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Abstract 
 
The thesis develops a graphic interface for a dynamic system simulation implemented in 

the SIMULINK environment. The dynamic system is a B747-200 modeled as a rigid body with 
six degrees of freedom. The equations and database of aerodynamic coefficients over the 
complete flight envelope were provided by NASA’s Langley Research Center for the research 
project “Aircraft Safety: Managing Control Upsets.” The purpose of the interface is to allow the 
user to “fly the plane from the keyboard;” i.e., interact with the simulation by manipulating, from 
the keyboard, the main control surfaces and  engine thrust and observing the performance of the 
plane in a manner similar to the way a pilot sees it from the cockpit.  

 
The Graphical Pilot Interface Simulator (GPIS) interface extends the capability of the 

current simulator [2] and allows the collection of data under conditions that were not readily 
available before. Moreover, it permits the derivation of linear models around trajectories that are 
not necessarily steady state conditions, or trimming points.  

 
Even though the work is focused to a particular model, the interface techniques 

developed here are flexible and can be applied to other dynamic simulations. The value of 
visualization to help communicate results and get better understanding of a model’s behavior is 
greatly stressed. 

 viii



Chapter 1 
 

Introduction 
  

“Now we have already discussed imagination in the treatise On the Soul and we 
concluded there that thought is impossible without an image.” – Aristotle 

 
As Aristotle noted many hundreds of years ago, visualization is the foundation for human 

understanding [25]. With the advances in computer technology, scientific visualization has 
experienced tremendous growth, especially in the last couple of years. Scientists and engineers 
have developed computer programs and application software that simulate and model systems 
being studied. Through the use of graphics in simulation, more people, including the scientist and 
the engineer himself, can gain better understanding of the systems being modeled.  

 
For this project, we have a fairly detailed simulation of a B747-200 that can we execute 

but we cannot manipulate interactively. The model of the system, provided by NASA Langley 
Research Center [40], contains features that lend themselves to graphic definition. For example, 
the position of an aircraft control surface is more easily visualized than numerical examination of 
it. This example shows how a graphic user interface (GUI) can facilitate model understanding. 
Additionally, constructing a graphic model provides powerful feedback to the developer 
indicating him if the model is being built correctly.  
 
 
1.1 Overview 
 
 From the work of those in Delft University of Technology [1], to the efforts done by 
Andres Marcos at the University of Minnesota [2], we plan to take their work a step further to 
produce more realistic results for the engineering community. The research goal is to expand our 
test bed to more realistic, life-like inputs by analyzing flight in circumstances other than trimmed 
conditions. In other words, we are having the “plane flying on manual”. We aim to enhance our 
research and test concepts in situations that are not possible now. 
 

The two main functional goals of this research project are interactive pilot simulation and 
animation generation. Interactive pilot simulation itself has two components: graphical user 
interface (GUI) design and code development. We present a realistic model for the flight 
simulation of a B747-200 using these processes. We take advantage of MATLAB's GUI-building 
and model-simulating environments to implement this interactive simulation. We also describe 
techniques that may allow this project to be extended to other fields where visualization is 
beneficial. 
 
 
1.1.1 Outline 
 
 This document is organized as follows: This chapter presents some background 
information necessary to understanding simulation and visualization and their role in this project. 
Additionally, we present a brief description on aircraft safety and the motivations it contributes to 
this research. Chapter 2 illustrates concepts in aerodynamics in order to give the user a working 
understanding of some of the technical vocabulary used in this field. 
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Chapter 3 summarizes GUI building procedures followed to develop the simulator tool. 
Many items in MATLAB that enhanced our capability to produce simulations, animations, and 
visualization items are introduced in Chapter 4. 
 
 Finally, Chapter 5 concludes and describes directions for future work. As an aid to the 
reader, we included an Appendix with user’s manual, GUI tip-building techniques, main 
functions source code, B747 airplane information, and other useful documentation.  
 
 
1.2 Simulation and Visualization 
 
 Much of the research efforts conducted in this project creates an overlap of different 
fields, including electrical engineering and computational science. The latter, also called scientific 
computing and not to be confused with computer science, is the use of computers to perform 
research in other fields [23].  Computational science, as described by Wolfram and Schmidhuber 
[26], is a new way of contributing to experimentation and theories. 
 
 A major focus of computational science is the knowledge and techniques required to 
perform computer simulation [22]. These simulations often model real-world changing conditions 
(e.g. weather, flight envelope of a plane, etc.) that greatly contribute to an engineer’s research 
efforts. For this reason, in the next section we plan to briefly point out where simulation stands 
today, importance in research, and enhancements that contribute to our understanding (e.g. 
animation). 
 
 
1.2.1 Simulation 
 

According to [18], a simulation is an imitation of some real device. Traditionally, a 
simulation referred to a group of mathematical equations used to describe the behavior of the 
system in question. Today, simulation is still these mathematical equations but this time always 
associated with a computer system. 
  

The type of simulation we are interested in is interactive simulations. Interactive 
simulations, also called human in the loop simulations, are a special kind of physical simulation 
that includes humans. A good example of this kind of simulation is the model used in a flight 
simulator. 

 
Some interesting items to note about simulation are the advantages it offers to the 

researcher. A few of these instances we may list are: 
 

• A simulation model allows for a system to be assessed in situations that cannot be analyzed 
directly with other means. For example, abnormal and emergency situations come to mind. 

• Opportunity to evaluate, control, and design strategies without committing expensive, time 
consuming resources necessary to implement the alternative strategies in the field. [20] 

 
 
 The focus of this project is on flight simulators. Flight simulation is a technology that has 
advanced quickly in part due to the state-of-the-art aviation engineering and stringent 
requirements to ensure flight safety. Moreover, flight simulation has been gathering momentum 
lately, in part, due to the rapid progress in the computational science area, as noted previously. 
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For example, we may talk about SIMULINK, a powerful simulation package developed for 
MATLAB by the MathWorks. It easily turns a computer into a lab for modeling and analyzing 
systems that simply wouldn't be possible or practical otherwise. 
 
 
1.2.2 Visualization and Animation 
 
 Visualization has become a critical component of simulation technology. Today we 
cannot imagine doing a simulation without some form of visualization to help communicate 
results and receive better understanding of a model’s behavior. According to [25], visualization is 
the key to understanding. This is largely because of the way our senses work; we can process 
much more information from what we see. 
 
 An integral part of providing a visual object for display is the use of animations. They 
can be classified as follows: 
 
 1. Concurrent animation: this refers to animations that occur while the simulation is 
running. Concurrent animation is one of the goals of our research scope. 
 
 2. Post-processed animation: comprises animations that are viewed after the simulation 
is executed. The current B747-200 simulator developed by [2] allows for this kind of simulation. 
Use of this feature has had many limitations. This detail has also been a contributing factor for 
encouraging the research project at hand.  
 
 Animations also contribute to the development of simulators. Some of the areas worth 
noting where simulation takes advantage of animation [24] are: 
 

• Verification, validation, and credibility: an animation provides feedback to the 
developer of the simulation process, since it provides a visual trace of events as they 
occur. It also gives the model credibility for what it is trying to replicate. 

 
• Understanding of results: depending on the complexity of the problem, creating a 

model and analyzing its output are not easily understood. Animation can solve this issue 
by providing insight and understanding on how the elements of a dynamic system, for 
example, affect the end result. 

 
• Communication of results: many times we run into the problem of explaining our 

model simulation and results, especially to non-technical individuals. An animation 
provides a means to seal this “communication gap.” 

 
Finally, we need to point out that in order to have good animations we need good graphics. 

The key elements for good graphics include: interactivity, realism, performance, flexibility, and 
ease of use. As we move further into the document, we will examine these elements and see how 
we have considered these points. 
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1.2.3 Reasons for a GUI 
 
 When we think of MATLAB, we think of a command-line-driven operating environment. 
However, MathWorks has provided MATLAB users with a set of “event driven” components (i.e. 
uicontrols, uimenus) that can be easily arranged into a graphical user interface (GUI). As 
discussed in many sources, including [3], [33], [34], the fundamental goal of a GUI is being a 
useful and reliable tool for accomplishing a larger task. A GUI is made up of two major 
components: the GUI itself and the user [34]. The latter becomes a very important contributing 
factor in the design of a GUI. We must keep in mind the user’s knowledge and the information he 
will be interfacing with. For our project, we expect a user with basic MATLAB knowledge who 
can point and click and that has elemental knowledge about airplanes and their parts. 
 

In MATLAB, a graphical user interface (GUI) can be built using combinations of any 
one of the following components: buttons, text fields, sliders, or menus. As we can see, these are 
components we use in everyday software packages. GUIs provide a very obvious advantage to 
the user. They enable the user to operate the application without knowing the commands that 
would be required by a command line interface [3]. For this reason, applications that provide 
GUIs are easier to learn and use than those that are run from the command line. 
 
 GUIs not only provide an advantage to the user, but also allow the developers themselves 
to share some of the assets. GUIs offer an environment that handles the direct interaction with the 
computer, freeing the developer from worrying about hardware details (i.e. details of screen 
display) and to concentrate on the application itself. It also provides programmers standard 
controlling mechanisms for frequently repeated tasks such as striking an arrow key of the 
keyboard. Another benefit is that applications written for a GUI are device-independent [33]. For 
example, the GUI will work with any monitor or keyboard without modification to the 
application.  
 
 
1.3 Aircraft Safety 
 
 As stated in [27], “It is not that NASA wants to make pilots obsolete; rather, the agency 
is seeking to save lives.” Flight safety is a major concern while trying to achieve this objective. 
Lately, safety has taken a major leap and a very influential role in the development and 
enhancement of new concepts. It is to such extent that many “standards” have been developed 
with safety being the key player.  
 
 Focusing on our current task, safety is of utmost importance when it comes to air travel. 
For instance, the Mission, Vision, Values section of the FAA (Federal Aviation Administration) 
website states: “OUR MISSION: To provide the safest, most efficient aerospace system in the 
world. OUR VISION: To improve continuously the safety and efficiency of aviation, while being 
responsive to our customers and accountable to the public.” [11] It is interesting to note the 
repeated references to the word ‘safety’.  
 
 At the core of the aviation transportation system is the jetliner itself. It has been 
engineered and built to move passengers and cargo quickly, efficiently and, most importantly, 
safely. Of course, things do not always go as planned all the time and accidents happen. 
Accidents can be classified into many categories, and the groupings where most accidents occur 
fall under the Loss of Control (LOC) while in flight category [10]. As a NASA (National 
Aeronautics and Space Administration) initiative, the Single Aircraft Accident Prevention 
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(SAAP) Project was developed in order to study, test, and advance airborne technologies intended 
to provide recovery from vehicle system failures and loss of aircraft control (LOC). [6] 
 
 The SAAP project intends to carry out its studies through in-laboratory demonstrations, 
simulations, and development of flight test environments of complex and critical flight 
components of commercial transport aircraft. At this point in the mission, their immediate goal is 
to develop simulators to test concepts and theories for automatic recovery from flight control 
upsets caused by weather, improper pilot inputs, or control system failures. [6] The tool we will 
expand on in the present document addresses this stage of the assignment. 
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Chapter 2 
 
Concepts of Aerodynamics 
 
 Since the birth of the airplane, much effort has been made to make air travel an everyday 
event. Flight safety is an essential part of allowing airplane travel to be commonplace. Flight 
safety has also caused the development of flight simulation models to be a very active research 
area. We continue this project with a survey of present motivational concerns on aircraft safety; 
brief introduction to aerodynamic principles to prepare user for increased understanding of 
interface components; and overview of the model provided by [40] to carry out research.  
 
 
2.1 Forces on an Airplane 
 
 When we study an aircraft, it is necessary to understand the aerodynamic forces that act 
on an airplane during flight. There are four basic forces considered to act on an aircraft during 
any maneuver: 
 

 
Figure 2.1: Basic forces that act on an airplane. [12] 

 
1. Weight: Weight is a force that is always directed toward the center of the earth. It is 

caused by the force of gravity that Earth exerts on all objects. The magnitude of the weight is 
dependent on the mass of all the airplane parts and its contents. The weight is distributed 
throughout the airplane but said to be modeled at the center of gravity. As we shall see later in the 
report, this is a parameter we can manipulate in the model. 
 

2. Lift: Lift is the opposing force that overcomes weight. It is generated by the motion of 
the airplane’s wings through the air. The actual magnitude of lift is dependent on several factors, 
such as shape, area, size, and airflow velocity of the wings. Similarly to weight, lift acts on a 
single point called the center of pressure. The center of pressure is almost like the center of 
gravity, but uses the pressure distribution around the body instead of the weight distribution. 
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3. Drag: Drag is a force generated as the airplane moves through the air. It is the force 
that resists the motion of the aircraft through air. Drag is directed along and opposed to the flight 
direction. Drag is also dependent on many factors (i.e. shape of the aircraft, the "stickiness" of the 
air, velocity of the plane). And like lift, drag acts through the aircraft center of pressure.  

 
4. Thrust: Thrust is a force meant to overcome drag. It is generated by an airplane's 

propulsion system. As one might expect, the magnitude of thrust depends on specs like type of 
engine, number of engines, throttle setting, just to mention a few. This is also another item of our 
simulator which the user can manipulate.  
 
 
 The motion of the airplane through the air depends on the relative magnitude and 
direction of the four forces previously studied. Depicting the obvious scenarios, if the forces are 
balanced, the aircraft cruises at constant velocity. On the other hand, if the forces are unbalanced, 
the aircraft accelerates in the direction of the largest force. This last scenario is what allows for a 
plane to climb, descend, and turn. 
 
 
2.2 Aircraft Controls 
  
 The primary flight controls of an aircraft are the rudder, elevator, and ailerons [9]. In 
addition, throttle control also greatly affects how the previously mentioned control surfaces act. 
As a result, throttle settings must be taken into account for our breakdown. For example, in a turn 
scenario, a low power setting will require a greater deflection of control surface (i.e. aileron and 
rudder) in order to achieve a turn with bank angle of same magnitude.  
 
 An airplane is a vehicle that travels in three-dimensional space. Consequently, we have 
three axes about which an aircraft may rotate. Rotation about these axes allows the aircraft to be 
placed in any flight condition. Understanding them and how the control surfaces are affected by 
them will increase our understanding greatly. Resorting to [8], we can list them as follows: 
 

1. Lateral/pitch axis: This axis may be visualized as traversing the airplane wings from 
left to right. Rotation about this axis is called pitch and it is controlled by the elevator. The 
equivalent pilot command is the forward/backward motion of the column. 
 

2. Longitudinal/roll axis: This axis may be visualized as traversing the aircraft from 
front to back. Rotation about this axis is called roll and it is controlled by the ailerons. Pilot 
control equivalent is the left/right motion of the wheel. 
 

3. Vertical/yaw axis: This axis may be visualized as traversing vertically through the 
intersection of the lateral and longitudinal axes. Rotation about this axis is called yaw and it is 
controlled by the rudder. Pushing left or right feet pedals is the corresponding pilot input. 
 
