
O2 Notification
User Manual

Release 5.0 - April 1998

In format ion in th is docu ment is su bject to change withou t not ice and shou ld
not be const ru ed as a commitment by O2 Technology.

The software descr ibed in th is document is del ivered under a l icense or
nondisclosure agreement .

The software can only be used or copied in accordance with the terms of the
agreem ent . It is against the law to copy th is software to magnet ic tape, disk, or
any other medium for any purpose other than the purchaser ’s own use.

Copyr ight 1992-1998 O2 Technology.

All r igh ts reserved. No par t of th is pu bl icat ion can be reprodu ced, stored in a
ret r ieval system or t ransmit ted in any form or by any means, elect ron ic,
mechan ical, photocopy withou t pr ior wr i t ten permission of O2 Technology.

O2, O2Engine API, O2C, O2DBAccess, O2Engine, O2Graph , O2Kit , O2Look ,
O2Store, O2Tools, and O2Web are registered t rademarks of O2 Technology.

SQL and AIX are registered tradem arks of Internat ional Business Mach ines
Corporat ion.

Sun , SunOS, and SOLARIS are registered t rademarks of Sun Microsystems,
Inc.

X Window System is a registered t rademark of the Massachuset ts Insti tu te of
Technology.

Unix is a registered trademark of Unix System Laborator ies, Inc.

HPUX is a registered t rademark of Hewlet t -Packard Company.

BOSX is a registered t rademark of Bu ll S.A.

IRIX is a registered t rademark of Siemens Nixdor f, A.G.

NeXTStep is a registered t rademark of the NeXT Compu ter , Inc.

Pur ify, Quan t ify are registered t rademarks of Pure Software Inc.

Windows is a registered t rademark of Microsoft Corporat ion.

All other company or produ ct names quoted are t rademarks or registered
t rademarks of their respect ive t rademark holders.

Who should read this manual

The not ificat ion service available in O2 al lows an o2 cl ient to in form
other clien ts connected to the same O2 server that an event has
occured. The not i ficat ion consists of a m essage sending for events
regarding persistent objects and cl ien t connect ions / disconnections.
The manual also descr ibes the funct ional inter face of the not i ficat ion
service with the ODMG C++ binding. User-defined even ts are also
supported.

Other documents avai lable are ou tl ined, click below.

See O2 Documentation set .

TABLE OF CONTENTS
This manu al is divided into the following chapters:

• 1 - Int rodu ct ion

• 2 - C++ inter face to the not ificat ion service

• 3 - O2C inter face to the not ificat ion service

• 4 - Appendix
 O2 Not ificat ion User Manual 5

TABLE OF CONTENTS

18

1
1

23

.25
26
28
28

.30

.31

5
36
36
37
.38
40
1 Introduction 9

1.1 System overview ..10

1.2 Notification overview ...12

1.3 Installing the O2 Notification schema15

2 C++ Interface to the Notification Service 17

2.1 Initializing your schema...18

Include file ...

2.2 How to use the Notification service in C++............................19

2.3 Initialization...21

Initialization of emitters ...2
Initialization of recipients ..2

2.4 Registration of notifiable objects ...22

Cancelling a registration ..

2.5 Registration of recipients ...24

Events type..
Filtering ..
Cancelling a registration ..
Some registration scenarios for notifiable objects

2.6 Communication ..30

Emission and propagation ...
Reception ..

2.7 Event objects ..35

Notification ..3
Object ...
Connection ...
Disconnection...
User ...
Example ...

2.8 Statistics of Notifications ..42
6 O2 Not i ficat ion User Manu al

TABLE OF CONTENTS

50
50

. 51

54

57

67
70
2.9 Class o2_Notification .. 44

2.10 Class o2_Notification _Queue .. 46

2.11 Class o2_Notification_Filter ... 47

3 O2C Interface to the Notification Service 49

3.1 Introduction.. 50

Initializing your schema ..
Notification service ...

3.2 User Event .. 51

Class o2_User_Event..

3.3 Notification service.. 54

Class o2_Notification ..

3.4 Notification Queue... 57

Class o2_Notification_Queue..

3.5 Statistics... 58

3.6 Commented example... 59

Two applications communicating through the notification service
62
Application insertor ...
Running the application...

4 Appendix 71

INDEX 73
O2 Not ificat ion User Manual 7

TABLE OF CONTENTS
8 O2 Not i ficat ion User Manu al

1 Introduct ion

GENERAL OVERVIEW OF THE O2
NOTIFICATION SERVICE

1

Congratu lat ions! You are now a user of the O2 not ification service!

This docu ment presen ts the not ificat ion service of O2. It descr ibes, in
the second chapter , the fu nct ional in ter face of the classes of the
not ification services for the ODMG C++ binding and, in the th ird
chapter , the noti fication services for O2C.

This chapter in t rodu ces the O2 not i ficat ion service. It is divided in to the
following sect ions :

• System overview

• Not i ficat ion overview

• Install ing the O2 Not i ficat ion schema
 O2 Noti fication User Manu al 9

Introduction1
1.1 System overview

The system arch itectu re of O2 is il lu st rated in Figu re 1.1.

Fi gur e 1 .1 : O2 Syst em Ar ch i t ect u r e

The O2 system can be viewed as consist ing of three components. The
Database Engine provides al l the featu res of a Database system and an
object -or ien ted system. Th is engine is accessed with Development Tools,
such as var iou s programming languages, O2 development tools and any
standard development tool. Numerous External Interfaces are provided.
Al l encompassing, O2 is a versat ile, por table, dist r ibu ted,
h igh-per formance dynamic object -or iented database system.

Database Engine:

• O2Store The database management system provides low level
facil it ies, through O2Store API, to access and manage a
database: disk volu mes, fi les, records, indices and
t ransact ions.

• O2Engine The object database engine provides direct cont rol of
schemas, classes, objects and t ransact ions, through
O2Engine API. It provides fu ll text indexing and search
capabi li t ies with O2Search and spat ial indexing and
ret r ieval capabi li t ies with O2Spat ial . I t includes a
Not ificat ion m anager for inform ing other clients
connected to the same O2 server that an event has
occu rred, a Version m anager for handl ing mu lt iple
object versions and a Repl icat ion API for synchron izing
mu lt iple copies of an O2 system.

O2CC++ Java

O2 Dev. Tools

O2DB
Access

OQL

Standard
Dev. Tools

O2Web

O2Corba

Development Tools

C

Database Engine

O2Engine

O2Store

O2Notification

External
Interfaces

O2ODBC
10 O2 Not i ficat ion User Manual

System overview
Programming Languages:

O2 objects may be created and managed using the following
programming langu ages, u t i lizing all the featu res available with O2
(persistence, col lection management , t ransact ion management , OQL
qu er ies, etc.)

• C O2 funct ions can be invoked by C program s.

• C++ ODMG compliant C++ binding.

• Java ODMG compliant Java binding.

• O2C A powerfu l and elegant object-or iented fou r th
generat ion language special ized for easy development
of object database appl icat ions.

• OQL ODMG standard, easy-to-use SQL-l ike object qu ery
language with special featu res for deal ing with com plex
O2 objects and methods.

O2 Development Tools:

• O2Graph Create, modify and edit any type of object graph .

• O2Look Design and develop graphical user in ter faces, provides
in teractive manipu lation of complex and mu lt imedia
objects.

• O2Kit Library of predefined classes and methods for faster
developm ent of user applicat ions.

• O2Tools Complete graphical programming environm ent to
design and develop O2 database appl icat ions.

Standard Development Tools:

All standard programming languages can be used with standard
environments (e.g. Visual C++, Sun Sparcworks).

External Inter faces:

• O2Corba Create an O2/ Orbix server to access an O2 database
with CORBA.

• O2DBAccess Connect O2 applicat ions to relat ional databases on
remote hosts and invoke SQL statements.

• O2ODBC Connect remote ODBC cl ient appl icat ions to O2
databases.

• O2Web Create an O2 Wor ld Wide Web server to access an O2
database th rough the internet network.
 O2 Noti fication User Manu al 11

Introduction1
1.2 Notification overview

The not i ficat ion service al lows an O2 client to in form other clien ts
connected to the same O2 server that an even t occurred. The
not ificat ion consists in message sending on even ts regarding persistent
objects.

The com mun icat ion is asynchronous and the propagation of an event
may be either provoked by the user or au tomat ical ly launched by the
system :

• at transaction validation time for events regarding persistent objects,

• at connect ion/ disconnect ion t ime for events regarding cl ients,

• either immediately or at t ransaction validat ion t ime for user-defined
events, depending on the appl icat ion choice.

Notif iable objects are objects whose u pdates or deletion are
au tomat ical ly not ified by the system.

• An update event is provoked by any update operat ion.

• A delet ion even t is provoked by the delet e_object method. The appl ica-
t ion thu s must call th is ODMG m ethod if i t wan ts the events to be not i-
fied.

Not i fiable objects have to register explicit ly with the not ificat ion service
on a per event basis (update or deletion). Regist ration (Resp. disabl ing)
of a not i fiable object may be per formed by any clien t, the object is then
marked as not i fiable (Resp. not not ifiable).

Emit ters of not i ficat ions are O2 clien ts that

• either modify or delete not i fiable objects,

• or expl icit ly send user events,

• or connect / disconnect ,

O2 cl ients may register a symbolic nam e with the not i ficat ion service.
The symbol ic name of the emit ter of a noti ficat ion , when i t exists, is par t
of the not i ficat ion in format ion provided to the recipien t (s) of the
not ificat ion.

An em it ter only in teracts with the not i ficat ion service for the not ificat ion
of user-defined even ts.

The recipien t of a not ificat ion is an O2 cl ient . I t also has to register with
the not i ficat ion service on a per event basis. Regist rat ion (Resp.
disabl ing) of a recipien t is per form ed locally by the cl ient , then
forwarded to the server with in ternal in format ion su ch as even t type(s)
and in ternal object iden t ifier .

Not i ficat ion processing is dist r ibu ted between the O2 clients and server
as shown in Figu re 1.
12 O2 Not i ficat ion User Manual

Notification overview
When receiving a not ificat ion , the server immediately propagates it to
the recipients, i .e. to clien ts that have registered for the not ified event ,
and pu t the noti ficat ion in their not ificat ion queue.

Fi gure 1: Di st r i but ed processi ng of a not i f i cat i on

The recipient m ay con t rol , on a per even t basis, the ident ity of the
objects or clien ts whose not i ficat ions i t is in terested in by providing a
fil ter at regist rat ion t ime. Fil ters associate an event type (for example,
u ser-defined or connect ion), an object reference or a cl ient name
depending on the event type (clien t names in fi lters are related to
connection / disconnect ion even ts) and an opt ional label provided by the
appl icat ion. A label is a logical iden t ifier that is retu rned to the recipient
in the informat ion par t of a filtered noti ficat ion . It allows the applicat ion
to associate di fferent processing to the not ificat ion of a given even t . I t is
a discr iminant whose validity spans t ransact ions bou ndar ies1 whi le
object references’ val idity does not. Fil ters may also apply to any object
or client related to a given event . Examples of fi lters and associated
labels are given in sect ion 2.2.

