
IAR C COMPILER FOR
THE 78000 GUIDE

 ii

DISCLAIMER
The information in this document is subject to change without notice.
While the information contained herein is assumed to be accurate, IAR
Systems assumes no responsibility for any errors or omissions.

COPYRIGHT NOTICE
No part of this document may be reproduced without the prior written
consent of IAR Systems. The software described in this document is
furnished under a license and may only be used or copied in accordance
with the terms of such a license.

Ó Copyright 1994 IAR Systems AB
Ó Copyright 1994 NEC Electronics Europe GmbH

TRADEMARKS
C-SPY, ICC, and Micro-Series are trademarks of IAR Systems AB.
MS-DOS is a trademark of Microsoft Corp.
UNIX is a trademark of Bell Laboratories.
MS-DOS/16 Mbyte is a trademark of Rational Systems Inc.

Second edition: July 1994
Part no: ICC78000–2

IAR Systems AB
Islandsgatan 2
P.O. Box 23051
S-750 23 UPPSALA
SWEDEN

 iii

ABOUT THIS GUIDE

This guide describes how to install and use the IAR C Compiler for the
NEC mPD78000 family of microprocessors.

This guide is divided into two parts: the first part, IAR 78000 C Compiler,
describes those aspects of the C compiler that are specific to the 78000.
The second part, IAR C Compiler – General Features, describes features
common to all IAR C Compilers.

IAR 78000 C COMPILER
This part consists of the following chapters:

The Introduction describes the main features of the IAR C Compiler, and
shows how it fits in with the other IAR development tools.

Getting started then shows how to install the C compiler and its associated
files, and explains the function of these files.

Using the C compiler describes how to run the 78000 C Compiler, and gives
information about file formats it uses.

The Tutorial illustrates how you might use the C compiler to develop a
series of typical programs, and illustrates some of the compiler’s most
important features. It also describes a typical development cycle using the
C compiler.

Configuration then describes how to configure the C compiler for different
requirements.

Data representation describes how the compiler represents each of the C
data types.

78000 language extensions describes the extended keywords, #pragma#pragma
keywords, and intrinsic functions specific to the 78000 C Compiler.

Extended keyword reference then gives reference information about each of
the extended keywords.

ABOUT THIS GUIDE

 iv

#pragma directive reference gives reference information about the #pragma#pragma
keywords.

Assembly language interface describes the interface between C programs
and assembly language routines.

78000 specific command line options summary gives a summary of the
additional command line options in the 78000 C Compiler.

78000 specific command line options describes the additional command line
options in the 78000 C Compiler.

IAR C COMPILER – GENERAL FEATURES
This part consists of the following chapters:

General command line options summary gives a summary of the C compiler
command line options.

General command line options then provides reference information about
each command line option.

General C language extensions describes the C language extensions provided
for all target processors.

C library functions summary gives an introduction to the C library
functions, and summarizes them according to header file.

C library functions reference then gives reference information about each
library function.

K&R and ANSI C language definitions describes the differences between
the K&R description of the C language, and the ANSI standard.

Finally Diagnostics lists the compiler warning and error messages.

ABOUT THIS GUIDE

 v

ASSUMPTIONS
This guide assumes that you already have a working knowledge of the
following:

◆ The NEC 78000 processor.

◆ The 78000 processor assembler language.

◆ MS-DOS or UNIX depending on your host system.

It does not attempt to describe the C language itself. For a description of
the C language, The C Programming Language by Kernighan and Richie is
recommended, of which the latest edition also covers ANSI C.

CONVENTIONS
This user guide uses the following typographical conventions:

Style Used for

computercomputer Text that you type in, or that appears on the screen.

parameterparameter What you should type as part of a command.

[[optionoption]] An optional part of a command.

reference A cross-reference to another part of this user guide, or to
another guide.

In this guide K&R is used as an abbreviation for The C Programming
Language by Kernighan and Richie.

ABOUT THIS GUIDE

 vi

 vii

CONTENTS

IAR 78000 C COMPILER

Introduction 1-1
Key features 1-1
Development system structure 1-3

Getting started 1-5
Installation 1-5
Installed files 1-8

Using the C compiler 1-17
Running the C compiler 1-17
Files 1-18

Tutorial 1-21
Typical development cycle 1-22
Creating a program 1-25
Extending the program 1-28
Adding an interrupt handler 1-32
Using additional memory 1-38
Compiling and linking the C-SPY tutorial 1-40
Compiling and linking the SD78K/0 tutorial 1-41

Configuration 1-43
Introduction 1-43
Run-time library 1-44
Linker command file 1-44
Memory model 1-44
Stack size 1-51
Input and output 1-52
Heap size 1-55
Initialization 1-55

Data representation 1-57

CONTENTS

 viii

Language extensions 1-61
Extended keywords summary 1-61
#pragma directive summary 1-62
Intrinsic functions 1-63

Extended keyword reference 1-65

#pragma directive reference 1-79

Assembly language interface 1-93
Creating a shell 1-93
Calling convention 1-94
Function Return Value 1-96
Registers 1-97
Segments 1-97
Calling assembly routines from C 1-98

Segment reference 1-101

78000 Specific Command line options summary 1-113

78000 Specific command line options 1-115

78000 Specific Diagnostics 1-119

IAR C COMPILER - GENERAL FEATURES

General command line options summary 2-1

General command line options 2-5

General C language extensions 2-33

General C library definitions 2-37

C library functions reference 2-45

K&R and Ansi C language definitions 2-149

Diagnostics 2-155
Compilation error messages 2-157
Compilation warning messages 2-176

Index I

 1-1

INTRODUCTION
The IAR Micro Series is a range of integrated development tools that
support a wide choice of target microprocessors. Amongst these tools are
the IAR C Compilers – a family of powerful and fast C compilers.

The IAR C Compiler for the NEC 78000 family of microprocessors offers
the standard features of the C language, plus many extensions designed to
take advantage of the 78000’s specific facilities. The compiler is supplied
with the IAR Micro Series Assembler for the 78000, with which it is
integrated and shares linker and library manager tools.

KEY FEATURES

The IAR C Compiler for the 78000 offers the following key features:

LANGUAGE FACILITIES
◆ Conformance to the ANSI specification.

◆ Standard library of functions applicable to embedded systems, with
source license option.

◆ IEEE-compatible floating-point arithmetic.

◆ Powerful extensions for 78000-specific features, including efficient
I/O.

◆ Generation of fully ROM-compatible code without language
restrictions.

◆ Linkage of user code with assembly routines.

◆ Long identifiers – up to 255 characters.

◆ Maximum compatibility with other IAR C Compilers.

INTRODUCTION

 1-2

PERFORMANCE
◆ Very fast compilation.

◆ Memory-based design, avoiding temporary files or overlays.

◆ Single executable C compiler program file.

◆ Extensive type-checking at compile time.

◆ Extensive module interface type checking at link time.

◆ LINT-like checking of program source.

CODE GENERATION
◆ Selectable optimization levels for code speed and size.

◆ Comprehensive output options, including relocatable binary, ASM,
ASM+C, XREF, etc.

◆ Easy-to-understand error and warning messages.

◆ Compatibility with C-SPY high-level debugger, simulator and emulator
driver.

◆ Support for over 20 emulator formats.

TARGET SUPPORT
◆ Small and banked memory models.

◆ Flexible variable allocation, including SFRSFR, SFRPSFRP, and BITBIT types.

◆ Interrupt functions requiring no assembly language.

◆ A #pragma#pragma directive to maintain portability while using 78000
extensions.

INTRODUCTION

 1-3

DEVELOPMENT SYSTEM STRUCTURE

The following diagram shows how the IAR C Compiler is used as part of a
complete Micro Series development system:

User-supplied
item

Supplied with
SD78K/0

Documented in
this guide

Documented in the IAR
Assembler guide

Documented in the
NEC SD78K/0 guide

The text editor may be any standard ASCII editor, such as WordStar,
BRIEF, PMATE, or EMACS. The C compiler accepts C source files and
produces code module files, normally in the IAR proprietary Universal
Binary Relocatable Object Format (UBROF).

INTRODUCTION

 1-4

These code modules pass to the linker, XLINK, where they may be
combined with modules created with the Assembler, and library modules
either supplied as standard or created previously by the user using the
library manager, XLIB. XLINK and XLIB are supplied and documented as
part of the IAR Assembler package.

The output of XLINK is either debuggable code for use in the C-SPY
Debugger or an alternative one, or final executable code for use in the
target application. This executable code is in any one of many standard
formats for use in emulators, EPROM or ROM.

 1-5

GETTING STARTED

INSTALLATION

This chapter shows you how to install all files from the installation disks
supplied, describes the installed files themselves, and lists the file extensions
used by the system.

Your should have at least 3 MB of disk space available to install the ICC78000
C Compiler package.

INSTALLATION UNDER MS-DOS
◆ Ensure your system has MS-DOS 2.11 or higher.

◆ Insert the installation disk into the floppy disk drive and type:

A:\INSTALLA:\INSTALL R

The startup screen is displayed:

GETTING STARTED

 1-6

◆ Press R. You will then be prompted to enter the path for installing the
IAR subdirectories and files:

By default the files are installed in C:\IARC:\IAR.

◆ Edit the path, or press R to use the default.

The installation program then decompresses the contents of the installation
disks, prompting you for each additional disk.

GETTING STARTED

 1-7

When decompression is complete, you will see a display of the default paths for
each sub-directory into which the files will be installed.

You may edit any of the paths to suit your requirements. You will not normally
need to do this, and this guide assumes you have chosen the defaults.

◆ Press R to proceed.

If you already have some IAR files on the same paths, for example because you
are upgrading an existing installation, you will be asked for confirmation
before installation proceeds.

The final stage of installation is to manually modify your autoexec.batautoexec.bat file.
Since the modifications are version-dependent, they are documented in the text
file autoexec.iarautoexec.iar on the directory path you chose (by default,
C:\iar\autoexec.iarC:\iar\autoexec.iar). Open your autoexec.batautoexec.bat file and the
autoexec.iarautoexec.iar file in a text editor, follow the instructions in autoexec.iarautoexec.iar
file, and save the modified autoexec.batautoexec.bat file.

GETTING STARTED

 1-8

INSTALLATION UNDER WINDOWS
The IAR C Compiler may be used in an MS-DOS window under Windows.
Using an MS-DOS window, follow the instructions given in Installation under
MS-DOS, page 1-5.

INSTALLATION UNDER UNIX
Follow the separate printed installation documentation supplied with the
delivery media.

READ-ME FILES
Your installation includes a number of ASCII-format text files containing
recent additional information. Using the default pathnames, they are:

C:\iar\etc\newclib.docC:\iar\etc\newclib.doc Documentation of additional C
library functions.

C:\iar\icc78000\icc78000.docC:\iar\icc78000\icc78000.doc General information about the C
compiler.

C:\iar\icc78000\global.docC:\iar\icc78000\global.doc General information about the global
optimiser.

There are further files associated with the assembler, linker, library manager,
and any tools that have been installed separately, such as C-SPY. These are
listed in their own guides.

Before proceeding it is recommended that you read all of these files.

INSTALLED FILES

The IAR C Compiler and associated tools use sub-directories and file
extensions to make management and operation of them as efficient as possible.
This chapter describes these uses and all the IAR files. It refers to the following
MS-DOS program files:

GETTING STARTED

 1-9

Function Filename Where it is documented

78000 C Compiler icc78000icc78000 This guide

78000 Assembler a78000a78000 IAR 78000 Assembler guide.

IAR Linker xlinkxlink IAR Linker & Librarian guide.

IAR Librarian xlibxlib IAR Linker & Librarian guide.

C-SPY Simulator cs78000cs78000 Using C-SPY guide.

The default installation procedure creates the following directories in c:\iarc:\iar:

Executable files
The c:\iar\exec:\iar\exe subdirectory holds the MS-DOS executable program files.
These correspond to the IAR commands such as the command to run the
compiler.

The installation procedure includes an addition to the autoexec.batautoexec.bat PATHPATH
statement, directing MS-DOS to search the exeexe sub-directory for command
files. This allows the user to issue an IAR command from any directory.

For details of the contents, see Exe files, page 1-11.

Miscellaneous files
The c:\iar\etcc:\iar\etc sub-directory holds miscellaneous files such as read-me files
and example sources.

For details of the contents, see Etc files, page 1-11.

Source files
The c:\iar\icc78000c:\iar\icc78000 sub-directory holds source files for configuration to
the target environment and program requirements, as described in
Configuration, page 1-43.

For details of the contents, see ICC78000 files, page 1-12.

GETTING STARTED

 1-10

C include files
The c:\iar\incc:\iar\inc sub-directory holds C include files, such as the header files
for the standard C library.

The C compiler searches for include files in the directories given in the
C_INCLUDEC_INCLUDE environment variable; see Files, page 1-18, and the installation
procedure includes the incinc sub-directory in the definition of this variable in
the autoexecautoexec file; see Installation under MS-DOS, page 1-5. This allows the
user to refer to an incinc header file simply by its basename.

For details of the contents, see INC files, page 1-13.

Library files
The c:\iar\libc:\iar\lib sub-directory holds library modules.

The linker searches for library files in the directories given in the
XLINK_DFLTDIRXLINK_DFLTDIR environment variable (see the IAR 78000 Assembler guide),
and the installation procedure includes the liblib sub-directory in the definition
of this variable in the autoexecautoexec file; see Installation under MS-DOS, page 1-5.
This allows the user to refer to a LIBLIB library module simply by its basename.

For details of the contents, see LIB files, page 1-15.

Assembler files
The c:\iar\a78000c:\iar\a78000 sub-directory holds assembler-specific files; see the IAR
78000 Assembler guide.

C-SPY files
If you have installed the C-SPY Debugger (supplied separately), there will also
be a c:\iar\cs78000c:\iar\cs78000 sub-directory holding the C-SPY-specific files; see the
Using C-SPY guide.

GETTING STARTED

 1-11

EXE FILES
This sub-directory contains the following MS-DOS executable program files:

Name Function

c:\iar\exe\a78000.exec:\iar\exe\a78000.exe 78000 Assembler; see the IAR 78000
Assembler guide.

c:\iar\exe\xlib.exec:\iar\exe\xlib.exe IAR Library Manager; see the IAR 78000
Assembler guide.

c:\iar\exe\xlink.exec:\iar\exe\xlink.exe IAR Linker; see the IAR 78000 Assembler
guide.

c:\iar\exe\pminfo.exec:\iar\exe\pminfo.exe IAR Protected Mode Analyser; see the IAR
78000 Assembler guide.

c:\iar\exe\icc78000.exec:\iar\exe\icc78000.exe 78000 C Compiler; see 78000 Specific
Command line options, page 1-103.

If you have installed the C-SPY Debugger, this sub-directory will also contain
c:\iar\exe\cs78000.exec:\iar\exe\cs78000.exe, the 78000 C-SPY Debugger; see the Using C-SPY
guide.

ETC FILES
This sub-directory contains the following miscellaneous files:

Name Function

c:\iar\etc\emulator.docc:\iar\etc\emulator.doc Documentation on supported emulators.

c:\iar\etc\xlink.docc:\iar\etc\xlink.doc Additional information on the linker, XLINK.

GETTING STARTED

 1-12

Name Function

c:\iar\etc\newclib.docc:\iar\etc\newclib.doc Information on additional C library functions.

c:\iar\etc\heap.cc:\iar\etc\heap.c The source of the heap size control object
module. See Configuration, page 1-43.

c:\iar\etc\intwri.cc:\iar\etc\intwri.c The source of the minimal printfprintf
implementation, as an example. See
C library functions reference, page 2-45.

c:\iar\etc\sprintf.cc:\iar\etc\sprintf.c The source of the standard sprintfsprintf, as an
example of va_argva_arg use. See C library functions
reference, page 2-45.

c:\iar\etc\printf.cc:\iar\etc\printf.c The source of the standard printfprintf, as an
example of va_argva_arg use. See C library functions
reference, page 2-45.

c:\iar\etc\frmwri.cc:\iar\etc\frmwri.c The source of the _formatted_write, used by
printf, sprintf. See C library functions reference,
page 2-45.

c:\iar\etc\frmrd.cc:\iar\etc\frmrd.c The source of the _formatted_read. used by
scanf and sscanf functions. See C library
functions reference, page 2-45.

c:\iar\etc\sieve.cc:\iar\etc\sieve.c The source of the sievesieve example program.

ICC78000 FILES
This sub-directory contains the following configuration starting-point files:

Name Function

c:\iar\icc78000\icc78000.docc:\iar\icc78000\icc78000.doc Additional information about the C
compiler.

c:\iar\icc78000\lnk780.xclc:\iar\icc78000\lnk780.xcl Linker command files, provided
c:\iar\icc78000\lnk780b.xclc:\iar\icc78000\lnk780b.xcl for compatibility with other

GETTING STARTED

 1-13

Name Function

c:\iar\icc78000\putchar.cc:\iar\icc78000\putchar.c The source of putcharputchar. See
Configuration, page 1-43.

c:\iar\icc78000\getchar.cc:\iar\icc78000\getchar.c The source of getchargetchar. See
Configuration, page 1-43.

c:\iar\icc78000\cstartup.s26c:\iar\icc78000\cstartup.s26 The source of CSTARTUPCSTARTUP. See
Configuration, page 1-43.

c:\iar\icc78000\l07.s26c:\iar\icc78000\l07.s26 The source of the stack check module. See
Configuration, page 1-43.

c:\iar\icc78000\global.docc:\iar\icc78000\global.doc Additional information about the global
optimiser

c:\iar\icc78000\iccdemo.batc:\iar\icc78000\iccdemo.bat The command file which runs a short
demonstaration of the IAR tools for
78000.

INC FILES
This sub-directory contains the following C include files:

Name Function

c:\iar\inc\string.hc:\iar\inc\string.h Header files for standard C library
c:\iar\inc\float.hc:\iar\inc\float.h functions; see C library functions
c:\iar\inc\math.hc:\iar\inc\math.h reference, page 2-45.
c:\iar\inc\stdarg.hc:\iar\inc\stdarg.h
c:\iar\inc\limits.hc:\iar\inc\limits.h
c:\iar\inc\stdio.hc:\iar\inc\stdio.h
c:\iar\inc\stddef.hc:\iar\inc\stddef.h
c:\iar\inc\stdlib.hc:\iar\inc\stdlib.h
c:\iar\inc\setjmp.hc:\iar\inc\setjmp.h
c:\iar\inc\ctype.hc:\iar\inc\ctype.h
c:\iar\inc\assert.hc:\iar\inc\assert.h
c:\iar\inc\errno.hc:\iar\inc\errno.h

GETTING STARTED

 1-14

Name Function

c:\iar\inc\in78000.hc:\iar\inc\in78000.h The source header for intrinsic functions;
see Intrinsic functions,
page 1-63.

c:\iar\inc\icclbutl.hc:\iar\inc\icclbutl.h The source header for use by printf.cprintf.c;
see ETC files, page 1-11.

c:\iar\inc\iccext.hc:\iar\inc\iccext.h The source header for internal library
definitions, not for use by user.

c:\iar\inc\io7800x.hc:\iar\inc\io7800x.h The C source header for I/O addresses of
the 7800X processor, see Language
extensions, page 1-61.

c:\iar\inc\io7801x.hc:\iar\inc\io7801x.h The C source header for I/O addresses of
the 7801X processor; see Language
extensions, page 1-61.

c:\iar\inc\io78P014.hc:\iar\inc\io78P014.h The C source header for I/O addresses of
the 78P014 processor; see Language
extensions, page 1-61.

c:\iar\inc\io7802x.hc:\iar\inc\io7802x.h The C source header for I/O addresses of
the 7802X processor, see Language
extensions, page 1-61.

c:\iar\inc\io78p024.hc:\iar\inc\io78p024.h The C source header for I/O addresses of
the 78P024 processor, see Language
extensions, page 1-61.

c:\iar\inc\io7804x.hc:\iar\inc\io7804x.h The C source header for I/O addresses of
the 7804X processor, see Language
extensions, page 1-61.

c:\iar\inc\io78p044.hc:\iar\inc\io78p044.h The C source header for I/O addresses of
the 78P044 processor, see Language
extensions, page 1-61.

GETTING STARTED

 1-15

 Name Function

c:\iar\inc\io7805x.hc:\iar\inc\io7805x.h The C source header for I/O addresses of
the 7805X processor, see Language
extensions, page 1-61.

c:\iar\inc\io7806x.hc:\iar\inc\io7806x.h The C source header for I/O addresses of
the 7806X processor, see Language
extensions, page 1-61.

c:\iar\inc\defmsv0.incc:\iar\inc\defmsv0.inc The assembler source header for small
memory model and 7800X processors; see
the IAR 78000 Assembler guide.

c:\iar\inc\defmbv0.incc:\iar\inc\defmbv0.inc The assembler source header for banked
memory model and 780XX processors; see
the IAR 78000 Assembler guide.

LIB FILES
This sub-directory contains all library modules as follows:

Name Function

c:\iar\lib\cl7800s.r26c:\iar\lib\cl7800s.r26 Library object modules for each
c:\iar\lib\cl7801s.r26c:\iar\lib\cl7801s.r26 combination of memory model
c:\iar\lib\cl7800b.r26c:\iar\lib\cl7800b.r26 (S, B) and processors (7800X, 7800X),
c:\iar\lib\cl7801b.r26c:\iar\lib\cl7801b.r26 see Configuration, page 1-43.

FILE TYPES
The IAR C Compiler uses the following default file extensions to identify
different types of file:

GETTING STARTED

 1-16

Extension Type of file Output from Input to

.doc.doc ASCII documentation – Text editor

.exe.exe MS-DOS program – MS-DOS command

.c.c C program source Text editor ICC78000 command

.h.h C header source Text editor ICC78000 #include#include

.s26.s26 Asm program source Text editor A78000 command

.inc.inc Asm include source Text editor A78000 #include#include

.xcl.xcl Linker command files Text editor XLINK

.r26.r26 Object module ICC78000 XLINK, XLIB
A78000

.a26.a26 Target program XLINK EPROM, C-SPY, etc.

.d26.d26 Target program XLINK C-SPY, etc.
with debug information

The default extension may be overridden by simply including an explicit
extension when the filename is specified.

 1-17

USING THE C COMPILER

RUNNING THE C COMPILER

The ICC C Compiler is run by a command of the following form:

icc78000 [icc78000 [optionsoptions] [] [sourcefilesourcefile] [] [optionsoptions]]

These items must be separated by one or more space or tab characters.

PARAMETERS
optionsoptions A list of options separated by one or more space or tab

characters.

sourcefilesourcefile The name of the source file.

If no optionsoptions or sourcefilesourcefile is given, the command displays information
about the compiler, including a summary of the options and the target-specific
file extensions used.

OPERATION UNDER MS-DOS
The command is entered as described above. Filenames are not case sensitive.

OPERATION UNDER UNIX
Filenames are case sensitive so, for example, program.cprogram.c is not equivalent to
PROGRAM.CPROGRAM.C. Note that the default extension for C source files is lower case .c.c.

USING THE C COMPILER

 1-18

FILES

The compilation process involves the following types of file:

SOURCE FILE
Each invocation of the compiler processes the single source file named on the
command line.

Its name is of the form:

path leafname.extpath leafname.ext

For example, the filename \project\program.c\project\program.c has the path \project\\project\, the
leafname programprogram and the extension .cc. If you give no extension in the name,
the compiler assumes .c.c.

INCLUDE FILE
Additional source files may be invoked from the main source file through the
#include#include directive. The name of the include file may be given in one of two
ways:

Standard search sequence
To use the standard search sequence enclose the filename in angled brackets:

<<filefile>>

For example:

#include <#include <incfileincfile.h>.h>

The standard search sequence is as follows:

◆ The include filename with successive prefixes set with the -I-I option if
any.

◆ The include filename with successive prefixes set in the environment
variable named C_INCLUDE C_INCLUDE if present. Multiple prefixes may be specified
by separating them with semicolon; for example:

set C_INCLUDE=\usr\proj\;\headers\set C_INCLUDE=\usr\proj\;\headers\

USING THE C COMPILER

 1-19

◆ The include filename by itself.

Note that the compiler simply adds each prefix from -I-I or C_INCLUDEC_INCLUDE to the
front of the #include#include filename without interpretation. Hence it is necessary
to include any final backslash in the prefix.

Source file path
To search for the file prefixed by the source file path first, enclose the filename
in double quotes:

""filefile""

For example:

#include "#include "incfileincfile.h".h"

For example, with a source file named \project\prog.c\project\prog.c, the compiler would
first look for the file \project\incfile.h\project\incfile.h. If this file is not found, the
compiler continues with the standard search sequence as if angle brackets had
been used.

ASSEMBLY SOURCE FILE
The compiler is capable of generating an assembly source file for assembly
using the appropriate IAR Assembler. The name is the source file leafname
plus the extension .s26.s26 for assembly sources.

Assembly source file generation is controlled by the -a-a and -AA options.

OBJECT FILE
The compiler sends the generated code to the object file whose name is, by
default, the source file leafname plus the extension .r26.r26 for object modules.

If any errors occurs during compilation, the object file is deleted. Warnings do
not cause the object file to be deleted.

LIST FILE
The compiler can generate a compilation listing, normally to a file with the
same leafname as the source, but with the extension .lst.lst.

USING THE C COMPILER

 1-20

COMMAND FILE
The compiler can accept options and source filename from a command file, as
well as from the command line itself. Command files have the extension .xcl.xcl
by default.

 1-21

TUTORIAL
This chapter provides a tutorial for users new to the IAR C Compiler
package. It demonstrates:

◆ A typical development cycle.

◆ How to organize the files for a project.

◆ How to compile and link a simple program.

◆ How to use the following 78000-specific features: #pragma directives,
provided header files, sfrsfr variables, bitbit variables and interrupt
functions

It assumes you are familiar with the C language in general.

You must have already installed the IAR C Compiler for MS-DOS as
discussed in the previous chapter.

If you are using a HLL debugger like C-SPY Simulator or SD78K/0, you
may follow this tutorial by running the program on your PC resp. emulator,
following the instructions given in the documentation supplied with the
corresponding debugger.

TUTORIAL

 1-22

TYPICAL DEVELOPMENT CYCLE

Development will normally follow the cycle illustrated below:

Set up a project
directory

Create C source
program

Start

Set up the linker
command file

Test

Put code into PROM

Error?

OK

Compile with chosen
memory model

Link with linker
command file

Transfer to debugger,
simulator, or emulator

Edit C source
program

The following tutorial follows this cycle except for the debug session.

TUTORIAL

 1-23

CREATING A PROJECT DIRECTORY
The user files for a particular project are best kept in one directory,
separate from other projects and the IAR system files.

Create a project directory by entering the command:

mkdir c:\tutorial mkdir c:\tutorial R

Select the project directory by entering the command:

cd c:\tutorial cd c:\tutorial R

During this tutorial, you will remain in this directory, so that the files you
create will reside here.

CONFIGURING TO SUIT THE TARGET PROGRAM
Each project needs a linker command file containing details of the target
system’s memory map. To create this, first copy the linker command file
template supplied:

copy c:\iar\icc78000\lnk780.xcl copy c:\iar\icc78000\lnk780.xcl R

This creates a copy called lnk780.xcllnk780.xcl in your project directory.

Before you edit the linker command file, you need the following items of
information about the target system and program requirements:

◆ The locations of ROM and RAM.

For this tutorial, use the following locations, which are appropriate to a
typical target system:

ROM: 0x00000x0000 to 0x7FFF0x7FFF

RAM: 0xFB000xFB00 to 0xFE1F0xFE1F

Short address RAM: 0xFE200xFE20 to 0xFEDF0xFEDF

If you are using C-SPY, you could actually specify any reasonable ROM and
RAM addresses and C-SPY will automatically simulate them.

If you are using SD78K/0, you have to take into consideration the ROM
and RAM areas permitted in the real target device.

TUTORIAL

 1-24

◆ Whether the code will all fit in the ROM available (which allows use of
the most efficient, small memory model).

The tutorial program is small and therefore it will all fit within the
ROM specified above.

◆ The amount of RAM required for the stack.

The tutorial program has few dynamic variables and no deep nesting of
function calls, therefore a 128 (0x800x80) byte stack is sufficient.

Now edit your file c:\tutorial\lnk780.xclc:\tutorial\lnk780.xcl using a text editor,
following the instructions given in the file to enter these items of
information.

Note that these decisions are not permanent: they can be altered later on in
the project if the original choice proves to be incorrect, or less than optimal.

For detailed information on configuring to suit the target memory, see
Memory location, page 1-50. For detailed information on choosing stack
size, see Stack size, page 1-51.

SELECTING A LIBRARY FILE
Library selection involves two choices:

Memory model small or banked.

Processor type 7800X or 780XX

See Memory model, page 1-44, Processor type, page 1-116, for more details
on each of these choices.

Our tutorial program contains only a small amount of code, and therefore
requires only the small memory model. The processor to compile for is the
78P014. The appropriate library file for this combination is cl7801scl7801s.

See LIB files, page 1-15, for details of the other library filenames.

TUTORIAL

 1-25

CREATING A PROGRAM

The first program is a simple program using just standard C facilities. It
repeatedly calls a function that increments a variable. The loop program
demonstrates how to compile, link, and run a program.

Using a text editor, enter the source of the loop program:

int call_count=0;int call_count=0;

/***********************************/***********************************
 * * * *
 * Start of code * * Start of code *
 * * * *
 ***********************************/ ***********************************/

void do_foreground_process(void)void do_foreground_process(void)
{{
/* just increment a variable *//* just increment a variable */
 call_count++; call_count++;
}}

void main(void)void main(void)
{{
 while (1) while (1)
 { {
 do_foreground_process(); do_foreground_process();
 } }
}}

Save the source as the file prog.cprog.c.

TUTORIAL

 1-26

COMPILING THE PROGRAM
To compile the program, enter the command:

icc78000 prog -v2 -ms icc78000 prog -v2 -ms R

The -ms-ms option selects the small memory model, the -v2-v2 option selects the
78P014.

If you are going to debug the program you have to add the debugger specific
command line options.

Debugging using C-SPY:

icc78000 prog -v2 -ms -r icc78000 prog -v2 -ms -r R

Debugging using SD78K/0:

icc78000 prog -v2 -ms -rr icc78000 prog -v2 -ms -rr R

This creates an object module called prog.r26.prog.r26.

LINKING THE PROGRAM
To link the program, enter the command:

xlink prog -f lnk780 xlink prog -f lnk780 R

The -f-f option specifies your linker command file lnk780lnk780.

If you are going to debug the program you have to add the debugger specific
command line options.

Debugging using C-SPY:

xlink prog -f lnk780 -r xlink prog -f lnk780 -r R

The result of linking is a code file called aout.d26aout.d26.

TUTORIAL

 1-27

Debugging using SD78K/0:

xlink prog -f lnk780 -r -Y# xlink prog -f lnk780 -r -Y# R

The result of linking is a code file called aout.d26aout.d26. This debug file in
UBROF file format has to be converted into XCOFF file format using the
UBROF to XCOFF conversion utility:

ubr2xcof aout.d26ubr2xcof aout.d26 R

The result of linking is a code file called aout.lnkaout.lnk.

RUNNING THE PROGRAM
To run the program using C-SPY or SD78K/0, please follow the
instructions given in the User’s Manual for the corresponding debugger.

TUTORIAL

 1-28

EXTENDING THE PROGRAM

We shall now extend the loop program to access the A/D converter built in
to the 78P014 microprocessor. The resultant program accepts input from
A/D conversion result register and stores the data in a buffer. This A/D
conversion program demonstrates the use of the #pragma#pragma directive,
inclusion of supplied header files, use of intrinsic functions and use of bit
variables.

The following is a complete listing of the A/D conversion program. The
lines that have been added to the loop program are marked with a vertical
bar, so, using a text editor, just add these marked lines to the source of the
loop program in your prog.cprog.c file.

#pragma language=extended#pragma language=extended /* enable use of extended/* enable use of extended
keywords */keywords */

#include <io78p014.h>#include <io78p014.h> /* include sfr definitions/* include sfr definitions
for IO registers */for IO registers */

bit AD_Ready = IF0H.3 ;bit AD_Ready = IF0H.3 ; /* define bit variable *//* define bit variable */

/* mode register bits *//* mode register bits */
#define ADIS0 (0x01)#define ADIS0 (0x01) /* conver/* conversion channel 0 */sion channel 0 */
#define EnableAD (0x80)#define EnableAD (0x80) /* start A/D conversion *//* start A/D conversion */

#define buffsize 0xC0#define buffsize 0xC0
char buffer[buffsize];char buffer[buffsize];
int buffindex=0;int buffindex=0;

int call_count=0;int call_count=0;

TUTORIAL

 1-29

/***********************************/***********************************
 * * * *
 * Start of code * * Start of code *
 * * * *
 ***********************************/ ***********************************/
/*/*
 Return 0 if no conversion result available Return 0 if no conversion result available
 <>0 if data now in ADCR register <>0 if data now in ADCR register
 */ */

int ad_ready(void)int ad_ready(void)
{{
 return AD_Ready ; return AD_Ready ;
}}

/*/*
 Data reader: poll status register until ready, return Data reader: poll status register until ready, return

data.data.
//

 unsigned char read_data(void) unsigned char read_data(void)
 { {
 while (!ad_ready()); while (!ad_ready()); /* wait for data *//* wait for data */
 return ADCR; return ADCR; /* return A/D converted/* return A/D converted

data */data */
 } }

void do_foreground_process(void)void do_foreground_process(void)
{{
/* just increment a variable *//* just increment a variable */
 call_count++; call_count++;
}}

TUTORIAL

 1-30

void main(void)void main(void)
{{
 /* Initialize A/D converter */ /* Initialize A/D converter */

 ADIS = ADIS0 ; ADIS = ADIS0 ;

 ADM = EnableAD + 1 ; ADM = EnableAD + 1 ;

 /* now loop forever, taking input when ready */ /* now loop forever, taking input when ready */
 while (1) while (1)
 { {
 if (ad_ready()) if (ad_ready())
 { {
 buffer[buffindex++]=read_data(); buffer[buffindex++]=read_data();

 if (buffindex==buffsize) { if (buffindex==buffsize) { /* p/* process full buffer */rocess full buffer */
 buffindex=0; buffindex=0; /* simple processing:/* simple processing:
 } } discard data! */discard data! */
 } }
 do_foreground_process(); do_foreground_process();
 } }
 } }

The first line in the program is:

#pragma language=extended#pragma language=extended /* enable use of extended/* enable use of extended
keywords */keywords */

By default, extended keywords are not available, so you must include this
directive before attempting to use any. The #pragma#pragma directive is described
in the section #pragma directive summary, page 1-62.

The second line is:

#include <io78P014.h>#include <io78P014.h> /* include sfr definitions/* include sfr definitions
for IO registers */for IO registers */

The file io78P014.hio78P014.h includes definitions for all I/O registers for the
78P014 microprocessor. Inside this file, all sfr registers are defined using
the sfrsfr extended keyword, so if you use this or an alternative header file,
you will never need to use the sfrsfr keyword directly.

TUTORIAL

 1-31

The full list of C source header files for processor I/O is given in Inc files,
page 1-13.

The third line is:

bit AD_Ready = IF0H.3 ;bit AD_Ready = IF0H.3 ; /* define bit variable *//* define bit variable */

This defines a bit variable AD_ReadyAD_Ready to be bit number 3 of the location
IF0HIF0H. IF0HIF0H is one of the Interrupt request flag registers defined in the
included header file. Bit variables are described in Extended keyword
reference page 1-65.

