
 

 

 

 

 

 

 

 

 

 

 

 

 

Lab manual for 

Subject: System Programming 

 

Class : sixth semester(CSE) 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



List  of Practical. 

 
1) Write a Program to create ,read , and write into a file having record of 

students. 
2) a) Write a program to generate Machine Op-Code Table , Symbol 

Table and Pseudo Op- Code table during First Pass  Assembler. 
b) Write a program to generate Machine Op- code table using Two 
pass Assembler. 

     3) a) Write a program to Generate Macro Name Table , Macro definition  
Table  and Argument List Array during Pass One of Two Pass 
Macro. 

          b) Write a program to generate Expanded Source in Pass Two of Two 
Pass Macro. 

     4) Study of Lexical Analyzer. 
     5) Study of Device Drivers. 
     6) Study and implement general purpose commands in UNIX . ( Date , 

Who , Who am I, Cal, Echo , Clear, Mesg, Mail, and Login 
Command) 

    7) To Study and implement all the directory oriented Commands of  
UNIX( Cd , MKdir , rmdir, And Pwd Command) 

     8)  To Study and implement all the File oriented Commands of UNIX( ls-  
list files, Cat, cp, rm commands)  

     9) To study implement HEAD, TAIL , CUT and PASTE commands. 
    10) To Study Common Object File Format(COFF) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Practical I :  

 

Aim: Write a program to create , read  and write into a file having record of 
Students. 
 
Theory: 

 

Opening a File  

 

To open a file we use fopen() 
 
$filename= ‘c:\file.txt’; 
$fp = fopen($filename,”r”); 
 
The fopen() function normally uses two parameters. The first is the file 
which we want to open. This can be a file on your system. In this example 
we are opening a text file on a windows machine . The second parameter is 
the “mode”. We can open a file for only reading. We can open a file for only 
writing . We can open a file for reading and writing . In the above example 
”r” means reading. 
 
Reading Info from a File: 

 
After we have opened the file , we will probably want to do something with 

it.  To read the contents of a file into a variable we use fread(). 
 
$contents= fread( $fp, filesize($filename)); 
fclose($fp); 
 
Now fread() also uses two parameters. The first parameter is the variable to 

which we assigned the fopen() function, the second is the number of 
bytes we want to read up to in the file. In this case we want to read the 
entire file, so we use the filesize() function to get the size of the file 
specified in the $filename variable. Thus, it reads the entire file in. 

 
Let us assume C: file.txt contains: 
 
Line1 
Line2 



Line3 
Line4 
Line5 
 
 
So now $contents would contain: 
$contents= “line1\n line2\ n line3\n line4\n line5”; 
If we printed the variable out the output would be: 
 
Line1 
Line2 
Line3 
Line4 
Line5 
 
The contents of the file are read into a string , complete with newline 

characters( \n. We can then process this string however we like. 
 
Write To a File:  

 

We can also write data into a file once we have opened it. To do this we use 
the fputs() function. 

 
$filename = ‘C: \file .txt ‘; 
$fp = fopen( $filename, “a”); 
$string=”\nline5”; 
$write=fputs($fp,$string); 
fclose($fp); 
 
Firstly we open the file. Notice the “a” parameter ? That means “open the 

file for writing only, and place the file pointer at the end of the file”.  
 
We then use fputs() to write to the file. We then close the file. So now what 

will the file contain/ 
 
Line1 
Line2 
Line3 
Line4 
Line5 



Modes: 

 

There are various modes you can use to open a file, they are listed on the 
php.net fopen() function page, but I’ll stick them up on here too. 

 

•  ‘r’ – Open for reading only, place the file pointer at the beginning of 
the file. 

• ‘r+’- Open for reading and Writing ; place the file pointer at the 
beginning of the file. 

• ‘w’- Open for writing only, place the file pointer at the beginning of 
the file and truncate the file to zero length. If the file does not exist , 
attempt to create it. 

