
Webots Robots Guide
release 6.0.0

Copyright c© 2013 Cyberbotics Ltd.

All Rights Reserved

www.cyberbotics.com

January 3, 2013

2

Permission to use, copy and distribute this documentation for any purpose and without fee is
hereby granted in perpetuity, provided that no modifications are performed on this documenta-
tion.

The copyright holder makes no warranty or condition, either expressed or implied, including
but not limited to any implied warranties of merchantability and fitness for a particular purpose,
regarding this manual and the associated software. This manual is provided on an as-is basis.
Neither the copyright holder nor any applicable licensor will be liable for any incidental or con-
sequential damages.

The Webots software was initially developed at the Laboratoire de Micro-Informatique (LAMI)
of the Swiss Federal Institute of Technology, Lausanne, Switzerland (EPFL). The EPFL makes
no warranties of any kind on this software. In no event shall the EPFL be liable for incidental or
consequential damages of any kind in connection with the use and exploitation of this software.

Trademark information

AiboTMis a registered trademark of SONY Corp.

RadeonTMis a registered trademark of ATI Technologies Inc.

GeForceTMis a registered trademark of nVidia, Corp.

JavaTMis a registered trademark of Sun MicroSystems, Inc.

KheperaTMand KoalaTMare registered trademarks of K-Team S.A.

LinuxTMis a registered trademark of Linus Torvalds.

Mac OS XTMis a registered trademark of Apple Inc.

MindstormsTMand LEGOTMare registered trademarks of the LEGO group.

IPRTMis a registered trademark of Neuronics AG.

PentiumTMis a registered trademark of Intel Corp.

Red HatTMis a registered trademark of Red Hat Software, Inc.

Visual C++TM, WindowsTM, Windows 98TM, Windows METM, Windows NTTM, Windows 2000TM,
Windows XPTMand Windows VistaTMare registered trademarks of Microsoft Corp.

UNIXTMis a registered trademark licensed exclusively by X/Open Company, Ltd.

Foreword

The purpose of this guide is to give some clues for starting up programming some specific robots
such as the AIBOTMrobot.

3

4

Disclaimer

These examples are not maintained. It is possible that this document contains obsolete informa-
tion in comparison with the last Webots version.

5

6

Thanks

Cyberbotics is grateful to all the people who contributed to the development of Webots, Webots
sample applications, the Webots User Guide, the Webots Reference Manual, and the Webots
web site, including Yvan Bourquin, Fabien Rohrer, Jean-Christophe Fillion-Robin, Jordi Porta,
Emanuele Ornella, Yuri Lopez de Meneses, Sébastien Hugues, Auke-Jan Ispeert, Jonas Buchli,
Alessandro Crespi, Ludovic Righetti, Julien Gagnet, Lukas Hohl, Pascal Cominoli, Stéphane
Mojon, Jérôme Braure, Sergei Poskriakov, Anthony Truchet, Alcherio Martinoli, Chris Cianci,
Nikolaus Correll, Jim Pugh, Yizhen Zhang, Anne-Elisabeth Tran Qui, Grégory Mermoud, Lu-
cien Epinet, Jean-Christophe Zufferey, Laurent Lessieux, Aude Billiard, Ricardo Tellez, Gerald
Foliot, Allen Johnson, Michael Kertesz, Simon Garnieri, Simon Blanchoud, Manuel João Fer-
reira, Rui Picas, José Afonso Pires, Cristina Santos, Michal Pytasz and many others.

Moreover, many thanks are due to Cyberbotics’s Mentors: Prof. Jean-Daniel Nicoud (LAMI-
EPFL), Dr. Francesco Mondada (EPFL), Dr. Takashi Gomi (Applied AI, Inc.).

Finally, thanks to Skye Legon and Nathan Yawn, who proofread this guide.

7

8

Contents

1 Using the IPRTMrobots 11

1.1 Introduction . 11

1.2 Running the simulation . 11

1.3 Understanding the simulation model . 12

1.3.1 The different types of models . 13

1.3.2 The model parameters . 13

1.3.3 Modifying the model . 14

1.4 Different applications . 16

1.4.1 Controlling the IPR model using Neuronics software 16

1.4.2 Controlling the IPR model using the Neuronics programming library . . . 17

1.4.3 Controlling the IPR model using a TCP/IP client 17

1.4.4 Controlling the IPR model using a standard Webots controller 17

1.5 Troubleshooting . 17

9

10 CONTENTS

Chapter 1

Using the IPRTMrobots

The goal of this chapter is to explain how to use the Webots model of the IPR robot. The IPR is
a light-weight grip arm robot developed by Neuronics (www.neuronics.ch), which has 6 degrees
of freedom. You can use the Webots model exactly as you would use the real robot, in order to
try your IPR applications without risk.