COMPILING AND LINKING THE A/D PROGRAM
Compile and link the program as before:

icc78000 prog -v2 -ms icc78000 prog -v2 -ms R
xlink prog -f lnk780 -r xlink prog -f lnk780 -r R

If you are going to debug the program you have to add the debugger specific
command line options.

Debugging using C-SPY:

icc78000 prog -v2 -ms -r icc78000 prog -v2 -ms -r R
xlink prog -f lnk780 -r xlink prog -f lnk780 -r R

Debugging using SD78K/0:

icc78000 prog -v2 -ms -rr icc78000 prog -v2 -ms -rr R
xlink prog -f lnk780 -r -Y# xlink prog -f lnk780 -r -Y# R
ubr2xcof aout.d26 ubr2xcof aout.d26 R

RUNNING THE PROGRAM
To run the program using C-SPY or SD78K/0, please follow the
instructions given in the User’s Manual for the corresponding debugger.

TUTORIAL

 1-32

ADDING AN INTERRUPT HANDLER

We shall now extend the A/D program by adding an interrupt handler. The
IAR C Compiler lets you write interrupt handlers directly in C using the
interruptinterrupt keyword. The interrupt we will handle is the 'A/D conversion'
software interrupt.

The following is a complete listing of the interrupt program. The lines that
have been added to the A/D program are marked with a vertical bar, so as
before, just add these marked lines to the source of the serial program in
your prog.cprog.c file.

#pragma language=extended#pragma language=extended /* enable use of extended /* enable use of extended
keywords */keywords */

#include <io78p014.h>#include <io78p014.h> /* include sfr definitions/* include sfr definitions
for IO rfor IO registers */egisters */

#include <in78000.h>#include <in78000.h> /* include for intrinsic /* include for intrinsic
functions */functions */

bit AD_Ready = IF0H.3 ;bit AD_Ready = IF0H.3 ; /* define bit variable *//* define bit variable */

/* mode register bits *//* mode register bits */
#define ADIS0 (0x01)#define ADIS0 (0x01) /* conversion channel 0 *//* conversion channel 0 */
#define EnableAD (0x80)#define EnableAD (0x80) /* start A/D conversion *//* start A/D conversion */

#define buffsize 0xC0#define buffsize 0xC0
char buffer[buffsize];char buffer[buffsize];
int buffindex=0;int buffindex=0;

int call_count=0;int call_count=0;
/***********************************/***********************************
 * * * *
 * Start of code * * Start of code *
 * * * *
 ***********************************/ ***********************************/
/*/*
 Return 0 if no conversion result available Return 0 if no conversion result available
 <>0 if data now in ADCR register <>0 if data now in ADCR register
 */ */

TUTORIAL

 1-33

int ad_ready(void)int ad_ready(void)
{{
 return AD_Ready ; return AD_Ready ;
}}

/*/*
 Data reader: poll status register until ready, return Data reader: poll status register until ready, return
data.data.
//

 unsigned char read_data(void) unsigned char read_data(void)
 { {
 while (!ad_ready()); while (!ad_ready()); /* wait for data *//* wait for data */
 return ADCR; return ADCR; /* return A/D converted data *//* return A/D converted data */
 } }

void do_foreground_process(void)void do_foreground_process(void)
{{
/* just increment a variable *//* just increment a variable */
 call_count++; call_count++;
}}

/*/*
 Example 'interrupt' handler. Take control of A/D Example 'interrupt' handler. Take control of A/D
conversion' completion.conversion' completion.
 */ */

interrupt [INTBRK_vect] void ad_exception(void)interrupt [INTBRK_vect] void ad_exception(void)
{{
 call_count = 0 ; call_count = 0 ;
}}

TUTORIAL

 1-34

void main(void)void main(void)
{{
 /* Initialize A/D converter */ /* Initialize A/D converter */

 ADIS = ADIS0 ; ADIS = ADIS0 ;

 ADM = EnableAD + 1 ; ADM = EnableAD + 1 ;

 /* now loop forever, taking input when ready */ /* now loop forever, taking input when ready */
 while (1) while (1)
 { {
 if (ad_ready()) if (ad_ready())
 { {
 buffer[buffindex++]=read_data(); buffer[buffindex++]=read_data();

 if (buffindex==buffsize) { if (buffindex==buffsize) { /* process full buffer *//* process full buffer */
 buffindex=0; buffindex=0; /* simple processing:/* simple processing:
 discard data! */discard data! */

 if(buffer[buffindex -1] == 0xFF) if(buffer[buffindex -1] == 0xFF)
 _OPC(0xBF) ; _OPC(0xBF) ; /* Gen/* Generate BRK interrupterate BRK interrupt

//
 } }
 do_foreground_process(); do_foreground_process();
 } }
 } }

The first addition is:

#include <in78000.h>#include <in78000.h> /* include for intrinsic /* include for intrinsic
functions */functions */

This include file is necessary to enable intrinsic functions. Our example
will use the intrinsic function _OPC()_OPC() later in the program.

The second additions is:

interrupt [INTBRK_vect] void ad_exception(void)interrupt [INTBRK_vect] void ad_exception(void)
{{
 call_count = 0 ; call_count = 0 ;
}}

TUTORIAL

 1-35

This function is an exception handler which is called whenever an
software break instruction is executed. The interruptinterrupt keyword is
described in Extended keyword reference, page 1-65.

The final addition is:

if(buffer[buffindex -1] == 0xFF)if(buffer[buffindex -1] == 0xFF)
 _OPC(0xBF) ; _OPC(0xBF) ; /* Generate BRK interrupt/* Generate BRK interrupt

//
This line inserts a 78000 assembler instruction using the intrinsic function
_OPC()_OPC(). The parameter 0xBF0xBF is the op-code for a 78000 BRKBRK instruction
which generates a software break. The advantage of intrinsic functions is
that the compiler itself translates this 'function call' to the corresponding
machine instruction without any overhead of CALLCALL or RETRET instructions.

The intrinsic functions require the in78000.hin78000.h file to be included.

COMPILING AND LINKING THE PROGRAM
Compile and link the program as before:

icc78000 prog -v2 -ms icc78000 prog -v2 -ms R
xlink prog -f lnk780 -r xlink prog -f lnk780 -r R

If you are going to debug the program you have to add the debugger specific
command line options.

Debugging using C-SPY:

icc78000 prog -v2 -ms -r icc78000 prog -v2 -ms -r R
xlink prog -f lnk780 -r xlink prog -f lnk780 -r R

Debugging using SD78K/0:

icc78000 prog -v2 -ms -rr icc78000 prog -v2 -ms -rr R
xlink prog -f lnk780 -r -Y# xlink prog -f lnk780 -r -Y# R
ubr2xcof aout.d26 ubr2xcof aout.d26 R

TUTORIAL

 1-36

RUNNING THE PROGRAM
To run the program using C-SPY or SD78K/0, please follow the
instructions given in the User’s Manual for the corresponding debugger.

USING ADDITIONAL MEMORY

If the target system has external RAM in addition to the internal RAM in
the 78000 device, the C program can make use of this for data storage. For
example, our current program has a small buffer which fits into the
internal RAM. A large buffer may not fit into the internal RAM, but it can
be moved to external RAM as the following program demonstrates.

The program lines that have changed are marked with a bar, so using a text
editor, just change these marked lines in the source of the interrupt
program in your prog.cprog.c file.

#pragma language=extended#pragma language=extended /* enable use of extended /* enable use of extended
keywords */keywords */

#include <io78p014.h>#include <io78p014.h> /* include sfr definitions/* include sfr definitions
for IO registers */for IO registers */

#include <in78000.h>#include <in78000.h> /* include for intrinsic /* include for intrinsic
functions */functions */

bit AD_Ready = IF0H.3 ;bit AD_Ready = IF0H.3 ; /* define bit variable *//* define bit variable */

/* mode register bits *//* mode register bits */
#define ADIS0 (0x01)#define ADIS0 (0x01) /* conversion channel 0 *//* conversion channel 0 */
#define EnableAD (0x80)#define EnableAD (0x80) /* start A/D conversion *//* start A/D conversion */

#define buffsize 0x1000#define buffsize 0x1000
char buffer[buffsize];char buffer[buffsize];
int buffindex=0;int buffindex=0;

int call_count=0;int call_count=0;

TUTORIAL

 1-37

/***********************************/***********************************
 * * * *
 * Start of code * * Start of code *
 * * * *
 ***********************************/ ***********************************/
/*/*
 Return 0 if no conversion result available Return 0 if no conversion result available
 <>0 if data now in ADCR register <>0 if data now in ADCR register
 */ */

int ad_ready(void)int ad_ready(void)
{{
 return AD_Ready ; return AD_Ready ;
}}

/*/*
 Data reader: poll status register until ready, return Data reader: poll status register until ready, return
data.data.
//

 unsigned char read_data(void) unsigned char read_data(void)
 { {
 while (!ad_ready()); while (!ad_ready()); /* wait for data *//* wait for data */
 return ADCR; return ADCR; /* return A/D converted data *//* return A/D converted data */
 } }

void do_foreground_process(void)void do_foreground_process(void)
{{
/* just increment a variable *//* just increment a variable */
 call_count++; call_count++;
}}

/*/*
 Example 'interrupt' handler. Take control of A/D Example 'interrupt' handler. Take control of A/D
conversion' completion.conversion' completion.
 */ */

TUTORIAL

 1-38

interrupt [INTBRK_vect] void ad_exception(void)interrupt [INTBRK_vect] void ad_exception(void)
{{
 call_count = 0 ; call_count = 0 ;
}}

void main(void)void main(void)
{{
 /* Initialize A/D converter */ /* Initialize A/D converter */

 ADIS = ADIS0 ; ADIS = ADIS0 ;

 ADM = EnableAD + 1 ; ADM = EnableAD + 1 ;

 /* now loop forever, taking input when ready */ /* now loop forever, taking input when ready */
 while (1) while (1)
 { {
 if (ad_ready()) if (ad_ready())
 { {
 buffer[buffindex++]=read_data(); buffer[buffindex++]=read_data();

 if (buffindex==buffsize) { if (buffindex==buffsize) { /* process full buffer *//* process full buffer */
 buffindex=0; buffindex=0; /* simple processing:/* simple processing:
 discard data! */discard data! */

 if(buffer[buffindex -1] == 0xFF) if(buffer[buffindex -1] == 0xFF)
 _OPC(0xBF) ; _OPC(0xBF) ; /* Generate BRK interrupt/* Generate BRK interrupt

//
 } }
 do_foreground_process(); do_foreground_process();
 } }
 } }
The change is from:

#define buffsize 0xC0#define buffsize 0xC0

to

#define buffsize 0x1000#define buffsize 0x1000

This sets a buffer size of 0x10000x1000 bytes – too large to fit in the internal
RAM, which is 1024 bytes.

TUTORIAL

 1-39

COMPILING THE LARGE BUFFER PROGRAM
Compile the program as before:

icc78000 prog -v2 -ms icc78000 prog -v2 -ms R

If you are going to debug the program you have to add the debugger specific
command line options.

Debugging using C-SPY:

icc78000 prog -v2 -ms -r icc78000 prog -v2 -ms -r R

Debugging using SD78K/0:

icc78000 prog -v2 -ms -rr icc78000 prog -v2 -ms -rr R

LINKING THE LARGE BUFFER PROGRAM
If you try to link the program as before, you will get the following error:

Error [16]: Segment DATA1 is too long for segmentError [16]: Segment DATA1 is too long for segment
definitiondefinition

This occurs because there is insufficient RAM in the linker command file’s
target description.

Before proceeding, edit the linker command file, following the instructions
within it to cover the following additional memory:

RAM: 0xC0000xC000 to 0xDFFF0xDFFF

Save the linker command file and link the program as before by entering:

xlink prog -f lnk780 -r xlink prog -f lnk780 -r R

TUTORIAL

 1-40

If you are going to debug the program you have to add the debugger specific
command line options.

Debugging using C-SPY:

xlink prog -f lnk780 -r xlink prog -f lnk780 -r R

Debugging using SD78K/0:

xlink prog -f lnk780 -r -Y# xlink prog -f lnk780 -r -Y# R

This time the link will complete, confirming that the larger buffer size is
available to the program.

RUNNING THE PROGRAM
To run the program using C-SPY or SD78K/0, please follow the
instructions given in the User’s Manual for the corresponding debugger.

COMPILING AND LINKING THE
C-SPY TUTORIAL

A detailed C-SPY tutorial is described in the C-SPY user’s manual, page 27
ff. The corresponding debug file is available and already prepared for
debugging. The name is demo.d26demo.d26 and you can find it in the
\iar\cs78000\iar\cs78000 subdirectory.

You may modify this tutorial program if you wish. To do so, you have to
create a source file demo.cdemo.c which should contain the C source code you
like. To compile the program demo.cdemo.c, enter the command:

ICC78000 demo.c -v2 -rICC78000 demo.c -v2 -r R

The -v2-v2 option selects the mPD78P014 microcontroller as target device and
the -r-r option adds debug information to the output file.

To link the program, enter the command:

XLINK demo -o demo -f lnk780 -rtXLINK demo -o demo -f lnk780 -rt R

TUTORIAL

 1-41

The -o-o option selects the debug output file name, the -f-f option selects the
xlink command file lnk780 lnk780 and the -rt-rt option adds debug information
and library support functions for C-SPY’s TERMINAL I/O functionality to
the output file.

The resulting output file demo.d26demo.d26 can be loaded into C-SPY:

CS78000 -v2 demo.d26CS78000 -v2 demo.d26 R

Then you may follow the tutorial described in the C-SPY user’s manual
page 30 ff.

COMPILING AND LINKING THE
SD78K/0 TUTORIAL

Two detailed SD78K/0 tutorials are described in the SD78K/0 primer, page
6-1 ff resp. 8-1 ff. The corresponding source files are available and they
must be prepared for debugging. The source file names are 78k0sub.asm78k0sub.asm
resp. 78k0main.c78k0main.c and you can find them on the SD78K/0 distribution
disk.

To assemble the program 78k0sub.asm78k0sub.asm, enter the command:

a78000 78k0sub.asm,78k0sub.lst,78k0sub.r26,Sa78000 78k0sub.asm,78k0sub.lst,78k0sub.r26,S R

The SS option adds local symbols to the output file.

To link the program, enter the command:

xlink 78k0sub -o sample -c78000 -Z(CODE)CODE=1000 -rxlink 78k0sub -o sample -c78000 -Z(CODE)CODE=1000 -r R

The -o-o option selects the debug output file name, the -c-c option selects the
device family option, the -Z-Z option sets the startaddress for the program
code segment and the -r-r option adds debug information to the output file.

To convert the program to the debug format for SD78K0, enter the
command:

ubr2xcof sample.d26ubr2xcof sample.d26 R

TUTORIAL

 1-42

The resulting output file is sample.lnksample.lnk. This module can be loaded into
SD78K0. You may follow the tutorial described in the SD78K0 primer,
chapter 6.1.2 on page 6-3 ff.

The second tutorial is based on C program, 78k0main.c78k0main.c.

To compile the program 78k0main.c78k0main.c, enter the command:

icc78000 78k0main.c -v2 -ricc78000 78k0main.c -v2 -r R

The -v2-v2 option selects the mPD78P014 microcontroller as target device an
the -r-r option adds debug information to the output file.

To link the program, enter the command:

xlink 78k0main -o 78k0main -f lnk780 -rxlink 78k0main -o 78k0main -f lnk780 -r R

The -o-o option selects the debug output file name, the -f-f option selects the
xlink command file lnk780 lnk780 and the -r-r option adds debug information to
the output file.

To convert the program to the debug format for SD78K0, enter the
command:

ubr2xcof 78k0main.d26ubr2xcof 78k0main.d26 R

The resulting output file is 78k0main.lnk78k0main.lnk. This module can be loaded into
SD78K0. You may follow the tutorial described in the SD78K0 primer,
chapter 8.1.2 on page 8-4 ff.

 1-43

CONFIGURATION
This chapter describes how to configure the C compiler for different
requirements.

INTRODUCTION

Across the range of applications of the 78000 microprocessor there is
considerable variation of the hardware environment, such as the amount of
ROM and RAM, and of the user program’s requirements, eg the amount of
stack RAM. This chapter describes how to configure the IAR C Compiler
package to support the environment and usage for a given application.

Each feature of the environment or usage is handled by one or more
configurable elements of the compiler packages, as follows:

Feature Configurable element

Memory model Compiler option, linker option.

Memory location Linker command file.

Non-volatile RAM Linker command file.

Stack size Linker command file, cstartupcstartup
module.

putcharputchar and getchargetchar functions Run-time library module.

printfprintf/scanfscanf facilities Linker command file.

Heap size Heap library module.

Initialization of hardware and memory cstartupcstartup module.

The following sections describe each of the above features in turn. Note that
many of the configuration procedures involve editing IAR files, and you may
want to make copies of the originals before beginning.

CONFIGURATION

 1-44

RUN-TIME LIBRARY

The library file controls many of the configurable features of the system.

Two major features require alternative run-time libraries for every
combination:

Facilities Small memory model Banked memory model

7800X processors cl7800s.r26cl7800s.r26 cl7800b.r26cl7800b.r26

780XX processors cl7801s.r26cl7801s.r26 cl7801b.r26cl7801b.r26

By default the library files are in the directory c:\iar\libc:\iar\lib.

LINKER COMMAND FILE

Two linker command files for the different memory models are available:

Small memory model: c:\iar\icc78000\lnk780.xclc:\iar\icc78000\lnk780.xcl

Banked memory model: c:\iar\icc78000\lnk780b.xclc:\iar\icc78000\lnk780b.xcl

To create a linker command file for a particular project the user first copies the
supplied template c:\iar\icc78000\lnk780.xcl c:\iar\icc78000\lnk780.xcl or
c:\iar\icc78000\lnk780b.xclc:\iar\icc78000\lnk780b.xcl. The user then modifies this file, as
described within the file, to specify the details of the target system’s memory
map.

MEMORY MODEL

The 78000 microprocessor supports a call table mechanism which allows to
reduce the code size when function calls are issued. A function call using the
call table results in a one byte instruction while the standard function call
requires three bytes. The IAR C Compiler makes use of this by supporting two
memory models for each calling mechanism. These offer a choice of function

CONFIGURATION

 1-45

call mechanism, which affects execution speed and code size, versus maximum
size of program code:

Standard call mechanism Small memory model Banked memory model

Variable area <64 Kbytes <64 Kbytes

External RAM Yes Yes

Code size 64 Kbytes > 1Mbyte

The function call mechanism for internal library calls may be selected by the
compiler option -ms-ms / -mS-mS and -mb-mb / -mB-mB.

CHOOSING A MEMORY MODEL
In the small memory model, default data and default code are both in the 64K
address range, meaning that there is less than 64 Kbytes for code, global data,
and local data.

In the banked memory model, code accesses is slower due to the use of the
bankswitcher, but code may be placed in any available bank, allowing code size
to exceed 64 Kbytes. Though any one module’s code cannot exceed 64 Kbytes,
the use of multiple modules allows code sizes up to 16 Mbytes.

In all models, the stack and global variables must fit into one single 64 Kbyte.

In both standard and banked memory model runtime library functions can be
accessed by CALLTCALLT instruction. The advantage of CALLTCALLT runtime library calls is
the reduction of the program code size of two bytes for every function call, but
you have to accept the penalty of some additional instruction cycles for
execution of this instruction. Details are described in the 78000 User's
Manual.

SPECIFYING THE MEMORY MODEL
The user’s program may use only one model at a time, that is, the same model
must be used by all user modules and all library modules.

The memory model must be specified to both the compiler and to the linker.

CONFIGURATION

 1-46

To specify the memory module to the compiler when a user module is
compiled, you use one of the following command line options:

Option Model

-ms-ms Small memory model, internal library calls using CALLCALL
instruction

-mS-mS Small memory model, internal library calls using CALLTCALLT
instruction

-mb-mb Banked memory model, internal library calls using CALLCALL
instruction

-mB-mB Banked memory model, internal library calls using CALLTCALLT
instruction

For example, to compile myprogmyprog for the 78P014 with optimization in the small
memory model and CALLTCALLT instruction for internal library calls, use the
command:

icc78000 myprog -v2 -mS -z9icc78000 myprog -v2 -mS -z9

If you include none of the memory model options, the compiler uses the small
memory model and CALLCALL instruction for the internal library calls.

To specify the memory model to the linker, you select an appropriate library
file:

Small Banked

Command filename lnk780.xcllnk780.xcl lnk780b.xcllnk780b.xcl

For example, to link the module myprogmyprog (previously compiled for the small
memory model) for the banked memory model, you should use the command:

xlink myprog -f lnk780bxlink myprog -f lnk780b

The -f-f option specifies a command filename; see the IAR 78000 Assembler
guide for details.

CONFIGURATION

 1-47

CALLT LIBRARY FUNCTION CALLS
When compiler options -mS-mS or -mB-mB is active, the run-time system reserves the
call table vector area for internal use.

Those entries not used by the run-time system is free to be used by the
application.

Compiler use of the call table vector area:

Vector Function

40/41 Reserved for CSPY

42/43 ?TB_C_LSH_L10

44/45 ?TB_UC_DIV_L10

46/47 ?TB_SC_DIV_L10

48/49 ?TB_SC_CMP_L10

4A/4B ?TB_MULU_L10

4C/4D ?TB_I_LSH_L10

4E/4F ?TB_I_MUL_L10

50/51 ?TB_UI_DIV_L10

52/53 ?TB_SI_DIV_L10

54/55 ?TB_UI_CMP_L10

56/57 ?TB_SI_CMP_L10

58/59 ?TB_L_MUL_L10

5A/5B ?TB_UL_DIV_L10

5C/5D ?TB_SL_DIV_L10

5E/5F ?TB_L_ADD_L10

60/61 ?TB_L_SUB_L10

62/63 ?TB_UL_CMP_L10

64/65 ?TB_SL_CMP_L10

CONFIGURATION

 1-48

Vector Function

66/67

68/69

?TB_UI_LOAD_BITS_L10

?TB_I_STORE_BITS_L10

6A/6B ?TB_LOAD_A_SP_L10

6C/6D ?TB_STORE_A_SP_L10

6E/6F ?TB_LOAD_AX_SP_L10

70/71 ?TB_STORE_AX_SP_L10

72/73 ?TB_LOAD_AXBC_SP_L10

74/75 ?TB_STORE_AXBC_SP_L10

76/77 ?TB_FUNC_ENTER_L10

78/79 ?TB_FUNC_DEALL_L10

7A/7B ?TB_FUNC_LEAVE_L10

7C/7D ?TB_WRKSEG_PUSH_L10

7E/7F ?TB_WRKSEG_POP_L10

BANKED MEMORY MODEL
In the bankedbanked memory model (selected by the -mb-mb or -mB-mB compiler switch) the
code area can be (transparently on the C level) extended with up to 256 blocks
of memory while it is identical to the standard memory model in terms of
variable allocation and initialisation.

Code block-size can be up to 64K but the requirement to always have an
accessible root block, for practicular reasons usually limit blocks to 4-32K.

Function addresses are 3 bytes wide and mapped like the following:

Byte 2 Byte 1 - 0

Bank number Offset (logical address)

ê

To mapping circuit

ê

To address/data bus

CONFIGURATION

 1-49

Example:

A sample system uses a 16K root PROM and eight 16K PROM banks to create
a system with up to 144K of code. An I/O port is used for the purpose of
mapping the actual bank to execute. Other ports may be used as shown in the
file l07.s26l07.s26 which contains the actual switching routines (user-configurable
for other mapping hardware schemes).

In the sample system the root PROM was allocated to address 0000-0x7FFF
which is most practical since 78000 programs fetch data at location 0x0000
after reset. The root memory contains all vital intrinsic library routines (i.e.
support code like floating point arithmetic, rather than user-callable functions)
needed by the C program. In addition to that, the root memory also contains C
string literals, variable initializers, and optional interrupt handlers.

The "banked" memory blocks of the sample system all start at logical address
0x4000 which means that the -b-b flag to the linker should be set like this:

-bCODE=4000,4000,10000-bCODE=4000,4000,10000

The first parameter is the logical address of the initial bank (I/O port = 0), the
second parameter shows that 16K banks were used, while the third parameter
(increment) gives bank-numbers 0, 1, 2, 3 etc. In the banked area there can
only be C callable functions (both library type like printfprintf as well as the user-
written C routines).

IMPORTANT
u No single module can be larger than the bank-size (over-sized modules

result in linker error-messages).

u It is recommended to keep module size considerably smaller than bank-size
in order to avoid memory fragmentation (partially filled banks), as the
linker only packs complete modules into banks.

u The compiler will in banked mode select the fast "standard" call method if
a function is considered as local (i.e. has the storage class static and is not
referenced as a function pointer).

CONFIGURATION

 1-50

u The bank-switching module l07.s26l07.s26 must be configured to perform bank-
switching. Follow the comments given in this file.

u Interrupt handlers and the correctly configured l07.r26l07.r26 bank-switching
module have to be located in the root memory, not in any bank.

u Depending on the debugging environment the user may encounter some
debugging restrictions when using bankedbanked functions! For detailed
information please refer to the corresponding hardware development tool
documentation.

Also see sections concerning the interruptinterrupt, banked banked and non_bankednon_banked
keywords respectively.

MEMORY LOCATION
You need to specify to the linker your hardware environment’s address ranges
for ROM and RAM. You would normally do this in your copy of the linker
command file template.

For how to specify the memory address ranges, see the contents of the linker
command file template and XLINK in the IAR Assembler, Linker, & Librarian
for the 78000.

NON-VOLATILE RAM
The compiler supports the declaration of variables that are to reside in non-
volatile RAM through the no_initno_init type modifier and the memory #pragma#pragma.
The compiler places such variables in the separate segment no_initno_init, which
the user must assign to the address range of the non-volatile RAM of the
hardware environment. The run-time system does not initialize these
variables.

To assign the no_initno_init segment to the address of the non-volatile RAM, the
user must modify the linker command file. For details how to assign a segment
to a given address, see XLINK in the IAR 78000 Assembler guide.

CONFIGURATION

 1-51

STACK SIZE

The compiler uses a stack for a variety of user program operations, and the
required stack size depends heavily on the details of these operations. If the
given stack size is too small, the stack will normally be allowed to overwrite
variable storage resulting in likely program failure. If the given stack size is too
large, RAM will be wasted.

ESTIMATING THE REQUIRED STACK SIZE
The stack is used for the following:

◆ Storing local variables and parameters.

◆ Storing temporary results in expressions.

◆ Storing temporary values in run-time library routines.

◆ Saving the return address of function calls.

◆ Saving the processor state during interrupts.

The total required stack size is the worst case total of the required sizes for
each of the above.

The only facilities which helps the user to make an estimate of the total
required stack size is provided by the NEC IE-78000-R Incircuit Emulator.
This Incircuit Emulator allows to specify any range of the 780XX internal
RAM area as stack memory and it checks during program execution whether
the stack pointer is still inside this range or not. A stack guard error message
will occur if the stack pointer exceeds the defined stack area.

The default stack size is set to 128 bytes.

CONFIGURATION

 1-52

INPUT AND OUTPUT

PUTCHAR AND GETCHAR
The functions putcharputchar and getchargetchar are the fundamental functions through
which C performs all character-based I/O. For any character-based I/O to be
available, the user must provide definitions for these two functions using
whatever facilities the hardware environment provides.

The starting-point for the user’s routines are supplied, by default, in the files
c:\iar\icc78000\putchar.cc:\iar\icc78000\putchar.c and c:\iar\icc78000\getchar.cc:\iar\icc78000\getchar.c. The
procedure for creating a customized version of putcharputchar is as follows:

◆ Make the required additions to the source putchar.cputchar.c, and save it back
under the same name.

◆ Compile the modified putcharputchar using the appropriate memory model. For
example, if the user program uses the small memory model, compile
putchar.cputchar.c for the small memory model with the command:

icc78000 putchar -v2 -ms -z9icc78000 putchar -v2 -ms -z9

This will create an optimized replacement object module file named
putchar.r26putchar.r26.

◆ Add the new putcharputchar module to the appropriate run-time library module,
replacing the original. For example, to add the new putcharputchar module to the
standard medium-memory-model library, use the command:

xlibxlib
def-cpu 78000def-cpu 78000
rep-mod putchar cl7801srep-mod putchar cl7801s
exitexit

The library module cl7801scl7801s will now have the modified putcharputchar instead
of the original.

CONFIGURATION

 1-53

Note that XLINK allows you to test the modified module before installing it the
library by using the -A-A option. See the IAR 78000 Assembler guide.

The same procedure is also used for getchargetchar.

Note that putcharputchar serves as the low-level part of the printfprintf function.

PRINTF AND SPRINTF
The printfprintf and sprintfsprintf functions use a common formatter called
_formatted_write_formatted_write. The ANSI standard version of _formatted_write_formatted_write is very
large, and provides facilities not required in many applications. To reduce the
memory consumption the following two alternative smaller versions are also
provided in the IAR C standard library:

_medium_write
As for _formatted_write_formatted_write, except that floating-point numbers are not
supported. Any attempt to use a %f%f, %g%g, %G%G, %e%e, and %E%E specifier will produce
the error:

FLOATS? wrong formatter installed!FLOATS? wrong formatter installed!

_medium_write is considerably smaller than _formatted_write_formatted_write.

_small_write
As for _medium_write_medium_write, except that it supports only the %%%%, %d%d, %o%o, %c%c, %s%s and
%x%x specifiers for intint objects, and does not support fieldfield widthwidth and
precisionprecision arguments. The size of _small_write_small_write is 10–15% of the size of
_formatted_write_formatted_write.

The default version is _small_write_small_write.

SELECTING THE WRITE FORMATTER VERSION
The selection of a write formatter is made in the linker control file. The default
selection, _small_write_small_write, is made by the line:

-e_small_write=_formatted_write-e_small_write=_formatted_write

To select the full ANSI version, remove this line.

To select _medium_write_medium_write, replace this line with:

-e_medium_write=_formatted_write-e_medium_write=_formatted_write

CONFIGURATION

 1-54

REDUCED PRINTF
For many applications sprintfsprintf is not required, and even printfprintf with
_small_formatter_small_formatter provides more facilities than are justified by the memory
consumed. Alternatively, a custom output routine may be required to support
particular formatting needs and/or non-standard output devices.

For such applications, a highly reduced version of the entire printfprintf function
(without sprintfsprintf)is supplied in source form in the file intwri.cintwri.c. This file
can be modified to the user’s requirements and the compiled module inserted
into the library in place of the original, using the procedure described for
putcharputchar, above.

SCANF AND SSCANF
In a similar way to the printfprintf and sprintfsprintf functions, scanfscanf and sscanfsscanf use
a common formatter called _formatted_read_formatted_read. The ANSI standard version of
_formatted_read_formatted_read is very large, and provides facilities that are not required in
many applications. To reduce the memory consumption, one alternative
smaller version is also provided in the IAR C standard library.

_medium_read
As for _formatted_read_formatted_read, except that no floating-point numbers are
supported. _medium_read_medium_read is considerably smaller than _formatted_read_formatted_read.

The default version is _medium_read_medium_read.

SELECTING READ FORMATTER VERSION
The selection of a read formatter is made in the linker control file. The default
selection, _medium_read_medium_read, is made by the line:

-e_medium_read=_formatted_read-e_medium_read=_formatted_read

To select the full ANSI version, remove this line.

CONFIGURATION

 1-55

HEAP SIZE

If the library functions mallocmalloc or calloccalloc are used in the program, the C
compiler creates a heap of memory from which their allocations are made. The
default heap size is 2000 bytes.

The procedure for changing the heap size is described in the file
c:\iar\etc\heap.cc:\iar\etc\heap.c.

INITIALIZATION

On processor reset, execution passes to a run-time system routine called
cstartupcstartup, which normally performs the following:

◆ Initializes the stack pointer.

◆ Initializes C file-level and static variables.

◆ Calls the user program function mainmain.

cstartupcstartup is also responsible for receiving and retaining control if the user
program exits, whether through exitexit or abortabort.

The user may wish to modify cstartupcstartup, for example to initialize special
hardware before entry to mainmain, or to remove unwanted initialization of
variables.

The overall procedure for modifying cstartupcstartup is as follows:

◆ Make the required modifications to the assembler source of cstartupcstartup,
supplied by default in the file c:\iar\icc78000\cstartup.s26c:\iar\icc78000\cstartup.s26, and
save it under the same name.

◆ Copy one of the provided include files to devmodel.incdevmodel.inc. The include files
select the correct processor and the memory model you want:

Small memory model: defmsv0.incdefmsv0.inc

Banked memory model: defmbv0.incdefmbv0.inc

By default the include files are in the directory c:\iar\incc:\iar\inc.

CONFIGURATION

 1-56

◆ Assemble the modified cstartupcstartup. This will create a replacement object
module file named cstartup.r26cstartup.r26.

◆ Add the new cstartupcstartup module to the appropriate run-time library
module, replacing the original.

For example, to add the new cstartupcstartup module to the simplest small
memory model library, use the command:

xlibxlib
def-cpu 78000def-cpu 78000
rep-mod cstartup cl7801srep-mod cstartup cl7801s
exitexit

The library module cl7801scl7801s will now have the modified cstartupcstartup
instead of the original.

Note that XLINK allows you to test the modified cstartupcstartup before installing it
the library by using the -C-C option. See the IAR 78000 Assembler guide for
details.

 1-57

DATA REPRESENTATION

DATA TYPES

The 78000 C Compiler supports all ANSI C basic elements. Variables are stored
with the least significant part located at low memory address.

Byte variables are always tightly packed in memory and in structures. Word
variables instead are not packed because the NECs 78000 structure requires an
even address alignment for any 16-bit data access.

Data type Bytes Range Notes

bitbit 1 bit 0 or 1 see Extended Keywords

sfrsfr 1 0 to 255see Extended Keywords

sfrpsfrp 2 0 to 65535 see Extended Keywords

charchar (by default) 1 0 to 255 equivalent to unsigned charunsigned char

charchar (using -c-c option) 1 -128 to 127 equivalent to signed charsigned char

signed charsigned char 1 -128 to 127

unsigned charunsigned char 1 0 to 255

shortshort, intint 2 -32768 to 32767

unsigned shortunsigned short,

unsigned intunsigned int 2 0 to 65535

longlong 4 -2147483648 to
2147483647

unsigned longunsigned long 4 0 to 4294967295

pointerpointer 2 0 to 65535

DATA REPRESENTATION

 1-58

Data type Bytes Range Notes

floatfloat 4 ±1.18E-38 to ±3.39E+38

doubledouble, long doublelong double 4 ±1.18E-38 to ±3.39E+38
(by default) (same as float)

ENUM TYPE
The enumenum keyword creates each object with the shortest integer type (charchar, intint
or longlong) required to contain its value.

BIT FIELDS
 Bit-fields (in unions and structures) can be specified to be based on any of the
integral types signed/unsigned char, short or int. This is an extension to ANSI C
standard. In expressions, a bit-field will have the same properties (ie signed or
unsigned and char, short or int) as the base type. During declaration, bit-field
variables are packed in elements of the specified type starting at the LSB
position. When a bit-field declarator does not fit within the current element, or if
the size of the specified base type differs from the previous bit-field base type, a
new element is allocated.