As mentioned in the introduction, the research plan includes the development of a GUI that 
manipulates the main pilot control inputs (Figure E.1). As we have seen, they all play a role in 
controlling the aircraft in roll, pitch, and yaw [29]. 
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Figure 2.2 Aircraft Rotations: Body Axes [29] 
 
 
2.3 Basic Aerodynamics and Trimmed Flight  
 

Flying encompasses two major problems: overcoming the weight of an object and 
controlling the object in flight. Both of these problems are related to the object's weight and the 
location of the center of gravity. It is important to clarify the concept of center of gravity because 
it permits the description of the motion of any rigid object through space in terms of rotations and 
translations from one place to another. And, interestingly enough, the center of gravity is where 
rotation occurs, if it is free to rotate.  

 
In flight, airplanes rotate on one of their axes around their centers of gravity. But when 

the aircraft is not maneuvering, we want the rotation about the center of gravity to be zero. When 
there is no rotation about the center of gravity the aircraft is said to be trimmed. It is worth noting, 
in a real world situation, pilots must constantly adjust the control surfaces to keep the plane 
balanced (trimmed). Therefore, trimmed flight is actually a physical approximation to zero 
rotation, which is virtually impossible to achieve. More on rotation will be elaborated in this 
thesis project in the animations chapter. 
 
 
2.4 The Test Aircraft 
 
 For this study, we will be using a NASA-provided SIMULINK model of a Boeing 747 
series 100/200. This aircraft is a wide body airplane with four wing mounted engines and is 
designed for long range operation at high payloads. The Boeing 747 offers itself as a good 
benchmark aircraft for any commercial airplane flying today because of all its excess 
components. Some of these components include: leading and trailing edge flaps, spoilers, a 
variety of control surfaces, four fan engines [28]. To represent another aircraft, we could simply 
ignore some components. (This will be for future work and testing.) 
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Figure 2.3: Picture of test aircraft, Boeing 747, which will be used in this project. 

 
 The B747-100/200 has a set of aerodynamic coefficients associated to it. They are 
dimensionless data that is obtained through intensive wind-tunnel, simulation, and flight testing. 
Aerodynamic coefficients are important to point out because they are “the personal signature of a 
specific aircraft.” [28] As we will note later, they are responsible for allowing a mathematical 
model of the aircraft to be produced. 
 
 
2.5 The SIMULINK Model 
 

MATLAB is a high-level computer language that comes with many built-in packages and 
toolboxes that allow data to be analyzed and visualized. One such package is SIMULINK. As 
described by the MathWorks marketing department, SIMULINK is a software package for 
modeling, simulating, and analyzing dynamic systems (i.e. systems whose outputs change over 
time). SIMULINK can be used to explore the behavior of a wide range of real-world dynamic 
systems, including aerodynamic systems, wind and turbulence models, and many other electrical, 
mechanical, and thermodynamic systems.  
 

For modeling, SIMULINK provides a GUI for building models as block diagrams, using 
click-and-drag mouse operations. The process for developing these models becomes a two step 
process. First, the interface allows the user to "draw" models just as one would with pencil and 
paper as depicted in regular controls textbooks. The second and last step consists in programming 
SIMULINK to simulate the system by specifying a start and stop time and allowing it to run. [31] 
 
 Focusing back on our research objective, SIMULINK is responsible for the development 
of our 747-100/200 model. The representation of the dynamics of the aircraft is possible by the 
use of nonlinear, rigid body equations explained in [28]. Developed by Delft University of 
Technology and enhanced by the flight control group at the University of Minnesota, the 
FTLAB747 model is a highly adaptive tool that may be adjusted to our specific testing objectives. 
FTLAB747 includes a predefined database of aerodynamic coefficients particular to our aircraft. 
It is the scope of this paper to only be concerned with an interface that is capable of running such 
aforementioned model. Please refer to Section 3.10 to get a visual idea of the SIMULINK 
environment. 
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Chapter 3 
 
MATLAB GUIs 
 

This section provides a brief overview of the guiding principles used to design the 
graphical user interface (GUI) for our B747-100/200 model. We will also explore the many 
components and capabilities MATLAB has to offer when it comes to GUI-building. This section 
can be used as a guideline for other simulation projects. 
 
 
3.1 Design Principles 
 
 Many books and other sources speak of common guideline principles on creating a GUI 
[3], [33], [34]. For us, the ones that stand out the most are: simplicity, consistency, familiarity, 
and immediacy and continuity. 
 

• Simplicity: Simplicity in the design of a GUI makes it look clean and give it a sense of 
unity. The interaction between the user and the GUI should be as simplified as possible. 
For example, allowing a user various options to execute input in the way he feels more 
comfortable (i.e. keyboard, “touching” the graphic, typing). In addition, simplicity is key 
in making it attractive to the user and future programmers. The latter will allow others 
after to study, analyze, and improve the work done here.    

 
• Consistency: When coding the GUI, the way things are done should remain fairly 

constant. This will allow for compatibility and ease of interfacing our scheme with other 
works we have done or related. For example, always placing GUI menus on top, or 
writing functions following a similar programming style. 

 
• Familiarity: Every time we use new software, it always involves some kind of learning 

curve. This process can be facilitated for the user by implementing features (e.g. a menu) 
the individual is already familiar with. 

 
• Immediacy and Continuity: In the case when we are building a GUI where dynamic 

feedback and visualization are required, the user expects immediacy and continuity. No 
gaps that can be caught by our eyes should be seen. Ensuring these attributes can help 
achieve a high degree of interaction and better understanding of a process being analyzed 
in the GUI. 

 
 
3.2 Design Process 
 
 Next, we move on to discuss the design process followed in the creation of our GUI. 
Ideally, it would be great to think about the creation of a GUI as a two step process: design phase 
and implementation phase. In reality, this progression does not happen as clear cut as stated; 
sometimes one moves forward and then backwards to get the task done.  
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In this design process, a set of requirements was devised in order to figure out what the 
GUI needed based upon what we intended for it to do. Experiences lived during the project 
implementation involved learning the methods of completing tasks in MATLAB (e.g. recognizing 
which key was pressed) prior to actual GUI implementation. Once equipped with the proper 
knowledge, we completed the first realizations of our GUI, performed tests, and advanced. An 
illustration found on the web clearly summarizes very well the process used to develop the GPIS 
GUI. 

 
Figure 3.1: GUI design process [33] 

 
 
3.3 Graphic Object Hierarchy 
 
 MATLAB has a graphic system that displays data through means of graphic objects. 
Each graphic object has an identifier called a handle which is used to manipulate the properties 
associated to it [3]. This graphic system is based on a very simple and straightforward parent-
child relationship of objects which, in spite of its simplicity, offers versatility and efficiency. For 
example, if we select multiple components and try to modify some of their properties, this bulk 
edit action is only valid if they have the same parent. The parent-child hierarchy we are referring 
to is depicted as follows: 
 
 

 
Figure 3.2:  Graphic object hierarchy built into the MATLAB programming environment [4] 
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The hierarchy depicted previously is mainly based on the interdependence of the various graphic 
objects. For example, to draw a plot we need axes, which in turn need a figure object.  The figure 
object is the window in which all other graphic objects are built on; hence it is always the parent. 
For a depiction of these relationships, they can easily be viewed by using GUIDE’s Object 
Browser, described in a coming section. 
 
 
3.4 UI Control Elements 
 
 A user interface (UI) control element, also known as uicontrol, is a component that 
performs an action when acted on. The uicontrols that we will be using and the general action 
they can perform are as follows: 
 

Table 3.1: UI control elements [3] 
UI 

Control: Description: Use in GUI: 

Editable 
Text 

Text box that may be modified by user or other 
components in GUI. 

Permit manual changes to surfaces from 
user.  

Frame Box that visually groups controls. 
Visual effect to organize operations into 
proper groupings. 

Static Text Text box that displays a string of text.  

Displays parameters that get updated by trim 
file or output from SIMULINK model. Also 
used to indicate component names or 
instructions. 

Pop-up 
Menu Lists available commands. 

Contains options to save output generated 
by model, close GUI, or get help. 

Push 
Button Executes an immediate action. Control basic operation of SIMULINK model. 

Slider Represents a range of allowable values. 

Allow manipulation of aircraft control 
surfaces and give us a visual aid of the 
position of the surface in question. 

Radio 
Button Indicate option that may be selected. Select the operation mode of the GUI. 

 
 
3.5 UI Control Properties 
 
 As hinted in previous sections, every UI control element in MATLAB has a set of 
properties associated to it. Modifying these properties gives us the flexibility to make our GUI do 
what we desire. In the next section, we discuss some of the properties that are of relevance based 
on our experiences in this research project.  
 

• BackgroundColor Property: This property allows us to define a color for the region 
where the uicontrol object resides. It becomes a useful property when we want to 
emphasize something or add aesthetic value to our GUI. 

 
• CallBack Property: It specifies the action that will be performed when the user has 

acted on the uicontrol element. In most cases, it calls a function that we have coded to 
perform the desired task. (Refer to Section 3.8 for further details) 
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• Enable Property: It sets the uicontrol object to “on” or “off”. As expected, the default 

setting for any object is “on”. The “off” case allows for the uicontrol object to be 
displayed in dimmed manner, telling us that it’s there but cannot be acted on yet. This 
comes in handy when we need certain actions to happen first before we can proceed with 
such action. 

 
• Min, Max, and Value Properties: These are field properties that contain numbers as 

their input. They are more important when it comes to the slider and edit text box 
uicontrol elements. This is because they govern the range and the valid inputs the 
aforementioned elements can take. 

 
• TooltipString Property: The purpose of this field is to provide the user with help or 

provide an explanation when using the GUI.  
 

• Position Property: The Position field indicates the location of the uicontrol element 
within the GUI. 

 
• Tag Property: The Tag field does not affect the way the GUI looks or operates. Its 

purpose is to store a string name assigned by the developer for ease of programming the 
GUI. (More will be elaborated when we discuss ‘handles’). 

 
Many more properties are available in MATLAB. Please consult MATLAB documentation [4] 
for full details. These properties were just a few we felt were worth mentioning for the moment. 
Throughout the remainder of this report, more properties may appear and will be discussed 
accordingly. 
 
 
3.6 Manipulating Properties 
 
 Another key element that is a necessary tool for the development of GUIs is being able to 
manipulate properties easily. For such a purpose, the developers of MATLAB have devised two 
functions to allow this functionality: set and get [34]. The “get” command allows the user to list 
all available object properties, while “set” allows one to ‘set’ or modify any object properties.  
The use of these commands requires programmer knowledge of property names for each type of 
uicontrol object. In Section 3.9, we will be discussing another method where properties can be 
manipulated easily.  
 
 
3.7 The Handles Structure 
 
 As defined in the MATLAB Help section, a structure in MATLAB is a group of arrays 
with named “data containers” called fields. A structure is built by either using the struct command 
or, more commonly, doing a 1-by-1 array assignment of fields (i.e. structurename.fieldname = 
assignment).  
 

The use of structures is of particular concern to us because when we create GUIs a 
handles structure is created. The handles structure provides a means of specifying and viewing 
the contents of all its graphics objects, in addition to fields we may add arbitrarily. When making 
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reference to a graphics object, the particular uicontrol name is saved within the structure based on 
the string found in the Tag property. 

  
It is worthwhile noting that the handles structure is passed as an input argument to the 

functions in the GUI M-file. Because this structure is passed to all functions of the GUI, any data 
one adds to it becomes available to all the other functions as well. The way in which the handles 
structure operates allows a great deal of flexibility and freedom to achieve the desired goal.  
 
 
3.8 Callbacks 
 

Every time an item/uicontrol is created, a corresponding ‘Callback’ function is created. 
This is where the user adds the code that makes the component function the way he wanted it to 
work. For example, how the GUI responds to a click of a button, or menu item selection. Keep in 
mind the addition of code is done in the M-file editor.  
 
 The recommended naming convention for a callback is to append an underscore to the 
name of the callback property found in the component's Tag property (e.g. 
stabilizer_edit_Callback). In the GUIDE environment, explored in the next section, this is 
automatically generated for the programmer. Any callback function can take the following three 
inputs as its arguments [4]:  
 

1. hObject: Element that contains the handle of the callback object. 
2. Eventdata: Reserved for later use. 
3. Handles: Structure that contains the handles of all the objects in the figure. Their 

names are specified by the object’s Tag property. 
 
As we can see, the heart of programming GUIs in MATLAB lies in creating these callback 
functions. 
 
 
3.9 GUIDE 
 
 GUIDE (Graphical User Interface Development Environment), a MATLAB built-in user 
interface development environment [4], is a tool for creating GUIs. It is used to provide the basic 
graphical components (i.e. list boxes, push buttons, text, and so on) and their corresponding 
layouts in a point and click environment.  
 
 GUIDE is easily accessed by typing in the prompt window the command “guide” [4]. 
This action displays the GUIDE Quick Start dialog box from which we can begin to build the 
GUI. It is worth noting that even GUI construction itself is controlled by a GUI. 
 
 When GUIDE is used to create a GUI, it automatically generates two files [3]: 
 

1. A FIG-file: it is a file with a .fig file name extension, which contains a complete 
description of the GUI figure and all of its children (uicontrols and axes), as well as the values of 
all object properties. (A uicontrol is a graphic object that performs a predefined action.) Changes 
to the FIG-file are made by editing the GUI in the Layout Editor, explored in the coming 
paragraphs.   
 

 14



2. An M-file: it is a file with an .m file name extension, which contains the functions that 
run and control the GUI and the callbacks, explained previously in section 3.8. It is important to 
point out that the M-file does not contain the code that lays out the uicontrols; this information is 
saved in the FIG-file. 
 
 The main tools we make use of within GUIDE are as follows: 
 

1. Layout Editor: The Layout Editor is the control panel where all the GUIDE tools are 
available to the programmer. The Layout Editor is made up of the component palette, visible to 
the left, which contains the components that may be used for a GUI. Across the top, we find 
various toolbars that allow us to act or somehow modify GUI components. Finally, the large 
gridded area easily visible to the programmer is where GUI objects are organized and laid out 
according to desire. The layout editor in GUIDE is depicted as follows:  

 

 
Figure 3.3: GUIDE environment [35] 

 
We must keep in mind the Layout Editor is the one responsible for creating the FIG-file. The M-
file, where the callback functions reside, is created later by GUIDE when the GUI is saved or 
made active. 
 

2. Property Editor: The Property Editor is another useful tool within GUIDE that allows 
access to properties associated with a control object. Not only does it allow one to view 
properties, but also one can edit property values as needed. 
 

3. Object Browser: The Object Browser is a tool within GUIDE that permits us to view 
and analyze the hierarchy of a group of objects in the GUI. It displays such information as a list 
of Tag and String property fields as shown in the Figure 3.4: 
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Figure 3.4: Object Browser that allows visualizing of the relationships between components. [35] 
 
Understanding what we see here is useful for determining how we should expect objects to 
behave. When we discuss the handles structure, its use will be more obvious. 
 

