_USER,
"flipSign: failed to allocate output inmage\n");

srcp Cor Qoj _ndDat a(inlnm;

dstp Cor Qbj _ndDat a(outl m;

end = dstp + w'h;

while (dstp < end)
*dst p++ = -*srcp++;

104

} else
return Cor OpSt at us(COR_OP_ERROR, COR_OP_ERR USER,
"flipSign: does not work with inages of type %\n",
Cor Obj Get Name(Cor Obj _mdType(ininm));
} else {
return Cor OpStatus(COR_OP_ERROR, COR OP_ERR USER,
"flipSign: does not work with objects of type %\n",
Cor Qbj Get Nane(i nType));

}
return COR_OP_CK;

User Defined Objects as Operator Outputs

This exampleillustrates how a function builds a user-defined object, when the function is
implementing an operator which has an output of user-defined type. Assume that the two objects
defined below are needed:

Object definitions:

t ypedef struct {
int fieldo;
Point fieldl;
I mage field2;
Vector field3;

} Testl;

t ypedef struct {
int fieldO;
Point fieldl;
I mage field2;
Vector field3;
Test1 fiel d4;

} Test2;

Note that object Test2 contains afield of type Test1. Here are two operators whose outputs are
objects of thistype.

The following is the code for afunction that builds a Test1 object. Note the use of the Utility
Library functions (Cor ObjDataCopy, Cor ObjDataFree, Cor ObjGetld) and the access macro
CorObj_mdType. Note also that the output parameter is a double pointer. When an operator
output is a user-defined type, the function’s corresponding formal parameter is the address of a
pointer to an object of that type. The function must allocate the memory for the object, and set the
parameter to the object’s address.

Source code;

/* buildTestl.c

105

*

* Qperator to build objects of type OBJ_TESTL.
*
*/

#i ncl ude "wCust om h"

Cor OpRt n
buil dTest1(i nt in0, CorPoint *inl, Corlmage *in2, CorVector *in3, Testl
**out 0)

{
Test 1l *out Test 1,

if ('outO) return COR OP_;

/1 Al'locate the nmenory to store the output object
outTestl = (Testl *) calloc(1l, sizeof(Testl));
if (!outTestl)
return opStatus(COR_OP_ERRCOR, ERR_MEMORY, "buil dTest 1",
si zeof (Test1));

/1 Copy inputs to the output structure
out Test 1->fi el dO = i nO;
if (!CorQbjDataCopy(inl, &outTestl->fieldl, COR OBJ_PAONT, 0))) {
Cor Obj Dat aFree(out Test1, CorObj Getld("Testl1l"), 0);
return Cor OpSt at us(COR_OP_ERROR, ERR USER, "buil dTest1l: Failed
copying fieldl!'\n");

if (!CorQbjDataCopy(in2, &outTestl->field2, COR _OBJ_I| MAGE,
Cor Obj _mdType(in2))) {
Cor Obj Dat aFree(out Test1, CorObj Getld("Testl1l"), 0);
return Cor OpSt at us(COR_OP_ERROR, ERR USER, "buil dTest1l: Failed
copying field2!'\n");

if (!CorQbjDataCopy(in3, &outTestl->field3, COR _OBJ_VECTOR,
Cor Obj _mdType(in3))) {
Cor Obj Dat aFree(out Test1, CorObj Getld("Testl1l"), 0);
return Cor OpSt at us(COR_OP_ERROR, ERR USER, "buil dTest1l: Failed
copying field3!'\n");
}

/1 Set output pointer to outTestl
*out0 = out Test1;
return COR_OP_CK;

The following is the code for afunction that builds a Test2 object. It is very similar to that for the
first builder:

Cor OpRt n
bui |l dTest2(i nt in0, CorPoint *inl, Corlnmage *in2, CorVector *in3, Testl
*in4, Test2

**out 0)

106

Test 2 *out Test 2;

/1 Return right away if no output is required
if ('outO) return COR OP_;

/1 Al'locate the nenory to store the output object.
outTest2 = (Test2 *) calloc(l, sizeof(Test2));
if (!outTest?2)
return Cor OpSt at us(COR_OP_ERROR, ERR_MEMORY, "buil dTest 2",
si zeof (Test 2));