The recipient in teracts with al l the objects of the not ificat ion service: the
not ificat ion server for regist rat ion and for the creat ion of a not ification
qu eu e, the not i ficat ion queue for pol ling not ified even ts and even t
objects that are stored in the noti ficat ion queue. The relat ionsh ip
between these differen t objects is shown in Figu re 2.

1. A t ransact ion bou ndary is a com m i t or abor t operat ion. A val i dat e operation pre-
serves the validity of object references.

T0: client A
performs event
E1

T2: O2 server
notifies recipients
registered for E1

T3: clients B and C
are notified that
event E1 occurred

T1: client A
notifies E1

A

B

C

server
 O2 Not ificat ion User Manual 13

Introduction1
Fi gure 2: Object s of t he Not i f i cat i on Serv i ce

The class h ierarchy of events objects is presen ted in Figu re 3.

The o2_Object _Even t class is related to u pdate and delet ion even ts that
are au tomatically not i fied by the system .

The class for user -defined events inher its the o2_Object _Even t one. It
does not mean that u ser-defined even ts must be related to an object
u pdate. It only means that a user event may be related to an object and,
i f so, fi lter ing on object iden ti ty appl ies to u ser-defined events.

Fi gure 3: Even t cl asses h i er archy

In O2C, the o2_User_Even t class and i ts su bclasses only may be used.

Notification Event

Notification Servercreates

stores

Notification Event

Notification Queue

Notification Event

sends

o2_Notification_Event

o2_Object_Event o2_Connection_Event

o2_User_Event o2_Disconnection_Event
14 O2 Not i ficat ion User Manual

Installing the O2 Notification schema
1.3 Installing the O 2 Notification schema

In order to use the noti fication service, you have to install the
o2not ificat ion schema in your system. After running o2_dba_i n i t , you
u se the o2dba_sch em a_l oad tool (see the O2 System Administration
Reference Manual) to load the schemas from the
$O2HOME/ o2sch em as directory :

o2dba_schem a_load -f i le

 $O2HOME/ o2sch em as/ o2not i f i cat i on .dum p -syst em m y_syst em
-sources -verbose

o2dba_schem a_load asks you for the name of the volu me for the
schema to install. Using the volume Cat al Vol for th is pu rpose is
recomm ended.
 O2 Not ificat ion User Manual 15

Introduction1
16 O2 Not i ficat ion User Manual

2 C++ Inter face to the
Not i ficat ion Service2
This chapter is divided into the following sect ions :

• In it ializing you r schema

• How to use the Noti fication service in C++

• In it ializat ion

• Registrat ion of not ifiable objects

• Registrat ion of recipien ts

• Com municat ion

• Event objects

• Stat ist ics of Not ificat ions

• Class o2_Not i ficat ion
 O2 Not i ficat ion User Manual 17

C++ Interface to the Notification Service2
2.1 Initializing your schema

When bu i lding your own schema, you have to im port from the
o2not ificat ion schema the event classes you wil l use in your applicat ion .

Example of o2dsa_shel l commands to in it ialize your schema:

Include file

To make use of the not i ficat ion package in a C++ program, you must use
the fol lowing include direct ive :

schema appli_s;

import schema o2notification class
o2_Notification_Event,o2_Object_Event,o2_User_Event, o2_Connection_Event,
o2_Disconnection_Event;

#include " o2_Notification.hxx "
18 O2 Not i ficat ion User Manual

How to use the Notification service in C++
2.2 How to use the Notification service in C++

Many scenar ios are possible, according to the even ts you want to be
not ified.

If you wan t to ask a service to the not ificat ion system you m ust cal l a
method of the O2_Not i ficat ion class. Bu t you must fi rst create one
object of th is class.

(1) You want to be notified of the updates/deletions of some
objects :

In order to be not ifiable, an object mu st fir st ly be declared to the
not ificat ion service. Any O2 client can declare an object by cal ling the
o2_Notification::register_notifiable_object method as many
t imes as necessary. This property is made persisten t at comm it t im e.

On the emit ter side : Any O2 client can then star t work ing as usual and
u pdate and delete not i fiable objects in a t ransparent way.

On the recipient side : An O2 cl ient m ust define precisely the actual
objects i t is interested in .

It declares them by cal ling
o2_Notification::register_notification_client as many t imes
as necessary.

Now i t is ready to receive updates/ delet ions even ts. They are al l stored
in a qu eu e, wh ich is obtained by call ing once
o2_Notification::get_queue .

o2_Notification_Queue::get_event has ju st to be called to enable
the user to wait for the next event .

When an even t exists the user receives i t as an instance of the
o2_Notification_Event class or as one of i ts subclasses.

It can thus analyze the event to get more detailed information , as for
instance the object which has been updated. It can then access th is
object , inside a t ransact ion .
 O2 Not i ficat ion User Manual 19

C++ Interface to the Notification Service2
(2) You want to be notified of connections/disconnections of other
clients:

On the emit ter side : to make i tself known, an O2 client can give its
name by cal ling o2_Notification::register_client_name . The
connect ion / disconnect ion wil l then be not ified au tom at ically.

On the recipient side : an O2 client , interested in th is service, mu st
inform the system by cal ling
o2_Notification::register_notification_client .

Th is method has many parameters including the type of checked events
(wh ich are then of the O2_CONNECT_EVENT or O2_DISCONNECT_EVENT
type).

The fi lter , which is another parameter , may tell more precisely which O2
clien t name you are in terested in .

(3) You want to send and receive user built-in messages :

On the emit ter side : you obviously have to bu ild an object of the
O2_User_Event class or one of i ts subclasses you can define.

Th is object may con tain any information you wan t and par t icu lar ly a
reference to a persisten t object for instance.

To send the object you just apply the o2_User_Event::notify method.

Such an even t can be ident i fied by an event_user_id which allows the
recipien t to recognize it .

On the recipient side : Again you use the
o2_Notification::register_notification_client method to
indicate which user even ts you are in terested in . The parameters
enable to define the natu re of the event (O2_USER_EVENT) and through a
fil ter the valu e of the user id. You can also fil ter on the valu e of a
reference to a persisten t object con tained in the message.

As u su al you get the message by call ing
o2_Notification_Queue::get_event .

You get an object of the o2_User_Event class in wh ich you can find
more in format ion. You may use a vir tu al method cal l when the actual
class of the object is a subclass of o2_User_Event. For example, the
o2_User_Event::execute method is vir tu al and thu s can be redefined
by your own subclasses.

The rest of the chapter gives details abou t these fu nctionali t ies.
20 O2 Not i ficat ion User Manual

Initialization
2.3 Initialization

Initialization of emitters

A clien t wh ich wan ts to have a name associated to the even ts i t not ifies,
either explicit ly or implici t ly, mu st register i ts symbolic name with the
not ificat ion service. This may be u sefu l , for example, for not i fying other
clients at connect t ime, so that they may now be not i fied of som e
specific even ts emit ted by the connecting client .

Th is can be done by the const ru ctor of the not i ficat ion server or by
cal ling the following m ethod:

Any fu r ther regist rat ion of a name cancels the previous one. The
regist rat ion of names is not not i fied by the system. If the appl icat ion
wants to noti fy name changes, i t must define and not i fy the associated
u ser event .

Several clien ts may register the same nam e with the not i ficat ion server .

The name regist rat ion must be done before a connection to O2,
otherwise it is not taken in to accoun t .

Initialization of recipients

A clien t that wan ts to receive not ificat ions may ret r ieve the not i ficat ion
qu eu e from the not i ficat ion server .

The queue that wi ll receive the not i ficat ion messages mu st be expl icit ly
pol led by the recipien t . Its inter face is descr ibed in sect ion 5.2. It is
ret r ieved by call ing the fol lowing method of the not i ficat ion server :

void o2_Notification::register_client_name (char * clientName);

class o2_Notification_Queue;

o2_Notification_Queue * o2_Notification::get_queue ();
 O2 Not i ficat ion User Manual 21

C++ Interface to the Notification Service2
2.4 Registration of notifiable objects

Regist rat ion of a not i fiable object is only necessary for the UPDATE and
DELETION event types. It must occu r in the scope of a t ransact ion, if
th is t ransact ion aborts the object wil l no longer be noti fiable. The
regist rat ion method marks an object as not ifiable (it therefore acqu ires
an exclusive lock on i t du r ing the t ransact ion). It becomes immediately
not ifiable for the call ing cl ien t and the noti fiable property is visible at
t ransact ion validat ion t im e by other clien ts.

The regist rat ion method has the following in ter face:

The even tType must be either O2_UPDATE_EVENT or O2_DELETE_EVENT.
The object Reference1 argu ment mu st be fil led with a persisten t
capable reference to the persistent object that wi ll be not ifiable, such as
in the fol lowing example :

The fol lowing method al lows to test if a given object is not ifiable. It
r etu rns 1 i f the object is not ifiable, 0 elsewhere.

1. The class o2_poi n t er is a su perclass of all d_Ref<T>.

// throws d_Error_RefInvalid, d_Error_EventInvalid,
d_Error_TransactionNotOpen

void o2_Notification::register_notifiable_object (
o2_Notification_Event_type eventType,

const o2_pointer &objectReference);

d_Ref<my_Class> objRef;

...

notification_server->register_notifiable_object(O2_UPDATE_EVENT, objRef);

int o2_Notification::is_notifiable_object (
o2_Notification_Event_type eventType, const o2_pointer &objectReference);
22 O2 Not i ficat ion User Manual

Registration of notifiable objects
As for the regi st er_not i f i able_object method, the object Referen ce
argu ment mu st be fi lled with a persistent capable reference to a
persisten t object .

Cancelling a registration

The disabling method m arks an object as not not ifiable and mu st also
occur in the scope of a t ransact ion . The noti fiable property is lost
immediately for the cal ling cl ien t, at transact ion validat ion t ime for the
other clients. If the cu r rent t ransact ion abor ts, the object wil l st il l be
not ifiable. It has the following in ter face:

As for the regi st er_not i f i able_object method, the object Referen ce
argu ment mu st be fi lled with a persistent capable reference to the
not ifiable object .

Disabling is effect ive for the request ing clien t i f there are no recipien ts
registered for that even t Type and that object Reference, in which case
a statu s equ al to 1 is retu rned. If some recipients are registered, a
status equal to 0 is retu rned.

