Design Specification

Introduction

Goals and Objectives

GameForge is a graphical tool used to aid in the design and creation of video
games. It attempts to bring game development down to a level that any computer
savvy user can understand, without requiring masterful programming ability. A
user with limited Microsoft DirectX and/or Visual C++ programming knowledge
will be able to construct a basic, 2-D arcade game. GameForge limits the amount
of actual code written by the user, if not eliminating it completely. It will aso
assist experienced programmers in generating the Microsoft DirectX and
Microsoft Windows9x overhead necessary for basic game construction, alowing
them to concentrate on more detailed game design issues and implementation.

Project Scope

GameForge is a graphical tool used to aid in the design and creation of video
games. A user with limited Microsoft DirectX and/or Visual C++ programming
knowledge will be able to construct a basic 2D-arcade game. The ideais to limit
the amount of actual code written by the user. It will also assist experienced
programmers in generating the Microsoft DirectX and Microsoft Windows9x
overhead necessary for basic game construction, allowing them to concentrate on
more detailed game design issues and implementation.

The software will consist of a number of inputs, graphically assisting the user in
creating on-screen objects including the following:
- User Created Objects (player character, creatures, static objects)

- Bitmaps (with animation)

- Collision Detection Areas

- Movement Routines

- Additional Object Attributes

Backgrounds

Input Device Setup

Sound Events

The software will also consist of a number of graphical processing functionalities
including the following:
- Defining/Editing Objects (including characteristics)
Object Positioning
Opening/Closing/Saving Game Project Files
Exporting Game Projects to compilable C++ Files

Outputs include:
- User Created Sprite Objects
Bitmaps
Microsoft VC++ (with DirectX code) Files
Game Project Files
Text Files (containing sprite attributes)
Database Files

Softwar e Context

GameForge is being marketed as a CASE tool, to allow software developers to
‘build’ rather than code their game. It is not necessary for developers to have
prior knowledge with DirectX or Visual C++, as long as they have a good art
team and high production values. GameForge will be commercially distributed
via the GameForge website (for information regarding the URL, see the
Appendix.)

GameForge will be available free for educational use. It will be distributed for use
in CIS 587, Computer Game Design and Implementation, at the University of
Michigan-Dearborn.

Major Constraints

Performance/Behavior |ssues

GameForge is designed to be compatible with the Microsoft Windows 9x
operating system. Microsoft Windows NT 4.0 and earlier versions will
not be supported (Windows NT only supports Microsoft DirectX up to
version 3.0. Directinput had not been implemented at this time, making
this version of DirectX very limited.) Microsoft Windows 2000 should
also be compatible.

GameForge aso requires Microsoft DirectX 7.0 or above. Users may aso
want to obtain the DirectX 7.0 SDK if they plan on expanding the
GameForge library files beyond their original scope.

GameForge adso requires the Microsoft Visual C++ 6.0 compiler.
GameForge' s VC++ code may be compilable using Borland or some other
VC++ compiler, but functionality is not guaranteed.

Management and Technical Constraints
GameForge has a drop-dead delivery date of 04/17/00.

PA Software will be using the Rapid Prototyping model during design and
implementation:

Prototype GUI Prototype GUI
Requirements > Design
A
GameForge Prototype
Requirements [List of Revisions)4qp(List of Revisions System
£ 1
Prototype Engine Prototype Engine A
» Requirements > Design Testing
A
Deliver
GameForge

Data Design

I nternal Softwar e Data Structures

Sprites:
Sprites consist of the following attributes:

Name (Primary Key) — Name of the sprite.

I mage — Name of the Image file displayed representing the sprite.
Width — The width of the spritein pixels.

Height — The height of the sprite in pixels.

DestinationX — The X coordinate for the destination of the
placement of the sprite.

DestinationY —The Y coordinate for the destination of the
placement of the sprite.

Framerate — The framerate of the sprite.

NumOfDir — The number of directions the sprite has.
NumOfFrames — The number of frames per direction.

Solid — Whether or not the spriteis a solid object.

KillsPlayer — Whether or not the sprite kills the player.

Player CanKill — Whether or not the player can kill this sprite.
Other CanKill — Whether or not other sprites (other than the
player) can kill this sprite.

Obtainable — Whether or not the sprite can be picked up.
Visible — Whether or not the sprite is visible on the screen.
AffectsScor e — Whether or not the sprite has an effect on the
score.

SoundAttached - Index of the sound is attached to this sprite.
ReactsT oGravity — Whether or not the sprite is affected by
gravity.

ReactsT oFriction — Whether or not the sprite is affected by
Friction.

ReactionToPlayer - Index determining how the sprite reacts to the
player’s position.

Bounces — Whether or not the sprite changes direction when
contacting another sprite.

Random — Whether or not the sprite has random movement.

Surfaces:
Surface consist of the following attributes:

Alias (Primary Key) — The filename of the image.
Path — The directory that the image is found in.
Height — The height of the image in pixels.
Width — The width of the image in pixels.

M essages:
Messages consist of the following attributes:

String (Primary Key) — The actual text to be displayed.

DestX - The X coordinate for the destination of where the string
will be placed.

DestY —TheY coordinate for the destination of where the string
will be placed.

ForeRGB — The RGB value of the foreground color of the text.
BackRGB — The RGB value of the background color of the text.
Transparent — The background of the text can be made
transparent.

Visible — Whether or not the text is visible on the screen.

Sounds:
Sounds consist of the following attributes:

Alias (Primary Key) — The filename of the sound.

Path — The directory that the sound isfound in.

Buffer — The buffer to load the sound onto.

Notifications — Breaks up sound into pieces for streaming.
State — Determines play state (playing, not playing, looping).

Levels:
Levels consist of the following attributes:

Name (Primary Key) — The name of the level.
Width Overall width of the level (in pixels).
Height Overal height of the level (in pixels).
Goal Sprite Index of the goal sprite.

Goal Scor e Value of the goal score.

Global Data Structures

Object Handler:
Object Handler isthe only global structure. It contains the following:

Object Array — Array of non-moving sprites.
Creature Array — Array of moving sprites.
Background Array — Array of background sprites.
Player — Player Sprite.

Message Array — Array of text messages.

Surface Array — Array of surfaces.

Game — Contains game information.
Logic — Contains al game logic.
DirectSound — Handles all sound logic.
DirectDraw - Handles all drawing logic.

Temporary Data Structures
No temporary data structures are created.

Database Description
The database we are using is a Microsoft Access Database. It will be created
using Microsoft Access 97. It will hold all of the information entered by the user

during the design of the game. Thisinformation will be stored in the tables that
are listed above in the section titled I nternal Software Data Structures.

Architectural and Component-L evel Design

Program Structure

Architecture Diagram

Laogic Handler Input Handler

Background

Object Handler Zound Handler

Diraw Handler

Alternative Architecture:

DSound DDraw Logic

It is important to note that the proper engine architecture breaks up the
Sprite structure into a number of categories, alowing each of these
categories to communicate directly with the Object Handler. Without this
breakdown, a significant amount of unnecessary data must be passed back
and forth through the Object Handler to parse down the Sprite
information. With the current design, the Object Handler can easily
retrieve Sprite information after receiving data requests from the other
Handlers, with a minimum amount of parsing.

It is also important to note that DDraw, DSound, and DInput each require
surfaces, buffers, and objects, respectively. By removing these structures
from their subsequent functions, we can increase modularity, and allow
easy updating of these structures, without affecting their functions.

Engine Sate Transition Diagram:

Itrvoke Update Sprites

Collision User Input
[rvoke Update Invoke Logic
Update Health/Lives [e— Read User Input
Action Frotn User
\ Itroke Read Ingart
o Y .
Handle Logie Sln?ftoelieLII.,ada?d
(collisions, etc.) e &
Player Death Logic Complete
Invoke Player Death Itrvokee Cutput
Cutput Cornplete g
Clutput Sprites Inwoke Update . . g
(Wlonitor and Speakers) Mpdate Sprites
Feset to Menu
Fital Death Itrvoke Update
Inwoke Game Over Sptites
S Handle L
Player Death Game Owver
Lives Left
el Cires Inwoke Update Sprites
Itwoke Lewel Ower Final Lewel
Itwoke Game
Complete
= Lel;laelndol\efer Game Complete
Levels Left
Inwolee Update Sprites

Engine Data Flow Diagram

Sprite Array

Data Files gg?;: %Iﬁa Mew Sprites
Bitrniaps
Wave Files sound FX
and Nusic
Mouze Uzer Inpuat
Keyboard User Input

Sprites,

lmages, and ounds

Ilessages

Speakers

and Sounds

Mlonitor

Handle Logic

10

World Builder Entity-Relationship Diagram (ERD)

Fratnes Anirnation
Category
Are Is
Clontained Corntained Exizt In
Image Sprite Creates Spritelnstance
Sound Warld Made Levels

Up Of

11

World Builder Data Flow Diagram

User Interface
[Sprte)

Uzer Input

Bitrnaps

Create Sprite

Wave Files

Sound FX

and Iusic e Spte

User Interface
[Garne)

User Input

atore in
Database

User Interface
(Lewel)

Uszer Input
Data

User Interface
(Ilap Editor)

Uszer Input
Define Logic

User Interface
(Ilap Editor)

Uszer Input

Drefine Leswel

Database
Info

12

Database
Itifio
Flat Text
Datahase = —————mm Diata Files

Sprite
Diata

Component Descriptions
INTERFACE
Scrollbar_Change:

Narrative: Receives no input. It's job is to scroll the object that it is
attached to in a the direction the user chooses. Any time the user clicks on
the scrollbar, this function handles how the user is interacting with the
scrollbar. Scrolling up moves the data up, scrolling down moves the data
down. This is done by interpreting how the user is interacting with the
scrollbar and changing the top and left coordinates of the image by some
pixel value (depending on how much the user moves the bar)

Diagram:

ScrollBar Direction of Movement—»| Object = [——New Position—§»

Interface: The function interfaces with the object that the scrollbar is
linked to. It changes the way the information is displayed in that
particular object.

Issues. If the function is not handled correctly the data in the object
linked to the scrollbar may not be displayed in the manner intended.

Constraints: All scrollbars must be associated with the proper object(s)
or the proper output may not be displayed.

13

Scrollbar_Scroll:

Narrative: Receives no input. It's job is to scroll the object that it is
attached to in a the direction the user chooses. Any time the user clicks on
the scrollbar, this function handles how the user is interacting with the
scrollbar. Scrolling up moves the data up, scrolling down moves the data
down. This is done by interpreting how the user is interacting with the
scrollbar and changing the top and left coordinates of the image by some
pixel value (depending on how much the user moves the bar)

Diagram:

ScrollBar

Direction of Movement—» Object |——New Position—§»

Interface: The function interfaces with the object that the scrollbar is
linked to. It changes the way the information is displayed in that
particular object.

Issues. If the function is not handled correctly the data in the object
linked to the scrollbar may not be displayed in the manner intended.

Constraints: All scrollbars must be associated with the proper object(s)
or the proper output may not be displayed.

14

MnuFileNew_Click:

Narrative: Receives no input. It's job is to load the correct interface
(wizard) to allow the user to create a new project. The user will then be
able to use this new interface to input data that the program will use to
create the final product.

Diagram:

New Project
Wizard

mnuFileNew Opens > ——Ready for Input—»

Interface: The function interfaces with the wizard that will prompt the
user for the information needed to produce the final output of the program.

Issues. The user should be ready to lose all information that GameForge
currently has open.

Constraints: All data currently open will be lost if the user is not

prompted to save current open data, or if the saving is not done
automatically.

15

MnuFileOpen_Click:
Narrative: Recelves no input. Itsjob isto load the correct project files
into memory that the user chooses. The user will then be able to work
with the project.

Diagram:

MnuFileOpen Calls Open CommonDidog—®>| Open Box

User Selects Project

- ProjectOpened

Interface: The function interfaces with the common dialog control that is
the standard “Open” box associated with most Microsoft Windows
applications. The user will choose afile displayed in this control.

Issues. The file chosen must be adata file that isin a format supported by
GameForge.

Constraints: Without the common dialog control the user will not be able
to choose the fileto open. Thisisincluded in the application wizard.

16

MnuFileClose_Click:

Narrative: Recelves no input. Itsjob isto close al files. Any cosmetic
“closing” effects are also included here.

Diagram:
File Save As
MnuFileClose Saved? No»> Didog
.<

v

Program Returns
to Sart State

T

Interface: The function interfaces with the common dialog control that is
the standard “Close” choice associated with most Microsoft Windows
applications.

|ssues: None.

Constraints: Without the common dialog control the user will not be able
to choose this command. Thisisincluded in the application wizard. The
user should be prompted to save their files to disk or else they will be
closed and changes will not be saved.

17

MenuFileExit_Click:
Narrative: Receives no input. Its job is to close al files, and exit the
program. Any cosmetic “closing” effects are aso included here, and the
main program is unloaded from memory.

Diagram:

File No» Save As

MnuFileExit o Didog

<

v

Program
Terminates

T

Interface: This function will need to interface with the save as dialog.
Because if it doesn't the user’s files will be closed and changes will not be
saved.

Issues. The user should be prompted to save their filesto disk or else they
will be closed and changes will not be saved. The user should be asked to
confirm the desire to exit the program.

Constraints: If this function interfaces with the SaveAs Function, the
Microsoft Common Dialog controls will need to be included.

18

Spritel oader:

Narrative: Receives no input. Itsjob isto pass the filename of the sprite
into the image loader.

Diagram:

Spritel_oader Calls Open CommonDidog—»| Open Box

User Selects Image File

—»| Imageloader

Interface: The function interfaces with the Imageloader function, and
the “Open” common dialog. Imageloader is the function that loads the
images into a particular object.

Issues:. The file chosen must be a bitmap.
Constraints: Without the Imagel oader function and the common dialog

control the user will not be able to choose the file to open. The common
dialog control isincluded in the Visual Basic application wizard.

19

I magel oader:

Narrative: Recelves the filename to display as input. Its job is to load
the correct sprite on the screen.

Diagram:

LoadPicture

—Filename-P»| Imageloader |— Passes Filename to LoadPicture—» Method

Picture Is Loaded Into ImageBox or PictureBox Control

Interface: The function interfaces with the Spritel oader function, and the
“Open” common dialog. SpriteLoader passes the filename to this
function.