/1 Copy inputs to the output structure
out Test 2->fi el dO = inO;
if (!CorQbjDataCopy(inl, &outTest2->fieldl, COR OBJ_PA NT, 0)) {
Cor Obj Dat aFr ee(out Test 2, Cor Obj Getld("Test2"), 0);
return Cor OpSt at us(COR_OP_ERROR, ERR USER, "buil dTest2: Fail ed
copying fieldl!'\n");

}
if (!CorQbjDataCopy(in2, &outTest2->field2, COR _OBJ_| MAGE,
Cor Obj _mdType(in2))) {
Cor Obj Dat aFr ee(out Test 2, Cor Obj Getld("Test2"), 0);
return Cor OpSt at us(COR_OP_ERROR, ERR USER, "buil dTest2: Fail ed
copying field2!'\n");

}
if (!CorQbjDataCopy(in3, &outTest2->field3, COR _OBJ_VECTOR,
Cor Obj _mdType(in3))) {
Cor Obj Dat aFr ee(out Test 2, Cor Obj Getld("Test2"), 0);
return Cor OpSt at us(COR_OP_ERROR, ERR USER, "buil dTest2: Fail ed
copying field3!'\n");

}
if (!CorQbjDataCopy(ind, &outTest2->field4, CorChjGetld("Testl"), 0))

Cor Obj Dat aFree(out Test 2, Cor Obj Getld("Test2"), 0);
return Cor OpSt at us(COR_OP_ERROR, ERR USER, "buil dTest2: Fail ed
copying field4!'\n");

/1 Set output pointer to outTest2
*out 0 = out Test 2;
return COR OP_CX;

Advanced

Processing Object Fields

WIT data objects are created in a consistent way so that they can be manipulated without custom
code. Thisishow WiT reads and writes user defined objects, for example. Several functions are
available to allow C programmers to access and manipulate object fields.

107

The data structure Cor ObjDatal nfo, declared in the file wit\h\cor Obj.h, contains information
about each field in an object.

The Cor Obj GetNumObj s function returns the total number of objects currently loaded in the
WIT object system. Y ou can traverse the fields of an object with the function

CorObj Traver seAll. This function traverses through all the fields of an object, including nested
structures, and calls the callback function supplied as one of its arguments.

Because of the recursive nature of WiT objects, only primitive types need to be dealt with directly.
Compound objects can be processed by calling Cor Obj Traver seAll recursively. The function
CorObjlsStd can be used to determine whether an object is a primitive type or not.

An example of how object fields can be processed by traversing the fields can be found in
\wit\samples\programs\objField.

Adding Object Types Dynamically

Y ou can add object types to the object system dynamically during program execution using the
function:

Cor Obj Add(char *name, char *progNane, int size, List *wWist);

108

name is the display name of the new object, and progName is the programming name. For user
defined objects, the size argument is not used. The list argument is alinked list of CorObjDatal nfo
objects, declared in corObj.h as follows:

typedef struct Cor QbjFieldStruct {
struct Coroj FieldStruct *next, *previous;
Cor Obj Type type;
Cor Obj Type ref Type;
unsi gned int do, di, d2;
unsi gned int size;
char name[COR_OBJ_MAX_FI ELD_NAME_LEN] ;
char nest Level ;
Bool ean forwardDecl ar;
} Cor Qbj Dat al nf o;

where:

‘type Object type of field

refType Reference type. Applicable only for vectors, images, or pointers. All other object
types should set thisfield to COR_OBJ GENERIC (0).

do Size of dimension 0 (X). Applicable only if refTypeis COR_OBJ VECTOR or
COR_OBJ IMAGE. All other object types should set this field to 0.

di Size of dimension 1 (Y). Applicable only if refTypeis COR_OBJ IMAGE. All
other object types should set this field to 0.

d2 | Reserved. All object types should set this field to 0.

size |Size of field in bytes

‘name ‘Nameof field

‘nestLevel ‘Used for internal purposes. No need to set.

‘forwardDecIar ‘Used for internal purposes. No need to set.

Theinformation for each field should be allocated using CorMemAlloc. All field information
structures will be freed when the object system is exited.

An example of creating object types dynamically can be found in
\wit\sampl es\programs\dynAddOb;.

109

110

Code Generation from
Igraphs

WiT can generate a C function from an igraph. Generated C code allows you to produce

standal one programs which are small and fast. Y ou can also convert afrequently used or time
critical igraph into acompiled WiT operator, so that al igraphs which use this operator can run
faster. WiT code generation is designed to work with Microsoft Visual C/C++ version 5 or above.

