O, Notification
User Manual

Release 5.0 - April 1998

Information in this document is subject to change without notice and should
not be construed as a commitment by O, Technology.

The software described in this document is delivered under a license or
nondisclosure agreement.

The software can only be used or copied in accordance with the terms of the
agreement. It is against the law to copy this software to magnetic tape, disk, or
any other medium for any purpose other than the purchaser’s own use.
Copyright 1992-1998 O, Technology.

All rights reserved. No part of this publication can be reproduced, stored in a
retrieval system or transmitted in any form or by any means, electronic,

mechanical, photocopy without prior written permission of O, Technology.

0O», O2Engine API, O,C, O,DBAccess, OoEngine, OoGraph, OsKit, OoLook,
O»,Store, OoTools, and O,Web are registered trademarks of O, Technology.

SQL and AIX are registered trademarks of International Business Machines
Corporation.

Sun, SunOS, and SOLARIS are registered trademarks of Sun Microsystems,
Inc.

X Window System is a registered trademark of the Massachusetts Institute of
Technology.

Unix is a registered trademark of Unix System Laboratories, Inc.
HPUX is a registered trademark of Hewlett-Packard Company.
BOSX is a registered trademark of Bull S.A.

IRIX is a registered trademark of Siemens Nixdorf, A.G.
NeXTStep is a registered trademark of the NeXT Computer, Inc.
Purify, Quantify are registered trademarks of Pure Software Inc.
Windows is a registered trademark of Microsoft Corporation.

All other company or product names quoted are trademarks or registered
trademarks of their respective trademark holders.

Who should read this manual

The notification service available in O2 allows an 02 client to inform
other clients connected to the same O2 server that an event has
occured. The notification consists of a message sending for events
regarding persistent objects and client connections / disconnections.
The manual also describes the functional interface of the notification
service with the ODMG C++ binding. User-defined events are also
supported.

Other documents available are outlined, click below.

See 02 Documentation set

TABLE OF CONTENTS

This manual is divided into the following chapters:
* 1 - Introduction

* 2 - C++interface to the notification service

e 3 - OoC interface to the notification service

* 4 - Appendix

O> Notification User Manual

QQ TABLE OF CONTENTS

Introduction 9
1.1 SYSIEM OVEIVIEW ...ttt ettt e e e e 10
1.2 NOLIfICatioN OVEIVIEWccceiiiiiiiiiiiieiiiiee e 12
1.3 Installing the O2 Notification schema.............ccceevvviveiiiiinnnns 15
C++ Interface to the Notification Service 17
2.1 Initializing YOUr SChEMA.......ccooiiiiiiiiiiiiiie e 18
INCIUAE FIl@ e 18
2.2 How to use the Notification service in C++...........cccceeevvvnnnnns 19
2.3 INHANZATION.....etiiii e 21
Initialization Of @MILEErScceveveveeiiciee e 21
Initialization Of reCIPIENTSc.ceiviiiiiiiii e 21
2.4 Registration of notifiable 0bjectscccceeeiiiiiiiiiiiiiiiiiii, 22
Cancelling a registrationcccociiviiiiiiiiie s 23
2.5 Registration Of reCipIeNtS........coooeviiiiiiiiiiiiii e 24
EVENTIS YD . 25
FIEIING e 26
Cancelling a registrationcccooiiviiiiiiiiie s 28
Some registration scenarios for notifiable objects 28
2.6 COMMUNICALION ... 30
Emission and propagationccceeeveiirinioiiniiiiiiie e 30
RECEPLION .o 31
2.7 EVENTODJECES .. oot 35
N0 11T 35
O DT et 36
(70} o = ox 1o o [UESPUPRSSN 36
D] {oTo] o] V=T ox 1 o] o PPN 37
L]] PP 38
EXAMPIE <. 40
2.8 Statistics of NOIfICAtIONSvveiiiiiieieiiiee e 42

O2 Notification User Manual

TABLE OF CONTENTS

2.9 Class 02_NOtIfiCatioNcooviiiiiiiiiiiiiiieie e 44
2.10 Class 02_Notification _QUEUEccevvvueiiniiieeiieeeeeeee e 46
2.11 Class 02_Notification_Filterccccooviiiiiiiiiiiiiiiiiiieee e 47

02C Interface to the Notification Service 49
3.1 INErOAUCTION e 50
Initializing your SCheMAuuuiiiiiiiiiiiiiiee e
NOLIfICAtION SEIVICE ...coiieeeeeeiee e
3.2 USEI EVENT...eeie e 51
Class 02_User_EVeNt......cccocoiiiiiiiieeeee e
3.3 NOtIfICAtION SEIVICE......cciiiiiiiiiiiiiie e 54
Class 02 _NOLfICALIONcuvvveeeiiiiiie e
3.4 Notification QUEUEoceviiiiiiiieeeiee e e 57
Class 02_Notification_QUEBUE..........ccceeveiriieeieieiiire e
3.5 SHALISHICS ..o 58
3.6 Commented eXample........ccoouiiiiieiiiiiiiee e 59

él'é/vo applications communicating through the notification service

APPLICAION INSEITON ...ttt

Running the application.............cc.uvviiiiiiiiiie s
Appendix 71
INDEX 73

O> Notification User Manual 7

TABLE OF CONTENTS

O2 Notification User Manual

Introduction

GENERAL OVERVIEW OF THE O,
NOTIFICATION SERVICE

Congratulations! You are now a user of the O, notification service!
This document presents the notification service of O. It describes, in
the second chapter, the functional interface of the classes of the

notification services for the ODMG C++ binding and, in the third
chapter, the notification services for O,C.

This chapter introduces the O, notification service. It is divided into the
following sections :

e System overview
* Notification overview

* Installing the O2 Notification schema

O, Notification User Manual

1 Introduction

1.1 System overview

The system architecture of Oy is illustrated in Figure 1.1.

Development Tools Exte)rcna/
Interfaces
O, Dev. Tools gf‘f’d% % s
oQL I
i = = - IZ
,Corba
Database Engine O, Notification E
O.Engine Access
O,Store I O Web

Figure 1.1: Op System Architecture
The O, system can be viewed as consisting of three components. The
Database Engine provides all the features of a Database system and an
object-oriented system. This engine is accessed with Development Tools,
such as various programming languages, O, development tools and any
standard development tool. Numerous External Interfaces are provided.
All encompassing, O is a versatile, portable, distributed,
high-performance dynamic object-oriented database system.

Database Engine:

* O»,Store

* OzEngine

The database management system provides low level
facilities, through O,>Store API, to access and manage a
database: disk volumes, files, records, indices and
transactions.

The object database engine provides direct control of
schemas, classes, objects and transactions, through
OzEngine API. It provides full text indexing and search
capabilities with O,Search and spatial indexing and
retrieval capabilities with OoSpatial. It includes a
Notification manager for informing other clients
connected to the same O» server that an event has
occurred, a Version manager for handling multiple
object versions and a Replication API for synchronizing
multiple copies of an O2 system.

10

O2 Notification User Manual

System overview

Programming Languages:

O» objects may be created and managed using the following
programming languages, utilizing all the features available with O»
(persistence, collection management, transaction management, OQL

queries, etc.)
e C

e C++

* Java

* 0,C

« OQL

O functions can be invoked by C programs.
ODMG compliant C++ binding.
ODMG compliant Java binding.

A powerful and elegant object-oriented fourth
generation language specialized for easy development
of object database applications.

ODMG standard, easy-to-use SQL-like object query
language with special features for dealing with complex
O, objects and methods.

Oz Development Tools:

* OoGraph
* OsLook

* OoKit

e O>Tools

Create, modify and edit any type of object graph.

Design and develop graphical user interfaces, provides
interactive manipulation of complex and multimedia
objects.

Library of predefined classes and methods for faster
development of user applications.

Complete graphical programming environment to
design and develop O, database applications.

Standard Development Tools:

All standard programming languages can be used with standard
environments (e.g. Visual C++, Sun Sparcworks).

External Interfaces:

e O»Corba

e OoDBAccess

« 0,0DBC

* Oo,Web

Create an O2/ Orbix server to access an O database
with CORBA.

Connect O, applications to relational databases on
remote hosts and invoke SQL statements.

Connect remote ODBC client applications to O
databases.

Create an O2 World Wide Web server to access an O»
database through the internet network.

O, Notification User Manual 11

Introduction

1.2

Notification overview

The notification service allows an O client to inform other clients
connected to the same O> server that an event occurred. The
notification consists in message sending on events regarding persistent
objects.

The communication is asynchronous and the propagation of an event
may be either provoked by the user or automatically launched by the
system:

at transaction validation time for events regarding persistent objects,
at connection/ disconnection time for events regarding clients,

either immediately or at transaction validation time for user-defined
events, depending on the application choice.

Notifiable objects are objects whose updates or deletion are
automatically notified by the system.

An update event is provoked by any update operation.

A deletion event is provoked by the delete_object method. The applica-
tion thus must call this ODMG method if it wants the events to be noti-
fied.

Notifiable objects have to register explicitly with the notification service
on a per event basis (update or deletion). Registration (Resp. disabling)
of a notifiable object may be performed by any client, the object is then
marked as notifiable (Resp. not notifiable).

Emitters of notifications are O clients that
either modify or delete notifiable objects,

or explicitly send user events,

or connect/ disconnect,

O» clients may register a symbolic name with the notification service.
The symbolic name of the emitter of a notification, when it exists, is part
of the notification information provided to the recipient(s) of the
notification.

An emitter only interacts with the notification service for the notification
of user-defined events.

