
XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 1

© 2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property
of their respective owners.

Abstract This reference system demonstrates the functionality of the PLBv46 Endpoint Bridge for PCI
Express® used in the Xilinx ML555 PCI/PCI Express Development Platform. The PLBv46
Endpoint Bridge is used in x1 and x4 PCIe® lane configurations. The PLBv46 Endpoint Bridge
uses the Xilinx Endpoint core for PCI Express in the Virtex®-5 XC5VLX50T FPGA. The PLBv46
Bus is an IBM CoreConnect bus used for connecting the IBM PPC405 or PPC440
microprocessors, which are implemented as hard blocks on Xilinx Virtex FPGAs, and the Xilinx
Microblaze microprocessor to Xilinx IP.

A variety of tests generate and analyze PCIe traffic for hardware validation of the PLBv46
Endpoint Bridge. PCIe transactions are generated and analyzed by Catalyst and LeCroy test
equipment. For endpoint to root complex transactions, the pcie_dma software application
generates DMA transactions which move data over the PCIe link(s). For root complex to
endpoint transactions, Catalyst and LeCroy scripts generate PCIe traffic. A Catalyst script
which configures the PLBv46 Endpoint Bridge and performs memory write/read transactions is
discussed. The steps to use Catalyst to measure PCIe performance are given, and
performance results are provided.The principal intent of the performance testing is to illustrate
how performance measurements can be done.

Two stand-alone tools, PCItree and Memory Endpoint Test, are used to write and read PLBv46
Endpoint Bridge configuration space and memory in a PC environment. This is the least
expensive and easiest to use hardware test environment.

The use of the ChipScope™ tool in debugging PLBv46 Endpoint Bridge issues is described.

Included
System

The reference system for the PLBv46 Endpoint Bridge in the ML555 PCI/PCI Express
Development Platform is available at:

http://www.xilinx.com/support/documentation/application_notes/xapp1000.zip

The zip file contains the reference system which is described on page 2 of this application note.
The ml555_mb_plbv46_pcie project uses the PLBv46 Endpoint Bridge configured with four
PCIe lanes. To change this to a reference x1 lane system, change the PLBv46 Endpoint Bridge
C_NO_OF_LANES generic to 1.

Introduction The PLBv46 Endpoint Bridge is an endpoint instantiated in a Xilinx FPGA which communicates
with a root complex. The reference systems are tested using commercial test equipment from
LeCroy and Catalyst. LeCroy and Catalysts are two Analyzers/Exercisers used to verify PCIe
systems. The Catalyst and LeCroy testers allow generation, analysis, capture, and triggering of
Translation Layer, Data Link Layer, and Physical Layer packets. The reference systems are also
tested in two test environments which are inexpensive and PC based.

The PLBv46 Endpoint Bridge is tested using the LeCroy and Catalyst testers as root complex.
The ML555 Evaluation Board is inserted into the LeCroy or Catalyst PCIe slots for testing.
Sample Catalyst scripts are provided in the ml555_mb_plbv46_pcie/catalyst directory.
Sample Lecroy scripts are provided in the ml555_mb_plbv46_pcie/lecroy directory.

Application Note: Embedded Processing

XAPP1000 (v1.0.1) May 6, 2008

Reference System: PLBv46 Endpoint Bridge
for PCI Express in a ML555 PCI/PCI Express
Development Platform
Author: Lester Sanders

R

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=109597
https://secure/xilinx.com/webreg/clickthrough.do?cid=109597
https://secure.xilinx.com/webreg/clickthrough.do?cid=109570
https://secure.xilinx.com/webreg/clickthrough.do?cid=109597

Hardware and Software Requirements

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 2

R

The tests for the PLBv46 Endpoint Bridge which do not require LeCroy or Catalyst test
equipment are the PCIE Configuration Verification (PCIE CV), PCItree and the Memory
EndPoint Test (MET) tests. These are run using the ml555_mb_plbv46_pcie project configured
as x1 and x4. These tests are quick to setup and costs nothing other than a PC with PCIe slots.
For these tests, the ML555 PCI/PCI Express Development Platform is inserted into the x8 PCIe
slot of a PC (Dell 390). The PC based PCItree and/or MET software are installed. The PCItree
Bus Viewer (www.pcitree.de) and the Xilinx MET tests allow the user to write and read ML555
memory with any pattern, with different lengths. PCItree and the MET do not provide the
capability to analyze PCIe traffic.