The example below shows the declaration of a number of bit-fields in a structure
names 's'.

struct {struct {

 char a:1; /* Put 'a' in the LSB of a char element */ char a:1; /* Put 'a' in the LSB of a char element */

 char b:5; /* 'b' can be packed together with 'a' */ char b:5; /* 'b' can be packed together with 'a' */

 char c:4; /* No room for 'c'- allocate a new element */ char c:4; /* No room for 'c'- allocate a new element */

 int d:3; /* Diffenetly sized type. Allocate int element int d:3; /* Diffenetly sized type. Allocate int element
 */ */

} s ;} s ;

DATA REPRESENTATION

 1-59

FLOATING POINT
Floating-point values are represented by 4 byte numbers in standard IEEE
format. In either case, floating-point values below the smallest limit will be
regarded as zero, and overflow gives undefined results.

4-BYTE FLOATING-POINT FORMAT
The memory layout of 4-byte floating-point numbers is:

2330 22 031

S Exponent Mantissa

The value of the number is:

(-1)S * 2(Exponent-127) * 1.Mantissa

Zero is represented by 4 bytes of zeros.

The precision of the float operators (+, -, * and /) is approximately 7 decimal
digits.

OBJECT POINTERS
Object pointers (pointers to variables) do not point only to one memory type,
rather they can point to either short direct address memory (saddrsaddr or shortadshortad
pointer) or external data memory area (nearnear pointer) of the 78000. The size of a
pointer is 2 bytes always.

CODE POINTERS
The code pointers are:

Keyword Storage in bytes Restrictions

non-bankednon-banked 2 May only point into one bank.

bankedbanked 3 No restrictions.

The non-bankednon-banked pointer is used to reference only functions that are in the
default code bank, giving efficient access.

The bankedbanked pointer can reference any function and is less efficient.

DATA REPRESENTATION

 1-60

Which of these pointer types is used as the default is determined by the memory
model; see Memory model, page 1-45.

EFFICIENT CODING
It is important to appreciate the limitations of the 78000 architecture in order to
avoid the use of inefficient language constructs. The following is a list of
recommendations on how best to use the ICC78000.

◆ Use 16-bit data types, whenever possible. longlong integers have no direct
support in the 78000 architecture. Also note that, according to the ANSI C
standard, all data types that are shorter than intint should undergo integral
promotion, ie implicit type conversions, when used in arithmetic
expressions.

◆ Use unsignedunsigned data types, whenever possible. The 78000 generally performs
unsignedunsigned operations more efficiently than the signedsigned counterparts.
Especially this applies to type conversions, comparison, array indexing and
some arithmetic operations, such as >>>> and //.

◆ Use ANSI prototypes. Function calls to ANSI functions are performed more
efficiently than K&R-style functions; see IAR C Compiler – General Features.

◆ Consider using the small memory model. Banked applications will however
not be as efficient.

◆ If the banked memory model is required for your application use the
function attribute non_bankednon_banked if possible for local function calls.

◆ Sensible use of the memory attributes (see Extended keywords summary, page
1-61) can enhance both speed and code size in critical applications.

◆ Avoid using large stack frames. Code efficiency deteriorates in functions
with more than 256 bytes of local data. Consider using staticstatic rather than
autoauto storage class for large arrays and structures.

◆ Use the memory attributes saddrsaddr or shortadshortad if possible. Efficient
instructions are available for memory access in short address area.

◆ To achieve maximum code size optimisation, use the compiler switches -z9-z9
-W128 -mS-W128 -mS.

 1-61

LANGUAGE EXTENSIONS
The IAR C Compiler provides a number of powerful extensions that support
specific features of the 78000 family of microprocessors.

The 78000 extensions are provided in three ways:

◆ As extended keywords. By default, the compiler conforms to the ANSI
specifications and 78000 extensions are not available. The command line
option -e-e makes the extended keywords available, and hence reserves them
so that they cannot be used as variable names.

◆ As #pragma#pragma keywords. These provide #pragma#pragma directives which control
how the compiler allocates memory, whether the compiler allows extended
keywords, and whether the compiler outputs warning messages.

◆ As intrinsic functions. These provide direct access to very low-level
processor details.

EXTENDED KEYWORDS SUMMARY

The extended keywords provide the following facilities:

ADDRESSING CONTROL
By default the address range in which the compiler places a variable or function
is determined by the memory model chosen. The program may achieve additional
efficiency for special cases by overriding the default by using one of the storage
modifiers:

nearnear saddrsaddr shortadshortad

or function modifiers:

non-bankednon-banked bankedbanked

LANGUAGE EXTENSIONS

 1-62

I/O ACCESS
The program may access the 78000 I/O system using the following data types:

sfrsfr sfrpsfrp

BIT VARIABLES
The program may take advantage of the 78000 bit-addressing modes by using the
following data type:

bitbit

NON-VOLATILE RAM
Variables may be placed in non-volatile RAM by using the following data type
modifier:

no_initno_init

INTERRUPT ROUTINES
Interrupt routines may be written in C using the following keywords:

interruptinterrupt usingusing monitormonitor

#PRAGMA DIRECTIVE SUMMARY

#pragma#pragma directives provide control of extension features while remaining within
the standard language syntax.

Note that #pragma#pragma directives are available regardless of the -e-e option.

The following categories of #pragma#pragma functions are available:

BITFIELD ORIENTATION
#pragma bitfields=reversed#pragma bitfields=reversed
#pragma bitfields=default#pragma bitfields=default

LANGUAGE EXTENSIONS

 1-63

EXTENSION CONTROL
#pragma language=extended#pragma language=extended
#pragma language=default#pragma language=default

FUNCTION ATTRIBUTE
#pragma function=interrupt#pragma function=interrupt
#pragma function=monitor#pragma function=monitor
#pragma function=non_banked#pragma function=non_banked
#pragma function=banked#pragma function=banked
#pragma function=default#pragma function=default

CODESEGMENT USAGE
#pragma codeseg(SEG_NAME)#pragma codeseg(SEG_NAME)

MEMORY USAGE
#pragma memory=constseg(SEG_NAME)#pragma memory=constseg(SEG_NAME)
#pragma memory=dataseg(SEG_NAME)#pragma memory=dataseg(SEG_NAME)
#pragma memory=near#pragma memory=near
#pragma memory=saddr#pragma memory=saddr
#pragma memory=shortad#pragma memory=shortad
#pragma memory=no_init#pragma memory=no_init
#pragma memory=default#pragma memory=default

WARNING MESSAGE CONTROL
#pragma warnings=on #pragma warnings=on /* Turn on warnings *//* Turn on warnings */
#pragma warnings=off #pragma warnings=off /* Turn off warnings *//* Turn off warnings */
#pragma warnings=default#pragma warnings=default

INTRINSIC FUNCTIONS

Intrinsic functions allow very low-level control of the 78000 microprocessor. To
use them in a C application, include the header file in78000.hin78000.h.

Most intrinsic functions compile a single 78000 instruction, as follows:

LANGUAGE EXTENSIONS

 1-64

Name Instruction Function

void _EI(void)void _EI(void) EIEI Enable interrupts.

void _DI(void)void _DI(void) DIDI Disable interrupts.

void _HALT(void)void _HALT(void) HALT,NOPHALT,NOP Set HALT mode.

void _STOP(void)void _STOP(void) STOP,NOPSTOP,NOP Set STOP mode.

void _NOP(void)void _NOP(void) NOPNOP No operation

void _OPC(char constant)void _OPC(char constant) ---- Insert one byte constant at
the current address .

The _HALT()_HALT() and _STOP()_STOP() intrinsics do not only insert the requested
instruction HALTHALT resp. STOPSTOP but a NOPNOP instruction as well. This additional NOPNOP
instruction is necessary due to some device internal structures.

Intrinsics should be used with greatest caution, since they potentially affect the
rest of the C-code. For details concerning the effects of the intrinsic functions,
see the 78000 User's Manual.

 1-65

EXTENDED KEYWORD
REFERENCE

This chapter describes the extended keywords in alphabetical order.

The following parameters are used:

Parameter What it means

storage-classstorage-class Denotes an optional keyword externextern or staticstatic.

declaratordeclarator Denotes a standard C variable or function
declarator.

banked
Declares a banked function.

SYNTAX
storage-classstorage-class banked banked declaratordeclarator

DESCRIPTION
In the small memory model, the default position for functions is within the
single data bank. The bankedbanked keyword indicates that the function is in a
different bank, and so must be called by the slower banked method.

CAUTION
Depending on the debugging environment the user may encounter some
debugging restrictions when useing bankedbanked functions. For detailed
information pleas refer to the corresponding hardware development tool
documentation.

banked

 1-66

EXAMPLES
The function my_funcmy_func is compiled using the medium memory model. It
calls an assembly routine, my_monitormy_monitor, which is located in bank 0. A
banked call is therefore required:

/* declare my_monitor *//* declare my_monitor */
banked void my_monitor(void);banked void my_monitor(void);

void my_func(void)void my_func(void)
{{
 /* call the monitor */ /* call the monitor */
 my_monitor() ; my_monitor() ;
}}

bit
Declares a bit variable.

SYNTAX – RELOCATABLE ADDRESS
storagestorage--classclass bit bit identifieridentifier

SYNTAX – FIXED ADDRESS
bit bit identifieridentifier = = constant-expressionconstant-expression..bit-selectorbit-selector

SYNTAX – SFR
bit bit identifieridentifier = = sfr-identifiersfr-identifier..bit-selectorbit-selector

DESCRIPTION
The bitbit variable is a variable whose storage is a single bit. It may have
values 0 and 1 only. Bit variables should not be confused with the
C-standard bit-fields.

bit

 1-67

A bitbit variable can be one of three kinds:

Bit variable type Description

Relocatable address The variable is one bit of an ordinary
relocatable variable.

Fixed address The variable is one bit of a location at a fixed
address between FE20 and FFFF.

sfr The variable is one bit of an sfr variable.

Bit variables can be used in all places where it is allowed to use other
integral types, except:

◆ As operand to the unary & (address) operator.

◆ As formal function parameters.

◆ As struct/union elements.

interrupt
Declare interrupt function or CALLTCALLT function

SYNTAX
storage-classstorage-class interrupt interrupt function-declaratorfunction-declarator
storage-classstorage-class interrupt [interrupt [vectorvector]] function-declaratorfunction-declarator

PARAMETERS
function-declaratorfunction-declarator A void function declarator having no

arguments.

[[vectorvector]] A square-bracketed constant expression
yielding the vector address.

interrupt

 1-68

DESCRIPTION
The interruptinterrupt keyword declares a function that is called upon a
processor interrupt. The function must be void and have no arguments.

If a vector is specified, the address of an interrupt handler that calls the
function is inserted in that vector. The vector address is the offset of the
vector from the start of the interrupt vector block, 0x00000x0000. The vector
address must be in the range of 0x00000x0000 to 0x003F0x003F. Predefined vector
definitions for popular members of the 78000 family are supplied; see
Installed files, page 1-8.

Constants for the various interrupt sources are defined in the 78000
specific include files io780xx.h files. If no vector is specified, the user must
provide an appropriate entry in the vector table (preferably placed in the
cstartupcstartup module) for the interrupt function.

The run-time interrupt handler takes care of saving and restoring
processor registers, and returning via the RETIRETI instruction, except for
vector 3E/3F that returns with RETBRETB. Also register bank switching for
interrupt handlers is supported. See usingusing keyword later in this chapter.

The compiler disallows calls to interrupt functions from the program itself.
It does allow interrupt function addresses to be passed to function pointers
which do not have the interrupt attribute. This is useful for installing
interrupt handlers in conjunction with operating systems.

If a vector is specified with a value in the range of 0x00400x0040 to 0x007E0x007E, the
address of the function is inserted in the vector table for CALLTCALLT function
calls. Functions declared as CALLTCALLT accept parameters and may return
values as any other function.

When the compiler option -mS-mS or -mB-mB is in use, there might be a limitation
on free resources in the call table area. See Callt Library Function Calls,
page 1-47.

In banked memory model it is highliy recommended to keep interrupt
handlers in a separate file which should be compiled with the option --
RRRCODE, separated form other user functions. This option will give the
code segement generated the name RCODE which guarantees that
interrupt handlers will not be located in banks but in root memory. See
Banked Memory Model, page 1-48.

interrupt

 1-69

EXAMPLES
/* handler for external interrupt 0 *//* handler for external interrupt 0 */
interrupt [0x24] void ext_0()interrupt [0x24] void ext_0()
 { {
 P0 = 6; P0 = 6;
 } }

/* handler for timer A0 interrupt *//* handler for timer A0 interrupt */
interrupt void timer_A0()interrupt void timer_A0()
 { {
 if (P0.3) start_engine(); if (P0.3) start_engine();
 } }

/* CALLT function call *//* CALLT function call */
interrupt [0x40] int callt_function(int param)interrupt [0x40] int callt_function(int param)
 { {
 if(param == 0) if(param == 0)
 return(TRUE); return(TRUE);
 } }

monitor
Make function atomic.

SYNTAX
storage-class storage-class monitormonitor function-declarator function-declarator

DESCRIPTION
The monitormonitor keyword causes interrupts to be disabled during execution of
the function. This allows atomic operations to be performed, such as
operations on semaphores that control access to resources by multiple
processes.

A function declared with monitormonitor is equivalent to a normal function in all
other respects.

monitor

 1-70

EXAMPLES
char printer_free;char printer_free; /* printer-free semaphore/* printer-free semaphore

//
monitor int got_flag(char *flag)monitor int got_flag(char *flag) /* With no danger of/* With no danger of

interruption ... */interruption ... */
 { {
 if (!*flag) if (!*flag) /* test if available *//* test if available */
 { {
 return (*flag = 1); return (*flag = 1); /* yes - take *//* yes - take */
 } }
 return (0); return (0); /* no - do not take *//* no - do not take */
 } }
void f(void)void f(void)
 { {
 if (got_flag(&printer_free)) if (got_flag(&printer_free)) /* act only if printer is/* act only if printer is

free */free */
 action code action code
 } }

near
Storage modifier.

SYNTAX
storage-class storage-class nearnear declarator declarator

DESCRIPTION
The nearnear storage class is the default storage class for any kind of variables.
It may be used to override the default storage class after a #pragma#pragma
memory=saddrmemory=saddr or #pragma memory=shortad#pragma memory=shortad directive.

non_banked

 1-71

non_banked
Declares a non-banked function.

SYNTAX
storage-classstorage-class non_banked non_banked declaratordeclarator

DESCRIPTION
By default, in the banked memory model, all functions are callable from
any bank. The non_bankednon_banked keyword indicates that the function is always
in the same bank as the caller, and so can be called by the faster unbanked
method.

EXAMPLES
Function foofoo is local to one file, and so is only called by functions within
the same file. It is therefore always in the same bank as the caller:

static non_banked void foo(void)static non_banked void foo(void)
{{
......
}}
void foocaller(void)void foocaller(void)
{{
......
foo(); /* call foo by faster non-banked method */foo(); /* call foo by faster non-banked method */
}}

no_init

 1-72

no_init
Type modifier for non-volatile variables.

SYNTAX
storage-class storage-class no_initno_init declarator declarator

DESCRIPTION
By default, the compiler places variables in main, volatile RAM and
initializes them on start-up. The no_initno_init type modifier causes the
compiler to place the variable in non-volatile RAM and not to initialize it
on start-up.

no_initno_init variables are assumed to reside in bank 0. no_initno_init variable
declarations may not include initializers.

If non-volatile variables are used, it is essential for the program to be linked
to refer to the non-volatile RAM area. For details, see Non-volatile RAM,
page 1-50.

EXAMPLES
no_init int settings[50];no_init int settings[50]; /* array of non-volatile/* array of non-volatile

settings */settings */
no_init int i = 1 ; no_init int i = 1 ; /* initializer included -/* initializer included -

invalid */invalid */

saddr

 1-73

saddr
Storage modifier.

SYNTAX
storage-class storage-class saddrsaddr declarator declarator

DESCRIPTION
By default, the default storage class for any kind of variable (except bit
variables) is near. The saddrsaddr storage modifier may be used to override
this.

Variables declared as saddrsaddr will be located in short address memory from
0xFE200xFE20 to 0xFE1F0xFE1F.

EXAMPLES
saddr int var=10;saddr int var=10; /* int var in saddr area,/* int var in saddr area,

initialised */initialised */
saddr char buffer[10] ;saddr char buffer[10] ; /* array in saddr area *//* array in saddr area */

shortad
Storage modifier.

SYNTAX
storage-class storage-class shortadshortad declarator declarator

DESCRIPTION
By default, the default storage class for any kind of variable (except bit
variables) is near. The shortadshortad storage modifier may be used to override
this.

shortad

 1-74

Variables declared as shortadshortad will be located in short address memory
from 0xFE200xFE20 to 0xFE1F0xFE1F. Variables of type shortadshortad cannot be initialised at
compile-time and may only be declared on file level.

shortad int var;shortad int var; /* int var in saddr area,/* int var in saddr area,
not initialised */not initialised */

shortad int buffer[10];shortad int buffer[10]; /* array in saddr area *//* array in saddr area */

sfr
Declare object of one-byte I/O data type.

SYNTAX
sfr sfr identifieridentifier = = constant-expressionconstant-expression

DESCRIPTION
sfrsfr denotes an 78000 SFR-register which:

◆ Is equivalent to unsignedunsigned charchar.

◆ Can only be directly addressable.

◆ Resides at a fixed location in the range 0xFF000xFF00 to 0xFFFF0xFFFF.

The value of an sfrsfr variable is the contents of the SFR register at the
address constant-expressionconstant-expression. All operators that apply to integral types
except the unary && (address) operator may be applied to sfrsfr variables.

In expressions, sfrsfr variables may also be appended by a period followed by
a bit-selector.

Predefined sfrsfr declarations for popular members of the 78000 family are
supplied; see Installed files, page 1-8.

sfr

 1-75

EXAMPLES
sfr P0 = 0x80;sfr P0 = 0x80; /* Defines P0 *//* Defines P0 */
void func()void func()
 { {
 P0 = 4; P0 = 4; /* Set entire variable P0 = 00000100/* Set entire variable P0 = 00000100

//
 P0.2 = 1; P0.2 = 1; /* Only affects one bit P0 =/* Only affects one bit P0 =

XXXXX1XX*/XXXXX1XX*/
 if (P0 & 4) printf("ON"); if (P0 & 4) printf("ON"); /* Read entire P0 and mask bit 2 *//* Read entire P0 and mask bit 2 */
 if (P0.2) printf("ON"); if (P0.2) printf("ON"); /* Same but does bit access only *//* Same but does bit access only */
 } }

sfrp
Declare object of two-byte I/O data type.

SYNTAX
sfrp sfrp identifieridentifier = = constant-expressionconstant-expression

DESCRIPTION
sfrpsfrp denotes an 78000 SFR register which:

◆ Is equivalent to unsignedunsigned intint.

◆ Can only be directly addressable.

◆ Resides at a fixed location in the range 0xFF000xFF00 to 0xFFFF0xFFFF.

The value of an sfrpsfrp variable is the contents of the SFR register at the
address constant-expressionconstant-expression. All operators that apply to integral types
except the unary && (address) operator may be applied to sfrpsfrp variables.

Predefined sfrpsfrp declarations for popular members of the 78000 family are
supplied; see Installed files, page 1-8.

using

 1-76

using
Declare interrupt function using another register bank.

SYNTAX
storage-classstorage-class interrupt using [interrupt using [bankbank]] function-declaratorfunction-declarator
storage-classstorage-class interrupt [interrupt [vectorvector] using [] using [bankbank]] function-function-
declaratordeclarator

PARAMETERS
function-declaratorfunction-declarator A void function declarator having no

arguments.

[[vectorvector]] A square-bracketed constant expression
yielding the vector address.

[bank][bank] A square-bracketed constant expression
yielding the alternate bank number.

DESCRIPTION
The usingusing keyword declares an interrupt function handler that switches
to another register bank before starting the execution of the program code.

The bank parameter must be a constant expression in the range of 00 to 33. It
specifies the 78000 register bank the interrupt handling function will use.

using

 1-77

EXAMPLES
interrupt [0x24] using [2] void ext_0() /* handler forinterrupt [0x24] using [2] void ext_0() /* handler for
external interrupt 0 */external interrupt 0 */
 { {
 P0 = 6; P0 = 6;
 } }
interrupt void using [1] timer_A0() /* handler for timerinterrupt void using [1] timer_A0() /* handler for timer
A0 interrupt */A0 interrupt */
 { {
 if (P0.3) start_engine(); if (P0.3) start_engine();
 } }

using

 1-78

 1-79

#PRAGMA DIRECTIVE
REFERENCE

This chapter describes the #pragma#pragma directives in alphabetical order.

bitfields=default
Restores default order of storage of bitfields.

SYNTAX
#pragma bitfields=default#pragma bitfields=default

DESCRIPTION
This directive causes the compiler to allocate bitfields in its normal order.
See bitfields=reversedbitfields=reversed.

bitfields=reversed
Reverses order of storage of bitfields.

SYNTAX
#pragma bitfields=reversed#pragma bitfields=reversed

DESCRIPTION
This directive causes the compiler to allocate bitfields starting at the most
significant bit of the field, instead of at the least significant bit. The ANSI
standard allows the storage order to be implementation-dependent, so you
may run into portability problems, which this keyword can be used to
avoid.

bitfields=reserved

 1-80

EXAMPLES
The default layout of

structstruct
{{
 short a:3; short a:3; /* a is 3 bits *//* a is 3 bits */
 short :5; short :5; /* this reserves a hole of/* this reserves a hole of

5 bits */5 bits */
 short b:4; short b:4; /* b is 4 bits *//* b is 4 bits */
} bits;} bits; /* bits is 16 bits *//* bits is 16 bits */
in memory is:

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

3 7 2 0 11

hole (4) b: 4

8 1215

hole (5) a: 3

#pragma bitfields=reversed#pragma bitfields=reversed
structstruct
{{
 short a:3; short a:3; /* a is 3 bits *//* a is 3 bits */
 short :5; short :5; /* this reserves a hole of/* this reserves a hole of

5 bits */5 bits */
 short b:4; short b:4; /* b is 4 /* b is 4 bits */bits */
} bits;} bits; /* bits is 16 bits *//* bits is 16 bits */
has the following layout:

4 7 12 8 1315 3 0

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

hole (4)a: 3
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

hole (5) b: 4

codeseg

 1-81

codeseg
Directs program code to the named segment by default.

SYNTAX
#pragma codeseg (#pragma codeseg (seg_nameseg_name))

DESCRIPTION
This directive directs program code to the named segment by default.

The segment must not be one of the compiler’s reserved segment names as
listed in Assembly language interface, page 1-93.

function=banked
Makes function definitions bankedbanked.

SYNTAX
#pragma function=banked#pragma function=banked

DESCRIPTION
This directive makes subsequent function definitions bankedbanked. It is an
alternative to the function attribute bankedbanked.

EXAMPLES
#pragma function=banked#pragma function=banked
extern void f1();extern void f1(); /* Identical to extern/* Identical to extern

banked void f1() */banked void f1() */

CAUTION
Depending on the debugging environment the user may encounter some
debugging restrictions when useing bankedbanked functions. For detailed
information pleas refer to the corresponding hardware development tool
documentation.

function=default

 1-82

function=default
Restores function definitions to the default type.

SYNTAX
#pragma function=default#pragma function=default

DESCRIPTION
Return function definitions to near or far, as set by the selected memory
model. See function=bankedfunction=banked.

EXAMPLES
#pragma function=banked#pragma function=banked
extern void f1();extern void f1(); /* Identical to extern far/* Identical to extern far

void f1() */void f1() */
#pragma function=default#pragma function=default
extern int f3();extern int f3(); /* Default function type/* Default function type

//

function=interrupt
Makes function definitions interruptinterrupt.

SYNTAX
#pragma function=interrupt#pragma function=interrupt

DESCRIPTION
This directive makes subsequent function definitions of interruptinterrupt type.
It is an alternative to the function attribute interruptinterrupt.

Note that #pragma#pragma function=interruptfunction=interrupt does not offer a vector option.

function=interrupt

 1-83

EXAMPLES
#pragma function=interrupt#pragma function=interrupt
void process_int()void process_int() /* an interrupt function *//* an interrupt function */
 { {
 } }

function=monitor
Makes function definitions monitormonitor.

SYNTAX
#pragma function=monitor#pragma function=monitor

DESCRIPTION
This directive makes subsequent function definitions of monitormonitor type. It is
an alternative to the function attribute monitormonitor.

EXAMPLES
#pragma function=monitor#pragma function=monitor
void f2()void f2() /* Will make f2 a monitor/* Will make f2 a monitor

function */function */
 { {
 } }

function=non_banked

 1-84

function=non_banked
Makes function definitions non_bankednon_banked.

SYNTAX
#pragma function=non_banked#pragma function=non_banked

DESCRIPTION
This directive makes subsequent function definitions non_bankednon_banked. It is an
alternative to the function attribute non_bankednon_banked.

EXAMPLES
#pragma function=non_banked#pragma function=non_banked
extern void f1();extern void f1(); /* Identical to extern non-/* Identical to extern non-

banked void f1() */banked void f1() */

language=default
Restores availability of extended keywords to default.

SYNTAX
#pragma language=default#pragma language=default

DESCRIPTION
This directive returns extended keyword availability to the default set by
the -e-e compiler option. See language=extendedlanguage=extended.

language=extended

 1-85

language=extended
Makes extended keywords available.

SYNTAX
#pragma language=extended#pragma language=extended

DESCRIPTION
This directive makes the extended keywords available regardless of the
state of the -e-e compiler option. It is an alternative to the -e-e compiler
option. See Extended keyword reference, page 1-65, for details.

memory=constseg
Directs constants to the named segment by default.

SYNTAX
#pragma memory=constseg (#pragma memory=constseg (seg_nameseg_name))

DESCRIPTION
This directive directs constants to the named segment by default. It is an
alternative to the memory attribute keywords. The default may be
overridden by the memory attributes.

The segment must not be one of the compiler’s reserved segment names as
listed in Assembly language interface, page 1-93.

memory=near

 1-86

memory=dataseg
Directs variables to the named segment by default.

SYNTAX
#pragma memory=dataseg (#pragma memory=dataseg (seg_nameseg_name))

DESCRIPTION
This directive directs variables to the named segment by default. The
default may be overridden by the memory attributes.

No initial values may be supplied in the variable definitions. Up to 10
different alternate data segments can be defined in any given module. You
can switch to any previously defined data segment name at any point in
the program.

Alternate segments will not be initialised by cstartup.

EXAMPLES
file1.c

extern void function(void);extern void function(void);
#pragma memory=dataseg(MYSEG)#pragma memory=dataseg(MYSEG)
int variable;int variable; /* in segment MYSEG *//* in segment MYSEG */
#pragma memory=default#pragma memory=default

void main(void)void main(void)
{{
 function() ; function() ;
}}
file2.c

#pragma memory=dataseg(MYSEG)#pragma memory=dataseg(MYSEG)
extern int variable;extern int variable; /* in segment MYSEG *//* in segment MYSEG */
#pragma memory=default#pragma memory=default

memory=dataseg

 1-87

void function()void function()
{{
 variable = 1 ; variable = 1 ;
}}
Leaving out the #pragma in file2.c will cause the linker to give the warning
Type conflict for external/entry variable. The generated executable file will
not work as expected.

memory=default
Restores direction of objects to the default area.

SYNTAX
#pragma memory=default#pragma memory=default

DESCRIPTION
This directive restores memory allocation of objects to the default area, as
specified by the memory model in use.

memory=near
Direct variables to the default segment by default.

SYNTAX
#pragma memory=near#pragma memory=near

DESCRIPTION
This directive directs variables to the default data segment. The default
may be overridden by the memory attributes.

memory=near

 1-88

The default segment must be linked to coincide with the physical address
of the 78000 RAM area; see Configuration, page 1-43, for details.

EXAMPLES
#pragma memory=no_init#pragma memory=no_init
char buffer[1000];char buffer[1000]; /* in uninitialized memory/* in uninitialized memory

//
#pragma memory=near#pragma memory=near
int i,j;int i,j; /* default memory type *//* default memory type */

Note that a non-default memory #pragma#pragma will generate error messages if
function declarators are encountered. Local variables and parameters
cannot reside in any other segment than their default segment, the stack.

memory=no_init
Direct variables to the NO_INITNO_INIT segment by default.

SYNTAX
#pragma memory=no_init#pragma memory=no_init

DESCRIPTION
This directive directs variables to the no_initno_init segment, so that they will
not be initialized and will reside in non-volatile RAM. It is an alternative
to the memory attribute no_initno_init. The default may be overridden by the
memory attributes.

The no_initno_init segment must be linked to coincide with the physical address
of non-volatile RAM; see Configuration, page 1-43, for details.

memory=no_init

 1-89

EXAMPLES
#pragma memory=no_init#pragma memory=no_init
char buffer[1000];char buffer[1000]; /* in uninitialized memory/* in uninitialized memory

//
#pragma memory=default#pragma memory=default
int i,j;int i,j; /* default memory type *//* default memory type */

Note that a non-default memory #pragma#pragma will generate error messages if
function declarators are encountered. Local variables and parameters
cannot reside in any other segment than their default segment, the stack.

memory=saddr
Direct variables to the DATA0DATA0, IDATA0 IDATA0 or UDATA0 UDATA0 segment by default.

SYNTAX
#pragma memory=saddr#pragma memory=saddr

DESCRIPTION
This directive directs variables to the DATA0DATA0, IDATA0 IDATA0 or UDATA0 UDATA0 segment
(depending on the compier command line option -P -P), so that they will
reside in short direct addressing RAM. It is an alternative to the memory
attribute nearnear. The default may be overridden by the memory attributes.

The DATA0DATA0, IDATA0 IDATA0 or UDATA0 UDATA0 segment must be linked to coincide with
the physical address of short address RAM; see Configuration, page 1-43,
for details.

EXAMPLES
#pragma memory=saddr#pragma memory=saddr
int saddr_var = 1;int saddr_var = 1; /* in short address memory/* in short address memory

//
#pragma memory=default#pragma memory=default
int i,j;int i,j; /* default memory type *//* default memory type */

memory=saddr

 1-90

Note that a non-default memory #pragma#pragma will generate error messages if
function declarators are encountered. Local variables and parameters
cannot reside in any other segment than their default segment, the stack.

memory=shortad
Direct variables to the SHORTAD SHORTAD segment by default.

SYNTAX
#pragma memory=shortad#pragma memory=shortad

DESCRIPTION
This directive directs variables to the SHORTADSHORTAD segment, so that they will
reside in short direct addressing RAM. It is an alternative to the memory
attribute nearnear. The default may be overridden by the memory attributes.

No initial values may be supplied in the variable definitions.

The SHORTADSHORTAD segment must be linked to coincide with the physical address
of short address RAM; see Configuration, page 1-43, for details.

EXAMPLES
#pragma memory=shortad#pragma memory=shortad
int shortad_var;int shortad_var; /* in short address memory/* in short address memory

//
#pragma memory=default#pragma memory=default
int i,j;int i,j; /* default memory type *//* default memory type */

Note that a non-default memory #pragma#pragma will generate error messages if
function declarators are encountered. Local variables and parameters
cannot reside in any other segment than their default segment, the stack.

warnings=default

 1-91

warnings=default
Restores compiler warning output to default state

SYNTAX
#pragma warnings=default#pragma warnings=default

DESCRIPTION
Return output of compiler warning messages to the default set by the -w-w
compiler option. See #pragma#pragma warnings=onwarnings=on and #pragma#pragma warnings=offwarnings=off.

warnings=off
Turns off output of compiler warnings.

SYNTAX
#pragma warnings=off#pragma warnings=off

DESCRIPTION
This directive disables output of compiler warning messages regardless of
the state of the -w-w compiler option. It is an alternative to the -w-w compiler
option.

warnings=on

 1-92

warnings=on
Turns on output of compiler warnings.

SYNTAX
#pragma warnings=on#pragma warnings=on

DESCRIPTION
This directive enables output of compiler warning messages regardless of
the state of the -w-w compiler option.

 1-93

ASSEMBLY LANGUAGE
INTERFACE

The IAR C Compiler allows assembly language modules to be combined with
compiled C modules. This is particularly used for small, time-critical routines
that need to be written in assembly language and then called from a C main
program. This chapter describes the interface between a C main program and
assembly language routines.

CREATING A SHELL

The recommended method of creating an assembly language routine with the
correct interface is to start with an assembly language source created by the C
compiler. To this ‘shell’ the user can easily add the functional body of the
routine.

The shell source needs only to declare the variables required and perform
simple accesses to them, for example:

int k;int k;
int foo(int i, int j)int foo(int i, int j)
 { {
 char c; char c;
 i++; i++; /* Access to i *//* Access to i */
 j++; j++; /* Access to j *//* Access to j */
 c++; c++; /* Access to c *//* Access to c */
 k++; k++; /* Access to k *//* Access to k */
 } }
 void f(void) void f(void)
 { {
 foo(4,5); foo(4,5); /* Call to foo *//* Call to foo */
 } }

ASSEMBLY LANGUAGE INTERFACE

 1-94

This program is then compiled as follows:

icc78000 shell -A -q -L -z0icc78000 shell -A -q -L -z0

The -A-A option creates an assembly language output, -q-q includes the C source
lines as assembler comments, -L-L creates a listing and -z0-z0 supresses
optimisation.

The result is the listing file shell.s26shell.s26 containing the declarations, function
call, function return and variable accesses.

The following sections describe the interface in detail.

CALLING CONVENTION

There are two different function parameter passing schemes for the 78000
compiler. These are:

u Prototyped function parameter passing

u Non prototyped function parameter passing

Generally the first parameter is always passed in register(s).

For a Prototyped function up to four parameters can be passed in register(s)
depending on parameter sizes in bytes..

Parameters not in register(s) will be pushed on the stack with first parameter
not in register(s) at the top of stack.

The exception from the above is that as soon as a parameter of type "struct" or
"union" is found, that parameter and all following parameters will be put on
the stack.

Parameters passed in register(s) will use the following register allocation:

1:st parameter 2:nd parameter 3:rd parameter 4:th parameter

4 bytes (AX,BC) - - -

3 bytes (AX,C) - - -

2 bytes (AX) 2 bytes (BC) - -

ASSEMBLY LANGUAGE INTERFACE

 1-95

1:st parameter 2:nd parameter 3:rd parameter 4:th parameter

2 bytes (AX) 1 byte (B) 1 byte (C) -

1 byte (X) 2 bytes (BC) - -

1 byte (X) 1 bytes (A) 2 bytes (BC) -

1 byte (X) 1 bytes (A) 1 bytes (B) 1 bytes (C)

Immediatly after an entry into a function the stack contains the following:

 low memory Return address SP

1:st parameter not in register SP+2

2:nd parameter not in register SP+4

3:rd parameter not in register SP+6

4:th parameter not in register SP+8

 high memory

.

.

n:th parameter not in register

.

.

The return address in the banked memory model or for a function will also
contain the banking return address and the bank number of the invoking
function. These are the last objects put on stack immediatly after an entry into
a function:

ASSEMBLY LANGUAGE INTERFACE

 1-96

low memory Bank return address SP

Bank number SP+2

Return address SP+4

1:st parameter not in register SP+6

2:nd parameter not in register SP+8

3:rd parameter not in register SP+10

 high memory

.

.

n:th parameter not in register

.

.

A function is always responsible for deallocating all own variables from stack
before returning to the caller.