• ‘a’- Open for writing only, place the file pointer at the end of the file. 
If the file does not exist, attempt to create it. 

• ‘a+’- Open for reading and writing ; place the file pointer at the end of 
the file. If the file does not exist , attempt to create it. 

 
 
Viva Voice:  

 

1) What is the use of fseek() function? 
2) What is the difference between getw() and getc() function. 
3) What is the use of ftell() function? 
4) How we are creating file? 
5) What is the difference between fscanf() and fread()? 
6) What is the difference between fprintf() and fwrite()? 
7) What are the different techniques of file handing? 

 

 

 
 
 
 
 
 
 
 
 
 



Practical II: 

 

Aim:  

 

a) Write a Program to Generate Machine OP-Code table , Symbol table 
and Pseudo- Op-code table during First Pass of Two Pass Assembler. 

b) Write a program to generate Machine Code during Pass Two of Two 
Pass Assembler. 

 
Theory: 

 
Assembler translates a program written in assembly language and generates 
a sequence of machine instructions. In an assembly language program, 
generally there is one statement per line, which can be one of two types. 
 

1) Mnemonic machine instructions – each one is translated to a single 
executable instruction. 

2) Assembly directives, which control assembly processing . There are 
many types of directives; 

3) Location counter directives, which modify location of next 
instruction. 

 
Assemblers produce object code modules, symbol tables , and assembly 
listing , giving translation of each statement . A typical listing may contain. 
 
Line#  Label  Mnemonic  Operands  Comment       Location   Object Code 
12         A         ADD          #2, Reg1    ADD2          10002E      1200CF0F 
 
Object code denotes the code to be loaded at given memory location . It can 
denote either an executable machine instruction or some data to be stored at 
that location. 
 
Logic of Two pass Assemblers: 

 

 Pass-1( Gather Symbols) 
 
Assign address to each statement as per the size of each instruction and 
addressing modes. 
Save values of labels to be used in Pass-II 
Process assembler directives , Which affects address assignment . 



Write output to an intermediate file. 
 
Pass –II ( Assemble instruction) 

 
Assemble instructions as per opcode table and symbol values 
Generate data value for storage directives 
Perform assembly directives not done during pass –I 
Write object code and Symbol tables to a file and assembly listing to output 
device. 
 
Assembler skips all comments and detects errors in pass-I 
 
Viva Voice: 

 

1) What is the purpose of pass1 of assembler? 
2) What is the purpose of pass2 of assembler? 
3) What are the functions of POTGET, MOTGET,LTSTO, 

BTSTO,LITASS? 
4) What is the difference between MOT of pass1 &pass2? 
5) What are the examples of fixed tables? Why are they called fixed 

tables? 
6) What are the examples of variable tables? What is the purpose of 

variable tables? 
7) What are various operations before transferring control to pass2? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Practical III 

 

Aim:  

   
a) Write a program to generate Macro Name Table, Macro Definition  

table and argument list array in Pass One of Two Pass Macros. 
b) Write a program to generate expanded Source in Pass Two of Two 

Pass Macros. 
 
Theory: 

 
The assembly language programmer often finds it necessary to repeat some 
blocks f code many times during programming. The block may consist of 
code to save or exchange sets of registers or code to set up linkages or 
perform a series of arithmetic operations. Thus Macro facility is used here, 
Macro instruction (macros) are single line abbreviations for groups of 
instructions. 
 
In employing a macro , the programmer defines a single “instruction “ to 
represent a block of code . For every occurrence of this one line macro 
instruction in his program , the macro processing assembler will substitute 
the entire block. 
 