Hardware and
Software
Requirements

The hardware and software requirements for this reference system are:

• Xilinx ML555 board (Production Silicon)

• Xilinx Platform USB or Parallel IV programming cable

• USB Type A to Type B Interface cable and serial communication utility (TeraTerm)

• Xilinx Platform Studio 10.1i

• Xilinx Integrated Software Environment (ISE®) 10.1i

• Xilinx ChipScope PRO 10.1i

• Catalyst SPX Series PCI Express Bus Protocol Analyzer/Exerciser

• LeCroy PETracer Analyzer / PETrainer Exerciser

Reference
System
Specifics

This reference system includes the MicroBlaze™ Processor, MPMC, XPS BRAM, XPS INTC,
XPS GPIO, XPS UART Lite, XPS Central DMA, and the PLBv46 Endpoint Bridge. Both the
processor and the bus run at a frequency of 125 MHz. The MicroBlaze processor uses 2 KB for
the instruction cache (I-cache) and 4 KB the data cache (D-cache). MPMC runs at a frequency
of 125 MHz and is set up for three ports.

Figure 1 is the block diagram of the reference system.

Table 1 provides the address map of the system.

X-Ref Target - Figure 1

Figure 1: Block Diagram of Reference System

Table 1: Reference System Address Map

Peripheral Instance Base Address High Address

MDM debug_module 0x84400000 0x8440FFFF

XPS INTC xps_intc_0 0x81800000 0x8180FFFF

XPS GPIO xps_gpio_0 0x81400000 0x8140FFFF

XPS BRAM CNTLR xps_bram_if_cntlr_1 0x8AE10000 0x8AE1FFFF

MicroBlaze
Processor

XPS
INTC

PLBv46
PCIe MDMXPS

UART Lite

XPS
GPIO

XPS
BRAM

X1000_01_041408

MPMC

XPA Central
DMA

http://www.xilinx.com

Implementation Results

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 3

R

In XPS, double click on PCIe_Bridge in the System Assembly View to invoke the PLBv46
_PCIe generics editor. The generics shown in Figure 2 are used to configure the PLBv46
Endpoint Bridge. The Xilinx Device ID = 0x0505 and Vendor ID = 0x10EE are displayed in
many of the PCIe tests done in this application note.

Implementation
Results

The resource utilization in the reference design is shown in Table 2.

XPS Central DMA xps_cdma_0 0x80200000 0x8020FFFF

PLBv46 Endpoint
Bridge

plbv46_pcie_0 0x85C00000 0x85C0FFFF

XPS Uartlite RS232 0x84000000 0x8400FFFF

LMB Cntlr ilmb_cntlr 0x00000000 0x00001FFF

LMB Cntlr dlmb_cntlr 0x00000000 0x00001FFF

MPMC DDR2_SDRAM_32Mx32 0x90000000 0x9FFFFFFF

X-Ref Target - Figure 2

Figure 2: PLBv46 Endpoint Bridge Parameters

Table 1: Reference System Address Map (Cont’d)

Peripheral Instance Base Address High Address

X1000_02_041408

Table 2: Design Resource Utilization

Resources Used Available Utilization (%)

Slice Registers 12003 28800 41

Slice LUTs 12437 28800 43

DCM_ADV 2 12 16

Block RAM 56 60 93

http://www.xilinx.com

ML555 Setup

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 4

R

ML555 Setup Figure 3 shows the ML555 PCI/PCI Express Development Platform. The ML555 has a PCI
connector on one edge of the printed circuit board and a x8 PCIe connector on the other edge.
In the figure, no PCIe adapter is connected to the ML555 x8 PCI edge connector. For PCIe
operation, move switch SW8 to the PCIe position and install a shunt on P18.