The recipient of a notification is an O client. It also has to register with
the notification service on a per event basis. Registration (Resp.
disabling) of a recipient is performed locally by the client, then
forwarded to the server with internal information such as event type(s)
and internal object identifier.

Notification processing is distributed between the O, clients and server
as shown in Figure 1.

12

O2 Notification User Manual

Notification overview

TO:

When receiving a notification, the server immediately propagates it to
the recipients, i.e. to clients that have registered for the notified event,
and put the notification in their notification queue.

T3: clients B and C
are notified that

T2: O senver guant E1 occurred

notifies recipients

registered for E1
T1: client A 9

notifies E1

a

client A

performs event

El

Figure 1: Distributed processing of a notification

The recipient may control, on a per event basis, the identity of the
objects or clients whose notifications it is interested in by providing a
filter at registration time. Filters associate an event type (for example,
user-defined or connection), an object reference or a client name
depending on the event type (client names in filters are related to
connection/ disconnection events) and an optional label provided by the
application. A label is a logical identifier that is returned to the recipient
in theinformation part of a filtered notification. It allows the application
to associate different processing to the notification of a given event. It is
a discriminant whose validity spans transactions bou ndaries® while
object references’ validity does not. Filters may also apply to any object
or client related to a given event. Examples of filters and associated
labels are given in section 2.2.

Therecipient interacts with all the objects of the notification service: the
notification server for registration and for the creation of a notification
queue, the notification queue for polling notified events and event
objects that are stored in the notification queue. The relationship
between these different objects is shown in Figure 2.

1. Atransaction boundary is a commit or abort operation. A validate operation pre-
serves the validity of object references.

O, Notification User Manual 13

1 Introduction

Notification Event

creates Notification Server
“—— sends

J

Notification Queue

stores

»
L Notification Event Notification Event

Figure 2: Objects of the Notification Service
The class hierarchy of events objects is presented in Figure 3.

The 02_Object_Event class is related to update and deletion events that
are automatically notified by the system.

The class for user-defined events inherits the 02_Object_Event one. It
does not mean that user-defined events must be related to an object
update. It only means that a user event may be related to an object and,
if so, filtering on object identity applies to user-defined events.

02_Notification_Event

/ N

02_Object_Event 02_Connection_Event
A A
02_User_Event 02_Disconnection_Event

Figure 3: Event classes hierarchy

In O,C, the 02_User_Event class and its subclasses only may be used.

14 O2 Notification User Manual

Installing the O2 Notification schema

1.3

Installing the O , Notification schema

In order to use the notification service, you have to install the
oznotification schema in your system. After running 02_dba_init, you
use the 02dba_schema_load tool (see the O, System Administration
Reference Manual)to load the schemas from the

$02HOME/ 02schemas directory :

o2dba_schema_load -file

$O2HOME/ 02schemas/ o2notification.dump -system my_system
-sources -verbose

02dba_schema_load asks you for the name of the volume for the
schema to install. Using the volume CatalVol for this purpose is
recommended.

O, Notification User Manual

15

Introduction

16

O2 Notification User Manual

. C++ Interface to the

Notification Service

This chapter is divided into the following sections :

Initializing your schema

How to use the Notification service in C++
Initialization

Registration of notifiable objects
Registration of recipients

Communication

Event objects

Statistics of Notifications

Class 02_Notification

O, Notification User Manual 17

2 C++ Interface to the Notification Service

2.1 Initializing your schema

When building your own schema, you have to import from the
o2notification schema the event classes you will use in your application.

Example of o02dsa_shell commands to initialize your schema:

schema appli_s;

import schema o2notification class
02_Notification_Event,02_Object_Event,02_User_Event, 02_Connection_Event,

02_Disconnection_Event;

Include file

To make use of the notification package in a C++ program, you must use
the following include directive :

#include " 02_Notification.hxx "

18

O, Notification User Manual

How to use the Notification service in C++

2.2

How to use the Notification service in C++

Many scenarios are possible, according to the events you want to be
notified.

If you want to ask a service to the notification system you must call a
method of the O2_Notification class. But you must first create one
object of this class.

(1) You want to be notified of the updates/deletions of some
objects :

In order to be notifiable, an object must firstly be declared to the
notification service. Any O client can declare an object by calling the
02_Notification::register_notifiable_object method as many
times as necessary. This property is made persistent at commit time.

On the emitter side : Any O3 client can then start working as usual and
update and delete notifiable objects in a transparent way.

On therecipient side : An O» client must define precisely the actual
objects it is interested in.

It declares them by calling
02_Notification::register_notification_client as many times
as necessary.

Now it is ready to receive updates/ deletions events. They are all stored
in aqueue, which is obtained by calling once
02_Notification::get_queue

02_Notification_Queue::get_event has just to be called to enable
the user to wait for the next event.

When an event exists the user receives it as an instance of the
02_Notification_Event class or as one of its subclasses.

It can thus analyze the event to get more detailed information, as for
instance the object which has been updated. It can then access this
object, inside a transaction.

O, Notification User Manual 19

C++ Interface to the Notification Service

(2) You want to be notified of connections/disconnections of other
clients:

On the emitter side : to make itself known, an O client can give its
name by calling 02_Notification::register_client_name . The
connection/ disconnection will then be notified automatically.

On therecipient side : an O» client, interested in this service, must
inform the system by calling
02_Notification::register_notification_client

This method has many parameters including the type of checked events
(which are then of the O2_CONNECT_EVENJr O2_DISCONNECT_EVENT

type).

Thefilter, which is another parameter, may tell more precisely which O
client name you are interested in.

(3) You want to send and receive user built-in messages :

On the emitter side : you obviously have to build an object of the
0O2_User_Event class or one of its subclasses you can define.

This object may contain any information you want and particularly a
reference to a persistent object for instance.

To send the object you just apply the 02_User_Event::notify method.

Such an event can beidentified by an event_user_id which allows the
recipient to recognize it.

On the recipient side : Again you use the
02_Notification::register_notification_client method to
indicate which user events you are interested in. The parameters
enable to define the nature of the event (O2_USER_EVEN)Tand through a
filter the value of the user id. You can also filter on the value of a
reference to a persistent object contained in the message.

As usual you get the message by calling
02_Notification_Queue::get_event

You get an object of the 02_User_Event class in which you can find
more information. You may use a virtual method call when the actual
class of the object is a subclass of 02_User_Event. For example, the
02_User_Event::execute method is virtual and thus can beredefined
by your own subclasses.

The rest of the chapter gives details about these functionalities.

20

O, Notification User Manual

Initialization

2.3 Initialization

Initialization of emitters

A client which wants to have a name associated to the events it notifies,
either explicitly or implicitly, must register its symbolic name with the
notification service. This may be useful, for example, for notifying other
clients at connect time, so that they may now be notified of some
specific events emitted by the connecting client.

This can be done by the constructor of the notification server or by
calling the following method:

void 02_Notification::register_client_name (char * clientName);

Any further registration of a name cancels the previous one. The
registration of names is not notified by the system. If the application
wants to notify name changes, it must define and notify the associated
user event.

Several clients may register the same name with the notification server.

The name registration must be done before a connection to O,
otherwise it is not taken into account.

Initialization of recipients

A client that wants to receive notifications may retrieve the notification
queue from the notification server.

The queue that will receive the notification messages must be explicitly
polled by the recipient. Its interface is described in section 5.2. It is
retrieved by calling the following method of the notification server:

class 02_Notification_Queue;

02_Notification_Queue * 02_Notification::get_queue ();

O, Notification User Manual 21

2 C++ Interface to the Notification Service

2.4 Registration of notifiable objects

Registration of a notifiable object is only necessary for the UPDATE and
DELETION event types. It must occur in the scope of a transaction, if
this transaction aborts the object will no longer be notifiable. The
registration method marks an object as notifiable (it therefore acquires
an exclusive lock on it during the transaction). It becomes immediately
notifiable for the calling client and the notifiable property is visible at
transaction validation time by other clients.

The registration method has the following interface:

// throws d_Error_RefiInvalid, d_Error_Eventinvalid,
d_Error_TransactionNotOpen

void 02_Notification::register_notifiable_object (
02_Notification_Event_type eventType,

const 02_pointer &objectReference);

The eventType must be either O2_UPDATE_EVEN®r O2_DELETE_EVENT
The objectReference1 argument must be filled with a persistent
capable reference to the persistent object that will be notifiable, such as
in the following example :

d_Ref<my_Class> objRef;

notification_server->register_notifiable_object(O2_UPDATE_EVENT, objRef);

The following method allows to test if a given object is notifiable. It
returns 1 if the object is notifiable, 0 elsewhere.

int 02_Notification::is_notifiable_object (
02_Notification_Event_type eventType, const 02_pointer &objectReference);

1. Theclass 02_pointer is a superclass of all d_Ref<T>,

22

O, Notification User Manual

Registration of notifiable objects

As for the register_notifiable_object method, the objectReference
argument must be filled with a persistent capable reference to a
persistent object.

Cancelling a registration

The disabling method marks an object as not notifiable and must also
occur in the scope of a transaction. The notifiable property is lost
immediately for the calling client, at transaction validation time for the
other clients. If the current transaction aborts, the object will still be
notifiable. It has the following interface:

// throws d_Error_Refinvalid, d_Error_Eventinvalid,
d_Error_TransactionNotOpen

int 02_Notification::forget_notifiable_object (
02_Notification_Event_type eventType, const 02_pointer &objectReference);

As for the register_notifiable_object method, the objectReference
argument must be filled with a persistent capable reference to the
notifiable object.