Issues. The file chosen must be a bitmap, and the Spritel oader function
must be implemented.

Constraints: Without the SpriteLoader function and the common dialog

control the file will not be displayed. The common dialog control is
included in the Visual Basic application wizard.

20

AttributeDefiner:

Narrative: Function is caled after the ImageLoader is done. This is
where the user is allowed to determine al of the attributes that a particular
sprite will have.

Diagram:

AttributeDefiner ——User Sdlects Attributes—P»| SaveDB

Sprite Attributes Saved In Database———————

—>

Interface: The function interfaces with the SaveDB function. Data is
saved to the Database after the user is done selecting attributes.

Issues: The database must be working properly.

Constraints; Without the SaveDB function the attributes will be lost.

21

SaveDB:

Narrative: Function is called when the user chooses Save As from the
file menu, or after attributes are updated. The datais written to the Access
database.

Diagram:

SaveAs

P SaveDB

AttributesDefiner

Database Written To Disk

—»

Interface: The function interfaces with the either the SaveAs or the
AttriubuteDefiner functions. Data is saved to the Database after the user
is done selecting attributes.

Issues: The database must be working properly.

Constraints: Without the SaveDB function the changes will be lost.

22

DRAW_HANDLER
Create_Surface:

Narrative: Receives as input afilename, and width and a height. Based on
the width and height the appropriate DirectX 7 cals are made to allocate
memory for surface creation and once the memory is set, the filename is
used to load the specified BMP file onto the DirectX 7 surface. The width
and height are the full size of the actual image itself. Once completed
creating and loading the surface, the surface is returned.

Diagram:
BMP Filename
A
Width, Height DirectX 7 New Surface - BMP Loaded Surface
Object L oader

Interface: The function receives a filename (const char*) and a width and
a height (both const int). Using these, the function interfaces with the
DirectX 7 Object (DDObjectNew) to create a new DirectX 7 surface
capable of holding a BMP file. Once the new surface has been created,
the function opens up the specified BMP file (using filename) and makes a
call to a DirectX 7 SDK defined function that loads the specified BMP
onto the new surface. Once complete, the new surface is returned.

Issues: This function is not capable of determining how much
video/system memory is left available. Assuming that the user loads too
many images into memory, the program will most likely crash.

Constraints. The function should be able to automatically convert a

different bit depth BMP to the one specified when creating the DirectX 7
object.

23

Ddraw_lnit:

Narrative: Receives a hwnd as input (being the window handle). Using
the window handle and several other predefined macros (#defines) found
in a separate header file (defines.h), the DirectDraw object is first created.
Once created the Cooperative level is set (how to share resources with
Windows). The display mode is set (i.e. 800 X 600 X 16 bit) and the
Primary surface is created. A secondary surface (back buffer) is created
for use in page flipping (animation) and is attached to the primary surface.
A color key is set to adlow for transparent colors. Finally a clipper is
attached.

Diagram:

Predefined Macros

Window Handle

SetCooperativel evel
SetDisplayMode Create Primary and Attach Clipper
econdary Surfaces

Interface: The input to the function is a const HWND. The HWND isthe
handle to the window that was created in another function. Using the
window handle, a DirectDraw 7 object is created. The DirectDraw 7
Object is the base object for all other drawing surfaces to be attached to.
After the object is created it can be used for drawing and animation using
calls defined within the DirectDraw 7 object.

Issues: If the user does not have DirectX 7 installed on hisher machine
and their compiler is not linking to the correct DirectX 7 files, this
function will not even compile.

If the user tries to set the display mode to something odd, the function will
crash.

Constraints: The GUI will have to limit the choices the user can make for
the display mode so that no strange entries can be made that will make the
system crash.

24

Draw_Surface:

Narrative: Recelves a surface, a point and a rectangle. The surface is the
surface that will be used for the graphic itself. The image has a BMP
loaded onto it so that using the rectangle sent in, a portion of the BMP file
can be “grabbed” at a time instead of using the entire image. The point
sent in is used to determine where on the screen will the chunk of the
BMP file be drawn. So essentially, a chunk of the surface is grabbed, and
is repainted onto another surface at the specified coordinate.

Diagram:

Back Buffer

Surface, Point,

and Rectangle BliFast

Interface: A DirectDraw 7 surfaceis sent in as well as a const POINT and
a const RECT. The DirectDraw 7 surface contains a specific BMP file
aready loaded onto it. Since only a portion of the BMP file is wanted, the
const RECT sent in specifies what portion of the BMP to draw. The const
POINT is used to reposition that portion to a specific area on the screen. In
order to do so, this function has to interface with the back buffer we
created in Ddraw_Init.

I ssues. The more sprites on the screen, the more often this function will be
called. Since this function is literally copying large chunks of memory
from on surface to another, this function is not the fastest. So, if there are
an extreme number of sprites on screen, the game itself may suffer from a
performance hit.

Constraints: Due to the above issue, a clipper will have to be attached so

that sprites outside of the screen will not be drawn and calls to this
function will not happen nearly as often.

25

Draw_Text:
Narrative: Receives a Text Object as the only input. Using information
within the text object, (the message itself, and the orientation on screen)
the text will be output to the back-buffer surface. A background color and
a foreground color are also defined within the text object, as well as
whether the text isvisible. This alows the user to be able to “turn off” the
text.

Diagram:

Back Buffer

TEXT_OBJ

BkColor

Interfaces. A TEXT_OBJis sent in as the only parameter. This function
interfaces with that object in order to draw it to the back buffer. Within
the object itself are the message, the background and foreground colors,
the coordinate to draw it at, and whether the background is visible, or
whether the text is visible at all. Once it is determined that the text is
visible, the text is drawn to the back buffer (using a routine defined within
the back-buffer surface).

Issues: Thisisafairly limited text handler because one cannot change the
font that it draws. Windows chooses the current font for use when
drawing the text. So only the current Windows font will be drawn.

Constraints: Text should be drawn last over every other object on the

screen. Thisis so important information is not hidden behind an on screen
sprite.

26

Error:

Narrative: Error is a very ssimple function that receives a string and
outputs a text box to the screen specifying the error, and shuts down the
game.

Diagram:

Window Handle

Display Message
Message and Quit Program
MessageBox >

Interface: The only input is a const char* containing the error message to
put on screen. Once on the screen the user has to click on the “OK”
button or hit enter. Once clicked, the function posts a 'quit’ message and
the window callback function kills the application.

Issues: This of course causes the game to crash because it shuts down the
program automatically. Another function should be made to have a
similar function but not shut down the program (for minor errors).

Constraints: Possibly allow the user to attempt to continue running the
program in spite of the error that happened.

27

Flip_Surfaces:
Narrative: Flip_Surfaces smply flips the Primary buffer and the Back-
buffer. This allows for smooth animation from frame to frame. No input
is sent into the function. The function first checks if the past Flip call has
finished, if not it simply returns. Once this is done the surfaces will be
flipped. The surfaces are then checked to make sure that their memory
wasn't overwritten. If the surfaces were lost, DirectX 7 will restore the
surfaces.

Diagram:

Primary Surface

Back Buffer

Flip >

Interface: No input is sent into this function. The primary surface and the
back buffer are used here. The back buffer is queried to see if a past Flip
is still in progress. Once determined it either continues or cancels the
function. If it continues, a call to flip the primary surface with the back
buffer is made. The flip routine ssmply switches the pointer to the Primary
surface to be swapped with that of the pointer to the back buffer. This
“flips” what’s being drawn in memory to the screen and vice versa.

Issues: If not done correctly the surfaces could be lost, if this were to
happen the screen would bomb out and nothing but the last known surface
would be displayed on screen.

Constraints: To avoid losing the surfaces, once the surfaces are flipped,

they should be checked to see whether they we lost. If so the surfaces
need to be restore.

28

Restore:
Narrative: Restore receives no input. It simply checks to see if a DirectX
7 Object exists, and if so restore al surfaces. This is needed in case the
surfaces get lost. This can happen when the user ALT-TABSs out of the
program and back in again.

Diagram:

Draw.Restore

Interface: There is no input to this function. The DirectX 7 Object is
checked to see whether it exists or not. If it does exist, make a call to the
restore routine (defined within the DirectX 7 object) to restore the
surfaces.

Issues: Older versions of DX made you restore each surface individually
which was both time consuming for the programmer and the system itself.
DirectX 7 fixes this problem with one call to its RestoreAllSurfaces
function.

Constraints: It should be determined whether the DirectX 7 Object still

exists. If one tied to restore surfaces that do not exist it may cause the
program to crash.

29

Unlock:
Narrative: This function simply unlocks the Primary surface and the back
buffer. Thisis used so that the game has the ability to be ALT-TABbed
out of. By unlocking both surfaces it gives control of the video buffer

back to Windows.
Draw.UnLock

Interface: This function calls the UnLock functions defined within the
primary surface and the back buffer. By doing so it frees up control of the
video buffer so that Windows can write to the screen.

Diagram:

Issues: Unlocking the surfaces during a page flip may cause a dight
animation hiccup. Most of the time the user will never see this because it
will happen as they are hitting ALT-TAB.

Constraints; None.

30

IMAGE_OBJ:
Get_Alias:
Narrative: Thisfunction ssmply returns the Alias of the IMAGE_OBJ.
The Aliasis the user given name to the surface in question.

Diagram:

Aliass — »

Interface: This receives no input and ssimply sends the Alias back to
wherever this function was called from.

Issues: An attempt to Get_Alias an IMAGE_OBJ that has no alias set may
crash the program, this should not be allowed.

Constraints; This function must check to see if the Alias for the current
IMAGE_OBJ has been set before trying to send back undefined
information.

Get_Height:
Narrative: This function ssimply returns the Height of the IMAGE_OBJ.
The height is the size in pixels of the surface in question.

Diagram:

—

Height

Interface: This function recelves no input and simply sends back the
Height to wherever this function was called from.

Issues: If acall is made to Get_Height and no height has been defined, the
program may try to load an image to a surface that does not have enough
memory alocated to contain that image. This may cause the program to
crash.

Constraints: A check has to be made to make sure that the surface in
guestion does have a Height associated with it.

31

Get_Width:
Narrative: This function simply returns the Width of the IMAGE_OBJ.
The width isthe size in pixels of the surface in question.

Interface: This function recelves no input and simply sends back the
width to wherever this function was called from.

Issues: If acall is made to Get_Width and no width has been defined, the
program may try to load an image to a surface that does not have enough
memory alocated to contain that image. This may cause the program to
crash.

Constraints: A check has to be made to make sure that the surface in
guestion does have a width associated with it.

Get_Path:
Narrative: This function simply returns the path of the IMAGE_OBJ.
The path is the filename and path of the desired BMP file to load to the
surface.

Diagram:

Path I

Interface: This function receives no input and ssimply sends back the path
the wherever this function was called from.

Issues: If no path yet exists for the current IMAGE_OBJ, an empty string
will be returned. This path is used in loading the BMP to the surface. If
the path is NULL, there will be no path to load to the surface and the
program will crash.

Constraints. Possibly set a default image so that the program does not

crash if the path has not been set. Or possibly make the image loading
function not kill the program and instead continue processing.

32

Get_Surface:
Narrative: This function smply returns the surface pointer of the
IMAGE_OBJ. The surface pointer is the pointer to the surface that will be
loaded with the specified BMP file from ‘ Path'.

Diagram:

Surface >

Interface: This function receives no input and simply returns a surface
pointer to wherever this function was called from.

Issues. The sprites in the game rely upon these surfaces for use in
drawing. If the surface was not loaded correctly the game output will
either not work at all or not work correctly.

Constraints; None.

Set_Alias:
Narrative: Thisfunction receives as input a string. The string is the user-
defined name that will represent this surface. This is so each sprite
defined can be pointed to whichever surface needed viatheir dias.

Diagram:

Alias

Allocate
Memol

Interface: This function receive as input a const char* containing the
user-defined alias to the current surface. First memory is allocated to
contain the string, and then the string is copied in using strcpy (found in
string.h).

Issues. Resetting an alias may cause problems when using strcpy. The
alias may end up being not what was originally sent in.

Constraints: The alias should be kept short, but this will not be enforced,

as it will be simpler to just let it be the size it wants to be. Since the alias
is user-defined and used within the data files, most users will see that by

33

creating a long alias to begin with just makes them have to type more later
on.

Set_Height:
Narrative: This function receives as in put an integer. The integer is the
height of the BMP file to be loaded onto the surface. It will be used to
correctly specify the size of the surface so that none of the image is lost.

Diagram:

Height

R 2

Interface: This function receives a const int as its input. The integer is
simply set to the current IMAGE_OBJ s Height member.

Issues: This will only accept integers as a value because the integer
represents the number of pixelstall the image to be loaded will be.

Constraints: None.

Set_Width:
Narrative: This function receives as in put an integer. The integer is the
width of the BMP file to be loaded onto the surface. It will be used to
correctly specify the size of the surface so that none of the image is lost.

Diagram:

Width

R 2

Interface: This function receives a const int as its input. The integer is
simply set to the current IMAGE_OBJ s Width member.

Issues: This will only accept integers as a value because the integer
represents the number of pixels wide the image to be loaded will be.

Constraints; None.

Set_Path:
Narrative: This function receives as input a string. The string the
filename and path of the filename of the BMP file to be loaded onto the
surface. The string is set to the IMAGE_OBJ Path member.

Diagram:

Interface: This function receives a const char* as itsinput. First enough
memory is alocated to contain the string. Then the string is Simply set to
the current IMAGE_OBJ s Path member. This will be used later to load
the surface with the specified filename.

| ssues: Resetting a path may cause problems when using strcpy. The path
may end up being not what was originally sent in. This may in turn cause
problems when loading the BMP file to the surface.

Constraints: The path should contain a .BMP extension. If the path

specified does not contain .BMP, then the path is invalid and an error
should be output.

35

Set_Surface:
Narrative: This function receives as input a pointer to a DirectX 7
surface. This surface will be used to grab portions of when animating
sprites within the game. The IMAGE_OBJ member Surface is ssmply set
to point to the temporary surface sent in.