4. Menu Editor: Another valuable tool GUIDE has to offer is the Menu editor. It allows 
the user to add and edit user-created pull-down menus for the GUI. The order and visual aids (e.g. 
separator bars) allowed for a menu are easily manipulated and modified. As done by the Layout 
editor, callbacks are created automatically. Similarly, coding the functionality of the menu item is 
done in the M-file. Refer to Figure 3.5 for a depiction of this feature. 

  

 
Figure 3.5: Menu editor environment. [35] 

 
 
3.10 GPIS GUI Layout 
 

The GPIS GUI has two main areas: 
 
1. The SIMULINK Model Browser: This is a SIMULINK window where we can find 

all the blocks used to model the Boeing 747. Usually, it appears in the background but the user 
may browse to it. Further details may be found in the work done by Andres Marcos Esteban [28]. 
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2. The Flight Deck Area: it appears on top of any windows that open up when the 
program first begins. It is the area where most of the functionality of the GUI resides. From here 
we can control the states of the control surfaces; start, pause, update, and stop the execution of the 
747 model; provide visual feedback to the user; display of menus. 

 

 
Figure 3.6: SIMULINK model of Boeing 747-100/200 

 

 
Figure 3.7: GPIS GUI 
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The flight deck area contains controls, visual displays, and menus. A brief description of 
these elements follows: 
 

• Menus: The menu bar is located on the top side of the flight deck area. It lists a few 
functions the GPIS GUI is not able to perform directly from what is visible to the user.  
This menu bar was created and can be modified with the Menu Editor. More details on 
the items in the menu can be found in Appendix A. 

 
• Visual Displays: The main display elements developed in the GUI are the stabilizer and 

rudder position displays and the attitude indicator. The stabilizer and rudder position 
display provides the user visual feedback of the relative position of the stabilizer/rudder 
deflection. The attitude indicator intends to emulate the attitude indicator of an airplane 
by providing pitch and bank visual information. It is the primary means by which a user 
is given visual feedback. 

 
• Pilot Input Controls:  These are the uicontrols that implement the ways the user is 

allowed to exercise control of the simulation variables corresponding to actions a pilot 
takes in the plane.  The inputs allowed result from the following input sources: 

 
o Mouse input: allow movement of the sliders to the corresponding control 

surface. 
o Keyboard control: permit direct user interaction. More details on the keyboard 

strokes and corresponding action can be found in Appendix A. 
o Edit box key in: direct numerical manipulation of the allowable range for each 

control surface may be typed in. 
 

All forms of input provide the user a means of changing parameters within the allotted 
ranges.   

 
• Simulator Controls: These are pushbutton uicontrols placed below the attitude indicator 

that allow manipulation of the SIMULINK model running in the background. The 
pushbuttons available include Simulate, Pause, Update, End Simulation, Reset, Help, and 
Close. (Appendix A contains all details relating to their actions.) Pushbutton items that 
are displayed in light gray text are temporarily unavailable. They may not be available 
because of the state of the GPIS GUI. For example, the Pause pushbutton item will not be 
available if the model is not running. 

 
• Operation Mode Control: The GPIS GUI has a section where the user can choose the 

operation mode of the graphical user interface. These modes include: 
 

o Keyboard Input: Also known as Default Mode, it runs the simulation by using 
keyboard inputs primarily. The other forms of control included under the Pilot 
Input Controls section, previously discussed, are also allowed. 

o File Input: Run the simulation from a set of predefined variable inputs created 
by the user. 

  
Please review Appendix A for details on using the GUI. A sample demo on running GPIS is 
included. 
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Chapter 4 
 
Animations in MATLAB 
 

Animations can provide us a great insight of the nature of the data in a manner that 
motionless data would not be able to grant. It is more natural for human beings to see objects in 
motion since we live in a very dynamic, constantly changing world. In this case we are simulating 
a dynamic object whose position and orientations are constantly changing.  

  
 This chapter describes what MATLAB allows us to do to produce simple animations; 
components of animation in our GPIS tool; and methods that we used to accomplish the goal of 
making animations come to life. 
 
 
4.1 Animation Capabilities in MATLAB 
 
 

MATLAB's graphic engine has the capability to create animations that can add to our 
visualization. It can do so in one of two methods, described as follows: 
 

1. Frame-by-frame Capture and Playback: This method consists in creating several 
different figures, each stored as a single frame. To view the animation, the user must play it back 
as a movie. These types of animations are ideal for color-filled contours and 3-dimensional 
surface animations. For this project, this method fails to meet our requirements because it does 
not provide the real-time characteristic we are seeking to deliver. 
 

2. On-the-fly Graphics Object Manipulation: Also known as Erase Mode method, this 
method is useful for line animations (i.e. computer graphics made of lines), where most of the 
plot remains the same. MATLAB achieves the animation effect by continually erasing and 
redrawing the object on the screen figure. Since this method meets the requirements of what this 
project is striving to achieve, we shall elaborate further on how it works to our advantage.  
 

As we have seen, when a figure is created with all of its graphic objects included, a 
handles structure is created. The handles structure is used to change and modify the properties of 
an object. For any change in the properties of an object, the way the graphics engine in MATLAB 
is designed to work forces a redraw. Taking advantage of this behavior, we can program 
MATLAB to create different drawing effects. This is done in the EraseMode property of the 
figure handles. The possible inputs this field property can accept are as follows [4]: 
 

• Normal: This is the default mode. As such, this mode completely redraws the affected 
region of the display. This mode produces the most accurate picture, but is the slowest. 
The other modes are faster, but do not perform a complete redraw making them less 
accurate. 

 
• None: This method does not erase the objects as they are moved or modified. The object 

remains visible on the screen as a trail. 
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• Background: For this method, MATLAB erases the object by redrawing it in the 
background color. This mode erases the object and anything below it. Method was tried 
but does not produce a very clean animation for us. Remnants of previous object are still 
visible. 

 
• Xor: This mode erases only the object being modified, and it is usually is best for 

animations, since remnants of previous graphics on the screen are no longer visible. For 
this project, the use of this technique will be quite extensive.  

 
It is important to notice that the ability to modify individual handles within a graph instead of 
redrawing the complete graph every time a change occurs is crucial for the efficient 
implementation of good visualization effects. This is because creating a graphics object requires a 
lot of overhead, which we avoid by executing this operation only once during initialization. 
 
 The animations required for our project consists primarily in bringing line objects to life. 
Line objects have the property fields XData, YData, and ZData in its handles structure that we 
may update to produce the desired animations. These line objects will be used to give the user 
feedback on the attitude indicator and stabilizer/pedal position displays we have devised. We 
shall proceed to discuss these items in further details in the subsequent sections. 
 
 
4.2 Attitude Indicator 
 
 Our GUI display has adopted a simple scheme of an airplane instrument called the 
attitude indicator to give the user visual feedback. This instrument quickly displays the aircraft’s 
pitch and bank in relationship to the horizon.  
 
 The attitude indicator provides a substitute for the earth's horizon. It gives the pilot a 
“feel” that allows him to manipulate the aircraft to execute climbs, dives, and banks. For our 
animation, the greenish blue color was selected to represent the sky and brown for the ground. 
The artificial horizon is the boundary where the greenish blue and brown meet.  
 
 

 
Figure 4.1: Attitude indicator 
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Recall from our GUI, the user will have control on how the aircraft “moves”. Whether the wheel, 
column, pedal, or stabilizer is altered, the movements will be reflected in pitch attitude and bank 
angle. The attitude indicator is the instrument that best depicts these motions. 
 
 
4.3 Aircraft Display 
 
 The airplane display is represented by a series of lines put together to emulate the shape 
of an aircraft. The airplane outline can be seen as follows: 

 
Figure 4.2: Aircraft display on attitude indicator 

 
Many options were available for choosing the form and shape of this airplane display 

item. We could have been very stylish, but for the purpose of the animation within the scope of 
our research goals, this was the best viable solution. It takes advantage of the power of animation 
in MATLAB in terms of speed. For instance, as discussed previously, line objects such as the one 
we have here have the property fields XData, YData, and ZData in its handles structure that we 
may update, quite easily, to produce an animated object. 
 
 
4.4 Aircraft Animation 
 
 Naturally, the airplane figure must give the user a notion of pitch and bank. To achieve 
such configurations, we need to perform coordinate rotations. In the following sections, we will 
explore the theories behind rotating points in space and which one can be applied best to 
MATLAB’s development environment. 
 
 
4.4.1 Coordinate Rotation 
 
 As described in [36], a coordinate rotation is a transformation from one system of 
coordinates to another system of coordinates. This transformation must be done in such a way 
that distance between any two points remains invariant under the transformation; that is to say, 
the transformation must be an isometry [12]. 
 
 In ordinary three-dimensional space, applied mathematics allows coordinate rotations to 
be described by one of the following means: 
 

• Euler angles 
• Orthogonal matrices 
• Quaternions [37], [38] 

 
From all of these methods, Euler angles provide the best and most simplified way of representing 
rotations and orientations using MATLAB. This rationale will be explained in the next section. 
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4.4.2 Euler Angles 
  
 From [43], Euler angles are the means by which the relative position of coordinate 
systems may be described. They are the classical way of representing rotations in 3-dimensional 
Euclidean space. The advantage of Euler angles is that they split the complete rotation of a 
Cartesian coordinate system into three simpler rotations about the axes of this system [44]. For 
instance, note the following rotations in the x, y and z axes, respectively. 
  

                   
 

Figure 4.3: X-axis, Y-axis, and Z-axis rotation matrices [45] 
 

 A disadvantage of Euler angles that is worth noting is that when we store rotation as Euler 
angles, there can be tiny amounts of round off error [44]. 
 

Euler angles are used extensively in the classical mechanics of rigid bodies. In our case, 
the figure of the plane is treated as a rigid body pivoting, or rotating, about a point. On the other 
hand, for flight and aerospace engineers, they are even more useful since yaw, pitch, and roll 
correspond perfectly with the x, y, and z axes. Hence, our prevailing inclination to their use in the 
project is quite obvious. 
 
 
4.4.3 Translation and Rotation 
 

MATLAB provides us with some functions that allow for translation and rotation 
operations to be executed. Some of the techniques explored follow: 
 

1. Rotate command: The rotate function rotates a graphics object in three-dimensional 
space, according to the right-hand rule. It is based on the rotation matrixes listed in Figure 4.3. 

 
2. Hgtransform command: An hgtransform is an object in MATLAB used to group 

items together. Objects of this category are usually parented to axes. The hgtransform allows us 
to transform objects as a group. For instance, to execute a translation or rotation, which is what 
we are interested in, in three-dimensional space, we simply perform one operation instead of one 
for every object contained in the group. 

 
To achieve the aircraft animation, a combination of these techniques was implemented. 

First, to attain the desired movements, the figure was defined as a group using hgtransform. This 
allowed us to take advantage of using the translation property of the hgtransform to produce the 
effect of pitch animation. On the other hand, the rotate command was issued to perform the 
effects of roll. For further details on how this was achieved, please refer to Appendix C. 
  
 The expected output for the range of motions the previous method depicts are described 
as follows: 

• Pitch*: The airplane figure is moved up or down. 
• Roll**: One wingtip moves up and the other down. 
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• Yaw**: Not depicted, only displayed as a numerical value, involves turning the plane left 
or right. In reality, no instrument is used to depict this motion in a cockpit. 

 
* Positive pitch indicates plane is climbing. Negative pitch designates a descent. 
** Positive roll/yaw is a turn to the right. A negative roll/yaw corresponds to a left turn. 
 
In addition, we assumed a zero rotation and translation condition refers to a straight and level 
flight path.  
  
 
 
4.5 Stabilizer and Pedal Position Displays 
 
 The Stabilizer and Pedal Position Displays, depicted in Figure 4.3, are used to give the 
user an idea of how much the stabilizer/pedal inputs have been deflected. The color scheme used 
is based on industry standards. Most liquid crystal displays (LCDs) in a cockpit use black as the 
default background color. Noticed on the stabilizer position display, a green neon color is used to 
indicate the normal deflection position of this pilot control input. Red is mostly for items that 
change, or things that are dynamic in nature (e.g. a stabilizer surface movement).  
 
 

      
Figure 4.4: Stabilizer and rudder position displays, respectively 

 
The above images were created using Paint, a simple picture editing software built into Windows. 
To be accurate with the animations, the images had to be developed using almost exact pixel 
measurements. This is because MATLAB tends to use pixels when working with images. (A 
pixel is equal to 1/72 of an inch.) [3]  
 

Initially developed as a test bed for executing animations, we decided to keep these 
position indicators because they do not consume much of our computer resources. Additionally, 
their surface movement is limited to a narrow range and change little to none in any given flight 
condition.  
 
 
4.6 Interacting with SIMULINK 
 
 The key to animations is a continuous update of the screen display. When interfacing a 
GUI and SIMULINK, the best technique encountered involves the use of S-functions. The 
following sections describe what an S-function is and the advantages it provides to the 
programmer. 
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4.6.1 S-Functions 
 
 An S-function is a SIMULINK block that allows us to build a general purpose function to 
perform any task we desire. S-functions have the flexibility of being built from various sources, 
including M-files, C, C++, ADA, FORTRAN, just to mention a few.  
 
 S-functions can be used for many applications, such as [46]: 
 

• Adding new general purpose blocks to SIMULINK. 
• Adding blocks that represent hardware device drivers. 
• Incorporating existing C code into a simulation. 
• Describing a system as a set of mathematical equations. 
• Using graphical animations. 

 
The last item indicated is of particular interest because it makes the updates to the display 
possible, resulting in an animation from the viewpoint of the user. 
 
 
4.6.2 M-File S-Functions 
  
An M-file S-function is easily constructed by following a MATLAB template called sfuntmpl.m. 
It provides us a skeleton where we simply fill in the items we need. The major thing to note about 
S-functions is that the corresponding action within its outline is dependant on a flag.  The flag 
value corresponds to an internal parameter within SIMULINK that indicates the calculation stage 
at which it is at during each cycle of computations. Table 4.1 clearly exemplifies what was 
previously stated. 
 

Table 4.1: M-file S-function and corresponding callbacks based on flag value. [46] 

 
 

 
 In developing our GPIS tool, the Initialization stage was a must; it simply described basic 
parameters used to describe the S-function box (i.e. number of outputs, number of inputs). The 
Update stage was central to running our update display scripts. And the rests of the stages did not 
require any action to be performed.  Tips regarding this topic are included in Appendix C. 
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Chapter 5 
 
Conclusion 
 
  In this project, we have described a tool that provides real-time simulation of a Boeing 
747-100/200 using pilot command inputs. We have built the GPIS tool to provide FTLAB747 [1], 
[2], [28] an interactive front capable of delivering a more realistic flight simulation environment. 
Applications similar to GPIS demand a certain level of speed and realism. The techniques that 
have been developed here keep these requirements in mind.   
 