Generating C Code from an Igraph

To generate C code from an igraph, do the following:

1. Choose Make C Code... from the Graph menu. The Generate Code Panel appears.

2. Inthe C File nametext box, enter afile name for the C file to be generated. If the igraph
contains subgraph operators, they will be generated as functions named after the name of
the operator. If you are not certain where to write the files, click the £ button to browse
your directory system.

3. If youwant each WiT operator call in the generated file to check its return status for any
errors, check the Check return status option. It is safer to check return status of
operators, but doing so makes the code slightly less readable, because of all the repetitive
and bulky checking statements. Unless you are certain all the operators will run without
errors, it is recommended that you check operator return status.

4. Click the l button. The C code is written to the file you specified. It is also displayed in
the WiT Status Window so that you can quickly review it.

Building Generated Code

WIT only generates the function code without a Visual Studio project or Makefile. Thisis because
you may want to link the function to a variety of target types, such as Win32 or MFC executable,
DLL, ActiveX, etc. Read the appropriate documentation for the different target types, and the
documentation for properly initializing a WiT-based C/C++ application.

Limitations of Code Generation

Currently there are some limitations to what igraphs can be converted into C program code. WiT
generates code by analyzing the operators and links on an igraph and attempt to match appropriate

111

C constructs to them, much like what a human would do. The generated code automatically
allocates the minimum number of WiT data objects for the igraph, and handles initialization and
freeing of temporary data, such as for vector parameters.

One obvious limitation of this techniqueisthat if theigraphis not designed in areadable way, the
WIT code generator is likely to fail, since it studies by matching recognized operator arrangements
to known C code contructs.

Igraphs are inherently two-dimensional and parallel. Converting an igraph into structured C code
isadifficult process and, depending on how the igraph is constructed, may not even be possible.
Keep the following issues in mind when doing code generation:

» Simple combinations of operators, including if, for, sequencer, and collector, are

supported.
| B
i:-. m—-—.: .
L3
b |
Ii—. am : L
g
- '. .
el
e - [!ll
1 —
]
3.-'5; - B
s e
= -
o s % 3

e -'..'.i" — ﬂ.a. 3-'-__‘:'. a | n i __J_—i
1 el . L] = | S

i Tl [-

Acceptable Operatorsand Constructsfor Code Generation
» A collector without a sequencer is not supported.

112

Cascaded junctions are not supported. Branch off from a single junction instead.

¥
T et
e | —=

.
Bt S |

Unacceptable use of junctions

Acceptable use of junctions

When executed in Wi T, subgraphs behave asiif all the operatorsinside the subgraphis
simply part of the main graph. However, in generated C code, subgraphs are currently
only generated as functions for better readability. Therefore, the behavior of the C code
may differ from the igraph under some circumstances. For example, the construct shown
in the top figure below is acceptable; that shown in the bottom figure is not. The
subgraph at the bottom generates 5 objects for each object it receives. It is not possible to
create a C function that will do the same thing.

Acceptable Subgraph for Code Generation

113

| .
4
, IR - '..::i-r

Unacceptable Subgraph for Code Generation

» Thefollowing operators are not supported yet: ifConditional, graph, oneShot, surface,
volume.

114

Adding Hardware Support

WIT has aflexible framework for hardware and context (execution state) support. The most
common type of hardware used with WiT are frame grabbers. WiT has a consistent yet powerful
interface for all frame grabbers. Y ou can add support for your own frame grabbers and other types
of hardware by following some simple guidelines. This chapter explains how you can do that.

A Simple Example

In this simple example, we will add an emulated frame grabber to WiT. This frame grabber does
not actually acquire data from any hardware. It simply creates an image in memory and set the
values such that the data changes every time an image is grabbed.

Create Library

Thistutorial assumes that you have gone through the simple example of adding the mylnvert
operator earlier. If you haven't gone through that tutorial, please do so now.

A frame grabber isjust aWiT library. To create our new frame grabber library, do the following:

Start the WiT Manager with the tutorial configuration.

Open the Project Editor.

Select the custom project.

Select Library/New....

Enter My Frame Grabber for Label.

Enter myFg for Name.

Check the Single thread, Context, and Frame grabber items.
Click the # button.