Implementation : 
 
Statement of Problem: 

1. Recognize macro definitions. 
2. Save the definitions 
3. Recognize calls 
4. Expand calls and substitute arguments. 

 
Specification of Databases 
 
Pass I data bases 

 

1. The input macro source deck. 
2. The output macro source desk copy for use by pass2 
3. The Macro definition Table , used to store the body of macro 

definitions 
4. The Macro Name Table, used to store the names of defined macro 



5. The Macro Definition Table Counter , used to indicate the next 
available entry in the MDT 

6. The Macro Name Table counter , used to indicate the next available 
entry in MNT 

7. The argument List array , used to substitute index markers for dummy 
arguments before storing a macro definition. 

 
Pass II database: 

    

1. The copy of the input macro source deck. 
2. The output expanded  source deck to be used as input to the assembler. 
3. The MDT created by pass I 
4. The MNT created by pass II  
5. The MDTP used to indicate the next line of text to be used during 

macro expansion. 
6. The ALA , used to substitute macro call arguments for the index 

markers in the stored macro definition. 
 
Viva Voice:  

 

1) What are the tasks performed by macro processor? 
2) What is the purpose of pass1 macro processor? 
3) What is the purpose of pass2 macro processor? 
4) What is the purpose of MDT table? 
5) What is the purpose of MNT table? 
6) What is the use of MDI & MDLC? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Practical IV: 

 
Aim:  Study of Lex- A Lexical Analyzer Generator. 
 

Theory:  

 
Lex is a program generator designed for lexical processing of character input 
streams. It accepts a high level, problem oriented specification for character 
string matching and  produces a program in a general purpose language 
which recognizes regular expressions. The user in the source specifications 
given to lex specifies the regular expressions. The Lex written code 
recognizes these expressions in an input stream and partitions the input 
stream into strings matching the expressions. At the boundaries between 
strings program sections provided by the user are executed. The Lex source 
file associates the regular expressions and the program fragments . As each 
expression appears in the input to the program written by lex , the 
corresponding fragment is excuted. 
 
Lex turns the user’s expressions and actions ( called source in this memo) 
into the host general purpose language; the generated program is named 
yylex. The yylex program will recognize expressions in a stream ( called 
input in this memo) and perform the specified actions for each expression as 
it is detected.  
 
           +--------------+   
          
     Source -> | Lex | ->yylex 
 
          +-------------+  
 
          +------------+  
   
  Input -> | yylex | -> Output 
 
          + ----------- +  
 
 An Overview of Lex 
 
Figure 1 
 



Working of LEX :  

 

Summary of Source Format. 

 

The general form of a Lex source file is: 
       { definitions} 
          %% 
       { rules} 
         %% 
       { user subroutines} 
 
The definitions section contains a combination of 
 

1) Definitions, in the form “ name space translation “ 
2) Included code, in the form “ space code” 
3) Include code ,  in the form  

 
                            %{  
                                   code 
 
                             %} 

4) Start conditions, given in the form 
                              %S name1 name2……….. 

5) Character set tables , in the form  
                              %T 
                             number space character-string 
                             …… 
                             %T 

6) Changes to internal array sizes, in the form  
                            %x nnn 
  Where nnn is a decimal integer representing an array size and x selects the 
parameter as follows. 
                Letter                     Parameter 
                  P                           Positions 
                  n                            States 
                  e                            tree nodes 
                  a                            transitions 
                  k                            packed character classes   
                  o                            output array size 
 



Lines in the rules section have the form “ expression action “ where the 
action may be continued on succeeding lines by using braces to delimit it. 
 
Regular expression in Lex use the following operators. 
 
x          the character “x” 
“x”     an “x” , even if x is an operator 
\x        an “x”, even if x is an operator. 
[xy]    the character x or y 
[x-z]   the characters x, y or z 
[ ^x]    any character but x. 
  .        any character but newline 
^x       an x at the beginning of a line. 
<y>x   an x when lex is in start condition y. 
x$       an x at the end of a line.                
x?       an optional x. 
x*       0,1,2,……..instances of x. 
x+       1,2,3,…….. instances of x. 
x | y     an x or a y.  
(x)      an x 
x / y    an x but only if followed by y 
{ xx }  the translation of xx from the definitions section. 
x{ m ,n }   m through n occurrences of x. 
 