 The main ideas we can itemize that have come from our research and tool development 
efforts are the following: 
 

• Simulation is a more accurate tool to reflect dynamic systems, as it is an attempt to 
emulate the reality. It allows users to understand the interrelation between design and 
performance parameters, to identify potential problem areas, and so implement and test 
appropriate design modifications. By enabling the assessment of different scenarios, it is 
a powerful tool for assessing options, and as a result the final design is more precise. 

 
• We have demonstrated the functionality and utility of using simulation as a tool for flight 

simulation. Graphics allow us to focus on the interpretation of the results, as opposed to 
processing information. Through the use of graphics in simulation, more people can gain 
a better understanding of the systems being modeled. 

 
• As the efficiency and flexibility of the code improves, simulation is becoming more 

widely adopted for production systems. In addition, it offers flexibility and capacity for 
quick iteration. 

 
• Chapters 3 and 4 provided a general guide about developing a GUI and basic animations 

in MATLB. Understanding MATLAB’s programming environment, capabilities and 
limitations that were discussed are valuable information that may be extended to other 
model simulation and animation research projects.  

 
 Thus, we have demonstrated that a real time simulation environment can be developed 

using MATLAB. We have increased the flexibility and the simulation power of the FTLAB747 
tool. To my knowledge, this is the only tool of its kind associated with this model. 
 
 
5.1 Summary of Contributions 
 
 The main contributions of our work we can enumerate are as follows: 
 

• Support the idea that simulation is effective. 
 

• Test  accuracy of the model. 
 

• Provide a ‘tip’ guide to building GUIs and basic animations in MATLAB. 
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• Contribute a useful tool to allow more realistic flight conditions on our flight simulator 

model. 
 

• Explore the feature set built into the FTLAB747 model. 
 

• Expand analysis capabilities of Boeing 747-100/200 SIMULINK model. 
 
 
5.2 Limitations and Future Research 
 
 This section mentions the major limitations of the research tool presented. We try to 
address these items with ideas for future work. This project suggests many directions to take on 
developing GUIs, creating animations, and the GPIS tool itself.  
 
 The list of concerns we may propose includes, but is not limited to the following: 
 

• The development of a tracking controller is strongly suggested. From reading [47], 
designing a tracking controller would seem like a very feasible addition to the model. A 
tracking controller would minimize input error and guarantee the pilot command inputs 
are accurately put into the system.   

 
• Integrate GPIS to other software solutions to produce more dynamically real animations. 

This would help increase the model’s utility more than what was presented in this project. 
For instance, the use of AVDS (Aviator Visual Design Simulator), a simulation tool for 
the development and evaluation of aircraft and flight control systems [49], has been 
suggested. 

 
• The model includes components that will allow fault detection and correction 

experiments to be carried out. This will take the pilot command inputs and FTC (fault 
tolerant control) / FDI (fault detection and isolation) to a higher level of practical testing. 
This also suggests the need for an additional user-friendly interface to address FTC/FDC 
studies. 

 
• The current analysis methods (i.e. output graphs) provided by FTLAB747 are very 

primitive. Since it was not the aim of this project to develop more advanced performance 
measures’ tools, we have replicated the same ones in FTLAB747 as a function called 
graph.m. 

 
• Animation quality is subject to hardware components on which MATLAB is run. We 

must keep in mind when an animation becomes too sluggish, its usefulness wanes; 
therefore, we must consider running it on a more powerful computer, such as Super Mike 
[48]. This will not only improve animation capabilities, but also allow faster, more 
accurate simulation replication and recurrence. 

  
• The simulation software presented here has been optimized to the best of our knowledge. 

As new techniques and options become available, the graphics routines developed here 
can be improved. Likewise, the software should support different hardware platforms that 
can provide the graphics horsepower to meet our modeling needs. Keep in mind, the 
GPIS tool was not run on other platforms (e.g. Linux, Mac). 
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• Another interesting possibility is to extend the animation manipulations done with GPIS 

to quaternion theory. From our readings of [37], [38], they seem like a better choice since 
they are more natural to the flight testing area. In addition, they offer many advantages 
over Euler angles that might be worth investigating further in terms of practical use and 
functionality.  

 
 We hope the techniques introduced here allow others to achieve more interactive levels 
of simulation and higher level GUI animations. The advantages of simulation and visualization 
given to the scientists are unsurpassed by any other method. 
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Appendix A 
 
GPIS Manual 
 
 This Appendix contains a brief description of the program we have developed for 
modification and visualization of the B747-100/200 SIMULINK model. It also includes some 
standard packages used by FTLAB747. 
 
 
A.1 User’s Manual 
 

This document is meant to guide the user in using the GPIS tool developed for 
FTLAB747. For more information on FTLAB747, we recommend reading the Delft University 
Aircraft Simulation Model and Analysis Tool’s (DASMAT) manual and the FTLAB747 manual 
in order to obtain a better understanding of the program. We must acknowledge that many parts 
of this manual are taken directly from [28]. 

 
The GPIS GUI implemented on MATLAB includes a menu bar, four axes, six 

pushbuttons, two sliders, five editable text boxes, and two radio buttons. These elements provide 
easy access to the GUI’s functionality. 

 
 
A.2 Setting Up the Program 
 
1. Download the file. 
2. Go to the directory where the file was saved. 
3. Run the gpis.exe file. The files will self extract to C:\GPIS. 
 
It is advisable to extract contents to folders whose names do not include any spaces as part of the 
name. Problems have been encountered if this condition is present. 

 
Files contained within gpis.exe: 

 
B747_library.mdl         
B747_library_v65.mdl     
Click2Go.m               
DesignerK.m              
DesignerKbank.m          
DesignerKlong_Klat.m     
File                     
File.mat                 
LT.mat                   
LTmod.mat                
MCU_dat_act_noise.m      
MCU_dat_sensor_noise.m   
MCU_fault_init           
MCU_fault_init.m         

MCU_faultgen_ven.m       
MCU_in_dat.m             
README                   
SL.mat                   
SL1.mat                  
SL2.mat                  
ShowSim.m                
Thumbs.db                
Tn2EPR.m                 
about_GUI.fig            
about_GUI.m              
ac_anim0.m               
ac_anim1.m               
ac_anim2.m               

ac_anim3.m               
ac_atmos.c               
ac_atmos.dll             
ac_atmos.m               
ac_atmos.mexglx          
ac_axes.c                
ac_axes.dll              
ac_axes.m                
ac_axes.mexglx           
ac_draw.m                
ac_funpc_v65.mdl         
ac_funpc_v65faultmod.mdl 
ac_funpc_v70.mdl         
ac_genrl.mat             
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pedal.bmp                fdrs_gral.m               ac_geom.mat              
plane.bmp                fig_chk.m                 ac_help.m                
plt.m                    ftlab747.m                ac_help2.m               
readme.txt               gpis.fig                  ac_init.m                
save_cl.m                gpis.m                    ac_menu.m               

ac_sig.m                  setup.m                  graph.m                   
sfundisplay.m            horizon.bmp               ac_simpc_v65.mdl          
show_ac.m                horizon1.bmp              ac_simpc_v70.mdl          
sim_ac.m                 inp_ac.m                  ac_slct.m                 
sim_ac2.m                inp_ac_lin.m              ac_turb.mat               
sim_ac3.m                iofile.m                  ac_windw.mat              
simlin_ac.m              isdir.m                   attitude_indicator.JPG    
simlin_ac_new.m          jt9ddata.mat              attitude_indicator.bmp    
simlin_ac_old.m          keyboardinput.doc         b747.m                    
simulation.m             keypress.m                b747_linsim_v65.mdl       
sky.jpg                  lin_ac.m                  b747_linsim_v70.mdl       
stabilizer.bmp           lin_ac1.m                 b747_sim_v65.mdl          
startup.m                linebyline.m              b747_sim_v70.mdl          
temp.bmp                 long_controller.mat       b747data.mat              
terrain.JPG              lsu_nasa_venture.JPG  

mcu747.m                 
b747mass_v65.mdl          

testing.mat              b747mass_v70.mdl          
trim_ac_jeff.m           mcu_b747_Kdesign.mdl     b747trim_v65.mdl          
trim_ac_kumar.m          mcu_data                 b747trim_v70.mdl          
trim_eng.m               mcu_linsim.m             cinput.m                  
trimcost.m               mcu_sim_ac3.m            cl_simpc_v65.mdl          
untitled.mdl             mcu_sim_ac3_exp.m        cl_simpc_v70.mdl          
userfile.txt             mcu_testbedV70.mdl       cl_simpcmodelred_v70.mdl  
userfileinfo.xls         mcu_testbedV70_file.mdl  cockpit.jpg               
userinputs.txt           mcu_testbed_1.mdl        controllerbank.m          
usermanual_747.doc       model_open.m             eng_mod_v65.mdl           
var2save.m               names.xls                eng_mod_v70.mdl           
xdisturb                 noisemodel.m             faultparam.m              
xdisturb.m               noisemodel_old.m         faultparam_Kbank.m        
 onlyb747mod.mdl          fdrs.m                    

 
 
 
 
A.3 Program Initialization 
 

Start MATLAB as one would start it any other time. If it is already open and running 
other scripts, it is advisable to clear all variables in the workspace. This can be accomplished 
thoroughly with the following commands: 
 
 
>> clear all 
>> clear global 
>> close all 
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The next step is to assure that MATLAB is in the correct directory for the program to run. 
This should be done as follows: 

 
1. Change the directory to GPIS. 
2. Type at the MATLAB prompt: 
 
>> cd C:\GPIS 
 
 
A.3.1 Trimming the Aircraft 
 
 The first thing to do is to trim the aircraft at a specific point of the flight envelope. 
Running the setup.m file takes the user through the trim routine similar to that of FTLAB747. A 
trim is necessary to prepare the model for execution and modification by our GPIS tool. The GUI 
will start and the user will have the option to make changes or start the simulation. 
 
 The first part of the setup routine sets the weight and balance prerequisites of the 
airplane. This is depicted by the screenshot in Figure A.1: 
 

 
Figure A.1: Weight and balance setup of airplane 

 
Once this is done, the next screen will ask for the configuration point and flight 

condition. The configuration point is determined by the altitude and Mach number. Depending 
which flight condition was selected, the program will ask you for different parameters (e.g. FPA 
= Flight Path Angle, n = load factor, sideslip angle). Refer to the DASMAT manual [1] for more 
information. 
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Figure A.2: Configuration point and flight condition 

 
After the trimming is achieved the values obtained are shown (Figure A.3). It is important 

to note that it is not always possible to trim the aircraft at all flight conditions. Before starting, 
some engineering decisions should be made, such as what kind of flight envelope and conditions 
will be of interest and possible to achieve. Note: Flight conditions 5 and 6, beta-trim and specific-
power-turn respectively, are not reliable in any of the FTLAB747 versions. 
 

 
Figure A.3:  Trim conditions results 

 
After the trimming subroutine has ended the user is allowed to determine if faults should 

be introduced into the system. This item is a topic of advanced research left to those after us. 
Finally, our GPIS tool is launched, with the SIMULINK model in the background. The sections 
that follow are intended to provide the user with basic use and description of the parts developed 
for the GPIS tool. 
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A.4 Operation Modes 
 
 The GPIS GUI has two operating modes: Keyboard Input and File Input. A brief 
description of these operating modes follows: 
 

• Keyboard Input: This is intended to be the Default Mode. The Keyboard Input Mode 
runs the simulation by using keyboard inputs primarily. The other forms of control 
included in the GUI (e.g. edit text boxes, sliders) are also allowed. 

 
• File Input: File Input Mode runs the simulation from a set of predefined variable inputs 

created by the user. In the following section we will discuss the guiding principles used to 
create these files. 
 
 

A.4.1 File Input Guidelines 
 
 For the GUI to be run in File Input Mode, certain guidelines must be followed to create 
files. The files a user creates are geared for more advanced, experimented users. The ability to 
allow this type of input allows for more advanced experimentation.  
 
 The file to be created must consists of a real-valued matrix of data type double. The first 
column of the matrix must be a vector of times in ascending order. The remaining columns 
specify input values. In particular, each column represents the input for a different Inport block 
signal (in sequential order) and each row is the input value for the corresponding time point [31].  
 
 Naturally, the order of the input values matters. They must be laid out as follows:  
 

 
 

Figure A.4: Order of input values 
 
 
 Note: When this mode is enabled, a new SIMULINK file containing the FTLAB747 
model is opened. This version of the model is adapted to allow file inputs to be run. 
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A.5 Menu Bar 
 
 The GPIS GUI contains three menus: File, Help, and Exit. The options provided in each 
menu are described in the section that follows. 
 

o File Menu: 
 

The File menu includes the following options: 
 

• Setup Simulator…  Sets GPIS to a starting point. 
 

• Background…   Allows user to switch background image. 
 

• Print    Print snapshot of GUI’s present state. 
 

• Print Setup   Configure print options. 
 

• Save    Saves output generated by SIMULINK model into a file. 
 

• Close    Closes GPIS. 
 
 

o Help Menu: 
 
 The Help menu includes the following options: 
 

• Keyboard Inputs  Opens document containing table of operable keys. 
 

• User Manual   Opens User Manual PDF document. 
 

• About GPIS   Displays the GPIS version information. 
 
 

o Exit Menu:  
  
 The Exit menu does not have any options. It simply closes the GPIS and all associated 
figures, including the SIMULINK windows. 
  
  
A.6 Pushbuttons 
 
 The GPIS GUI contains several pushbuttons: Simulate, Pause, Update, End Simulation, 
Reset, Help, and Close. The actions performed by each pushbutton are described in the section 
that follows. 
 

• Simulate   Start simulation in the background SIMULINK model. 
 

• Pause    Pause SIMULINK model. 
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• Update    Pause SIMULINK model, update, and then continue. 
 

• End Simulation  Stop SIMULINK model; save simulated flight.* 
 

• Reset    Retune SIMULINK model to starting parameters. 
 

• Help    Open PDF document with this help reference. 
 

• Close    Close all windows, including SIMULINK and GPIS. 
 
 
* Once the simulation is over, the user is given the possibility of saving the simulated flight. The 
results may later be analyzed with the plot utility graph.m 
 
 
A.7 Pilot Control Inputs 
 
 The following table summarizes the access a user has using a keyboard to manipulate the 
model. The keys selected are a product of location and ease of operability for the user. 
 

Table A.1: Pilot keyboard actions. 
Keyboard 

Stroke: Action: Aircraft Change: 

Up Arrow Dive 
Elevator surface raised. Decrease angle of 
attack. 

Down arrow Climb 
Elevator surface lowered. Increase angle of 
attack 

Left Arrow Left turn Left aileron up. Right aileron down. 
Right Arrow Right turn Right aileron up. Left aileron down. 
Minus Sign (-) Speed down Throttle decrease. 
Plus Sign (+) Speed up Throttle increase. 
A Slight dive Stabilizer surface angle decreased. 
Z Slight climb Stabilizer surface angle increased. 
Q Nose shift left Rudder surface deflected left. 
W Nose shift right Rudder surface deflected right. 
Space Bar Update SIMULINK model None. 