Disabling is effective for the requesting client if there are no recipients
registered for that eventType and that objectReference, in which case
a status equal to 1 is returned. If some recipients are registered, a
status equal to O is returned.

Disabling is effective for all other O, clients at requesting client’s
transaction validation time.

O, Notification User Manual 23

2 C++ Interface to the Notification Service

2.5 Registration of recipients

Registration of a recipient for events regarding notifiable objects must
occur in the scope of a transaction in order to synchronize with the
register_notifiable_object and forget_notifiable_object methods that
are described above. Registration of a recipient for other events is
effective at registration time and may occur outside the scope of a
transaction. The registration operation for a notification recipient has
the following interface:

typedef int 02_Notification_Reg_Id;

/* throws d_Error_RefInvalid, d_Error_RefNotNotifiable,
d_Error_RegistryConflicting, d_Error_TransactionNotOpen */

02_Notification_Reg_Id

02_Notification::register_notification_client (
02_Notification_Event_type eventType, 02_Notification_Filter &filter,
02_Notification_Event_Id userEventld= 0,
d_Boolean updateLabelFlag= 0);

The register_notification_client method returns a registry identifier
that will be used if the registration is explicitly cancelled.

All Event types are defined in the Events Type paragraph below.

The userEventld parameter is provided by the application, it allows to
select the different user-defined events which can be received. It
corresponds to the userld attribute of class 02_User_Event (see section
6). Its type is unsigned short.

A filter has to be specified by a recipient. It enables to sharpen the
description of the events this registration deals with. The filter type is
defined in the Filter paragraph below. If a further registration for the
same event, i.e. events with identical eventTypes and userEventlds, is
performed, the union of filters will be made.

1. If a previous registration has been performed with exactly the same
parameters, the notification service increments the count associated to
the previous registration and returns the same registry identifier.

2. If a previous registration has been performed with the same
parameters except the label field of the filter, if the updateLabelFlag is
true, the previous registration is canceled and the new oneis taken into
account, else the exception d_Error_RegistryConflicting is raised.

24

O, Notification User Manual

Registration of recipients

3. 1f a previous registration has been performed with a scope
O2_ONE_OBJECT, a further registration with the scope
O2_ANY_OBJECT will not be taken into account and the exception
d_Error_RegistryConflicting is raised.

4. if a previous registration has been performed with a scope
O2_ANY_OBJECT, no further registration will be taken into account
with the scope O2_ONE_OBJECT and the exception
d_Error_RegistryConflicting will be raised.

Events type

Pre-defined events types are associated to event objects whose class
hierarchy is presented in the introduction. They are provided by the
enumeration 02_Notification_Event_Type.

User events:
e user-defined event, 0O2_USER_EVENT.

Object events:
e deletion of a persistent object, O2_DELETE_EVENT,
e update of a persistent object, O2_UPDATE_EVENT.

Client events:
e connection of a client, O2_CONNECT_EVENT,
e disconnection of a client, 02_DISCONNECT_EVENT.

Some combinations of these basic events:
e the union of deletion and update events, O2_OBJECT_EVENTS,
» the union of connection and disconnection events, O2_CLIENT_EVENTS.

These events are subdivided in two categories:

User-defined events are not interpreted by the notification service and
they are raised explicitly by the application whereas client and object
events are automatically detected and raised by the database system.

User-defined events are of the O2_USER_EVENT type and have an
additional application-dependent identifier which allows to discriminate
them:

typedef unsigned short 02_Notification_Event_|Id;

O, Notification User Manual 25

C++ Interface to the Notification Service

Filtering

User-defined events allow the user to control the granularity of
notifications. For example, in a cooperative application such as book
editing, when modifying a paragraph of chapter 10, one may want to
notify that chapter 10 has changed rather than to notify changes of
paragraph N of this chapter. The notification service does not perform
any control on the validity of user-defined events, i.e. it will not check if
the object for chapter 10 has really been modified.

Event classes corresponding to these basic event types, which all inherit
the 02_Notification_Event base class, are defined in section 6.

Supplyingfilters allows the recipient to control the identity of the objects
or clients about which it wants to receive notifications: either all
notifiable objects or one given object, either all clients or one given
client. Filters are set by the recipient at registration time. A filter has 3
significant fields, a scope, a label and either an object reference or a
client name depending upon the event type to which it applies. The
whole interface of the 02_Notification_Filter class is given in
section 2.11.

class 02_Notification_Filter {

public:

d_Ref_Any reference;
char *name;
02_Notification_Scope scope;
02_Notification_Label label;

// constructors, destructor and access methods

/s

A label is a logical identifier (an integer) that is returned to the recipient
in the information part of a filtered notification. It allows the application
to associate different processing to the notification of a given event. It is
a discriminant whose validity spans transactions boundaries while
object references’ validity doesn't.

There are four scopes of filters for recipients:

26

O, Notification User Manual

Registration of recipients

enum 02_Notification_Scope {
02_ANY_OBJECT,
02_ONE_OBJECT,
02_ANY_CLIENT,
O2_ONE_CLIENT

O2_ANY_OBJECT and O2_ONE_OBJECT scopes apply to events
related to object updates and deletion and to user-defined events. The
O2_ANY_OBJECT scope means that the filter applies to all objects for a
given event. The client name is not taken into account in filters with
scopes regarding objects.

O2_ANY_CLIENT and O2_ONE_CLIENT scopes apply to events related
to connections and disconnections. The O2_ANY_CLIENT scope means
that the filter applies to all clients that connect and/ or disconnect. The
reference is not taken into account in filters with scopes regarding
clients.

The default filter has the O2_ANY_OBJECT scope, a null reference, an
empty name and a null label.

For a filter with the O2_ONE_OBJECT scope, the reference of the
corresponding notifiable object must be provided to the notification
service.

Objects references are no longer valid after a transaction has been
validated with commit or aborted. In order to discriminate an event and
the associated object(s) across transactions, the filter is tagged with a
label, local to the recipient. For example,

a monitoring application will register for the O2_UPDATE_EVENT event
with the default filter to be notified of all changes of a given database,

to be notified of growth and decreasing of the population, a census appli-
cation will register for the O2_USER_EVENT events with the " grow " and
" decrease " user event identifiers and will supply the following filter:

const 02_Notification_Label POPULATION = 10;
02_Notification_Filter f (ParisCollectionRef, POPULATION);

O, Notification User Manual 27

C++ Interface to the Notification Service

Cancelling a registration

Registration may be explicitly disabled. If not explicitly disabled, a
notification recipient is automatically disabled at the end of client
session.

The disabling operation has the following interface:

// throws d_Error_RegldInvalid

void 02_Notification::forget_notification_client (02_Notification_Reg_Id

registryld);

If several registrations have been performed with the same registryld,
the registration will only be canceled when the registry count falls to
zero.

Some registration scenarios for notifiable objects

At least two registration approaches are possible for registration of
notifiable objects.

1. A notifiable object is registered once and for all. If either the
application needs to disable the notifiable property, it loops in a
transaction until the forget_notifiable_object method returns the
success status.

2. A notifiable object is registered by a recipient which wants to receive
notifications about its updates. The registrations of the notifiable object
and the recipient may be made in the scope of the same transaction.
When the recipient does no longer need to receive notifications, it
cancels the notifiable object registration within a transaction as shown
in the following example:

d_Session session;
d_Database database;
d_Transaction trans;

02_Notification notif_svr (" my_name ");
02_Notification_Label my_obj_update = 1;
02_Notification_Reg_Ild* reg_ids;

28

O, Notification User Manual

Registration of recipients

main() {

d_Ref<my_object > obyj;
inti=0;
/I some initialization actions such as session beginning, etc...
trans.begin();
/Imy_coll is the list of objects about which the client wants to receive
notifications
d_List<d_Ref<my_object > >my_coll(" my_collection ");
d_lterator<d_Ref<my_object> > my _iterator =
my_coll.create_iterator();
reg_ids = new 02_Notification_Reg_ld[my_coll.cardinality()];
my_iterator.next(obj);
do {
/I associates the same label to all the elements of my_coll
02_Notification_Filter my_filter(obj, my_obj_update);
if (\notif_svr. is_notifiable_object(0O2_UPDATE_EVENT, obj))
notif_svr.register_natifiable_object(0O2_UPDATE_EVENT,obj);

reg_ids[i++] =
notif_svr.register_notification_client(O2_UPDATE_EVENT,
my_filter);
} while (my_iterator.next(obj));
trans.validate();
my_iterator.reset();
...
/l before ending, cancel registrations
trans.begin();
my_iterator.next(obj);
i=0;
do {
notif_svr.forget_natification_client(reg_idsJ[i++]);
if (notif_svr. is_notifiable_object(0O2_UPDATE_EVENT, obj))
notif_svr.forget_notifiable_object(O2_UPDATE_EVENT, obj);
} while (my_iterator.next(obj));
trans.commit();
...

O, Notification User Manual

29

2 C++ Interface to the Notification Service

2.6 Communication

Emission and propagation

The emission of update and delete events is implicitly performed at
transaction validation time. The emission of user-defined events must
be explicitly performed with a propagation flag:

02 _ IMMEDIATE_PROPAGATION or O2_VALIDATED_PROPAGATION .

The Notification Service provides generic methods for the propagation of
any kind of user events and associated data. The interface of the
notification method is the following:

// throws d_Error_Refinvalid, d_Error_EventTooBig,
d_Error_Eventinvalid,

// d_Error_Memory Exhausted

void 02_Notification::notify_user_event(
02_User_Event * event, 02_Propagation_Flag raise_time);

The caller of 02_Notification::notify_user_event must providethe
address of a d-Ref pointer to a user-defined event as shown in the
following example.