ONoOORA®WDNE

115

ESITTTEE =
Labak [Fuaves st
Paes (o
Dighion
I w Pl ok aighe]
7 Snga Fraed ™ ligw s rem g
I Tk Wi = Corigst
= Fioea paboar [~ Bhapr sliorsis cuipotz

Descriphon
g Fuarees guabiiess’s AT pess =]

[-]
%
Creating a Frame Grabber Library

Add Acquire Operator

Now we will add an acquir e operator to the library. WiT predefines all the common frame
grabber functionsin the Video Acquisition library. In order to provide device independence at the
application level (igraph or C), all new frame grabber libraries should adopt the same operator
definitions. So we will share the operator definition for acquire when we add our new operator:

116

NS

oo

Click to select My Frame Grabber fromthe Librarieslist.

Select Operator/New...

Select Shared for Definition. The Share Operator dialog comes up.

Select the Video Acquistion fromthe Librarieslist. Operators from that library is
loaded on the Operatorslist.

Select acquire.

Click the ¥l button. The Share Oper ator disappears and the name acquir e is set for both
the Name and Function entries.

Usually all frame grabber functions have the frame grabber prepended to the operator
name. Uncheck the Use name box, and type myFgAcquir e for the Function name.
Click the ¥l button. The New Oper ator dialog disappears.

‘= Ferw Implemant =]

O |

Inplewent ref g
T st Hare

LAy
Adding the Acquire Operator

Implement Source

Now we are ready to implement the source code for our new acquir e operator. Sincethisisonly a
simple exercise, our operator will not actually interface to any hardware. We will just create the
image and set the pixel values such that each time acquireis called, the image will change. Thisis
done by having a static variable that is updated every time acquireis caled. In general having a
static variable in aWiT function is not a good idea, since it may cause re-entrance problems. But
for the sake of keeping this exercise simple, we will use a static variable.

Do the following:

Select acquire from the Oper atorslist.

Select Oper ator/Sour ce. Microsoft Visual Studio starts and the skeleton file for the
acquire operator isloaded.

Enter the following code.

Select Library/L oad on the Manager. Visual Studio loads the myFg project.

Compile.

Close the Project Editor on the WiT Manager.

Select My Frame Grabber from the Availablelist.

Click the 2l button. My Frame Grabber is added to the I nstalled list.

Click the Ml to save the tutorial configuration. The new frame grabber is ready for use!

NE

©COoNO U AW

#i ncl ude "context.h"

Cor OpRt n acqui re(Cor Cont ext *context, CorCbhj *out, int *dropped, int
frames, int del ay)

{
Thi sContext *lib = (ThisContext *)COR_LIB_CONTEXT(context);

Corlmage *im

int w=1lib->nfo.w
int h =1lib->info.h;
CorUByte *ip, *end;
int i;

static int offset = O;

Cor Obj Creat e(out, COR _OBJ_I| MAGE);
im= CorCbj _i mage(out);
if (CorlmageAlloc(im COR OBJ_UBYTE, w, h) < 0)
return Cor OpSt at us(COR_OP_ERROR, COR_OP_ERR _USER,
"myFg acquire: failed to allocate nenory for inmage\n");

ip = CorQbj _nmdData(im;
end = ip + wh;
i = 0;
while (ip < end)

*ip++ = of fset + i++;
++of f set ;
return COR OP_CXK;

117

Test New Frame Grabber

To test our new frame grabber:
1. Start WIT and make sure the tutorial configuration isloaded.
2. Select the Tools/Frame Grabber ... menu item. The Frame Grabber window appears.
3. Select Acquire/Snap. You should get an image like this:

fours

A A

AARRRERRLAIRRARRARRRAKIRAARRRERRARAUAKARRRRRACKIRARRARN

E
.
e
s
.
s
:

4. Select Acquire/Snap afew times. Y ou should see the image pattern shift to the left.

5. Select Acquire/Continuous. Images are now continuously acquired.

6. Select Acquire/Continuous again to stop the continuous acquisition. Y our new frame
grabber is now fully functional!

Hardware Initialization and Cleanup

WIT has aflexible framework for hardware and context (execution state) support. The most
common type of hardware used with WiT are frame grabbers. WiT has a consistent yet powerful
interface for all frame grabbers. Y ou can add support for your own frame grabbers and other types
of hardware by following some simple guidelines. This chapter explains how you can do that.