Deallocation of a functions parameters stored on stack is done:

- by called function if prototyped function

- by calling function if non prototyped function

FUNCTION RETURN VALUE

Function return values are passed in register(s) except for "structs" and
"unions".

The following register allocation is used:

Size Register

1 bit return value A.0

1 byte return value A

2 byte return value AX

ASSEMBLY LANGUAGE INTERFACE

 1-97

Size Register

3 byte return value AX, B

4 byte return value AX, BC

A special technique is used for "struct" and "union" return values. The caller
reserves an area somewhere in it's own auto space and gives the called
function an address to that area as first parameter.

REGISTERS

A function written in assembly language should save all registers used in
function at function entry and restore them before return.

SEGMENTS

As can be seen in the linker command files (lnk*.xcl) supplied with the
compiler, the C system uses a large number of segments. The segments listed
in the command files are reserved by the run-time system of ICC78000, and
may not be used in assembly language programs with the exceptions
mentioned in this section.

This information is of no importance for writing C programs but can be useful
for programmers mixing C and assembly language. Note that the lnk*.xcl files
supplied with the compiler package should always be used to guarantee that
linking (see section Linking) will work as expected

The segments used by the ICC78000 compiler are explained in section Segment
Reference.

ASSEMBLY LANGUAGE INTERFACE

 1-98

CALLING ASSEMBLY ROUTINES FROM
C
An assembler routine that is to be called from C must:

◆ Conform to the calling convention described above.

◆ Exit with RETRET.

◆ Be located in the segment CODECODE.

◆ Have a PUBLICPUBLIC entry-point label.

◆ Be prototyped before any call, to allow type checking and promotions of
parameters, as in externextern intint foo(intfoo(int i,i, intint j)j).

On entry, SP points to the return address to the calling function.

LOCAL STORAGE ALLOCATION
If the routine needs local storage, it may allocate it in one or more of the
following ways:

◆ On the stack.

◆ In static workspace, provided of course that the routine is not required to
be simultaneously re-usable (“re-entrant”).

INTERRUPT FUNCTIONS
The calling convention cannot be used for interrupt functions since the
interrupt may occur during the calling of a foreground function. Hence the
requirements for interrupt function routine are different from those of a
normal function routine, as follows:

◆ The routine must preserve all registers. The 78000 automatically saves
PSWPSW and PCPC on the stack.

◆ The routine must exit using RETIRETI. This automatically restores PSWPSW and PCPC
from the stack

◆ The routine must treat all registers and all flags as undefined.

ASSEMBLY LANGUAGE INTERFACE

 1-99

DEFINING INTERRUPT VECTORS
As an alternative to defining a C interrupt function in assembly language as
described above, the user is free to assemble an interrupt routine and install it
directly in the interrupt vector.

The interrupt vectors are located in the INTVECINTVEC segment, which the supplied
linker command files define as the area from address 0x00000x0000 to 0x003F0x003F. The
interrupt vector 0x001E0x001E thus has offset 0x1E0x1E within this segment, as used in
the following example:

RSEGRSEG INTVECINTVEC
ORGORG 0x1E0x1E ; Move to vector 0x001E; Move to vector 0x001E
WORDWORD my_intmy_int ; Define interrupt vector; Define interrupt vector

The user must place the actual interrupt routine in the RCODERCODE segment,
guaranteeing that it will reside in bank 0. The following is an example of a
directly installed interrupt routine:

RSEGRSEG RCODERCODE
my_intmy_int PUSHPUSH AXAX ; Save the AX register; Save the AX register

MOVWMOVW AX, #0AX, #0 ; Make sure AX=0; Make sure AX=0
......
POPPOP AXAX ; Restore AX; Restore AX
RETIRETI ; Return from interrupt; Return from interrupt

ASSEMBLY LANGUAGE INTERFACE

 1-100

 1-101

SEGMENT REFERENCE
The IAR C Compiler places code and data in to named segments which are
referred to by the linker. Details of the segments is required for
programming assembly language modules, and is also useful when
interpreting the assembly language output of the compiler.

This section provides an alphabetical list of the segments. For each
segment, it shows:

◆ The name of the segment.

◆ A brief description of the contents.

◆ Whether the segment is read/write or read-only.

◆ Whether the segment may be accessed from the assembly language
(“assembly-accessible”) or from the compiler only.

◆ A fuller description of the segment contents and use.

BITVARS

Bit variables.

TYPE
Read-write.

DESCRIPTION
Assembly-accessible.

Holds bitbit variables and can also hold user-written relocatable bit-
variables. This segment is NOT initialised by CSTARTUPCSTARTUP .

CCSTR

 1-102

CCSTR

String initializers.

TYPE
Read-only.

DESCRIPTION
Assembly-accessible.

Holds C stringstring literal initializers when the -y-y (put string literals into
variable section) and -PP (generate PROMable code) compiler option are
active.

CDATA0
Variable initializers.

TYPE
Read-only.

DESCRIPTION
Compiler-only.

Holds variable initializers for the variables located in the corresponding
IDATA0IDATA0 segment. These values are copied over from CDATA0CDATA0 to IDATA0IDATA0 by
CSTARTUPCSTARTUP during initialization.

CDATA1

 1-103

CDATA1
Variable initializers.

TYPE
Read-only.

DESCRIPTION
Compiler-only.

Holds variable initializers for the variables located in the corresponding
IDATA1IDATA1 segment. These values are copied over from CDATA1CDATA1 to IDATA1IDATA1 by
CSTARTUPCSTARTUP during initialization.

CODE

Code.

TYPE
Read-only.

DESCRIPTION
Assembly-accessible.

Holds user program code, various library routines that can run in
alternative banks, and code from assembly language modules.

Note that any assembly language routines included in the CODECODE segment
must meet the calling convention of the memory model in use.

CONST

 1-104

CONST

Constants.

TYPE
Read-only.

DESCRIPTION
Assembly-accessible.

Used for storing constconst and codecode objects. Can be used in assembly
language routines for declaring constant data.

CSTACK

Stack.

TYPE
Read/write.

DESCRIPTION
Assembly-accessible.

Holds the internal stack.

CSTR

 1-105

CSTR

String literals.

TYPE
Read-only.

DESCRIPTION
Assembly-accessible.

Holds C string literals. See the description of the -y-y option (put C string
literals into RAM) in General command line options, page 2-5.

DATA0
Uninitialized short addressshort address statics.

TYPE
Read/write.

DESCRIPTION
Compiler-only.

Holds static variables which are not to be zeroed on start-up. These will
have been allocated by the compiler, declared shortadshortad or created shortadshortad
by use of the memory #pragma#pragma, or created manually from assembly
language source.

DATA1

 1-106

DATA1
Uninitialized statics.

TYPE
Read/write.

DESCRIPTION
Compiler-only.

Holds static variables which are not to be zeroed on start-up.

ECSTR

Writeable string literals.

TYPE
Read/write.

DESCRIPTION
Assembly-accessible.

Holds writeable copies of C string literals when the compiler’s -y-y option is
active. See the description of the -y-y option (put C string literals into RAM)
in General command line options, page 2-5.

IDATA0

 1-107

IDATA0
Initialized short addressshort address statics.

TYPE
Read/write.

DESCRIPTION
Compiler-only.

Holds static shortadshortad variables which have been declared with explicit
initial values. Their initial values are copied over from the corresponding
segment by CSTARTUPCSTARTUP during initialization.

IDATA1
Initialized statics.

TYPE
Read/write.

DESCRIPTION
Compiler-only.

Holds static variables which have been declared with explicit initial values.
Their initial values are copied over from the corresponding segment by
CSTARTUPCSTARTUP during initialization.

INTVEC

 1-108

INTVEC

Interrupt vectors.

TYPE
Read-only.

DESCRIPTION
Assembly-accessible.

Holds the interrupt vector table generated by the use of the interruptinterrupt
extended keyword (which can also be used for user-written interrupt
vector table entries).

NO_INIT

Non-volatile variables.

TYPE
Read/write.

DESCRIPTION
Assembly-accessible.

Holds variables to be placed in non-volatile memory. These will have been
allocated by the compiler, declared no_initno_init or created no_initno_init by use of
the memory #pragma#pragma, or created manually from assembly language source.

RCODE

 1-109

RCODE

Vector handling code.

TYPE
Read-only.

DESCRIPTION
Assembly-accessible.

Used for start-up code and interrupt handlers, that must reside in non-
banked memory area.

SHORTAD

Short address memory.

TYPE
Read/write.

DESCRIPTION
Assembly-accessible.

Holds static saddrsaddr variables which have been declared without explicit
initial values. They are set to zero by CSTARTUPCSTARTUP during initialization.
SHORTADSHORTAD can also hold user-written data elements that should initially be
set to zero.

TEMP

 1-110

TEMP

Autos.

DESCRIPTION
Used for autosautos when compiling with the -d-d option.

UDATA0
Uninitialized shortadshortad statics.

TYPE
Read/write.

DESCRIPTION
Assembler-accessible.

Holds static variables which were declared without initial values. ANSI C
specifies that such variables be set to zero before they are encountered by
the program, so they are set to zero by CSTARTUPCSTARTUP during initialization.
These will have been allocated by the compiler, declared shortadshortad or
created shortadshortad by use of the memory #pragma#pragma, or created manually from
assembly language source.UDATA0UDATA0 can also hold user-written data elements
that should initially be set to zero.

UDATA1

 1-111

UDATA1
Uninitialized statics.

TYPE
Read/write.

DESCRIPTION
Assembler-accessible.

Holds static variables which were declared without initial values . ANSI C
specifies that such variables be set to zero before they are encountered by
the program, so they are set to zero by CSTARTUPCSTARTUP during initialization.
UDATA1UDATA1 can also hold user-written data elements that should initially be set
to zero.

WCSTR

Writeable string literals.

TYPE
Read/write.

DESCRIPTION
Holds writable copies of the C "string" literals when the -y-y compiler
option is active.

WRKSEG

 1-112

WRKSEG

Local register variables.

TYPE
Read/write.

DESCRIPTION
Compiler-only.

Holds the register optimisation memory area when -W-W compiler option is
selected.

ZVECT

Initialization.

DESCRIPTION
Used for initialization in CSTARTUPCSTARTUP.

 1-113

78000 SPECIFIC
COMMAND LINE OPTIONS

SUMMARY
The ICC Compiler has an extensive set of target specific command line
options that control its operation. Each option consist of a hyphen (--)
followed by an option identifier. The position of an option in the command
line has no significance in itself.

The options are arranged into the following functional groups:

MEMORY MODEL
-ms-ms Standard. Generates non banked function calls.

-mb-mb Banked. Generates banked external function calls.

-mS-mS Same as -ms -ms but using call table calls for internal
(run-time) library calls.

-mB-mB Same as -mb -mb but using call table calls for internal
(run-time) library calls.

PROCESSOR OPTION
-v0-v0 Processor option 7800X (default).
-v1-v1 Processor option 7801X.
-v2-v2 Processor option 78P014.
-v3-v3 Processor option 7804X.
-v4-v4 Processor option 78P044.
-v5-v5 Processor option 7805X.
-v6-v6 Processor option 7806X.
-v7-v7 Processor option 7802X.
-v8-v8 Processor option 78P024.

COMMAND LINE OPTIONS SUMMARY

 1-114

CODE CONTROL
-W{rs}-W{rs} Set register area size.
-d-d Force static allocation of auto variables.
-rr-rr Supress variable in register optimization.

 1-115

78000 SPECIFIC
COMMAND LINE OPTIONS

In addition to the general command line options described in General
General command line options, page 2-5, the 78000 C Compiler has the
following options:

-m
Selects memory model.

SYNTAX
-m[sbSB]-m[sbSB]

DESCRIPTION
Use the -m-m option to select the memory model, as follows:

Option Memory model

ss Standard (default).

bb Banked.

SS Standard using call table function calls for internal (run-
time) library calls.

BB Banked using call table function calls for internal (run-
time) library calls.

CAUTION
Depending on the debugging environment the user may encounter some
debugging restrictions when useing bankedbanked functions. For detailed
information pleas refer to the corresponding hardware development tool
documentation.

-v

 1-116

For more information see Memory model, page 1-44.

Note that all modules of a program must use the same memory model, and
must be linked with a library file for that model.

-v
Selects the processor type

SYNTAX
-v[0-8]-v[0-8]

DESCRIPTION
Use the -v-v option to select the processor type, as follows:

Option Processor type

00 7800X (default)

11 7801X

22 78P014

33 7804X

44 78P044

55 7805X

66 7806X

77 7802X

88 78P024

-W

 1-117

-W
Set register area size.

SYNTAX
-W[rs]-W[rs]

DESCRIPTION
The Compiler set register area size option (-W[rs]-W[rs]) enables the compiler
register variable work area in short direct address memory, segment WRKSEG.
The compiler puts auto variables in that area as much as it can. The default
maximum register area size, if{rs} not given, is 20 bytes while the maximum
{rs} value possible to give is 128 bytes.

Even though only the actually used number of bytes will be allocated for each
function it is possible that this may increase the code size instead of reduce it,
if the function is small, since there is some overhead in managing the short
address work area.

-d
Force static allocation of auto variables

SYNTAX
-d-d

DESCRIPTION
The Compiler will force variables of storage class auto to storgage class static.

The C compiler will create a segment named TEMP which holds the automatic
variables. TEMP can be located anywhere in memory.

When option -d-d is active, the compiled code is no longer reentrant.

-rr

 1-118

-rr
Suppress variable in register optimization

SYNTAX
-rr-rr

DESCRIPTION
The -r-r option with modifier rr informs the compiler to store back variables
kept in registers to their memory location between statements. The
compiler will still keep the value in register(s) if possible. This
option/modifier combination is necessary for debugging reason and it is
not documented in the compiler sign-on message.

This option must be specified together with the -Y#-Y# option of the linker
when you use the SD78K0 debugger from NEC.

 1-119

78000 SPECIFIC
DIAGNOSTICS

In addition to the error and warning messages described in Diagnostics,
page 2-155, the 78000 C Compiler has the following error message:

No Error message Suggestion

105 Language feature notLanguage feature not
implemented: 'Bit fieldsimplemented: 'Bit fields
SIGNED/UNSIGNED LONG'SIGNED/UNSIGNED LONG'

Self explaining sub message

142 "interrupt" functions can"interrupt" functions can
only be "void" and have noonly be "void" and have no
argumentsarguments

See section Interrupt Functions

143 Too large, negative orToo large, negative or
overlapping "interrupt"overlapping "interrupt"
[value] in 'name'[value] in 'name'

Check [vector] values of declared
interrupt functions

144 Bad context for storageBad context for storage
modifier (storage-class ormodifier (storage-class or
function)function)

The "no_init" keyword can only
be used to declare variables with
static storage class. That is,
"no_init" cannot be used in
"typedefs" or applied to "auto"
variables of functions.

An active "#pragma
memoy=no_init" can cause such
errors when function declarations
are found.

145 Bad context for functionBad context for function
call modifiercall modifier

The keywords "interrupt",
"non_banked" or "monitor" can
only be applied to function
declarations.

78000 SPECIFIC DIAGNOSTICS

 1-120

No Error message Suggestion

146 Unknown #pragmaUnknown #pragma
identifier:'name'identifier:'name'

See section #pragma Commands.

147 Extension keyword "name" isExtension keyword "name" is
already defined by the useralready defined by the user

This error will occur if a keyword
that can serve as an extension
keyword is used as an ordinary
identifier (when the compiler is
executing in ANSI mode) and the
directive "#pragma
language=extended" is found.

148 '=' expected'=' expected "sfr"-declared identifiers must be
followed by "= value".

149 Attempt to take address ofAttempt to take address of
"sfr", "sfrp" or "bit""sfr", "sfrp" or "bit"
variablevariable

The unary &-operator may not be
applied to variables declared as
"bit", "sfr" or "sfrp".

150 Illegal range for "sfr",Illegal range for "sfr",
"sfrp" or "bit" address"sfrp" or "bit" address

The address expression is not a
valid "bit", "sfr" or "sfrp" address

152 '.' expected'.' expected Bad "bit" declaration syntax.

153 Illegal context for [bit,Illegal context for [bit,
saddr, shortad, sfr, sfrp,saddr, shortad, sfr, sfrp,
near, no_init] specifiernear, no_init] specifier

This error will be generated due
to illegal use of one of the
extended keywords.

78000 SPECIFIC DIAGNOSTICS

 1-121

No Error message Suggestion

154 78000 specific:78000 specific:

'Not a BIT accessible SFR''Not a BIT accessible SFR'

'Interrupt function cannot'Interrupt function cannot
be declared BANKED orbe declared BANKED or
MONITOR'MONITOR'

'Interrupt function bad'Interrupt function bad
USING bank number'USING bank number'

'CALLT function cannot be'CALLT function cannot be
declared USING'declared USING'

'CALLT function cannot be'CALLT function cannot be
declared BANED or MONITOR'declared BANED or MONITOR'

'CALLT function without'CALLT function without
vector not legal'vector not legal'

'CALLT illegal function'CALLT illegal function
interrupt vector'interrupt vector'

'Illegal argument to _DI''Illegal argument to _DI'

'Illegal argument to '_EI''Illegal argument to '_EI'

'Illegal argument for _HALT''Illegal argument for _HALT'

'Illegal argument for _STOP''Illegal argument for _STOP'

'Illegal argument for _NOP''Illegal argument for _NOP'

'Argument must exist for'Argument must exist for
_OPC'_OPC'

'Too many arguments for'Too many arguments for
_OPC'_OPC'

'Argument not char constant'Argument not char constant
for _OPC'for _OPC'

Self explaining sub message

78000 SPECIFIC DIAGNOSTICS

 1-122

78000 SPECIFIC XLINK ERRORS

In addition to the error and warning messages described in Diagnostics,
page 2-145, the XLINK has the following error message:

No Error message Suggestion

16 Function 'name' in Function 'name' in modulemodule
((filefile) is called from two) is called from two
function trees (with rootsfunction trees (with roots
'name1' and 'name2)'name1' and 'name2)

Probable cause: An "interrupt"
function calls a function that is
also executed by a background
program. May lead to execution
errors.

17 Segment 'name' is too largeSegment 'name' is too large
or placed at wrong addressor placed at wrong address

This warning indiates that a
segment holding BIT, SADDR or
SHORTAD elements is too large
due to too many C variable
declarations or is placed at wrong
address in the linker command
file.

70 Module Module modulemodule ((filefile) has) has
different memory model thandifferent memory model than
previously linked modulespreviously linked modules

Inconsistent use of memory
models

71 Segment 'name' is definedSegment 'name' is defined
incorrectly (in a bankincorrectly (in a bank
definition, segment hasdefinition, segment has
wrong type, or is mixed withwrong type, or is mixed with
other segment types)other segment types)

This error indicates that a faulty
linker command file is used.

72 Segment 'name' must beSegment 'name' must be
defined in a-Z definitiondefined in a-Z definition

This error should not occur if a
properly modified linker
command is used.

 2-1

GENERAL COMMAND LINE
OPTIONS SUMMARY

The ICC Compiler has an extensive set of command line options that control its
operation. Those options common to all targets are documented in this chapter.
In addition there may be options specific to this particular target, in which case
these are documented in the chapter Target specific command line options.

Each option consist of a hyphen (--) followed by an option identifier. Some
options are followed by an optional or obligatory argument. If the argument is a
file leafname, it must be separated from the option identifier by one or more
space or tab characters, for example:

-o -o objfileobjfile

All other types of arguments (including file prefixes) must immediately follow
the identifier, for example:

-O-Opathnamepathname

The position of an option in the command line has no significance in itself.
However in the case of the options -D-D and -I-I, the order of multiple options is
important.

The options are arranged into the following functional groups:

FILE CONTROL
-a -a filefile Generates assembler source.

-A-Aprefixprefix Generates assembler source.

-f -f filefile Reads command line options from a file.

-G-G Opens the standard input as source.

-I-Iprefixprefix Adds an include file search prefix.

GENERAL COMMAND LINE OPTIONS SUMMARY

 2-2

-l-l file file Generates a listing.

-L-Lprefixprefix Generates a listing.

-o-o file file Specifies object filename.

-O-Oprefixprefix Specifies object filename.

LISTING CONTROL
-F-F Generates a formfeed after each listed function.

-i-i Lists included files.

-p-pnn Formats listing into pages.

-q-q Puts mnemonics in the listing.

-t-tnn Sets the tab spacing.

-T-T Lists active lines only.

-x[D][F][T][2]-x[D][F][T][2] Generates a cross-reference list.

CODE CONTROL
-b-b Makes object a library module.

-e-e Enables target dependent extensions.

-H-Hnamename Sets the object module name.

-P-P Generates PROMable code.

-r[012][i][n]-r[012][i][n] Generates debug information.

-R-Rnamename Sets the code segment name.

-s[0-9]-s[0-9] Optimizes for speed.

-z[0-9]-z[0-9] Optimizes for size.

-y-y Initializes strings as variables.

LANGUAGE SPECIFICATION
-c-c Specifies the interpretation of charchar.

-C-C Enables nested comments.

GENERAL COMMAND LINE OPTIONS SUMMARY

 2-3

-g[A][O]-g[A][O] Enables global type check.

-K-K Enables C++ comments.

MESSAGE CONTROL
-S-S Sets silent operation of compiler.

-w-w Disables warnings.

-X-X Displays C declarations.

USER OPTIONS
-D-Dsymbsymb Defines a symbol.

-D-Dsymbsymb=xxxx Defines a symbol.

-U-Usymbsymb Undefines a symbol.

GENERAL COMMAND LINE OPTIONS SUMMARY

 2-4

 2-5

GENERAL COMMAND
LINE OPTIONS

This chapter lists the C compiler command line options.

-a
Generates assembler source.

SYNTAX
-a -a filefile

DESCRIPTION
Use -a-a to generate assembler source on: file.sfile.sxxxx.

By default the compiler does not generate an assembler source. The -a-a
option generates an assembler source to the named file.

The filename consists of a leafname optionally preceded by a pathname
and optionally followed by an extension. If no extension is given, the
target-specific assembler source extension is used.

The assembler source may be assembled by the appropriate IAR
Assembler.

If the -l -l or -L-L option is also used, the C source lines will be included in
the assembly source file as comments.

The -a-a and -A-A options may not be used together.

-A

 2-6

-A
Generates assembler source.

SYNTAX
-A-Aprefixprefix

DESCRIPTION
Use -A-A to generate assembler source on: prefixprefix sourcesource.s.sxxxx.

By default the compiler does not generate an assembler source . The -A-A
option generates an assembler source to a file with the same name as the
source leafname but with the target-specific assembly source extension.

The -A-A option may be followed by a prefixprefix, which the compiler adds to
the filename. This allows the user to redirect the assembly source to a
different directory.

The assembler source may be assembled by the appropriate Micro-Series
assembler.

If the -l-l or -L-L option is also used, the C source lines will be included in the
assembly source file as comments.

The -a-a and -A-A options may not be used together.

-b

 2-7

-b
Makes object a library module.

SYNTAX
-b-b

DESCRIPTION
By default the object module is a program object module. Use the -b-b option
to make a library object module instead.

-c
Specifies the interpretation of charchar.

SYNTAX
-c-c

DESCRIPTION
The ANSI standard specifies that the interpretation of charchar as unsignedunsigned
charchar or signedsigned charchar is implementation dependent.

By default, the IAR C Compiler treats charchar as equivalent to unsignedunsigned
charchar. Use -c-c to treat charchar as equivalent to signedsigned charchar for compatibility
with other compilers.

Note that the C Library is compiled without -c-c, so if -c-c is used, the type
checking enabled by the -g -g or -r-r option may cause unexpected type
mismatch warnings from the linker.

-C

 2-8

-C
Enables nested comments.

SYNTAX
-C-C

DESCRIPTION
By default, the compiler issues warnings on finding nested comments. Use
-C-C to inhibit these warnings, and allow comments to be nested to any level.
This is particularly useful for commenting-out program sections that
themselves contain comments.

-D
Defines a symbol.

SYNTAX
-D-Dsymbsymb
-D-Dsymbsymb==xxxx

DESCRIPTION
The -D-Dsymbsymb option defines a symbol with the value 1 as if the line

#define #define symbsymb 1 1

was included at the start of the source. It provides a mechanism for
command line control of the user’s own compilation-time options, such as
configuration or custom debugging or trace routines. For simple Boolean
control variables, it is a more compact mechanism than the more flexible --
DDsymbsymb==xxxx option.

-D

 2-9

The -D-Dsymbsymb==xxxx option defines a symbol with the specified value as if the
line

#define #define symbsymb xx xx

was included at the start of the source.

To include spaces in the expression, surround the whole option by double
quotes. For example:

"-DEXPR=F + g""-DEXPR=F + g"

is equivalent to:

#define EXPR F + g#define EXPR F + g

To include a double quote character itself, follow it immediately by a
second double quote character. For example:

"-DSTRING=""micro proc""""-DSTRING=""micro proc"""

is equivalent to:

#define STRING "micro proc"#define STRING "micro proc"

There is no limit on the number of -DD options used on a single command
line.

Command lines can become very long when using the -D-D option, in which
case it may be useful to use a command file; see -f-f.

-e

 2-10

-e
Enables target dependent extensions.

SYNTAX
-e-e

DESCRIPTION
Use -e-e to enable extensions that are specific to the particular target. By
default these are not enabled.

These extensions are documented in the chapter Language extensions.

-f
Reads command line options from a file.

SYNTAX
-f -f filefile

DESCRIPTION
Extends the command line with filefile..xclxcl.

By default, the compiler looks for command parameters only on the
command line itself. To make long command lines more manageable, and
to avoid the MS-DOS command line length limit, -f-f may be used to specify
a command file, from which the compiler reads command line items as if
they had been entered at the position of the -f-f option.

In the command file, the items are formatted exactly as if they were on the
command line itself, except that multiple lines may be used since the
newline character acts just as a space or tab character.

If no extension is included in the filename, .xcl.xcl is assumed.

-F

 2-11

-F
Generates a formfeed after each listed function.

SYNTAX
-F-F

DESCRIPTION
Use -F-F to include a formfeed after each function in the listing.

-g
Enables global type check.

SYNTAX
-g[A][O]-g[A][O]

DESCRIPTION
There is a class of conditions in the source that indicate possible programming
faults but which by default the compiler and linker ignore.

The -g-g option causes the compiler to issue warning messages for these
conditions, and also to include type information in the object file so that the
linker will warn of them. The conditions are:

◆ Calls to undeclared functions.

◆ Undeclared K&R formal parameters.

◆ Missing return values in non-void functions.

◆ Unreferenced local or formal parameters.

◆ Unreferenced gotogoto labels.

◆ Unreachable code.

-g

 2-12

◆ Unmatching or varying parameters to K&R functions.

◆ #undef#undef on unknown symbols.

◆ Valid but ambiguous initializers.

◆ Constant array indexing out of range.

This includes many of the conditions which on other C Compilers can be
detected only by using a separate lintlint utility.

The -g-g option does not increase the size of the final code but does increase the
compilation and (unless the OO modifier is used) link times and object module
size.

The AA modifier enables warnings of the old-style K&R functions.

The OO modifier inhibits the inclusion of type information in the object module,
and hence inhibits type checking by the linker. Hence -gO-gO does not increase
the object module size or link time.

Note that objects in modules compiled without type information (that is,
compiled without -g-g[A]A] or with -gO[A]-gO[A]) are considered as totally typeless by
the linker. This means that there will never be any warning of a type mismatch
from a declaration from a module compiled without type information, even if
the module with a corresponding declaration has been compiled with type
information.

EXAMPLES
The following examples illustrate each of these types of error.

Calls to undeclared functions
Program:

void my_fun(void) { }void my_fun(void) { }

int main(void)int main(void)
{{
 my_func(); my_func(); /* mis-spelt my_fun gives undeclared function/* mis-spelt my_fun gives undeclared function

warning */warning */
 return 0; return 0;
}}

-g

 2-13

Error:

my_func();my_func(); /* mis-spelt my_fun gives undeclared function warning *//* mis-spelt my_fun gives undeclared function warning */

--------^--------^

"undecfn.c",5 Warning[23]: Undeclared function 'my_func';"undecfn.c",5 Warning[23]: Undeclared function 'my_func';
assumed "extern" "int"assumed "extern" "int"

Undeclared K&R formal parameters
Program:

int my_fun(parameter)int my_fun(parameter) /* type of parameter not declared/* type of parameter not declared
//

{{
 return parameter+1; return parameter+1;
}}

Error:

int my_fun(parameter) /* type of parameter not declared */int my_fun(parameter) /* type of parameter not declared */

---------------------^---------------------^

"undecfp.c",1 Warning[9]: Undeclared function parameter"undecfp.c",1 Warning[9]: Undeclared function parameter
'parameter'; assumed "int"'parameter'; assumed "int"

Missing return values in non-void functions
Program:

int my_fun(void)int my_fun(void)
{{
 /* ... function body ... */ /* ... function body ... */
}}

Error:

}}

^̂

"noreturn.c",4 Warning[22]: Non-void function: explicit"noreturn.c",4 Warning[22]: Non-void function: explicit
"return" <expression>; expected"return" <expression>; expected

Unreferenced local or formal parameters
Program:

void my_fun(int parameter)void my_fun(int parameter) /* unreferenced formal/* unreferenced formal
parameter */parameter */

-g

 2-14

{{
 int localvar; int localvar; /* unreferenced local variable *//* unreferenced local variable */

/* exit without reference to either variable *//* exit without reference to either variable */
}}

Error:

}}

^̂

"unrefpar.c",6 Warning[33]: Local or formal 'localvar' was never referenced"unrefpar.c",6 Warning[33]: Local or formal 'localvar' was never referenced

"unrefpar.c",6 Warning[33]: Local or formal 'parameter' was never referenced"unrefpar.c",6 Warning[33]: Local or formal 'parameter' was never referenced

Unreferenced goto labels
Program:

int main(void)int main(void)
{{
 /* ... function body ... */ /* ... function body ... */

exit:exit: /* unreferenced label *//* unreferenced label */
 return 0; return 0;
}}

Error:

}}

^̂

"unreflab.c",7 Warning[13]: Unreferenced label 'exit'"unreflab.c",7 Warning[13]: Unreferenced label 'exit'

Unreachable code
Program:

#include <stdio.h>#include <stdio.h>

int main(void)int main(void)
{{
 goto exit; goto exit;

 puts("This code is unreachable"); puts("This code is unreachable");

exit:exit:
 return 0; return 0;
}}

-g

 2-15

Error:

 puts("This code is unreachable"); puts("This code is unreachable");

------^------^

"unreach.c",7 Warning[20]: Unreacha"unreach.c",7 Warning[20]: Unreachable statement(s)ble statement(s)

Unmatching or varying parameters to K&R functions
Program:

int my_fun(len,str)int my_fun(len,str)
int len;int len;
char *str;char *str;
{{
 str[0]='a' ; str[0]='a' ;
 return len; return len;
}}

char buffer[99] ;char buffer[99] ;
int main(void)int main(void)
{{
 my_fun(buffer,99) ; my_fun(buffer,99) ; /* wrong order of parameters *//* wrong order of parameters */
 my_fun(99) ; my_fun(99) ; /* missing parameter *//* missing parameter */
 return 0 ; return 0 ;
}}

Error:

my_fun(buffer,99) ;my_fun(buffer,99) ; /* wrong order of parameters *//* wrong order of parameters */

--------------^--------------^

"varyparm.c",14 Warning[26]: Inconsistent use of K&R function - changing type"varyparm.c",14 Warning[26]: Inconsistent use of K&R function - changing type

of parameterof parameter

my_fun(buffer,99) ;my_fun(buffer,99) ; /* wrong order of parameters *//* wrong order of parameters */

-----------------^-----------------^

"varyparm.c",14 Warning[26]: Inconsistent use of K&R function - changing type"varyparm.c",14 Warning[26]: Inconsistent use of K&R function - changing type

of parameterof parameter

my_fun(99) ;my_fun(99) ; /* missing parameter *//* missing parameter */

----------^----------^

"varyparm.c",15 Warning[25]: Inconsistent use of K&R function - varying number"varyparm.c",15 Warning[25]: Inconsistent use of K&R function - varying number

of parametersof parameters

-g

 2-16

#undef on unknown symbols
Program:

#define my_macro 99#define my_macro 99

/* Misspelt name gives a warning that the symbol is unknown *//* Misspelt name gives a warning that the symbol is unknown */
#undef my_macor#undef my_macor

int main(void)int main(void)
{{
 return 0; return 0;
}}

Error:

#undef my_macor#undef my_macor

--------------^--------------^

"hundef.c",4 Warning[2]: Macro 'my_macor' is already #undef"hundef.c",4 Warning[2]: Macro 'my_macor' is already #undef

Valid but ambiguous initializers
Program:

typedef struct t1 {int f1; int f2;} type1;typedef struct t1 {int f1; int f2;} type1;
typedef struct t2 {int f3; type1 f4; type1 f5;} type2;typedef struct t2 {int f3; type1 f4; type1 f5;} type2;
typedef struct t3 {int f6; type2 f7; int f8;} type3;typedef struct t3 {int f6; type2 f7; int f8;} type3;
type3 example = {99, {42,1,2}, 37} ;type3 example = {99, {42,1,2}, 37} ;

Error:

type3 example = {99, {42,1,2}, 37} ;type3 example = {99, {42,1,2}, 37} ;

-----------------------------------^-----------------------------------^

"ambigini.c",4 Warning[12]: Incompletely bracketed initializer"ambigini.c",4 Warning[12]: Incompletely bracketed initializer

Constant array indexing out of range
Program:

char buffer[99] ;char buffer[99] ;

int main(void)int main(void)
{{
 buffer[500] = 'a' ; buffer[500] = 'a' ; /* Constant index out of range *//* Constant index out of range */

 return 0; return 0;
}}

-G

 2-17

Error:

buffer[500] = 'a' ; /* Constant index out of range */buffer[500] = 'a' ; /* Constant index out of range */

-----------^-----------^

"arrindex.c",5 Warning[28]: Constant [index] outside"arrindex.c",5 Warning[28]: Constant [index] outside
array boundsarray bounds

-G
Opens the standard input as source.

SYNTAX
-G-G

DESCRIPTION
By default, the source is read from the source file of the specified name.
Use -G-G to read the source directly from the standard input stream,
normally the keyboard. The source filename is set to stdin.cstdin.c.

-H
Sets the object module name.

SYNTAX
-H-Hnamename

DESCRIPTION
By default, the internal name of the object module is the source leafname.
If several modules have the same source leafname, the identical object
module names causes a duplicate modules error from the linker.

-i

 2-18

This can arise, for example, when the source files are generated by a
compiler pre-processor.

Use -H-H to specify an alternative object module name, to overcome this
problem.

-i
Lists included files.

SYNTAX
-i-i

DESCRIPTION
Use the -i-i option to list #include#include files. By default they are not listed.

-I
Adds an include file search prefix.

SYNTAX
-I-Iprefixprefix

DESCRIPTION
The compiler performs the following search sequence for each include file
enclosed in angle brackets in a directive such as:

#include <#include <filefile>>

◆ The filename prefixed by the argument of each successive -I-I option if
any.

-K

 2-19

◆ The filename prefixed by each successive path in the C_INCLUDEC_INCLUDE
environment variable if any.

◆ The filename alone.

In addition, if the filename is enclosed in double quotes, as in

#include "#include "filefile""

the compiler first searches the filename prefixed by the source file path.

Use the -I-I option, followed immediately by a path specification, to direct
the compiler to search for include files on that path.