Diagram:

Surface

I 2

Interface: This function receives a const LPDIRECTDRAWSURFACE7
asitsinput type. The Surface member within the current IMAGE_OBJ is
simply set to point to the same memory location as that of the surface sent
in.

Issues: Users that do not have DirectX 7 installed on their machine will
not be able to compile nor run this particular function.

Constraints: None.

36

OBJ HANDLER:
Create Window:
Narrative: This function receives as input the name of the event handler,
and the handle to the instance of the game application. Using these inputs
and severa predefine macros (found in defines.h) the actual window for
the game is created. First several things are defined such as background
color and applicationicon. Once al is set, the window isregistered. After
the window is registered the window is then created. Once created the
cursor is hidden and the window is set into focus.

Diagram:

Window Handle

Message Handler

Register Create
Window Window

Interface: The functions inputs are two void* types. Oneisthe handle to
the event handler, and the other is the handle to the application instance.
Once the event handler has been attached to the window being created, the
window isregistered. This attempts to register the window with Windows
itself. If successful the application window is then created. If the creation
of the window is successful, the window is brought to focus and the
function exits. If the registering or creation of the window fail, the
program will not run.

Issues: The predefined window that will be created will be a full screen
popup window. The window will have no close or minimize buttons so
there must be a keystroke that will end the application.

Constraints: This is the function that defines the window width and
height and therefore must take into account different screen resolutions.
This can be solved by using predefine macros and simply having the GUI
of the design application make changes to the macros.

37

Draw_Sprites:
Narrative: This function receives no input. Its function is to draw all of
the sprites currently created on the screen in the position that they are
supposed to be drawn at. It contains a loop that continues until al sprites
have been drawn.

Diagram:

Loops # of Sprites Times

Draw.Draw_Sprites L »

Interface: This function has no input. It uses data members that are
already defined within the OBJ HANDLER. The function contains a for
loop that continues to loop until its reached the number of sprites that are
defined. Within the loop are calls to the current sprite. The calls get
information about what part of the image to draw, and where to draw it on
screen. Once that information is gathered, a call to Draw.Draw_Surface is
called which actually draws the surface by blitting to the back buffer.

I ssues. The more sprites that exist on screen, the more often the function
Draw.Draw_Surface has to be caled. Draw.Draw_Surface when called
too often with surfaces that are large, WILL eventually cause the games
graphics to stutter.

Constraints: Limit the total number of sprite to a suitable number so that
the call to Draw.Draw_Surface is minimized.

38

Draw_Text:
Narrative: This function receives no input. Its function isto draw all text
objects on the screen in the position that they are supposed to be drawn at.
It contains aloop then continues until all text objects are drawn.

Diagram:

Loops # of Text Messages Times

Draw.Draw_Text L »

Interface: Thisfunction receives no input. Thisisafairly smple function
in that al it does is loop until all TEXT_OBJ s have been accounted for.
Within the loop is a call to Draw.Draw_Text (which actually does the
drawing).

Issues: If all TEXT_OBJ are define as invisible, this will loop through
each object anyway. This of course eats up some processor time and will
produce no output.

Constraints; None.

39

Error:

Flip:

Narrative: Error is a very ssimple function that receives a string and
outputs a text box to the screen specifying the error, and shuts down the
game.

Diagram:

Window Handle

Display Message
Message and Quit Program
M essageBox »

Interface: The only input is a const char* containing the error message to
put on screen. Once on the screen the user has to click on the “OK”
button or hit enter. Once clicked, the function posts a 'quit’ message and
the window callback function kills the application.

Issues: This of course causes the game to crash because it shuts down the
program automatically. Another function should be made to have a
similar function but not shut down the program (for minor errors).
Constraints: Possibly allow the user to attempt to continue running the
program in spite of the error that happened.

Narrative: Flip receives no input. Its function is simply a pipeline to the

Draw.Flip function that actually does the page flipping (animation).

Diagram:

Draw.Flip

Interface: This function is a way to be able to flip the surfaces from the
main program without directly interacting with the Draw object. The
Draw object is contained within the OBJ HANDLER and so thereforeis a
private member. The only way to use Draw's internal function is to have
afunction in the OBJ HANDLER to call the specified Draw function.

| ssues: None.

Constraints: None.

40

Load_Image:

Narrative: This function receives a string as input. That string is the
handle to a filename that is a data file containing information about every
IMAGE_OBJ that will be within the game. The filename given will be
opened. If the file does not exist, the function will open a file for output
and will output an error message to a log file. If the file opening was
successful, the function will continue to loop until all data from the file
has been read in. Within the loop the file is parsed and each piece of
information is used to load an IMAGE_OBJ with al of the correct
information it needs. When the file is empty, the fileis closed.

Increment Index

Diagram:

Image Data Filename

Y

File Done? Set Height

Set Alias

e

Interface: This function receives a const char* asinput. The string is the
handle to a filename that contains al of the information needed to fill an
IMAGE_OBJ object. An attempt to open that file is made. If the file
exists in the specified path, the program will continue. If not, an output
file is opened and an error message is output. Once a valid file is opened,
each line of data is read in one by one. Each line will consist of an
operation and an operator. The operand is parsed off and the operator tells
what function to use to set the data with. Once an “end” operation has
been read, the image counter is incremented and a new IMAGE_OBJ is
created. After all IMAGE_OBJ are read in from the file, the loop ends,
and thefileis closed.

Issues. If the data file's contents are not set up correctly by the GUI
builder or if the user edits the data file incorrectly, some or al of the
information in the file will not be loaded correctly. This could end up in
undefined IMAGE_OBJ s and cause problems in loading sprites correctly.

41

If the user decided to move the BMP files the a different path or filename,
the data file would have no way of knowing this and would either have to
be hand edited by the user, or would have to be re-edited by the GUI
builder.

If the user wants to hand edit the data file, they will have to be aware of
the correct syntax expected by this function. Complete syntax knowledge
with examples should be easily accessible in the help files.

The string handling in C++ is something left to be desired. With a more
flexible language the data files could be more fault tolerant than they will
be, but with the limited string handling and file streaming of C++, the data
fileswill have to be very correct.

Constraints: The file handling part will have to be somewhat flexible to
alow for added white space. This is essential. All users have different
ideas of how separate items should be spaced and therefore this function
will have to take that into account.

Init_All:
Narrative: This function accepts no inputs. Its duty isto ssimply call the
functions that will in turn create the DD, DS, and DI objects.

Interface: This function makes a call to Draw.DDraw Init,
Sound.DSound_Init, and Input.DInput_Init. Each of these functions are
DirectX 7 functions that will create the draw, sound, and input objects to
be used in the game.

Diagram:

Issues: If the user does not have DirectX 7 installed on their system, the
functions being called will not compile nor run correctly.

Constraints; None.

42

Restore:
Narrative: Restore receives no input. Its function is simply a pipeline to
the Draw.Restore function that actually restores lost surfaces.

Interface: This function is a way to be able to restore lost surfaces from
the main program without directly interacting with the Draw object. The
Draw object is contained within the OBJ HANDLER and so thereforeisa
private member. The only way to use Draw's internal function is to have
afunction in the OBJ HANDLER to call the specified Draw function.

Diagram:

| ssues: None.

Constraints: None.

Unlock:
Narrative: Unlock receives no input. Its function is ssmply a pipeline to
the Draw.Unlock function that actually unlocks the primary surface and
the back buffer.

Diagram:

Interface: This function is a way to be able to unlock the primary surface
and the back-buffer main program without directly interacting with the
Draw object. The Draw object is contained within the OBJ HANDLER
and so therefore is a private member. The only way to use Draw's
internal function is to have a function in the OBJ HANDLER to call the
specified Draw function.

| ssues: None.

Constraints; None.

43

Load_Sprite:

Narrative: This function receives a string as input. That string is the
handle to a filename that is a data file containing information about every
SPRITE_OBJ that will be within the game. The filename given will be
opened. If the file does not exist, the function will open a file for output
and will output an error message to a log file. If the file opening was
successful, the function will continue to loop until all data from the file
has been read in. Within the loop the file is parsed and each piece of
information is used to load an SPRITE OBJ with all of the correct
information it needs. When the file is empty, the fileis closed.

Increment Index

Diagram:

Sprite Data Filename

Y

File Done? Set Attribs

Set Destination

Set Height

Set Path

Set Alias

i

Interface: This function receives a const char* asinput. The string is the
handle to a filename that contains all of the information needed to fill a
SPRITE_OBJ object. An attempt to open that file is made. If the file
exists in the specified path, the program will continue. If not, an output
file is opened and an error message is output. Once a valid file is opened,
each line of data is read in one by one. Each line will consist of an
operation and an operator. The operand is parsed off and the operator tells
what function to use to set the data with. Once an “end” operation has

been read, the image counter is incremented and a new SPRITE_OBJ is
created. After all SPRITE_OBJ are read in from the file, the loop ends,
and thefileis closed.

Issues. If the data file's contents are not set up correctly by the GUI
builder or if the user edits the data file incorrectly, some or al of the
information in the file will not be loaded correctly. This could end up in
undefined SPRITE_OBJ s and cause problems in loading sprites correctly
or a all.

If the user decided to change the BMP files in any way, (i.e. resizing or
changing position of entities within), the data file would have no way of
knowing this. This means that the user would have to hand edit the data
file to compensate for the changes, or the data file would have to be re-
edited by the GUI builder.

If the user wants to hand edit the data file, they will have to be aware of
the correct syntax expected by this function. Complete syntax knowledge
with examples should be easily accessible in the help files.

The string handling in C++ is something left to be desired. With a more
flexible language the data files could be more fault tolerant than they will
be, but with the limited string handling and file streaming of C++, the data
fileswill have to be very correct.

Constraints: The file handling part will have to be somewhat flexible to
alow for added white space. This is essential. All users have different
ideas of how separate items should be spaced and therefore this function
will have to take that into account.

45

Load_Text:

Narrative: This function receives a string as input. That string is the
handle to a filename that is a data file containing information about every
TEXT_OBJ that will be within the game. The filename given will be
opened. If the file does not exist, the function will open a file for output
and will output an error message to a log file. If the file opening was
successful, the function will continue to loop until all data from the file
has been read in. Within the loop the file is parsed and each piece of
information is used to load an TEXT_OBJ with al of the correct
information it needs. When the file is empty, the fileis closed.

Interface: This function receives a const char* asinput. The string is the
handle to a filename that contains al of the information needed to fill an
TEXT_OBJaobject. An attempt to open that file is made. If the file exists
in the specified path, the program will continue. If not, an output file is
opened and an error message is output. Once a valid file is opened, each
line of data is read in one by one. Each line will consist of an operation
and an operator. The operand is parsed off and the operator tells what
function to use to set the data with. Once an “end” operation has been
read, the image counter is incremented and a new TEXT_OBJ is created.

After all TEXT_OBJareread in from the file, the loop ends, and thefileis
closed.

Diagram:

Text Data Filename

Issues. If the data file's contents are not set up correctly by the GUI
builder or if the user edits the data file incorrectly, some or al of the
information in the file will not be loaded correctly. This could end up in
undefined TEXT_OBJ's and cause problems in loading the text sprites
correctly or at all.

46

If the user wants to hand edit the data file, they will have to be aware of
the correct syntax expected by this function. Complete syntax knowledge
with examples should be easily accessible in the help files.

The string handling in C++ is something left to be desired. With a more
flexible language the data files could be more fault tolerant than they will
be, but with the limited string handling and file streaming of C++, the data
fileswill have to be very correct.

Constraints: The file handling part will have to be somewhat flexible to
alow for added white space. This is essential. All users have different
ideas of how separate items should be spaced and therefore this function
will have to take that into account.

Update Frame:
Narrative: This function accepts no inputs. Its duty is to update each
sprite’s (that has more than one frame of animation) frame of animation.
Thiswill be done either by using a millisecond timer, or by setting a frame
rate for each particular sprite. This function contains a for loop that will
guery each sprite and determine whether their frame needs updating.

Diagram:

Loops until al Sprites accounted for

Interface: This function has no inputs. It contains a for loop that loops
until all sprites have been accounted for. During each iteration, the current
sprite is queried to see if their frame of animation needs updating. If it
does need updating (checked by time passed or frame count), the source
coordinate for the sprite are changed so that when the sprite is drawn the
image will be different than it was on the previous frame.

Issues: While it's not necessary to update the frame information for
sprites off screen, this will be done anyway. The reason is smply because
it does not take that much processing power to do so and it's easier to do
all of the sprites instead of keeping track of which ones are on screen and
which are off.

Constraints: Some objects animation patterns will vary greatly as the

game moves on. Other objects animation patterns will have to be based on
user input and not by (or in addition to) timer or frame count.

48

Update Dest:
Narrative: This function receives no inputs. Its duty is to update the
screen position of every sprite that needs repositioning. Querying each
sprite to see how each one moves will do this. Some will be user
controlled, others will have their own simple Al routines, and others will
simply not move.

Diagram:

Loops until al Sprites accounted for

. Needs No
Query Sprite > Updating?

Yes

Update

Interface: This function has no inputs. It contains a for loop that loops
until each sprite has been accounted for. During each iteration, the sprite
is queried to determine how to update the screen destination, if at all.
Each sprite is updated to its new destination by a certain “velocity” also
contained within the sprite.

I ssues: While it’s not necessary to update the screen destination for sprites
off screen, thiswill be done anyway. The reason is ssimply because it does
not take that much processing power to do so and it's easier to do al of the
sprites instead of keeping track of which ones are on screen and which are
off.

Constraints: Some objects motion patterns will vary different from
others. Thiswill have to be taken into account when writing this function.
This may have to call separate Al routines to update each sprite’'s position
accordingly.

49

SPRITE_OBJ:

I nit_Sour ce:

Narrative: This function receives the number of directions and number of
frames of animation for the spite being defined. These allow the function
to allocated enough memory to contain the matrix of coordinates that will
be defined in alater function. For example, if the sprite being defined has
only 1 static image then this function will allocate enough memory for
only 1 coordinate. This function does not actually set the coordinates, it
simply creates enough room to store them later on.