X-Ref Target - Figure 3

Figure 3: ML555 PCI/PCIe Evaluation Platform

P18: (Install Shunts for
PCI Express)

SW8

Slide Switch SW8

P45:
(Configure for PCIe Lane
Width Presence Detect)

P13: 8-Lane Connector
for PCI Express

X1000_03_041408

http://www.xilinx.com

Interfacing to a Communication Terminal

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 5

R

Put the shunt on P45 to indicate the number of PCIe lanes used in the project, as shown in
Table 3.

Figure 4 shows the x1 and x4 PCIe adapters which connect to the x8 PCIe connector on the
ML555. The adapters are used when inserting the ML555 into PC, Catalyst, or LeCroy test
equipment. The usage of the adapter is generally optional.

Interfacing to a
Communication
Terminal

Communication terminals are commonly used to display information related to the functionality
of the ML555. The information displayed is usually output from C code running on the
MicroBlaze processor. Many newer PCs do not have a COM port. The ML555 addresses this
by providing an interface to the communication terminal through a USB port. This differs from
earlier Xilinx boards. This eliminates the serial communication cable/null modem/gender
changers used by other Xilinx boards to communicate with a communication terminal.

Installing CP210x USB-to-UART Bridge VCP Drivers

Silicon Laboratories CP210x USB-to-UART Bridge Virtual COM Port (VCP) device drivers
permit a CP210x device to appear to any PC application software as an additional COM port in
addition to any existing hardware COM ports in the PC. Application software running on the PC
accesses the CP210x device as it would access a standard hardware COM port. However,
actual data transfer between the PC and the CP210x device is performed over the USB
interface. COM port applications such as HyperTerminal or TeraTerm transfer data between the
USB to the CP210x device without the need to modify the terminal application software on
either end of the communications interface. The latest CP210x USB-to-UART Bridge VCP
drivers can be downloaded from the Silicon Laboratories website at:

Table 3: Selecting the Number of PCIe Lanes on the ML555

No of PCIe Lanes P45 Shunt Location

1 5-6

4 3-4

8 1-2

X-Ref Target - Figure 4

Figure 4: x1 and x4 PCIe Adapters

X1000_04_041408

http://www.xilinx.com

Interfacing to a Communication Terminal

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 6

R

http://www.silabs.com/tgwWebApp/public/web_content/products/Microcontrollers/en/MCU_Do
wnloads.htm.

For technical information and support of the CP210x USB-to-UART bridge controller integrated
circuit and the associated VCP device driver, visit the Silicon Laboratories website at
www.silabs.com.

The ML555 contains a CP210x USB-to-UART bridge controller integrated circuit. To
communicate with the MicroBlaze processor in the Virtex-5 FPGA, the Silicon Laboratories
CP210x USB-to-UART Bridge VCP drivers must first be installed on the PC used to remotely
control the DMA operations. For the installation procedure, it is assumed that:

• The remote terminal console operates on the same machine that the ML555 board is
plugged into.

• No previous versions of this driver are installed on the PC running Microsoft Windows XP.

• The ML555 has been properly configured for PCI Express compliant system power, the
reference design has been programmed into the platform flash configuration device on the
ML555 board, and the ML555 is configured to load the reference design into the FPGA
from platform flash at power-up.

1. With the PC powered off, install the ML555 in an 8-lane or 16-lane PCI Express compliant
add-in card socket in the PC.

2. Connect the USB B-to-A cable between the ML555 USB port (connector J1) and the USB
connector on the PC. The USB cable is not provided with the Virtex-5 FPGA ML555
Development Kit for PCI Express and PCI designs.

3. Power up the PC and ML555 system before continuing with the VCP driver installation.

4. Successful CP210x driver installation consists of five steps:

a. Create an installation directory on the PC and copy the installation files from the ML555
CD-ROM (or downloaded driver from a temporary directory) into the CP210x directory.

b. With the reference design loaded in the Virtex-5 FPGA and a USB A-to-B cable
connected between the PC and ML555 USB port, install the first of two CP210x
USB-to-UART device drivers on the host PC.

c. Install the second CP210x USB-to-UART device driver on the host PC.

d. Verify driver installation using Windows device manager.

e. Start a HyperTerminal application to verify communications.