There is no limit to the number of -I-I options on a single command line.

Note that the compiler simply adds the -I-I prefix onto the start of the
include filename, so it is important to include the final backslash if
necessary.

-K
Enables C++ comments.

SYNTAX
-K-K

DESCRIPTION
C++ style comments are introduced by // and extend to the end of the line.
By default, C++ style comments are not accepted. Use the -K-K option to
allow them to be accepted.

-l

 2-20

-l
Generates a listing.

SYNTAX
-l -l filefile

DESCRIPTION
By default, the compiler does not generate a listing. Use the -l-l option to
generate a listing to the named file. The filename consists of a leafname
optionally preceded by a pathname and optionally followed by an
extension. If no extension is given, .lst.lst is used.

The -l -l and -L-L options may not be used at the same time.

-L
Generates a listing.

SYNTAX
-L-Lprefixprefix

DESCRIPTION
By default, the compiler does not generate a listing. The -L-L option
generates a listing to a file with the same name as the source leafname but
with the extension .lst.lst.

The -L-L option may be followed by a prefix, which the compiler adds to the
filename. This allows the user to redirect the listing to a different
directory.

The -l-l and -L-L options may not be used at the same time.

-o

 2-21

-o
Specifies object filename.

SYNTAX
-o -o filefile

DESCRIPTION
Without the -o-o option, the compiler stores the object code in a file whose
name is:

◆ The prefix specified by -O-O.

◆ The leafname of the source.

◆ A target-specific object code extension.

The -o-o option sets an entire alternative filename consisting of an optional
pathname, obligatory leafname and optional extension. It allows the object
code to be directed to a different file.

The -o-o and -O-O options may not be used at the same time.

-O
Specifies object filename.

SYNTAX
-O-Oprefixprefix

DESCRIPTION
By default the compiler stores the object code in a file whose name is the
leafname of the source plus a target-specific object code extension.

-p

 2-22

Use -O-O to specify a prefix which the compiler adds to the leafname,
allowing the object code to redirected to an alternative directory.

The -o-o and -O-O options may not be used at the same time.

-p
Formats listing into pages.

SYNTAX
-p-pnn

DESCRIPTION
By default, the listing is not divided into pages. Use -p-p followed by the
number of lines per page in the range 10 to 150 to divide the listing into
pages of this size.

-P
Generates PROMable code.

SYNTAX
-P-P

DESCRIPTION
By default, the compiler places initialized statically allocated objects in the
program memory segment, and hence if the program is placed in PROM,
the program cannot write to them.

-q

 2-23

Use the -P-P option to make it possible for a PROMed program to write to
initialized statically allocated objects. -P-P causes the run-time system to
copy initialized statically allocated objects from PROM into RAM upon
start-up.

Note that -P-P is not required to enable writing to non-initialized statically
allocated objects. This is because the compiler assumes that statically
allocated objects that are not initialized will be written to, and hence
automatically places them in RAM.

-q
Puts mnemonics in the listing.

SYNTAX
-q-q

DESCRIPTION
By default the compiler does not include the generated assembly lines in
the compilation listing. Use -q-q to include assembly lines in the compilation
listing, as an aid to debugging. See also the options -a-a and -A-A.

-r
Generates debug information.

SYNTAX
-r[012][i][n]-r[012][i][n]

-r

 2-24

DESCRIPTION
By default, the object modules do not contain the additional information
required by C-SPY or other symbolic debuggers. Use -r-r to include this
additional information in the object code, so a debugger can be used on the
module.

For the option to use to suit C-SPY see the Using C-SPY guide.

The following table describes the effect of the modifiers:

Modifier What it means

00, 11, 22 Support different debugger hardware. For source code
debuggers this information should be specified in the
appropriate debugger manual. For debuggers that do not
support C source line display the default (0) is sufficient.

ii #include#include file information will be added to the object file.
Note that this is usually of little interest unless include
files contain function definitions (not just declarations).
Also note that C statements in #include#include files are
practically non-debuggable with debuggers other than
C-SPY. A side-effect is that source line records will
contain the global (=total) line count which can affect
source line displays in some debuggers.

nn Suppresses the generation of C source lines in the object
file (which is only required by C-SPY and other debuggers
based on the IAR debug format).

For most other debuggers that do not include specific information on how
to use IAR C Compilers, -rn-rn should be specified. Do not use -r-r without nn
unless specifically required, since this increases the memory requirement
considerably.

-R

 2-25

Note that global optimization activated by the -z-z or -s-s options may
invalidate source line information (due to statement combinations and
rearrangements performed by the compiler) and that this can affect source
code displays during program stepping. Also note that the -r-r option
generates slightly more target code and includes type information as if -g-g
had been used.

-R
Sets the code segment name.

SYNTAX
-R-Rnamename

DESCRIPTION
By default, the compiler places executable code in a segment named CODECODE,
which by default the linker places at a variable address. Use -R-R to place the
code in a specific segment with a unique name chosen by the user. This
then allows the user to specify to the linker a fixed address for this
particular segment.

-s
Optimizes for speed.

SYNTAX
-s[0-s[0––9]9]

-S

 2-26

DESCRIPTION
The argument sets the level of optimization:

Value Level

0 No optimization.

1–3 Fully debuggable.

4–6 Some constructs not debuggable.

7–9 Full optimization.

-S
Sets silent operation of compiler.

SYNTAX
-S-S

DESCRIPTION
By default the compiler issues introductory messages and a final statistics
report. Use -S-S to inhibit these messages.

Note that error and warning messages are shown.

-t
Sets the tab spacing.

SYNTAX
-t-tnn

-T

 2-27

DESCRIPTION
By default, the listing is formatted with a tab spacing of 8 characters. Use --
tt to set the spacing of the tab characters to between 2 and 9 characters
(default 8).

-T
Lists active lines only.

SYNTAX
-T-T

DESCRIPTION
By default, inactive source lines, such as those in false #if#if structures, are
listed. Use -T-T to list active lines only.

-U
Undefines a symbol.

SYNTAX
-U-Usymbsymb

DESCRIPTION
-U-Usymbsymb is equivalent to:

#undef#undef symbsymb

-w

 2-28

By default, the compiler has the following pre-defined symbols:

Symbol Value

__IAR_SYSTEMS_ICC__IAR_SYSTEMS_ICC 1

__STDC____STDC__ 1

__VER____VER__ Compiler version number.

__TID____TID__ Target-IDENT.

__FILE____FILE__ Current source filename.

__LINE____LINE__ Current source line number.

__TIME____TIME__ Current time in hh:mm:sshh:mm:ss format.

__DATE____DATE__ Current date in MmmMmm dddd yyyyyyyy format.

The -U-U option can be used to switch off any of these symbols, to resolve a
conflict with any user-defined symbol of the same name.

-w
Disables warnings.

SYNTAX
-w-w

DESCRIPTION
By default, the compiler issues standard warning messages, and any
additional warning messages enabled with -g-g. Use -w-w to inhibit all
warning messages.

-x

 2-29

-x
Generates a cross-reference list.

SYNTAX
-x[D][F][T][2]-x[D][F][T][2]

DESCRIPTION
By default the compiler does not include global symbols in the listing. The
-x-x option with no argument list adds a list of all global symbols and their
meanings at the end of the compilation listing. This includes all variable
objects and all referenced functions, #define#define statements, enumenum statements,
and typedeftypedef statements.

To include additional information, follow -x-x by one or more of the
following:

Argument Information

DD Unreferenced #define#define symbols.

FF Unreferenced function declarations.

TT Unreferenced enumenum constants and typedefstypedefs.

22 Dual line spacing between symbol entries.

-X
Describes C declarations.

SYNTAX
-X-X

-y

 2-30

DESCRIPTION
Use -X-X to display a readable description of all the C declarations in the file.

EXAMPLES
For the declaration:

void (* signal(int __sig, void (* func) ())) (int);void (* signal(int __sig, void (* func) ())) (int);

the following output will be produced:

Identifier: signalIdentifier: signal
storage class: externstorage class: extern
 prototyped non_banked function returning prototyped non_banked function returning
 xxx - non_banked code pointer to xxx - non_banked code pointer to
 prototyped non_banked function returning prototyped non_banked function returning
 xxx - void xxx - void
 and having following parameter(s): and having following parameter(s):
 storage class: auto storage class: auto
 xxx - int xxx - int
 and having following parameter(s): and having following parameter(s):
 storage class: auto storage class: auto
 xxx - int xxx - int
 storage class: auto storage class: auto
 xxx - non_banked code pointer to xxx - non_banked code pointer to
 non_banked function returning non_banked function returning
 xxx - void xxx - void

-y
Initializes strings as variables.

SYNTAX
-y-y

-z

 2-31

DESCRIPTION
By default C string literals are assumed to be read-only. Use -y-y to generate
strings as initialized variables. However, arrays initialized with strings
(ie charchar c[]c[] == ""stringstring"") are always treated as ordinary initialized
variables.

-z
Optimizes for size.

SYNTAX
-z[0-z[0––9]9]

DESCRIPTION
The argument sets the level of optimization:

Value Level

0 No optimization.

1–3 Fully debuggable.

4–6 Some constructs not debuggable.

7–9 Full optimization.

See the file GLOBAL.DOCGLOBAL.DOC for additional information.

 2-32

 2-33

GENERAL C LANGUAGE
EXTENSIONS

INTRODUCTION

The IAR C Compiler supports a number of extensions to the C language.
The majority are specific to the target processor, and are therefore
documented in the chapter Language extensions. The remainder are
common to all targets and hence are documented here.

COMPILER VERSION
The macro __VER____VER__ returns an integer constant containing the compiler
version number in decimal format.

For example, for version 2.34E the value of __VER____VER__ is 234.

TARGET IDENTIFICATION
The macro __TID____TID__ returns a long integer constant containing a target
identifier and related information:

Target_IDENT, unique

to each target processor

47 3 014 815

-v option value

if supported

-m option value

if supported

Intrinsic
support

1631

(not used)

To find the value of Target_IDENTTarget_IDENT for the current compiler, execute:

printf("%ld",(__TID__>>8)&0x7F)printf("%ld",(__TID__>>8)&0x7F)

For an example of the use of __TID____TID__, see the file stdarg.hstdarg.h.

GENERAL C LANGUAGE EXTENSIONS

 2-34

ARGUMENT TYPE
_argt$_argt$ is a unary operator with the same syntax and argument as sizeofsizeof.
It returns a normalized value describing the type of the argument:

Result Type

11 Unsigned char.

22 Char.

33 Unsigned short.

44 Short.

55 Unsigned int.

66 Int.

77 Unsigned long.

88 Long.

99 Float.

1010 Double.

1111 Long double.

1212 Pointer/address.

1313 Union.

1414 Struct.

For an example of the use of _argt$_argt$, see the file stdarg.hstdarg.h.

GENERAL C LANGUAGE EXTENSIONS

 2-35

FUNCTION PARAMETERS DESCRIPTION
_args$_args$ is a reserved word that returns a char array (char(char *)*) containing a
list of descriptions of the formal parameters of the current function:

Offset Contents

00 Parameter 1 type in _argt$_argt$ format.

11 Parameter 1 size in bytes.

22 Parameter 2 type in _argt$_argt$ format.

33 Parameter 2 size in bytes.

2n-22n-2 Parameter nn type in _argt$_argt$ format.

2n-12n-1 Parameter nn size in bytes.

2n2n \0\0

Sizes greater than 127 are reported as 127.

_args$_args$ may be used only inside function definitions. For an example of
the use of _args$_args$, see the file stdarg.hstdarg.h.

$ CHARACTER
The character $$ has been added to the set of valid characters in identifiers
for compatibility with DEC/VMS C.

USE OF SIZEOF AT COMPILE TIME
The ANSI-specified restriction that the sizeofsizeof operator cannot be used in
#if#if and #elif#elif expressions has been eliminated.

GENERAL C LANGUAGE EXTENSIONS

 2-36

 2-37

GENERAL C LIBRARY
DEFINITIONS

INTRODUCTION

The ICC C Compiler package provides most of the important C library
definitions that apply to PROM-based embedded systems. These are of three
types:

◆ Standard C library definitions, for use in user programs. These are
documented in this chapter.

◆ CSTARTUPCSTARTUP, the single program module containing the start-up code.

◆ Intrinsic functions, used only by the compiler, to perform low-level
operations which cannot be performed by in-line code. Intrinsic functions
have names beginning with ?? to distinguish them from other functions.
Since they are not to be used in application programs, they are not
documented.

LIBRARY OBJECT FILES
For each combination of configuration and mode, there is a single library
object file containing all the library definitions. The linker includes only those
routines that are required (directly or indirectly) by the user’s program.

Most of the library definitions can be used without modification, that is,
directly from the library object files supplied. For many of these, the source is
optionally available. The remainder are I/O-oriented routines (such as
putcharputchar and getchargetchar) that you may need to customize for your target
application. For these, the source is supplied as part of the standard
installation.

The library object files are supplied having been compiled with the global type
check option on (-gA-gA).

GENERAL C LIBRARY DEFINITIONS

 2-38

HEADER FILES
The user program gains access to library definitions through header files,
which it incorporates using the #include#include directive. To avoid wasting time at
compilation, the definitions are divided into a number of different header files
each covering a particular functional area, letting the user include just those
that are required.

It is essential to include the appropriate header file before making any
reference to its definitions. Failure to do this can cause the call to fail during
execution, or generate error or warning messages at compile time or link time.

LIBRARY DEFINITIONS SUMMARY
This section lists the header files and summarizes the functions included in
each. Header files may additionally contain target-specific definitions – these
are documented in the chapter Language extensions.

All library functions are concurrently reusable (reentrant) where stated.

CHARACTER HANDLING – ctype.h
isalnumisalnum int isalnum(intint isalnum(int c c)) Letter or digit equality.

isalphaisalpha int isalpha(int int isalpha(int cc)) Letter equality.

iscntrliscntrl int iscntrl(int int iscntrl(int cc)) Control code equality.

isdigitisdigit int isdigit(int int isdigit(int cc)) Digit equality.

isgraphisgraph int isgraph(int int isgraph(int cc)) Printable non-space
character equality.

islowerislower int islower(int int islower(int cc)) Lower case equality.

isprintisprint int isprint(int int isprint(int cc)) Printable character equality.

ispunctispunct inint ispunct(intt ispunct(int c c)) Punctuation character
equality.

isspaceisspace int isspace (intint isspace (int c c)) White-space character
equality.

GENERAL C LIBRARY DEFINITIONS

 2-39

isupperisupper int isupper(intint isupper(int c c)) Upper case equality.

isxdigitisxdigit int isxdigit(intint isxdigit(int c c)) Hex digit equality.

tolowertolower int tolower(int int tolower(int cc)) Converts to lower case.

touppertoupper int toupper(int int toupper(int cc)) Converts to upper case.

LOW-LEVEL ROUTINES – icclbutl.h
_formatted_read_formatted_read Reads formatted data.

int _formatted_read (constint _formatted_read (const
char **char **lineline, const char, const char
****formatformat, va_list , va_list apap))

_formatted_write _formatted_write Formats and writes data.

intint _formatted_write (const_formatted_write (const
char* char* formatformat, void, void outputf outputf
(char, void *), void(char, void *), void
**spsp, va_list, va_list ap ap))

_medium_medium int _formatted_read (const int _formatted_read (const Reads formatted data _read_read
char **char **lineline, const char, const char excluding floating-point
****formatformat, va_list , va_list apap)) numbers.

_medium_medium intint _formatted_write (const_formatted_write (const Writes formatted data
_write_write char* char* formatformat, void, void outputf outputf excluding floating-point

(char, void *), void (char, void *), void numbers.
**spsp, va_list, va_list ap ap))

_small_small intint _formatted_write (const_formatted_write (const Small formatted data _write_write
char* char* formatformat, void, void outputf outputf write routine.
(char, void *), void(char, void *), void
**spsp, va_list, va_list ap ap))

MATHEMATICS – math.h
acos acos double acos(double double acos(double argarg)) Arc cosine.

asin asin double asin(double double asin(double argarg)) Arc sine.

atanatan double atan(double double atan(double argarg)) Arc tangent.

GENERAL C LIBRARY DEFINITIONS

 2-40

atan2 atan2 double atan2(double double atan2(double arg1arg1, , Arc tangent with
double double arg2arg2)) quadrant.

ceilceil double ceil(double double ceil(double argarg)) Smallest integer greater than
or equal to argarg.

coscos double cos(double double cos(double argarg)) Cosine.

coshcosh double cosh(double double cosh(double argarg)) Hyperbolic cosine.

expexp double exp(double double exp(double argarg)) Exponential.

fabsfabs double fabs(double double fabs(double argarg)) Double-precision floating-
point absolute.

floorfloor double floor(double double floor(double argarg)) Largest integer less than or
equal.

fmodfmod double fmod(double double fmod(double arg1arg1,, Floating-point
double double arg2arg2)) remainder.

frexpfrexp double frexp(double double frexp(double arg1arg1,, Splits a floating-point
int *int *arg2arg2)) number into two parts.

ldexpldexp double ldexp(double double ldexp(double arg1arg1,, Multiply by power of
intint arg2 arg2)) two.

loglog double log(double double log(double argarg)) Natural logarithm.

log10log10 double log10(double double log10(double argarg)) Base-10 logarithm.

modfmodf double modf(doubledouble modf(double value value,, Fractional and integer
double *double *iptriptr)) parts.

powpow double pow(double double pow(double arg1arg1,, Raises to the power.
double double arg2arg2))

sinsin double sin(double double sin(double argarg)) Sine.

sinhsinh double sinh(double double sinh(double argarg)) Hyperbolic sine.

sqrtsqrt double sqrt(double double sqrt(double argarg)) Square root.

tantan double tan(double double tan(double xx)) Tangent.

tanhtanh double tanh(double double tanh(double argarg)) Hyperbolic tangent.

GENERAL C LIBRARY DEFINITIONS

 2-41

NON-LOCAL JUMPS – setjmp.h
longjmplongjmp void longjmp(jmp_bufvoid longjmp(jmp_buf env env,, Long jump.

intint val val))

setjmpsetjmp int setjmp(jmp_bufint setjmp(jmp_buf env env)) Sets jump.

VARIABLE ARGUMENTS – stdarg.h
va_argva_arg type va_arg(va_list type va_arg(va_list apap, , Next argument in

modemode)) function call.

va_endva_end void va_end(va_listvoid va_end(va_list ap ap)) Ends reading function call
arguments.

va_listva_list char *va_list[1]char *va_list[1] Argument list type.

va_startva_start void va_start(va_listvoid va_start(va_list ap ap,, Starts reading function
parmNparmN)) call arguments.

INPUT/OUTPUT – stdio.h
getchargetchar int getchar(int getchar(voidvoid)) Gets character.

getsgets char *gets(chchar *gets(char *ar *ss)) Gets string.

printfprintf int printf(const char int printf(const char Writes formatted data.
**formatformat, ...), ...)

putcharputchar int putchar(int int putchar(int valuevalue)) Puts character.

putsputs int puts(const char *int puts(const char *ss)) Puts string.

scanfscanf int scanf(const char int scanf(const char Reads formatted data.
**formatformat,,))

sprintfsprintf int sprintf(char *int sprintf(char *ss,, Writes formatted data to
const charconst char **formatformat,),) a string.

sscanfsscanf int sscanf(const char *int sscanf(const char *ss,, Reads formatted data
const char *const char *formatformat, ...), ...) from a string.

GENERAL C LIBRARY DEFINITIONS

 2-42

GENERAL UTILITIES – stdlib.h
abortabort void abort(void)void abort(void) Terminates the program

abnormally.

absabs int abs(int int abs(int jj)) Absolute value.

atofatof double atof(const char double atof(const char Converts ASCII to
**nptrnptr)) doubledouble.

atoiatoi int atoi(const char *int atoi(const char *nptrnptr)) Converts ASCII to intint.

atolatol long atol(const char *long atol(const char *nptrnptr)) Converts ASCII to longlong
intint.

calloccalloc void *calloc(size_tvoid *calloc(size_t nelem nelem,, Allocates memory for an
size_tsize_t elsize elsize)) array of objects.

divdiv div_t div(intdiv_t div(int numer numer,, Divide.
intint denom denom))

exitexit void exit(intvoid exit(int status status)) Terminates the program.

freefree void free(void *void free(void *ptrptr)) Frees memory.

labslabs llong int labs(long int ong int labs(long int jj)) Long absolute.

ldivldiv ldiv_t ldiv(long intldiv_t ldiv(long int numer numer, , Long division.
long intlong int denom denom))

mallocmalloc void *malloc(size_tvoid *malloc(size_t size size)) Allocates memory.

randrand int rand(void)int rand(void) Random number.

reallocrealloc void *realloc(void *void *realloc(void *ptrptr,, Reallocates memory.
size_tsize_t size size))

srandsrand void srand(unsigned intvoid srand(unsigned int seed seed)) Sets random number
sequence.

strtodstrtod double strtod(const char double strtod(const char Converts a string to
**nptrnptr,, char **char **endptrendptr)) doubledouble.

strtolstrtol long int strtol(const char long int strtol(const char Converts a string to a
**nptrnptr,, char **char **endptrendptr,, long integer.
intint base base))

GENERAL C LIBRARY DEFINITIONS

 2-43

strtoulstrtoul unsigned long int strtoulunsigned long int strtoul Converts a string to an
(const char *(const char *nptrnptr,, char char unsigned long integer.
****endptrendptr,, base base int)int)

STRING HANDLING – string.h
memchrmemchr void *memchr(const void void *memchr(const void *s*s, , Searches for a character

int int cc, size_t , size_t nn)) in memory.

memcmpmemcmp int memcmp(const voidint memcmp(const void *s1 *s1,, Compares memory.
const voidconst void *s2 *s2,, size_tsize_t n n))

memcpymemcpy void *memcpy(void *void *memcpy(void *s1s1,, Copies memory.
const void *const void *s2s2,, size_tsize_t n n))

memmovememmove void *memmove(void *void *memmove(void *s1s1,, Moves memory.
coconst voidnst void *s2 *s2,, size_tsize_t n n))

memsetmemset void *memset(void *void *memset(void *ss,, Sets memory.
intint c c,, size_tsize_t n n))

strcatstrcat char *strcat(char *char *strcat(char *s1s1,, Concatenates strings.
const char *const char *s2s2))

strchrstrchr char *strchr(const char *char *strchr(const char *ss,, Searches for a character
intint c c)) in a string.

strcmpstrcmp int strcmp(const char *int strcmp(const char *s1s1,, Compares two strings.
const char *const char *s2)s2)

strcollstrcoll int strcoll(const char *int strcoll(const char *s1s1,, Compares strings.
const char *const char *s2s2))

strcpystrcpy char *strcpy(char *char *strcpy(char *s1s1,, Copies string.
const char *const char *s2s2))

strcspnstrcspn size_t strcspn(const char size_t strcspn(const char Spans excluded
**s1s1,, const char *const char *s2s2)) characters in string.

strlenstrlen size_t strlen(const char *size_t strlen(const char *ss)) String length.

strncatstrncat char *strncat(char *char *strncat(char *s1s1,, Concatenates a specified
const char *const char *s2s2,, size_tsize_t n n)) number of characters with a

string.

GENERAL C LIBRARY DEFINITIONS

 2-44

strncmpstrncmp int strncmp(const char *int strncmp(const char *s1s1,, Compares a specified
const char *const char *s2s2,, size_tsize_t n n)) number of characters with a

string.

strncpystrncpy char *strncpy(char *char *strncpy(char *s1s1,, Copies a specified
const char *const char *s2s2,, size_tsize_t n n)) number of characters from a

string.

strpbrkstrpbrk char *strpbrk(const char char *strpbrk(const char Finds any one of
**s1s1,, const char *const char *s2s2)) specified characters in a

string.

strrchrstrrchr char *strrchr(const char *char *strrchr(const char *ss,, Finds character from
intint c c)) right of string.

strspnstrspn size_t strspn(const char size_t strspn(const char Spans characters in a
**s1s1,, const char *const char *s2s2)) string.

strstrstrstr char *strstr(const char *char *strstr(const char *s1s1,, Searches for a substring.
const char *const char *s2s2))

COMMON DEFINITIONS – stddef.h
No functions (various definitions including size_tsize_t, NULLNULL, ptrdiff_tptrdiff_t,
offsetofoffsetof, etc).

INTEGRAL TYPES – limits.h
No functions (various limits and sizes of integral types).

FLOATING-POINT TYPES – float.h
No functions (various limits and sizes of floating-point types).

ERRORS – errno.h
No functions (various error return values).

ASSERT – assert.h
assertassert void assert(int void assert(int expressionexpression)) Checks an expression.

 2-45

C LIBRARY FUNCTIONS
REFERENCE

This section gives an alphabetical list of the C library functions, with a full
description of their operation, and the options available for each one.

The format of each function description is as follows:

Name

Header file

Parameters

Full
description

Return
value

Description

Declaration

memchr
string.h

Searches for a character in

DECLARATION
void *memchr(const void * s, int c , size_t n)

PARAMETERS
s A pointer to an

c An int representing a

n A value of type size_t specifying the size of each

RETURN VALUE
Result Value

Successfu A pointer to the first occurrence c in the n characters
pointed to by s .

Unsuccessfu Null.

DESCRIPTION
Searches for the first occurrence of a character in a pointed-to
memory of a given

Both the single character and the characters in the object are
unsigned.

C LIBRRAY FUNCTION REFERENCE

 2-46

NAME
The function name.

The function name is followed by the function header filename, and a brief
description of the function.

DECLARATION
The C library declaration.

PARAMETERS
Details of each parameter in the declaration.

RETURN VALUE
The value, if any, returned by the function.

DESCRIPTION
A detailed description covering the function’s most general use. This
includes information about what the function is useful for, and a
discussion of any special conditions and common pitfalls.

abort

 2-47

abort
stdlib.hstdlib.h

Terminates the program abnormally.

DECLARATION
void abort(void)void abort(void)

PARAMETERS
None.

RETURN VALUE
None.

DESCRIPTION
Terminates the program abnormally and does not return to the caller. This
function calls the exitexit function, and by default the entry for this resides
in CSTARTUPCSTARTUP.

abs

 2-48

abs
stdlib.hstdlib.h

Absolute value.

DECLARATION
int abs(int int abs(int jj))

PARAMETERS
jj An intint value.

RETURN VALUE
An intint having the absolute value of jj.

DESCRIPTION
Computes the absolute value of jj.

acos

 2-49

acos
math.hmath.h

Arc cosine.

DECLARATION
double acos(double double acos(double argarg))

PARAMETERS
argarg A doubledouble in the range [-1,+1][-1,+1].

RETURN VALUE
The doubledouble arc cosine of argarg, in the range [0,pi][0,pi].

DESCRIPTION
Computes the principal value in radians of the arc cosine of argarg.

asin

 2-50

asin
math.hmath.h

Arc sine.

DECLARATION
double asin(double double asin(double argarg))

PARAMETERS
argarg A doubledouble in the range [-1,+1][-1,+1].

RETURN VALUE
The doubledouble arc sine of argarg, in the range [-pi/2,+pi/2][-pi/2,+pi/2].

DESCRIPTION
Computes the principal value in radians of the arc sine of argarg.

assert

 2-51

assert
assert.hassert.h

Checks an expression.

DECLARATION
void assert (int void assert (int expressionexpression))

PARAMETERS
expressionexpression An expression to be checked.

RETURN VALUE
None.

DESCRIPTION
This is a macro that checks an expression. If it is false it prints a message
to stderrstderr and calls abortabort.

The message has the following format:

File File namename; line ; line numnum # Assertion failure " # Assertion failure "expressionexpression""

To ignore assertassert calls put a #define#define NDEBUGNDEBUG statement before the
#include#include <assert.h><assert.h> statement.

atan

 2-52

atan
math.hmath.h

Arc tangent.

DECLARATION
double atan(double double atan(double argarg))

PARAMETERS
argarg A double value.

RETURN VALUE
The doubledouble arc tangent of argarg, in the range [-pi/2,pi/2][-pi/2,pi/2].

DESCRIPTION
Computes the arc tangent of argarg.

atan2

 2-53

atan2
math.hmath.h

Arc tangent with quadrant.

DECLARATION
double atan2(double double atan2(double arg1arg1, double , double arg2arg2))

PARAMETERS
arg1arg1 A doubledouble value.

arg2arg2 A doubledouble value.

RETURN VALUE
The doubledouble arc tangent of arg1arg1/arg2arg2, in the range [-pi,pi][-pi,pi].

DESCRIPTION
Computes the arc tangent of arg1arg1/arg2arg2, using the signs of both arguments
to determine the quadrant of the return value.

atof

 2-54

atof
stdlib.hstdlib.h

Converts ASCII to doubledouble.

DECLARATION
double atof(const char *double atof(const char *nptrnptr))

PARAMETERS
nptrnptr A pointer to a string containing a number in ASCII form.

RETURN VALUE
The doubledouble number found in the string.

DESCRIPTION
Converts the string pointed to by nptrnptr to a double-precision floating-point
number, skipping white space and terminating upon reaching any
unrecognized character.

EXAMPLES
" -3K"" -3K" gives -3.00-3.00

".0006"".0006" gives 0.00060.0006

"1e-4""1e-4" gives 0.00010.0001

atoi

 2-55

atoi
stdlib.hstdlib.h

Converts ASCII to intint.

DECLARATION
int atoi(const char *int atoi(const char *nptrnptr))

PARAMETERS
nptrnptr A pointer to a string containing a number in ASCII form.

RETURN VALUE
The intint number found in the string.

DESCRIPTION
Converts the ASCII string pointed to by nptrnptr to an integer, skipping white
space and terminating upon reaching any unrecognized character.

EXAMPLES
" -3K"" -3K" gives -3-3

"6""6" gives 66

"149""149" gives 149149

atol

 2-56

atol
stdlib.hstdlib.h

Converts ASCII to longlong intint.

DECLARATION
long atol(const char *long atol(const char *nptrnptr))

PARAMETERS
nptrnptr A pointer to a string containing a number in ASCII form.

RETURN VALUE
The longlong number found in the string.

DESCRIPTION
Converts the number found in the ASCII string pointed to by nptrnptr to a
long integer value, skipping white space and terminating upon reaching
any unrecognized character.

EXAMPLES
" -3K"" -3K" gives -3-3

"6""6" gives 66

"149""149" gives 149149

calloc

 2-57

calloc
stdlib.hstdlib.h

Allocates memory for an array of objects.

DECLARATION
void *calloc(size_tvoid *calloc(size_t nelem, nelem, size_tsize_t elsize elsize))

PARAMETERS
nelemnelem The number of objects.

elsizeelsize A value of type size_tsize_t specifying the size of each object.

RETURN VALUE
Result Value

Successful A pointer to the start (lowest address) of the memory
block.

Unsuccessful Zero if there is no memory block of the required size or
greater available.

DESCRIPTION
Allocates a memory block for an array of objects of the given size. To
ensure portability, the size is not given in absolute units of memory such as
bytes, but in terms of a size or sizes returned by the sizeofsizeof function.

The availability of memory depends on the default heap size.

ceil

 2-58

ceil
math.hmath.h

Smallest integer greater than or equal to argarg.

DECLARATION
double ceil(double double ceil(double argarg))

PARAMETERS
argarg A doubledouble value.

RETURN VALUE
A doubledouble having the smallest integral value greater than or equal to argarg.

DESCRIPTION
Computes the smallest integral value greater than or equal to argarg.

cos

 2-59

cos
math.hmath.h

Cosine.

DECLARATION
double cos(double double cos(double argarg))

PARAMETERS
argarg A doubledouble value in radians.

RETURN VALUE
The doubledouble cosine of argarg.

DESCRIPTION
Computes the cosine of argarg radians.

cosh

 2-60

cosh
math.hmath.h

Hyperbolic cosine.

DECLARATION
double cosh(double double cosh(double argarg))

PARAMETERS
argarg A doubledouble value in radians.

RETURN VALUE
The doubledouble hyperbolic cosine of argarg.

DESCRIPTION
Computes the hyperbolic cosine of argarg radians.

div

 2-61

div
stdlib.hstdlib.h

Divide.

DECLARATION
div_t div(intdiv_t div(int numer, numer, intint denom denom))

PARAMETERS
numernumer The intint numerator.

demondemon The intint denominator.

RETURN VALUE
A structure of type div_tdiv_t holding the quotient and remainder results of
the division.

DESCRIPTION
Divides the numerator numernumer by the denominator denomdenom. The type div_tdiv_t
is defined in stdlib.hstdlib.h.

If the division is inexact, the quotient is the integer of lesser magnitude
that is the nearest to the algebraic quotient. The results are defined such
that:

quotquot * * denomdenom + + remrem == == numernumer

exit

 2-62

exit
stdlib.hstdlib.h

Terminates the program.

DECLARATION
void exit(intvoid exit(int status status))

PARAMETERS
statusstatus An intint status value.

RETURN VALUE
None.

DESCRIPTION
Terminate the program normally. This function does not return to the
caller. This function entry resides by default in CSTARTUPCSTARTUP.

exp

 2-63

exp
math.hmath.h

Exponential.

DECLARATION
double exp(double double exp(double argarg))

PARAMETERS
argarg A doubledouble value.

RETURN VALUE
A doubledouble with the value of the exponential function of argarg.

DESCRIPTION
Computes the exponential function of argarg.

fabs

 2-64

fabs
math.hmath.h

Double-precision floating-point absolute.

DECLARATION
double fabs(double double fabs(double argarg))

PARAMETERS
argarg A doubledouble value.

RETURN VALUE
The doubledouble absolute value of argarg.

DESCRIPTION
Computes the absolute value of the floating-point number argarg..

floor

 2-65

floor
math.hmath.h

Largest integer less than or equal.

DECLARATION
double floor(double double floor(double argarg))

PARAMETERS
argarg A doubledouble value.

RETURN VALUE
A doubledouble with the value of the largest integer less than or equal to argarg.

DESCRIPTION
Computes the largest integral value less than or equal to argarg.

fmod

 2-66

fmod
math.hmath.h

Floating-point remainder.

DECLARATION
double fmod(double double fmod(double arg1arg1, double , double arg2arg2))

PARAMETERS
arg1arg1 The doubledouble numerator.

arg2arg2 The doubledouble denominator.

RETURN VALUE
The doubledouble remainder of the division arg1arg1/arg2arg2.

DESCRIPTION
Computes the remainder of arg1arg1/arg2arg2, ie the value arg1arg1-i*-i*arg2arg2, for
some integer ii such that, if arg2arg2 is non-zero, the result has the same sign
as arg1arg1 and magnitude less than the magnitude of arg2arg2.

free

 2-67

free
stdlib.hstdlib.h

Frees memory.

DECLARATION
void free(void *void free(void *ptrptr))

PARAMETERS
ptrptr A pointer to a memory block previously allocated by

mallocmalloc, calloccalloc, or reallocrealloc.

RETURN VALUE
None.

DESCRIPTION
Frees the memory used by the object pointed to by ptrptr. ptrptr must earlier
have been assigned a value from mallocmalloc, calloccalloc, or reallocrealloc.

frexp

 2-68

frexp
math.hmath.h

Splits a floating-point number into two parts.

DECLARATION
double frexp(double double frexp(double arg1arg1, int *, int *arg2arg2))

PARAMETERS
arg1arg1 Floating-point number to be split.

arg2arg2 Pointer to an integer to contain the exponent of arg1arg1.