Disabling is effect ive for all other O2 clien ts at request ing cl ient ’s
t ransaction validat ion t ime.

// throws d_Error_RefInvalid, d_Error_EventInvalid,
d_Error_TransactionNotOpen

int o2_Notification::forget_notifiable_object (
o2_Notification_Event_type eventType, const o2_pointer &objectReference);
 O2 Not i ficat ion User Manual 23

C++ Interface to the Notification Service2
2.5 Registration of recipients

Regist rat ion of a recipient for events regarding not i fiable objects must
occur in the scope of a t ransaction in order to synchronize with the
regi st er_not i f i able_object and forget _n ot i f i able_object methods that
are descr ibed above. Regist rat ion of a recipient for other events is
effect ive at regist rat ion t ime and may occu r ou tside the scope of a
t ransact ion . The regist rat ion operat ion for a not i ficat ion recipient has
the fol lowing in ter face:

The r egi st er_not i f i cat i on _cl i en t method retu rns a regist ry iden t ifier
that wi ll be used if the regist rat ion is explici t ly cancelled.

All Even t types are defined in the Even ts Type paragraph below.

The userEven t Id parameter is provided by the applicat ion , it al lows to
select the differen t user-defined even ts which can be received. It
corresponds to the user Id at t r ibu te of class o2_User_Even t (see section
6). Its type is unsigned short .

A f i l t er has to be specified by a recipient . It enables to sharpen the
descr ipt ion of the even ts th is regist rat ion deals with. The fi lter type is
defined in the Filter paragraph below. If a fu r ther regist rat ion for the
same event, i.e. even ts with ident ical even t Types and userEven t I ds, is
per formed, the union of fi lters wil l be made.

1. If a previous regist rat ion has been per formed with exactly the sam e
parameters, the noti fication service increments the cou nt associated to
the previous regist rat ion and retu rns the same regist ry ident i fier .

2. If a previous regist rat ion has been per formed with the same
parameters except the label field of the fi lter , if the updat eLabelFlag is
t ru e, the previous regist rat ion is canceled and the new one is taken into
accoun t , else the except ion d_Er ror_Regi st r yCon f l i ct i n g is raised.

typedef int o2_Notification_Reg_Id;

/* throws d_Error_RefInvalid, d_Error_RefNotNotifiable,

d_Error_RegistryConflicting, d_Error_TransactionNotOpen */

o2_Notification_Reg_Id

o2_Notification::register_notification_client (
o2_Notification_Event_type eventType, o2_Notification_Filter &filter,

o2_Notification_Event_Id userEventId= 0,
d_Boolean updateLabelFlag= 0);
24 O2 Not i ficat ion User Manual

Registration of recipients
3. If a previou s regist rat ion has been per formed with a scope
O2_ONE_OBJ ECT, a fu r ther regist rat ion with the scope
O2_ANY_OBJ ECT wi ll not be taken into account and the except ion
d_Er ror_Regi st r yCon f l i c t i ng is raised.

4. if a previous regist rat ion has been per formed with a scope
O2_ANY_OBJ ECT, no fu r ther registrat ion wil l be taken in to accoun t
with the scope O2_ONE_OBJECT and the except ion
d_Er ror_Regi st r yCon f l i c t i ng wi ll be raised.

Events type

Pre-defined even ts types are associated to even t objects whose class
h ierarchy is presen ted in the int rodu ct ion. They are provided by the
enu merat ion o2_Not i f i cat i on_Even t _Type.

User events:

• user-defined event, O2_USER_EVENT.

Object even ts:

• deletion of a persistent object, O2_DELETE_EVENT,

• update of a persistent object, O2_UPDATE_EVENT.

Client even ts:

• connection of a client, O2_CONNECT_EVENT,

• disconnection of a client, O2_DISCONNECT_EVENT.

Some combinat ions of these basic even ts:

• the union of deletion and update events, O2_OBJECT_EVENTS,

• the union of connection and disconnection events, O2_CLIENT_EVENTS.

These events are su bdivided in two categor ies:

User-defined events are not interpreted by the not i ficat ion service and
they are raised explici t ly by the application whereas cl ien t and object
even ts are au tomat ical ly detected and raised by the database system.

User-defined events are of the O2_USER_EVENT type and have an
addit ional application -dependen t iden ti fier which al lows to discr iminate
them:

typedef unsigned short o2_Notification_Event_Id;
 O2 Not i ficat ion User Manual 25

C++ Interface to the Notification Service2
User-defined events allow the u ser to con trol the granu lar ity of
not ificat ions. For example, in a cooperat ive application such as book
edit ing, when modifying a paragraph of chapter 10, one may want to
not ify that chapter 10 has changed rather than to noti fy changes of
paragraph N of th is chapter . The not ificat ion service does not per form
any con t rol on the val idi ty of user -defined events, i.e. it wil l not check i f
the object for chapter 10 has really been modified.

Even t classes corresponding to these basic event types, wh ich al l inher i t
the o2_Not i f i cat i on_Even t base class, are defined in sect ion 6.

Filtering

Supplying fi lters al lows the recipient to con trol the ident ity of the objects
or clien ts abou t which i t wants to receive not ificat ions: either al l
not ifiable objects or one given object , ei ther all clien ts or one given
clien t . Fi lters are set by the recipient at regist rat ion t im e. A fil ter has 3
significan t fields, a scope, a label and ei ther an object reference or a
clien t name depending upon the even t type to wh ich it appl ies. The
whole in ter face of the o2_Notification_Filter class is given in
sect ion 2.11.

A label is a logical ident i fier (an integer) that is retu rned to the recipient
in the in format ion par t of a fi ltered not ificat ion . I t allows the applicat ion
to associate differen t processing to the not ificat ion of a given even t . It is
a discr iminan t whose validity spans t ransact ions bou ndar ies wh ile
object references’ validity doesn ’t .

There are fou r scopes of fil ters for recipien ts:

class o2_Notification_Filter {

d_Ref_Any reference;

char *name;

o2_Notification_Scope scope;

o2_Notification_Label label;

public:

// constructors, destructor and access methods

// ...

};
26 O2 Not i ficat ion User Manual

Registration of recipients
O2_ANY_OBJ ECT and O2_ONE_OBJECT scopes apply to even ts
related to object updates and delet ion and to user-defined even ts. The
O2_ANY_OBJ ECT scope means that the fil ter appl ies to all objects for a
given even t . The cl ient name is not taken into accou nt in fil ters with
scopes regarding objects.

O2_ANY_CLIENT and O2_ONE_CLIENT scopes apply to even ts related
to connect ions and disconnections. The O2_ANY_CLIENT scope means
that the fil ter appl ies to all clien ts that connect and/ or disconnect . The
reference is not taken into accou nt in fil ters with scopes regarding
clients.

The defau lt fil ter has the O2_ANY_OBJECT scope, a nu ll reference, an
empty name and a nu l l label.

For a fil ter with the O2_ONE_OBJECT scope, the reference of the
cor responding not i fiable object must be provided to the not ificat ion
service.

Objects references are no longer val id after a transact ion has been
val idated with commit or abor ted. In order to discr iminate an even t and
the associated object (s) across t ransact ions, the fi lter is tagged with a
label, local to the recipient . For example,

• a monitor ing applicat ion wi ll r egister for the O2_UPDATE_EVENT event
with the defau lt fi lter to be not i fied of al l changes of a given database,

• to be not i fied of growth and decreasing of the popu lat ion, a censu s appl i-
cat ion wi ll r egister for the O2_USER_EVENT even ts with the " grow " and
" decrease " user even t ident ifiers and will supply the fol lowing fi lter :

enum o2_Notification_Scope {

O2_ANY_OBJECT,

O2_ONE_OBJECT,

O2_ANY_CLIENT,

O2_ONE_CLIENT

};

const o2_Notification_Label POPULATION = 10;

o2_Notification_Filter f (ParisCollectionRef, POPULATION);
 O2 Not i ficat ion User Manual 27

C++ Interface to the Notification Service2
Cancelling a registration

Regist rat ion may be explicit ly disabled. If not expl icit ly disabled, a
not ificat ion recipient is au tomatically disabled at the end of cl ient
session.

The disabl ing operat ion has the fol lowing in ter face:

If several registrat ions have been per formed with the same regi st r y I d,
the regist rat ion wi ll on ly be canceled when the regist ry cou nt falls to
zero.

Some registration scenarios for notifiable objects

At least two regist ration approaches are possible for regist rat ion of
not ifiable objects.

1. A not ifiable object is registered once and for all . I f either the
applicat ion needs to disable the not ifiable proper ty, it loops in a
t ransact ion un t il the forget _n ot i f i abl e_obj ect m ethod retu rns the
success statu s.

2. A not ifiable object is registered by a recipient which wants to receive
not ificat ions abou t its updates. The regist rat ions of the not ifiable object
and the recipien t may be made in the scope of the same t ransaction .
When the recipient does no longer need to receive not ificat ions, i t
cancels the not i fiable object regist rat ion with in a transact ion as shown
in the fol lowing example:

// throws d_Error_RegIdInvalid

void o2_Notification::forget_notification_client (o2_Notification_Reg_Id
registryId);

d_Session session;

d_Database database;

d_Transaction trans;

o2_Notification notif_svr (" my_name ");

o2_Notification_Label my_obj_update = 1;

o2_Notification_Reg_Id* reg_ids;
28 O2 Not i ficat ion User Manual

Registration of recipients
main() {

d_Ref<my_object > obj;

int i = 0;

// some initialization actions such as session beginning, etc...

trans.begin();

//my_coll is the list of objects about which the client wants to receive

notifications

d_List<d_Ref<my_object > >my_coll(" my_collection ");

d_Iterator<d_Ref<my_object> > my_iterator =

my_coll.create_iterator();

reg_ids = new o2_Notification_Reg_Id[my_coll.cardinality()];

my_iterator.next(obj);

do {

// associates the same label to all the elements of my_coll

o2_Notification_Filter my_filter(obj, my_obj_update);

if (!notif_svr. is_notifiable_object(O2_UPDATE_EVENT, obj))

notif_svr.register_notifiable_object(O2_UPDATE_EVENT,obj);

reg_ids[i++] =

notif_svr.register_notification_client(O2_UPDATE_EVENT,

my_filter);

} while (my_iterator.next(obj));

trans.validate();

my_iterator.reset();

// ...

// before ending, cancel registrations

trans.begin();

my_iterator.next(obj);

i = 0;

do {

notif_svr.forget_notification_client(reg_ids[i++]);

if (notif_svr. is_notifiable_object(O2_UPDATE_EVENT, obj))

notif_svr.forget_notifiable_object(O2_UPDATE_EVENT, obj);

} while (my_iterator.next(obj));

trans.commit();

// ...