5. Place the ML555 CD-ROM in the CD-ROM drive on the PC. The driver file is named
CP210x_Drivers.exe and is located in the directory
ML555_Support_Files\SiLabs_CP2102_VCOM_Driver.

If the ML555 CD-ROM is not available, download the latest CP210x driver from the Silicon
Laboratories website before continuing.

http://www.xilinx.com
http://www.silabs.com/tgwWebApp/public/web_content/products/Microcontrollers/en/MCU_Downloads.htm
http://www.silabs.com/tgwWebApp/public/web_content/products/Microcontrollers/en/MCU_Downloads.htm
www.silabs.com

Interfacing to a Communication Terminal

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 7

R

CP210X Installation Directory Creation

1. Double-click the self-extracting ZIP file. A folder containing various drivers is created in the
C:\SiLabs\MCU\CP210x directory. The InstallShield Wizard is displayed as shown in
Figure 5.

2. Click Next to continue.

3. Review the Silicon Laboratories software license agreement. Click Yes to accept all the
terms and conditions of the license agreement, as shown in Figure 6.

X-Ref Target - Figure 5

Figure 5: Silicon Laboratories CP210x InstallShield Wizard

X-Ref Target - Figure 6

Figure 6: Silicon Laboratories License Agreement

X1000_05_041408

X1000_06_041408

http://www.xilinx.com

Interfacing to a Communication Terminal

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 8

R

4. Click Next to accept the default destination folder as shown in Figure 7.

After the destination folder is created on the PC and the VCP drivers are copied to this folder,
the Wizard Complete status screen is displayed as shown in Figure 8.

5. Click Finish to continue with VCP driver installation. At this point, the VCP drivers are only
copied onto the host disk drive.

X-Ref Target - Figure 7

Figure 7: Default CP210x Driver Destination Directory

X-Ref Target - Figure 8

Figure 8: CP210x Directory Creation and File Installation Complete

X1000_07_041408

X1000_08_041408

http://www.xilinx.com

Interfacing to a Communication Terminal

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 9

R

CP210x USB-to-UART First Driver Installation

The following steps require the reference design to be successfully loaded into the FPGA on
the ML555, and the USB interface cable to be connected between the PC and ML555 J1
connector.

1. The PC recognizes new hardware attached to the computer and displays the Found New
Hardware Wizard as shown in Figure 9. Select No, not this time and click Next to continue
with driver installation.

2. Select Install from a list or specific location (Advanced) as shown in Figure 10. Click
Next to continue.

X-Ref Target - Figure 9

Figure 9: Found New Hardware Wizard

X-Ref Target - Figure 10

Figure 10: New Hardware Wizard Install from a Specific Location

X1000_09_041408

X1000_10_041408

http://www.xilinx.com

Interfacing to a Communication Terminal

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 10

R

3. Select Search for the best driver in these locations and select Include this location in
the search (Figure 11). Browse to the directory containing the CP210x drivers or enter
C:\SiLabs\MCU\CP210x\WIN if the default directory is selected. Click Next to continue.

Driver installation takes one or two minutes to complete. The Completing the Found New
Hardware Wizard status box is displayed (Figure 12). This is the first of two drivers that must be
installed for the PC and ML555 USB port to communicate correctly.

4. Click Finish to continue with VCP driver installation.

X-Ref Target - Figure 11

Figure 11: Search for the Best Driver in these Locations

X-Ref Target - Figure 12

Figure 12: Found New Hardware Wizard Driver Installation Complete

X1000_11_041408

X1000_12_041408

http://www.xilinx.com

Interfacing to a Communication Terminal

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 11

R

CP210x USB-to-UART Second Driver Installation

A second driver must be installed on the PC. The Found New Hardware Wizard is again
displayed on the PC (Figure 13).

1. Select No, not this time and click Next to continue with driver installation.

2. The driver for the CP210x USB to UART bridge controller must also be installed on the PC.
Select Install from a list or specific location (Advanced) as shown in Figure 14. Click
Next to continue.