Viva Voice:  

 
1) What is the role of lexical analyzer? 
2) Explain lexical analysis. 
3) What are the tokens, patterns , lexemes? 
4) How can you recognize a token? 
5) What are the various issues in lexical analysis? 
6) Explain 3 parts of the lex program. 
7) What are the Lex specifications? 
8) What are the rules used to define the lexical analysis function? 
9) What is the regular expression? 

 
                               
                             
 
 



Practical V:    

 

Aim: Study of Device drivers. 
 

Theory:  

 

Introduction:  

 

The purpose of a device driver is to handle requests  made by the kernel with 
regard to a particular type of device. There is a well defined and consistent 
interface for the kernel to make these requests. By isolating device specific 
code in device drivers and by having a consistent interface to the kernel, 
adding a new device is easier. 
 
A device driver is a software module that resides within the Digital Unix 
kernel and is the software interface to a hardware device or devices. A 
hardware device is a peripheral, such as a disk controller , tape controller , or 
network controller device. In general , there is a one device driver for each 
type of hardware device. Device drivers can be classified as: 
 

1) Block Device Drivers 
2) Character Device Drivers(including terminal drivers) 
3) Network Device Drivers 
4) Pseudodevice  drivers. 

 
1. Block Device Driver 

 

A  block device driver is a driver that performs I/O by using file system 
block sized buffers from a buffer cache supplied by the kernel. The kernel 
also provides for the device driver support interfaces that copy data between 
the buffer cache and the address space of a process. 
 
Block device drivers are particularly well- suited for disk drives, the most 
common block devices. For block devices , all I/O occurs through the buffer 
cache. 
 

2. Character Device Driver: 

 
A character device driver does not handle I/O through the buffer cache, so it 
is not tied to a single approach for handling I/O. You can use a character 



device driver for a device such as a line printer that handles one character at 
a time. However , character drivers are not limited to performing I/O one 
character at a time. ( despite the name “ character” driver) . For example , 
tape drivers frequently perform I/O in 10 K chunks. You can also use a 
character device driver when it is necessary to copy data directly to or from 
a user process. Because of their flexibility in handling I/O , many drivers are 
character drivers . Line printers, interactive terminals, and graphics displays 
are examples of devices that require character device drivers. 
 
A terminal device driver is actually a character device driver that handles 
I/O character processing for a variety of terminal devices. Like any character 
device, a terminal device can accept or supply a stream of data based on a 
request from a user process. It cannot be mounted as a file system and 
therefore does not use data caching. 
 
3. Network Device Driver 

 
A network Device driver attaches a network subsystem to a network 
interface , prepares the network interface for operation, and governs the 
transmission and reception of network frames over the network interface.  
 
4. Psedodevice Driver 

 
 Not all device drivers control physical hardware . Such device drivers are 
called “peudodevice” drivers. Like block and character device drivers , 
pseudodevice drivers make use of the device driver interfaces. Unlike block 
and character device drivers, pseudodevice  drivers do not operate on a bus. 
One example of a pseudodevice driver is the  pseudoterminal or pty terminal 
driver , which simulates a terminal device . The pty terminal driver is a 
character device driver typically used for remote logins. 
 
Viva Voice:  

 
1) What is a device driver? 
2) What is the difference between character driver and block driver? 
3) What are the header files included for line printer driver? 
4) What are the major design issues for designing a RAM derive? 
5) How do device drivers handle interrupts? 

 
 



 
Practical VI:  

 

Aim : To study and implement the general purpose commands in UNIX . 
(Date , Who , Who am I, Cal , Echo , Clear , Mesg , Mail and LOGIN 
command) 
 
Introduction: 

 
Commands: 

 
Login  

 
Syntax: $login[username] 
No Options 
Purpose: Sign on to another account 
 

Passwd 

 
Syntax: $passwd [username] 
No Options 
Purpose: Change Login password 
 

Man 

 
Syntax: $man[options][section]entry….. 
Options:- e option gives you a one line introduction to the command . Entry| 
more gives the pagewise introduction to the command 
Purpose:  Display On – Line UNIX user’s manual. 
 