118

The Advanced Panel

Most frame grabbers have unique features that are hard to generalize. Fortunately, most of these
features affect the behavior of the frame grabber in aglobal nature. Once configured, such features
usually affect all subsequent frames acquired.

To accommodate the necessity to set and display these custom settings, you can optionally provide
a Pand function to the Video object. To add this function, you modify the Open function with
something like this:

cont ext - >vi deo = GCr eat eVi deo(mai nFr ane,
G _LABEL, context->|abel,

.rr;/i:gPaneI , /'l acgPanel

0);
Y ou can put the Panel in any file you want. For example, the emu frame grabber
$WITHOM E\hardwar e\lemu\sr ¢ library has afile panel.c which contains the function

emuPanel. You can use any Win32 functions to create a dialog. All you need to know is that you
can retrieve the main window and the appplication instance using these functions:

HWD hwnd = (HWND) GGet (cont ext - >mai nFrane, G M5 _HWMD) ;
HI NSTANCE hl nst ance = (HI NSTANCE) GCet (cont ext - >mai nFrame, G_MS_| NSTANCE) ;

The emu frame grabber Advanced Panel looks like this:

S L
gl) |

Aauhd

Emulator Frame Grabber Panel

Complete listing of emuPanel:

#i ncl ude "context.h"
#defi ne CREATE_ W TH_ G YES

int

ermuPanel (Cor Li bCont ext *cp)

{

#i f def CREATE_W TH_G
return gEmuPanel (cp);

#el se
return wi n32EnuPanel (cp);

119

#endi f
}

Live Video

Live video display is an important aspect of frame grabber use. Many frame grabbers support high
speed live window in hardware. WiT supports the use of hardware live video with the Live
function. The Live function is called when the user starts or stops live video display. When live
video is enabled, your code must do whatever is necessary to start live video display. Y ou can
retrieve the window handle displayed by WiT for live video by implementing a SetL iveWindow
function.

Y ou register both the Live and SetLiveWindow functionsin the Open function, when the Video
object is created. The functions prototypes are:

Li ve(Cor Cont ext *context, int enable)
Set Li veW ndow(Cor Cont ext *context, HWAD handl e, int nanaged)

See the Bandit frame grabber library ($WITHOM E\hardwaré\bandit\src) for an example of how
hardware live window is done.

120

Compiler Issues

WIT is created with Microsoft Visual C and has been tested only with user applications and
libraries written in Visual C/C++. Usage with other languages is not explicitly supported.

There are many settings for Visual C projects and many versions of C run time libraries. Care
must be taken when linking user programs or libraries with WiT.

Run Time Libraries

Microsoft Visual C provides avariety of run time libraries which, although extremely useful, can
cause al kinds of problemsif not set up properly.

Each Visua C project can be built in either Debug or Release mode. For each mode, three flavors
of run time C libraries are available: single-threaded, multi-threaded, and multi-threaded DLL.
Refer to the Microsoft Visual C documentation for the explanation for all these options.

WiT supports both debug and release builds. However, WiT uses the multi-threaded DLL C run
time libraries only and you should set your application or library to use multi-threaded DLL run
time libraries also. The main reason for this requirement is the incompatibility of dynamically
allocated memory blocks among the different flavors C run time libraries. Refer to Dynamic
Memory Allocation for details. If your application or library never allocates memory that will be
freed by WiT, or free memory that has been allocated by WiT, then you can actually mix run time
library flavors. However, sinceit is hard to predict what you will need to implement in your own
code, and the different run time libraries are so similar in performance, it is recommended that you
always set the C run time libraries to multi-threaded DLL.

Dynamic Memory Allocation

Different C run time libraries have different versions of malloc and free which are not compatible.
Thisis particularly true for the C/C++ versions of malloc and free. Y ou should not allocate
memory with one version of malloc and free it with some other version of free. WiT provides the
functions Cor M emAlloc and Cor M emFree which will guarantee that the memory blocks are
compatible with what WiT usesinternally.

Microsoft Visual Studio can report memory leaks with debug builds. In order to allow user written
code to linked and debugged with WiT while utilizing Visua Studio’s support for memory leak
detection, WiT uses adynamically switchable memory allocation library. When run with the ‘-
debug’ command line argument, WiT will use a debuggable library to do all dynamic memory

121

allocations. If you have operators that leak memory, or if your igraph usesa WiT operator that
leaks memory, the leak will be reported by Visual Studio, even though you can only run the
release build of WiT.