}

 O2 Not i ficat ion User Manual 29

C++ Interface to the Notification Service2
2.6 Communication

Emission and propagation

The emission of update and delete events is impl icit ly per formed at
t ransact ion validat ion t im e. The emission of u ser-defined events must
be explici t ly per formed with a propagat ion flag:
O2_IM MEDIATE_PROPAGATION or O2_VALIDATED_PROPAGATION .

The Noti ficat ion Service provides gener ic methods for the propagation of
any k ind of user events and associated data. The inter face of the
not ificat ion m ethod is the fol lowing:

The caller of o2_Notification::notify_user_event m ust provide the
address of a d-Ref poin ter to a user-defined even t as shown in the
following example.

Even ts em it ted with the O2_IMMEDIATE_PROPAGATION flag are
immediately propagated to the recipien t (s). Else, propagation is
per formed at commit t im e to clien ts of other transact ions.

An exam ple of emission of a user event in a census application is the
bir th of a chi ld in Par is:

// throws d_Error_RefInvalid, d_Error_EventTooBig,
d_Error_EventInvalid,

// d_Error_Memory_Exhausted

void o2_Notification::notify_user_event(
o2_User_Event * event, o2_Propagation_Flag raise_time);
30 O2 Not i ficat ion User Manual

Communication
Reception

The cl ient has to expl ici t ly poll and consum e the noti fication from the
not ificat ion queue.

The in ter face of the o2_Not i f i cat i on_Queue class is the fol lowing:

extern o2_Notification_Event_Id grow_id;

void child_birth(char * firstName, d_Ref<Person> father,

d_Ref<Person> mother, d_Date date,

d_List<d_Ref<Person> > ParisPopulation) {

child = new Person(firstName, father, mother, date);

 // registers the birth and inserts the new child in

ParisPopulation

//...

d-Ref<o2_User_Event> evt = new o2_User_Event(grow_id,
(d-Ref-Any *)(&ParisPopulation));

notif_svr.notify_user_event(&evt, O2_VALIDATED_PROPAGATION);

}

typedef enum {

O2_EVENT_SUCCESS,

O2_QUEUE_EMPTY,

O2_WAIT_INTERRUPTED,

O2_MEMORY_EXHAUSTED,

O2_SESSION_NOT_OPEN

} o2_Notification_Report;

class o2_Notification_Queue {

...

public:

/ / returns the number of events that are still to be consumed

int cardinality() const;

// consumes the first event of the queue, throws d_Error_MemoryExhausted

o2_Notification_Report get_event (o2_pointer &event, int timeout = -1);
 O2 Not i ficat ion User Manual 31

C++ Interface to the Notification Service2
Defau lt t i m eou t m akes the get _even t and peek _even t methods wait
u nt il an event is not i fied. A posit ive t imeou t tel ls the maximal number of
seconds those methods have to wait for the not ification of an even t
before retu rn ing.

If an event has been not ified du r ing the t i m eou t delay, the get _even t
and peek _even t m ethods retu rn O2_EVENT_SUCCESS and the even t
argum ent con tains a persisten t capable reference to an even t . The cal ler
of the m ethod mu st provide a typed persisten t capable pointer :

If no even t has been not ified du r ing the t i m eou t delay, a statu s of the
o2_Not i f i cat i on _Repor t type is retu rned.

Even t objects may contain references to persistent objects, wh ich m ust
be accessed with in the scope of a t ransact ion. As u su al for persistent d-
Refs, they are valid unt i l a commit / abort is per formed. Indeed
references embedded inside C++ objects are no longer valid after a
commit or an abor t. Even ts that are not consumed and sti ll lay in the
not ificat ion queue may st il l be consumed or peeked after a commit or an
abor t .

Dest ruct ion of even ts retu rned by the get _even t and peek _even t
methods are under the user ’s responsibi li ty. Retu rned even ts are of the

// returns next event without consuming it, throws
d_Error_MemoryExhausted

o2_Notification_Report peek_event (o2_pointer &event,int timeout = -1);

/* removes the last previously peeked event from the queue, if the

scan has not been reset and the event has not already been consumed

by a get, in which cases the d_Error_NotificationQueueEmpty is thrown */

void remove ();

// resets the scan, there is no longer a previously peeked event

void reset ();

// append an event at the end of the queue

// throws d_Error_MemoryExhausted

void append (const o2_pointer &event);

};

d_Ref<o2_Notification_Event> evt ;

status = queue->get_event(evt);
32 O2 Not i ficat ion User Manual

Communication
base class o2_Not i cat i on_Even t , depending on the event basic type,
the appl icat ion has to cast i t in to the r igh t event class.

Event objects with the O2_DELETE_EVENT even t type, con tains a n il
object reference since object references of deleted objects are no longer
val id. Recipien ts of su ch even ts shou ld have been given individu al
discr iminan t labels at regist rat ion t ime as shown in the following
exam ple:

d_Session session;

d_Database database;

d_Transaction trans;

o2_Notification notif_svr (" my_name ");

o2_Notification_Label my_obj_delete = 0;

o2_Notification_Reg_Id* reg_ids;

main() {

d_Ref<my_object > obj, nilref;

d_Ref <o2_Notification_Event> evt;

o2_Notification_Queue * queue;

int status;

// some initialization actions such as session beginning,etc.

// ...

trans.begin();

// my_coll is the list of objects about which the client wants

// to receive notifications of deletions

d_List<d_Ref<my_object > >my_coll(" my_collection ");

d_Iterator<d_Ref<my_object> > my_iterator =

my_coll.create_iterator();

reg_ids = new o2_Notification_Event_Id[my_coll.cardinality()];

my_iterator.next(obj);

do {

if (obj != nilref) {

// associates their range as label to the different

// elements of my_coll

o2_Notification_Filter my_filter(obj, my_obj_delete);

if (!notif_svr. is_notifiable_object(O2_DELETE_EVENT,obj))

notif_svr.register_notifiable_object(O2_DELETE_EVENT,obj);
reg_ids[i++] =

notif_svr.register_notification_client(O2_DELETE_EVENT,
 O2 Not i ficat ion User Manual 33

C++ Interface to the Notification Service2
my_filter);

}

my_obj_delete++;

} while (my_iterator.next(obj));

trans.validate();

my_iterator.reset();

queue = notif_svr.get_queue();

while (1) {

status = queue.get_event(evt);

if ((status == 0) &&

(evt->get_event_type() == O2_DELETE_EVENT)) {

// remove the deleted element from the list

my_coll.replace_element_at(nilref, evt->get_label());

}

// else...

// ...

}

}

34 O2 Not i ficat ion User Manual

Event objects
2.7 Event objects

Gener ic classes of even ts o2_Object _Even t , o2_Connect i on_Even t ,
o2_Di sconnect i on _Even t and o2_User_Even t corresponding
respect ively to object and connection even t types propagated by the
system and to u ser-defined event types, are provided. Event objects of
these classes are retu rned to a recipient client by the not ificat ion queue
operations. They all inher it the base class o2_Not i f i cat i on _Even t .
Their inter face is given below. All user-defined even t classes shou ld
inher it the o2_User _Even t class as explained lat ter in th is sect ion.

Notification

The o2_Not i f i cat i on _Even t class is the base class for all event objects.
I t contains the type of the noti fied even t and the name of the emitter of
the not i ficat ion . It also con tains a regist ry ident i fier that was al located
by the not ificat ion service when the recipient has registered for that
even t . Final ly, i t contains a label that was provided by the recipien t
when it has registered for that even t.

typedef int o2_Notification_Reg_Id;

class o2_Notification_Event {

friend class o2_Notification;

protected:

// type of the notified event

o2_Notification_Event_Type event;

// name of the client that emitted the notification

char *emitterName;

// label attached to the reception of that notification

o2_Notification_Label label;

// registry identifier of the recipient

o2_Notification_Reg_Id registryId;

public:

o2_Notification_Event ();

~ o2_Notification_Event ();

void set_event_type (o2_Notification_Event_type event);

o2_Notification_Event_Type get_event_type () const;

o2_Notification_Label get_label () const;

char * get_name () const;

o2_Notification_Reg_Id registryId get_registry_id () const;

};
 O2 Not i ficat ion User Manual 35

C++ Interface to the Notification Service2
The C++ st r ing retu rned by the get _nam e method is freed by the
dest ru ctor of o2_Not i f i cat i on _Even t .

Object

The o2_Object_Event class is the class for the update and delete
even ts, and the base class for user -defined events. It contains the
reference of the object whose update is not ified.

Connection

The o2_Connection_Event class is the class for the connect ion even t ,
and the base class for the disconnection one. It contains the host
iden ti fier and the processu s ident ifier of the cl ien t that has connected.

class o2_Object_Event : public o2_Notification_Event {

friend class o2_Notification;

// reference of object on which event occurred

d_Ref_Any object;

public:

o2_Object_Event (o2_Notification_Event_Type event,

d_Ref_Any objectReference);

void set_reference (d_Ref_Any objectReference);

d_Ref_Any get_reference() const;

};
36 O2 Not i ficat ion User Manual

Event objects
The C++ st r ing retu rned by the get _h ost _nam e method is freed by the
dest ructor of o2_Conn ect i on_Even t .

Disconnection

The o2_Disconnection_Event class is the class for the disconnect ion
even t . It contains the status of the disconnection . The
O2_CLNT_MONITORING event means that the clien t has been k i lled by
the O2 monitor ing tool.

class o2_Connection_Event : public o2_Notification_Event {

friend class o2_Notification;

protected:

char hostName[MAXHOSTNAMELEN];

int pid;

public:

o2_Connection_Event (char * host, int proc, char *

client = 0);

o2_Connection_Event ();

char * get_host_name() const;

int get_pid() const;

};

typedef enum o2_Disconnect_Status = {O2_CLNT_DISCONNECT, O2_CLNT_CRASH,

O2_CLNT_MONITORING};

class o2_Disconnection_Event : public o2_Connection_Event {

int status;

public:

o2_Disconnection_Event (char * host, int proc, int

status, char * client = 0);

~o2_Disconnection_Event ();

int get_status () const;

};
 O2 Not i ficat ion User Manual 37

C++ Interface to the Notification Service2
User

All user -defined event classes shou ld inher it the o2_User _Even t class.
A user-defined even t class that inher its the o2_User_Even t class shou ld
also be impor ted in the appl icat ion schema in order to be known by the
system that must t ransfer its instances over the network .

Some importan t rest r ict ions on contents of u ser-defined even t classes
are:

1. they shou ld not contain any d_Ar ray field, d_Bits, C++ arrays or long
st r ing fields (long means > 4 K-bytes),

2. they shou ld not con tain any transien t field,

3. it is under the applicat ion responsibi li ty to ensure the du rabil ity of
the persistent objects that they reference.