Events emitted with the O2_IMMEDIATE_PROPAGATION flag are
immediately propagated to the recipient(s). Else, propagation is
performed at commit time to clients of other transactions.

An example of emission of a user event in a census application is the
birth of a child in Paris:

30

O, Notification User Manual

Communication

extern 02_Natification_Event_ld grow_id;
void child_birth(char * firstName, d_Ref<Person> father,
d_Ref<Person> mother, d_Date date,
d_List<d_Ref<Person> > ParisPopulation) {
child = new Person(firstName, father, mother, date);
/I registers the birth and inserts the new child in
ParisPopulation
/...

d-Ref<02_User_Event> evt = new 02_User_Event(grow_id,
(d-Ref-Any *)(&ParisPopulation));

notif_svr.notify_user_event(&evt, O2_VALIDATED_PROPAGATION);

Reception

The client has to explicitly poll and consume the notification from the

notification queue.

The interface of the 02_Notification_Queue class is the following:

typedef enum {

02_EVENT_SUCCESS,
02_QUEUE_EMPTY,
02_WAIT_INTERRUPTED,
02_MEMORY_EXHAUSTED,
02_SESSION_NOT_OPEN

} 02_Notification_Report;

class 02_Notification_Queue {

public:

/ / returns the number of events that are still to be consumed

int cardinality() const;

// consumes the first event of the queue, throws d_Error_MemoryExhausted
02_Notification_Report get_event (02_pointer &event, int timeout = -1);

O, Notification User Manual

31

C++ Interface to the Notification Service

// returns next event without consuming it, throws
d_Error_MemoryExhausted

02_Notification_Report peek_event (02_pointer &event,int timeout = -1);
/* removes the last previously peeked event from the queue, if the

scan has not been reset and the event has not already been consumed
by a get, in which cases the d_Error_NotificationQueueEmpty is thrown */
void remove ();

// resets the scan, there is no longer a previously peeked event

void reset ();

// append an event at the end of the queue

// throws d_Error_MemoryExhausted

void append (const 02_pointer &event);

Default timeout makes the get_event and peek_event methods wait
until an event is notified. A positive timeout tells the maximal number of
seconds those methods have to wait for the notification of an event
before returning.

If an event has been notified during the timeout delay, the get_event
and peek_event methods return O2_EVENT_SUCCESS and the event
argument contains a persistent capable reference to an event. The caller
of the method must provide a typed persistent capable pointer:

d_Ref<02_Notification_Event> evt ;
status = queue->get_event(evt);

If no event has been notified during the timeout delay, a status of the
02_Notification_Report typeis returned.

Event objects may contain references to persistent objects, which must
be accessed within the scope of a transaction. As usual for persistent d-
Refs, they are valid until a commit/ abort is performed. Indeed
references embedded inside C++ objects are no longer valid after a
commit or an abort. Events that are not consumed and still lay in the
notification queue may still be consumed or peeked after a commit or an
abort.

Destruction of events returned by the get_event and peek_event
methods are under the user’s responsibility. Returned events are of the

32

O, Notification User Manual

Communication

base class 02_Notication_Event, depending on the event basic type,
the application has to cast it into the right event class.

Event objects with the O2_DELETE_EVENT event type, contains a nil
object reference since object references of deleted objects are no longer

valid. Recipients of such events should have been given individual
discriminant labels at registration time as shown in the following

example:

d_Session session;

d_Database database;

d_Transaction trans;

02_Notification notif_svr (" my_name ");
02_Notification_Label my_obj_delete = 0;
02_Notification_Reg_Ild* reg_ids;

main() {

d_Ref<my_object > obj, nilref;
d_Ref <02_Notification_Event> evt;
02_Notification_Queue * queue;

int status;

// some initialization actions such as session beginning,etc.
/...
trans.begin();
// my_coll is the list of objects about which the client wants
// to receive notifications of deletions
d_List<d_Ref<my_object > >my_coll(" my_collection ");
d_lterator<d_Ref<my_object> > my_iterator =
my_coll.create_iterator();
reg_ids = new 02_Notification_Event_Id[my_coll.cardinality()];
my_iterator.next(obj);
do {
if (obj != nilref) {

// associates their range as label to the different

// elements of my_coll

02_Notification_Filter my_filter(obj, my_obj_delete);

if (\notif_svr. is_notifiable_object(O2_DELETE_EVENT,obj))

notif_svr.register_notifiable_object(O2_DELETE_EVENT,obj);

reg_ids[i++] =
notif_svr.register_notification_client(O2_DELETE_EVENT,

O, Notification User Manual

33

2 C++ Interface to the Notification Service

my_filter);
}
my_obj_delete++;
} while (my_iterator.next(obj));
trans.validate();
my_iterator.reset();
queue = notif_svr.get_queue();
while (1) {
status = queue.get_event(evt);
if ((status == 0) &&
(evt->get_event_type() == O2_DELETE_EVENT)) {
// remove the deleted element from the list
my_coll.replace_element_at(nilref, evt->get_label());
}
// else...
/s

34

O, Notification User Manual

Event objects

2.7 Event objects

Generic classes of events 02_Object_Event, 02_Connection_Event,
02_Disconnection_Event and 02_User_Event corresponding
respectively to object and connection event types propagated by the
system and to user-defined event types, are provided. Event objects of
these classes are returned to a recipient client by the notification queue
operations. They all inherit the base class 02_Notification_Event.
Their interface is given below. All user-defined event classes should
inherit the 02_User_Event class as explained latter in this section.

Notification

The 02_Notification_Event class is the base class for all event objects.
It contains the type of the notified event and the name of the emitter of
the notification. It also contains a registry identifier that was allocated
by the notification service when the recipient has registered for that
event. Finally, it contains a label that was provided by the recipient
when it has registered for that event.

typedef int 02_Notification_Reg_Id;
class 02_Notification_Event {
friend class 02_Natification;
protected:
// type of the notified event
02_Notification_Event_Type event;
// name of the client that emitted the notification
char *emitterName;
// label attached to the reception of that notification
02_Noatification_Label label;
// registry identifier of the recipient
02_Notification_Reg_Id registryld;
public:
02_Notification_Event ();
~ 02_Notification_Event ();
void set_event_type (02_Notification_Event_type event);
02_Notification_Event_Type get_event_type () const;
02_Notification_Label get_label () const;
char * get_name () const;
02_Notification_Reg_|Id registryld get_registry_id () const;

O, Notification User Manual 35

2 C++ Interface to the Notification Service

The C++ string returned by the get_name method is freed by the
destructor of 02_Notification_Event.

Object

The 02_Object_Event class is the class for the update and delete
events, and the base class for user-defined events. It contains the
reference of the object whose update is notified.

class 02_Object_Event : public 02_Notification_Event {

friend class 02_Noatification;

// reference of object on which event occurred

d_Ref_Any object;
public:

02_Object_Event (02_Natification_Event_Type event,

d_Ref_Any objectReference);
void set_reference (d_Ref_Any objectReference);

d_Ref_Any get_reference() const;

Connection

The 02_Connection_Event class is the class for the connection event,
and the base class for the disconnection one. It contains the host
identifier and the processus identifier of the client that has connected.

36

O, Notification User Manual

Event objects

class 02_Connection_Event : public 02_Notification_Event {
friend class 02_Natification;

protected:
char hostName[MAXHOSTNAMELEN];
int pid;

public:

02_Connection_Event (char * host, int proc, char *

client = 0);
02_Connection_Event ();
char * get_host_name() const;
int get_pid() const;

h

typedef enum 02_Disconnect_Status = {O2_CLNT_DISCONNECT, O2_CLNT_CRASH,
02_CLNT_MONITORINGY};

The C++ string returned by the get_host_name method is freed by the

destructor of 02_Connection_Event.

Disconnection

The 02_Disconnection_Event class is the class for the disconnection

event. It contains the status of the disconnection. The

O2_CLNT_MONITORING event means that the client has been killed by

the O2 monitoring tool.

class 02_Disconnection_Event : public 02_Connection_Event {
int status;
public:
02_Disconnection_Event (char * host, int proc, int
status, char * client = 0);
~02_Disconnection_Event ();

int get_status () const;

O, Notification User Manual

37

C++ Interface to the Notification Service

User

All user-defined event classes should inherit the 02_User_Event class.
A user-defined event class that inherits the 02_User_Event class should
also be imported in the application schema in order to be known by the
system that must transfer its instances over the network.

Some important restrictions on contents of user-defined event classes
are:

1. they should not contain any d_Array field, d_Bits, C++ arrays or long
string fields (long means > 4 K-bytes),

2. they should not contain any transient field,

3. it is under the application responsibility to ensure the durability of
the persistent objects that they reference.

Restriction on the type of the field is due to the fact that the event
object’s size must not be bigger than the message size. The size of the
message is system dependentz. It isthus a bad idea to put large values
of variable size in that object.