1.1 Introduction

We will assume that you already have a good knowledge of Webots and have followed the tuto-
rials for modelling and programming.

For additional IPR documentation such as the robot specifications, the communication protocol
specification or the use of the control programs, please refer to the documentation provided on
the Neuronics website and in particular to the IPR user manual.

1.2 Running the simulation

Launch Webots and open the ipr_cube.wbt world, which contains a model of the IPR robot
(figure 1.1) on a table. All of the IPR worlds are located in the projects/robots/ipr/
worlds subdirectory. If you run the simulation, the robot will move the red cube on the top of
the black box.

There are other worlds related to the IPR robot that you can use:

• In ipr_collaboration.wbt you will find a demo using two IPR robots which col-
laborate to move cubes over a longer distance.

• In ipr_factory.wbt you will find another demo using two IPR robots which grab
industrial pieces from a conveyor belt and place them into slots.

11

12 CHAPTER 1. USING THE IPRTMROBOTS

Figure 1.1: The ipr cube.wbt world

• The ipr_models.wbt world contains the four different IPR models available in We-
bots, so that you can reuse them in your own simulations.

For each model of the IPR robot, you can access its control panel () by selecting the robot and
choosing Show robot window in the Simulation menu, or simply by double-clicking the robot
(if the robot window is already open, double-clicking the robot opens the scene tree window
instead). The control panel contains two different parts:

1. At the top you have the controller associated with the robot (which should be ipr_
serial for the standard worlds).

2. The lower part contains a slider for each motor of the IPR robot, next to the motor’s name.
You can use these sliders to manually move the IPR robot. Please note that you will need
to be running the simulation for the motors to be able to move when you change the slider’s
position.

You may notice that even though in the real robot there is only one motor for the gripper, in the
control panel (and scene tree as well) there are two motors associated with it (left gripper
and right gripper). This is due to Webots’ modelling of the gripper as two servos; this is
totally transparent when controlling this motor with the controller.

1.3 Understanding the simulation model

As you can see on the Neuronics web site, there are many different types of IPR robots. Webots
provides you with models of four of these types. If your desired type is not implemented, you

1.3. UNDERSTANDING THE SIMULATION MODEL 13

can easily modify one of these to model it.

1.3.1 The different types of models

The IPR HD6M180 model

This model, which is equipped with a ”motor 1” of type ”normal” and a gripper, is the one used
in the ipr_cube.wbt world (figure 1.1). This is the standard IPR robot.

The IPR HD6Ms180 model

This model, which is equipped with a ”motor 1” of type ”strong” and a gripper, is the one used in
the ipr_collaboration.wbt world (). The differences between the normal and the strong
versions of the same model are mainly the torque of the motor 1 and the size of the pedestal.

The IPR HD6M90 model

This model, which is equipped with a ”motor 1” of type ”normal” and a gripper, is the one used
in the ipr_factory.wbt world ().

The IPR HD6Ms90 model

This model, which is equipped with a ”motor 1” of type ”strong” and a gripper, is one of the
models contained in the ipr_models.wbt world ().

1.3.2 The model parameters

Open the scene tree window, then open the Robot node. This node represents the IPR robot.
One of the last fields of this node is called controllerArgs, and is used to pass arguments
to the robot controller.

The ipr_serial controller accepts several arguments, separated by blank spaces:

• The first one can be either ”normal” or ”strong”, in order to determine the type of motor 1.
This argument is mandatory.

• The second argument is optional, and is used to specify a port number on which the TCP/IP
server will listen for an incoming connection. If this argument is omitted, the TCP/IP server
will connect using the standard port number. To find this number, you can either look at
the ipr_tcpip.c file or launch a simulation in which you omit this argument, and look
at the server’s messages in the Webots log window.

14 CHAPTER 1. USING THE IPRTMROBOTS

• The third argument is also optional; it specifies the name of a client program which should
be launched by the controller. Note that the name of the program must be preceded by its
relative path to the ipr_serial controller directory.