Diagram:

Number of Directions Times
Allocate —

Memory

Number of Directions

) 4

Number of
Frames Times

Allocate

Wnory

Number of Frames

\ A

v

Interface: This function receives two const int as input. These integers
represent the number of directions the current sprite will have (i.e. 1,2,4,8)
and the number of frames of animation per direction (i.e. 1,2,3,4...). If the
input values have a value of 4 for directions and 3 for frames, that means
this sprite has 4 directions (N, W, E, S) and per each direction there are 3
animations associated with it. This function has two loops inside. The
outer loop will loop as until all directions have been accounted for, and the
inner loop will loop until al frames per direction are accounted for.
During each iteration, new memory is created as a placeholder for
coordinates that will be defined in alater function.

Issues. The total number of frames (directions * frames) will have to be
known at this time. If the user decides to add another frame/direction to
the data file, they will also have to change the number of directions or the
number of frames. This should be outlined in the help file.

Constraints: This will have to be flexible enough to allow for vast
differences in numbers. A user may want to have 64 animations per
direction and so the array cannot simply be a static array, it will have to be
dynamically alocated to allow for this.

50

Update Dir:
Narrative: This function receives a direction to set the sprite to. The
direction is simply an integer used to look op the correct row in the matrix
or coordinates that was defined earlier. This function will be called any
time the sprite changes directions.

Diagram:

Direction

v

Interface: This function receives one const int for input. This integer is
the index of a particular row in the matrix of coordinates that has been
predefined. This will ssimply set the member Current_Dir to be whatever
direction the user sendsin.

Issues. Aninvalid direction could be sent in. If this happens the program
will try to access memory that does not exist. This will either cause the
game to not draw a sprite on the screen, or could cause the system to
crash.

Constraints; There should be a test within this function to ensure that the

direction sent inisindeed avalid direction. If not, smply keep the current
direction. If so, update the current direction to the specified direction.

51

Update Frame:
Narrative: This function receives no inputs. This simply increments the
index of the column in the coordinate matrix to point to the next frame of
animation. Once the last frame has been reached, the index is reset to

ZEero.
Increment Yes_»
Index

Diagram:

Interface: This function receives no inputs. Internaly, the member
Current_Frame is incremented to the next frame. If after incrementing the
index exceeds the number of frames defined, the frame will be reset to
zero to begin the animation again.

Issues: This does not alow for different patterns of animation. Each
animation will load in succession as they were defined in the data file. If
the user wants to repeat a certain frame, they will have to either edit the
data file and add the same coordinates twice, or use the GUI builder the
choose that repeated frame.

Constraints: Make sure that the function is not attempting to draw a

frame that does not exist. This may simply cause a hiccup in animation, or
could possibly crash the system.

52

Set_Image Index:
Narrative: This function receives an index to the IMAGE_OBJ array.
This is so that the sprite actually has a portion of a BMP file associated
with it. Without this image index, no graphics would be drawn on screen.
The index sent in is simply set to be the member Image_Index.

Diagram:

Image Index

Interface: This function receives a const int as input. The integer is an
index to the IMAGE_OBJ array. The index points to a certain surface so
that at run-time, a graphic will be associated with the sprite.

Issues. If the index sent in is an invalid index, the game will attempt to
blit from and image that is not defined. Thiswill either cause the sprite to
not be drawn at al, or will cause the system to crash.

Constraints: The image index will have to be pre-processed to determine
whether it isindeed a valid index.

53

Set_Dest:
Narrative: This function receives a destination coordinate as input. The
coordinate is the pixel on the screen to draw the sprite at. The coordinate
sent inis smply set to the member Dest_Coord.

Diagram:

Dest

o

Interface: This function receives a const POINT as input. The POINT is
actualy a pixel coordinate of where to draw the object on screen. The
coordinate sent in is simply set to the member Dest_Coord.

I ssues: Since sprites can be positioned off screen, the user may mistakenly
put the wrong coordinates for an object. This means a sprite that they
expect to see on screen will not be at all. Thisis unavoidable. The user
will have to move the coordinates of the sprite in the GUI builder or
simply change the datafile.

Constraints. Some sprites should be able to have coordinates off screen.
This will allow for objects to move onto the screen at a later time. This
means that a clipper will have to be attached so that unnecessary drawing
if off screen spritesis not done. This aso means pixel values that do not
fit within the current screen resolution ARE valid entries.

Set_Source:
Narrative: This function receives a coordinate as input. The coordinate
is used to determine what pixel on the specified BMP file to start blitting
from. Some sprites will have more than one frame of animation and
therefore this function will have to set the correct index in the array of
coordinates.

Diagram:

Source

e

Interface: This function receives a const POINT as input. The POINT is
apixel position on the BMP file that will be used during the blit operation

to grab a certain portion of the BMP file. This function will set the current
index of the source coordinate array to be the coordinate sent in, and will
also increment the index of the array so that the next call (if there is a next
call) will place the new coordinate in the correct index.

Issues. Init_Source allocates enough memory to hold a certain range of
source coordinates. The number of directions and the number of frames
determine this. If the user decides to input an additional source coordinate
(frame of animation) without changing the number of frames member, the
system will attempt to load the coordinate, but will fail.

Constraints; None.

Set_ Name:
Narrative: This function receives a name as input. The name is used to
distinguish between sprites. This is primary used in the GUI builder but
could be used in the game itself as well. The name is copied into the
member Name.

Name

Allocate
Memo

Diagram:

Interface: This function receives a const char* as input. The function
first alocates memory the size of the string sent in. Once allocated, the
function uses strcpy (string.h) to copy the string into the data member
Name.

Issues: None.

Constraints: None.

55

Set_X_Velocity:
Narrative: This function receives a velocity as input. The velocity is
simple the number of pixels to the left or right that the sprite will move.
This should default to zero. The velocity sent in will simply be set to the
data member X_Velocity.

Diagram:
X_Velocity

.

Interface: This function recelves a const int as input. The integer
represents the number of pixels to offset the current SPRITE_OBJ by on
the screen (or off the screen). The integer is sSimply set to the data member
X_Velocity.

Issues. If the velocity sent in is very large, the sprite itself may not appear
after itsfirst frame. This would be because the sprite shot off the screen at
a very large rate that it would only appear onscreen for the first few
frames.

Constraints: Negative and positive velocities should be allowed.
Negative will move the sprite to the left, positive to the right.

Set_Y_Velocity:
Narrative: This function receives a velocity as input. The velocity is
simple the number of pixels up or down that the sprite will move. This
should default to zero. The velocity sent in will ssmply be set to the data
member Y _Velocity.

Diagram:
Y_Velocity

o

Interface: This function recelves a const int as input. The integer
represents the number of pixels to offset the current SPRITE_OBJ by on
the screen (or off the screen). The integer is sSimply set to the data member
Y_Vedocity.

56

Issues: If the velocity sent in is very large, the sprite itself may not appear
after itsfirst frame. This would be because the sprite shot off the screen at
a very large rate that it would only appear onscreen for the first few
frames.

Constraints: Negative and positive velocities should be allowed.
Negative will move the sprite up, positive down.

Set_Height:
Narrative: This function receives as in put an integer. The integer is the
height of the sprite itself. It will be used so that the sprite will remain at
its correct size and proportion when blitting to the screen. This will aso
be used to determine how much of the BMP file to blit.

Diagram:
Height

e

Interface: This function receives a const int as its input. The integer is
simply set to the current SPRITE_OBJ s Height member.

Issues: This will only accept integers as a value because the integer
represents the number of pixelstall the image to be loaded will be.

Constraints: None.

57

Set_Width:

Narrative: This function receives as in put an integer. The integer is the
height of the sprite itself. It will be used so that the sprite will remain at
its correct size and proportion when blitting to the screen. This will aso
be used to determine how much of the BMP file to blit

Diagram:

Width

o

Interface: This function receives a const int as its input. The integer is
simply set to the current SPRITE_OBJ s Width member.

Issues: This will only accept integers as a value because the integer
represents the number of pixels wide the image to be loaded will be.

Constraints: None.

58

Set_Frame Rate:
Narrative: This function recelves a frame rate as its only input. The
frame rate is the ‘timer’ that will be used to determine when a sprite’s
frame of animation needs to be updated. Without this, the sprite’s frames
would rapidly flip through too fast for the user to see.

Diagram:

Frame_Rate

4

Interface: This function receives a const int as its input. The integer is
the number of frames to wait until updating the sprite's source
coordinates. Theinteger issimply set to the data member Frame_Rate.

Issues. This method of controlling animation will be directly coupled to
the computer that the game is running on. The better the computer, the
higher the frame rate of the game, the higher the frame rate of the game,
the faster the animation will seem. We might also include a true
millisecond timer based animation cycle.

Constraints: Negative numbers could possible be used to be a ‘stop’ for
the animation itself. Thismay prove useful for user controlled sprites.

59

Get_Image Index:
Narrative: Thisfunction receives no input. Itsduty isto simply return the
SPRITE_OBJs image index to wherever the function was caled from.
The image index will be used when blitting the sprite to the screen.

Diagram:

Image_Index

Interface: The function does nothing more than return the data member
Image_Index’s value to wherever it was called form.

Issues: If the image index is undefined, this function will still return a
value. The value returned may not correspond to an image at all and may
cause the game to crash upon attempting to blit this sprite.

Constraints: This should definitely have a default value of zero. That
way more that likely the index will point to SOME BMP file (even though
it may not be the desired one). This will help to eliminate some blitting
problems.

Get_Dest:
Narrative: Thisfunction receives no input. Itsduty isto ssimply return the
current SPRITE_OBJs destination coordinate (drawing coordinate) to
wherever it was called from.

Diagram:

Dest —»

Interface: This function simply returns the data member Dest_Coord to
wherever it was called from. This coordinate is used to blit the sprite to
the screen.

Issues. If the destination coordinate is not defined, the sprite may be
drawn in odd coordinates on the screen (or may not be drawn at al).

Constraints: The data member Dest_Coord should have a default value of

(0, 0). Thiswill ensure that al objects will be drawn (although not at the
right place if not specified).

60

Get_Source:
Narrative: Thisfunction receives no input. Itsduty isto ssimply return the
current SPRITE_OBJ s current source coordinate (where to blit from) to
wherever this function was called from.

Diagram:

Source ——p

Interface: This function simply returns the data member Source_Coord at
the current index (determined by Current_Dir and Current_Frame). This
coordinate is used to determine what frame to blit to the screen.

Issues: If Current_Dir and Current_Frame are undefined, the desired
output will not be displayed and may cause the game to crash. Care hasto
be taken that Set_Source is called prior to any call to this function.

Constraints; None.

61

Get_Height:
Narrative: This function simply returns the Height of the SPRITE_OBJ.
The height is the size in pixels of the sprite in question.

Diagram:

Height —»

Interface: This function recelves no input and simply sends back the
Height to wherever this function was called from.

Issues: If acall is made to Get_Height and no height has been defined, the
program will attempt to draw regardiess. This will not be a problem
unless somehow the Height was by default a negative number, which
could have undesired affects. This may cause the program to crash.

If the height specified exceeds the height of the BMP file itself, the game
will most likely produce undesired output.

Constraints. A check has to be made to make sure that the surface in
guestion does have a width associated with it and that the width be a
positive integer, and smaller than the image itself.

Get_Width:
Narrative: This function simply returns the Width of the SPRITE_OBJ.
The width isthe size in pixels of the surface in question.

Diagram:

Source ——p

Interface: This function recelves no input and simply sends back the
width to wherever this function was called from.

Issues: If acall is made to Get_Width and no height has been defined, the
program will attempt to draw regardiess. This will not be a problem
unless somehow the width was by default a negative number, which could
have undesired affects. This may cause the program to crash.

If the width specified exceeds the width of the BMP file itself, the game
will most likely produce undesired output.

Constraints; A check has to be made to make sure that the surface in

guestion does have a width associated with it and that the width be a
positive integer, and smaller than the image itself.

62

Get_X_Velocity:
Narrative: This function receives no inputs. Its duty is to smply return
the data member X _Velocity to wherever this function was called from.

Diagram:

—>

X_Velocity

Interface: This function receives no inputs and ssimply sends back the
current SPRITE OBJs x velocity to wherever this function was called
from.

I ssues: The velocity could be set to a very large number. If this happened
and the number was returned, it would be used to update the current
SPRITE_OBJ s x position on the screen. This may in fact move the sprite
so much that it would no longer be on the screen.

Constraints: None.
Get_Y _Velocity:
Narrative: This function receives no inputs. Its duty is to smply return

the data member Y _Velocity to wherever this function was called from.

Diagram:
—>

Y _Velocity

Interface: This function receives no inputs and ssimply sends back the
current SPRITE OBJs y velocity to wherever this function was called
from.

I ssues. The velocity could be set to a very large number. If this happened
and the number was returned, it would be used to update the current
SPRITE_OBJ sy position on the screen. This may in fact move the sprite
so much that it would no longer be on the screen.

Constraints; None.

63

Get_Frame Rate:
Narrative: Thisfunction receives no input. Itsduty isto ssimply return the
data member Frame_Rate to wherever this function was called from.

Diagram:

Frame Rate

Interface: This function receives no input and ssimply returns the current
SPRITE_OBJ s frame rate to wherever this function was called from.

Issues. If the frame rate is set too high the sprite will appear to have no
animation, if too low, it will animate too fast.

Constraints: None.
Get_Rate Count:

Narrative: This function receives no input. Its duty is to ssmply return
the data member Rate_Count to wherever this function was called from.

Diagram:

—>

Rate Count

Interface: This function receives no input and ssimply returns the current
SPRITE_OBJ srate count to wherever this function was called from.

| ssues: None.

Constraints: The rate count should fall somewhere between zero and the
frame rate. A check should be made to make sure that the value does
indeed fall within this range.

TEXT_OBJ:

Set_Dest:

Narrative: This function receives a destination coordinate as input. The
coordinate is the pixel on the screen to draw the TEXT_OBJ a. The
coordinate sent in is simply set to the data member Dest_Coord.

Diagram:

Dest

s

Interface: This function receives a const POINT as input. The POINT is
actualy a pixel coordinate of where to draw the TEXT_OBJ on screen.
The coordinate sent in is simply set to the data member Dest_Coord.