X-Ref Target - Figure 13

Figure 13: Found New Hardware Wizard (Second CP210x Driver Install)

X-Ref Target - Figure 14

Figure 14: USB-to-UART Bridge Controller Driver Installation Wizard

X1000_13_041408

X1000_14_041408

http://www.xilinx.com

Interfacing to a Communication Terminal

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 12

R

3. Select Search for the best driver in these locations and select Include this location in
the search (Figure 15). Browse to the directory that contains the CP210x drivers or enter
C:\SiLabs\MCU\CP210x\WIN. Click Next to continue.

Driver installation takes one or two minutes to complete. The Completing the Found New
Hardware Wizard status box is displayed for the second time as shown in Figure 16. This is the
second of two drivers that must be installed for the PC and ML555 USB port to communicate
correctly.

4. Click Finish to complete driver installation.

X-Ref Target - Figure 15

Figure 15: VCP Driver Directory Location

X-Ref Target - Figure 16

Figure 16: Completion of Second CP210x Driver Installation

X1000_15_041408

X1000_16_041408

http://www.xilinx.com

Interfacing to a Communication Terminal

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 13

R

Verification of USB-to-UART Driver Installation

Verification of PC to ML555 communication requires the ML555 powered up in the system unit,
the reference design loaded into the Virtex-5 FPGA on the ML555, and a USB cable connected
between the ML555 and the USB port of the PC hosting the remote DMA initiator terminal
console. If the ML555 is connected to the USB port of the PC but the reference design is not
loaded into the Virtex-5 FPGA, the CP210x USB-to-UART bridge controller port is not
recognized by the device manager application software running on the PC.

To determine which COM port has been assigned to the USB-to-UART bridge controller
attached to the ML555 board, the COM port assignments must be known.

1. Go into the Windows device manager by right-clicking on
My Computer > Properties > Hardware > Device Manager > Ports (COM & LPT) to view
the COM port assignments. Knowledge of the COM port assignment for the CP210x
USB-to-UART bridge controller is required when the HyperTerminal or TeraTerm
application is started on the PC. Figure 17 shows a device manager screenshot depicting
the ML555 COM port assigned to COM3.

2. To uninstall the Silicon Laboratories VCP drivers from the PC, go to
Start > Control Panel > Add or Remove Programs. Microsoft Windows searches for all
software applications installed on the PC and presents a list of installed applications for
user selection. Scroll down and select the CP210x USB to UART bridge controller driver to
be removed. If installing a newer version of the VCP driver, remove the older driver version
driver before installing a newer driver version on the PC. The reference design was
hardware-verified using version 3.1 of the Silicon Laboratories VCP driver with the
production silicon version of the ML555.

X-Ref Target - Figure 17

Figure 17: Windows Device Manager COM Port Assignment

X1000_17_041408

http://www.xilinx.com

Interfacing to a Communication Terminal

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 14

R

Opening a HyperTerminal Console

1. On the start menu of the PC, run the HyperTerminal application by selecting
Start > All Programs > Accessories > Communications > HyperTerminal. This opens
a connection description window as show in Figure 18. Enter ML555 as the name of the
terminal connection and click OK to continue.

A Connect To window is displayed as shown in Figure 19.

2. Select Connect Using: COM3 (or COM4 according to the COM port assignment to the
ML555 USB interface). Click OK. Verify COM port assignment for the CP210x port review
information depicted in Figure 17, specific to end user system configuration.

X-Ref Target - Figure 18

Figure 18: Start HyperTerminal Application on the PC

X-Ref Target - Figure 19

Figure 19: Connect Using COM4 or COM3

X1000_18_041408

X1000_19_041408

http://www.xilinx.com

Interfacing to a Communication Terminal

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 15

R

UART Lite COM parameters are fixed at the time of reference design compilation. A COM
Properties window is displayed (Figure 20).

3. Enter the port settings properties by selecting 9600 bits per second, 8 data bits, None for
parity, 1 stop bit and None for flow control. Click Apply and OK to open up the terminal
console on the PC. This terminal console is the user control point for the DMA initiator
reference design.