 
** The mouse may be used to change parameters by adjusting the sliders.  Typing in the editable 
text boxes allows for user input also. 
 
 
A.8 Other Aids for User 
  
 Keeping the design of GPIS as user friendly as possible, other forms of aid incorporated 
into this research tool include: 
  

• ToolTipString property: It is a property of certain uicontrols that allows the 
programmer to specify, in the form of text, tips to the user regarding the associated 
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uicontrol. It is activated when the user moves the mouse pointer over the control and 
leaves it there, tool tip is displayed.   

 
• Help pushbutton: Performs same action as the Keyboard Inputs and User Manual fields 

under the Help menu, except information is bundled up into single PDF file.    
 

• Help menu: contents previously described. 
 
 
A.9 Feedback 
 
  For comments, suggestions, and general feedback feel free to send an email to the 
following address: jhandal@lsu.edu. 
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Appendix B 
 
Conventions 
 

In this report we have used following conventions:  
 
B.1 Coordinate System for Attitude Indicator 
 

We use a right-handed coordinate system. In computer graphics it is common to use a 
left-handed coordinate system. This allows the z-axis to point ``into'' the screen which seems 
natural. Since the rotation methods used primarily coordinates for mathematical derivations, we 
have chosen to use the mathematical standard --- the right-handed coordinate system.  
 
B.2 Rotation 
 

Still using the mathematical standard, we rotate counter-clockwise. The direction of 
rotation about an axis is obtained by the right-hand rule: Hold the axis with right hand and the 
thumb pointing in the positive direction of the axis. A positive rotation will now rotate in the 
direction of the fingers (apart from the thumb). This is illustrated below: 

 
Figure B.1: Coordinate system for rotations [41] 

 
B.3 Pilot Control Sign Convention 
 
 From the use of FTLAB747, the sign convention must remain the same and, as described 
in [28], is as follows: 
 

• Column deflection: A positive deflection (towards the pilot) yields a positive body 
pitching moment. A negative deflection (away from the pilot) produces a negative body 
pitching moment. 

 
• Stabilizer deflection: It produces similar effects to the column deflection in terms of 

body pitching input. 
 

• Wheel deflection: A positive wheel deflection is equivalent to a clockwise rotation. 
 
• Pedal deflection:  Similar to wheel when either right/left pedal is pressed respectively. 
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Appendix C 
 
Implementation Tips 
 
 Appendix C highlights a few items worth noting that allowed for the completion of this 
project. They may be regarded as tips to be used by others as required. 
 
 

• Initializing GUIs: 
 

Every time a GUI is run, a function referred to as the ‘Opening Function’ is executed before 
the GUI is visible to the user. It is here where we perform tasks that need to be completed before 
the user accesses the GUI. For example, some of the actions that should be performed here are: 
initialization of displays, creation of variables, reading data from base workspace. 

 
Following is an example where a function is called to set background display of GUI variables.  

 
function gpis_OpeningFcn(hObject, eventdata, handles, varargin) 
 

% Choose default command line output for gpis 
handles.output = hObject; 

 
% Initialize values 
handles.Geaux = 0; %do not activate keyboard 
handles.pilot = [0 0 0 0 0 0 0 0]; 
 
% Initialize Displays 

 
% Initialize background: 
name = 'terrain.jpg'; %default background 
handles = initialize_background(hObject, handles, name); 

  
 {other functions} 
 

%Update handles structure 
guidata(hObject, handles); 

 
Also, we need to note the assignment of variables used by the GUI. The other lines of code (i.e. 
handles.output and guidata) noted are standard for all GUI opening functions. 
 
 

• Slider-edit box link:  
 

This tip greatly emphasizes the flexibility that the handles structure gives the programmer 
when working with GUIs. As we will see next, the snippet of code provided shows how the slider 
and edit text box are interconnected. 

 
 

 41



Edit text box callback: 
 
function wheel_edit_Callback(hObject, eventdata, handles) %hObject refers to edit box 

% Obtain value placed in edit box 
disp_wheel= str2double(get(handles.wheel_edit,'String')); 

 
% Determine whether disp_wheel iswthin range 
If isnumeric(disp_wheel) & ... 

      disp_wheel >= get(handles.wheel_slider,'Min') & ... 
      disp_wheel <= get(handles.wheel_slider,'Max') 
      % Display entered value in edit box 
  set(hObject,'String', disp_wheel); 
  % Place value for slider 
      set(handles.wheel_slider,'Value',disp_wheel); 
 else 
  {issue some error message or some adjustment} 

 
Slider callback: 
 

function wheel_slider_Callback(hObject, eventdata, handles) 
set(handles.wheel_edit,'String',num2str(get(handles.wheel_slider,'Value'))); 

 
They rely on each others property fields to get and set information. The use of the handles 
structure passed to each callback function makes this quite easy. 
 
 

• Mouse-keyboard recognition:  
 
Each figure created in MATLAB has a particular set of properties associated with it. Of 

particular interest for us are the KeyPressFcn and WindowButtonDownFcn fields. These property 
fields allow the name of an M-file to be defined. This means that every time a mouse button is 
clicked over the figure or a key is pressed when the window is active, MATLAB will execute the 
M-file in the KeyPressFcn or WindowButtonDownFcn property, accordingly. For instance, note 
the following exerpt from keypress.m (Appendix D): 
 

key = double(get(handles.output,'CurrentCharacter')); % get key pressed 
     if key = 28 %left arrow 
  {execute code for left arrow action} 
 
Note that keypress.m relies on CurrentCharacter property to inquire what key was pressed from 
the keyboard. The key assignments used by MATLAB are standard ASCII code key assignments. 
 
 

• Figure property manipulation for animations: 
 

MATLAB offers many operating options that can be molded to our specific needs. In our 
case, we needed to make GPIS efficient at producing animations that were not ‘sluggish’. To 
do so, a variety of property fields were changed to achieve the objective. Other than the 
options discussed in this text, other options discovered to be useful included the following: 
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o BackingStore: off 
 

Also known as off screen pixel buffer [4], it is set to “off” to reduce memory consumption. It 
allows the speed of animations to be increased because it eliminates the need to draw the figure 
both on and off the screen. 
 
 

o DoubleBuffer: on 
 
As defined in [3], double buffering is the process of drawing to an off-screen pixel buffer and 

then copying the buffer contents to the screen once the drawing is complete. Setting double 
buffering to “on” generally produces flash-free rendering for simple animations. 
 
 

o IntegerHandle: off 
 

MATLAB generally stores figure handles as integers. Turning IntegerHandles to the off 
position makes MATLAB assign non-reusable real numbers (e.g. 34.00235) to the handles 
instead. The advantage of doing this is to reduce the likelihood of inadvertently drawing into 
other GUI figures, such as dialog boxes.   

 
 

o Renderer: painters 
 

This property allows the programmer to select a method used by MATLAB to render 
graphics for the screen and printing. MATLAB allows for three methods: painters, zbuffer, and 
OpenGL. The fastest method is OpenGL, since it enables MATLAB to access graphics hardware 
that is available on some systems [3].  For simple graphics, such as the ones encountered in this 
project, painters suffices. 

 
 

• Making an hgtransform group: 
 
Hgtransform is a MATLAB function for graphics that’s allows a group of objects to be 

considered as a single entity.  This is done by parenting objects to a single “hgtransform” object. 
For example, 
 
 
 % Create an  hgtransform object: 
 handles.transform = hgtransform('Parent',handles.horizon_axes); 
 % Set paret:t 
 set(handles.line,'Parent',handles.transform); 
 
 
The main advantage of parenting objects to an hgtransform object is that it provides the ability to 
perform a single action (e.g. rotation or translation) on the child objects in unison. The end result 
is to save processing time, which results in very efficient programming. 
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• Translation and rotation of aircraft figure: 
 
Hgtransform has a sister function, makehgtform, which allows for translation operations to be 

computed. The translation about the y axis portrays a pitch application. The matrix used for such 
computation follows: 

 
 

Figure C.1: Translation about the y-axis. ‘y’ corresponds to the pitch angle in degrees. 
 

To perform a translation of an hgtransform group, its Matrix field property is manipulated as we 
can see in the following code: 

 
% Translate takes you directly to pitch angle desired. 

    pitch = makehgtform('translate',[0 anglep 0]); 
     set(handles.transform,'Matrix',pitch); 
 
 
The rotation command applied to the whole figure allows for the roll angle to be depicted. 

Keep in mind the rotation to perform is about the z-axis, since we are limited to a two 
dimensional view by the computer screen.   

 
The basic fact to using the rotate command appropriately is not to confuse the direction of the 

axes. For instance, a roll to the right was defined as a positive angle, while a negative roll angle is 
a left turn. Another key factor was to store, compare, and make absolute comparisons between the 
current angle and the current one computed by each SIMULINK cycle. These ingenious steps can 
be noted in the following code fragment: 

 
 

     angle_roll = rad2deg(handles.xobs(7)); % new rotation angle 
    % previous rotation angle 
    rotation_angle = get(handles.line(1),'UserData'); 
    center = [100 100 0]; 
    zdir = [0 0 1]; % axis about which we rotate 
 
    if rotation_angle > angle_roll 
        angle = - abs(rotation_angle - angle_roll); 
        if angle_roll < 0 
            rotate(handles.line,zdir,-angle, center); 
        else 
            rotate(handles.line,zdir,-angle, center); 
        end 
        set(handles.line(1),'UserData', (rotation_angle + angle)); 
 elseif rotation_angle < angle_roll 
        angle = abs(angle_roll - rotation_angle); 
        if angle_roll < 0 
            rotate(handles.line,zdir,angle, center); 

 44



        else 
            rotate(handles.line,zdir,-angle, center); 
        end 
        set(handles.line(1),'UserData', (rotation_angle + angle)); 
    else 
        angle = 0; 
        rotate(handles.line,zdir,angle, center); 
        set(handles.line(1),'UserData',rotation_angle); 
    end 
 
 

• Pixel units for the axes: 
 

A key concept in creating exact animations, as the ones required by this tool, is the use of 
pixels as the measurement units. Using any image editing program, such as Microsoft Paint, 
images (e.g. the attitude indicator or the stabilizer position display) must be done by means of 
exact pixel dimensional. The rational to doing this is that each pixel is viewed as an element in a 
matrix, which is MATLAB’s means of operation.  

 
To make our pixel units match how MATLAB interprets the image on the computer screen, 

the Units property field must be selected to ‘pixels’ for them to match up correctly.  
 

 
• S-function callback method options: 

 
Selection of the stage to execute code plays a very important role in how the GUI-

SIMULINK relationship works. To exemplify our warning, deciding which flag to select for 
running the update-display routine for the GUI was determined by trial and error. The lesson 
learned dictates that the display-update routine must be done when a flag of value 2 (Update 
stage) is issued. Our first thoughts lead us to choose a flag of value 3 (Output stage) initially. This 
proved to be problematic because the GUI figure would lose its status of being the current figure. 
The consequences of this broke our keyboard input capabilities. At flag value of 2, optimal 
animation display is maintained, GUI figure remains active, and our simulation runs according to 
our intentions. 
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Appendix D 
 
MATLAB Source Code 
 
 Included is MATLAB code developed for GPIS GUI. Modifications done to files from 
FTLAB747 not included. 
 
setup.m 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
% PROGRAM NAME:     Graphical Pilot Interface Simulator GUI   Coding started: 01/19/05 
%                                                             Last revision: 08/24/05 
%       
%        
% PURPOSE:          Setup Simulink model and initialize GPIS GUI  
%                    
% 
% FUNCTIONS USED :  Various functions from ftlab747 customized for our 
%                   purposes, gpis 
% 
% REMARKS:          Matlab 6.5 can be used. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all 
close all 
 
% Create variable in base workspace 
pilot = [0 0 0 0 0 0 0 0 ]; 
% pilot = [ column wheel pedal stabilizer thrust1 thrust2 thrust3 trust4] 
 
% Initialization: 
clc; 
simrun = []; % Variable to run simulaton from file. 
trimval = 1; 
sim_flag = 1; 
ac_init; 
 
% Setup Simulink model 
trim_ac_jeff; 
     
% Check for crucial variables to set starting point for GPIS: 
if  ~exist('u0','var') | ~exist('Tn0','var')| ~exist('x0','var') 
    errordlg('Variables missing u0, Tn0, and x0.', 'Trim File Error'); 
else 
    variables_exist = 1; 
end 
     
% Give control to GUI 
gpis; 
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Click2Go.m 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
% FUNCTION NAME:    Click2Go                          Coding started: 01/19/05 
%                                                       Last revision: 07/23/05 
%        
% PURPOSE:          Activate display.   
%                    
% ACTIONS:          Gets current GUI information, makes keyboard active, 
%                   and updates GUI.  
% 
% 
% REMARKS:          Matlab 6.5 can be used. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
 
 
function Click2Go 
 
 handles = guidata(gcf); 
 % Allow action to start 
    handles.Geaux = 1;  
     
 % Update handles structure 
 guidata(gcf,handles); 
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keypress.m 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
% FUNCTION NAME:    keypress                            Coding started: 01/19/05 
%                                                       Last revision: 08/24/05 
%                                                        
%        
% PURPOSE:          Read keyboard input from user and perform requested action.   
%                    
% KEY ACTIONS:      Up          decrease column angle 
%                   Down        increase column angle 
%                   Right       increase wheel angle 
%                   Left        decrease wheel angle 
%                   -           decrease thrust 
%                   +           increase thrust 
%                   q           decrease pedal angle 
%                   w           increase pedal angle 
%                   a           decrease stabilizer angle 
%                   z           increase stabilizer angle 
%                   Space Bar   update model 
% 
% REMARKS:          Matlab 6.5 can be used. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
 
 
function keypress 
handles = guidata(gcf); 
if handles.Geaux  % make sure that figure is active window 
    key = double(get(handles.output,'CurrentCharacter')); % get key pressed 
     
    if key == 28 %left arrow 
        val = get(handles.wheel_slider,'Value'); 
        val = val - 2; 
        if val >= get(handles.wheel_slider,'Min') & val <= get(handles.wheel_slider,'Max') 
            set(handles.wheel_edit,'String',num2str(val));% set string for text edit box 
            set(handles.wheel_slider,'Value',val);% set value for slider to update 
            % Store changed attribute 
            handles.pilot(2) = deg2rad(val); 
            assignin('base','pilot',handles.pilot); 
        end 
    elseif key == 29 %right arrow 
        val = get(handles.wheel_slider,'Value'); 
        val = val + 2; 
        if val >= get(handles.wheel_slider,'Min') & val <= get(handles.wheel_slider,'Max') 
            set(handles.wheel_edit,'String',num2str(val));% set string for text edit box 
            set(handles.wheel_slider,'Value',val);% set value for slider to update 
            % Store changed attribute 
            handles.pilot(2) = deg2rad(val); 
            assignin('base','pilot',handles.pilot); 
        end 
    elseif key == 30 %up arrow 
        val = get(handles.column_slider,'Value'); 
        val = val - 0.5; 
        if val >= get(handles.column_slider,'Min') & val <= get(handles.column_slider,'Max') 
            set(handles.column_edit,'String',num2str(val));% set string for text edit box 
            set(handles.column_slider,'Value',val);% set value for slider to update 
            % Store changed attribute 
            handles.pilot(1) = deg2rad(val); 
            assignin('base','pilot',handles.pilot); 
        end 
    elseif key == 31 %down arrow 
        val = get(handles.column_slider,'Value'); 
        val = val + 0.5; 
        if val >= get(handles.column_slider,'Min') & val <= get(handles.column_slider,'Max') 
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            set(handles.column_edit,'String',num2str(val));%set string for text edit box 
            set(handles.column_slider,'Value',val);%set value for slider to update 
            % Store changed attribute 
            handles.pilot(1) = deg2rad(val); 
            assignin('base','pilot',handles.pilot); 
        end 
    elseif key == 113 | key == 81 %q key 
        val = str2num(get(handles.pedal_edit,'String')); 
        deflection_range = get(handles.pedal_edit,'UserData'); % deflection range 
        val = val - 0.5; 
        if val >= deflection_range(1) & val <= deflection_range(2) 
            set(handles.pedal_edit,'String',num2str(val));% set string for text edit box 
                         