2. For example, on DEC Alpha, it is limited to 32 Kbytes.

38

O, Notification User Manual

Event objects

typedef enum 02_Notification_Area = {O2_LOCAL_NOTIFICATION,

class 02_User_Event : public 02_Object_Event {

02_Notification_Event_Id userld;

public:

02_User_Event ();

02_User_Event (02_Notification_Event_Id id, d_Ref_Any*=0);

~02_User_Event ();

void set_user_event_id (02_Notification_Event_Id id);

02_Notification_Event_ld get_user_event_id ();

static

02_Notification_Event_ld get_class_event_id (const char * class_name)

static void get_sub_classes (const char * class_name,d_List <char*>& result);

// throws d_Error_Refinvalid, d_Error_EventTooBig, d_Error_MemoryExhausted,

//d_Error_Eventinvalid

void notify(o2_Notification * server, 02_Propagation_Flag raise);

/* virtual method that has to be implemented by subclasses. It is intended to
implement the treatment associated to the received event */

virtual void execute() {};

// throws d_Error_Refinvalid, d_Error_EventTooBig,

//d_Error_MemoryExhausted,d_Error_Eventinvalid

02_Notification_Reg_Id

register_for_time_notification (02_Notification * server,

O2_GLOBAL_NOTIFICATION};

const;

const d_Time* first_notif_time,
const d_Interval*the_period = 0,
const int nbTimes =1,

const 02_Notification_Area area =
02_LOCAL_NOTIFICATION);

The get_class_event_id method returns a unique identifier associated to a
given class name. The identifier associated to a subclass of 02_User_Event may
be used as the identifier of events of that latter class as shown in the next
example.

The get_sub_classes method fills the result argument with the list of
subclasses of the given class name. This allows to register for events of

O, Notification User Manual 39

C++ Interface to the Notification Service

Example

a given class and all its subclasses. The programmer must take care of
freeing the C++ strings of class names that it retrieves from the list as
shown in the next example.

The notify method call the notify_user_event method of the
notification service (see section 5.1). The server argument is the address
of the notification server instantiated by the calling client. The raise
flags tells if the notification has to be propagated immediately or at
transaction validation time.

Theregister_for_time_notification method allows to notify the current
event several times after a given delay. This periodic notification method
may be interrupted by calling the
02_Notification::forget_notification_client method.

Time notifications are propagated immediately after first_notif_time
delay and if nbTimes is greater than 1, it is propagated again nbTimes -
1 times at the_period interval. If the area argument is
O2_LOCAL_NOTIFICATION, the notification is inserted at the end of
the local notification queue, else it is propagated to recipients that have
registered for the associated event type.

The following example shows how to execute events which are of the
class My_Class_Event or events which are sub classes of this class.
My_Class_Event is a sub class of 02_User_Event

d_Session session;
d_Database database;
d_Transaction trans;

int max_registries = 0;

main() {

int status;

02_Notification notif_svr (" my_name ");
02_Notification_Reg_ld* reg_ids;

02_Notification_Event_Id classEvtld,;

d_Ref<o02_Notification_Event> evt;
d_Ref<o02_User_Event> user_evt ;
02_Notification_Queue * queue;

Some initialization actions such as session beginning,etc...to receive
notifications of events "My _Class_Event" and its subclasses. A default
filter is associated to the registration

40

O, Notification User Manual

Event objects

02_Notification_Filter my_filter;
char * cl_name;
d_List<char * >class_caol;
My_Class_Event::.get_sub_classes("My_Class_Event", class_col);
// max_registries = number of subclasses + "My _Class_Event"
max_registries= class_col.cardinality() + 1;
reg_ids = new 02_Notification_Reg_ld[max_registries];
// register the event Id associated with the class
classEvtld =My_Class_Event::get_class_event_id(" My_Class_Event ");
reg_ids(0) = notif_svr.register_notification_client(O2_USER_EVENT,

my_filter,
classEvtld);
for (registeri=1; i< max_registries; i++) {
/* extract the event Id associated with the name of the class and
register it %/
cl_name = class_col[i-1]
classEvtld=My_Class_Event::get_class_event_id(cl_name);
delete cl_name ;
reg_ids[i] = notif_svr.register_notification_client(0O2_USER_EVENT,
my_filter,
classEvtld);
}
queue = notif_svr.get_queue();
while (1) {
status = queue.get_event(evt);
if ((status == 0) && (evt->get_event_type() == O2_USER_EVENT))
{
user_evt =evt;
user_evt-> execute();
}
// else...
/...
evt.destroy();
}

// forget now the notifications
for (i = 0; i < max_registries; i++)
notif_svr.forget_notification_client(reg_ids [i]);
/...

O, Notification User Manual

41

2 C++ Interface to the Notification Service

2.8 Statistics of Notifications

Statistics are interesting to know the dynamic evolution of the flow of
events which are emitted by notifiers or received by recipients.

Any client may know the number of events it has sent or received. The
notification service also maintains general information about the total
number of events which are emitted and the total number of events
which are lost (emitted events without recipient). Global statistics on
clients reception of notifications may be built by periodic notifications
(see section 6) of user-defined statistic events.

Thereturned counter of events is classified into the following categories
s user-defined events , deletion or update of objects, connection and
disconnection.

The notification service allows to reset these counters after reading.

Statistic are gathered in objects of the following class® :

class 02_Notification_Stat {
public:
int user_event_count;
int deleted_object_count;
int updated_object_count;
int connection_count;
int disconnection_count;

The notification service provides the following methods for statistics:

int 02_Notification::stat_received_event(02_Notification_Stat *stat_event,

d_Boolean reinitialize = 0);

returns the total number of events by category received on its queue,
since last local statistic reset for received events. If reinitialize is set to
TRUE, thetotal number of events by category is reset.

3. This class is subject to evolution if the number of events increases
but will remain compatible in future versions of the product.

42 O, Notification User Manual

Statistics of Notifications

int 02_Notification::stat_emitted_event(o2_Notification_Stat *stat_event,

d_Boolean reinitialize = 0);

returns the total number of events by category emitted by the client
itself, since last local statistic reset for emitted events. If reinitialize is
set to TRUE, the total number of events by category is reset.

int 02_Notification::global_stat_emitted_event(o2_Notification_Stat *stat_event,
int reinitialize = 0);

returns the total number of events by category emitted on the
notification service by each client, since last global statistic reset. If
reinitialize is set to TRUE, the total number of events by category is
reset.

int 02_Notification::global_stat_lost_event(o2_Notification_Stat *stat_event,

int reinitialize = 0);

returns the total number of events by category emitted on the
notification service by each client which are lost (i.e. which have no

recipient), since last global statistic reset. If reinitialize is set to TRUE,

the total number of events by category is reset.

O, Notification User Manual

43

2 C++ Interface to the Notification Service

2.9 Class 02_Notification

class 02_Notification {

public:
02_Noatification (char * clientName = 0);
~02_Notification();

// disable default error management i.e.exception handling
void set_errno_mode();
//returns an O2 error code from the message if some error has occured
int get_errno();
// re_enable default error management i.e.exception handling
// void set_exception_mode();
register_client_name (char * clientName);
02_Notification_Queue * get_queue();
//throws d_Error_Refinvalid,d_Error_Eventinvalid,
//d_Error_TransactionNotOpen
void register_notifiable_object(o2_Notification_Event_type eventType,
const 02_pointer &objectReference);
// throws d_Error_Refinvalid, d_Error_Eventinvalid
int is_notifiable_object(o2_Notification_Event_type eventType,
const 02_pointer &objectReference);
// throws d_Error_Refinvalid, d_Error_Eventinvalid,
d_Error_TransactionNotOpen
int forget_notifiable_object (02_Notification_Event_type eventType
const 02_pointer &objectReference);
// throws d_Error_Refinvalid, d_Error_RefNotNotifiable,
// d_ErrorConflictingRegistry, d_Error_TransactionNotOpen
02_Notification_Reg_Id
register_notification_client (02_Notification_Event_type eventType,
02_Notification_Filter &filter ,
02_Notification_Event_Id userEventld= 0,
d_Boolean updateLabelFlag =0);
// throws d_Error_Regldinvalid
void forget_notification_client (02_Notification_Reg_Id registryld);
// throws d_Error_Refinvalid, d_Error_EventTooBig, d_Error_Eventinvalid

44

O, Notification User Manual

Class 02_Natification

void notify_user_event(o2_User_Event * event,
02_Propagation_Flag raise_time);
int 02_Notification::stat_received_event (02_Notification_Stat *stat_event,
d_Boolean reinitialize = 0);
int 02_Notification::stat_emitted_event (02_Notification_Stat *stat_event,
d_Boolean reinitialize = 0);
int 02_Notification::global_stat_emitted_event (02_Notification_Stat
*stat_event,
int reinitialize = 0);
int 02_Notification::global_stat_lost_event (02_Notification_Stat *stat_event,

int reinitialize = 0);

O, Notification User Manual

45

2 C++ Interface to the Notification Service

2.10 Class 02_Notification _Queue

class 02_Notification_Queue {

public:
// disable default error management i.e.exception handling

void set_errno_mode();

// returns an O2 error code from the message if some error has occur ed

int get_errno();

// re_enable default error management i.e.exception handling
// void set_exception_mode();

// returns the number of events that are still to be consumed

int cardinality() const;
// consumes the first event of the queue, throws d_Error_MemoryExhausted

02_Notification_Report get_event (02_pointer &event, int timeout = -1);
//returns next event without consuming it, throws d_Error_MemoryExhausted

02_Notification_Report peek_event (02_pointer &event, int timeout = -1);
/* removes the last previously peeked event from the queue, if the scan
has not been reset and the event has not already been consumed by a
get, in which cases the d_Error_NotificationQueueEmpty is thrown */

void remove ();
// resets the scan, there is no longer a previously peeked event

void reset ();
// append an event at the end of the queue

// throws d_Error_MemoryExhausted

void append (const 02_pointer &event);