X-Ref Target - Figure 20

Figure 20: HyperTerminal Port Settings for ML555 Communications

X1000_20_042108

http://www.xilinx.com

Interfacing to a Communication Terminal

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 16

R

The port number (COM3) is displayed as shown in Figure 21.

If there are problems with the communication terminal, review pages 35-44 of XAPP859 for a
step by step description of setting up the ML555 to use a communication terminal.

Figure 22 shows the setup of Tera Term. Using Tera Term or a similar serial communications
utility, set the TeraTerm Port, Baud Rate to 9600, Data Bits to 8, Parity to None, and Flow
Control to None.

X-Ref Target - Figure 21

Figure 21: Device Manager Communication Port

X-Ref Target - Figure 22

Figure 22: TeraTerm Settings

X1000_21_041408

X1000_22_041408

http://www.xilinx.com

Executing the Reference System

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 17

R

Executing the
Reference
System

The sequence of steps to test the PLBv46 Endpoint Bridge reference system differs depending
on whether endpoint to root complex transactions or root complex to endpoint transactions are
run. For endpoint to root complex transactions, the steps must be run in the order below. For
root complex to endpoint transactions, the steps are the same, but there is no elf to download.

Change directories to the ready_for_download directory.

4. Use iMPACT to download the bitstream.

impact -batch xapp1000.cmd

5. Invoke XMD and connect to the MicroBlaze processor.

xmd

connect mb mdm

rst

6. Download the executable.

dow executable.elf

7. Write to the PLBv46 Endpoint Bridge Control Register to enable Bus Master and the BARs.

mwr 0x85C001E0 0x003F0107

8. Use the Catalyst to write the PLBv46 Endpoint Bridge Configuration Space Header.

File -> Open catalyst/cfg_x4.sdc

9. In the Catalyst GUI, click on

Run

10. From the XMD prompt, run

con

http://www.xilinx.com

Testing the PLBv46 Endpoint Bridge

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 18

R

Testing the
PLBv46
Endpoint
Bridge

The system, including the interface to the LeCroy/Catalyst test equipment, is shown in
Figure 23. The root complex is the Catalyst or LeCroy test equipment, and the endpoint is the
PLBv46 Endpoint Bridge in the ML555 reference system.

Endpoint to
Root Complex
Transactions

Endpoint to root complex transactions are tested using XMD commands and C code. Two
software projects, pcie_dma and pcie_mch_dma, generate Direct Memory Access (DMA)
transactions which create PCIe traffic. This code provides an interface to the user which allows
the selection of the number of loops to run and the seed. The code generates and verifies
pseudo random traffic patterns on the PCIe link.

The pcie_dma.c code uses one DMA channel. The pcie_mch_dma.c code allows the
specification of 1-3 DMA channels.

The PLBv46 Endpoint Bridge Configuration Space Header (CSH) must be written for the code
to run correctly. The Catalyst and LeCroy scripts, cfg_x4.sdc and cfg_x4.peg, set up the
configuration space header of the PLBv46 Endpoint Bridge.

The Catalyst PCI Express Bus Protocol Exerciser/Analyzer has memory located at address
0x00000000. In the reference systems, the PLBv46 Endpoint Bridge generic
C_IPIFBAR2PCIBAR_0 is set to 0x00000000. This is different from the Base System Builder
(BSB) value for C_IPIFBAR2PCIBAR_0.

X-Ref Target - Figure 23

Figure 23: PLBv46 Endpoint Bridge System Identifying Root Complex/Endpoint

BRAM

MPMC3

M S

TxRx

PLBv46 PCIe

Analyzer

(Catalyst or LeCroy)

Exerciser

(Catalyst or LeCroy)
Root Complex

Endpoint

X1000_23_041408

XPS Central DMA

DDR2

MicroBlaze

http://www.xilinx.com

Endpoint to Root Complex Transactions

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 19

R

Figure 24 shows the selection of the pcie_dma software project.