            % Update stabilizer animation: 
            axes(handles.pedal_axes); 
            hold on; 
            pedal_x = 68 + (val * 3.3); 
            set(handles.pedal_line,'XData',[pedal_x, pedal_x]); 
           drawnow;  
            hold off; 
             
            % Store changed attribute 
            handles.pilot(3) = deg2rad(-val); 
            assignin('base','pilot',handles.pilot); 
             
        end 
    elseif key == 119 | key == 87 %w key 
        val = str2num(get(handles.pedal_edit,'String')); 
        deflection_range = get(handles.pedal_edit,'UserData'); % deflection range 
        val = val + 0.5; 
        if val >= deflection_range(1) & val <= deflection_range(2) 
            set(handles.pedal_edit,'String',num2str(val));% set string for text edit box 
                        
            % Update stabilizer animation: 
            axes(handles.pedal_axes); 
            hold on; 
            pedal_x = 68 + (val * 3.3); 
            set(handles.pedal_line,'XData',[pedal_x, pedal_x]); 
           drawnow;  
            hold off; 
             
            % Store changed attribute 
            handles.pilot(3) = deg2rad(-val); 
            assignin('base','pilot',handles.pilot); 
        end     
    elseif key == 97 | key == 65 %a key 
        val = str2num(get(handles.stabilizer_edit,'String')); 
        deflection_range = get(handles.stabilizer_edit,'UserData'); 
        val = val - 0.5; 
        if val >= deflection_range(1) & val <= deflection_range(2) 
            set(handles.stabilizer_edit,'String',num2str(val));% set string for text edit box 
             
            % Update stabilizer animation: 
            axes(handles.stabilizer_axes); 
            hold on; 
            stabilizer_y = 18.75 + (val * 10.1); 
            set(handles.stabilizer_line,'YData',[stabilizer_y, stabilizer_y]); 
           drawnow;  
            hold off; 
            % Store changed attribute 
            handles.pilot(4) = deg2rad(val); 
            assignin('base','pilot',handles.pilot); 
        end     
    elseif key == 122 | key == 90 %z key 
        val = str2num(get(handles.stabilizer_edit,'String')); 
        deflection_range = get(handles.stabilizer_edit,'UserData'); 
        val = val + 0.5; 
        if val >= deflection_range(1) & val <= deflection_range(2) 
            set(handles.stabilizer_edit,'String',num2str(val));%set string for text edit box 
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            % Update stabilizer animation: 
            axes(handles.stabilizer_axes); 
            hold on; 
            stabilizer_y = 18.75 + (val * 10.1); 
            set(handles.stabilizer_line,'YData',[stabilizer_y, stabilizer_y]); 
            drawnow;  
            hold off; 
             
            % Store changed attribute 
            handles.pilot(4) = deg2rad(val); 
            assignin('base','pilot',handles.pilot); 
        end    
    elseif key == 45 %- key 
        val = get(handles.throttle_slider,'Value'); 
        val = val - 1; 
        if val >= get(handles.throttle_slider,'Min') & val <= get(handles.throttle_slider,'Max') 
            set(handles.throttle_edit,'String',num2str(val));% set string for text edit box 
            set(handles.throttle_slider,'Value',val);% set value for slider to update 
            % Value of thrust in Newtons 
            N = (val / 100 ) * 222400; 
             % Store changed attribute 
            handles.pilot(5:8) = N;  
            assignin('base','pilot',handles.pilot); 
        end 
    elseif key == 43 %+ key 
        val = get(handles.throttle_slider,'Value'); 
        val = val + 1; 
        if val >= get(handles.throttle_slider,'Min') & val <= get(handles.throttle_slider,'Max') 
            set(handles.throttle_edit,'String',num2str(val));% set string for text edit box 
            set(handles.throttle_slider,'Value',val);% set value for slider to update 
            % Value of thrust in Newtons 
            N = (val / 100 ) * 222400; 
            % Store changed attribute 
            handles.pilot(5:8) = N;  
            assignin('base','pilot',handles.pilot); 
        end 
    elseif key == 32 %space bar 
        set_param('mcu_testbedV70','SimulationCommand','update');% update model 
    end 
    % Update model every 5 key strokes: 
    if handles.delay >= 5 
        set_param('mcu_testbedV70','SimulationCommand','update');% update model 
        handles.delay = 0; % reset 
    else 
        handles.delay = handles.delay + 1; % increment counter 
    end 
    guidata(handles.flight_GUI,handles); 
end 
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gpis.m 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
% PROGRAM NAME:     Graphical Pilot Interface Simulator GUI   Coding started: 01/19/05 
%                                                             Last revision: 10/24/05 
%        
% PURPOSE:          Apply the fault detection and fault tolerant models to untrimmed  
%                   conditions of flight.   
%                    
% 
% FUNCTIONS USED :  Click2Go, model_open, keypress, sfundisplay 
% 
% INPUT EXPECTED:   Keyboard or mouse inputs. 
% 
% OUTPUT EXPECTED:  GUI that allows user to interactively input pilot commands to be  
%                   tested. 
% 
% REMARKS:          Matlab 6.5 can be used. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
 
 
function varargout = gpis(varargin) 
% GPIS M-file for gpis.fig 
 
% Last Modified by GUIDE v2.5 06-Sep-2005 21:38:52 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @gpis_OpeningFcn, ... 
                   'gui_OutputFcn',  @gpis_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin & isstr(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
%========================================================================% 
% --- Executes just before gpis is made visible. 
function gpis_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to gpis (see VARARGIN) 
 
% Choose default command line output for gpis 
handles.output = hObject; 
 
% Initialize values 
handles.Geaux = 0; % do not activate keyboard 
handles.delay = 0; % controlled access to keyboard update 
handles.pilot = [0 0 0 0 0 0 0 0]; 
handles.reset = 0; % reset button not triggered 
handles.file = 0; % file will not run simulation 
 
 
% Ensure model is open 
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model_open(handles); 
 
% Turn reset menu option off 
set(handles.reset_menu, 'Enable','off'); 
 
% Initialize Displays 
 
% Initialize background: 
handles.name = 'terrain.jpg'; %default background 
handles = initialize_background(hObject, handles); 
 
% Load images to GUI: 
handles = initialize_horizon(hObject, handles); 
handles = initialize_stabilizer(hObject, handles); 
handles = initialize_pedal(hObject, handles); 
handles = initialize_update_display(hObject,handles); 
 
% Make the handles structure available in the base workspace for access: 
assignin('base','handles',handles); 
 
% Save all handles to be accesible later by s-function updatedisplay 
set(handles.flight_GUI,'UserData',handles); 
%get(gcf,'UserData') 
 
% Model run from keyboard 
set_param('mcu_testbedV70/output/updatedisplay','UserData', handles); 
 
 
%Update handles structure 
guidata(hObject, handles); 
 
 
 
%========================================================================% 
% --- Outputs from this function are returned to the command line. 
function varargout = gpis_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INITIALIZATION SECTION   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%========================================================================% 
% Code modified from MATLAB technical solution [14] 
% Initializes background display 
function handles = initialize_background(hObject, handles) 
axes(handles.background_axes); 
 
% Move the background axes to the bottom 
uistack(handles.background_axes,'bottom'); 
set(handles.background_axes,'ytick',[], 'xtick',[]); 
 
% Load in a background image and display it using the correct colors 
handles.I = imread(handles.name); 
image(handles.I); 
axis off; 
 
% Update handles structure 
guidata(hObject, handles); 
 
 
%========================================================================% 
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% Create attitude indicator display 
function handles = initialize_horizon(hObject, handles) 
axes(handles.horizon_axes); 
set(handles.horizon_axes,'visible','off'); 
image(imread('attitude_indicator.bmp')); 
% Remove tickmarks and labels that are inserted when using IMAGE: 
set(handles.horizon_axes,'ytick',[],'xtick',[],'ydir', 'normal'); 
 
hold on; 
% Plotting the initial position of the aircraft figure: 
handles.line(1) = plot([65 135], [100 100], 'r','LineWidth',[3]); %main 
handles.line(2) = plot([100 100], [85 115], 'r', 'LineWidth',[3]);%center 
handles.line(3) = plot([55 65], [95 100], 'r', 'LineWidth',[3]);%leftedge 
handles.line(4) = plot([135 145], [100 95], 'r', 'LineWidth',[3]);%rightedge 
hold off; 
 
% Initialize value to be used in rotation computations later: 
set(handles.line(1),'UserData',0); 
 
% Create hgtransform object: 
handles.transform = hgtransform('Parent',handles.horizon_axes); 
set(handles.line,'Parent',handles.transform); 
 
% Update handles structure 
guidata(hObject, handles); 
 
 
 
%========================================================================% 
% Create stabilizer display 
function handles = initialize_stabilizer(hObject, handles) 
axes(handles.stabilizer_axes); 
set(handles.stabilizer_axes,'Visible','off'); 
image(imread('stabilizer.bmp')); 
% Remove tickmarks and labels that are inserted when using IMAGE: 
set(handles.stabilizer_axes,'ytick',[],'xtick',[]); 
 
hold on; 
%Plotting the initial position of the stabilizer: 
handles.stabilizer_line = plot([6 14], [18.75 18.75], 'g', 'EraseMode', 'xor','LineWidth',[1.5]); 
hold off; 
 
% Variable for record keeping: 
handles.stabilizer_prev_value = 0; 
 
% Update handles structure 
guidata(hObject, handles); 
 
 
%========================================================================% 
% Create pedal display 
function handles = initialize_pedal(hObject, handles) 
axes(handles.pedal_axes); 
set(handles.pedal_axes,'Visible','off'); 
image(imread('pedal.bmp')); 
% Remove tickmarks and labels that are inserted when using IMAGE: 
set(handles.pedal_axes,'ytick',[],'xtick',[]); 
 
hold on; 
%Plotting the initial position of the pedal: 
handles.pedal_line = plot([68 68], [32 46], 'g', 'EraseMode', 'xor','LineWidth',[2]); 
hold off; 
 
% Variable for record keeping: 
handles.pedal_prev_value = 0; 
 
% Update handles structure 
guidata(hObject, handles); 
 
 

 53



 
%========================================================================% 
% Routine to set GUI to trim values; 
function handles = initialize_update_display(hObject, handles) 
 
% Variable to check setup was executed: 
ok  = evalin('base','setup_ok'); 
 
if ok 
    handles.u0 = evalin('base','u0');  
    % u0 = [dl_stab  dl_w  dl_p  dl_c dl_sbh  NaN  dl_fh  gear] 
    handles.Tn0 =evalin('base','Tn0');  
    % Tn0 = [Tn1 Tn2 Tn3 Tn4] values for the four thrust engines 
    handles.x0 = evalin('base','x0');  
    % x0 = [p q r Vtas alpha beta phi theta psi he xe ye]; 
    
    handles.throttle_value = handles.Tn0(1);  
 
    % Initial values for display 
    set(handles.pedal_edit,'String', num2str(round(rad2deg(handles.u0(3))))); 
    set(handles.column_edit,'String', num2str(round(rad2deg(handles.u0(4))))); 
    set(handles.column_slider,'Value', rad2deg(handles.u0(4))); 
    set(handles.stabilizer_edit,'String', num2str(round(rad2deg(handles.u0(1)))));  
    set(handles.wheel_edit,'String', num2str(round(rad2deg(handles.u0(2)))));  
    set(handles.wheel_slider,'Value', rad2deg(handles.u0(2))); 
    set(handles.throttle_edit,'String', num2str(round(100 * (handles.throttle_value / 222400)))); 
    set(handles.throttle_slider,'Value', round(100 * (handles.throttle_value / 222400)));  
    set(handles.show_height_text,'String', num2str(round(handles.x0(10))));  
    set(handles.show_vtas_text,'String', num2str(round(handles.x0(4))));  
    set(handles.show_yaw_angle_text,'String', num2str(round(rad2deg(handles.x0(9))))); 
     
    % Update display images: 
     
    % Update stabilizer animation: 
    axes(handles.stabilizer_axes); 
    hold on; 
    stabilizer_y = 18.75 + (round(rad2deg(handles.u0(1))) * 10.1); 
    set(handles.stabilizer_line,'YData',[stabilizer_y, stabilizer_y]); 
    drawnow;  
    hold off; 
      
    % Update pedal animation: 
    axes(handles.pedal_axes); 
    hold on; 
    pedal_x = 68 + (round(rad2deg(handles.u0(3))) * 3.3); 
    set(handles.pedal_line,'XData',[pedal_x, pedal_x]); 
    drawnow;  
    hold off; 
     
     
    % Update aircraft figure: 
    axes(handles.horizon_axes); 
    hold on; 
     
 
    % Height adjustment: 
    % Pitch angle: 
    anglep = rad2deg(handles.x0(8)); 
    % Translate takes you directly to pitch angle desired. 
    pitch = makehgtform('translate',[0 anglep 0]); 
    set(handles.transform,'Matrix',pitch); 
     
    % Bank adjustment: 
    % Roll angle: 
    
    
    if handles.reset == 1 
        rotation_angle = get(handles.line(1),'UserData'); 
        % Turn reset flag off: 
        handles.reset = 0; 
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    else 
        rotation_angle = 0; 
    end 
 
    angle_roll = rad2deg(handles.x0(7)); 
     
    center = [100 100 0]; 
    zdir = [0 0 1]; 
 
   if rotation_angle > angle_roll 
        angle = - abs(rotation_angle - angle_roll); 
        if angle_roll < 0 
            rotate(handles.line,zdir,-angle, center); 
        else 
            rotate(handles.line,zdir,-angle, center); 
        end 
        set(handles.line(1),'UserData', (rotation_angle + angle)); 
 elseif rotation_angle < angle_roll 
        angle = abs(angle_roll - rotation_angle); 
        if angle_roll < 0 
            rotate(handles.line,zdir,angle, center); 
        else 
            rotate(handles.line,zdir,-angle, center); 
        end 
        set(handles.line(1),'UserData', (rotation_angle + angle)); 
    else 
        angle = 0; 
        rotate(handles.line,zdir,angle, center); 
        set(handles.line(1),'UserData',rotation_angle); 
    end 
      
    hold off; 
     