Date 

 
Syntax: $date[username] 
No Options 
Purpose: Sign on to another account 
 

Mesg 

 
Syntax: $mesg[option] 
Options: none- Report your terminal write permission 



N   Remove write permission for your terminal 
Y   Grant write permission for your terminal 
 
Purpose: Permit or deny messages. 
 
Mail 

 
Syntax: $mail[option] 
             $mail username……. 
Options 
-p     Display entire contents of mailfile without prompting for instructions, 
then mail exits. 
-q     Cause mail to exit after receiving an interrupt signal without changing 
the mailfile 
-r      Reverse order in which mail displays messages. 
$mail username… 
Type your text here…. 
 
 
$mail 
From  username fri sep 7 12:40 PDT 1984 
Your text display here……….. 
 
?? 
q       quit 
x        exit without changing mail. 
P       print 
S[file]  save (default mbox) 
d        delete 
Purpose: Send or Receive electronic mail among users 
 
 
Echo 

 
Syntax: $echo[options][arg…….] 
Options:- n    Do not terminate output with a new line character 
Purpose:  Display the contents of command 
 
tty 

 



 Syntax : $tty 
No Options  
Purpose: Get your terminal name 
 

Date 

 
Syntax: $date 
              $date[+format] 
 
Format 
The formatting directives for the date include 
 
%D      The date as MM/DD/YY 
%a        Abbreviated weekday( sun to sat) 
%h        Abbreviated month ( jan to dec) 
%j         day of the year (001  to 365, or 366 on leap years) 
%w       the day if the week(Sunday=0 , Monday=1 , and so on) 
%m       The month of the year(01 to 12) 
%d         The day of the month (01 to 31) 
%y         Last two digits of the year(00 to 99) 
 
The formatting directives for the time include 
%T       The time as HH:MM:SS 
%r        The time as HH:MM:SS( A.M./P.M) 
%H       The hour (00 to 23) 
%M       The minute (00 to 59) 
%S         The second( 00 to 59) 
 
Purpose: display the current date and time 
 
Cal 

 
Syntax: $cal[ month-number]year 
No options 
 
Purpose: Print calendar 
 
Who 

 
Syntax: $who 



Purpose: Determine who is on the system 
 
Who am I 

 

Syntax: $who am I 
Purpose: Display the name under which you are logged in. 
 
 

Viva Voice: 

 
1) What do you mean by kernel? 
2) How does the file represent kernel? 
3) List features of UNIX. 
4) What is the significance of mail and merge command? 
5) What does Multi-user technology mean? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Practical VII: 

 
Aim:  To study and implement all the directory oriented Commands of 
UNIX( Cd, Mkdir , rmdir , and Pwd Command) 
 
Introduction: 

 
Commands: 

 

Cd 

 

Syntax: $cd 
             $cd pathname 
No options 
 
Purpose: Change working directory 
 
Mkdir 

 
Syntax: $mkdir pathname………. 
No options 
 
Purpose: Make a directory. 
 
Rmdir 

 
Syntax: $rmdir pathname… 
No options 
 
Purpose: Remove a directory 
 
 
Pwd 

 
Syntax: %pwd 
No options 
 
Purpose:  Print working directory. 
 



Viva Voice: 

 
1) Differentiate between Ordinary files , directory files and device files. 
2) What does directory file contain? 
3) How to rename a directory? 
4) What is a regular file? 
5) How is the password of a particular Id Changed?           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Practical VIII:  

 
Aim:  To study and implement all the file oriented Commands of UNIX (ls-
list files, Cat, cp, rm commands) 
 
Introduction: 

 

Commands: 

 

ls 

 
 
Syntax: $ls [option] 
Option 
-x :          output in multiple columns 
-Fx           Identifying directories and executable files. 
-axF:        Showing hidden files 
-r:             Reversing  the sort order 
-R             Recursive listing 
Purpose: Listing files 
 
cat 

 
Syntax: $cat filename(with extention) 
$cat >filename 
Type the contents of file here………. 
This is used for creating a file. 
 