Sometimes the source of the leak may be hard to determine from the dump from Visual Studio
because you do not have the source code. To make tracing memory leaks easier, WiT offersa
labelled version of all the memory alocation functions. For example, Cor M emAllocL bl isthe
labelled version of CorM emAlloc. The labelled version writes a short label, supplied as an
argument to the function, at the beginning of each allocated block. Because Visual Studio dumps
out the first few bytes of each leaked block, the block label should tell you where the source of the
leak is.

Also, some newer microprocessors can access 16-byte aligned memory faster. To take advantage
of these speed improvements, WiT can optionally align image and vector memory blocks with 16-
byte alignment. Such blocks are not compatible with malloc and free functions (including
CorMemAlloc and Cor M emFr ee, since those functions ssmply call malloc and freein turn). By
default, WiT uses only 8-byte alignment so that image and vector blocks can be manipulated with
malloc and free. However, if 16-byte alignment is enabled (using Cor M emSetAlign), al WiT
image and vector memory blocks should be allocated using Cor I mageAlloc and Cor Vector Alloc,
and freed using Cor | mageRelease and Cor Vector Release. For consistency, even if you are not
using 16-byte alignment, you should always use these functions when manipulating image and
vector memory.

Other Visual Studio Settings

All other Microsoft Visual Studio settings should be left at their default values, unless you know
for sure changing them would not affect interoperability with WiT. One setting you should
definitely not changeisthe Struct member alignment. Y ou must leave it at the default value of 8
Bytes.

122

Shipping Custom
Applications

An application developed with WiT can be redistributed asa Wi T run time appliation. WiT run
time licenses cost much less than aWiT development license, and a run time requires less disk
space and memory. WiT run time applications can use the WiT Engine or call WiT library
functions directly. Thelicense is the same.

For any WIT run time application to function correctly on a PC, you need to install three
components:

1. Distribution WiT: The subset of distribution WiT components required by your
application,

2. Custom WiT: WICsand custom WiT operator libraries you created for the application,

3. Non-WiT: Components not directly related with WiT, such as VB forms and
applications, applications created with MFC, COM objects, etc.

Since al the Non-WiT components are created or acquired by you, you should know how to
install them. Thisincludes any drivers or support software your frame grabber or other hardware

may require.

Toinstall the Distribution WiT components, you can either run the WiT Setup program and
choose the Runtime type, or you can perform all the functions done by the WiT Setup program
for run times yourself, using perhaps a setup program of your choice. While more difficult, this
option has the benefit that you can combine the installation of your own files and other
requirements with those of WiT. Thisis particularly important when you want your usersto install
all the software related to your application themselves.

Manual Installation of Distribution WiT Components

1. Create ahomedirectory for WiT, usualy ‘ C:\Program Files\WiT’. Thisisthe
$(WITHOME) directory.

2. Createa‘bin’ directory under S(WITHOME).

3. Copy the following filesin S(WITHOME)\bin:

gTools.dll wObj.dll wUtil.dll

123

124

10.

11.

The following files may or may not be needed, depending on what features of WiT you
usein your application. If you are not sure which ones you need, copy them all. To
determine the minimum number of libraries you need, run your application and let
Windows complain about missing DLLs. Copy DLLs until your application can start

properly.

corlmgr.exe gVideo.dll gWidget.dll wit.dll
wit.ocx witmgr.exe witras.exe

Copy standard operator librariesin $(WITHOME)\bin that are required by your
application. Follow the same procedure as above if you want to minimize the amount of
disk space used by the installation.

wBlob.dll wCalcul.dll wCdlibration.dll wColor.dll
wConvert.dll wDisplay.dil wEdges.dll wFilter.dll
wFind.dll wFit.dll wGeom.dll wMeas.dll
wMorpho.dll wObjman.dll wPixel.dll wPyramid.dll
wSegment.dll wSerial.dll wStats.dll wSystem.dll
wTiff.dll wXform.dll

Copy these Intel performance libraries to $(WITHOME)\bin:
ippcv20.dil ippi20.dil ipps20.dil

Copy the directories ‘ipp20’, ‘win32', and ‘win64’, under §(WITHOME)\binin your
WiT development installation, and all their contents, to $(WITHOME)\bin on the runtime
computer.