RETURN VALUE
The doubledouble mantissa of arg1arg1, in the range 0.5 to 1.0.

DESCRIPTION
Splits the floating-point number arg1arg1 into an exponent stored in **arg2arg2,
and a mantissa which is returned as the value of the function.

The values are as follows:

mantissa * 2mantissa * 2exponent = value

getchar

 2-69

getchar
stdio.hstdio.h

Gets character.

DECLARATION
int getchar(int getchar(voidvoid))

PARAMETERS
None.

RETURN VALUE
An intint with the ASCII value of the next character from the standard input
stream.

DESCRIPTION
Gets the next character from the standard input stream.

The user must customize this function for the particular target hardware
configuration. The function is supplied in source format in the file
getchar.cgetchar.c.

gets

 2-70

gets
stdio.hstdio.h

Gets string.

DECLARATION
char *gets(char *char *gets(char *ss))

PARAMETERS
ss A pointer to the string that is to receive the input.

RETURN VALUE
Result Value

Successful A pointer equal to ss.

Unsuccessful Null.

DESCRIPTION
Gets the next string from standard input and places it in the string pointed
to. The string is terminated by end of line or end of file. The end-of-line
character is replaced by zero.

This function calls getchargetchar, which must be adapted for the particular
target hardware configuration.

isalnum

 2-71

isalnum
ctype.hctype.h

Letter or digit equality.

DECLARATION
int isalnum(intint isalnum(int c c))

PARAMETERS
cc An intint representing a character.

RETURN VALUE
An intint which is non-zero if cc is a letter or digit, else zero.

DESCRIPTION
Tests whether a character is a letter or digit.

isalpha

 2-72

isalpha
ctype.hctype.h

Letter equality.

DECLARATION
int isalpha(int int isalpha(int cc))

PARAMETERS
cc An intint representing a character.

RETURN VALUE
An intint which is non-zero if cc is letter, else zero.

DESCRIPTION
Tests whether a character is a letter.

iscntrl

 2-73

iscntrl
ctype.hctype.h

Control code equality.

DECLARATION
int iscntrl(int int iscntrl(int cc))

PARAMETERS
cc An intint representing a character.

RETURN VALUE
An intint which is non-zero if cc is a control code, else zero.

DESCRIPTION
Tests whether a character is a control character.

isdigit

 2-74

isdigit
ctype.hctype.h

Digit equality.

DECLARATION
int isdigit(int int isdigit(int cc))

PARAMETERS
cc An intint representing a character.

RETURN VALUE
An intint which is non-zero if cc is a digit, else zero.

DESCRIPTION
Tests whether a character is a decimal digit.

isgraph

 2-75

isgraph
ctype.hctype.h

Printable non-space character equality.

DECLARATION
int isgraph(int int isgraph(int cc))

PARAMETERS
cc An intint representing a character.

RETURN VALUE
An intint which is non-zero if cc is a printable character other than space,
else zero.

DESCRIPTION
Tests whether a character is a printable character other than space.

islower

 2-76

islower
ctype.hctype.h

Lower case equality.

DECLARATION
int islower(int int islower(int cc))

PARAMETERS
cc An intint representing a character.

RETURN VALUE
An intint which is non-zero if cc is lower case, else zero.

DESCRIPTION
Tests whether a character is a lower case letter.

isprint

 2-77

isprint
ctype.hctype.h

Printable character equality.

DECLARATION
int isprint(int int isprint(int cc))

PARAMETERS
cc An intint representing a character.

RETURN VALUE
An intint which is non-zero if cc is a printable character, including space, else
zero.

DESCRIPTION
Tests whether a character is a printable character, including space.

ispunct

 2-78

ispunct
ctype.hctype.h

Punctuation character equality.

DECLARATION
int ispunct(intint ispunct(int c c))

PARAMETERS
cc An intint representing a character.

RETURN VALUE
An intint which is non-zero if cc is printable character other than space, digit,
or letter, else zero.

DESCRIPTION
Tests whether a character is a printable character other than space, digit,
or letter.

isspace

 2-79

isspace
ctype.hctype.h

White-space character equality.

DECLARATION
int isspace (intint isspace (int c c))

PARAMETERS
cc An intint representing a character.

RETURN VALUE
An intint which is non-zero if c is a white-space character, else zero.

DESCRIPTION
Tests whether a character is a white-space character, that is, one of the
following:

Character Symbol

SpaceSpace ' '' '

FormfeedFormfeed \f\f

New lineNew line \n\n

Carriage returnCarriage return \r\r

Horizontal tabHorizontal tab \t\t

Vertical tabVertical tab \v\v

isupper

 2-80

isupper
ctype.hctype.h

Upper case equality.

DECLARATION
int isupper(intint isupper(int c c))

PARAMETERS
cc An intint representing a character.

RETURN VALUE
An intint which is non-zero if cc is upper case, else zero.

DESCRIPTION
Tests whether a character is an upper case letter.

isxdigit

 2-81

isxdigit
ctype.hctype.h

Hex digit equality.

DECLARATION
int isxdigit(intint isxdigit(int c c))

PARAMETERS
cc An intint representing a character.

RETURN VALUE
An intint which is non-zero if cc is a digit in upper or lower case, else zero.

DESCRIPTION
Test whether the character is a hexadecimal digit in upper or lower case,
that is, one of 00–99, aa–ff, or AA–FF.

labs

 2-82

labs
stdlib.hstdlib.h

Long absolute.

DECLARATION
long int labs(long int long int labs(long int jj))

PARAMETERS
jj A longlong intint value.

RETURN VALUE
The longlong intint absolute value of jj..

DESCRIPTION
Computes the absolute value of the long integer jj.

ldexp

 2-83

ldexp
math.hmath.h

Multiply by power of two.

DECLARATION
double ldexp(double double ldexp(double arg1arg1,int,int arg2 arg2))

PARAMETERS
arg1arg1 The doubledouble multiplier value.

arg2arg2 The intint power value.

RETURN VALUE
The doubledouble value of arg1arg1 multiplied by two raised to the power of arg2arg2..

DESCRIPTION
Computes the value of the floating-point number multiplied by 2 raised to a
power.

ldiv

 2-84

ldiv
stdlib.hstdlib.h

Long division

DECLARATION
ldiv_t ldiv(long intldiv_t ldiv(long int numer numer, long int, long int denom denom))

PARAMETERS
numernumer The longlong intint numerator.

denomdenom The longlong intint denominator.

RETURN VALUE
A structstruct of type ldiv_tldiv_t holding the quotient and remainder of the
division.

DESCRIPTION
Divides the numerator numernumer by the denominator denomdenom. The type ldiv_tldiv_t
is defined in stdlib.hstdlib.h.

If the division is inexact, the quotient is the integer of lesser magnitude
that is the nearest to the algebraic quotient. The results are defined such
that:

quotquot * * denomdenom + + remrem == == numernumer

log

 2-85

log
math.hmath.h

Natural logarithm.

DECLARATION
double log(double double log(double argarg))

PARAMETERS
argarg A doubledouble value.

RETURN VALUE
The doubledouble natural logarithm of argarg.

DESCRIPTION
Computes the natural logarithm of a number.

log10

 2-86

log10
math.hmath.h

Base-10 logarithm.

DECLARATION
double log10(double double log10(double argarg))

PARAMETERS
argarg A doubledouble number.

RETURN VALUE
The doubledouble base-10 logarithm of argarg.

DESCRIPTION
Computes the base-10 logarithm of a number.

longjmp

 2-87

longjmp
setjmp.hsetjmp.h

Long jump.

DECLARATION
void longjmp(jmp_bufvoid longjmp(jmp_buf env, env, intint val val))

PARAMETERS
envenv A structstruct of type jmp_bufjmp_buf holding the environment, set

by setjmpsetjmp.

valval The intint value to be returned by the corresponding
setjmpsetjmp.

RETURN VALUE
None.

DESCRIPTION
Restores the environment previously saved by setjmpsetjmp. This causes
program execution to continue as a return from the corresponding setjmpsetjmp,
returning the value valval.

malloc

 2-88

malloc
stdlib.hstdlib.h

Allocates memory.

DECLARATION
void *malloc(size_tvoid *malloc(size_t size size))

PARAMETERS
sizesize A size_tsize_t object specifying the size of the object.

RETURN VALUE
Result Value

Successful A pointer to the start (lowest byte address) of the memory
block.

Unsuccessful Zero, if there is no memory block of the required size or
greater available.

DESCRIPTION
Allocates a memory block for an object of the specified size.

The availability of memory depends on the default heap size.

memchr

 2-89

memchr
string.hstring.h

Searches for a character in memory.

DECLARATION
void *memchr(const void *void *memchr(const void *ss, int , int cc, size_t , size_t nn))

PARAMETERS
ss A pointer to an object.

cc An intint representing a character.

nn A value of type size_tsize_t specifying the size of each object.

RETURN VALUE
Result Value

Successful A pointer to the first occurrence of cc in the nn characters
pointed to by ss.

Unsuccessful Null.

DESCRIPTION
Searches for the first occurrence of a character in a pointed-to region of
memory of a given size.

Both the single character and the characters in the object are treated as
unsigned.

memcmp

 2-90

memcmp
string.hstring.h

Compares memory.

DECLARATION
int memcmp(const voidint memcmp(const void **s1, s1, const voidconst void **s2, s2, size_tsize_t n n))

PARAMETERS
s1s1 A pointer to the first object.

s2s2 A pointer to the second object.

nn A value of type size_tsize_t specifying the size of each object.

RETURN VALUE
An integer indicating the result of comparison of the first nn characters of
the object pointed to by s1s1 with the first nn characters of the object pointed
to by s2s2:

Return value Meaning

>0>0 s1 < s2s1 < s2

=0=0 s1 = s2s1 = s2

<0<0 s1 < s2s1 < s2

DESCRIPTION
Compares the first nn characters of two objects.

memcpy

 2-91

memcpy
string.hstring.h

Copies memory.

DECLARATION
void *memcpy(void *void *memcpy(void *s1, s1, const void *const void *s2, s2, size_tsize_t n n))

PARAMETERS
s1s1 A pointer to the destination object.

s2s2 A pointer to the source object.

nn The number of characters to be copied.

RETURN VALUE
s1s1.

DESCRIPTION
Copies a specified number of characters from a source object to a
destination object.

If the objects overlap, the result is undefined, so memmovememmove should be used
instead.

memmove

 2-92

memmove
string.hstring.h

Moves memory.

DECLARATION
void *memmove(void *void *memmove(void *s1, s1, const voidconst void **s2, s2, size_tsize_t n n))

PARAMETERS
s1s1 A pointer to the destination object.

s2s2 A pointer to the source object.

nn The number of characters to be copied.

RETURN VALUE
s1s1.

DESCRIPTION
Copies a specified number of characters from a source object to a
destination object.

Copying takes place as if the source characters are first copied into a
temporary array that does not overlap either object, and then the
characters from the temporary array are copied into the destination object.

memset

 2-93

memset
string.hstring.h

Sets memory.

DECLARATION
void *memset(void *void *memset(void *s, s, intint c, c, size_tsize_t n n))

PARAMETERS
ss A pointer to the destination object.

cc An intint representing a character.

nn The size of the object.

RETURN VALUE
ss.

DESCRIPTION
Copies a character (converted to an unsignedunsigned charchar) into each of the first
specified number of characters of the destination object.

modf

 2-94

modf
math.hmath.h

Fractional and integer parts.

DECLARATION
double modf(doubledouble modf(double value, value, double *double *iptriptr))

PARAMETERS
valuevalue A doubledouble value.

iptriptr A pointer to the doubledouble that is to receive the integral part
of value.

RETURN VALUE
The fractional part of valuevalue.

DESCRIPTION
Computes the fractional and integer parts of valuevalue. The sign of both parts
is the same as the sign of valuevalue.

pow

 2-95

pow
math.hmath.h

Raises to the power.

DECLARATION
double pow(double double pow(double arg1arg1, double , double arg2arg2))

PARAMETERS
arg1arg1 The doubledouble number.

arg2arg2 The doubledouble power.

RETURN VALUE
arg1arg1 raised to the power of arg2arg2.

DESCRIPTION
Computes a number raised to a power.

printf

 2-96

printf
stdio.hstdio.h

Writes formatted data.

DECLARATION
int printf(const char *int printf(const char *formatformat, …), …)

PARAMETERS
formatformat A pointer to the format string.

…… The optional values that are to be printed under the control of
formatformat.

RETURN VALUE
Result Value

Successful The number of characters written.

Unsuccessful A negative value, if an error occurred.

DESCRIPTION
Writes formatted data to the standard output stream, returning the number of
characters written or a negative value if an error occurred.

Since a complete formatter demands a lot of space there are several different
formatters to choose. For more information see the chapter Configuration in
the target-specific section.

formatformat is a string consisting of a sequence of characters to be printed and
conversion specifications. Each conversion specification causes the next
successive argument following the formatformat string to be evaluated, converted,
and written.

printf

 2-97

The form of a conversion specification is as follows:

% [% [flagsflags]] [[field_widthfield_width]] [.[.precisionprecision]] [[length_modifierlength_modifier]]
conversionconversion

Items inside [[]] are optional.

Flags
The flagsflags are as follows:

Flag Effect

-- Left adjusted field.

++ Signed values will always begin with plus or minus sign.

spacespace Values will always begin with minus or space.

Alternate form:

specifier effect

octaloctal First digit will always be a zero.

G gG g Decimal point printed and trailing zeros kept.

E e fE e f Decimal point printed.

XX Non-zero values prefixed with 0X0X.

xx Non-zero values prefixed with 0X0X.

00 Zero padding to field width (for dd, ii, oo, uu, xx, XX, ee, EE, ff, gg, and GG
specifiers).

Field width
The field_widthfield_width is the number of characters to be printed in the field. The
field will be padded with space if needed. A negative value indicates a left-
adjusted field. A field width of ** stands for the value of the next successive
argument, which should be an integer.

Precision
The precisionprecision is the number of digits to print for integers (dd, ii, oo, uu, xx, and
XX), the number of decimals printed for floating-point values (ee, EE, and ff), and
the number of significant digits for gg and GG conversions. A field width of **

printf

 2-98

stands for the value of the next successive argument, which should be an
integer.

Length modifier
The effect of each length_modifierlength_modifier is as follows:

Length_modifier Use

hh before dd, ii, uu, xx, XX, or oo specifiers to denote a short int or
unsigned short int value.

ll before dd, ii, uu, xx, XX, or oo specifiers to denote a long
integer or unsigned long value.

LL before ee, EE, ff, gg, or GG specifiers to denote a long double
value.

Conversion
The result of each value of conversionconversion is as follows:

Conversion Result

dd Signed decimal value.

ii Signed decimal value.

oo Unsigned octal value.

uu Unsigned decimal value.

xx Unsigned hexadecimal value, using lower case (00–99, aa–ff).

XX Unsigned hexadecimal value, using upper case (00–99, AA–FF).

ee Double value in the style [[-]d.ddde+dd-]d.ddde+dd.

EE Double value in the style [[-]d.dddE+dd-]d.dddE+dd.

ff Double value in the style [[-]ddd.ddd-]ddd.ddd.

gg Double value in the style of ff or ee, whichever is the more
appropriate.

printf

 2-99

Conversion Result

GG Double value in the style of FF or EE, whichever is the more
appropriate.

CC Single character constant.

ss String constant.

pp Pointer value (address).

nn No output, but store the number of characters written so far
in the integer pointed to by the next argument.

%% %% character.

Note that promotion rules convert all charchar and shortshort intint arguments to intint
while floatsfloats are converted to doubledouble.

printfprintf calls the library function putcharputchar, which must be adapted for the
target hardware configuration.

The source of printfprintf is provided in the file printf.cprintf.c. The source of a
reduced version that uses less program space and stack is provided in the file
intwri.cintwri.c.

EXAMPLES
After the following C statements:

int i=6, j=-6;int i=6, j=-6;
char *p = "ABC";char *p = "ABC";
long l=100000;long l=100000;
float f1 = 0.0000001;float f1 = 0.0000001;
f2 = 750000;f2 = 750000;
double d = 2.2;double d = 2.2;

the effect of different printfprintf function calls is shown in the following table; __
represents space:

printf

 2-100

Statement Output Number of characters
output

printf("%c",p[1])printf("%c",p[1]) BB 11

printf("%d",i)printf("%d",i) 66 11

printf("%3d",i)printf("%3d",i) __6__6 33

printf("%.3d",i)printf("%.3d",i) 006006 33

printf("%-10.3d",i)printf("%-10.3d",i) 006_______006_______ 1010

printf("%10.3d",i)printf("%10.3d",i) _______006_______006 1010

printf("Value=%+3d",i)printf("Value=%+3d",i) Value=_+6Value=_+6 99

printf("%10.*d",i,j)printf("%10.*d",i,j) ___-000006___-000006 1010

printf("String=[%s]",p)printf("String=[%s]",p) String=[ABC]String=[ABC] 1212

printf("Value=%lX",l)printf("Value=%lX",l) Value=186A0Value=186A0 1111

printf("%f",f1)printf("%f",f1) 0.0000000.000000 88

printf("%f",f2)printf("%f",f2) 750000.000000750000.000000 1313

printf("%e",f1)printf("%e",f1) 1.000000e-071.000000e-07 1212

printf("%16e",d)printf("%16e",d) ____2.200000e+00____2.200000e+00 1616

printf("%.4e",d)printf("%.4e",d) 2.2000e+002.2000e+00 1010

printf("%g",f1)printf("%g",f1) 1e-071e-07 55

printf("%g",f2)printf("%g",f2) 750000750000 66

printf("%g",d)printf("%g",d) 2.22.2 33

putchar

 2-101

putchar
stdio.hstdio.h

Puts character.

DECLARATION
int putchar(int int putchar(int valuevalue))

PARAMETERS
valuevalue The intint representing the character to be put.

RETURN VALUE
Result Value

Successful valuevalue.

Unsuccessful The EOFEOF macro.

DESCRIPTION
Writes a character to standard output.

The user must customize this function for the particular target hardware
configuration. The function is supplied in source format in the file
putchar.cputchar.c.

This function is called by printfprintf.

puts

 2-102

puts
stdio.hstdio.h

Puts string.

DECLARATION
int puts(const char *int puts(const char *ss))

PARAMETERS
ss A pointer to the string to be put.

RETURN VALUE
Result Value

Successful A non-negative value.

Unsuccessful -1 if an error occurred.

DESCRIPTION
Writes a string followed by a new-line character to the standard output
stream.

rand

 2-103

rand
stdlib.hstdlib.h

Random number.

DECLARATION
int rand(void)int rand(void)

PARAMETERS
None.

RETURN VALUE
The next intint in the random number sequence.

DESCRIPTION
Computes the next in the current sequence of pseudo-random integers,
converted to lie in the range [0,RAND_MAX0,RAND_MAX].

See srandsrand for a description of how to seed the pseudo-random sequence.

realloc

 2-104

realloc
stdlib.hstdlib.h

Reallocates memory.

DECLARATION
void *realloc(void *void *realloc(void *ptr, ptr, size_tsize_t size size))

PARAMETERS
ptrptr A pointer to the start of the memory block.

sizesize A value of type size_tsize_t specifying the size of the object.

RETURN VALUE
Result Value

Successful A pointer to the start (lowest address) of the memory
block.

Unsuccessful Null, if no memory block of the required size or greater
was available.

DESCRIPTION
Changes the size of a memory block (which must be allocated by mallocmalloc,
calloccalloc, or reallocrealloc).

scanf

 2-105

scanf
stdio.hstdio.h

Reads formatted data.

DECLARATION
int scanf(const char *int scanf(const char *formatformat, …), …)

PARAMETERS
formatformat A pointer to a format string.

…… Optional pointers to the variables that are to receive
values.

RETURN VALUE
Result Value

Successful The number of successful conversions.

Unsuccessful -1 if the input was exhausted.

DESCRIPTION
Reads formatted data from standard input.

Since a complete formatter demands a lot of space there are several
different formatters to choose. For more information see the chapter
Configuration in the target-specific section.

formatformat is a string consisting of a sequence of ordinary characters and
conversion specifications. Each ordinary character reads a matching
character from the input. Each conversion specification accepts input
meeting the specification, converts it, and assigns it to the object pointed to
by the next successive argument following formatformat.

If the format string contains white-space characters, input is scanned until
a non-white-space character is found.

scanf

 2-106

The form of a conversion specification is as follows:

% [% [assign_suppressassign_suppress] [] [field_widthfield_width] [] [length_modifierlength_modifier]]
conversionconversion

Items inside [[]] are optional.

Assign suppress
If a ** is included in this position, the field is scanned but no assignment is
carried out.

field_width
The field_widthfield_width is the maximum field to be scanned. The default is until
no match occurs.

length_modifier
The effect of each length_modifierlength_modifier is as follows:

Length modifier Before Meaning

ll dd, ii, or nn longlong intint as opposed to intint.

oo, uu, or xx unsignedunsigned longlong intint as opposed to
unsignedunsigned intint.

ee, EE, gg, GG, or ff doubledouble operand as opposed to
floatfloat.

hh dd, ii, or nn shortshort intint as opposed to intint.

oo, uu, or xx unsignedunsigned shortshort intint as opposed
to unsignedunsigned intint.

LL ee, EE, gg, GG, or ff long doubledouble operand as opposed to
floatfloat.

scanf

 2-107

Conversion
The meaning of each conversion is as follows:

Conversion Meaning

dd Optionally signed decimal integer value.

ii Optionally signed integer value in standard C notation,
that is, is decimal, octal (0n0n) or hexadecimal (0xn0xn, 0Xn0Xn).

oo Optionally signed octal integer.

uu Unsigned decimal integer.

xx Optionally signed hexadecimal integer.

XX Optionally signed hexadecimal integer (equivalent to xx).

ff Floating-point constant.

e E g Ge E g G Floating-point constant (equivalent to ff).

ss Character string.

cc One or field_widthfield_width characters.

nn No read, but store number of characters read so far in the
integer pointed to by the next argument.

pp Pointer value (address).

[[Any number of characters matching any of the characters
before the terminating]]. For example, [abc][abc] means aa, bb,
or cc.

[][] Any number of characters matching]] or any of the
characters before the further, terminating]]. For example,
[]abc][]abc] means]], aa, bb, or cc.

[^[^ Any number of characters not matching any of the
characters before the terminating]]. For example, [^abc][^abc]
means not aa, bb, or cc.

scanf

 2-108

Conversion Meaning

[^][^] Any number of characters not matching]] or any of the
characters before the further, terminating]]. For example,
[^]abc][^]abc] means not]], aa, bb, or cc.

%% %% character.

In all conversions except cc, nn, and all varieties of [[, leading white-space
characters are skipped.

scanfscanf indirectly calls getchargetchar, which must be adapted for the actual
target hardware configuration.

EXAMPLES
For example, after the following program:

int n, i;int n, i;
char name[50];char name[50];
float x;float x;
n = scanf("%d%f%s", &i, &x, name)n = scanf("%d%f%s", &i, &x, name)

This input line:

25 54.32E-1 Hello World25 54.32E-1 Hello World

will set the variables as follows:

n = 3, i = 25, x = 5.432, name="Hello World"n = 3, i = 25, x = 5.432, name="Hello World"

and this function:

scanf("%2d%f%*d %[0123456789]", &i, &x, name)scanf("%2d%f%*d %[0123456789]", &i, &x, name)

with this input line:

56789 0123 56a7256789 0123 56a72

will set the variables as follows:

i = 56, x = 789.0, name="56" (0123 unassigned)i = 56, x = 789.0, name="56" (0123 unassigned)

setjmp

 2-109

setjmp
setjmp.hsetjmp.h

Sets jump.

DECLARATION
int setjmp(jmp_bufint setjmp(jmp_buf env env))

PARAMETERS
envenv An object of type jmp_bufjmp_buf into which setjmpsetjmp is to store

the environment.

RETURN VALUE
Zero.

Execution of a corresponding longjmplongjmp causes execution to continue as if it
was a return from setjmpsetjmp, in which case the value of the intint value given
in the longjmplongjmp is returned.

DESCRIPTION
Saves the environment in envenv for later use by longjmplongjmp.

Note that setjmpsetjmp must always be used in the same function or at a higher
nesting level than the corresponding call to longjmplongjmp.

sin

 2-110

sin
math.hmath.h

Sine.

DECLARATION
double sin(double double sin(double argarg))

PARAMETERS
argarg A doubledouble value in radians.

RETURN VALUE
The doubledouble sine of argarg.

DESCRIPTION
Computes the sine of a number.

sinh

 2-111

sinh
math.hmath.h

Hyperbolic sine.

DECLARATION
double sinh(double double sinh(double argarg))

PARAMETERS
argarg A doubledouble value in radians.

RETURN VALUE
The doubledouble hyperbolic sine of argarg.

DESCRIPTION
Computes the hyperbolic sine of argarg radians.

sprintf

 2-112

sprintf
stdio.hstdio.h

Writes formatted data to a string.

DECLARATION
int sprintf(char *int sprintf(char *s, s, const charconst char **formatformat, …), …)

PARAMETERS
ss A pointer to the string that is to receive the formatted

data.

formatformat A pointer to the format string.

…… The optional values that are to be printed under the
control of formatformat.

RETURN VALUE
Result Value

Successful The number of characters written.

Unsuccessful A negative value if an error occurred.

DESCRIPTION
Operates exactly as printfprintf except the output is directed to a string. See
printfprintf for details.

sprintfsprintf does not use the function putcharputchar, and therefore can be used
even if putcharputchar is not available for the target configuration.

Since a complete formatter demands a lot of space there are several
different formatters to choose. For more information see the chapter
Configuration in the target-specific section.

sqrt

 2-113

sqrt
math.hmath.h

Square root.

DECLARATION
double sqrt(double double sqrt(double argarg))

PARAMETERS
argarg A doubledouble value.

RETURN VALUE
The doubledouble square root of argarg.

DESCRIPTION
Computes the square root of a number.

srand

 2-114

srand
stdlib.hstdlib.h

Sets random number sequence.

DECLARATION
void srand(unsigned intvoid srand(unsigned int seed seed))

PARAMETERS
seedseed An unsignedunsigned intint value identifying the particular random

number sequence.

RETURN VALUE
None.

DESCRIPTION
Selects a repeatable sequence of pseudo-random numbers.

The function randrand is used to get successive random numbers from the
sequence. If randrand is called before any calls to srandsrand have been made, the
sequence generated is that which is generated after srand(1)srand(1).

sscanf

 2-115

sscanf
stdio.hstdio.h

Reads formatted data from a string.

DECLARATION
int sscanf(const char *int sscanf(const char *s, s, const char *const char *format, …format, …))

PARAMETERS
ss A pointer to the string containing the data.

formatformat A pointer to a format string.

…… Optional pointers to the variables that are to receive
values.

RETURN VALUE
Result Value

Successful The number of successful conversions.

Unsuccessful -1 if the input was exhausted.

DESCRIPTION
Operates exactly as scanfscanf except the input is taken from the string ss. See
scanfscanf, for details.

The function sscanfsscanf does not use getchargetchar, and so can be used even when
getchargetchar is not available for the target configuration.

Since a complete formatter demands a lot of space there are several
different formatters to choose. For more information see the chapter
Configuration in the target-specific section.

strcat

 2-116

strcat
string.hstring.h

Concatenates strings.

DECLARATION
char *strcat(char *char *strcat(char *s1, s1, const char *const char *s2s2))

PARAMETERS
s1s1 A pointer to the first string.

s2s2 A pointer to the second string.

RETURN VALUE
s1s1.

DESCRIPTION
Appends a copy of the second string to the end of the first string. The
initial character of the second string overwrites the terminating null
character of the first string.

strchr

 2-117

strchr
string.hstring.h

Searches for a character in a string.

DECLARATION
char *strchr(const char *char *strchr(const char *s, s, intint c c))

PARAMETERS
cc An intint representation of a character.

ss A pointer to a string.

RETURN VALUE
If successful, a pointer to the first occurrence of cc (converted to a char) in
the string pointed to by ss.

If unsuccessful due to cc not being found, null.

DESCRIPTION
Finds the first occurrence of a character (converted to a charchar) in a string.
The terminating null character is considered to be part of the string.

strcmp

 2-118

strcmp
string.hstring.h

Compares two strings.

DECLARATION
int strcmp(const char *int strcmp(const char *s1, s1, const char *const char *s2)s2)

PARAMETERS
s1s1 A pointer to the first string.

s2s2 A pointer to the second string.

RETURN VALUE
The intint result of comparing the two strings:

Return value Meaning

>0>0 s1 < s2s1 < s2

=0=0 s1 = s2s1 = s2

<0<0 s1 < s2s1 < s2

DESCRIPTION
Compares the two strings.

strcoll

 2-119

strcoll
string.hstring.h

Compares strings.

DECLARATION
int strcoll(const char *int strcoll(const char *s1, s1, const char *const char *s2s2))

PARAMETERS
s1s1 A pointer to the first string.

s2s2 A pointer to the second string.

RETURN VALUE
The intint result of comparing the two strings:

Return value Meaning

>0>0 s1 < s2s1 < s2

=0=0 s1 = s2s1 = s2

<0<0 s1 < s2s1 < s2

DESCRIPTION
Compares the two strings. This function operates identically to strcmpstrcmp
and is provided for compatibility only.

strcpy

 2-120

strcpy
string.hstring.h

Copies string.

DECLARATION
char *strcpy(char *char *strcpy(char *s1, s1, const char *const char *s2s2))

PARAMETERS
s1s1 A pointer to the destination object.

s2s2 A pointer to the source string.

RETURN VALUE
s1s1.

DESCRIPTION
Copies a string into an object.

strcspn

 2-121

strcspn
string.hstring.h

Spans excluded characters in string.

DECLARATION
size_t strcspn(const char *size_t strcspn(const char *s1, s1, const char *const char *s2s2))

PARAMETERS
s1s1 A pointer to the subject string.

s2s2 A pointer to the object string.

RETURN VALUE
The intint length of the maximum initial segment of the string pointed to by
s1s1 that consists entirely of characters not from the string pointed to by s2s2.

DESCRIPTION
Finds the maximum initial segment of a subject string that consists entirely
of characters not from an object string.

strlen

 2-122

strlen
string.hstring.h

String length.

DECLARATION
size_t strlen(const char *size_t strlen(const char *ss))

PARAMETERS
ss A pointer to a string.

RETURN VALUE
An object of type size_tsize_t indicating the length of the string.

DESCRIPTION
Finds the number of characters in a string, not including the terminating
null character.

strncat

 2-123

strncat
string.hstring.h

Concatenates a specified number of characters with a string.

DECLARATION
char *strncat(char *char *strncat(char *s1, s1, const char *const char *s2, s2, size_tsize_t n n))

PARAMETERS
s1s1 A pointer to the destination string.

s2s2 A pointer to the source string.

nn The number of characters of the source string to use.

RETURN VALUE
s1s1

DESCRIPTION
Appends not more than nn initial characters from the source string to the
end of the destination string.

strncmp

 2-124

strncmp
string.hstring.h

Compares a specified number of characters with a string.

DECLARATION
int strncmp(const char *int strncmp(const char *s1, s1, const char *const char *s2, s2, size_tsize_t n n))

PARAMETERS
s1s1 A pointer to the first string.

s2s2 A pointer to the second string.

nn The number of characters of the source string to compare.

RETURN VALUE
The intint result of the comparison of not more than nn initial characters of
the two strings:

Return value Meaning

>0>0 s1 < s2s1 < s2

=0=0 s1 = s2s1 = s2

<0<0 s1 < s2s1 < s2

DESCRIPTION
Compares not more than nn initial characters of the two strings.

strncpy

 2-125

strncpy
string.hstring.h

Copies a specified number of characters from a string.

DECLARATION
char *strncpy(char *char *strncpy(char *s1, s1, const char *const char *s2, s2, size_tsize_t n n))

PARAMETERS
s1s1 A pointer to the destination object.

s2s2 A pointer to the source string.

nn The number of characters of the source string to copy.

RETURN VALUE
s1s1..

DESCRIPTION
Copies not more than nn initial characters from the source string into the
destination object.

strpbrk

 2-126

strpbrk
string.hstring.h

Finds any one of specified characters in a string.

DECLARATION
char *strpbrk(const char *char *strpbrk(const char *s1, s1, const char *const char *s2s2))

PARAMETERS
s1s1 A pointer to the subject string.

s2s2 A pointer to the object string.

RETURN VALUE
Result Value

Successful A pointer to the first occurrence in the subject string of
any character from the object string.

Unsuccessful Null if none were found.

DESCRIPTION
Searches one string for any occurrence of any character from a second
string.

strrchr

 2-127

strrchr
string.hstring.h

Finds character from right of string.

DECLARATION
char *strrchr(const char *char *strrchr(const char *s, s, intint c c))

PARAMETERS
ss A pointer to a string.

cc An intint representing a character.

RETURN VALUE
If successful, a pointer to the last occurrence of cc in the string pointed to
by ss.

DESCRIPTION
Searches for the last occurrence of a character (converted to a charchar) in a
string. The terminating null character is considered to be part of the string.

strspn

 2-128

strspn
string.hstring.h

Spans characters in a string.

DECLARATION
size_t strspn(const char *size_t strspn(const char *s1, s1, const char *const char *s2s2))

PARAMETERS
s1s1 A pointer to the subject string.

s2s2 A pointer to the object string.

RETURN VALUE
The length of the maximum initial segment of the string pointed to by s1s1
that consists entirely of characters from the string pointed to by s2s2.

DESCRIPTION
Finds the maximum initial segment of a subject string that consists entirely
of characters from an object string.

strstr

 2-129

strstr
string.hstring.h

Searches for a substring.

DECLARATION
char *strstr(const char *char *strstr(const char *s1, s1, const char *const char *s2s2))

PARAMETERS
s1s1 A pointer to the subject string.

s2s2 A pointer to the object string.

RETURN VALUE
Result Value

Successful A pointer to the first occurrence in the string pointed to
by s1s1 of the sequence of characters (excluding the
terminating null character) in the string pointed to by s2s2.

Unsuccessful Null if the string was not found. s1s1 if s2s2 is pointing to a
string with zero length.

DESCRIPTION
Searches one string for an occurrence of a second string.

strtod

 2-130

strtod
stdlib.hstdlib.h

Converts a string to doubledouble.

DECLARATION
double strtod(const char *double strtod(const char *nptr, nptr, char **char **endptrendptr))

PARAMETERS
nptrnptr A pointer to a string.

endptrendptr A pointer to a pointer to a string.

RETURN VALUE
Result Value

Successful The doubledouble result of converting the ASCII representation
of an floating-point constant in the string pointed to by
nptrnptr, leaving endptrendptr pointing to the first character after
the constant.

Unsuccessful Zero, leaving endptrendptr indicating the first non-space
character.

DESCRIPTION
Converts the ASCII representation of a number into a doubledouble, stripping
any leading white space.

strtol

 2-131

strtol
stdlib.hstdlib.h

Converts a string to a long integer.

DECLARATION
long int strtol(const char *long int strtol(const char *nptr, nptr, char **char **endptr, endptr, intint base base))

PARAMETERS
nptrnptr A pointer to a string.

endptrendptr A pointer to a pointer to a string.

basebase An int value specifying the base.

RETURN VALUE
Result Value

Successful The longlong intint result of converting the ASCII
representation of an integer constant in the string pointed
to by nptrnptr, leaving endptrendptr pointing to the first character
after the constant.

Unsuccessful Zero, leaving endptrendptr indicating the first non-space
character.