Rest r ict ion on the type of the field is du e to the fact that the event
object ’s size mu st not be bigger than the m essage size. The size of the
message is system dependen t2. It is thus a bad idea to pu t large values
of var iable size in that object .

2. For example, on DEC Alpha, it is l im ited to 32 Kbytes.
38 O2 Not i ficat ion User Manual

Event objects
The get _class_event _i d method retu rns a un ique ident i fier associated to a
given class name. The ident i fier associated to a su bclass of o2_User _Even t may
be used as the ident ifier of events of that lat ter class as shown in the next
example.

The get _sub_classes method fil ls the resu lt argument with the list of
subclasses of the given class name. This allows to register for events of

typedef enum o2_Notification_Area = {O2_LOCAL_NOTIFICATION,

O2_GLOBAL_NOTIFICATION};

class o2_User_Event : public o2_Object_Event {

o2_Notification_Event_Id userId;

public:

o2_User_Event ();

o2_User_Event (o2_Notification_Event_Id id, d_Ref_Any*=0);

~o2_User_Event ();

void set_user_event_id (o2_Notification_Event_Id id);

o2_Notification_Event_Id get_user_event_id ();

static

o2_Notification_Event_Id get_class_event_id (const char * class_name)

const;

static void get_sub_classes (const char * class_name,d_List <char*>& result);

// throws d_Error_RefInvalid, d_Error_EventTooBig, d_Error_MemoryExhausted,

//d_Error_EventInvalid

void notify(o2_Notification * server, o2_Propagation_Flag raise);

/* virtual method that has to be implemented by subclasses. It is intended to

implement the treatment associated to the received event */

virtual void execute() {};

// throws d_Error_RefInvalid, d_Error_EventTooBig,

//d_Error_MemoryExhausted,d_Error_EventInvalid

o2_Notification_Reg_Id

register_for_time_notification (o2_Notification * server,

const d_Time* first_notif_time,

const d_Interval*the_period = 0,

const int nbTimes = 1,

const o2_Notification_Area area =

O2_LOCAL_NOTIFICATION);

};
 O2 Not i ficat ion User Manual 39

C++ Interface to the Notification Service2
a given class and all its subclasses. The program mer must take care of
freeing the C++ st r ings of class names that it r et r ieves from the list as
shown in the next example.

The n ot i fy method cal l the not i fy_user_even t method of the
not ificat ion service (see sect ion 5.1). The server argum ent is the address
of the not i ficat ion server instant iated by the cal ling clien t . The rai se
flags tel ls i f the not i ficat ion has to be propagated immediately or at
t ransact ion validat ion t im e.

The regi st er_for_t i m e_not i f i cat i on method allows to not i fy the cu r rent
even t several t imes after a given delay. This per iodic not ificat ion method
may be interru pted by cal ling the
o2_Not i f i cat i on ::for get _not i f i cat i on _cl i en t method.

Time not i ficat ions are propagated immediately after f i r st _not i f_t i m e
delay and if nbT i m es is greater than 1, i t is propagated again nbTimes -
1 t imes at t he_per i od in terval. If the area argument is
O2_LOCAL_NOTIFICATION, the not i ficat ion is inser ted at the end of
the local not ificat ion qu eu e, else i t is propagated to recipients that have
registered for the associated event type.

Example

The fol lowing example shows how to execu te even ts which are of the
class My_Class_Event or even ts which are sub classes of th is class.
My_Class_Event is a sub class of o2_User_Event .

d_Session session;

d_Database database;

d_Transaction trans;

o2_Notification notif_svr (" my_name ");

o2_Notification_Reg_Id* reg_ids;

int max_registries = 0;

o2_Notification_Event_Id classEvtId;

main() {

d_Ref<o2_Notification_Event> evt;

d_Ref<o2_User_Event> user_evt ;

o2_Notification_Queue * queue;

 int status;

Some initialization actions such as session beginning,etc...to receive

notifications of events "My_Class_Event" and its subclasses. A default

filter is associated to the registration
40 O2 Not i ficat ion User Manual

Event objects
o2_Notification_Filter my_filter;

char * cl_name;

d_List<char * >class_col;

My_Class_Event::get_sub_classes("My_Class_Event", class_col);

// max_registries = number of subclasses + "My_Class_Event"

max_registries= class_col.cardinality() + 1;

reg_ids = new o2_Notification_Reg_Id[max_registries];

// register the event Id associated with the class

classEvtId =My_Class_Event::get_class_event_id(" My_Class_Event ");

reg_ids(0) = notif_svr.register_notification_client(O2_USER_EVENT,

my_filter,

classEvtId);

for (register i = 1; i < max_registries; i++) {

 /* extract the event Id associated with the name of the class and

register it */

cl_name = class_col[i-1]

classEvtId=My_Class_Event::get_class_event_id(cl_name);

delete cl_name ;

reg_ids[i] = notif_svr.register_notification_client(O2_USER_EVENT,

my_filter,

classEvtId);

}

queue = notif_svr.get_queue();

while (1) {

status = queue.get_event(evt);

if ((status == 0) && (evt->get_event_type() == O2_USER_EVENT))

{

user_evt = evt ;

user_evt-> execute();

}

// else...

// ...

evt.destroy();

}

// forget now the notifications

 for (i = 0; i < max_registries; i++)

notif_svr.forget_notification_client(reg_ids [i]);

 // ...

}

 O2 Not i ficat ion User Manual 41

C++ Interface to the Notification Service2
2.8 Statistics of Notifications

Statist ics are interest ing to know the dynamic evolu t ion of the flow of
even ts which are emit ted by not ifiers or received by recipien ts.

Any cl ien t may know the num ber of events it has sen t or received. The
not ificat ion service also maintains general in format ion abou t the total
number of even ts which are emit ted and the total num ber of events
which are lost (em it ted even ts withou t recipient). Global stat ist ics on
clien ts recept ion of not ificat ions may be bu i lt by per iodic not ificat ions
(see sect ion 6) of user-defined stat ist ic even ts.

The retu rned cou nter of events is classi fied in to the fol lowing categor ies
: user -defined even ts , deletion or update of objects, connect ion and
disconnect ion .

The not i ficat ion service al lows to reset these counters after reading.

Statist ic are gathered in objects of the fol lowing class3 :

The not i ficat ion service provides the fol lowing methods for stat ist ics:

retu rns the total number of even ts by category received on its qu eu e,
since last local stat ist ic reset for received even ts. If rein it ialize is set to
TRUE, the total num ber of events by category is reset.

3. This class is subject to evolu t ion i f the nu mber of events increases
bu t wi ll remain com patible in fu tu re versions of the product.

class o2_Notification_Stat {

public:

int user_event_count;

int deleted_object_count;

int updated_object_count;

int connection_count;

int disconnection_count;

};

int o2_Notification::stat_received_event(o2_Notification_Stat *stat_event,

d_Boolean reinitialize = 0);
42 O2 Not i ficat ion User Manual

Statistics of Notifications
retu rns the total number of events by category emit ted by the cl ient
i tself, since last local stat ist ic reset for emitted events. If r ein i t ial ize is
set to TRUE, the total nu mber of events by category is reset .

retu rns the total number of events by category emit ted on the
not ificat ion service by each clien t, since last global statist ic reset . If
r ein i t ial ize is set to TRUE, the total nu mber of events by category is
reset.

retu rns the total number of events by category emit ted on the
not ificat ion service by each clien t wh ich are lost (i .e. which have no
recipien t), since last global stat ist ic reset . I f r ein i t ial ize is set to TRUE,
the total num ber of events by category is reset.

int o2_Notification::stat_emitted_event(o2_Notification_Stat *stat_event,

d_Boolean reinitialize = 0);

int o2_Notification::global_stat_emitted_event(o2_Notification_Stat *stat_event,

int reinitialize = 0);

int o2_Notification::global_stat_lost_event(o2_Notification_Stat *stat_event,

int reinitialize = 0);
 O2 Not i ficat ion User Manual 43

C++ Interface to the Notification Service2
2.9 Class o2_Notification

class o2_Notification {

public:

o2_Notification (char * clientName = 0);

~o2_Notification();

// disable default error management i.e.exception handling

void set_errno_mode();

//returns an O2 error code from the message if some error has occured

int get_errno();

// re_enable default error management i.e.exception handling

// void set_exception_mode();

register_client_name (char * clientName);

o2_Notification_Queue * get_queue();

//throws d_Error_RefInvalid,d_Error_EventInvalid,

//d_Error_TransactionNotOpen

void register_notifiable_object(o2_Notification_Event_type eventType,

const o2_pointer &objectReference);

/ / throws d_Error_RefInvalid, d_Error_EventInvalid

int is_notifiable_object(o2_Notification_Event_type eventType,

const o2_pointer &objectReference);

// throws d_Error_RefInvalid, d_Error_EventInvalid,

d_Error_TransactionNotOpen

int forget_notifiable_object (o2_Notification_Event_type eventType

const o2_pointer &objectReference);

// throws d_Error_RefInvalid, d_Error_RefNotNotifiable,

// d_ErrorConflictingRegistry, d_Error_TransactionNotOpen

o2_Notification_Reg_Id

register_notification_client (o2_Notification_Event_type eventType,

o2_Notification_Filter &filter ,

o2_Notification_Event_Id userEventId= 0,

d_Boolean updateLabelFlag =0);

// throws d_Error_RegIdInvalid

void forget_notification_client (o2_Notification_Reg_Id registryId);

// throws d_Error_RefInvalid, d_Error_EventTooBig, d_Error_EventInvalid
44 O2 Not i ficat ion User Manual

Class o2_Notification
 void notify_user_event(o2_User_Event * event,

o2_Propagation_Flag raise_time);

int o2_Notification::stat_received_event (o2_Notification_Stat *stat_event,

d_Boolean reinitialize = 0);

int o2_Notification::stat_emitted_event (o2_Notification_Stat *stat_event,

d_Boolean reinitialize = 0);

int o2_Notification::global_stat_emitted_event (o2_Notification_Stat

*stat_event,

int reinitialize = 0);

int o2_Notification::global_stat_lost_event (o2_Notification_Stat *stat_event,

int reinitialize = 0);

};
 O2 Not i ficat ion User Manual 45

C++ Interface to the Notification Service2
2.10 Class o2_Notification _Queue

 class o2_Notification_Queue {

...

public:

// disable default error management i.e.exception handling

void set_errno_mode();

// returns an O2 error code from the message if some error has occur ed

int get_errno();

// re_enable default error management i.e.exception handling

// void set_exception_mode();

// returns the number of events that are still to be consumed

int cardinality() const;

// consumes the first event of the queue, throws d_Error_MemoryExhausted

o2_Notification_Report get_event (o2_pointer &event, int timeout = -1);