If your application usesthe WiT Engine, copy, with directory structure, all the *.def’ and
‘.ops files under the $(WITHOME)\ops directory.

If your application uses any SmartSeries libraries, copy the library DLLsin the
$(WITHOME)\bin directory:

wMatrix.dll wOCR.II wSmartSearch.dll Search360dll.dll
wWeb.dll

If your application usesthe WiT Engine, and any SmartSeries libraries, copy with
directory structure al the *.def’ and ‘.ops’ files under the $(WITHOME)\smart directory.
If your application uses any frame grabber or hardware, copy the WiT server DLL in
$(WITHOME)\bin that corresponds to the hardware you are using. WiT server DLLs
always start with a‘w’ followed by the name of the server. For example, the DLL for the
Viper Quad iswVQuad.dll, and the DLL for the PC-Vision iswpcVision.dll.

12.

13.

14.

15.
16.

17.

18.

19.

If your application uses the WiT Engine, and any frame grabber or hardware, copy with
directory structure all the ‘.def’ and ‘.ops' files under the $(WITHOME)\hardware
directory.

Copy the following filesin the Windows System32 directory (typically
C:\winnt\system32 for Windows NT):

mfc42.dll msvcrt.dll oleaut32.dl olepro32.dll

Set the system environment variable WI THOM E to the WiT home directory, typically
‘C:\Program Files\WiT’.

Add $(WITHOME)\bin to the system environment variable Path.

Export all the WiT registry settings from your development PC as follows:

regedit /e wit.reg "HKEY_ _CURRENT _USER\Software\Coreco Imaging\WiT\Main"

Copy thefile ‘wit.reg’ produced by regedit to your run time PC, and double-click it in
Windows Explorer to import the registry settings.

If your usesthe WiT Engine ActiveX, register the ActiveX asfollows:
regsvr32 wit.ocx

If your run time will be keyed by a parallel port key, put the WiT CD in your CD-ROM
drive (assume D:) and install the driver by running:

D:\Drivers\Sentinel\Win9x\sentw9x.exe /q
for Windows 9x or

D:\Drivers\Sentinel\WinNT\sentw9x.exe /q
for Windows NT or 2000.

Run corlmgr in $§(WITHOME)\bin to set the run time license password(s), which you
should have received from Coreco Imaging.

125

Installation of Custom WiT Components

If your application uses the WiT Engine, copy all the ".def" and ".ops" filesfrom any
custom projects you created for your application.

Copy all the DLLsfor your custom libraries and serversin the S(WITHOME)\bin
directory.

If your application uses the WiT Engine, copy all the WIC files required by your
application.

If your application uses the WiT Engine, copy the WiT configuration file your
application requires. Usually all WiT configuration files are saved in the directory
$(WITHOME)\config, but you may have saved it elsewhere. Y ou can find out what the
active configuration file by running WiT. WiT reports the compl ete path of the active
configuration file in its status window.

If your application uses the WiT Engine, you must set the active WiT configuration on
your run time PC. The active WiT configuration file location is stored in the system
registry, which you should have copied to your run time PC in a previous step. However,
the absolute file path is stored in the registry. So if the location of the WiT configuration
fileis different on your run time PC as your development PC, you need to modify the
path. Y ou can do that by running the WiT Manager on your run time PC and activate the
configuration, or you can modify the registry directly (usually using the program
regedit). Theregistry pathiis:

HKEY_CURRENT_USER\Software\Coreco I maging\WiT\Main\config

Run Time License

Usage of WIT or Smart librariesis protected by arun time license. The run time license can be
keyed to a parallel port key, or a Coreco Imaging board. When ordering arun time license, you
must specify what the license should be keyed to.

126

Coreco Imaging Contact
Information

Sales Information
Web site: WWW.imaging.com
Email: info@corecoi maging.com

Technical Support

Voice: (604) 435-2587 ext 9
Email: wit@corecoi maging.com
Corporate Headquarters

Coreco Imaging Inc.

7075 Place Robert-Joncas, Suite 142
St. Laurent

Quebec H4M 272

Canada

Td: (514) 333-1301
Fax: (514) 333-1388

US Sales Office

Coreco Imaging Inc.
900 Middlesex Turnpike
Building 8, Floor #2
Billerica, MA 01821
USA

Td: (781) 275-2700
Fax: (781) 275-9590

127

128