$cat filename 
This is used for displaying the contents of a file. 
 
Purpose: Displaying & creating files. 
 
cp 

 
Syntax:  $cp[option ] source file destination file 
Option:  
-I            It warns the user before overwriting 
-r            It copies all files and sub directories from source to destination file. 



Purpose: Copying a file 
 
rm 

 
Syntax: $rm [option] source file destination file  
Option: 
-I        It asks the user for confirmation before removing a file 
-r        It removes all files & subdirectories. 
 
Purpose: Deleting files 
 
 
mv 

 
Syntax: $mv source file destination file 
No options 
Purpose: Renaming a file ( or directory ) and moving a group of files to a 
different directory. 
 
 
Result: 
 
Viva Voice: 

 
1) Explain the following options to ls 

-X,-F,-r,-a,-R,-l,-d,-t,-u,-I 
 

2) What are the general commands used with files? 
3) How is a duplicate file created? 
4) How are the files under directories and subdirectories accessed? 
5) What will cat foo foo foo display? 
6) What will rm –f1* do? 
7) How will you copy a directory structure bar1 to bar2? 
8) What is the command used to terminate a current operation? 

 
 
 
 
 
 



Practical IX: 

 

Aim:  To study and implement HEAD , TAIL , CUT, and PASTE 
commands 
 
Introduction: 

 

Commands: 

 

Head 

 
Syntax: $head [-linecount ]filename 
No options 
Purpose: displaying the beginning of a file. 
 
tail 

 
Syntax: $tail [-linecount ] filename 
No options 
Purpose: Displaying the end of a file. 
 
cat 

 
Synatx: $cat [option] filename 
Option: 
-c:  It is used to exact specific columns from file . 
Purpose: Slitting a file vertically 
 
paste 

 
Syntax: $paste filename1 filename2 
No options 
Purpose: Pasting the files. 
 
Viva Voice: 

 

1) How are the records in a file displayed on the screen? 
2) Give the functions of the cut and paste command? 
3) Explain how the contents of the file are edited.? 
4) How are the columns adjusted using cut command? 



 
Practical X: 

 

Aim: Study of Common Object File Format. 
 
Theory: 

 
Common Object File Format(COFF). COFF is the format of the output file 
produced by the assembler and the link editor. 
 
The following are some key features of COFF: 
 

• Applications can add system dependent information to the object file 
without causing access utilities to become obsolete. 

• Space is provided for symbolic information used by debuggers and 
other applications. 

• Programmers can modify the way the object file is constructed by 
providing directives at compile time. 

 
The object file supports user –defined sections and contains extensive 
information for symbolic software testing. An object file contains: 
 

• A File header 

• Optional header information 

• A table of section headers 

• Data corresponding to the section headers. 

• Relocation information 

• Line numbers 

• A symbol table 

• A String table 
 
Explanation of the various fields in object File: 

 
   
 
 
 
 
 



Object File Format 

 
 

FILE HEADER 

Optional Information 

Section 1 Header 

… 

Section n Header 

Raw Data for Section 1 

….. 

Raw Data for Section n 

Relocation Info for Sect. 1 

… 

Relocation Info for Sect .n 

Line Numbers for Sect.1 

… 

Line Numbers for Sect. n 

SYMBOL TABLE 

STRING TABLE 

 
 
Viva Voice: 

 
1) What are the header files included in File header section? 
2) Distinguish between Symbol table and String table entries. 
3) Give difference between Static and Dynamic relocation 
4) What are the contents of section headers? 

 
 
 
 
 
 
 
      
 
 
   
  



             

 