DESCRIPTION
Converts the ASCII representation of a number into a longlong intint using the
specified base, and stripping any leading white space.

If the base is zero the sequence expected is an ordinary integer. Otherwise
the expected sequence consists of digits and letters representing an integer
with the radix specified by basebase (must be between 2 and 36). The letters
[a,z][a,z] and [A,Z][A,Z] are ascribed the values 10 to 35. If the base is 16, the 0x0x
portion of a hex integer is allowed as the initial sequence.

strtoul

 2-132

strtoul
stdlib.hstdlib.h

Converts a string to an unsigned long integer.

DECLARATION
unsigned long int strtoul(const char *unsigned long int strtoul(const char *nptr,nptr,
char **char **endptr, base endptr, base int)int)

PARAMETERS
nptrnptr A pointer to a string

endptrendptr A pointer to a pointer to a string

basebase An intint value specifying the base.

RETURN VALUE
Result Value

Successful The unsignedunsigned longlong intint result of converting the ASCII
representation of an integer constant in the string pointed to by
nptrnptr, leaving endptrendptr pointing to the first character after the
constant.

Unsuccessful Zero, leaving endptrendptr indicating the first non-space character.

DESCRIPTION
Converts the ASCII representation of a number into an unsignedunsigned longlong intint using
the specified base, stripping any leading white space.

If the base is zero the sequence expected is an ordinary integer. Otherwise the
expected sequence consists of digits and letters representing an integer with the
radix specified by basebase (must be between 2 and 36). The letters [a,z][a,z] and [A,Z][A,Z]
are ascribed the values 10 to 35. If the base is 16, the 0x0x portion of a hex integer is
allowed as the initial sequence.

tan

 2-133

tan
math.hmath.h

Tangent.

DECLARATION
double tan(double double tan(double argarg))

PARAMETERS
argarg A doubledouble value in radians.

RETURN VALUE
The doubledouble tangent of argarg.

DESCRIPTION
Computes the tangent of argarg radians.

tanh

 2-134

tanh
math.hmath.h

Hyperbolic tangent.

DECLARATION
double tanh(double double tanh(double argarg))

PARAMETERS
argarg A doubledouble value in radians.

RETURN VALUE
The doubledouble hyperbolic tangent of argarg.

DESCRIPTION
Computes the hyperbolic tangent of argarg radians.

tolower

 2-135

tolower
ctype.hctype.h

Converts to lower case.

DECLARATION
int tolower(int int tolower(int cc))

PARAMETERS
cc The intint representation of a character.

RETURN VALUE
The intint representation of the lower case character corresponding to cc.

DESCRIPTION
Converts a character into lower case.

toupper

 2-136

toupper
ctype.hctype.h

Converts to upper case.

DECLARATION
int toupper(int int toupper(int cc))

PARAMETERS
cc The intint representation of a character.

RETURN VALUE
The intint representation of the upper case character corresponding to cc.

DESCRIPTION
Converts a character into upper case.

va_arg

 2-137

va_arg
stdarg.hstdarg.h

Next argument in function call.

DECLARATION
type va_arg(va_list type va_arg(va_list apap, , modemode))

PARAMETERS
apap A value of type va_listva_list.

modemode A type name such that the type of a pointer to an object
that has the specified type can be obtained simply by
postfixing aa ** to typetype.

RETURN VALUE
See below.

DESCRIPTION
A macro that expands to an expression with the type and value of the next
argument in the function call. After initialization by va_startva_start, this is the
argument after that specified by parmNparmN. va_argva_arg advances apap to deliver
successive arguments in order.

For an example of the use of va_argva_arg and associated macros, see the files
printf.cprintf.c and intwri.cintwri.c.

va_end

 2-138

va_end
stdarg.hstdarg.h

Ends reading function call arguments.

DECLARATION
void va_end(va_listvoid va_end(va_list ap ap))

PARAMETERS
apap A pointer of type va_listva_list to the variable-argument list.

RETURN VALUE
See below.

DESCRIPTION
A macro that facilitates normal return from the function whose variable
argument list was referenced by the expansion va_startva_start that initialized
va_listva_list apap.

va_list

 2-139

va_list
stdarg.hstdarg.h

Argument list type.

DECLARATION
char *va_list[1]char *va_list[1]

PARAMETERS
None.

RETURN VALUE
See below.

DESCRIPTION
An array type suitable for holding information needed by va_argva_arg and
va_endva_end.

va_start

 2-140

va_start
stdarg.hstdarg.h

Starts reading function call arguments.

DECLARATION
void va_start(va_listvoid va_start(va_list ap, parmN ap, parmN))

PARAMETERS
apap A pointer of type va_listva_list to the variable-argument list.

parmNparmN The identifier of the rightmost parameter in the variable
parameter list in the function definition.

RETURN VALUE
See below.

DESCRIPTION
A macro that initializes apap for use by va_argva_arg and va_endva_end.

_formatted_read

 2-141

_formatted_read
icclbutl.hicclbutl.h

Reads formatted data.

DECLARATION
int _formatted_read (const char **int _formatted_read (const char **lineline, const char, const char
****formatformat, va_list , va_list apap))

PARAMETERS
lineline A pointer to a pointer to the data to scan.

formatformat A pointer to a pointer to a standard scanfscanf format
specification string.

apap A pointer of type va_listva_list to the variable argument list.

RETURN VALUE
The number of successful conversions.

DESCRIPTION
Reads formatted data. This function is the basic formatter of scanfscanf.

_formatted_read_formatted_read is concurrently reusable (reentrant).

Note that the use of _formatted_read_formatted_read requires the special ANSI-defined
macros in the file stdarg.hstdarg.h, described above. In particular:

There must be a variable apap of type va_listva_list.

There must be a call to va_startva_start before calling _formatted_read_formatted_read.

There must be a call to va_endva_end before leaving the current context.

The argument to va_startva_start must be the formal parameter immediately to
the left of the variable argument list (…)(…).

_formatted_write

 2-142

_formatted_write
icclbutl.hicclbutl.h

Formats and writes data.

DECLARATION
int _formatted_write (const char *int _formatted_write (const char *formatformat,, voidvoid outputf outputf
((char, void *char, void *)),, void *void *spsp,, va_listva_list ap ap))

PARAMETERS
formatformat A pointer to standard printf/sprintfprintf/sprintf format

specification string.

outputfoutputf A function pointer to a routine that actually
writes a single character created by
_formatted_write_formatted_write. The first parameter to this
function contains the actual character value and
the second a pointer whose value is always
equivalent to the third parameter of
_formatted_write_formatted_write.

spsp A pointer to some type of data structure that the
low-level output function may need. If there is no
need for anything more than just the character
value, this parameter must still be specified with
(voidvoid **) 00 as well as declared in the output
function.

apap A pointer of type va_listva_list to the variable-
argument list.

RETURN VALUE
The number of characters written.

_formatted_write

 2-143

DESCRIPTION
Formats write data. This function is the basic formatter of printfprintf and
sprintfsprintf, but through its universal interface can easily be adapted by the
user for writing to non-standard display devices.

Since a complete formatter demands a lot of space there are several
different formatters to choose. For more information see the chapter
Configuration in the target-specific section.

_formatted_write_formatted_write is concurrently reusable (reentrant).

Note that the use of _formatted_write_formatted_write requires the special ANSI-defined
macros in the file stdarg.hstdarg.h, described above. In particular:

◆ There must be a variable apap of type va_listva_list.

◆ There must be a call to va_startva_start before calling _formatted_write_formatted_write.

◆ There must be a call to va_endva_end before leaving the current context.

◆ The argument to va_startva_start must be the formal parameter immediately
to the left of the variable argument list (…)(…).

For an example of how to use _formatted_write_formatted_write, see the file printf.cprintf.c.

_medium_read

 2-144

_medium_read
icclbutl.hicclbutl.h

Reads formatted data excluding floating-point numbers.

DECLARATION
int _medium_read (const char **int _medium_read (const char **lineline, const char **, const char **formatformat,,
va_list va_list apap))

PARAMETERS
lineline A pointer to a pointer to the data to scan.

formatformat A pointer to a pointer to a standard scanfscanf format
specification string.

apap A pointer of type va_listva_list to the variable argument list.

RETURN VALUE
The number of successful conversions.

DESCRIPTION
A reduced version of _formatted_read_formatted_read which is half the size, but does
not support floating-point numbers.

For further information see _formatted_read_formatted_read.

_medium_write

 2-145

_medium_write
icclbutl.hicclbutl.h

Writes formatted data excluding floating-point numbers.

DECLARATION
int _medium_write (const char *int _medium_write (const char *format, format, voidvoid outputf(outputf(char,char,
void *void *)),, void *void *spsp,, va_listva_list ap ap))

PARAMETERS
formatformat A pointer to standard printf/sprintfprintf/sprintf format

specification string.

outputfoutputf A function pointer to a routine that actually
writes a single character created by
_formatted_write_formatted_write. The first parameter to this
function contains the actual character value and
the second a pointer whose value is always
equivalent to the third parameter of
_formatted_write_formatted_write.

spsp A pointer to some type of data structure that the
low-level output function may need. If there is no
need for anything more than just the character
value, this parameter must still be specified with
(voidvoid **) 00 as well as declared in the output
function.

apap A pointer of type va_listva_list to the variable-
argument list.

RETURN VALUE
The number of characters written.

_medium_write

 2-146

DESCRIPTION
A reduced version of _formatted_write_formatted_write which is half the size, but does
not support floating-point numbers.

For further information see _formatted_write_formatted_write.

_small_write

 2-147

_small_write
icclbutl.hicclbutl.h

Small formatted data write routine.

DECLARATION
int _small_write (const char *int _small_write (const char *formatformat,, voidvoid outputf (outputf (char,char,
void *void *)),, void *void *spsp,, va_listva_list ap ap))

PARAMETERS
formatformat A pointer to standard printf/sprintfprintf/sprintf format

specification string.

outputfoutputf A function pointer to a routine that actually
writes a single character created by
_formatted_write_formatted_write. The first parameter to this
function contains the actual character value and
the second a pointer whose value is always
equivalent to the third parameter of
_formatted_write_formatted_write.

spsp A pointer to some type of data structure that the
low-level output function may need. If there is no
need for anything more than just the character
value, this parameter must still be specified with
(voidvoid **) 00 as well as declared in the output
function.

apap A pointer of type va_listva_list to the variable-
argument list.

RETURN VALUE
The number of characters written.

_small_write

 2-148

DESCRIPTION
A small version of _formatted_write_formatted_write which is about a quarter of the
size, and uses only about 15 bytes of RAM.

The _small_write_small_write formatter supports only the following specifiers for
intint objects:

%%%%, %d%d, %o%o, %c%c, %s%s, and %x%x.

It does not support field width or precision arguments, and no diagnostics
will be produced if unsupported specifiers or modifiers are used.

For further information see _formatted_write_formatted_write.

 2-149

K&R AND ANSI C
LANGUAGE DEFINITIONS

There are two major standard C language definitions:

◆ Kernighan & Richie, commonly abbreviated to K&R.

This is the original definition by the authors of the C language, and is described
in their book The C Programming Language. The IAR C Compiler is fully
compatible with this definition.

◆ ANSI.

The ANSI definition is a development of the original K&R definition. It adds
facilities that enhance portability and parameter checking, and removes a small
number of redundant keywords. The IAR C Compiler closely follows the ANSI
approved standard X3.159-1989.

Both standards are described in depth in the latest edition of The C Programming
Language by Kernighan & Richie. This chapter summarizes the differences
between the standards, and is particularly useful to programmers that are
familiar with K&R C but would like to use the new ANSI facilities.

ENTRY KEYWORD
In ANSI C the entryentry keyword is removed, so allowing entryentry to be a user-
defined symbol.

CONST KEYWORD
ANSI C adds constconst, an attribute indicating that a declared object is
unmodifiable and hence may be compiled into a read-only memory segment. For
example:

const int i; const int i; /* constant int *//* constant int */
const int *ip;const int *ip; /* variable pointer to /* variable pointer to

constant int */constant int */

K&R AND ANSI C LANGUAGE DEFINITIONS

 2-150

int *const ip;int *const ip; /* constant pointer to variable /* constant pointer to variable
 int */ int */

typedef structtypedef struct /* define the struct 'cmd_entry' /* define the struct 'cmd_entry'
//

 { {
 char *command; char *command;
 void (*function)(void); void (*function)(void);
 } cmd_entry } cmd_entry
const cmd_entry table[]=const cmd_entry table[]= /* declare a constant object of /* declare a constant object of

 type 'cmd_entry' /* type 'cmd_entry' /*
 { {
 "help", do_help, "help", do_help,
 "reset", do_reset, "reset", do_reset,
 "quit", do_quit "quit", do_quit
 }; };

VOLATILE KEYWORD
ANSI C adds volatilevolatile, an attribute indicating that the object may be modified
by hardware and hence any access should not be removed by optimization.

SIGNED KEYWORD
ANSI C adds signedsigned, an attribute indicating that an integer type is signed. It is
the counterpart of unsignedunsigned and can be used before any integer type-specifier.

VOID KEYWORD
ANSI C adds voidvoid, a type-specifier that can be used to declare function return
values, function parameters, and generic pointers. For example:

void f(); void f(); /* a function without return value *//* a function without return value */
type_spec f(void);type_spec f(void); /* a function with no parameters *//* a function with no parameters */
void *p; void *p; /* a generic pointer which can be cast /* a generic pointer which can be cast

/* to any other pointer and is /* to any other pointer and is
 assignment-compatible with any assignment-compatible with any
 pointer type */ pointer type */

K&R AND ANSI C LANGUAGE DEFINITIONS

 2-151

ENUM KEYWORD
ANSI C adds enumenum, a keyword that conveniently defines successive named
integer constants with successive values. For example:

enum {zero,one,two,step=6,seven,eight};enum {zero,one,two,step=6,seven,eight};

DATA TYPES
In ANSI C the complete set of basic data types is:

{unsigned | signed} char{unsigned | signed} char
{unsigned | signed} int{unsigned | signed} int
{unsigned | signed} short{unsigned | signed} short
{unsigned | signed} long{unsigned | signed} long
floatfloat
doubledouble
long doublelong double
* * /* Pointer *//* Pointer */

FUNCTION DEFINITION PARAMETERS
In K&R C, function parameters are declared by conventional declaration
statements before the body of the function. In ANSI C, each parameter in the
parameter list is preceded by its type identifiers. For example:

K&R ANSI

long int g(s)long int g(s) long int g(char * s);long int g(char * s);
char * s;char * s;

{{ {{

The arguments of ANSI-type functions are always type-checked. The IAR C
Compiler checks the arguments of K&R-type functions only if the -g-g option is
used.

K&R AND ANSI C LANGUAGE DEFINITIONS

 2-152

FUNCTION DECLARATIONS
In K&R C, function declarations do not include parameters. In ANSI C they do.
For example:

Type Example

K&R extern int f();extern int f();

ANSI (named form) extern int(long int val);extern int(long int val);

ANSI (unnamed form) extern int(long int);extern int(long int);

In the K&R case, a call to the function via the declaration cannot have its
parameter types checked, and if there is a parameter-type mismatch, the call will
fail.

In the ANSI C case, the types of function arguments are checked against those of
the parameters in the declaration. If necessary, a parameter of a function call is
cast to the type of the parameter in the declaration, in the same way as an
argument to an assignment operator might be. Parameter names are optional in
the declaration.

ANSI also specifies that to denote a variable number of arguments, an ellipsis
(three dots) is included as a final formal parameter.

If external or forward references to ANSI-type functions are used, a function
declaration should appear before the call. It is unsafe to mix ANSI and K&R type
declarations since they are not compatible for promoted parameters (charchar or
floatfloat).

Note that in the IAR C Compiler, the -g-g option will find all compatibility
problems among function calls and declarations, including between modules.

HEXADECIMAL STRING CONSTANTS
ANSI allows hexadecimal constants denoted by backslash followed by xx and any
number of hexadecimal digits. For example:

#define Escape_C "\x1b\x43" /* Escape 'C' \0 */#define Escape_C "\x1b\x43" /* Escape 'C' \0 */

\x43 represents ASCII C which, if included directly, would be interpreted as part
of the hexadecimal constant.

K&R AND ANSI C LANGUAGE DEFINITIONS

 2-153

STRUCTURE AND UNION ASSIGNMENTS
In K&R C, functions and the assignment operator may have arguments that are
pointers to structstruct or unionunion objects, but not structstruct or unionunion objects
themselves.

ANSI C allows functions and the assignment operator to have arguments that
are structstruct or unionunion objects, or pointers to them. Functions may also return
structures or unions:

struct s a,b;struct s a,b; /* struct s declared /* struct s declared
 earlier */ earlier */

struct s f(struct s parm);struct s f(struct s parm);/* declare function /* declare function
 accepting and returning accepting and returning
 struct s */struct s */

a = f(b); a = f(b); /* call it *//* call it */

To further increase the usability of structures, ANSI allows auto structures to be
initialized.

SHARED VARIABLE OBJECTS
Various C compilers differ in their handling of variable objects shared among
modules. The IAR C Compiler uses the scheme called Strict REF/DEF,
recommended in the ANSI supplementary document Rationale For C. It requires
that all modules except one use the keyword externextern before the variable
declaration. For example:

Module #1 Module #2 Module #3

int i;int i; extern int i;extern int i; extern int i;extern int i;

int j=4;int j=4; extern int j;extern int j; extern int j;extern int j;

K&R AND ANSI C LANGUAGE DEFINITIONS

 2-154

#elif
ANSI C’s new #elif#elif directive allows more compact nested else-if structures.

#elif expression#elif expression
……
is equivalent to:is equivalent to:
#else#else
#if expression#if expression
……
#endif#endif

#error
The #error#error directive is provided for use in conjunction with conditional
compilation. When the #error#error directive is found, the compiler issues an error
message and terminates.

 2-155

DIAGNOSTICS
The diagnostic error and warning messages produced fall into six categories:

◆ Command line error messages.

◆ Compilation error messages.

◆ Compilation warning messages.

◆ Compilation fatal error messages.

◆ Compilation memory overflow message.

◆ Compilation internal error messages.

In addition to these general error and warning messages, any target-specific
error and warning messages are documented in the chapter Diagnostics.

COMMAND LINE ERROR MESSAGES
Command line errors occur when the compiler finds a fault in the parameters
given on the command line. In this case, the compiler issues a self-explanatory
message.

COMPILATION ERROR MESSAGES
Compilation error messages are produced when the compiler has found a
construct which clearly violates the C language rules, such that code cannot be
produced.

The ICC C Compiler is more strict on compatibility issues than many other C
compilers. In particular pointers and integers are considered as incompatible
when not explicitly casted. Compilation error messages are described in
Compilation error messages in this chapter.

DIAGNOSTICS

 2-156

COMPILATION WARNING MESSAGES
Compilation warning messages are produced when the compiler finds a
programming error or omission which is of concern but not so severe as to
prevent the completion of compilation. Compilation warning messages are
described in Compilation warning messages in this chapter.

COMPILATION FATAL ERROR MESSAGES
Compilation fatal error messages are produced when the compiler has found a
condition that not only prevents code generation, but which makes further
processing of the source not meaningful. After the message has been issued,
compilation terminates. Compilation fatal error messages are described in
Compilation error messages in this chapter, and marked as fatal.

COMPILATION MEMORY OVERFLOW MESSAGE
When the compiler runs out of memory, it issues the special message:

 * * * C O M P I L E R O U T O F M E M O R Y * * * * * * C O M P I L E R O U T O F M E M O R Y * * *
 Dynamic memory used: Dynamic memory used: nnnnnnnnnnnn bytes bytes

If this error occurs, the cure is either to add system memory or to split source
files into smaller modules. Also note that the -q-q, -x-x, -A-A, -P-P, and -r-r (not -rn-rn)
switches cause the compiler to use more memory.

Also, see the chapter Getting Started, for more information.

COMPILATION INTERNAL ERROR MESSAGES
A compiler internal error message indicates that there has been a serious and
unexpected failure due to a fault in the compiler itself, for example, the failure
of an internal consistency check. After issuing a self-explanatory message, the
compiler terminates.

DIAGNOSTICS

 2-157

Internal errors should normally not occur and should be reported to the IAR
Systems technical support group. Your report should include all possible
information about the problem and preferably also a diskette with the program
that generated the internal error.

COMPILATION ERROR MESSAGES

No Error message Suggestion

0 Invalid syntaxInvalid syntax The compiler could not decode the
statement or declaration.

1 Too deep #include nestingToo deep #include nesting
(max is 10)(max is 10)

Fatal. The compiler limit for
nesting of #include#include files was
exceeded. One possible cause is an
inadvertently recursive #include#include
file.

2 Failed to open #includeFailed to open #include
file 'name'file 'name'

Fatal. The compiler could not open
an #include#include file. Possible causes
are that the file does not exist in
the specified directories (possibly
due to a faulty -I-I prefix or
C_INCLUDEC_INCLUDE path) or is disabled for
reading.

3 Invalid #include filenameInvalid #include filename Fatal. The #include#include filename was
invalid. Note that the #include#include
filename must be written
<filefile> or "filefile".

4 Unexpected end of fileUnexpected end of file
encounteredencountered

Fatal. The end of file was
encountered within a declaration,
function definition, or during
macro expansion. The probable
cause is bad ()() or {}{} nesting.

DIAGNOSTICS

 2-158

No Error message Suggestion

5 Too long source line (maxToo long source line (max
is 512 chars); truncatedis 512 chars); truncated

The source line length exceeds the
compiler limit.

6 Hexadecimal constant withoutHexadecimal constant without
digitsdigits

The prefix 0x0x or 0X0X of
hexadecimal constant was found
without following hexadecimal
digits.

7 Character constant largerCharacter constant larger
than "long"than "long"

A character constant contained
too many characters to fit in the
space of a long integer.

8 Invalid characterInvalid character
encountered: '\xhh'; ignoredencountered: '\xhh'; ignored

A character not included in the C
character set was found.

9 Invalid floating pointInvalid floating point
constantconstant

A floating-point constant was
found to be too large or have
invalid syntax. See the ANSI
standard for legal forms.

10 Invalid digits in octalInvalid digits in octal
constantconstant

The compiler found a non-octal
digit in an octal constant. Valid
octal digits are: 00–77.

11 Missing delimiter in literalMissing delimiter in literal
or character constantor character constant

No closing delimiter ' or " was
found in character or literal
constant.

12 String too long (max is 509)String too long (max is 509)The limit for the length of a single
or concatenated strings was
exceeded.

13 Argument to #define tooArgument to #define too
long (max is 512)long (max is 512)

Lines terminated by \\ resulted in a
#define#define line that was too long.

DIAGNOSTICS

 2-159

No Error message Suggestion

14 Too many formal parametersToo many formal parameters
for #define (max is 127)for #define (max is 127)

Fatal. Too many formal
parameters were found in a macro
definition (#define#define directive).

15 ',' or ')' expected',' or ')' expected The compiler found an invalid
syntax of a function definition
header or macro definition.

16 Identifier expectedIdentifier expected An identifier was missing from a
declarator, gotogoto statement, or pre-
processor line.

17 Space or tab expectedSpace or tab expected Pre-processor arguments must be
separated from the directive with
tab or space characters.

18 Macro parameter 'name'Macro parameter 'name'
redefinedredefined

The formal parameter of a symbol
in a #define#define statement was
repeated.

19 Unmatched #else, #endif orUnmatched #else, #endif or
#elif#elif

Fatal. A #if#if, #ifdef#ifdef, or #ifndef#ifndef
was missing.

20 No such pre-processorNo such pre-processor
command: 'name'command: 'name'

was followed by an unknown
identifier.

21 Unexpected token found inUnexpected token found in
pre-processor linepre-processor line

A pre-processor line was not
empty after the argument part was
read.

22 Too many nestedToo many nested
parameterized macrosparameterized macros
(max is 50)(max is 50)

Fatal. The pre-processor limit was
exceeded.

23 Too many active macroToo many active macro
parameters (max is 256)parameters (max is 256)

Fatal. The pre-processor limit was
exceeded.

24 Too deep macro nesting (maxToo deep macro nesting (max
is 100)is 100)

Fatal. The pre-processor limit was
exceeded.

DIAGNOSTICS

 2-160

No Error message Suggestion

25 Macro 'name' called withMacro 'name' called with
too many parameterstoo many parameters

Fatal. A parameterized #define#define
macro was called with more
arguments than declared.

26 Actual macro parameter tooActual macro parameter too
long (max is 512)long (max is 512)

A single macro argument may not
exceed the length of a source line.

27 Macro 'name' called withMacro 'name' called with
too few parameterstoo few parameters

A parameterized #define#define macro
was called with fewer arguments
than declared.

28 Missing #endifMissing #endif Fatal. The end of file was
encountered during skipping of
text after a false condition.

29 Type specifier expectedType specifier expected A type description was missing.
This could happen in structstruct,
unionunion, prototyped function
definitions/declarations, or in
K&R function formal parameter
declarations.

30 Identifier unexpectedIdentifier unexpected There was an invalid identifier.
This could be an identifier in a
type name definition like:
sizeof(int*ident);sizeof(int*ident);
or two consecutive identifiers.

31 Identifier 'name' redeclaredIdentifier 'name' redeclaredThere was a redeclaration of a
declarator identifier.

32 Invalid declaration syntaxInvalid declaration syntax There was an undecodable
declarator.

33 Unbalanced '(' or ')' inUnbalanced '(' or ')' in
declaratordeclarator

There was a parenthesis error in a
declarator.

DIAGNOSTICS

 2-161

No Error message Suggestion

34 C statement or func-def inC statement or func-def in
#include file, add "i" to#include file, add "i" to
the "-r" switchthe "-r" switch

To get proper C source line
stepping for #include#include code when
the C-SPY debugger is used, the --
riri option must be specified.

Other source code debuggers (that
do not use the UBROFUBROF output
format) may not work with code
in #include#include files.

35 Invalid declaration ofInvalid declaration of
"struct", "union" or "enum""struct", "union" or "enum"
typetype

A structstruct, unionunion, or enumenum was
followed by an invalid token(s).

36 Tag identifier 'name'Tag identifier 'name'
redeclaredredeclared

A structstruct, unionunion, or enumenum tag is
already defined in the current
scope.

37 Function 'name' declaredFunction 'name' declared
within "struct" or "union"within "struct" or "union"

A function was declared as a
member of structstruct or unionunion.

38 Invalid width of field (maxInvalid width of field (max
is nn)is nn)

The declared width of field
exceeds the size of an integer (nnnn
is 16 or 32 depending on the target
processor).

39 ',' or ';' expected',' or ';' expected There was a missing ,, or ;; at the
end of declarator.

40 Array dimension outside ofArray dimension outside of
"unsigned int" bounds"unsigned int" bounds

Array dimension negative or larger
than can be represented in an
unsigned integer.

41 Member 'name' of "struct"Member 'name' of "struct"
or "union" redeclaredor "union" redeclared

A member of structstruct or unionunion
was redeclared.

42 Empty "struct" or "union"Empty "struct" or "union" There was a declaration of structstruct
or unionunion containing no members.

DIAGNOSTICS

 2-162

No Error message Suggestion

43 Object cannot be initializedObject cannot be initializedThere was an attempted
initialization of typedeftypedef
declarator or structstruct or unionunion
member.

44 ';' expected';' expected A statement or declaration needs a
terminating semicolon.

45 ']' expected']' expected There was a bad array declaration
or array expression.

46 ':' expected':' expected There was a missing colon after
defaultdefault, casecase label, or in ??-
operator.

47 '(' expected'(' expected The probable cause is a misformed
forfor, ifif, or whilewhile statement.

48 ')' expected ')' expected The probable cause is a misformed
forfor, ifif, or whilewhile statement or
expression.

49 ',' expected',' expected There was an invalid declaration.

50 '{' expected'{' expected There was an invalid declaration
or initializer.

51 '}' expected'}' expected There was an invalid declaration
or initializer.

52 Too many local variablesToo many local variables
and formal parameters (maxand formal parameters (max
is 1024)is 1024)

Fatal. The compiler limit was
exceeded.

53 Declarator too complex (maxDeclarator too complex (max
is 128 '(' and/or '*')is 128 '(' and/or '*')

The declarator contained too many
((,)), or **.

54 Invalid storage classInvalid storage class An invalid storage-class for the
object was specified.

DIAGNOSTICS

 2-163

No Error message Suggestion

55 Too deep block nesting (maxToo deep block nesting (max
is 50)is 50)

Fatal. The {}{} nesting in a function
definition was too deep.

56 Array of functionsArray of functions An attempt was made to declare
an array of functions.

The valid form is array of pointers to functions:

int array [5] (); /* Invalid */int array [5] (); /* Invalid */
int (*array [5]) (); /* Valid */int (*array [5]) (); /* Valid */

57 Missing array dimensionMissing array dimension
specifierspecifier

There was a multi-dimensional
array declarator with a missing
specified dimension. Only the first
dimension can be excluded (in
declarations of externextern arrays and
function formal parameters).

58 Identifier 'name' redefinedIdentifier 'name' redefined There was a redefinition of a
declarator identifier.

59 Function returning arrayFunction returning array Functions cannot return arrays.

60 Function definition expectedFunction definition expectedA K&R function header was found
without a following function
definition, for example:

int f(i); /* Invalid */int f(i); /* Invalid */

61 Missing identifier inMissing identifier in
declarationdeclaration

A declarator lacked an identifier.

62 Simple variable or array ofSimple variable or array of
a "void" typea "void" type

Only pointers, functions, and
formal parameters can be of voidvoid
type.

63 Function returning functionFunction returning function A function cannot return a
function, as in:

int f()(); /* Invalid */int f()(); /* Invalid */

DIAGNOSTICS

 2-164

No Error message Suggestion

64 Unknown size of variableUnknown size of variable
object 'name'object 'name'

The defined object has unknown
size. This could be an external
array with no dimension given or
an object of an only partially
(forward) declared structstruct or
unionunion.

65 Too many errors encounteredToo many errors encountered
(>100)(>100)

Fatal. The compiler aborts after a
certain number of diagnostic
messages.

66 Function 'name' redefinedFunction 'name' redefined Multiple definitions of a function
were encountered.

67 Tag 'name' undefinedTag 'name' undefined There was a definition of variable
of enumenum type with type undefined
or a reference to undefined
structstruct or unionunion type in a
function prototype or as a sizeofsizeof
argument.

68 "case" outside "switch""case" outside "switch" There was a casecase without any
active switchswitch statement.

69 "interrupt" function may not"interrupt" function may not
be referred or calledbe referred or called

An interruptinterrupt function call was
included in the program. Interrupt
functions can be called by the run-
time system only.

70 Duplicated "case" label: nnDuplicated "case" label: nn The same constant value was used
more than once as a casecase label.

71 "default" outside "switch""default" outside "switch" There was a defaultdefault without any
active switchswitch statement.

72 Multiple "default" withinMultiple "default" within
"switch""switch"

More than one defaultdefault in one
switchswitch statement.

DIAGNOSTICS

 2-165

No Error message Suggestion

73 Missing "while" in "do" -Missing "while" in "do" -
"while" statement"while" statement

Probable cause is missing {}{}
around multiple statements.

74 Label 'name' redefinedLabel 'name' redefined A label was defined more than
once in the same function.

75 "continue" outside iteration"continue" outside iteration
statementstatement

There was a continuecontinue outside
any active whilewhile, dodo … whilewhile, or
forfor statement.

76 "break" outside "switch" or"break" outside "switch" or
iteration statementiteration statement

There was a breakbreak outside any
active switchswitch, whilewhile, dodo …
whilewhile, or forfor statement.

77 Undefined label 'name'Undefined label 'name' There is a gotogoto labellabel with no
label:label: definition within the
function body.

78 Pointer to a field notPointer to a field not
allowedallowed

structstruct

 { {

 int *f:6; /* Invalid */ int *f:6; /* Invalid */

 } }

There is a pointer to a field
member of structstruct or unionunion:

79 Argument of binary operatorArgument of binary operator
missingmissing

The first or second argument of a
binary operator is missing.

80 Statement expectedStatement expected One of ? : ,]? : ,] or }} was found
where statement was expected.

DIAGNOSTICS

 2-166

No Error message Suggestion

81 Declaration after statementDeclaration after statement A declaration was found after a
statement.

This could be due to an unwanted ;; for example:

int i;;int i;;
char c; /* Invalid */char c; /* Invalid */

Since the second ;; is a statement it causes a declaration after a
statement.

82 "else" without preceding"else" without preceding
"if""if"

The probable cause is bad {}{}
nesting.

83 "enum" constant(s) outside"enum" constant(s) outside
"int" or "unsigned" "int""int" or "unsigned" "int"
rangerange

An enumeration constant was
created too small or too large.

84 Function name not allowed inFunction name not allowed in
this contextthis context

An attempt was made to use a
function name as an indirect
address.

85 Empty "struct", "union" orEmpty "struct", "union" or
"enum""enum"

There is a definition of structstruct or
unionunion that contains no members
or a definition of enumenum that
contains no enumeration
constants.

DIAGNOSTICS

 2-167

No Error message Suggestion

86 Invalid formal parameterInvalid formal parameter There is a fault with the formal
parameter in a function
declaration.

Possible causes are:

int f(); /* valid K&R declaration */int f(); /* valid K&R declaration */
int f(i); /* invalid K&R declaration */int f(i); /* invalid K&R declaration */
int f(int i); /* valid ANSI declaration */int f(int i); /* valid ANSI declaration */
int f(i); /* invalid ANSI declaration */int f(i); /* invalid ANSI declaration */

87 Redeclared formal parameter:Redeclared formal parameter:
'name''name'

A formal parameter in a K&R
function definition was declared
more than once.

88 Contradictory functionContradictory function
declarationdeclaration

void appears in a function
parameter type list together with
other type of specifiers.

89 "..." without previous"..." without previous
parameter(s)parameter(s)

... cannot be the only parameter
description specified.

For example:

int f(...); /* Invalid */int f(...); /* Invalid */
int f(int, ...); /* Valid */int f(int, ...); /* Valid */

90 Formal parameter identifierFormal parameter identifier
missingmissing

An identifier of a parameter was
missing in the header of a
prototyped function definition.

For example:

int f(int *p, char, float ff) /* Invalid - secondint f(int *p, char, float ff) /* Invalid - second
 parameter has no name parameter has no name
//
 { {
 /* function body */ /* function body */
 } }

DIAGNOSTICS

 2-168

No Error message Suggestion

91 Redeclared number of formalRedeclared number of formal
parametersparameters

A prototyped function was
declared with a different number
of parameters than the first
declaration.

For example:

int f(int, char); /* first declaration-valid */int f(int, char); /* first declaration-valid */
int f(int); /* fewer parameters-invalid */int f(int); /* fewer parameters-invalid */
int f(int, char, float); /* more parameters-invalid */int f(int, char, float); /* more parameters-invalid */

92 Prototype appeared afterPrototype appeared after
referencereference

A prototyped declaration of a
function appeared after it was
defined or referenced as a K&R
function.

93 Initializer to field ofInitializer to field of
width nn (bits) out of rangewidth nn (bits) out of range

A bit-field was initialized with a
constant too large to fit in the field
space.

94 Fields of width 0 must notFields of width 0 must not
be namedbe named

Zero length fields are only used to
align fields to the next intint
boundary and cannot be accessed
via an identifier.

95 Second operand for divisionSecond operand for division
or modulo is zeroor modulo is zero

An attempt was made to divide by
zero.