//returns next event without consuming it, throws d_Error_MemoryExhausted

o2_Notification_Report peek_event (o2_pointer &event, int timeout = -1);

/* removes the last previously peeked event from the queue, if the scan

has not been reset and the event has not already been consumed by a

get, in which cases the d_Error_NotificationQueueEmpty is thrown */

void remove ();

// resets the scan, there is no longer a previously peeked event

void reset ();

// append an event at the end of the queue

// throws d_Error_MemoryExhausted

void append (const o2_pointer &event);

};
46 O2 Not i ficat ion User Manual

Class o2_Notification_Filter
2.11 Class o2_Notification_Filter

typedef unsigned int o2_Notification_Label;

enum o2_Notification_Scope {

O2_ANY_OBJECT,

O2_ONE_OBJECT,

O2_ANY_CLIENT,

O2_ONE_CLIENT

};

class o2_Notification_Filter {

d_Ref_Any reference;

char *name ;

o2_Notification_Scope scope;

o2_Notification_Label label;

public:

// filter with scope O2_ANY_OBJECT, default filter when label is null

o2_Notification_Filter(o2_Notification_Label label = 0);

// filter constructor for scope O2_ANY_CLIENT, for (dis)connection

 // events only

o2_Notification_Filter(o2_Notification_Scope scope,

o2_Notification_Label label = 0);

// filter with scope O2_ONE_OBJECT

o2_Notification_Filter(d_Ref_Any objectReference,

o2_Notification_Label label);

// filter with scope O2_ONE_CLIENT, for (dis)connection

// events only

o2_Notification_Filter(char * clientName,

o2_Notification_Label label);

~o2_Notification_Filter();

void set_reference(d_Ref_Any objectReference);

d_Ref_Any get_reference() const;

void set_name (char* clientName);

char * get_name() const;

void set_scope(o2_Notification_Scope scope);

o2_Notification_Scope get_scope() const;

void set_label(o2_Notification_Label label);

o2_Notification_Label get_label() const;

} ;
 O2 Not i ficat ion User Manual 47

C++ Interface to the Notification Service2
48 O2 Not i ficat ion User Manual

3 O2C Interface to the
Notification Service3
This chapter is divided into the following sect ions :

• In t rodu ct ion

• User Event

• Not i ficat ion service

• Not i ficat ion Queue

• Stat ist ics

• Com mented example
O2 Not ificat ion User Manual 49

O2C Interface to the Notification 3
3.1 Introduction

Initializing your schema

To use the not ificat ion service in O2C, you mu st import the following
classes of the o2n ot i f i cat i on schema :

You also have to star t o2shell (or o2tools) with the l ibrar ies
libo2notification.so and libo2cppruntime.so located in
$O2HOME/lib .

Example:

Notification service

The O2C in ter face to the not i ficat ion service enables O2 cl ien ts to
exchange messages asynchronously. This k ind of m essage may con tain a
reference to any persistent object .

The service is provided through an object of the o2_Notification
class. A m essage is bu il t as an object of the o2_User_Event class. The
service stores the events which are not yet consumed by a recipien t in a
queue instance of the o2_Notification_Queue class.

We fi rst present the User Even t class wh ich defines the container of the
m essages to send and to receive. Then we define the Not i f i cat i on class,
which enables to in i t ial ize the service and to register cl ien ts to the
service. The last class presen ts the Queue, from which the m essages are
received. We final ly end th is presen tat ion with a com mented example.

import schema o2notification

class o2_User_Event, o2_Notification,o2_Notification_Queue;

$O2HOME/bin/o2shell -libpath $O2HOME/lib -libs o2cppruntime:o2notification

-system ...
50 O2 Not ificat ion User Manual

User Event
3.2 User Event

An o2_User_Event object is bu i lt by an emit ter and posted to the
not ificat ion service by cal ling notify_user_event . It is received by
recipien ts who have previously registered for it by call ing the service
register_notification_client of the o2_Notification class.

The emit ter includes in the object :

- a userEventId

- a reference to a PERSISTENT object (n i l by defau lt), wh ich means that
the event is somehow related to th is object.

The not i ficat ion service adds the name of the emitter ("" by defau lt).

The recipient gets a User Even t by pol ling the queue with the
get_event method.

Along with the in format ion posted by the em it ter , a label and a registr y
id are retu rned (in the o2_User_Event object) to the recipien t
according to the regist rat ion made previously with the method
register_notification_client .

Subclasses of o2_User_Event can be used. The vir tual method
execute can be redefined of a subclass to do actions after receiving a
u ser event .

A u ser even t may contain references to persisten t objects. The recipient
of such an event mu st access referenced object inside a t ransact ion.

Class o2_User_Event

Th is method in it ializes an o2_User_Event .

userEventId : an in teger to ident ify th is even t .

reference : if not n i l, i t must be a persisten t object .

method public init(userEventId: integer, reference: Object)
O2 Not ificat ion User Manual 51

O2C Interface to the Notification 3
Th is method changes the reference of the object the even t refers to.

 reference : i f not n il , i t must be a persistent object .

Th is method retu rns the reference of the object the event refers to. Make
su re that you access the referenced object inside a t ransact ion.

Th is method changes the ident i fier of the event .

userEventId : an in teger to iden t ify th is even t.

Th is method retu rns the iden ti fier of the even t .

method public set_reference(reference: Object)

method public get_reference: Object

method public set_user_event_id(userEventId: integer)

method public get_user_event_id: integer

method public get_label: integer
52 O2 Not ificat ion User Manual

User Event : Class o2_User_Event
Th is method retu rns the label of the fi lter match ing th is even t (see the
register_notification_client method). Meaningfu l only for the
recipien t .

Th is method retu rns the name of the emit ter of the even t . Meaningfu l
only for the recipien t.

Th is m ethod sets the name of the emit ter of the even t . By defau lt , th is is
the name given when the o2_Notification object has been created.

emitter_name : the name of the O2 cl ient

Th is method retu rns the registrat ion iden t ifier matching th is event (see
the register_notification_client method). Meaningfu l on ly for the
recipien t .

Th is method is vir tual and can be redefined on subclasses. Th is method
retu rns 0.

method public get_name: string

method public set_name(emitter_name: string)

method public get_registry_id: integer

method public execute: integer
O2 Not ificat ion User Manual 53

O2C Interface to the Notification 3
3.3 Notification service

The o2_Notification class enables to in i t ial ize the noti fication service,
to get the message queue, to register events the cl ient is in terested in ,
and to not i fy an event .

Class o2_Notification

Th is method in it ializes the Noti fication service. The not icat ion service
cannot be u sed un t il the o2_Notification object is created.

 clientName : is the logical name wh ich ident i fies the emit ter of
messages.

Th is method changes the cl ien tName.

clientName : is the logical name wh ich ident ifies the emit ter of
messages.

Th is method retu rns the message queue object associated to the service.
The received messages are pu t in th is queue from wh ich the recipien t
ext racts them.

method public init(clientName: string)

method public register_client_name(clientName: string)

method public get_queue: o2_Notification_Queue
54 O2 Not ificat ion User Manual

Notification service : Class o2_Notification
Th is method sends a message to O2 clients wh ich are interested in th is
message. "interested" means that the clien t has registered for th is User
Event by call ing the register_notification_client method (see
below). The message is sen t im mediately i f "immediate" is t rue or else at
comm it (or validate) t ime only.

event : the event to send

immediate : t rue or false. If false, it wi ll be sen t at commit t ime only.

Th is method must be called by an O2 client who wan ts to receive some
messages sen t by another O2 clien t which calls the
notify_user_event m ethod. The messages th is recipient is interested
in are character ized by a userEventId . Moreover, a "fi lter" can be given
to be more selective. If "reference" is not n i l, on ly the messages related
to th is object are selected.

Because an O2 Cl ient can register more than one t ime (for di fferent user
even ts) a "label" can be given at registrat ion t ime to iden t ify th is event .
Th is label wil l be par t of the received message. It helps the appl icat ion
to sor t the di fferen t received m essages.

The method retu rns an integer wh ich is a "regist ry Id". Th is number can
be used in the forget_notification_client method to cancel th is
par t icu lar regist rat ion.

To define the user even ts, in which it is interested, the O2 cl ien t must
cal l the register_notification_client method as m any t im es as
necessary.

filter : a tu ple value

reference : a par t icu lar object the clien t is in terested in. If n i l it m eans
any object .

method public notify_user_event(event: o2_User_Event,
immediate: boolean)

method public register_notification_client(

filter: tuple(reference: Object, label: integer),

userEventId: integer): integer
O2 Not ificat ion User Manual 55

O2C Interface to the Notification 3

Th is method cancels the regist rat ion whose num ber is "regist ryId". Th is
number has been retu rned by a previous cal l of
register_notification_client .

registryId : the id of the registr y to cancel.

Th is method must be cal led when the not ificat ion service is no longer
u sed.

method public forget_notification_client(registryId: integer)

method public close
56 O2 Not ificat ion User Manual

Notification Queue : Class o2_Notification_Queue
3.4 Notification Queue

The o2_Notification_Queue class allows to get received events.

Class o2_Notification_Queue

Th is method retu rns the number of even ts that are st il l to be consumed.

Th is method consumes the first even t of the qu eue.

timeout : - if equal -1, the m ethod waits un t il a m essage exists in
the qu eu e.

- if > 0, the method waits maximum "t imeou t" seconds
un ti l a message exists in the queue.

report : - equal "su ccess", i f a message has been ext racted from
the qu eu e. In th is case, event contains th is message.

- equal "queue_empty" when there exists no m essage.

- equal "er ror " in al l other cases (memory exhausted or
commun icat ion broken)

Th is method appends an even t at the end of the qu eu e. This can be
u sefu l when an O2 clien t sends a message to i tself.

method public cardinality: integer

method public get_event(timeout: integer):
tuple(report: string, event:o2_User_Event)

method public append(event:o2_User_Event)
O2 Not ificat ion User Manual 57

O2C Interface to the Notification 3
3.5 Statistics

It is possible to get statist ics abou t the not i ficat ion service th rou gh two
C funct ions.

The fir st funct ion retu rns in the st ruct the number of emit ted u ser
even t.

The second retu rns the num ber of messages which were emit ted, bu t
which the recipient did not receive.

If reset = 1, then statist ics are reset to in it ial coun t.

The o2_Noti fication_Stat type is :

o2_notification_global_stat_emitted(o2_Notification_stat*, int reset);

o2_notification_global_stat_lost(o2_Notification_stat*, int reset);

typedef struct {
int user_event_count, int void1; int void2; int void3; int void4}
o2_Notification_Stat
58 O2 Not ificat ion User Manual

Commented example : Class o2_Notification_Queue
3.6 Commented example

In th is example we have 2 appl icat ions which run in paral lel as 2
di fferent O2 clien ts.