• The rest of the arguments are also optional, and are used only after the third argument (the
name of the client program). They will be passed as arguments to the client program. All
arguments placed after the name of the client program will be its arguments.

Please note that it is important to respect this order for the arguments.

For an example of the use of these arguments, please have a look at the corresponding node
in one of the demo worlds (either ipr_cube.wbt, ipr_collaboration.wbt or ipr_
factory.wbt).

1.3.3 Modifying the model

As the real IPR robot may show some small differences from the given models, it could be useful
to tune the given models to your needs.

Most of the parameters that you would need to change are in the code of the controller. You
can access the corresponding code sections easily by searching for the modification tag in the
code. These modification tags are shown in parenthesis to the right of the titles of the following
subsections.

Modifying the sensors (SENSORS MODIFICATION)

If you want to change the way a particular sensor is responding, you will need to change the
corresponding lookup table of the sensor node in the scene tree. For this modification, you will
not have to change the source code of the controller.

If you want to add, remove or change the type of a sensor, you will first have to change the
corresponding sensor node in the scene tree. Then you will have to make the corresponding
changes in the source code of the controller.

For more information on how to modify the source code of the controller, please refer to the code
sections identified by the SENSORS MODIFICATION tag in ipr_serial.c.

For an example on how to add a sensor, please see the ipr_factory.wbt world.

Modifying the torque values (TORQUE MODIFICATION)

All the models are initialized using the optimal values, both for the normal and the strong mod-
els. Nevertheless, if you want to modify the torque of the motors you will have to change the
corresponding values in the controller source code.

1.3. UNDERSTANDING THE SIMULATION MODEL 15

For more information on the values used and on how to modify the torque values, please refer to
the source code section identified by the TORQUE MODIFICATION tag in ipr_serial.c.
For more information on the standard values for torque, please refer to the IPR user manual.

Adapting the support of the model

Affixing the robot to the ground with a big plate of metal, as in the models, is probably not
the most common way to do things with the real robot. As you can see in the demo worlds,
the models can be placed on a table (). If you want to place a model on a table, the easiest
way to do it is to copy an entire Robot node from a provided world (either ipr_cube.wbt,
ipr_collaboration.wbt or ipr_factory.wbt) into a new world, and then replace the
whole robot with the model you need.

Please note that when we talk of the ”whole robot”, this means the PEDESTAL, LOGO and
ROBOT nodes from the children node, and also all the unnamed nodes from the bounding-
Object field of the Robot. All the other nodes are part of the support of the model. Please
also note that in order to avoid DEF/USE problems, it is highly recommended to do this modi-
fication by editing the corresponding Webots worlds as text files, and to perform copy and paste
operations.

If you want to adapt the table of your model, it is quite simple. The Robot position is defined
as the center of the base of the model ().

• If you want to move the robot and the table position, simply change the Robot position.

• If you want to move the robot position on the table, simply move the model of the table
around the robot.

• If you want to change the properties of the table (like its height, its length, etc.), simply
adapt the model of the table to your needs and adapt the Robot position to these changes.

Please note that in order for the model to work properly, you must apply the same changes both
to the table model and to its corresponding boundingObject.

Finally, there are a few things you must be aware of when creating a new support for your model:

1. As the table is part of the Robot, and as a Robot node can represent only one IPR robot,
it is not possible to put more than one model on the same table. Nevertheless, you can
create as many tables of varying size as you want.

2. As both the pedestal of the IPR robot and its support are part of the same node, they have
the same Physics node too. So, when setting values for this node, you will have to take
these two parts into account. Please note, for the weight parameter, that the weight of
the pedestal alone is 1270/1430 [g] for the normal/strong models respectively.

16 CHAPTER 1. USING THE IPRTMROBOTS

3. You can use the USE functionality of Webots to create copies of your IPR model. This
allows you to easily create exact copies in only a few clicks, in a flexible manner (the
modifications applied to the original model are also applied to the copy).

For more information on working with multiple IPR robots, please see the ipr_collaboration.
wbt world and the ipr_collaboration.c client file.

Modifying the node fields

The IPR models were already given the optimal values for these parameters, and we advise you
not to change them. Nevertheless, it may be useful to do so, for example if you want to model a
different robot.