46

O, Notification User Manual

Class 02_Notification_Filter

2.11 Class 02_Noaotification_Filter

typedef unsigned int 02_Natification_Label;
enum 02_Notification_Scope {
02_ANY_OBJECT,
02_ONE_OBJECT,
02_ANY_CLIENT,
O2_ONE_CLIENT
h
class 02_Notification_Filter {
d_Ref_Any
char
02_Notification_Scope
02_Notification_Labe
public:
// filter with scope O2_ANY_OBJECT, default filter when label is null
02_Notification_Filter(o2_Notification_Label label = 0)
// filter constructor for scope O2_ANY_CLIENT, for (dis)connection
// events only
02_Notification_Filter(o2_Natification_Scope scope
02_Notification_Label label = 0);
// filter with scope O2_ONE_OBJECT
02_Notification_Filter(d_Ref_Any objectReference,
02_Notification_Label label);
// filter with scope O2_ONE_CLIENT, for (dis)connection
// events only
02_Notification_Filter(char * clientName,
02_Notification_Label label);
~02_Notification_Filter();
void set_reference(d_Ref_Any objectReference);
d_Ref_Any get_reference() const;
void set_name (char* clientName);
char * get_name() const;
void set_scope(02_Notification_Scope scope);
02_Notification_Scope get_scope() const;
void set_label(o2_Notification_Label label);
02_Notification_Label get_label() const;

reference;
*name ;
scope;
label;

O, Notification User Manual

47

C++ Interface to the Notification Service

48

O, Notification User Manual

3 O,C Interface to the
Notification Service

This chapter is divided into the following sections :

* Introduction

e User Event

* Notification service
* Notification Queue
e Statistics

e Commented example

O2 Notification User Manual

49

O2C Interface to the Notification

Introduction

Initializing your schema

To use the notification service in O2C, you must import the following
classes of the o2notification schema :

import schema o2notification
class 02_User_Event, 02_Notification,02_Notification_Queue;

You also have to start o2shell (or o2tools) with the libraries
libo2notification.so and libo2cppruntime.so located in
$O2HOME/lib .

Example:

$O2HOME/bin/o2shell -libpath $O02HOME/lib -libs o2cppruntime:o2natification

-system ...

Notification service

The O,C interface to the notification service enables O» clients to
exchange messages asynchronously. This kind of message may contain a
reference to any persistent object.

The service is provided through an object of the 02_Notification

class. A message is built as an object of the 02_User_Event class. The
service stores the events which are not yet consumed by a recipient in a
queue instance of the 02_Notification_Queue class.

We first present the User Event class which defines the container of the
messages to send and to receive. Then we define the Notification class,
which enables to initialize the service and to register clients to the
service. The last class presents the Queue, from which the messages are
received. We finally end this presentation with a commented example.

50

O2 Notification User Manual

User Event

3.2 User Event

An 02_User_Event object is built by an emitter and posted to the
notification service by calling notify_user_event . It is received by
recipients who have previously registered for it by calling the service
register_notification_client of the 02_Notification class.

The emitter includes in the object:
- a userEventld

- areference to a PERSISTENT object (nil by default), which means that
the event is somehow related to this object.

The notification service adds the name of the emitter (" by default).

The recipient gets a User Event by polling the queue with the
get_event method.

Along with the information posted by the emitter, a label and a registry
id arereturned (in the 02_User_Event object)to the recipient
according to the registration made previously with the method
register_notification_client

Subclasses of 02 _User_Event can be used. Thevirtual method
execute can be redefined of a subclass to do actions after receiving a
user event.

A user event may contain references to persistent objects. The recipient
of such an event must access referenced object inside a transaction.

Class 02_User_Event

method public init(userEventld: integer, reference: Object)

This method initializes an 02_User_Event
userEventld : an integer to identify this event.

reference : if not nil, it must be a persistent object.

O» Notification User Manual 51

3 0O2C Interface to the Notification

method public set_reference(reference: Object)

This method changes the reference of the object the event refers to.

reference : if not nil, it must be a persistent object.

method public get_reference: Object

This method returns the reference of the object the event refers to. Make
sure that you access the referenced object inside a transaction.

method public set_user_event_id(userEventld: integer)

This method changes the identifier of the event.

userEventld : an integer to identify this event.

method public get_user_event_id: integer

This method returns the identifier of the event.

method public get_label: integer

52

O> Notification User Manual

User Event : Class 02 _User_Event

This method returns the label of the filter matching this event (see the
register_notification_client method). Meaningful only for the
recipient.

method public get_name: string

This method returns the name of the emitter of the event. Meaningful
only for the recipient.

method public set_name(emitter_name: string)

This method sets the name of the emitter of the event. By default, thisis
the name given when the 02_Notification object has been created.

emitter_name : the name of the Oy client

method public get_registry_id: integer

This method returns the registration identifier matching this event (see
the register_notification_client method). Meaningful only for the
recipient.

method public execute: integer

This method is virtual and can be redefined on subclasses. This method
returns 0.

O, Notification User Manual 53

3 0O2C Interface to the Notification

3.3 Notification service

The 02_Notification class enables to initialize the notification service,
to get the message queue, to register events the client is interested in,
and to notify an event.

Class 02_Notification

method public init(clientName: string)

This method initializes the Notification service. The notication service
cannot be used until the 02_Notification object is created.

clientName :is the logical name which identifies the emitter of
messages.

method public register_client_name(clientName: string)

This method changes the clientName.

clientName :is thelogical name which identifies the emitter of
messages.

method public get_queue: 02_Notification_Queue

This method returns the message queue object associated to the service.
The received messages are put in this queue from which the recipient
extracts them.

54

O2 Notification User Manual

Notification service : Class 02_Notification

method public notify_user_event(event: 02_User_Event,
immediate: boolean)

This method sends a message to O» clients which are interested in this
message. "interested” means that the client has registered for this User
Event by calling the register_notification_client method (see
below). The message is sent immediately if "immediate" is true or else at
commit (or validate) time only.

event :the event to send

immediate : true or false. If false, it will be sent at commit time only.

method public register_notification_client(
filter: tuple(reference: Object, label: integer),
userEventld: integer): integer

This method must be called by an O, client who wants to receive some
messages sent by another O client which calls the

notify_user_event method. The messages this recipient is interested
in are characterized by a userEventld . Moreover, a "filter" can be given
to be more selective. If "reference” is not nil, only the messages related
to this object are selected.

Because an Oy Client can register more than one time (for different user
events) a "label” can be given at registration time to identify this event.
This label will be part of the received message. It helps the application

to sort the different received messages.

The method returns an integer which is a "registry Id". This number can
be used in the forget_notification_client method to cancel this
particular registration.

To define the user events, in which it is interested, the O> client must

call the register_notification_client method as many times as
necessary.

filter catuplevalue

reference :a particular object theclient is interested in. If nil it means
any object.

O» Notification User Manual 55

3 0O2C Interface to the Notification

method public forget_notification_client(registryld: integer)

This method cancels the registration whose number is "registryld”. This
number has been returned by a previous call of
register_notification_client

registryld :theid of the registry to cancel.

method public close

This method must be called when the notification service is no longer
used.

56

O> Notification User Manual

Notification Queue : Class 02_Notification_Queue

3.4 Notification Queue

The 02_Notification_Queue class allows to get received events.

Class 02_Notification_Queue

method public cardinality: integer

This method returns the number of events that are still to be consumed.

method public get_event(timeout: integer):
tuple(report: string, event:02_User_Event)

This method consumes the first event of the queue.

timeout : - if equal -1, the method waits until a message exists in
the queue.

- if >0, the method waits maximum "timeout" seconds
until a message exists in the queue.

report : - equal "success", if a message has been extracted from
the queue. In this case, event contains this message.

- equal "queue_empty" when there exists no message.

- equal "error” in all other cases (memory exhausted or
communication broken)

method public append(event:02_User_Event)

This method appends an event at the end of the queue. This can be
useful when an O client sends a message to itself.

O» Notification User Manual 57

3 0O2C Interface to the Notification

3.5 Statistics

It is possible to get statistics about the notification service through two
C functions.

02_notification_global_stat_emitted(o2_Notification_stat*, int reset);
02_notification_global_stat_lost(o2_Notification_stat*, int reset);

The first function returns in the struct the number of emitted user
event.

The second returns the number of messages which were emitted, but
which the recipient did not receive.

If reset = 1, then statistics are reset to initial count.

The 02_Notification_Stat type s :

typedef struct {
int user_event_count, int voidl; int void2; int void3; int void4}
02_Notification_Stat

58

O2 Notification User Manual

Commented example : Class 02_Notification_Queue

3.6 Commented example

In this example we have 2 applications which run in parallel as 2
different O» clients.
- "creator” create objects and notifies the creations of objects

- "insertor” receives the new created objects and insert them in a
persistent collection. This insertion is notified back to the creator.

- The creator receives back the objects and checks in the end that the
set of emitted objects is equal to the set of received objects.

Comments are written in italics inside the code.

schema test;

To use the Notification service: import the classes

import schema o2notification
class 02_User_Event, 02_Notification,02_Notification_Queue;

The user classes are as follows

class Person public type tuple(
name: string)
method
public init(name: string)
end;

class 02_set_Person public type
unique set(Person)
method
public insert(p: Person)
end;

constant name people: 02_set_Person;

We want to notify two events: creation of a person and insertion into
people. We use 02_User_Event for this creation and define a subclass
for the insertion: Insertion_Event

We also have an event of the End_Communication subclass, whose
unique roleis toindicate the end of the creation stream.