- "creator" create objects and noti fies the creat ions of objects

- "inser tor" receives the new created objects and inser t them in a
persisten t col lect ion. This inser t ion is not i fied back to the creator .

- The creator receives back the objects and checks in the end that the
set of em it ted objects is equal to the set of received objects.

Com ments are wr it ten in ital ics inside the code.

We want to not ify two even ts: creation of a person and inser t ion in to
people. We use o2_User_Event for th is creat ion and define a subclass
for the inser t ion : Insertion_Event .

We also have an even t of the End_Communication su bclass, whose
u nique role is to indicate the end of the creat ion st ream.

schema test;

To use the Notification service: import the classes

import schema o2notification

class o2_User_Event, o2_Notification,o2_Notification_Queue;

The user classes are as follows

class Person public type tuple(

name: string)

method

public init(name: string)

end;

class o2_set_Person public type

unique set(Person)

method

public insert(p: Person)

end;

constant name people: o2_set_Person;
O2 Not ificat ion User Manual 59

O2C Interface to the Notification 3
method private notify_creation in class Person;

method private notify_insertion(p: Person) in class o2_set_Person;

method body notify_creation in class Person{

o2 extern o2_Notification notification_service;

#define CREATION 1

o2 o2_User_Event e = new o2_User_Event(CREATION, self);

notification_service->notify_user_event(e, false);

};

The class Insertion_Event adds information to user event : the inserted
object

class Insertion_Event inherit o2_User_Event public type tuple(

inserted_elem: Person)

method

public init(p: Person)

end;

method body init(p: Person) in class Insertion_Event{

#define INSERTION 2

self->inserted_elem = p;

self->o2_User_Event@init(INSERTION, people);

};

method body notify_insertion (p: Person) in class o2_set_Person{

o2 extern o2_Notification notification_service;

o2 Insertion_Event e = new Insertion_Event(p);

notification_service->notify_user_event(e, false);

};

To indicate that the emission is over we just redefine execute on a
subclass of UserEvent . By convention a returned 1 would mean that it is
over.
60 O2 Not ificat ion User Manual

Commented example : Class o2_Notification_Queue
We encapsu late the noti fications in the creat ion and inser t methods.

class End_Communication inherit o2_User_Event

method public execute:integer

end;

method body execute:integer in class End_Communication{

return 1; Meaning the communication is over

};

function notify_end;

function body notify_end{

#define CREATION 1

o2 extern o2_Notification notification_service;

o2 End_Communication e = new End_Communication;

e-> o2_User_Event@init(CREATION, nil);

notification_service->notify_user_event(e, true);

};

Note that the notification END is immediate, whereas the creation and
insertion are notified at validation time only.

method body init in class Person{

self->name = name;

self->notify_creation;

};

method body insert in class o2_set_Person{

*self += unique set(p);

self->notify_insertion(p);

};

commit;
O2 Not ificat ion User Manual 61

O2C Interface to the Notification 3
Two applications communicating through the notification service

You wi ll find below the creator appl icat ion. We define as applicat ion
var iables the not ificat ion service and its queue. In fact , these two
ent i t ies have a session li fe and must be created only once in the init
program. The restart program enables to export the noti ficat ion object
as an external var iable wh ich can then be referred to from inside
methods l ike notify_creation of class Person for instance.

In the init program, the not ificat ion service is created, and one event is
registered the INSERTION whatever the natu re of the inser ted. The
creator wan ts to receive INSERTION even ts wh ich are emit ted by the
inser tor .

application creator

variable

sent_set: set(Person),

received_set: set(Person),

notif_service: o2_Notification,

queue: o2_Notification_Queue,

registryId: integer

program

init(trace: boolean),

restart(why: integer, notification_service: o2_Notification),

exit,

wait_acknowledge,

public create

end;
62 O2 Not ificat ion User Manual

Commented example : Two applications
set application creator;

transaction body init{

#define INSERTION 2

*people = unique set();

stat = trace;

Initialize the notification service :

notif_service = new o2_Notification("Creator");

queue = notif_service->get_queue;

I am interested in INSERTION events :

registryId = notif_service->register_notification_client(

tuple(reference: (o2 Object) nil, label: (o2 integer) INSERTION)

, INSERTION);

commit;

};

program body restart(why: integer, notification_service:
o2_Notification){

#include "o2_event.h"

switch(why){

case O2_ERROR:

printf("Error\n");

exit();

case O2_COMMIT:

notification_service = notif_service;

break;

case O2_ABORT:

printf("Abort %d\n");

exit();

case O2_DEADLOCK:

printf("Deadlock %d\n");

exit();

}

};
O2 Not ificat ion User Manual 63

O2C Interface to the Notification 3
The exit program cancels the registrat ion done by the creator and
closes the service before logou t .

The create program bu i lds objects in several t ransact ions. After two
creat ions a transact ion is committed and the creat ion is thus not i fied.
Cau t ion : a reference mu st refer to a persisten t object. After a
t ransact ion the creator waits for acknowledgement . It finally not i fies
that the process is over .

transaction body exit{

if(received_set != sent_set){

display(tuple(E: "error", Receive: received_set, sent:sent_set));

}

notif_service->forget_notification_client(registryId);

notif_service->close;

display("Bye!");

};
64 O2 Not ificat ion User Manual

Commented example : Two applications
In th is program the creator waits un ti l an INSERTION even t occurs. It
just checks (in th is example) that everyth ing is consistent .

program body create{

o2 Person p;

char NAME[100];

o2 string name;

int i, j;

o2 string go;

input(go); Just to wait

for(i = 1; i <= 5; i++){

transaction;

for(j = 1; j <= 2; j++){

sprintf(NAME, "n_%d_%d", i, j);

strcpy(name, NAME);

p = new Person(name);

sent_set += set(p); Make it persistent

}

validate;

wait_acknowledge();

}

notify_end();

};

program body wait_acknowledge{

#define INSERTION 2

o2 tuple(report: string, event: o2_User_Event) result;

int i;

for(i = 1; i <=2; i++){

result = queue->get_event(60);

if(result.report == "success"){
O2 Not ificat ion User Manual 65

O2C Interface to the Notification 3
o2 Insertion_Event event;

o2 Person p; o2 o2_set_Person s;

if(result.event->get_label() != INSERTION ||

 result.event->get_user_event_id() != INSERTION){

display(tuple(E: "error",

label: result.event->get_label()

id: result.event->get_user_event_id()));

exit();

}

transaction;

s = (o2 o2_set_Person) result.event->get_reference();

if(s != people){

display("Error reference");

exit();

}

event = (o2 Insertion_Event) result.event;

p = event->inserted_elem;

printf("Received from %s\n", result.event->get_name());

if(p != nil){

printf(" Person %s\n", p->name);

}

received_set += set(p);

validate;

}else{

display(result.report);

exit();

}

}

};

commit;
66 O2 Not ificat ion User Manual

Commented example : Application insertor
Application insertor

In th is applicat ion , you wi ll find the init, restart, exit programs,
which are simi lar to those of the creator application .

application insertor

variable

notif_service: o2_Notification,

queue: o2_Notification_Queue,

registryId: integer

program

init,

restart(why: integer, notification_service: o2_Notification),

exit,

public insert

end;

set application insertor;

transaction body init{

#define CREATION 1

notif_service = new o2_Notification("Insertor");

queue = notif_service->get_queue;

//I am interested in creation events :

registryId = notif_service->register_notification_client(

tuple(reference: (o2 Object) nil, label: (o2 integer) CREATION)

, CREATION);

commit;

};

program body restart(why: integer, notification_service:
o2_Notification){

#include "o2_event.h"

switch(why){

case O2_ERROR:

printf("Error\n");
O2 Not ificat ion User Manual 67

O2C Interface to the Notification 3
In the insert program we wait un t il CREATION events occur . We check
consistency (in th is example) and when inser t ing the received object
into the collect ion "people", we not i fy back to the creator that the object
has now been inser ted in th is collect ion.

exit();

case O2_COMMIT:

notification_service = notif_service;

break;

case O2_ABORT:

printf("Abort %d\n");

exit();

case O2_DEADLOCK:

printf("Deadlock %d\n");

exit();

}

};

transaction body exit{

notif_service->forget_notification_client(registryId);

notif_service->close;

display("Bye!");

};

program body insert{

#define CREATION 1

o2 tuple(report: string, event: o2_User_Event) result;

o2 string go;

input(go); Just to wait

do{

result = queue->get_event(60);

if(result.report == "success"){

o2 Insertion_Event event;

o2 Person p;
68 O2 Not ificat ion User Manual

Commented example : Application insertor
if(result.event->execute()){ exit(); } End Message

if(result.event->get_label() != CREATION ||

 result.event->get_user_event_id() != CREATION){

display(tuple(E: "error",

label: result.event->get_label(),

 id: result.event->get_user_event_id()));

exit();

}

transaction;

p = (o2 Person) result.event->get_reference();

printf("Received from emitter %s\n", result.event->get_name());

if(p != nil){

 printf(" Person %s\n", p->name);

}

people->insert(p);

validate;

}else{

display(result.report);

exit();

}

}while(1);

};

confirm classes;

base test_base;

quit;
O2 Not ificat ion User Manual 69

O2C Interface to the Notification 3
Running the application
The creator applicat ion is launched.

The insertor applicat ion is launched meanwhi le.

$O2HOME/bin/o2shell -v -system ... -server ...

-libpath $O2HOME/lib

-libs o2cppruntime:o2notification

set base test_base;

run program create in application creator(true);

$O2HOME/bin/o2shell -v -system ... -server ...

-libpath $O2HOME/lib

-libs o2cppruntime:o2notification */

set base test_base;

run program insert in application insertor;
70 O2 Not ificat ion User Manual

4 Appendix
4

This chapter gives the l ist of error messages for the d_Class with their
explanat ions.
 O2 Noti fication User Manu al 71

Appendix4
EventInvalid cur ren t operat i on does n ot appl y t o t he gi ven
even t t ype

Some operat ions of the noti fication service only apply to specific even t types. For
exam ple, the register_notifiable_object only appl ies to even ts of the
o2_Object_Event class and the notify_user_event method on ly applies to events
of the o2_User_Event class and subclasses.

EventTooBig si ze of user even t t oo i s t oo bi g

The event provided to the notify_user_event operation does not fi t in a message.

NotificationNotAvailable sessi on n ot open ed or not i f i cat i on not avai l able
on t h e cu r ren t pl at form .

You cal led a fu nct ion that requ ires your session to be open. Not i ficat ion either lacks
a valid license or requ ires a m u lt i thread plat form.