Issues. Since TEXT_OBJs can be positioned off screen, the user may
mistakenly put the wrong coordinates for an object. This means text that
they expect to see on screen will not be a all. Thisis unavoidable. The
user will have to move the coordinates of the text in the GUI builder or
simply change the datafile.

Constraints: Some TEXT_OBJ s should be able to have coordinates off
screen. Thiswill allow for objects to move onto the screen at alater time.
This means that a clipper will have to be attached so that unnecessary
drawing if off screen TEXT_OBJs is not done. This aso means pixel
values that do not fit within the current screen resolution ARE valid
entries.

65

Set Message:
Narrative: This function receives a message as input. The message is an
actual text message the will be output to the screen. The message is copied
into the data member Message. Once the message is set, the length of the
message is determined and set to the data member Length.

Diagram:

Message

Allocate
Memol

Interface: This function receives a const char* as input. The function
first alocates memory the size of the string sent in. Once allocated, the
function uses strcpy (string.h) to copy the string into the data member
Message. Once the message is set, strlen (string.h) is called to determine
the length of the message. The length is then set to the data member
Length.

Issues: None.
Constraints: When reading in the message from the data file, the file

handler has to be able to accept spaces in the message. This should be
done using the getline function (fstream.h).

66

Set_Color:
Narrative: This function receives a color as input. The color is used to
specify what color the text message will be drawn on the screen with. The
color is copied into the data member Color.

Diagram:

Color

Interface: This function receives a const COLORREF as input. The
COLORREF is a Windows data type that holds an RBG color value. The
color is set to the data member Color.

Issues: If the game is running at a color depth other than 16 bit, Windows
will automatically attempt to adjust the color for the correct color depth.

Constraints: None.

Set BkColor:
Narrative: This function receives a color as input. The color is used to
specify with what color the text message will have as its background
color. The color is copied into the data member BkColor.

Diagram:

BkColor

s

Interface: This function receives a const COLORREF as input. The
COLORREF is a Windows data type that holds an RBG color value. The
color is set to the data member BkColor.

Issues: If the game is running at a color depth other than 16 bit, Windows
will automatically attempt to adjust the color for the correct color depth.

Constraints; None.

67

Set_Trans:
Narrative: This function receives a flag as its input. The flag is used to
specify whether or not the background of the text message is transparent
or opaque. The flag is copied as a Boolean value into the data member
Transparent.

Trans

v

Diagram:

Interface: This function receives a const int as its input. The integer can
be set at one or zero, which determines if the background of the current
TEXT_OBJ is transparent or opaque. The integer is copied into the data
member Transparent.

I ssues: The background color (BkColor) is unnecessarily set if thisflag is
set to trangparent. The background color will never be seen unless this
flag is reset to opague.

Constraints: Values other than one or zero should be weeded out prior to
calling this function.

68

Set_Vighbility:
Narrative: This function receives a flag as its input. The flag is used to
specify whether or not the text message is actually displayed on the screen
or not. This can be useful for turning on or off atext message. Theflagis
copied as a Boolean value into the data member Visible.

Diagram:

Visibility

b

Interface: This function receives a const int as its input. The integer can
be set at one or zero, which determines if the current TEXT_OBJisvisible
or invisible. Theinteger is copied into the data member Visible.

Issues. A TEXT_OBJ that has a default value of ‘invisble will not
appear on the screen unless this flag is reset to ‘visible'. This may cause
some confusion for the user and should be outlined in the help files.

Constraints: Values other than one or zero should be weeded out prior to
calling this function.

Get_Dest:
Narrative: Thisfunction receives no input. Itsduty isto ssimply return the
current TEXT_OBJs destination coordinate (drawing coordinate) to
wherever it was called from.

Diagram:

Dest

Interface: This function simply returns the data member Dest_Coord to
wherever it was caled from. This coordinate is used to draw the text
message to the screen. The type returned isa const POINT.

Issues: If the destination coordinate is not defined, the text message may
be drawn in odd coordinates on the screen (or may not be drawn at al).

Constraints: The data member Dest_Coord should have a default value of

(0, 0). Thiswill ensure that al objects will be drawn (although not at the
right place if not specified).

69

Get_Color:
Narrative: Thisfunction receives no input. Itsduty isto ssimply return the
current TEXT_OBJs foreground color to wherever this function was
called from.

Diagram:

Color ’

Interface: This function simply returns the data member Color to
wherever this function was caled from. The color is used as the
foreground color of the text message to be drawn. The return type is a
const COLORREF.

Issues: If the color depth of the game is anything but 16 bit color,
Windows will automatically convert the color to fit the specified color
Space.

Constraints:. Default color should be set to (255, 255, 255) so that by
default the message will appear white on the screen. This will only be a
problem if the background color is specified as white as well.

Get_BkColor:
Narrative: Thisfunction receives no input. Itsduty isto ssimply return the
current TEXT_OBJs background color to wherever this function was
called from.

Diagram:

BkColor ——p

Interface: This function simply returns the data member BkColor to
wherever this function was caled from. The color is used as the
background color of the text message to be drawn. The return type is a
const COLORREF.

Issues. If the color depth of the game is anything but 16-bit color,
Windows will automatically convert the color to fit the specified color
Space.

Constraints. Default color should be set to (0, 0, 0) so that by default the

message will appear on a black background on the screen. This will only
be a problem if the foreground color is specified as black as well.

70

Get_Message:
Narrative: Thisfunction receives no input. Itsduty isto ssimply return the
current TEXT_OBJ s message to wherever this function was called from.

Diagram:

Message '

Interface: This function simply returns the data member Message to
wherever this function was called from. The message is the actual string
that will be output to the screen. The return type is a const char*.

Issues. If the data member Visible is set as false, the text message
returned will not actually appear on the screen (actualy it will not be
drawn at al).

Constraints: None.

71

Get_Length:
Narrative: Thisfunction receives no input. Itsduty isto simply return the
length of the current TEXT_OBJ to wherever this function was called
from.

Interface: This function simply returns the data member Length to
wherever this function was called from. The length is used when drawing
the text message to the screen. The return typeisaconst int.

I ssues. If the data member Length were to somehow get corrupted or was
not set correctly, the message when displayed on the screen could be cut
short because the length would imply that the message is shorter than it
actualy is.

Constraints: None.

Get_Visbility:
Narrative: Thisfunction receives no input. Itsduty isto simply return the
visibility of the current TEXT_OBJ to wherever this function was called

from.

Diagram:

Visibility —p

Interface: This function smply returns the data member Visible to
wherever this function was caled from. The vishility flag is used to
determine (when drawing) if the text message will appear on the screen or
not. The return typeisaconst int.

Issues; If the data member is set to ‘invisible’, the text, no matter if it
should be on the screen or not, will not be drawn on the screen.

Constraints: None.

72

Get_Trans.
Narrative: Thisfunction receives no input. Itsduty isto ssimply return the
transparency of the current TEXT_OBJ to wherever this function was
called from.

Diagram:

Trans ’

Interface: This function simply returns the data member Transparent to
wherever this function was called from. The transparency flag is used to
determine (when drawing) if the text message will have a filled
background (opague) or a clear background (transparent). The return type
isaconst int.

I ssues: If the transparency is set to true, the background color that was set
will have no bearing on what is actually drawn on the screen. The only
time the background color of the TEXT_OBJ will be seen will be when
thisflag is set to false.

Constraints; None.

73

SOUND_HANDLER:

Create Surface:
Narrative: Receives as input a filename, and sample rate and quality.
Based on the sample rate and quality, the appropriate DirectX 7 calls are
made to allocate memory for surface creation. Once the memory is Set,
the filename is used to load the specified WAV file onto the DirectSound
7 surface. Once completed creating and loading the surface, the surface is

returned.
Diagram:
WAV Filename
Sample Rate, A
Sample Quality DirectX 7 New Surface WAV Loaded Surface
Object L oader

Interface: The function receives a filename (const char*) and a sample
rate and quality (both const int). Using these, the function interfaces with
the DirectX 7 Object (DDObjectNew) to create a new DirectSound 7
surface capable of holding a WAYV file. Once the new surface has been
created, the function opens up the specified WAV file (using filename)
and loads the specified WAV onto the new surface. Once complete, the
new surface is returned.

Issues. This function is not capable of determining how much system
memory is left available. Assuming that the user loads too many sounds
into memory, the program will most likely crash.

Constraints: Illega sample rates and sample qualities should be discarded
and alog file should reflect the problem. In this instance a sample rate of
44MHz should be used and a sample quality of 16 should be used.
DirectX 7 will automatically convert the sound of lesser quality to fit these
parameters.

74

DSound_Init:

Narrative: Receives a“hwnd” as input (being the window handle). Using
the window handle and several other predefined macros (#defines) found
in a separate header file (defines.h), the DirectSound object is first created.
Once created the Cooperative level is set (how to share resources with
Windows). The Format of the sound buffer will be set and the Primary
surface is created. A secondary surface (sound back-buffer) is created for
use in streaming sound files and is attached to the primary surface.

Diagram:

Predefined Macros

Window Handle

DirectSoundCreate SetCooperativel evel
SetFormat Create Primary and
econdary Surfaces

Interface: The input to the function is a const HWND. The HWND isthe
handle to the window that was created in another function. Using the
window handle, a DirectSound 7 object is created. The DirectSound 7
Object is the base aobject for all other sound surfaces to be attached to.
After the object is created it can be used for playing sounds using cals
defined within the DirectSound 7 object.

Issues: If the user does not have DirectX 7 installed on hisher machine
and their compiler is not linking to the correct DirectX 7 files, this
function will not even compile.

Constraints; The GUI builder will have to determine which files are

small enough to load into memory, and which files should be streamed
from the hard drive.

75

Play Sound:
Narrative: Receives a surface, a sample rate and a sample quality. The
surface is the surface that will be used for the sound file itself. The
surface has aWAYV loaded onto it so that using the sample rate and quality
sent in, the sound could be played. If the sound clip is too large to fit into
memory, the sound clip will be streamed in piece by piece off of the hard
drive.

Diagram:
Sound Surface,

Sample Rate,
Sample Quality

Play Sound

Interface: A DirectSound 7 surface is sent in as well as two const int.
The DirectSound 7 surface contains a specific WAV file aready loaded
onto it. If the sound file is too large to fit into system memory, this
function will have to stream the file off of the hard disk.

Issues. The more sounds being played at once, the harder it will be to
distinguish one sound from the other. If one of the sounds being played
represents an important role in the game, it may be drowned out by the
other sounds playing.

Constraints: Due to the above issue, we might consider allowing a
sample pitch to be used to control the loudness of the sound being played.

We should also think about the possibility of streaming al sound files

instead of just some sound files. This will most likely be easier to
program and in the long run will probably work better.

76

Error:

Narrative: Error is a very ssimple function that receives a string and
outputs a text box to the screen specifying the error, and shuts down the
game.

Diagram:
Window Handle

Display Message
Message and Quit Program
MessageBox >

Interface: The only input is a const char* containing the error message to
put on screen. Once on the screen the user has to click on the “OK”
button or hit enter. Once clicked, the function posts a quit message and
the window callback function kills the application.

Issues: This of course causes the game to crash because it shuts down the
program automatically. Another function should be made to have a
similar function but not shut down the program (for minor errors).

Constraints: Possibly allow the user to attempt to continue running the
program in spite of the error that occurred.

77

SOUND_OBJ:

Get_Alias:
Narrative: Thisfunction ssmply returns the Alias of the SOUND_OBJ.
The Aliasisthe user given name to the sound surface in question.

Diagram:

Alias ’

Interface: This receives no input and ssmply sends the Alias back to
wherever this function was called from. Return typeisaconst char*.

Issues: An attempt to call Get_Alias for a SOUND_OBJ that has no Alias
set may crash the program because it would attempt to play a sound that is
not created yet. This should not be allowed.

Constraints; This function must check to see if the Alias for the current
SOUND _OBJ has been set before trying to send back undefined
information.

Get_Path:
Narrative: This function ssimply returns the path of the SOUND_OBJ.
The path is the filename and path of the desired WAV file to load to the
sound surface.

Diagram:

Path —p

Interface: This function receives no input and ssimply sends back the path
the wherever this function was called from. Return typeisaconst char*.

I ssues. If no path yet exists for the current SOUND_OBJ, an empty string
will be returned. This path is used in loading the WAV to the sound
surface. If the path is NULL, there will be no path to load to the surface
and the program may crash.

Constraints:. Possibly set a default sound so that the program does not

crash if the path has not been set. Or possibly make the sound loading
function not kill the program and instead continue processing.

78

Get_Surface:
Narrative: This function smply returns the sound surface pointer of the
SOUND_OBJ. The surface pointer is the pointer to the surface that will
be loaded with the specified WAV file from ‘Path’.

Diagram:

Surface ——p

Interface: This function receives no input and simply returns a surface
pointer to wherever this function was called from. Return type is a const
LPDIRECTSOUNDSURFACE?.

I ssues. Any sound effect or music in the game rely upon these surfaces for
use in playing the sounds. If the surface was not loaded correctly the
game output will either not work at al or not work correctly.

Constraints: None.

79

Set_Alias:
Narrative: Thisfunction receives as input a string. The string is the user-
defined name that will represent this sound surface. Thisis so each sprite
defined can be pointed to whichever sound surface needed viatheir alias.

Diagram:

Alias

Allocate
Memor

Interface: This function receive as input a const char* containing the
user-defined dlias to the current sound surface. First memory is allocated
to contain the string, then the string is copied in using strcpy (found in
string.h).

Issues. Resetting an alias may cause problems when using strcpy. The
alias may end up being not what was originally sent in.

Constraints: The alias should be kept short, but this will not be enforced,
as it will be simpler to just let it be the size it wants to be. Since the alias
is user-defined and used within the data files, most users will see that by
creating a long alias to begin with just makes them have to type more later
on.

80

Set_Path:
Narrative: This function receives as input a string. The string the
filename and path of the filename of the WAV file to be loaded onto the
surface. The string is set to the SOUND_OBJ data member Path.

Diagram:

Path

Interface: This function receives a const char* as itsinput. First enough
memory is alocated to contain the string. Then the string is Simply set to
the current SOUND_OBJ s data member Path. This will be used later to
load the surface with the specified filename.

| ssues: Resetting a path may cause problems when using strcpy. The path
may end up being not what was originally sent in. This may in turn cause
problems when loading the WAV file to the surface.