O» Notification User Manual 59

3 0O2C Interface to the Notification

method private notify_creation in class Person;

method private notify_insertion(p: Person) in class 02_set_Person;

method body notify_creation in class Person{
02 extern 02_Noatification notification_service;

#define CREATION 1
02 02_User_Event e = new 02_User_Event(CREATION, self);
notification_service->notify_user_event(e, false);

k

The class Insertion_Event adds information to user event : the inserted
object

class Insertion_Event inherit 02_User_Event public type tuple(
inserted_elem: Person)

method
public init(p: Person)

end;

method body init(p: Person) in class Insertion_Event{
#define INSERTION 2
self->inserted_elem = p;
self->02_User_Event@init(INSERTION, people);

k

method body notify_insertion (p: Person) in class 02_set_Person{
02 extern 02_Notification notification_service;

02 Insertion_Event e = new Insertion_Event(p);
notification_service->notify_user_event(e, false);

h

To indicate that the emission is over we just redefine execute ona
subclass of UserEvent . By convention a returned 1 would mean that it is
over.

60

O2 Notification User Manual

Commented example : Class 02_Notification_Queue

class End_Communication inherit 02_User_Event
method public execute:integer
end;

method body execute:integer in class End_Communication{
return 1; Meaning the communication is over

h
function notify_end;

function body notify_end{

#define CREATION 1
02 extern 02_Noaotification notification_service;
02 End_Communication e = new End_Communication;
e->02_User_Event@init(CREATION, nil);
notification_service->notify_user_event(e, true);

h

Note that the notification END is immediate, whereas the creation and
insertion are notified at validation time only.

We encapsulate the notifications in the creation and insert methods.

method body init in class Person{
self->name = name;
self->notify_creation;

h

method body insert in class 02_set_Person{
*self += unique set(p);
self->notify_insertion(p);

h

commit;

O, Notification User Manual

3 O2C Interface to the Notification

Two applications communicating through the notification service

You will find below the creator application. We define as application
variables the notification service and its queue. In fact, these two
entities have a session life and must be created only once in the init
program. Therestart program enables to export the notification object
as an external variable which can then be referred to from inside
methods like notify_creation of class Person for instance.

application creator

variable
sent_set: set(Person),
received_set: set(Person),

notif_service: 02_Notification,
queue: 02_Notification_Queue,
registryld: integer

program
init(trace: boolean),
restart(why: integer, notification_service: 02_Notification),
exit,

wait_acknowledge,

public create
end;

In theinit program, the notification service is created, and one event is
registered the INSERTION whatever the nature of the inserted. The
creator wants to receive INSERTION events which are emitted by the
insertor.

62

O2 Notification User Manual

Commented example : Two applications

set application creator;

transaction body init{
#define INSERTION 2

*people = unique set();
stat = trace;

Initialize the notification service :

notif_service = new 02_Notification("Creator”);
queue = notif_service->get_queue;

| am interested in INSERTION events :

registryld = notif_service->register_notification_client(
tuple(reference: (02 Object) nil, label: (02 integer) INSERTION)
, INSERTION);

commit;

k

program body restart(why: integer, notification_service:
02_Notification){

#include "02_event.h"

switch(why){

case O2_ERROR:
printf("Error\n™);
exit();

case O2_COMMIT:
notification_service = notif_service;
break;

case O2_ABORT:
printf("Abort %d\n");
exit();

case O2_DEADLOCK:
printf("Deadlock %d\n");
exit();

O» Notification User Manual

63

3 0O2C Interface to the Notification

The exit program cancels the registration done by the creator and
closes the service before logout.

transaction body exit{
if(received_set != sent_set){
display(tuple(E: "error”, Receive: received_set, sent:sent_set));
}
notif_service->forget_notification_client(registryld);
notif_service->close;
display("Bye!");

The create program builds objects in several transactions. After two
creations a transaction is committed and the creation is thus notified.
Caution : a reference must refer to a persistent object. After a
transaction the creator waits for acknowledgement. It finally notifies
that the process is over.

64

O2 Notification User Manual

Commented example : Two applications

program body create{
02 Person p;
char NAME[100];
02 string name;
inti, j;
02 string go;

input(go); Just to wait

for(i=1;i<=5; i++){
transaction;
for(j=1;j <= 2; j++){

sprintf(NAME, "n_%d_%d", i, j);
strcpy(name, NAME);
p = new Person(name);
sent_set += set(p); Make it persistent
}

validate;

wait_acknowledge();

}
notify_end();

In this program the creator waits until an INSERTION event occurs. It

just checks (in this example) that everything is consistent.

program body wait_acknowledge{

#define INSERTION 2
02 tuple(report: string, event: 02_User_Event) result;
inti;

for(i=1;1<=2; i++){
result = queue->get_event(60);
if(result.report == "success"){

O, Notification User Manual

65

3 0O2C Interface to the Notification

k

commit;

02 Insertion_Event event;
02 Person p; 02 02_set_Person s;
if(result.event->get_label() != INSERTION ||
result.event->get_user_event_id() '= INSERTION){
display(tuple(E: "error",
label: result.event->get_label()
id: result.event->get_user_event_id()));
exit();
}
transaction;
s = (02 02_set_Person) result.event->get_reference();
if(s I= people){
display("Error reference");
exit();

event = (02 Insertion_Event) result.event;
p = event->inserted_elem;

printf("Received from %s\n", result.event->get_name());
if(p != nil){
printf(" Person %s\n", p->name);
}
received_set += set(p);
validate;

lelse{
display(result.report);
exit();

66

O2 Notification User Manual

Commented example : Application insertor

Application insertor

In this application, you will find the init, restart, exit programs,
which are similar to those of the creator application.
application insertor
variable
notif_service: 02_Notification,
queue: 02_Notification_Queue,
registryld: integer
program
init,
restart(why: integer, notification_service: 02_Notification),
exit,
public insert
end;
set application insertor;
transaction body init{
#define CREATION 1
notif_service = new 02_Notification("Insertor");
queue = notif_service->get_queue;
//l am interested in creation events :
registryld = notif_service->register_notification_client(
tuple(reference: (02 Object) nil, label: (02 integer) CREATION)
, CREATION);
commit;
h
program body restart(why: integer, notification_service:
02_Notification){
#include "02_event.h"
switch(why){
case O2_ERROR:
printf("Error\n™);
O» Notification User Manual 67

3 0O2C Interface to the Notification

exit();

case O2_COMMIT:
notification_service = notif_service;
break;

case O2_ABORT:
printf("Abort %d\n");
exit();

case O2_DEADLOCK:
printf("Deadlock %d\n");
exit();

3

transaction body exit{
notif_service->forget_notification_client(registryld);
notif_service->close;
display("Bye!");

In theinsert program we wait until CREATION events occur. We check
consistency (in this example) and when inserting the received object
into the collection "people”, we notify back to the creator that the object
has now been inserted in this collection.

program body insert{

#define CREATION 1
02 tuple(report: string, event: 02_User_Event) result;
02 string go;

input(go); Just to wait

do{
result = queue->get_event(60);
if(result.report == "success"){
02 Insertion_Event event;
02 Person p;

68

O> Notification User Manual

Commented example : Application insertor

if(result.event->execute()){ exit(); } End Message

if(result.event->get_label() I= CREATION ||
result.event->get_user_event_id() != CREATION){
display(tuple(E: "error",
label: result.event->get_label(),
id: result.event->get_user_event_id()));
exit();

transaction;
p = (02 Person) result.event->get_reference();
printf("Received from emitter %s\n", result.event->get_name());
if(p != nil){

printf(" Person %s\n", p->name);

people->insert(p);
validate;

lelse{
display(result.report);
exit();

Jwhile(1);

k

confirm classes;

base test_base;

quit;

O» Notification User Manual

69

3 0O2C Interface to the Notification

Running the application

The creator application is launched.

$O2HOME/bin/o2shell -v -system ... -server ...
-libpath $O2HOME/lib
-libs o2cppruntime:oZnotification

set base test_base;

run program create in application creator(true);

Theinsertor application is launched meanwhile.

$O2HOME/bin/o2shell -v -system ... -server ...
-libpath $O2HOME/lib
-libs o2cppruntime:oZnotification */

set base test_base;

run program insert in application insertor;

70

O> Notification User Manual

Appendix
A PP

This chapter gives the list of error messages for the d_Class with their
explanations.

O, Notification User Manual 71

4 Appendix

Eventinvalid current operation does not apply to the given
eventtype

Some operations of the notification service only apply to specific event types. For
example, the register_notifiable_object only applies to events of the
02_Object_Event class and the notify_user_event method only applies to events
of the 02_User_Event class and subclasses.

EventTooBig size of user event too is too big
The event provided to the notify_user_event operation does not fit in a message.
NotificationNotAvailable session not opened or notification not available

on the current platform.

You called a function that requires your session to be open. Notification either lacks
a valid license or requires a multithread platform.

NotificationQueueEmpty empty notification queue.

The remove method of 02_Notification_Queue is called on an empty queue.
RefNotNotifiable object is either temporary or not notifiable.
The register_notification_client operation is applied to an event of the

02_Object_Event class, but provides a filter with the reference of an object that has
not been registered as a notifiable object or that has become temporary after its
registration.

Regldinvalid invalid registry identifier
The registry identifier provided to the forget_notifiable_client operation is not
a valid identifier. The caller of the append method of 02_Notification_Queue has

not registered itself as a client for the event it wants to append.

RegistryConflicting conflicting client registry

Filter provided for the current registry conflicts with the filter of a previous registry
performed by the same client.