96 Unknown size of objectUnknown size of object
pointed topointed to

An incomplete pointer type is used
within an expression where size
must be known.

97 Undefined "static" functionUndefined "static" function
'name''name'

A function was declared with
staticstatic storage class but never
defined.

98 Primary expression expectedPrimary expression expected An expression was missing.

DIAGNOSTICS

 2-169

No Error message Suggestion

99 Extended keyword not allowedExtended keyword not allowed
in this contextin this context

An extended processor-specific
keyword occurred in an illegal
context; eg interruptinterrupt intint ii.

100 Undeclared identifier:Undeclared identifier:
'name''name'

There was a reference to an
identifier that had not been
declared.

101 First argument of '.'First argument of '.'
operator must be of "struct"operator must be of "struct"
or "union" typeor "union" type

The dot operator was .. applied to
an argument that was not structstruct
or unionunion.

102 First argument of '->' wasFirst argument of '->' was
not pointer to "struct" ornot pointer to "struct" or
"union""union"

The arrow operator->-> was applied
to argument that was not pointer
to a structstruct or unionunion.

103 Invalid argument of "sizeof"Invalid argument of "sizeof"
operatoroperator

The sizeofsizeof operator was applied
to a bit-field, function, or extern
array of unknown size.

104 Initializer "string" exceedsInitializer "string" exceeds
array dimensionarray dimension

An array of charchar with explicit
dimension was initialized with a
string exceeding array size.

For example:

char array [4] = "abcde";char array [4] = "abcde";
/* invalid *//* invalid */

105 Language feature notLanguage feature not
implemented: 'name'implemented: 'name'

The compiler does not currently
support the language feature used.

106 Too many function parametersToo many function parameters
(max is 127)(max is 127)

Fatal. There were too many
parameters in function
declaration/definition.

DIAGNOSTICS

 2-170

No Error message Suggestion

107 Function parameter 'name'Function parameter 'name'
already declaredalready declared

A formal parameter in a function
definition header was declared
more than once.

For example:

/* K&R function */ int myfunc(i, i) /* invalid *//* K&R function */ int myfunc(i, i) /* invalid */
int i;int i;
 { {
 } }
/* Prototyped function *//* Prototyped function */
int myfunc(int i, int i) /* invalid */int myfunc(int i, int i) /* invalid */
 { {
 } }

108 Function parameter 'name'Function parameter 'name'
declared but not found indeclared but not found in
headerheader

In a K&R function definition,
parameter declared but not
specified in the function header.

For example:

int myfunc(i)int myfunc(i)
int i, j /* invalid - j is not specified in the functionint i, j /* invalid - j is not specified in the function
header */header */
 { {
 } }

109 ';' unexpected ';' unexpected An unexpected delimiter was
encountered.

110 ')' unexpected')' unexpected An unexpected delimiter was
encountered.

111 '{' unexpected '{' unexpected An unexpected delimiter was
encountered.

112 ',' unexpected',' unexpected An unexpected delimiter was
encountered.

DIAGNOSTICS

 2-171

No Error message Suggestion

113 ':' unexpected':' unexpected An unexpected delimiter was
encountered.

114 '[' unexpected'[' unexpected An unexpected delimiter was
encountered.

115 '(' unexpected'(' unexpected An unexpected delimiter was
encountered.

116 Integral expressionIntegral expression
requiredrequired

The evaluated expression yielded a
result of the wrong type.

117 Floating point expressionFloating point expression
requiredrequired

The evaluated expression yielded a
result of the wrong type.

118 Scalar expression requiredScalar expression required The evaluated expression yielded a
result of the wrong type.

119 Pointer expression requiredPointer expression required The evaluated expression yielded a
result of the wrong type.

120 Arithmetic expressionArithmetic expression
requiredrequired

The evaluated expression yielded a
result of the wrong type.

121 Lvalue requiredLvalue required The expression result was not a
memory address.

122 Modifiable lvalue requiredModifiable lvalue required The expression result was not a
variable object or was a constconst.

123 Prototyped function argumentPrototyped function argument
number mismatchnumber mismatch

A prototyped function was called
with a number of arguments
different from the number
declared.

DIAGNOSTICS

 2-172

No Error message Suggestion

124 Unknown "struct" or "union"Unknown "struct" or "union"
member: 'name'member: 'name'

An attempt was made to reference
a nonexistent member of a structstruct
or unionunion.

125 Attempt to take address ofAttempt to take address of
fieldfield

The && operator may not be used on
bit-fields.

126 Attempt to take address ofAttempt to take address of
"register" variable"register" variable

The && operator may not be used on
objects with registerregister storage
class.

127 Incompatible pointersIncompatible pointers There must be full compatibility of
objects that pointers point to.

In particular, if pointers point (directly or indirectly) to prototyped
functions, the code performs a compatibility test on return values
and also on the number of parameters and their types. This means
that incompatibility can be hidden quite deeply, for example:

char (*(*p1)[8])(int);char (*(*p1)[8])(int);
char (*(*p2)[8])(float);

/* p1 and p2 are incompatible /* p1 and p2 are incompatible –– the function parameters the function parameters
have incompatible types */have incompatible types */

The compatibility test also includes checking of array dimensions if
they appear in the description of the objects pointed to, for example:

int (*p1)[8];int (*p1)[8];
int (*p2)[9];

/* p1 and p2 are incompatible – array dimensions differ
*/

128 Function argumentFunction argument
incompatible with itsincompatible with its
declarationdeclaration

A function argument is
incompatible with the argument in
the declaration.

DIAGNOSTICS

 2-173

No Error message Suggestion

129 Incompatible operands ofIncompatible operands of
binary operatorbinary operator

The type of one or more operands
to a binary operator was
incompatible with the operator.

130 Incompatible operands ofIncompatible operands of
'=' operator'=' operator

The type of one or more operands
to == was incompatible with ==.

131 Incompatible "return"Incompatible "return"
expressionexpression

The result of the expression is
incompatible with the returnreturn
value declaration.

132 Incompatible initializerIncompatible initializer The result of the initializer
expression is incompatible with
the object to be initialized.

133 Constant value requiredConstant value required The expression in a casecase label,
#if#if, #elif#elif, bit-field declarator,
array declarator, or static
initializer was not constant.

134 Unmatching "struct" orUnmatching "struct" or
"union" arguments to '?'"union" arguments to '?'
operatoroperator

The second and third argument of
the ?? operator are different.

135 " pointer + pointer"" pointer + pointer"
operationoperation

Pointers may not be added.

136 Redeclaration errorRedeclaration error The current declaration is
inconsistent with earlier
declarations of the same object.

137 Reference to member ofReference to member of
undefined "struct" orundefined "struct" or
"union""union"

The only allowed reference to
undefined structstruct or unionunion
declarators is a pointer.

DIAGNOSTICS

 2-174

No Error message Suggestion

138 "- pointer" expression"- pointer" expression The - operator may be used on
pointers only if both operators are
pointers, that is, pointer -pointer -
pointerpointer. This error means that an
expression of the form non-non-
pointer - pointerpointer - pointer was found.

139 Too many "extern" symbolsToo many "extern" symbols
declared (max is 32767)declared (max is 32767)

Fatal. The compiler limit was
exceeded.

140 "void" pointer not allowed"void" pointer not allowed
in this contextin this context

A pointer expression such as an
indexing expression involved a
void pointer (element size
unknown).

141 #error 'any message'#error 'any message' Fatal. The pre-processor directive
#error#error was found, notifying that
something must be defined on the
command line in order to compile
this module.

142 "interrupt" function can"interrupt" function can
only be "void" and have noonly be "void" and have no
argumentsarguments

An interrupt function declaration
had a non-void result and/or
arguments, neither of which are
allowed.

143 Too large, negative orToo large, negative or
overlapping "interrupt"overlapping "interrupt"
[value] in name[value] in name

Check the [vector][vector] values of the
declared interrupt functions.

DIAGNOSTICS

 2-175

No Error message Suggestion

144 Bad context for storageBad context for storage
modifier (storage-class ormodifier (storage-class or
function)function)

The no_initno_init keyword can only be
used to declare variables with
static storage-class. That is,
no_initno_init cannot be used in
typedeftypedef statements or applied to
auto variables of functions. An
active #pragma#pragma memory=no_initmemory=no_init
can cause such errors when
function declarations are found.

145 Bad context for functionBad context for function
call modifiercall modifier

The keywords interruptinterrupt,
bankedbanked, non_bankednon_banked, or monitormonitor
can be applied only to function
declarations.

146 Unknown #pragma identifierUnknown #pragma identifier An unknown pragmapragma identifier
was found. This error will
terminate object code generation
only if the -g-g (enable type check)
compiler option is in use.

147 Extension keyword "name" isExtension keyword "name" is
already defined by useralready defined by user

Upon executing

#pragma#pragma languagelanguage=extendedextended

the compiler found that the named
identifier has the same name as an
extension keyword. This error is
only issued when compiler is
executing in ANSIANSI mode.

148 '=' expected'=' expected An sfrsfr-declared identifier must be
followed by =value=value.

149 Attempt to take address ofAttempt to take address of
"sfr" or "bit" variable"sfr" or "bit" variable

The && operator may not be applied
to variables declared as bitbit or as
sfrsfr.

DIAGNOSTICS

 2-176

No Error message Suggestion

150 Illegal range for "sfr"Illegal range for "sfr"
or "bit" addressor "bit" address

The address expression is not a
valid bitbit or sfrsfr address.

151 Too many functions definedToo many functions defined
in a single module.in a single module.

There may not be more than 256
functions in use in a module. Note
that there are no limits to the
number of declared functions.

152 '.' expected'.' expected The .. was missing from a bitbit
declaration.

153 Illegal context forIllegal context for
extended specifierextended specifier

See Diagnostics.

COMPILATION WARNING MESSAGES

No Warning message Suggestion

0 Macro 'name' redefinedMacro 'name' redefined A symbol defined with #define#define
was redeclared with a different
argument or formal list.

1 Macro formal parameterMacro formal parameter
'name' is never referenced'name' is never referenced

A #define#define formal parameter
never appeared in the argument
string.

2 Macro 'name' is alreadyMacro 'name' is already
#undef#undef

#undef#undef was applied to a symbol
that was not a macro.

3 Macro 'name' called withMacro 'name' called with
empty parameter(s)empty parameter(s)

A parameterized macro defined in
a #define#define statement was called
with a zero-length argument.

DIAGNOSTICS

 2-177

No Warning message Suggestion

4 Macro 'name' is calledMacro 'name' is called
recursively; not expandedrecursively; not expanded

A recursive macro call makes the
pre-processor stop further
expansion of that macro.

5 Undefined symbol 'name' inUndefined symbol 'name' in
#if or #elif; assumed zero#if or #elif; assumed zero

It is considered as bad
programming practice to assume
that non-macro symbols should be
treated as zeros in #if#if and #elif#elif
expressions. Use either:

#ifdef symbol#ifdef symbol

or

#if defined (symbol)#if defined (symbol)

6 Unknown escape sequenceUnknown escape sequence
('\c'); assumed 'c'('\c'); assumed 'c'

A backslash (\\) found in a
character constant or string literal
was followed by an unknown
escape character.

7 Nested comment found withoutNested comment found without
using the '-C' optionusing the '-C' option

The character sequence /*/* was
found within a comment, and
ignored.

8 Invalid type-specifier forInvalid type-specifier for
field; assumed "int"field; assumed "int"

In this implementation, bit-fields
may be specified only as intint or
unsignedunsigned intint.

9 Undeclared functionUndeclared function
parameter 'name'; assumedparameter 'name'; assumed
"int""int"

An undeclared identifier in the
header of a K&R function
definition is by default given the
type intint.

10 Dimension of array ignored;Dimension of array ignored;
array assumed pointerarray assumed pointer

An array with an explicit
dimension was specified as a
formal parameter, and the
compiler treated it as a pointer to
object.

DIAGNOSTICS

 2-178

No Warning message Suggestion

11 Storage class "static"Storage class "static"
ignored; 'name' declaredignored; 'name' declared
"extern""extern"

An object or function was first
declared as externextern (explicitly or
by default) and later declared as
staticstatic. The static declaration is
ignored.

12 Incompletely bracketedIncompletely bracketed
initializerinitializer

To avoid ambiguity, initializers
should either use only one level of
{}{} brackets or be completely
surrounded by {}{} brackets.

13 Unreferenced label 'name'Unreferenced label 'name' Label was defined but never
referenced.

14 Type specifier missing;Type specifier missing;
assumed "int"assumed "int"

No type specifier given in
declaration – assumed to be intint.

15 Wrong usage of stringWrong usage of string
operator ('#' or '##');operator ('#' or '##');
ignoredignored

This implementation restricts
usage of ## and #### operators to the
token-field of parameterized
macros.

In addition the ## operator must precede a formal parameter:

#define mac(p1) #p1 /* Becomes "p1" */#define mac(p1) #p1 /* Becomes "p1" */
#define mac(p1,p2) p1+p2##add_this /* Merged p2 */#define mac(p1,p2) p1+p2##add_this /* Merged p2 */

16 Non-void function: "return"Non-void function: "return"
with <expression>; expectedwith <expression>; expected

A non-void function definition
should exit with a defined return
value in all places.

17 Invalid storage class forInvalid storage class for
function; assumed to befunction; assumed to be
"extern""extern"

Invalid storage class for function –
ignored. Valid classes are externextern,
staticstatic, or typedeftypedef.

18 Redeclared parameter'sRedeclared parameter's
storage classstorage class

Storage class of a function formal
parameter was changed from
registerregister to autoauto or vice versa in
a subsequent
declaration/definition.

DIAGNOSTICS

 2-179

No Warning message Suggestion

19 Storage class "extern"Storage class "extern"
ignored; 'name' was firstignored; 'name' was first
declared as "static"declared as "static"

An identifier declared as staticstatic
was later explicitly or implicitly
declared as externextern. The externextern
declaration is ignored.

20 Unreachable statement(s)Unreachable statement(s) One or more statements were
preceded by an unconditional
jump or return such that the
statement or statements would
never be executed.

For example:

break;break;
i = 2; /* Never executed */i = 2; /* Never executed */

21 Unreachable statement(s) atUnreachable statement(s) at
unreferenced label 'name'unreferenced label 'name'

One or more labeled statements
were preceded by an unconditional
jump or return but the label was
never referenced, so the statement
or statements would never be
executed.

For example:

break;break;
here:here:
i = 2; /* Never executed */i = 2; /* Never executed */

22 Non-void function: explicitNon-void function: explicit
"return" <expression>;"return" <expression>;
expectedexpected

A non-void function generated an
implicit return.

This could be the result of an unexpected exit from a loop or switch.
Note that a switchswitch without defaultdefault is always considered by the
compiler to be ‘exitable’ regardless of any casecase constructs.

DIAGNOSTICS

 2-180

No Warning message Suggestion

23 Undeclared function 'name';Undeclared function 'name';
assumed "extern" "int"assumed "extern" "int"

A reference to an undeclared
function causes a default
declaration to be used. The
function is assumed to be of K&R
type, have externextern storage class,
and return intint.

24 Static memory optionStatic memory option
converts local "auto" orconverts local "auto" or
"register" to "static""register" to "static"

A command line option for static
memory allocation caused autoauto
and registerregister declarations to be
treated as staticstatic.

25 Inconsistent use of K&RInconsistent use of K&R
function - varying number offunction - varying number of
parametersparameters

A K&R function was called with a
varying number of parameters.

26 Inconsistent use of K&RInconsistent use of K&R
function - changing type offunction - changing type of
parameterparameter

A K&R function was called with
changing types of parameters.

For example:

myfuncmyfunc (34); /* int argument */(34); /* int argument */
myfunc(34.6); /* float argument */myfunc(34.6); /* float argument */

27 Size of "extern" objectSize of "extern" object
'name' is unknown'name' is unknown

extern arrays should be declared
with size.

28 Constant [index] outsideConstant [index] outside
array boundsarray bounds

There was a constant index
outside the declared array bounds.

29 Hexadecimal escape sequenceHexadecimal escape sequence
larger than "char"larger than "char"

The escape sequence is truncated
to fit into charchar.

DIAGNOSTICS

 2-181

No Warning message Suggestion

30 Attribute ignoredAttribute ignored Since constconst or volatilevolatile are
attributes of objects they are
ignored when given with a
structurestructure, unionunion, or
enumerationenumeration tag definition that
has no objects declared at the same
time. Also, functions are
considered as being unable to
return constconst or volatilevolatile.

For example:

const struct sconst struct s
 { {

}; /* no object declared, const ignored - warning*/}; /* no object declared, const ignored - warning*/
const int myfunc(void);const int myfunc(void);
/* function returning const int - warning *//* function returning const int - warning */
const int (*fp)(void); /* pointer to function returningconst int (*fp)(void); /* pointer to function returning
const int - warning*/const int - warning*/
int (*const fp)(void);int (*const fp)(void);
/* const pointer to function returning int - OK,/* const pointer to function returning int - OK,
no warning */no warning */

31 Incompatible parameters ofIncompatible parameters of
K&R functionsK&R functions

Pointers (possibly indirect) to
functions or K&R function
declarators have incompatible
parameter types.

The pointer was used in one of following contexts:

pointer - pointer,pointer - pointer,
expression ? ptr : ptr,expression ? ptr : ptr,
pointer relational_op pointerpointer relational_op pointer
pointer equality_op pointerpointer equality_op pointer
pointer = pointerpointer = pointer
formal parameter vs actual parameterformal parameter vs actual parameter

DIAGNOSTICS

 2-182

No Warning messages Suggestion

32 Incompatible numbers ofIncompatible numbers of
parameters of K&R functionsparameters of K&R functions

Pointers (possibly indirect) to
functions or K&R function
declarators have a different
number of parameters.

The pointer is directly used in one of following contexts:

pointer - pointerpointer - pointer
expression ? ptr : ptrexpression ? ptr : ptr
pointer relational_op pointerpointer relational_op pointer
pointer equality_op pointerpointer equality_op pointer
pointer = pointerpointer = pointer
formal parameter vs actual parameterformal parameter vs actual parameter

33 Local or formal 'name' wasLocal or formal 'name' was
never referencednever referenced

A formal parameter or local
variable object is unused in the
function definition.

34 Non-printable characterNon-printable character
'\xhh' found in literal or'\xhh' found in literal or
character constantcharacter constant

It is considered as bad
programming practice to use non-
printable characters in string
literals or character constants. Use
\0xhhh\0xhhh to get the same result.

35 Old-style (K&R) type ofOld-style (K&R) type of
function declaratorfunction declarator

An old style K&R function
declarator was found. This
warning is issued only if the -gA-gA
option is in use.

36 Floating point constant outFloating point constant out
of rangeof range

A floating-point value is too large
or too small to be represented by
the floating-point system of the
target.

37 Illegal float operation: Illegal float operation:
division by zero not alloweddivision by zero not allowed

During constant arithmetic a zero
divide was found.

 I

INDEX
#pragma (directive) 1-28, 1-79
#pragma directive summary 1-62
#pragma directives

bitfields=default 1-79
bitfields=reversed 1-79
codeseg 1-81
function=banked 1-81
function=default 1-82
function=interrupt 1-82
function=monitor 1-83
function=non-banked 1-84
language=default 1-84
language=extended 1-85
memory=constseg 1-85
memory=dataseg 1-86
memory=default 1-87
memory=near 1-87
memory=no_init 1-88
memory=saddr 1-89
memory=shortad 1-90
warnings=default 1-91
warnings=off 1-91
warnings=on 1-92

$ in identifiers 2-35
-A (command line option) 2-6
-a (command line option) 2-5
-b (command line option) 2-7
-C (command line option) 2-8
-c (command line option) 2-7
-d (command line option) 1-114
-D (command line option) 2-8

-d (command line option) 1-117
-e (command line option) 2-10
-F (command line option) 2-11
-f (command line option) 2-10
-G (command line option) 2-17
-g (command line option) 2-11
-H (command line option) 2-17
-I (command line option) 2-18
-i (command line option) 2-18
-K (command line option) 2-19
-L (command line option) 2-20
-l (command line option) 2-20
-m (command line option) 1-115
-mB 1-113
-mb 1-113
-mS 1-113
-ms 1-113
-O (command line option) 2-21
-o (command line option) 2-21
-P (command line option) 2-22
-p (command line option) 2-22
-q (command line option) 2-23
-R (command line option) 2-25
-r (command line option) 2-23
-rr (command line

option) 1-114, 1-118
-S (command line option) 2-26
-s (command line option) 2-25
-T (command line option) 2-27
-t (command line option) 2-26
-U (command line option) 2-27

INDEX

 II

-v (command line option) 1-116
-v0 1-113
-v1 1-113
-v2 1-113
-v3 1-113
-v4 1-113
-v5 1-113
-v6 1-113
-v7 1-113
-v8 1-113
-W (command

line option) 1-114, 1-117
-w (command line option) 2-28
-X (command line option) 2-29
-x (command line option) 2-29
-y (command line option) 2-30
-z (command line option) 2-31
__VER__ (macro) 2-33
_formatted_read (library function)

1-54, 2-141
_formatted_write (library

function) 1-53, 2-142
_medium_read
(library function) 1-54, 2-144
_medium_write
(library function) 1-53, 2-145
_small_write
library function) 1-53, 2-147
78000 specific command line

options
-d 1-117
-m 1-115
-rr 1-118
-v 1-116
-W 1-117

A
abort (library function) 2-47
abs (library function) 2-48
acos (library function) 2-49
ANSI definition 2-149

data types 2-151
function declarations 2-152
function definition
parameters 2-151
hexadecimal string
constants 2-152

asin (library function) 2-50
assembler

calling from C 1-98
files 1-10
interrupt functions 1-98

assembly language interface 1-93
assembly source file 1-19
assert (library function) 2-51
atan (library function) 2-52
atan2 (library function) 2-53
atof (library function) 2-54
atoi (library function) 2-55
atol (library function) 2-56

B
bank-switching 1-48
banked (extended keyword) 1-65
banked (pointer) 1-59
banked function 1-48
banked memory model 1-46

INDEX

 III

bit (extended keyword) 1-66
bitfields=default (#pragma

directive) 1-79
bitfields=reversed (#pragma

directive) 1-79
BITVARS (segment) 1-101

C
C include files 1-10
C-SPY

files 1-10
using 1-26

calloc (library function) 1-55, 2-57
CCSTR (segment) 1-102
CDATA0 (segment) 1-102
CDATA1 (segment) 1-103
ceil (library function) 2-58
CODE (segment) 1-103
code pointers 1-59
codeseg (#pragma directive) 1-81
command file 1-20
command line options

-a 2-5
-A 2-6
-b 2-7
-c 2-7
-C 2-8
-D 2-8
-e 2-10
-f 2-10
-F 2-11
-g 2-11
-G 2-17
-H 2-17

-i 2-18
-I 2-18
-K 2-19
-l2-20
-L 2-20
-m 1-48
-o 2-21
-O 2-21
-p 2-22
-P 2-22
-q 2-23
-r 2-23
-R 2-25
-s 2-25
-S 2-26
-t 2-26
-T 2-27
-U 2-27
-w 2-28
-x 2-29
-X 2-29
-y 2-30
-z 2-31
78000 specific 1-115

command line options
summary 1-113, 2-1
compiler version 2-33
compiling a program 1-25
configuration 1-43
const (keyword) 2-149
CONST (segment) 1-104
cos (library function) 2-59
cosh (library function) 2-60
CSTACK (segment) 1-104
cstartup routine 1-55
CSTR (segment) 1-105
ctype.h (header file) 2-38

INDEX

 IV

D
data representation 1-57
data types 2-151
DATA0 (segment) 1-105
DATA1 (segment) 1-106
development cycle 1-22
development system structure 1-3
diagnostics 2-155

78000 specific 1-119, 1-122
error messages 2-157
warning messages 2-176

directives
include 1-18
#pragma 1-28, 1-79

directories
etc 1-11
exe 1-11
icc78000 1-12
inc 1-13
lib 1-15

disable_interrupt (intrinsic
function) 1-63

div (library function) 2-61

E
ECSTR (segment) 1-106
efficient coding 1-60
enable_interrupt (intrinsic

function) 1-63
entry (keyword) 2-149
enum (keyword) 1-58, 2-151
environment variables,

XLINK_DFLTDIR 1-10
errno.h (header file) 2-44

error messages 2-157
etc directory 1-11
exe directory 1-11
executable files 1-9, 1-11
exit (library function) 2-62
exp (library function) 2-63
extended keyword summary 1-61
extended keywords

banked 1-65
bit 1-66
interrupt 1-67
monitor 1-69
near 1-70
no_init 1-72
non_banked 1-71
saddr 1-73
sfr 1-74
sfrp 1-75
shortad 1-73
using 1-76

extensions 1-15, 1-61

F
fabs (library function) 2-64
file types 1-15
files

assembler 1-10
C include 1-10
C-SPY 1-10
executable 1-9, 1-11
include 1-13
library 1-10, 1-15
miscellaneous 1-9, 1-11
source 1-9, 1-12

files installed 1-8
float.h (header file) 2-44

INDEX

 V

floating-point format 1-59
floor (library function) 2-65
fmod (library function) 2-66
free (library function) 2-67
frexp (library function) 2-68
Function parameter passing 1-94
Function return value 1-96
function=banked (#pragma

directive) 1-81
function=default (#pragma

directive) 1-82
function=interrupt (#pragma

directive) 1-82
function=monitor (#pragma

directive) 1-83
function=non-banked (#pragma

directive) 1-84

G
getchar (library function)1-52, 2-69
gets (library function) 2-70

H
header files 2-38

ctype.h 2-38
errno.h 2-44
float.h 2-44
icclbutl.h 2-39
limits.h 2-44
math.h 2-39
setjmp.h 2-41
stdarg.h 2-41
stddef.h 2-44
stdio.h 2-41

stdlib.h 2-41
string.h 2-43

heap size 1-55
hexadecimal string

constants 2-152

I
icc78000 command 1-17
icc78000 directory 1-12
icclbutl.h (header file) 2-39
IDATA0 (segment) 1-107
IDATA1 (segment) 1-107
inc directory 1-13
include (directive) 1-18
include files 1-13, 1-18
initialization 1-55
input and output 1-52
installation 1-5

installed files 1-8
MS-DOS 1-5
UNIX 1-8
Windows 1-8

interrupt (extended keyword) 1-67
interrupt functions 1-98
interrupt handling 1-32
interrupt vectors 1-99
interrupts 1-49, 1-50
intrinsic functions 1-63

disable_interrupt 1-63
enable_interrupt 1-63

introduction 1-1
INTVEC (segment) 1-108
isalnum (library function) 2-71
isalpha (library function) 2-72
iscntrl (library function) 2-73
isdigit (library function) 2-74

INDEX

 VI

isgraph (library function) 2-75
islower (library function) 2-76
isprint (library function) 2-77
ispunct (library function) 2-78
isspace (library function) 2-79
isupper (library function) 2-80
isxdigit (library function) 2-81

K
Kernighan & Richie

definition 2-149
key features 1-1
keywords

const 2-149
entry 2-149
enum 1-58, 2-151
signed 2-150
struct 2-153
union 2-153
void 2-150
volatile 2-150

L
l07.s26 1-49
labs (library function) 2-82
language extensions 1-61, 2-33
language=default (#pragma

directive) 1-84
language=extended (#pragma

directive) 1-85
ldexp (library function) 2-83
ldiv (library function) 2-84
lib directory 1-15

library definitions summary 2-38
library files 1-10, 1-15
library functions

_formatted_read 2-141
_formatted_write 2-142
_medium_read 1-54, 2-144
_medium_write 1-53, 2-145
_small_write 1-53, 2-147
abort 2-47
abs 2-48
acos 2-49
asin 2-50
assert 2-51
atan 2-52
atan2 2-53
atof 2-54
atoi 2-55
atol 2-56
calloc 1-55, 2-57
ceil 2-58
cos 2-59
cosh 2-60
div 2-61
exit 2-62
exp 2-63
fabs 2-64
floor 2-65
fmod 2-66
free 2-67
frexp 2-68
getchar 2-69
gets 2-70
isalnum 2-71
isalpha 2-72
iscntrl 2-73

INDEX

 VII

isdigit 2-74
isgraph 2-75
islower 2-76
isprint 2-77
ispunct 2-78
isspace 2-79
isupper 2-80
isxdigit 2-81
labs 2-82
ldexp 2-83
ldiv 2-84
log 2-85
log10 2-86
longjmp 2-87
malloc 1-55, 2-88
memchr 2-89
memcmp 2-90
memcpy 2-91
memmove 2-92
memset 2-93
modf 2-94
pow 2-95
printf 2-96
putchar 2-101
puts 2-102
rand 2-103
realloc 2-104
scanf 2-105
setjmp 2-109
sin 2-110
sinh 2-111
sprintf 2-112
sqrt 2-113
srand 2-114
sscanf 2-115

strcat 2-116
strchr 2-117
strcmp 2-118
strcoll 2-119
strcpy 2-120
strcspn 2-121
strlen 2-122
strncat 2-123
strncmp 2-124
strncpy 2-125
strpbrk 2-126
strrchr 2-127
strspn 2-128
strstr 2-129
strtod 2-130
strtol 2-131
strtoul 2-132
tan 2-133
tanh 2-134
tolower 2-135
toupper 2-136
va_arg 2-137
va_end 2-138
va_list 2-139
va_start 2-140

library object files 2-37
limits.h (header file) 2-44
linker 1-4
linker command file 1-44
linking a program 1-26
list file 1-19
log (library function) 2-85
log10 (library function) 2-86
longjmp (library function) 2-87

INDEX

 VIII

M
malloc (library

function) 1-55, 2-88
math.h (header file) 2-39
memchr (library function) 2-89
memcmp (library function) 2-90
memcpy (library function) 2-91
memmove (library function) 2-92
memory model 1-44, 1-115
memory=constseg (#pragma

directive) 1-85
memory=dataseg (#pragma

directive) 1-86
memory=default (#pragma

directive) 1-87
memory=near (#pragma

directive) 1-87
memory=no_init (#pragma

directive) 1-88
memory=saddr (#pragma

directive) 1-89
memory=shortad (#pragma

directive) 1-90
memset (library function) 2-93
miscellaneous files 1-9, 1-11
modf (library function) 2-94
monitor (extended keyword) 1-69

N
near (extended keyword) 1-70
no_init (extended keyword) 1-72
NO_INIT (segment) 1-108
non-banked (pointer) 1-59
non-banked function 1-50
non-volatile RAM 1-50
non_banked (extended

keyword) 1-71

O
object file 1-19

P
Parameter passing 1-94
pointers

banked 1-59
non-banked 1-59

pow (library function) 2-95
printf (library function) 1-53, 2-96
processor type 1-116
putchar (library
function) 1-52, 2-101
puts (library function) 2-102

INDEX

 IX

R
rand (library function) 2-103
RCODE (segment) 1-109
read-me files 1-8
realloc (library function) 2-104
recommendations 1-60
register area size 1-117
register optimization 1-118
Registers 1-97
Return value 1-96
run-time library 1-44
running a program 1-26
running the C compiler 1-17

S
saddr (extended keyword) 1-73
scanf (library function)1-54, 2-105
Segment 1-97
segments 1-101

BITVARS 1-101
CCSTR 1-102
CDATA0 1-102
CDATA1 1-103
CODE 1-49, 1-103
CONST 1-104
CSTACK 1-104
CSTR 1-105
DATA0 1-105
DATA1 1-106
ECSTR 1-106
IDATA0 1-107
IDATA1 1-107
INTVEC 1-108
NO_INIT 1-108

RCODE 1-109
SHORTAD 1-109
TEMP 1-110
UDATA0 1-110
UDATA1 1-111
WCSTR 1-111
WRKSEG 1-112
ZVECT 1-112

setjmp (library function) 2-109
setjmp.h (header file) 2-41
sfr (extended keyword) 1-74
sfrp (extended keyword) 1-75
shared variable objects 2-153
shell for interfacing
to assembler 1-93
shortad (extended keyword) 1-73
SHORTAD (segment) 1-109
signed (keyword) 2-150
sin (library function) 2-110
sinh (library function) 2-111
sizeof (operator) 2-35
small memory model 1-46
source files 1-9, 1-12, 1-18

path 1-19
sprintf (library

function) 1-53, 2-112
sqrt (library function) 2-113
srand (library function) 2-114
sscanf (library

function) 1-54, 2-115
stack size 1-51
stdarg.h (header file) 2-41
stddef.h (header file) 2-44
stdio.h (header file) 2-41
stdlib.h (header file) 2-41
strcat (library function) 2-116
strchr (library function) 2-117
strcmp (library function) 2-118

INDEX

 X

strcoll (library function) 2-119
strcpy (library function) 2-120
strcspn (library function) 2-121
string.h (header file) 2-43
strlen (library function) 2-122
strncat (library function) 2-123
strncmp (library function) 2-124
strncpy (library function) 2-125
strpbrk (library function) 2-126
strrchr (library function) 2-127
strspn (library function) 2-128
strstr (library function) 2-129
strtod (library function) 2-130
strtol (library function) 2-131
strtoul (library function) 2-132
struct (keyword) 2-153

T
tan (library function) 2-133
tanh (library function) 2-134
target identification 2-33
TEMP (segment) 1-110
text editor 1-3
tolower (library function) 2-135
toupper (library function) 2-136
tutorial 1-21

compiling a program 1-25
configuring to suit the
target program 1-23
creating a project directory 1-23
interrupt handler 1-32
linking a program 1-26

running a program 1-26
selecting a library file 1-24
using #pragma directive 1-28
using additional memory 1-38

U
UDATA0 (segment) 1-110
UDATA1 (segment) 1-111
union (keyword) 2-153
using (extended keyword) 1-76

V
va_arg (library function) 2-137
va_end (library function) 2-138
va_list (library function) 2-139
va_start (library function) 2-140
void (keyword) 2-150
volatile (keyword) 2-150

W
warning messages 2-176
warnings=default (#pragma

directive) 1-91
warnings=off (#pragma directive)1-91
warnings=on (#pragma
directive) 1-92
WCSTR (segment) 1-111
WRKSEG (segment) 1-112

INDEX

 XI

X
XLINK 1-122
XLINK Linker 1-4
XLINK option

-b 1-49
XLINK_DFLTDIR (environment

variable) 1-10

Z
ZVECT (segment) 1-112

INDEX

 XII

	Cover
	Introduction
	Key features
	Development system structure

	Getting started
	Installation
	Installed files

	Using the C compiler
	Running the C compiler
	Files

	Tutorial
	Typical development cycle
	Creating a program
	Extending the program
	Adding an interrupt handler
	Using additional memory
	Compiling and linking the C-SPY tutorial
	Compiling and linking the SD78K/0 tutorial

	Configuration
	Introduction
	Run-time library
	Linker command file
	Memory model
	Stack size
	Input and output
	Heap size
	Initialization

	Data representation
	Language extensions
	Extended keywords summary
	#pragma directive summary
	Intrinsic functions

	Extended keyword reference
	#pragma directive reference
	Assembly language interface
	Creating a shell
	Calling convention
	Function Return Value
	Registers
	Segments
	Calling assembly routines from C

	Segment reference
	78000 Specific Command line options summary
	78000 Specific command line options
	78000 Specific Diagnostics
	General command line options summary
	General command line options
	General C language extensions
	General C library definitions
	C library functions reference
	K&R and Ansi C language definitions
	Diagnostics
	Compilation error messages
	Compilation warning messages

	Index I