Constraints. The path should contain a .WAV extension. If the path

specified does not contain .WAYV, then the path is invalid and an error
should be output.

81

Set_Surface:

Narrative: This function receives as input a pointer to a DirectSound 7
surface. This surface will be used to play a specified WAV file when the
game logic specifies to do so. The SOUND_OBJ member Surface is
simply set to point to the temporary surface sent in.

Diagram:

Surface

.

Interface: This function receives a const LPDIRECTSOUNDSURFACE7
asitsinput type. The Surface member within the current SOUND_OBJis
simply set to point to the same memory location as that of the surface sent
in.

Issues: Users that do not have DirectX 7 installed on their machine will
not be able to compile nor run this particular function.

Constraints; None.

82

INPUT_HANDLER:

DInput_Init:
Narrative: This function receives a window handle and an instance
handle. The window and the instance are used to create the Directlnput
object. The Directlnput object is what is used by the game to attach input
devicesto. The input devices (i.e. mouse, keyboard, and joystick) will be
used to gather input from the game player to manipulate objects on the
screen. If the creation of the object fails, an error message is output.

Diagram:

Window Handle

DirectlnputCreate
Instance Handle

Interfacec This function receives a const HWND and a const
HINSTANCE. Both data members are used to create the Directlnput
object. The object is created by accessing afew DirectX 7 functions. The
object iswhat al input devices will be attached to.

Issues. If the user does not have DirectX 7 installed on their system this
function will not compile correctly, nor will it run. It should be noted in
the help files that DirectX 7 is needed.

Constraints: The hwnd, and hinstance from the actual window creation
will have to be saved and sent into this function for it to work correctly.

83

Keyboard_Init:
Narrative: This function recelves no input. Its duty is to query the
keyboard as one of the input devices for use in the game. The keyboard
can then be used as an input device to interact with objects in the game.

v

SetCooperativel evel @

Interface: This function attaches a keyboard device to the Directlnput
object. Once attached the keyboard can be used as input for the game.
First the input device is created specifying that the device type is a
keyboard. Once created the cooperative level is set. Once that is set, the
keyboard is acquired. Now the keyboard is ready for use. If any of the
past steps failed, the keyboard will not work correctly or at al during the
game.

Diagram:

Issues: The user must have the device the game expects attached to the
computer prior to running the game or the game will not work correctly.

Constraints: The cooperative level should be set fairly low so that if the
user ALT-TAB’s out of the game, Windows will regain control of the
keyboard. If this were not done its very possible that Windows would
lock up.

Mouse_|nit:
Narrative: This function recelves no input. Its duty is to query the
mouse as one of the input devices for use in the game. The mouse can
then be used as an input device to interact with objects in the game.

v

SetCooperativelevel @

Interface: This function attaches a mouse device to the Directinput
object. Once attached, the mouse can be used as input for the game. First
the input device is created specifying that the device type is a mouse.
Once created the cooperative level is set. Once that is set, the mouse is
acquired. Now the mouse is ready for use. If any of the past steps failed,
the mouse will not work correctly or at all during the game.

Diagram:

Issues: The user must have the device the game expects attached to the
computer prior to running the game or the game will not work correctly.

Constraints: The cooperative level should be set fairly low so that if the
user ALT-TAB’s out of the game, Windows will regain control of the
mouse. If this were not done its very possible that Windows would lock

up.

85

Key Handler:

Narrative: This function receives the current x and y velocities of the
sprite in question. The role of this function is to detect what key is being
pressed, and if the key is one of the keys defined by the user as an input
key, take the appropriate action. Since there is no way to define all
possible actions the user may want the keystroke to represent, only a few
actions will be predefined. The predefined actions will consist of strictly
moving the object up, down, left, and right respectively. Any other
keystroke that has been defined by the user as an important key will be
passed back to the main program so its logic can be handled there.

Interface: This function receives two const int as input. The integers are
the current x and y velocities. The keyboard will be queried to see what
key (or keys) is (are) being pressed at the moment. It will check if the key
is one predefined by the user as an action key (defined in the GUI builder).
If the key is an action key and represents character movement on the
screen, the appropriate calculations will be made using the x and y
velocities. If the key being pressed is an action key but does not have a
predefined function, the keystroke is returned to the main program so that
the keystroke can be handled there.

Diagram:

Return Key

Issues. These predefined functions for certain keystrokes are necessary.
However, the results they produce may not be what the user had planned
on.

Constraints: Special care has to be taken to allow for GREAT flexibility
when defining the actions of the keystrokes.

Thiswill be afairly large function and should be thoroughly tested.

86

Mouse Handler:

Narrative: This function receives the current x and y velocities of the
sprite in question. The role of this function is to detect how the mouse is
moving and what button(s) is (are) being pressed. If the mouse movement
is predefined by the user as an action, the appropriate action must be
taken. Since there is no way to define all possible actions the user may
want the mouse to represent, only a few actions will be predefined. The
predefined actions will consist of strictly moving the object up, down, left,
and right respectively. Any other mouse movement that has been defined
by the user as an important will be passed back to the main program so its
logic can be handled there.

Diagram:

Interface: This function receives two const int as input. The integers are
the current x and y velocities. The mouse will be queried to see what
movement is happening with the mouse at the moment. 1t will check if the
movement is one predefined by the user as an action movement (defined
in the GUI builder). If the movement is an action movement and
represents character movement on the screen, the appropriate calculations
will be made using the x and y velocities. If the movement is an action
movement but does not have a predefined function, the movement is
returned to the main program so that it can be handled there.

Return Action

Issues: These predefined functions for certain mouse movements are
necessary. However, the results they produce may not be what the user
had planned on.

Constraints: Special care has to be taken to allow for GREAT flexibility

when defining the actions of the mouse movements. This will be a fairly
large function and should be thoroughly tested.

87

Error:

Narrative: Error is a very ssimple function that receives a string and
outputs a text box to the screen specifying the error, and shuts down the
game.

Diagram:
Window Handle

Display Message
Message and Quit Program
MessageBox »

Interface: The only input is a const char* containing the error message to
put on screen. Once on the screen the user has to click on the “OK”
button or hit enter. Once clicked, the function posts a quit message and
the window callback function kills the application.

Issues: This of course causes the game to crash because it shuts down the
program automatically. Another function should be made to have a
similar function but not shut down the program (for minor errors).

Constraints: Possibly allow the user to attempt to continue running the
program in spite of the error that happened.

88

Main Program:
Game_Init:
Narrative: This function receives no input. Its duty is to wrap all
initialization functions into one function call. In most games this will
never change. This is the function where al sprites, text messages, and
surfaces, are loaded. This means that the data files that contain the
information needed by the program to create the sprites, text messages,
and surfaces is specified here. Any other things that might need
initializing (like initializing DirectDraw, etc.) are also put in here.

Diagram:

Object.Init_All

Object.Load_Images
Object.Load_Sprites
Object.Load Text

Interface. This function receives no input. All game initialization
routines are called from within this function. First, DirectDraw,
Directinput, and DirectSound are all initialized. Once thisis complete, the
sprites, text messages, and surfaces are al initialized. These are initialized
by sending in data file filenames to the functions that will know how to
read the data and use that data to create the game objects. This function is
called once per game.

Issues: Undefined data files will most likely cause the application to
crash. This should be outlined in the help files so that the user knows to
only include valid datafiles.

Constraints: DirectDraw, Directinput, and DirectSound MUST be

initialized prior to initializing any of the game objects. If the reverse were
to occur, the application would crash.

89

Main_State:
Narrative: This function receives no input. This is the main game loop.
The game will loop into this function and repeat every call within so long
as the game is running. Any function that manipulates the objects on
screen is put in here. The function calls for drawing, playing sounds,
handling game logic, and handling user input are all within this function.
This allows for the game to be constantly updated until the gameis over.

Diagram:

Object.Draw_Sprites

Interface: This function receives no input. The function is called
repeatedly and as often as possible (though the frame rate will be limited
to 30 frames per second). The first function call is to draw all the sprites
and text messages on the screen that should be on the screen. Once thisis
done, the surfaces are flipped so that the user will see the next frame of
animation. After thisis done, the game logic functions are called. These
will update the screen positions of all objects (also the player based on
input). This will also call the collison handler to make sure that no
objects are overlapping, and will trigger any events associated with the
objects that are colliding. Once complete, and sounds or music that need
playing are played. At this point the time is checked and the function sits
here until 30 milliseconds have passed. What this doesis ensure that if the
game is run on a vastly faster machine than it was designed for, the game
speed will not change and will remain at roughly 30 frames per second.

Issues. This function does not ensure that on old machines (slower
machines) that the frame rate will achieve 30 frames per second. Thisis
simply set up so that faster computers will not exceed 30 frames per
second.

90

Constraints: The drawing and page flipping should be done first and as
immediately as possible. This is to ensure that the animation runs
smoothly.

Message Handler:

Narrative: This function receives the window handle, a message, and
two parameters. Based upon the message and the parameters, this
function acts accordingly. For a simple example, if the player hits ALT-
TAB on the keyboard, the event WM_ACTIVATEAPP will be sent
immediately to this function. A global variable is then set to be one of the
parameters sent in. If the parameter is false, this means the user wishes to
return to windows, and unlock the primary surface and back-buffer so that
Windows will regain control of the screen. Any user event (or others) can
be handled here, however most often we chose to bypass this routine and
handle the event manually.

Diagram:

Window Handle, Message, Parameters R User Defined Yes
i Event Handled?

v

No

Windows Auto
Handle

Interface: This function receives a HWND, a UINT, aWPARAM, and a
LPARAM. The function is an event handler. The UINT is the message
generated by a keystroke or automatically by Windows. Based on the
UINT message, the appropriate actions take place. Once thisis done, the
function returns out, and then returns to the exact place that the program
jumped out of the handle this message.

Issues. Windows will automatically handle Any Windows message that is
not defined. Most messages will never be explicitly handled by our
program and will let Windows act appropriately.

Constraints: Most predefined Windows handler functions are suitable for
use in any application. If there is no need to specifically make a change or
addition to any occurring event, it's suggested to let Windows handle it
automatically.

91

Logic Handler:
Narrative: This function receives no inputs. Its duty is to query a
specific object’s attributes to see what kind of game logic it is defined to
have, and call a specific function for handling that logic. This will be
done as many times as there are objects.

Diagram:

Loops Number of Sprites Times

Logic Router

Interface: This function receives no inputs. Within the function is a for
loop that continues until all sprites (onscreen or off-screen) are accounted
for. During each iteration of the loop, the current SPRITE_OBJis queried
to see what attributes have been set for it. Based upon these attributes,
logic functions are called to manipulate the sprite’s position on screen.
For example, if the current sprite is a moving sprite (meaning another
creature in the game) and is a solid sprite (meaning when its collision area
is overlapping with another this object will stop) and is affected by gravity
(meaning this object is drawn downward) then the appropriate logic
functions will be called. In this instance the calls go to the function that
handles gravity, followed by the collision detection function. If acollision
is found, the sprite stops moving downward, if not it continues.

v

Issues: If the sprite being tested has no attributes defined for it, most of
the logic functions will have no affect on that sprite. This should be
outlined in the help files.

Constraints: Moving sprites (creatures) will have to be tested against
every other sprite and collision area for the current level. The more
creatures there are, the dower the game will move. It should be
considered to put a creature limit for each level.

If the logic function calls are not called in the correct order, undesirable
effects may occur. Special care should be taken when determining which
logic function has priority. The function should aso be thoroughly tested
to ensure that it works without any problems.

92

Logic_Follow:

Narrative: This function is a smple Al routine used solely by other
creatures. Static sprites will not have use for this function. This function
receives the X and Y position of the current sprite. Using the X and Y
position (of the current sprite) and the X and Y position of the player
character, the current sprite will be instructed to head towards the player
character. Once determined where to move, an X and Y velocity are
calculated and the X and Y position’s of the sprite are updated. From here
the collision detection algorithm is called to determine if that * movement’
caused the sprite to collide with any other object. If not, the function
returns. If so, velocities are re-calculated and tested again.

Diagram:
Player Position (Global)

Generate
Velocities

Sprite Position Update Sprite

Position

Player Within
Range?

No

Collision
Detector

Collision
Found?

Return Coordinate l

Interface: This function receives a const POINT as input. The POINT
contains the X and Y position of the current sprite. These vaues are
tested against the player character’'s X and Y positions and it is determined
which direction the current sprite will have to move to intercept the player.
Once determined, an X velocity and Y velocity will be calculated. The
velocities will be used to update the sprites X and Y position. The new X
and Y position’s will be tested with the collison detector function to
determine is the movement caused a collison. If a collison is not
detected the new position is valid and the function exits. If a collision is
detected, new velocities are calculated bearing in mind what direction
caused the collision. Thisissort of a’bump and turn’ routine. A direction
istested, if it works then exit, if not change the direction.

|ssues: None.

Constraints: ‘Closed’ areas may create some difficulty in generating the
correct movement for the sprite. Older arcade games used a similar

93

routine to have creatures hunt the player. Their solution was to specify to
the level designers that no closed areas are alowed for the level. This
should be outlined in the help files since the GUI builder user is
developing the level they should be aware of this.

Another method to fixing this problem would be to allow the creature to

back up. This may or may not be more difficult than the previous
solution, and both ideas should be tried and tested.

94

Logic_Flee:

Narrative: This function is a smple Al routine used solely by other
creatures. Static sprites will not have use for this function. This function
receives the X and Y position of the current sprite. Using the X and Y
position (of the current sprite) and the X and Y position of the player
character, the current sprite will be instructed to move away the player
character. Once determined where to move, an X and Y velocity are
calculated and the X and Y position’s of the sprite are updated. From here
the collision detection algorithm is called to determine if that * movement’
caused the sprite to collide with any other object. If not, the function
returns. If so, velocities are re-calculated and tested again.

Player Position (Global)

Generate
Velocities

Sprite Position Update Sprite

Position

Player Within
Range?

No

Collision
Detector

Collision
Found?