72

O, Notification User Manual

INDEX

O, Notification User Manual

73

INDEX

Symbols

.h file 21

A

append 57

C

CcC1u

C++
Application 18,21, 31
Interface 11

Cancel a registration 23

cardinality 57

class
02_Notification 54
02_Notification_Queue 57

02_User_Event 51
client name 13
close 56
connection_count 42

D

deleted_object_count 42
deletion 19

disconnection_count

E

event type 13,25
event_user_id

20

Eventinvalid 72

EventTooBig 72
execute 53

F

filter 13 20,24
first_notif_time

40
forget_notification_client

G

get_event 325157

get_label 52
get_name 53
get_queue 54
get_reference
get_registry_id
get_user_event_id

52

53

52

42

56

74

O, Notification User Manual

INDEX

init 51, 54

Initialization
emitters 21
schema 50

Java 11

libo2cppruntime.so 50
libo2ntoification.so 50

N

Notifiable objects 12
Notification queue 13
NotificationNotAvailable
NotificationQueueEmpty 72
notify _user_event 40,51, 55

72

O

O, Architecture 10
O2_ANY_CLIENT 27
O2_ANY_OBJECT25, 27
O2_CLIENT_SERVERS25
O2_CLNT_MONITORING?
O2_CONNECT_EVENZ5
02_CONNECT_EVENT®O
02_Connection_Event 18, 35, 36, 37
02 _DELETE_EVENT22, 25,33
O2_DISCONNECT_EVENT?0, 25
02_Disconnection_Event 18, 35,37
O2_EVENT_SUCCESS2
02_IMMEDIATE_PROPAGATIONRO0
O2_LOCAL_NOTIFICATION 40

02_Notification
forget_notifiable_object 23
forget_notification_client 40
get_queue 1921
global_stat_emitted_event 43
global_stat_lost_event 43
is_notifiable_object 22
register_client_name 20,21
register_notifiable_object 19,22
register_notification_client 19,
20,24
stat_emitted_event 43
stat_received_event 42

02_Notification 50
02_Notification.hxx 18

02_Notification_Event
37

02_Notification_Event_Id 25
02_Notification_Event_type 22
02_Notification_Filter 26,47

02_notification_global_stat_emitte
d 58

02_notification_global_stat_lost 58
02_Notification_Label 26,47

18, 19, 26, 33, 35,

O, Notification User Manual 75

INDEX

02_Notification_Queue
get_event 19,20

02_Notification_Queue 21,31, 46,50
02_Notification_Reg_Id 24
02_Notification_Report 31,32
02_Notification_Scope 26, 27, 47
02_Notification_Stat 42,58

02_Object_Event 14,18, 35,36
02_OBJECT_EVENTS5
0O2_ONE_CLIENT27
0O2_ONE_OBJECT5, 27
02_UPDATE_EVEND2 25
02_USER_EVENTR5
02_User_Event

execute 20

notify 20
02_User_Event 14,18 20,24,35,38,50 51
0O2_VALIDATED_PROPAGATIONRO0
0.C 11
O,Corba 11
o2cppruntime 50
o2dba_schema_load 15
O,DBAccess 11
OzEngine 10
O,Graph 11
O,Kit 11
OsLook 11
0,0DBC 11
O,Store 10
O2Tools 11
O,Web 11
Object reference 13
OoQL 11

P

peek_event 32
poll 13

Propagation 12

R

RefNotNotifiable 72

Regldinvalid 72

register_client_name 54
register_for_time_notification 40
register_notifiable_object 22,23
register_notification_client 51,55
Registration 12

RegistryConflicting 72

S

set_name 53
set_reference 52
set_user_event_id 52
Statistics 58

System Architecture 10

T

Transaction boundaries 13,26

76

O, Notification User Manual

INDEX

U

Update 19
updated_object_count 42
user_event_count 42,58
userEventld 51

O, Notification User Manual

77

	MAIN MENU TO O2 DOCUMENTATION
	O2 Notification User Manual
	Who should read this manual
	TABLE OF CONTENTS
	1 Introduction 9
	2 C++ Interface to the Notification Service 17
	3 O2C Interface to the Notification Service 49
	4 Appendix 71
	INDEX 73

	1 Introduction
	1.1 System overview
	Figure 1.1: O2 System Architecture

	1.2 Notification overview
	1.3 Installing the O2 Notification schema

	2 C++ Interface to the Notification Service
	2.1 Initializing your schema
	Include file

	2.2 How to use the Notification service in C++
	2.3 Initialization
	Initialization of emitters
	Initialization of recipients

	2.4 Registration of notifiable objects
	Cancelling a registration

	2.5 Registration of recipients
	Events type
	Filtering
	Cancelling a registration
	Some registration scenarios for notifiable objects

	2.6 Communication
	Emission and propagation
	Reception

	2.7 Event objects
	Notification
	Object
	Connection
	Disconnection
	User
	Example

	2.8 Statistics of Notifications
	2.9 Class o2_Notification
	2.10 Class o2_Notification _Queue
	2.11 Class o2_Notification_Filter

	3 O2C Interface to the Notification Service
	3.1 Introduction
	Initializing your schema
	Notification service

	3.2 User Event
	Class o2_User_Event

	3.3 Notification service
	Class o2_Notification

	3.4 Notification Queue
	Class o2_Notification_Queue

	3.5 Statistics
	3.6 Commented example
	Two applications communicating through the notification service
	Application insertor
	Running the application

	4 Appendix
	INDEX
	Symbols
	.h file�21

	A
	append�57

	C
	C�11
	C++
	Application�18, 21, 31
	Interface�11

	Cancel a registration�23
	cardinality�57
	class
	o2_Notification�54
	o2_Notification_Queue�57
	o2_User_Event�51

	client name�13
	close�56
	connection_count�42

	D
	deleted_object_count�42
	deletion�19
	disconnection_count�42

	E
	event type�13, 25
	event_user_id�20
	EventInvalid�72
	EventTooBig�72
	execute�53

	F
	filter�13, 20, 24
	first_notif_time�40
	forget_notification_client�56

	G
	get_event�32, 51, 57
	get_label�52
	get_name�53
	get_queue�54
	get_reference�52
	get_registry_id�53
	get_user_event_id�52

	I
	init�51, 54
	Initialization
	emitters�21
	schema�50

	J
	Java�11

	L
	libo2cppruntime.so�50
	libo2ntoification.so�50

	N
	Notifiable objects�12
	Notification queue�13
	NotificationNotAvailable�72
	NotificationQueueEmpty�72
	notify_user_event�40, 51, 55

	O
	O2 Architecture�10
	O2_ANY_CLIENT�27
	O2_ANY_OBJECT�25, 27
	O2_CLIENT_SERVERS�25
	O2_CLNT_MONITORING�37
	O2_CONNECT_EVENT�25
	o2_CONNECT_EVENT�20
	o2_Connection_Event�18, 35, 36, 37
	O2_DELETE_EVENT�22, 25, 33
	O2_DISCONNECT_EVENT�20, 25
	o2_Disconnection_Event�18, 35, 37
	O2_EVENT_SUCCESS�32
	O2_IMMEDIATE_PROPAGATION�30
	O2_LOCAL_NOTIFICATION�40
	o2_Notification
	forget_notifiable_object�23
	forget_notification_client�40
	get_queue�19, 21
	global_stat_emitted_event�43
	global_stat_lost_event�43
	is_notifiable_object�22
	register_client_name�20, 21
	register_notifiable_object�19, 22
	register_notification_client�19, 20, 24
	stat_emitted_event�43
	stat_received_event�42

	o2_Notification�50
	o2_Notification.hxx�18
	o2_Notification_Event�18, 19, 26, 33, 35, 37
	o2_Notification_Event_Id�25
	o2_Notification_Event_type�22
	o2_Notification_Filter�26, 47
	o2_notification_global_stat_emitte d�58
	o2_notification_global_stat_lost�58
	o2_Notification_Label�26, 47
	o2_Notification_Queue
	get_event�19, 20

	o2_Notification_Queue�21, 31, 46, 50
	o2_Notification_Reg_Id�24
	o2_Notification_Report�31, 32
	o2_Notification_Scope�26, 27, 47
	o2_Notification_Stat�42, 58
	o2_Object_Event�14, 18, 35, 36
	O2_OBJECT_EVENTS�25
	O2_ONE_CLIENT�27
	O2_ONE_OBJECT�25, 27
	O2_UPDATE_EVENT�22, 25
	O2_USER_EVENT�25
	o2_User_Event
	execute�20
	notify�20

	o2_User_Event�14, 18, 20, 24, 35, 38, 50, 51
	O2_VALIDATED_PROPAGATION�30
	O2C�11
	O2Corba�11
	o2cppruntime�50
	o2dba_schema_load�15
	O2DBAccess�11
	O2Engine�10
	O2Graph�11
	O2Kit�11
	O2Look�11
	O2ODBC�11
	O2Store�10
	O2Tools�11
	O2Web�11
	Object reference�13
	OQL�11

	P
	peek_event�32
	poll�13
	Propagation�12

	R
	RefNotNotifiable�72
	RegIdInvalid�72
	register_client_name�54
	register_for_time_notification�40
	register_notifiable_object�22, 23
	register_notification_client�51, 55
	Registration�12
	RegistryConflicting�72

	S
	set_name�53
	set_reference�52
	set_user_event_id�52
	Statistics�58
	System Architecture�10

	T
	Transaction boundaries�13, 26

	U
	Update�19
	updated_object_count�42
	user_event_count�42, 58
	userEventId�51