NotificationQueueEmpty em pt y n ot i f i cat i on queue.

The remove method of o2_Notification_Queue is called on an empty queue.

RefNotNotifiable object i s ei t her t em porary or n ot not i f i able.

The register_notification_client operat ion is applied to an event of the
o2_Object_Event class, bu t provides a fi lter with the reference of an object that has
not been registered as a not ifiable object or that has become temporary after i ts
regist rat ion.

RegIdInvalid i nval i d regi st r y i den t i f i er

The regist ry iden ti fier provided to the forget_notifiable_client operat ion is not
a valid ident ifier . The cal ler of the append method of o2_Notification_Queue has
not registered i tsel f as a clien t for the even t it wan ts to append.

RegistryConflicting con f l i ct i n g cl i en t regi st r y

Fil ter provided for the cu rren t regist r y con fl icts with the fil ter of a previous registr y
per formed by the same clien t.
72 O2 Noti fication User Manu al

 O2 Not i ficat ion User Manu al 73

INDEX

INDEX

74
Symbol s

.h file 21

A

append 57

C

C 11

C++
Appl icat ion 18, 21, 31
In ter face 11

Cancel a regist rat ion 23

cardinality 57

class
o2_Notification 54
o2_Notification_Queue 57
o2_User_Event 51

client name 13

close 56

connection_count 42

D

deleted_object_count 42

delet ion 19
O2 Not ificat ion User Manu
disconnection_count 42

E

event type 13, 25

event_user_id 20

EventInvalid 72

EventTooBig 72

execute 53

F

filter 13, 20, 24

first_notif_time 40

forget_notification_client 56

G

get_event 32, 51, 57

get_label 52

get_name 53

get_queue 54

get_reference 52

get_registry_id 53

get_user_event_id 52
al

INDEX
I

init 51, 54

In it ializat ion
emit ters 21
schema 50

J

Java 11

L

libo2cppruntime.so 50

libo2ntoification.so 50

N

Notifiable objects 12

Not i ficat ion queue 13

NotificationNotAvailable 72

NotificationQueueEmpty 72

notify_user_event 40, 51, 55
 O2 Not i ficat ion U
O

O2 Architectu re 10

O2_ANY_CLIENT 27

O2_ANY_OBJECT25, 27

O2_CLIENT_SERVERS25

O2_CLNT_MONITORING37

O2_CONNECT_EVENT25

o2_CONNECT_EVENT20

o2_Connection_Event 18, 35, 36, 37

O2_DELETE_EVENT22, 25, 33

O2_DISCONNECT_EVENT20, 25

o2_Disconnection_Event 18, 35, 37

O2_EVENT_SUCCESS32

O2_IMMEDIATE_PROPAGATION30

O2_LOCAL_NOTIFICATION 40

o2_Not i ficat ion
forget_notifiable_object 23
forget_notification_client 40
get_queue 19, 21
global_stat_emitted_event 43
global_stat_lost_event 43
is_notifiable_object 22
register_client_name 20, 21
register_notifiable_object 19, 22
register_notification_client 19,
20, 24
stat_emitted_event 43
stat_received_event 42

o2_Notification 50

o2_Notification.hxx 18

o2_Notification_Event 18, 19, 26, 33, 35,
37

o2_Notification_Event_Id 25

o2_Notification_Event_type 22

o2_Notification_Filter 26, 47

o2_notification_global_stat_emitte
d 58

o2_notification_global_stat_lost 58

o2_Notification_Label 26, 47
ser Manual 75

INDEX

76
o2_Not i ficat ion_Queue
get_event 19, 20

o2_Notification_Queue 21, 31, 46, 50

o2_Notification_Reg_Id 24

o2_Notification_Report 31, 32

o2_Notification_Scope 26, 27, 47

o2_Notification_Stat 42, 58

o2_Object_Event 14, 18, 35, 36

O2_OBJECT_EVENTS25

O2_ONE_CLIENT27

O2_ONE_OBJECT25, 27

O2_UPDATE_EVENT22, 25

O2_USER_EVENT25

o2_User_Even t
execute 20
notify 20

o2_User_Event 14, 18, 20, 24, 35, 38, 50, 51

O2_VALIDATED_PROPAGATION30

O2C 11

O2Corba 11

o2cppruntime 50

o2dba_schema_load 15

O2DBAccess 11

O2Engine 10

O2Graph 11

O2Kit 11

O2Look 11

O2ODBC 11

O2Store 10

O2Tools 11

O2Web 11

Object reference 13

OQL 11

P

peek_event 32

poll 13
O2 Not ificat ion User Manu
Propagat ion 12

R

RefNotNotifiable 72

RegIdInvalid 72

register_client_name 54

register_for_time_notification 40

register_notifiable_object 22, 23

register_notification_client 51, 55

Regist rat ion 12

RegistryConflicting 72

S

set_name 53

set_reference 52

set_user_event_id 52

Statist ics 58

System Arch itectu re 10

T

Transact ion boundar ies 13, 26
al

INDEX
U

Update 19

updated_object_count 42

user_event_count 42, 58

userEventId 51
 O2 Not i ficat ion U
ser Manual 77

	MAIN MENU TO O2 DOCUMENTATION
	O2 Notification User Manual
	Who should read this manual
	TABLE OF CONTENTS
	1 Introduction 9
	2 C++ Interface to the Notification Service 17
	3 O2C Interface to the Notification Service 49
	4 Appendix 71
	INDEX 73

	1 Introduction
	1.1 System overview
	Figure 1.1: O2 System Architecture

	1.2 Notification overview
	1.3 Installing the O2 Notification schema

	2 C++ Interface to the Notification Service
	2.1 Initializing your schema
	Include file

	2.2 How to use the Notification service in C++
	2.3 Initialization
	Initialization of emitters
	Initialization of recipients

	2.4 Registration of notifiable objects
	Cancelling a registration

	2.5 Registration of recipients
	Events type
	Filtering
	Cancelling a registration
	Some registration scenarios for notifiable objects

	2.6 Communication
	Emission and propagation
	Reception

	2.7 Event objects
	Notification
	Object
	Connection
	Disconnection
	User
	Example

	2.8 Statistics of Notifications
	2.9 Class o2_Notification
	2.10 Class o2_Notification _Queue
	2.11 Class o2_Notification_Filter

	3 O2C Interface to the Notification Service
	3.1 Introduction
	Initializing your schema
	Notification service

	3.2 User Event
	Class o2_User_Event

	3.3 Notification service
	Class o2_Notification

	3.4 Notification Queue
	Class o2_Notification_Queue

	3.5 Statistics
	3.6 Commented example
	Two applications communicating through the notification service
	Application insertor
	Running the application

	4 Appendix
	INDEX
	Symbols
	.h file�21

	A
	append�57

	C
	C�11
	C++
	Application�18, 21, 31
	Interface�11

	Cancel a registration�23
	cardinality�57
	class
	o2_Notification�54
	o2_Notification_Queue�57
	o2_User_Event�51

	client name�13
	close�56
	connection_count�42

	D
	deleted_object_count�42
	deletion�19
	disconnection_count�42

	E
	event type�13, 25
	event_user_id�20
	EventInvalid�72
	EventTooBig�72
	execute�53

	F
	filter�13, 20, 24
	first_notif_time�40
	forget_notification_client�56

	G
	get_event�32, 51, 57
	get_label�52
	get_name�53
	get_queue�54
	get_reference�52
	get_registry_id�53
	get_user_event_id�52

	I
	init�51, 54
	Initialization
	emitters�21
	schema�50

	J
	Java�11

	L
	libo2cppruntime.so�50
	libo2ntoification.so�50

	N
	Notifiable objects�12
	Notification queue�13
	NotificationNotAvailable�72
	NotificationQueueEmpty�72
	notify_user_event�40, 51, 55

	O
	O2 Architecture�10
	O2_ANY_CLIENT�27
	O2_ANY_OBJECT�25, 27
	O2_CLIENT_SERVERS�25
	O2_CLNT_MONITORING�37
	O2_CONNECT_EVENT�25
	o2_CONNECT_EVENT�20
	o2_Connection_Event�18, 35, 36, 37
	O2_DELETE_EVENT�22, 25, 33
	O2_DISCONNECT_EVENT�20, 25
	o2_Disconnection_Event�18, 35, 37
	O2_EVENT_SUCCESS�32
	O2_IMMEDIATE_PROPAGATION�30
	O2_LOCAL_NOTIFICATION�40
	o2_Notification
	forget_notifiable_object�23
	forget_notification_client�40
	get_queue�19, 21
	global_stat_emitted_event�43
	global_stat_lost_event�43
	is_notifiable_object�22
	register_client_name�20, 21
	register_notifiable_object�19, 22
	register_notification_client�19, 20, 24
	stat_emitted_event�43
	stat_received_event�42

	o2_Notification�50
	o2_Notification.hxx�18
	o2_Notification_Event�18, 19, 26, 33, 35, 37
	o2_Notification_Event_Id�25
	o2_Notification_Event_type�22
	o2_Notification_Filter�26, 47
	o2_notification_global_stat_emitte d�58
	o2_notification_global_stat_lost�58
	o2_Notification_Label�26, 47
	o2_Notification_Queue
	get_event�19, 20

	o2_Notification_Queue�21, 31, 46, 50
	o2_Notification_Reg_Id�24
	o2_Notification_Report�31, 32
	o2_Notification_Scope�26, 27, 47
	o2_Notification_Stat�42, 58
	o2_Object_Event�14, 18, 35, 36
	O2_OBJECT_EVENTS�25
	O2_ONE_CLIENT�27
	O2_ONE_OBJECT�25, 27
	O2_UPDATE_EVENT�22, 25
	O2_USER_EVENT�25
	o2_User_Event
	execute�20
	notify�20

	o2_User_Event�14, 18, 20, 24, 35, 38, 50, 51
	O2_VALIDATED_PROPAGATION�30
	O2C�11
	O2Corba�11
	o2cppruntime�50
	o2dba_schema_load�15
	O2DBAccess�11
	O2Engine�10
	O2Graph�11
	O2Kit�11
	O2Look�11
	O2ODBC�11
	O2Store�10
	O2Tools�11
	O2Web�11
	Object reference�13
	OQL�11

	P
	peek_event�32
	poll�13
	Propagation�12

	R
	RefNotNotifiable�72
	RegIdInvalid�72
	register_client_name�54
	register_for_time_notification�40
	register_notifiable_object�22, 23
	register_notification_client�51, 55
	Registration�12
	RegistryConflicting�72

	S
	set_name�53
	set_reference�52
	set_user_event_id�52
	Statistics�58
	System Architecture�10

	T
	Transaction boundaries�13, 26

	U
	Update�19
	updated_object_count�42
	user_event_count�42, 58
	userEventId�51