 
    % Update pilot variable for model: 
    handles.pilot = [handles.u0(4) handles.u0(2) handles.u0(3) handles.u0(1)... 
    handles.Tn0(1) handles.Tn0(2) handles.Tn0(3) handles.Tn0(4)];  
    assignin('base','pilot',handles.pilot); 
    % pilot = [ column wheel pedal stabilizer thrust1 thrust2 thrust3 trust4] 
     
    % Update handles structure 
    guidata(hObject, handles); 
    
else 
     errordlg('Initialization error. Restart application', 'GPIS Initialization Error'); 
end 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% SLIDER/EDIT BOX SECTION   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%========================================================================% 
% --- Executes during object creation, after setting all properties. 
function pedal_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to pedal_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
%========================================================================% 
function pedal_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to pedal_edit (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% Ensure model is open 
model_open(handles); 
 
disp_pedal = str2double(get(handles.pedal_edit,'String')); 
 
% Get range information stored in user data: 
deflection_range = get(handles.pedal_edit,'UserData'); 
 
% Determine whether disp_pedal is a number between -13 and 13 
if isnumeric(disp_pedal) & ... 
    disp_pedal >= deflection_range(1) & ... 
    disp_pedal <= deflection_range(2) 
    set(hObject,'String', disp_pedal); 
     
    % Update stabilizer animation: 
    axes(handles.pedal_axes); 
    hold on; 
    pedal_x = 68 + (disp_pedal * 3.3); 
    set(handles.pedal_line,'XData',[pedal_x, pedal_x]); 
    drawnow;  
    hold off; 
     
    % Store changed attribute 
    handles.pilot(3) = deg2rad(-disp_pedal); 
    assignin('base','pilot',handles.pilot); 
    handles.pedal_prev_value = disp_pedal; 
    guidata(hObject,handles); % store the changes 
else 
    % Display previous value 
    guidata(hObject,handles); % store the changes 
    set(handles.pedal_edit,'String', handles.pedal_prev_value); 
end 
 
 
 
%========================================================================% 
% --- Executes during object creation, after setting all properties. 
function wheel_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to wheel_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
%========================================================================% 
function wheel_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to wheel_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Ensure model is open 
model_open(handles); 
 
disp_wheel= str2double(get(handles.wheel_edit,'String')); 
 
% Determine whether disp_wheelis a number between -88 and 88 
if isnumeric(disp_wheel) & ... 
    disp_wheel >= get(handles.wheel_slider,'Min') & ... 
    disp_wheel <= get(handles.wheel_slider,'Max') 
    set(hObject,'String', disp_wheel); 
    set(handles.wheel_slider,'Value',disp_wheel); 
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    % Store changed attribute 
    handles.pilot(2) = deg2rad(disp_wheel);  
    assignin('base','pilot',handles.pilot); 
    guidata(hObject,handles); % store the changes 
else 
    % Display previous value 
    guidata(hObject,handles); % store the changes 
    set(handles.wheel_edit,'String', num2str(get(handles.wheel_slider,'Value'))); 
end 
 
 
%========================================================================% 
% --- Executes during object creation, after setting all properties. 
function wheel_slider_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to wheel_slider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
usewhitebg = 1; 
if usewhitebg 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
%========================================================================% 
% --- Executes on slider movement. 
function wheel_slider_Callback(hObject, eventdata, handles) 
% hObject    handle to wheel_slider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Ensure model is open 
model_open(handles); 
 
set(handles.wheel_edit,'String',num2str(get(handles.wheel_slider,'Value'))); 
% Store changed attribute 
handles.pilot(2) = deg2rad(get(handles.wheel_slider,'Value'));  
assignin('base','pilot',handles.pilot); 
guidata(hObject,handles); % store the changes 
 
 
%========================================================================% 
% --- Executes during object creation, after setting all properties. 
function column_slider_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to column_slider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
usewhitebg = 1; 
if usewhitebg 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
%========================================================================% 
% --- Executes on slider movement. 
function column_slider_Callback(hObject, eventdata, handles) 
% hObject    handle to column_slider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Ensure model is open 
model_open(handles); 
 
set(handles.column_edit,'String',num2str(get(handles.column_slider,'Value'))); 
% Store changed attribute 
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handles.pilot(1) = deg2rad(get(handles.column_slider,'Value'));  
assignin('base','pilot',handles.pilot); 
guidata(hObject,handles); % store the changes 
 
 
%========================================================================% 
% --- Executes during object creation, after setting all properties. 
function column_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to column_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
%========================================================================% 
function column_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to column_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Ensure model is open 
model_open(handles); 
 
 
disp_column = str2double(get(handles.column_edit,'String')); 
 
% Determine whether disp_column is a number between -12 and 12 
if isnumeric(disp_column) & ... 
    disp_column >= get(handles.column_slider,'Min') & ... 
    disp_column <= get(handles.column_slider,'Max') 
    set(hObject,'String', disp_column); 
    set(handles.column_slider,'Value',disp_column); 
    % Store changed attribute 
    handles.pilot(1) = deg2rad(disp_column);  
    assignin('base','pilot',handles.pilot); 
    guidata(hObject,handles); % store the changes 
else 
    % Display previous value 
    guidata(hObject,handles); % store the changes 
    set(handles.column_edit,'String',num2str(get(handles.column_slider,'Value'))); 
end 
 
 
%========================================================================% 
% --- Executes during object creation, after setting all properties. 
function throttle_slider_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to throttle_slider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: slider controls usually have a light gray background, change 
%       'usewhitebg' to 0 to use default.  See ISPC and COMPUTER. 
usewhitebg = 1; 
if usewhitebg 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
%========================================================================% 
% --- Executes on slider movement. 
function throttle_slider_Callback(hObject, eventdata, handles) 
% hObject    handle to throttle_slider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Ensure model is open 
model_open(handles); 
 
set(handles.throttle_edit,'String',num2str(get(handles.throttle_slider,'Value'))); 
 
%Value of thrust in Newtons 
handles.throttle_value = ((get(handles.throttle_slider,'Value')) / 100 ) * 222400; 
% Store changed attribute 
handles.pilot(5:8) = handles.throttle_value; %replicate value to all Tn positions 
assignin('base','pilot',handles.pilot); 
guidata(hObject,handles); % store the changes 
 
%========================================================================% 
% --- Executes during object creation, after setting all properties. 
function throttle_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to throttle_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
%========================================================================% 
function throttle_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to throttle_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Ensure model is open 
model_open(handles); 
 
disp_throttle = str2double(get(handles.throttle_edit,'String')); 
 
% Determine whether disp_throttle is a number from 0 to 100 percent 
if isnumeric(disp_throttle) & ... 
    disp_throttle >= get(handles.throttle_slider,'Min') & ... 
    disp_throttle <= get(handles.throttle_slider,'Max') 
    set(hObject,'String', disp_throttle); 
    set(handles.throttle_slider,'Value',disp_throttle); 
     
    %Value of thrust in Newtons 
    handles.throttle_value = (disp_throttle / 100 ) * 222400; 
     
    % Store changed attribute 
    handles.pilot(5:8) = handles.throttle_value;  
    assignin('base','pilot',handles.pilot); 
    guidata(hObject,handles); % store the changes 
else 
    % Display previous value 
    guidata(hObject,handles); % store the changes 
    set(handles.throttle_edit,'String',num2str(get(handles.throttle_slider,'Value'))); 
end 
 
%========================================================================% 
% --- Executes during object creation, after setting all properties. 
function stabilizer_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to stabilizer_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
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%========================================================================% 
function stabilizer_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to stabilizer_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Ensure model is open 
model_open(handles); 
 
disp_stabilizer = str2double(get(handles.stabilizer_edit,'String')); 
 
% Get range information stored in user data: 
deflection_range = get(handles.stabilizer_edit,'UserData'); 
 
% Determine whether disp_stabilizer is a number between 0 and 14 
if isnumeric(disp_stabilizer) & ... 
    disp_stabilizer >= deflection_range(1) & ... 
    disp_stabilizer <= deflection_range(2) 
    set(hObject,'String', disp_stabilizer); 
     
    % Update stabilizer animation: 
    axes(handles.stabilizer_axes); 
    hold on; 
    stabilizer_y = 18.75 + (disp_stabilizer * 10.1); 
    set(handles.stabilizer_line,'YData',[stabilizer_y, stabilizer_y]); 
    drawnow;  
    hold off; 
     
    % Store changed attribute 
    handles.pilot(4) = deg2rad(disp_stabilizer);  
    assignin('base','pilot',handles.pilot); 
    handles.stabilizer_prev_value = disp_stabilizer; 
    guidata(hObject,handles); % store the changes 
else 
    % Display previous value 
    guidata(hObject,handles); % store the changes 
    set(handles.stabilizer_edit,'String', handles.stabilizer_prev_value); 
end 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%% 
% PUSHBUTTON SECTION  % 
%%%%%%%%%%%%%%%%%%%%%%% 
 
%========================================================================% 
% --- Executes on button press in simulate_pushbutton. 
function simulate_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to simulate_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Ensure model is open 
model_open(handles); 
 
% Start model simulation: 
if handles.file == 1 
    set_param('mcu_testbedV70_file', 'SimulationCommand', 'start'); 
     
    % Enable the Stop button 
    set([handles.end_simulation_pushbutton],'Enable','on') 
    % Turn menu option on 
    set(handles.reset_menu, 'Enable','on'); 
else 
    set_param('mcu_testbedV70', 'SimulationCommand', 'start'); 
    
    % Enable the Pause,Update, and Stop buttons 
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    set([handles.pause_pushbutton,handles.update_pushbutton,handles.end_simulation_pushbutton],'Enable','on') 
    % Turn menu option on 
    set(handles.reset_menu, 'Enable','on'); 
end 
 
 
 
guidata(hObject,handles); % store the changes 
 
 
 
%========================================================================% 
% --- Executes on button press in pause_pushbutton. 
function pause_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to pause_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
set_param('mcu_testbedV70', 'SimulationCommand', 'pause'); 
set_param('mcu_testbedV70', 'SimulationCommand', 'pause'); 
set_param('mcu_testbedV70', 'SimulationCommand', 'pause'); 
 
 
%========================================================================% 
% --- Executes on button press in update_pushbutton. 
function update_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to update_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%Check status of simulation: 
status = get_param('mcu_testbedV70', 'SimulationStatus'); 
 
if strcmp(status,'paused') 
    set_param('mcu_testbedV70', 'SimulationCommand', 'update'); 
    set_param('mcu_testbedV70', 'SimulationCommand', 'continue'); 
elseif strcmp(status,'stopped') 
    set_param('mcu_testbedV70', 'SimulationCommand', 'update'); 
    set_param('mcu_testbedV70', 'SimulationCommand', 'continue'); 
else 
    errordlg('Simulation must be paused first.', 'Simulation Run Error'); 
end 
 
%========================================================================% 
% --- Executes on button press in end_simulation_pushbutton. 
function end_simulation_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to end_simulation_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% End simulation: 
if handles.file == 1 
    set_param('mcu_testbedV70_file', 'SimulationCommand', 'stop'); 
    set_param('mcu_testbedV70_file', 'SimulationCommand', 'stop'); 
    set_param('mcu_testbedV70_file', 'SimulationCommand', 'stop'); 
else 
    set_param('mcu_testbedV70', 'SimulationCommand', 'stop'); 
    set_param('mcu_testbedV70', 'SimulationCommand', 'stop'); 
    set_param('mcu_testbedV70', 'SimulationCommand', 'stop'); 
end 
 
%Parameters sent to base workspace: 
% x, xobs, xdotobs, yobs, yacc, deltas, y, u, ut, uctrl, Tn, uact_surf, uact_eng, 
% ref. The last three are not important. 
 
% Variables of interest in base workspace are: 
% - uctrl control surface deflection in degrees 
% - xobs variations in displacement(height, speed),airplane body angles (roll, pitch, yaw) 
% - Tn engine thrust variations 
uctrl = evalin('base','uctrl'); 
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xobs = evalin('base','xobs'); 
Tn = evalin('base','Tn'); 
t = evalin('base','t'); 
vars = ['uctrl';'xobs ';'Tn   ';'t    ']; 
filename = 'outputs';  
uisave(vars,filename); 
   
guidata(hObject, handles); % store changes 
     
 
% Turn reset button on 
set(handles.reset_pushbutton, 'Visible','on'); 
 
% Disable the Pause,Update, and Stop buttons 
set([handles.pause_pushbutton,handles.update_pushbutton,handles.end_simulation_pushbutton],'Enable','off') 
 
 
%========================================================================% 
% --- Executes on button press in reset_pushbutton. 
function reset_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to reset_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Reset button triggered: 
handles.reset = 1; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% Update display to starting point: 
handles = initialize_update_display(hObject, handles); 
%handles = initialize_background(hObject, handles);  
 
% Turn button off 
set(handles.reset_pushbutton, 'Visible','off'); 
 
% Turn reset menu off 
set(handles.reset_menu, 'Enable','off'); 
 
% Update handles structure 
guidata(hObject, handles); 
 
 
 
%========================================================================% 
% --- Executes on button press in help_button. 
function help_button_Callback(hObject, eventdata, handles) 
% hObject    handle to help_button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
path = which('B747SimpleHowTo.pdf'); 
open(path);  
 
 
%========================================================================% 
% --- Executes on button press in close_button. 
function close_button_Callback(hObject, eventdata, handles) 
% hObject    handle to close_button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
selection = questdlg(['Are you sure you want to exit ' get(handles.output,'Name') '?'],... 
                     ['Confirm Close'],'Yes','No','Yes'); 
if strcmp(selection,'No') 
    return; 
end 
 
close(handles.output); 
if handles.file == 1 
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 close_system('mcu_testbedV70_file',0); 
else 
    close_system('mcu_testbedV70',0); 
end 
clear all; 
 
 
%%%%%%%%%%%%%%%%%%%%%%% 
%    MENU SECTION     % 
%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%========================================================================% 
function file_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to file_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
%========================================================================% 
function reset_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to reset_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Reset triggered: 
handles.reset = 1; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% Update display to starting point: 
handles = initialize_update_display(hObject, handles); 
%handles = initialize_background(hObject, handles);  
 
% Turn menu option off 
set(handles.reset_menu, 'Enable','off'); 
 
% Turn button off 
set(handles.reset_pushbutton, 'Visible','off'); 
 
% Update handles structure 
guidata(hObject, handles); 
 
 
%========================================================================% 
function setup_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to load_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Restart process: 
setup; 
 
 
%========================================================================% 
function background_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
selection = questdlg('Background display desired:', 'Background Selection', 'Cockpit','Sky','Terrain','Terrain'); 
 
switch selection 
    case 'Cockpit' 
        handles.name = 'cockpit.jpg';  
        initialize_background(hObject, handles); 
    case 'Sky' 
        handles.name = 'sky.jpg';  
        initialize_background(hObject, handles); 
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    case 'Terrain' 
        handles.name = 'terrain.jpg';  
        initialize_background(hObject, handles); 
end %end switch 
         
 
%========================================================================% 
function save_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to save_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
%Parameters sent to base workspace: 
% x, xobs, xdotobs, yobs, yacc, deltas, y, u, ut, uctrl, Tn, uact_surf, uact_eng, 
% ref. The last three are not important. 
 