Modifying the model more deeply (MODEL MODIFICATION)

If you want to make more significant changes to the models, like changing the gripper’s type
or creating a new model, you will have to change the scene tree organization, and various parts
of the code. This is a complex task that will require you to understand the model, and most of
the controller source code as well. During the modification of the model you will probably also
modify some parts which have been discussed in the previous subsections.

For more information on the controller source code, please start by reading the header files,
especially ipr_protocol.h, then refer to the parts of the code in ipr_serial.c identified
by the MODEL MODIFICATION tag.

1.4 Different applications

There are various ways of using the IPR models within Webots. Depending on what you want to
do, you will have to choose the most suitable one.

1.4.1 Controlling the IPR model using Neuronics software

You can use the same software, for example Katana4D, that you are using to control your real
IPR robot to control the Webots model. To do this, you only need a version of this software with
the capability to connect through TCP/IP. As we have seen previously, to configure Webots you
only have to choose the correct port number for the server. To configure the Neuronics software,
you only need specify the same port number and the IP address corresponding to the computer
running Webots. Then, controlling your model is as easy as launching your world in Webots and
running the simulation. Now you can use the Neuronics software exactly as you would do when
controlling a real IPR robot.

1.5. TROUBLESHOOTING 17

Please note that if you are running both programs on the same computer, the IP address will be
127.0.0.1 (the address of the ”local host”).

In order to find out if your version of the Neuronics software has the TCP/IP option, please refer
to your software specifications. For more information on how to use the Neuronics software,
please refer to the corresponding User Manual.

1.4.2 Controlling the IPR model using the Neuronics programming library

Neuronics also provides programming libraries, for example the KNI library. If you want to use
them to control your Webots model, it is as simple as linking in these libraries at compilation
time, either dynamically or statically, and using the desired functions directly in your Webots
controller code. Please note that in order to use a given library, your program must be written in
a compatible language. This means that depending on the language used by the library you want
to link, you may have to change the language used by your Webots controller program (e.g. C
to C++). Please also note that these libraries are not provided with Webots, and you will have to
install them separately before using them.

1.4.3 Controlling the IPR model using a TCP/IP client

You can also use a TCP/IP client program to directly control the Webots model. This is exactly
what has been done to create the included demonstrations. If you want to use this method to
control your model, you will have to write a client controller, put it in the clients subfolder of
the ipr serial controller and compile it. You will also have to send the name of your client to
the controller using controllerArgs, as seen earlier in this chapter. Then, simply run your
Webots world and the client will be launched.

1.4.4 Controlling the IPR model using a standard Webots controller

The ipr_serial controller provided by Webots implements a TCP/IP server. This is just one
of the many possible ways to use the interface provided by ipr_serial.h to control the IPR
model. You can easily replace the TCP/IP server by your own control code and use this interface
to suit your needs.

For more information on the interface provided, please see ipr_serial.h. For an example
of how to use this interface, please see ipr_tcpip.c.

1.5 Troubleshooting

The model is unable to grab a given object

18 CHAPTER 1. USING THE IPRTMROBOTS

If your are not able to grab an object because it is too ”slippery”, you will have to increase its
coulombFriction value, which can be found in its Physics node.

The model and base tip over when the robot moves

Webots works with a physics simulator, so consider the stability of your base when creating it.
To improve the stability of your base, you can either increase its mass value (in the Physics
node), add a weight to compensate for the weight of the IPR robot (as in ipr_cube.wbt or
ipr_factory.wbt) or change the positions of the legs of the table.

The model crashes when it should not

The crash detection used in the IPR model relies on the crash detection used by the real IPR
robot. The sensitivity of the crash detection is given by the parameters crashlimit and
crashlimit linear. If your Webots model crashes too often, please try to change these
parameters. For instructions on how to modify these parameters, please refer to the section on
the ”S command” in the IPR user manual. For more precise information on crash detection,
please refer to the corresponding chapter of the IPR user manual.

1.5. TROUBLESHOOTING 19

20 CHAPTER 1. USING THE IPRTMROBOTS

	Using the IPR™robots
	Introduction
	Running the simulation
	Understanding the simulation model
	The different types of models
	The model parameters
	Modifying the model

	Different applications
	Controlling the IPR model using Neuronics software
	Controlling the IPR model using the Neuronics programming library
	Controlling the IPR model using a TCP/IP client
	Controlling the IPR model using a standard Webots controller

	Troubleshooting