Return Coordinate l

Diagram:

Interface: This function receives a const POINT as input. The POINT
contains the X and Y position of the current sprite. These vaues are
tested against the player character’'s X and Y positions and it is determined
which direction the current sprite will have to move to avoid the player.
Once determined, an X velocity and Y velocity will be calculated. The
velocities will be used to update the sprites X and Y position. The new X
and Y position’s will be tested with the collison detector function to
determine is the movement caused a collison. If a collision is not
detected the new position is valid and the function exits. If a collision is
detected, new velocities are calculated bearing in mind what direction
caused the collision. Thisissort of a’bump and turn’ routine. A direction
istested, if it works then exit, if not change the direction.

|ssues: None.

Constraints: ‘Closed’ areas may create some difficulty in generating the
correct movement for the sprite. Older arcade games used a similar

95

routine to have creatures hunt the player. Their solution was to specify to
the level designers that no closed areas are alowed for the level. This
should be outlined in the help files since the GUI builder user is
developing the level they should be aware of this.

Another method to fixing this problem would be to allow the creature to

back up. This may or may not be more difficult than the previous
solution, and both ideas should be tried and tested.

96

Logic_Gravity:
Narrative: This function is a smple Al routine used solely by other
creatures. Static sprites will not have use for this function. This function
receives the X and Y position of the current sprite. Based on that position
the collision detection function will be called and will determine whether
or not the current sprite is already colliding with a solid object from the
top. If so, the function exits. If not, using the Y coordinate sent in and a
predefined constant for gravity, the new Y position of the sprite is

calculated.
Diagram:
Until Sprites Depleted
No
y
Sprite Position Caollision Collision
— > > >

Detector Found?

No
Collisions
Found

Return

Generate Coordinate

Velocities

Interface: This function receives a const POINT asitsinput. The POINT
contains the X and Y coordinates of the current SPRITE_OBJ. Using
these coordinates, the collision detection function is called to determine if
the current SPRITE_OBJ is dready colliding with another solid
SPRITE_OBJ, from the top. If a collision is detected, the function exits
with no change to the SPRITE_OBJs position. If a collision is not
detected, the Y coordinate is updated by a predefine velocity that
represents the acceleration due to gravity.

Issues: If the collision detection algorithm is not working correctly,
sprites may continue falling until the fall right off of the screen. Also,
sprites may stop falling even if they are not colliding with another sprite.

If the acceleration due to gravity is too high, upon the next game loop the
sprite may pass clear through solid objects (sprites that are too small may
be overlooked).

Constraints: Sprites will most likely have to contain a ‘mass data
member. Using the mass, it can be calculated how fast the sprite should

97

accelerate downward. This can be done without using a mass data
member simply be limiting the acceleration due to gravity to a constant.
This may make more sense.

98

Logic_Bounce:

Narrative: This function receives the X and Y coordinate and velocity of
the current sprite. Based on the position and the velocity, a new position
for the sprite is determined. This position is tested for a collision in the
collision detection function. If there is not collision, then the function
exits. If there is a collision, depending on the direction the collision was
caused from, the velocity will be reversed. Once reversed, the sprite's
position is updated, and the function exits.

Diagram:

Until Sprites Depleted

4

Collision

Sprite Position Collision
—»
Found?

Detector

Generate
Velocities

No
Collisions
Found

Update Sprite
Position

Return
Coordinate

v

Interface: This function receives a const POINT and a const int as its
input. The POINT contains the X and Y position of the current
SPRITE_OBJ. The integer is the relative velocity. Based on the
coordinate and the velocity, anew X and Y position is calculated. Once
calculated, the collision detection algorithm is called to see if the new
coordinate caused a collision. If not, the function exits. If so, a new
coordinate is calculated (based on the negative velocity and the direction
that caused the collision). Once the new coordinate is calculated, the
function exits.

Issues: If the collision detection algorithm is not functioning correctly,
this may falsely detect a collision and reverse the current sprite for no
reason. It may also not detect an actual collision and the sprite would pass
through a solid object.

If somehow the sprite in question were to get caught inside of another
sprite's collision area, the current sprite would continue to bounce back
and forth within the object.

Constraints: None.

99

Logic_Friction:
Narrative: This function receives the X and Y velocity of the current
sprite. Using these velocities, a new velocity is generated. Meaning that
the velocity returned from this function will be smaller than the velocity
sent into the function. Thisis so that during each game loop, the sprite in
guestion will slow down and finally come to a stop. The new velocities
are returned.

Diagram:

Return

Sorite Velocities Coordinate

Decrement
Velocities

Interface: This function receives two const int as input. The integers
represent the X and Y velocities of the current SPRITE_OBJ. New
velocities are calculated (which will be smaller in value than those sent
in). Each game loop the velocities get smaller and smaller until they
finaly hit zero. Once at zero, the SPRITE_OBJ comes to a complete stop.
The new velocities are returned.

Issues: If asprite’sfriction flag is not set, this function will not have any
bearing on the sprite’'s movement. The sprite will ssimply never stop
moving until the gameis over.

This function will also have no affect on the player sprite so long as the
player is using the input device to control the sprite. Once the player stops
using the device, the player sprite will eventually come to a stop
(assuming the player sprite’sfriction flag is set).

Constraints. This should be a fairly smple function. The real physics

equation for calculating friction could be used, but on large levels with
more creatures, this may cause the game to take a serious performance hit.

100

Logic_Random:
Narrative: This function receives the X and Y velocities of the current
sprite and a ‘seed’ for the randomizer. The seed is used more as a
delimiter for the randomizer. It will limit the actual value spit out by the
randomizer to be below that number. Using the randomizer function, a
new X and Y velocity are calculated and are returned from this function.

Diagram:

Seed

Return
Velocities

Sprite Velocities

; Generate
—) Randomizer

Velocities

Interface: This function receives three const int as input. The first two
integers represent the current SPRITE_OBJs X and Y velocities. The last
integer is the number to use when calling the randomize function to limit
the output of the randomizer. The value returned by the randomizer is set
tothe X and Y velocities and they are returned.

Issues. If the seed sent in for use in the randomizer is very large, the
current sprite will most likely jump off of the screen. This is because a
very high number could be set to be the X or Y velocity, and the sprite’s
position after the next game loop would be somewhere off the screen.

If the sprite’s random flag is not set, this function will have no bearing on
the sprite’ s position.

Constraints: Negative numbers for the randomizer seed are not

acceptable. If a negative number is sent in to the randomizer, it will be
converted to its absolute value instead.

101

Logic_Kill_Player:

Narrative: This function receives the X and Y position of the player
sprite. The collision detection function is called to see whether or not the
player is colliding with any other sprites. If so, those sprites are queried to
determine if they will harm the player. If the sprite does not harm the
player, then the function exits. If the sprite does harm the player, update
the player ‘aive’ state (aglobal variable). If the player dlive state is zero,
during the next game loop, the player will lose alife. If the player’s lives
are al lost, the gameis over.

Diagram:

Player’s Position (Global)

Harmsthe
Player?

Collision

Sprite Position Collision
L
Found?

Detector

Interface: This function receives two const int asinput. The integers are
the X and Y position of the player SPRITE_OBJ. The player's position is
tested to seeif it’s colliding with any other SPRITE_OBJs. If the player is
colliding with another sprite, test that sprite to see if it harms the player. |If
so, decrement the global variable *alive’ so that the appropriate action can
be taken next game loop.

Issues: If the sprite that the player is colliding with does not have its solid
flag set, there will be no way to detect if that sprite is colliding with the
player sprite. So regardliess of whether the sprite should harm the player,
it will not.

Constraints: It might be considered to first query all sprites to determine
which actually could harm the player. Once they are determined, call the
collision detection function to see if a collision occurred. This may speed
the algorithm up a bit.

It may also be considered to destroy the sprite instead of simply hiding it

from view. This will free up memory and speed up certain processes
(collision detection, etc.).

102

Logic_Killed By Other:

Narrative: Thisfunction receivesthe X and Y position of the sprite. The
collision detection function is called to see whether or not the current
sprite is colliding with any other sprites. If so, those sprites are queried to
determine if they can be killed by other sprites. If the spriteis not set to be
harmed by another sprite, then the function exits. If the sprite is sensitive
to other sprites, smply set the sprite’s visible flag to false, and its solid
flag to false. Thisisso that the sprite no longer ‘exists to the player.

Diagram:

Until Sprites Depleted

A

Collision

Sprite Position Collision
R
Found?

Detector

No
Collisions
Detected.

Interface: This function receives two const int asinput. The integers are
the X and Y position of the current SPRITE_OBJ. The sprite's position is
tested to see if it’s colliding with any other SPRITE_OBJs. If the current
sprite is colliding with another sprite, test that sprite to see if it harms the
current sprite. If so, hide the current sprite by setting its visibility flag to
false, and set the sprite’s solid flag to false as well (so that the user cannot
interact with is by accident).

Issues: If the sprite that the current sprite is colliding with does not have
its solid flag set, there will be no way to detect if that sprite is colliding
with the current sprite. So regardless of whether the sprite should harm
the current sprite, it will not.

Constraints: It might be considered to first query all sprites to determine
which actually could harm other sprites. Once they are determined, call
the collision detection function to see if a collision occurred. This may
speed the algorithm up a bit.

It may also be considered to destroy the sprite instead of simply hiding it

from view. This will free up memory and speed up certain processes
(collision detection, etc.).

103

Logic_Killed_By_Player:

Narrative: This function receives the X and Y position of the current
sprite. The collision detection function is called to see whether or not the
player is colliding with this sprite. If so, the current sprite is queried to
determine if the player will harm it. If the player cannot harm the sprite,
then the function exits. If the player can harm the sprite, smply set the
sprite’s visible flag to false, and its solid flag to false. Thisis so that the
sprite no longer ‘exists' to the player.

Diagram:

Player’s Position (Global)

A 4

Collision

Sprite Position Collision
L
Found?

Detector

Harmed By
Player?

Interface: This function receives two const int asinput. The integers are
the X and Y position of the current SPRITE_OBJ. The player’s position is
tested to see if it’s colliding with this SPRITE_OBJ. If the player spriteis
colliding with the current sprite, test that sprite to see if the player can
harm it. If so, hide the current sprite by setting its visibility flag to false,
and set the sprite's solid flag to false as well (so that the user cannot
interact with is by accident).

Issues: If the sprite that the player sprite is colliding with does not have
its solid flag set, there will be no way to detect if that sprite is colliding
with the player sprite. So regardless of whether the player should harm
the current sprite, it will not.

Constraints: It might be considered to first query all sprites to determine
which actually could harm other sprites. Once they are determined, call
the collision detection function to see if a collision occurred. This may
speed the algorithm up a bit.

It may also be considered to destroy the sprite instead of simply hiding it

from view. This will free up memory and speed up certain processes
(collision detection, etc.).

104

Logic_Score:

Narrative: This function receives the X and Y position of the current
sprite. The collision detection function is called to see whether or not the
player is colliding with this sprite. If so, the current sprite is queried to
determine if the player’s score will be affected by it. If the players scoreis
not affected then the function exits. If the player’'s score is affected, the
player’s score is updated (by some fixed amount). Most likely this sprite
will aso be eliminated but that will not always happen.

Diagram:

Player’s Position (Global)

Collision

Sprite Position Collision
R
Found?

Detector

Interface: This function receives two const int as input. The integers are
the X and Y position of the current SPRITE_OBJ. The player’s positionis
tested to see if it’s colliding with this SPRITE_OBJ. If the player spriteis
colliding with the current sprite, test that sprite to see if the player’s score
is affected by it. If so, update the player’s score.

I ssues: If the sprite that the player sprite is colliding with does not have its
solid flag set, there will be no way to detect if that sprite is colliding with
the player sprite. So regardless of whether the player’s score should be
affected by colliding with the current sprite, it will not.

Constraints: It might be considered to first query all sprites to determine
which actually could harm other sprites. Once they are determined, call
the collision detection function to see if a collision occurred. This may
speed the algorithm up a bit.

It may also be considered to destroy the sprite instead of simply hiding it

from view. This will free up memory and speed up certain processes
(collision detection, etc.).

105

Logic_Sound:
Narrative: This function receives the X and Y position of the current
sprite. Based on these positions, the collision detection function is called
to determine if the player is colliding with the current sprite. If so, the
sprite is queried to see if the sound index has been set. If it has been set,
the sound that the index corresponds to will be played.

Diagram:

Player’s Position (Global)

A

Sound
Defined?

Collision
Found?

Sprite Position Collision
— >

Detector Object.Play_Sound

Interface: Thisfunction receives aconst POINT asitsinput. The POINT
is the X and Y coordinate of the current SPRITE_OBJ. The collison
detection function is called with respect to this coordinate to determine if
the player is interacting with this SPRITE_OBJ. If the player is colliding
with the current sprite, the sprite is queried to see if the sound index has
been set. If the sound index has been set, the sound corresponding to that
index will be played. The function then exists.

I ssues: If the sprite that the player sprite is colliding with does not have its
solid flag set, there will be no way to detect if that sprite is colliding with
the player sprite. So regardless of whether a sound should be played when
colliding with the current sprite, it will not.

Constraints: It might be considered to first query all sprites to determine
which actually could harm other sprites. Once they are determined, call
the collision detection function to see if a collision occurred. This may
speed the algorithm up a bit.

106

Randomizer:
Narrative: Thisfunction receives a seed for itsinput. The seed is used to
[imit the number returned from this function. The function makes acall to
rand (defined in stdlib.h). That function generates a large positive random
number. The seed sent in to our function will take the modulus of that
number with the seed to cut down the range of the number. The new
number is returned.

Diagram:
Seed

Interface: This function receives a const int as its input. The integer is
used to limit the range of the random number generated by the rand
function (rand is found in stdlib.h). Using the modulus operation with
regard to the integer sent in cuts down the number returned from rand.
The calculated number is returned out of the function as a const int.

|ssues: None.

Constraints: None.

107

Collision:

Narrative: This function receives two X and Y coordinates two widths
and two heights. The first coordinate is the position coordinate of the
current sprite being tested. The second it the position coordinate of the
sprite its being tested against. Based on these coordinates, and the width
and height for each sprite, this function will determine if the two objects
are colliding. If they are colliding, a predefined constant is returned
representing what direction the collision occurred from.