% Variables of interest in base workspace are: 
% - uctrl control surface deflection in degrees 
% - xobs variations in displacement(height, speed),airplane body angles (roll, pitch, yaw) 
% - Tn engine thrust variations 
uctrl = evalin('base','uctrl'); 
xobs = evalin('base','xobs'); 
Tn = evalin('base','Tn'); 
t = evalin('base','t'); 
vars = ['uctrl';'xobs ';'Tn   ';'t    ']; 
filename = 'outputs';  
uisave(vars,filename); 
guidata(hObject, handles); 
 
 
 
%========================================================================% 
function print_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to print_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
printdlg(handles.output) 
 
%========================================================================% 
function print_setup_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to print_setup_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
printdlg('-setup',handles.output) 
 
%========================================================================% 
function close_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to cloae_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
selection = questdlg(['Are you sure you want to exit ' get(handles.output,'Name') '?'],... 
                     ['Confirm Close'], 'Yes','No','Yes'); 
if strcmp(selection,'No') 
    return; 
end 
 
close(handles.output); 
if handles.file == 1 
    close_system('mcu_testbedV70_file',0); 
else 
    close_system('mcu_testbedV70',0); 
end 
clear all; 
 
%========================================================================% 
function help_menu_Callback(hObject, eventdata, handles) 
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% hObject    handle to help_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%========================================================================% 
function keyboard_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to keybozrd_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Assume file is in same directory 
path = which('keyboardinput.doc'); 
 
% Code modified from [15] 
word = actxserver('Word.Application'); 
set(word,'Visible',1); 
 
try invoke(word.Documents, 'Open', [path]); 
catch error('Cannot open file and/or file does not exist!'); 
end % end try 
 
 
%========================================================================% 
function manual_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to manual_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Assume file is in same directory 
path = which('usermanual.pdf'); 
open(path);  
 
%========================================================================% 
function about_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to about_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
about_GUI; 
 
 
%========================================================================% 
function exit_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to exit_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
selection = questdlg(['Are you sure you want to exit ' get(handles.output,'Name') '?'],... 
                     ['Confirm Close'], 'Yes','No','Yes'); 
if strcmp(selection,'No') 
    return; 
end 
 
close(handles.flight_GUI); 
if handles.file == 1 
    close_system('mcu_testbedV70_file',0); 
else 
    close_system('mcu_testbedV70',0); 
end 
clear all; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    RADIOBUTTONS SECTION     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%========================================================================% 
% --- Executes on button press in keyboard_radiobutton. 
function keyboard_radiobutton_Callback(hObject, eventdata, handles) 
% hObject    handle to keyboard_radiobutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% Check status of simulation: 
if handles.file == 1 
    status = get_param('mcu_testbedV70_file', 'SimulationStatus'); 
else 
    status = get_param('mcu_testbedV70', 'SimulationStatus'); 
end 
 
 
if (status ~= 'stopped') 
    if handles.file == 1 
        set_param('mcu_testbedV70_file', 'SimulationCommand', 'stop'); 
    else 
        set_param('mcu_testbedV70', 'SimulationCommand', 'stop'); 
    end 
end 
 
if (get(hObject,'Value') == get(hObject,'Max'))% Radio button is selected 
    % Ensure other radiobutton is off 
    set(handles.file_radiobutton,'Value',0); 
    set(handles.flight_GUI, 'KeyPressFcn','keypress'); 
    handles.file = 0; % simulation controlled by keyboard 
    % Ensure proper model is open 
    model_open(handles); 
    % Model run from keyboard 
    set_param('mcu_testbedV70/output/updatedisplay','UserData', handles); 
    guidata(hObject,handles); % store the changes 
     
    % Warn user that simulation must be restarted: 
    errordlg('Operation mode changed. Simulation must be restarted.', 'Operation Mode Changed'); 
end 
    % Do nothing if radio button is not selected 
     
     
 
 
 
%========================================================================% 
% --- Executes on button press in file_radiobutton. 
function file_radiobutton_Callback(hObject, eventdata, handles) 
% hObject    handle to file_radiobutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%Check status os simulation: 
status = get_param('mcu_testbedV70', 'SimulationStatus'); 
 
if (status ~= 'stopped') 
    set_param('mcu_testbedV70', 'SimulationCommand', 'stop'); 
end 
 
if (get(hObject,'Value') == get(hObject,'Max'))% Radio button is selected 
    % Ensure other radiobutton is off 
    set(handles.keyboard_radiobutton,'Value',0); 
    set(handles.flight_GUI, 'KeyPressFcn',[]); 
     
    % File will run simulation: 
    handles.file = 1; 
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    [filename,pathname] = uigetfile('',' Select file to execute simulation:'); 
 
    if isequal([filename,pathname],[0,0]) 
        % Issue error dialog box: 
        errordlg('No file was selected.', 'File Selection Error'); 
        handles.file = 0; 
    else 
        file = fullfile(pathname,filename); 
        % Must load variables called simrun and time 
        load testing 
        %load file; % NOTE: path must not contain blank spaces. 
         
        % Variable to calculate time variables: 
        %temp = length(simrun); 
         
        % Final time to execute simulation: 
        %tstop = temp * 0.2; 
         
        % Create appropiate time variable to run file mode 
        %time = (0 : (temp - 1))'; 
     % Save loaded variable in base workspace to be accessed by Simulink 
        assignin('base','simrun', simrun); 
        assignin('base','time', time); 
        %assignin('base','tstop', tstop); 
        % Ensure proper model is open 
        model_open(handles); 
        % Model run from file 
        set_param('mcu_testbedV70_file/output/updatedisplay','UserData', handles); 
         
        % Warn user that simulation must be restarted: 
        errordlg('Operation mode changed. Simulation must be restarted.', 'Operation Mode Changed'); 
    end 
     
 guidata(hObject,handles); % store the changes 
     
end 
% Do nothing if radio button is not selected 
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sfundisplay.m 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
% FUNCTION NAME:    sfundisplay                         Coding started: 01/19/05 
%                                                       Last revision: 08/24/05 
%        
% PURPOSE:          Update display.   
%                    
% ACTIONS:          Gets xobs and handles structure from base workspace. 
%                   Use parameters to update GUI.  
% 
% 
% REMARKS:          Built from s-function template (Copyright 1990-2002 The MathWorks, Inc.) 
%                   Revision: 1.18 
%                   Matlab 6.5 can be used. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
 
 
function [sys,x0,str,ts] = sfundisplay(t,x,u,flag) 
switch flag, 
 
  %%%%%%%%%%%%%%%%%% 
  % Initialization % 
  %%%%%%%%%%%%%%%%%% 
  case 0, 
    [sys,x0,str,ts]= mdlInitializeSizes; 
 
  %%%%%%%%%% 
  % Update % 
  %%%%%%%%%% 
  case 2, 
    sys = mdlUpdate(t,x,u); 
     
  %%%%%%%%%%%%%%%%%%% 
  % Unhandled flags % 
  %%%%%%%%%%%%%%%%%%% 
  case { 1, 3, 4, 9 } 
% Don't do anything 
 
  %%%%%%%%%%%%%%%%%%%% 
  % Unexpected flags % 
  %%%%%%%%%%%%%%%%%%%% 
  otherwise 
    error(['Unhandled flag = ',num2str(flag)]); 
 
end 
 
 
 
%%============================================================================= 
% mdlInitializeSizes 
% Return the sizes, initial conditions, and sample times for the S-function. 
%============================================================================= 
 
function [sys,x0,str,ts]=mdlInitializeSizes 
 
sizes = simsizes; 
 
sizes.NumContStates  = 0; 
sizes.NumDiscStates  = 0; 
sizes.NumOutputs     = 0; 
sizes.NumInputs      = 12; 
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sizes.DirFeedthrough = 1; 
sizes.NumSampleTimes = 1;   % at least one sample time is needed 
 
sys = simsizes(sizes); 
 
% initialize the initial conditions 
x0  = []; 
 
% str is always an empty matrix 
str = []; 
 
% initialize the array of sample times 
ts  = [0 0]; 
 
% end mdlInitializeSizes 
 
 
%============================================================================= 
% mdlUpdate 
% Handle discrete state updates, sample time hits, and major time step 
% requirements. 
%============================================================================= 
 
function sys=mdlUpdate(t,x,u) 
 
sys = []; 
xobs = [u(1) u(2) u(3) u(4) u(5) u(6) u(7) u(8) u(9) u(10) u(11) u(12)] ; 
 
% fig_handle is handle of figure where animation takes place: 
block_handle = gcb; 
handles = get_param(block_handle,'UserData'); 
fig_handles = handles.flight_GUI; 
% Check figure has been opened: 
if ~ishandle(fig_handles) 
    gpis; 
end 
 
    % Update display: 
    handles.xobs = xobs; % xobs = [p q r Vtas alpha beta phi theta psi he xe ye]; 
    disp_height = handles.xobs(10); 
  
    if disp_height <= -1  
        % Don't forget that I is uint8 which is integer. You can convert it 
     % to double by: 
        crashed_I = double(handles.I); 
        r = crashed_I(:,:,1); % red component 
        r = (r + 1000); % you can increase by any number 
        r = r * 255 / max(max(r)); % to scale between [0,255] 
        % Add modified red component to image 
        crashed_I(:,:,1) = r; 
        image(uint8(crashed_I)); % convert back and display image 
         
        % Log error message: 
      errordlg('Aircraft crashed!', 'Simulation Ended'); 
        % Stop simulation: 
      set_param('mcu_testbedV70', 'SimulationCommand', 'stop'); 
        % Disable the Pause,Update, and Stop buttons 
        set([handles.pause_pushbutton,handles.update_pushbutton,handles.end_simulation_pushbutton],'Enable','off') 
        % Turn reset button on 
        set(handles.reset_pushbutton, 'Visible','on'); 
    end 
 
 
    % Values for display 
    set(handles.show_height_text,'String', num2str(round(handles.xobs(10))));  
    set(handles.show_vtas_text,'String', num2str(round(handles.xobs(4))));  
    set(handles.show_yaw_angle_text,'String', num2str(round(rad2deg(handles.xobs(9))))); 
     
    %Update display images: 
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    %Update aircraft figure: 
    axes(handles.horizon_axes); 
 
    % Height adjustment: 
    % Pitch angle: 
    anglep = rad2deg(handles.xobs(8)); 
    % Translate takes you directly to pitch angle desired. 
    pitch = makehgtform('translate',[0 anglep 0]); 
    set(handles.transform,'Matrix',pitch); 
     
    % Bank adjustment: 
    % Roll angle: 
     
    angle_roll = rad2deg(handles.xobs(7)); % new rotation angle 
    % previous rotation angle 
    rotation_angle = get(handles.line(1),'UserData'); 
    center = [100 100 0]; 
    zdir = [0 0 1]; % axis about which we rotate 
 
    if rotation_angle > angle_roll 
        angle = - abs(rotation_angle - angle_roll); 
        if angle_roll < 0 
            rotate(handles.line,zdir,-angle, center); 
        else 
            rotate(handles.line,zdir,-angle, center); 
        end 
        set(handles.line(1),'UserData', (rotation_angle + angle)); 
 elseif rotation_angle < angle_roll 
        angle = abs(angle_roll - rotation_angle); 
        if angle_roll < 0 
            rotate(handles.line,zdir,angle, center); 
        else 
            rotate(handles.line,zdir,-angle, center); 
        end 
        set(handles.line(1),'UserData', (rotation_angle + angle)); 
    else 
        angle = 0; 
        rotate(handles.line,zdir,angle, center); 
        set(handles.line(1),'UserData',rotation_angle); 
    end 
     
 
% end mdlUpdate 
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graph.m 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
% FUNCTION NAME:    graph                               Coding started: 08/15/05 
%                                                       Last revision: 08/20/05 
%        
% PURPOSE:          Graph outputs to a figure from a previously run simulation.   
%                    
% KEY ACTIONS:      The parameters that are graphed are: uctrl, Tn, and 
%                   xobs. They provide the most useful informational for 
%                   analysis. 
% 
% REMARKS:          Code for this function extracted from FTLAB747. 
%                   Matlab 6.5 can be used. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
 
% Create figure: 
figure() 
 
% Create subplot: 
subplot(221) 
plot(t,(180/pi)*uctrl(:,1:4)); 
title('Control Surfaces');    
xlabel('time(sec)'), ylabel('deflection(degrees)'); 
legend('elevator','aileron','rudder','stablizer'); 
 
% Create subplot: 
subplot(222) 
plot(t,Tn); 
title('Engine Thrust'); 
xlabel('time(sec)'), ylabel('Thrust(N)'); 
legend('Eng 1','Eng 2','Eng 3', 'Eng 4'); 
 
% Create subplot: 
subplot(223) 
plot(t,(180/pi)*xobs(:,5:9)); 
title('Airplane Body Angles'); 
xlabel('time(sec)'), ylabel('angles(degrees)'); 
legend('attack ', 'sideslip', 'roll', 'pitch', 'yaw'); 
 
% Create subplot: 
subplot(224) 
plot(t, [xobs(:,4)/10 xobs(:,10)/100 xobs(:,11)/100 xobs(:,12)/10]) 
title('Variations in Linear Displacements'); 
xlabel('time(sec)'), ylabel('linear displacements'); 
legend('V_{TAS}/10','Height/100','x/100','y/10');
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Appendix E 
 
Boeing 747 Information 
  
 Appendix E included to provide general information on the performance capabilities of a 
Boeing 747 today. In addition, we have added a few images to help the user visualize the aircraft 
in question used for this research initiative.  
 
 
E.1 Cockpit Layout of Boeing 747 

 
The following image is used to give the user a feel of what elements in the cockpit the 

GPIS tool is meant to portray. 
 
 
 

 
 

Figure E.1 Pilot control inputs in a Boeing 747 cockpit [30] 
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E.2 Boeing 747 General Specs 
 

Following, Table E.1 lists the main performance characteristics and dimensions of a 
modern day Boeing 747. 
 

Table E. 1: Boeing 747 performance and dimensions [42] 

 
 
 
 
 

 
Figure E.2: General dimensions of the Boeing 747-400 [42] 
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Figure E.3: General arrangement of the Boeing 747-400 [42] 
 
 
 

 
 

Figure E.4: Typical engine installed on a Boeing 747. Shown is cutaway JT9D engine (Pratt & 
Whitney) [42] 
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