Diagram:

Sprite #1 Position, Width, and Height

Return -1

Sprite#2 Position, Width, and Height

Return
Top

Compare Positions Yes

And Zones

Sprites
Overlapping?

From Bottom?

Return Left

Interface: This function receives two const POINT, and four const int as
input. The two POINTS are the position coordinates of the SPRITE_OBJ
being tested and the SPRITE_OBJ its being tested against. The four
integers are the width and height values of each SPRITE_OBJ. Using
these values, this function will test if the first SPRITE_OBJ is overlapping
with the second SPRITE OBJs collison area. If it is overlapping, a
constant representing top, bottom, left and right is returned. The return
typeisaconst int.

Issues. If the collison zones are very small, and the velocity of the
current sprite is very large, the sprite may pass right through another
sprite. This is because the current velocity makes the current sprite step
right over the sprite its being tested against.

108

Constraints: There definitely should be a way of determining what side
of the object the collision took place on. In some games a collision from
the top kills the enemy and a collision from the side kills the player. This
isimpossible to determine unless the direction of the collision is returned.

109

Softwar e I nterface Description
External Machine Interfaces

We have no plans to support any external machine interfaces.

External System Interfaces

We have no plans to support any external system interfaces.

Human Interface

The interface that we have chosen to use will be designed in Microsoft
Visua Basic Version 6. The interface will utilize many of the common
controls included in Visual Basic, and the mgority of windows-based
applications. The interface will be a graphical user interface that provides
the user with a quick and easy way to position objects and design and
build a two-dimensional game. For a more detailed description of the
interface, please refer to the User Interface Design section found below.

110

User Interface Design

Description of the User Interface
Description

The interface will have on the left side of the screen, a treeview control,
which displays elements in a directory tree structure. Placed in this
treeview will be categories with which the sprites that user has input will
be categorized. The user will be able to click on these categories and see
the expanded list of the sprites that are under that particular category. In
addition the user will be able to click on a particular sprite and bring up all
of that sprite’s properties. When the sprite wizard is up, the right side of
the screen will be the sprite’s image, and an area where that image can be
placed on the screen, onto any of the particular backgrounds that the user
has chosen. There will be a standard menu bar that is present on nearly
every Microsoft Windows application, along with a toolbar for quicker
access to the commands embedded under the various menu options.

111

Screen Images

The Level Editor:

. GameForge
File Edit Creale Help

Dl@lnl X Il EI ﬁl}(lﬂl |Background Layer j

Player

Creatures
Bowezer

[Status [2/6/00 [B32PM | 4

112

New Sprite Wizard: Attributes

New Sprite Wizard: Movement

" R
® R
n.
r
- R
7
|
|

113

New Sprite Wizard: Animation main screen

Anirnation

. liEfine
Bouding By

Arimatet |
IKenn}ll ; ﬂ

Rhbie |

ﬁen‘ma
Animation

<Back | Mew>

114

New Sprite Wizard: Animation - Select BMP

Selection Zoom
DOptionz
175=160

Save LCancel I

Bestore Onginal Settings |

~Top
Top
|2 =]
= |
Left _-’,f_! Right
= e =
|3 = ; i LA
Eu:u-th:um
i g
Size 10
136137

115

New Sprite Wizard: Animation Main Screen (with BMP)

Define
Bounding Box

Animatel I
IKenny _:I

Animation Wizard

Add Remove
Animation Animation
Selection

Add Frame I Delete Frame |

(_| P i 5 |_)i < Back | Hext = I

116

New Sprite Wizard — Set Collision Area:

. Collizsion Area Wizard

Define Collision Area |

~Top

- fof i

117

Objects and Actions

Treeview Control:

The Treeview Control will be used to alow the user to see what
sprites are currently loaded into the application. The sprites will be
categorized and be divided into different branches that can be
expanded or collapsed. When a particular user selects one of the
loaded sprites, the user will be able to position the image
associated with that sprite.

MiniM ap:

The MiniMap will allow the user to see what portion of the overall
level currently being edited is in view. It will also alow the user
to move quickly to any portion of the level, regardless of level size.

Surface Selector :

The Surface Selector is a combobox that will allow the user to
display only the surfaces of the type that is selected in the
combobox. This is useful when designing the level because there
may be multiple surfaces on the screen in a particular area. To be
able to edit/view individual objects, it will be necessary to have the
surface of that type selected.

Interface Design Rules

Eight Golden Rules of Dialog Design

ONOTOAWNE

Strive for consistency

Short cuts for frequent users
Design dialogs to yield closure
Offer information feedback
Offer ssimple error handling
Permit easy reversal of actions
Support internal focus of control
Reduce short term memory load

Data Dlspl ay Guidelines

grODNE

Consistency of display

Efficient assmilation of information by the user
Minimize memory load

Compatibility between data entry and display
Flexibility of user control

118

Menu Guidelines

1.
2.
3.

No oA

Shallow, wide menus preferred over tall deep menus

User has access to al relevant items without referencing a manual
Logical item presentation sequence

a. Numeric

b. Alphabetic

Icons are harder to recognize than text during visual search

Don’t assume the user will notice cues like color or border changes
Allow key presses for frequent users

Ensure consistent navigation

Screen Formatting Guidelines

ourMwNE

Focus on readability and user acceptability
Don't clutter the screen (white space is free)
Choose pleasing color combinations

Use full width of the screen

Keep only relevant info on the screen

Use device codes to move cursor, clear lines, etc.

Guidelines for Effective Use of Color

agprp®ODNE

Use color to group similar items

Use colors with connotation if reasonable (red means stop, etc.)
Limit the total number of colors (7 +/- 2)

Watch out for bad color combinations (red/blue, blue/black)
Keep in mind people may view it in monochrome

Prompt and Response Guidelines

Nog,AWNE

Use upper/lower case letters (for emphasis as needed)
Tasks should be interruptible without loss

Give user ameans of controlling multiple screens
Allow user to verify and edit responses

Give user areasonable amount of time to respond
Compose in screen rather than lines

When long delays are inevitable, put up an indicator

119

Components Available

See the MSDN Library for Microsoft Visual Basic 6.0 for a complete list of all
components available.

UIDS description

Microsoft Visual Basic 6.0 is a progranming language that alows the user to
quickly create complex applications for Windows, without al of the overhead
required using other languages. It allows the user to pick from alist of practically
thousands of controls, and draw them on the screen. These controls then have
certain events, methods, and properties that can be set. When a particular event
fires, the code associated with that event is executed. See the MSDN Library for
Microsoft Visual Basic 6.0 for a complete list of all components available,
including each component’ s properties, methods and events.

120

Restrictions, Limitations, and Constraints

Performance/Behavior |ssues

GameForge is designed to be compatible with the Microsoft Windows 9x
operating system. Microsoft Windows NT 4.0 and earlier versions will not be
supported (Windows NT only supports Microsoft DirectX up to version 3.0.
Directinput had not been implemented at this time, making this version of
DirectX very limited.) Microsoft Windows 2000 should also be compatible, but
is not directly supported.

GameForge also requires Microsoft DirectX 7.0 or above. Users may aso want
to obtain the DirectX 7.0 SDK if they plan on expanding the GameForge library
files beyond their original scope.

GameForge also requires the Microsoft Visual C++ 6.0 compiler. GameForge's
V C++ code may be compilable using Borland or some other VV C++ compiler, but
functionality is not guaranteed.

Program Limitations

GameForge does not directly support two players. Thisincludes two player
simultaneous and two player turn based.

GameForge supports only limited mouse support. Users will only be able to
control player movement. Userswill not be able to select specific spritesto gain
control over that sprite.

GameForge only supports 800 by 600 resolution and 640 by 480 resolution, both
at 16 bit color depth.

GameForge only supports WAYV files for use in sound effects. Any other type of

audio file (i.e. MIDI, MP3, etc.) will have to be converted to WAV format for use
in GameForge.

121

Testing | ssues

Classes of Tests
Unit Testing

Individual engine components (Draw Handler, Sound Handler, etc.) will
be tested separately. Do to the GameForge engine’'s modular design, there
is no need for test beds. All components can be tested through the Object
Handler.

The interface will be unit tested in three parts:
= Level editor
= Wizards
= Fileexporting

All unit testing will be done in White Box fashion.
Integration Testing

Combined engine components will be tested as a whole. To maintain
maximum control over the testing criteria, all data files will be made
specifically for testing purposes.

The level builder will be tested to ensure proper communication between
the interface and the database.

High-Order Testing

The High-Order testing will be performed on the complete, integrated
system. “In-house” beta testing will take place at this time and PA
Software staff members will attempt to construct fully functional games
using GameForge.

Public Beta Testing

Parties outside PA Software will be asked to help with the fina testing
phase. Each beta tester will be given a copy of the software, and the
preliminary help files (these will not be completed until immediately prior
to GameForge's final build.) Beta testers will be expected to submit bug
reports and any opinions they may have concerning the software
(especidly the interface layout.)

122

Expected Software Response

Interface

Engine

Some issues are expected for more complicated game designs.
Flawless exporting to engine.

Fair performance on Pl and better machines
Errorless compilation of code.
Errorless/Low error execution of code without alteration.

Performance Bounds

General Hardware Requirements

Processor: Pl 200 MHz
System Memory: 32 MB RAM
Video Memory: 4 MB VRAM

Interface Performance Requirements

Engine

Robust help and tutorial files: The windows based help files must be
detailed enough to assist users, but written clearly enough to maximize
understanding, especialy for novice users. They must be as complete as
possible, to assist advanced GameForge users seeking specific solutions.
Tutorials must be clear and complete, and must not assume anything of the
user. Graphical cues may be helpful. The GameForge help system must
include a menu structure for more casual searching, as well as a competent
search engine too allow users access to specific data.

Flawless exporting to engine: All files exported from the level builder
must be free of errors. Any errors generated at this point may result in
code that is not executable.

Performance Requirements

Avg. FPS: Games utilizing the GameForge engine must retain an average
number of frames per second (number to be finalized at a later time) using
the minimum requirements.

Mem usage: Due to the costly memory usage of uncompressed bitmaps
and wave files (which GameForge uses), unused memory must be freed
properly once it is no longer being used. File paging from the hard drive
is unacceptable (if the user has the minimum system requirements.)

123

Errorless compilation of code: There should be zero errors when

| dentification

compiling code that has been exported from the GameForge level builder.
This only includes code that has been compiled immediately after being
exported from the level builder. It is the user’s responsibility to care for
their code after they have altered it.

Errorless/Low error execution of code without alteration: Some ambitious
game designs may not run perfectly or with all features intact after being
exported from the GameForge level builder. However, the code should
still be executable with reasonable results.

of Critical Components

Interface

Engine

Main Level Editor — This is the main interface, and displays a graphical
representation of the game/level a user is designing. A tree-view of al
created objects is aso represented here. All wizards and other functions
can be accessed from this interface.

Input Wizards — There are a number of wizards provided to guide the
novice user through the necessary steps for game development. They
range from sprite generation, to game logic, to input devices. The wizards
interact directly with the user interface.

Exporting GameForge Files (.gmf) — Files are stored with a unique
extension used exclusively by the GameForge system. These files are
similar to .cpp files but will not be compilable. They are intended as a
temporary storage during game creation. They are generated by the user
interface.

Exporting VC++ Files (.cpp) — Finished projects can be saved as .cpp files
that can be compiled with Microsoft’s Visual C++ compiler to create an
executable file for the game. The VC++ engine runs these files.

Object Handling: The Object handler isthe ‘hub’ of the engine, and
controls all data flow through the program.

Draw Handling: The Draw Handler controls all image processing. All
surfaces are created here.

Sound Handling: The Sound Handler controls al sound processing. All
sound is done in a streaming fashion.

124

Input Handling: The Input Handler controls al input processing. All user
defined movement controls are defined here.

Logic Handling: The Logic Handler controls al game logic. Sprite
attributes are passed into the logic handler, and are interpreted based on
world attributes. Thisincludes collision detection, gravity, pathing, etc.

125

Appendices

Requirements Traceability Matrix

Requirement: Interface easy to use by novices and advanced users.
Design: The interface has been designed for maximum functionality, but with the
user’s comfort in mind.

Requirement: Creature Al reasonably advanced.
Design: The new Logic Handler includes pathing and attribute functions that
simulate creature Al.

Requirement: Exported code from the level builder is immediately compilable.
Design: All exported code will be compilable, and most code will be executable
aswell (for less complicated game designs.)

Packaging and Installation I ssues
Installation Package

GameForge will utilize Wise Installer 8.0 from Wise Solutions, Inc. asits
software installation package. Wise Installer was chosen because of the
design team’ s familiarity with the software. Licensing negotiations are
still underway, and should they fall through, PA Software currently retains
a software license for Install Shield.

Installation of GameForge will be completely automated, and appropriate
Program Groups and Icons will be created as per the user’ s request.
GameForge will also include an uninstall feature, to remove itself from
any local machines.

Product Manual

GameForge will ship with a detailed user manual, covering the following
topics:

Installation / Removal

Introduction to the software

General usage instructions

A tutorial detailing the creation of a simple game, from start to
finish

126

The GameForge software package, in conjunction with the website, will
include an extensive list of help files and tutorials. The manual is not
meant to be areplacement for these facilities, especially where
troubleshooting and question lookup are concerned, but is instead intended
to assist the user in quickly familiarizing themselves with GameForge.

Product Packaging and Distribution

GameForge will ship with avisually pleasing CD jewelcase, containing
the GameForge logo, and “at a glance” information about GameForge.
The manual will fit nicely into the CD jewelcase cover. The manual and
packaging artwork are only available when ordering from the GameForge
website, for anominal fee.

GameForge will be distributed via the GameForge website, where it will
be available for free download. The software itself will have a splash
screen that can only be bypassed after an undetermined number of
seconds. This screen can be bypassed if the copy of GameForgeis
licensed via the GameForge website, for a nominal good-will donation.

Design Metricsto Be Used
PA Software will utilize two design metrics during the GameForge devel opment
process.

Function Point
CoCoMo

These will be used in estimating costs and development time. For more detailed

information regarding these estimates, see the Software Project Plan document.
Supplementary Information

Additional Information can be found at:

GameForge website: www.patheti cattempts.com/gameforge
Pathetic Attempts website: www.patheticattempts.com

127