X-Ref Target - Figure 24

Figure 24: Selecting the pcie_dma Software Project

X1000_24_041408

http://www.xilinx.com

Endpoint to Root Complex Transactions

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 20

R

pcie_dma. The pcie_dma project runs Direct Memory Access (DMA) operations. The user sets
the source address, destination address, and DMA length. The pcie_dma code is used for DMA
operations between user defined source and destination addresses. Figure 25 shows the
parameters in pcie_dma.c which are edited to test PCIe transactions between different memory
regions. The elf for pcie_dma.c runs on the MicroBlaze processor in the XC5VLX50T FPGA on
the ML555.

pcie_mch_dma. The pcie_mch_dma project runs multi-channel Direct Memory Access (DMA)
operations. The user sets the source address, destination address, and DMA length for each
channel. The pcie_mch_dma code is used for DMA operations between user defined source
and destination addresses. As with the pcie_dma code, The parameters in pcie_mch_dma.c
which can be edited to test PCI transactions between different memory regions are
DMAChannel[*].BAR. The elf for pcie_mch_dma.c runs on the MicroBlaze processor in the
XC5VLX50T FPGA on the ML555.

DMA Transactions

As examples of source and destination addresses in the DMA transactions, the source address
is an address in the ML555 XPS BRAM and the destination address is Catalyst memory across
the PCIe link. Another DMA transaction transfer is data from the source address in one location
in the Catalyst memory to a second location in Catalyst memory.

The XMD scripts and C code generate DMA operations to transfer data between different
ML555 and Catalyst memory regions. DMA transactions are generated by writing to the
Control, Source Address, Destination Address, and Length registers of the DMA controller.
Table 4 provides the register locations for the XPS Central DMA. In the reference design,
C_BASEADDR is set to 0x80200000.

X-Ref Target - Figure 25

Figure 25: Defining Source and Destination Addresses, Length in pcie_dma.c

Table 4: XPS Central DMA Registers

DMA Register Address

Control Register C_BASEADDR + 0x04

Source Address Register C_BASEADDR + 0x08

Destination Address Register C_BASEADDR + 0x0C

Length Register C_BASEADDR + 0x10

#define MEM_0_BASEADDR 0x8AE10000
#define MEM_1_BASEADDR 0x20000000

DMALength = 1024

X1000_25_041408

http://www.xilinx.com

Endpoint to Root Complex Transactions

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 21

R

The pcie_dma.c code consists of the four functions in the functional diagram in Figure 26. The
Barberpole Region function provides a rotating data pattern in the memory located at the
source address. The Zero Region function sets the memory located at the destination address
to all zeroes. The DMA Region function generates a DMA transaction of data located at the
source address to the memory at the destination address. Following the DMA transfer, the
Verify function verifies that data at the source and destination address are equal.

Figure 27 show the communication terminal output when running the pcie_dma/executable.elf.

X-Ref Target - Figure 26

Figure 26: Functional diagram of pcie_dma.c

X-Ref Target - Figure 27

Figure 27: pcie_dma.c output

X1000_26_041408

Zero
Region

DMA
Region

Barberpole
Region

Verify

http://www.xilinx.com

Catalyst Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 22

R

Catalyst Testing This section discusses testing using Catalyst Enterprises SPX Series PCI Express
Analyzer/Exerciser system. The SPX is a serial bus Analyzer/Exerciser used to analyze and/or
exercise PCI Express data transactions. The SPX4 Analyzer consists of the SPX4 card and
Analyzer software. The Analyzer allows capture and trigger on Transaction and Data LInk Layer
Packets, Physical Layer Ordered Sets, and all bus conditions. The Exerciser generates bus
traffic while operating as either a root complex or endpoint device.

Figure 28 shows a functional diagram of the Catalyst test setup.

Figure 29 is a photograph of the Catalyst setup. A x1 or x4 adaptor is attached to the ML555
PCIe edge, and the ML555 is inserted into the PCIe slot. The Platform Cable USB cable is
connected to the ML555 to use Impact, XMD, and GDB. A USB cable connects the PC based
Catalyst software to the SPX4 Analyzer.

X-Ref Target - Figure 28

Figure 28: Catalyst Test Setup

X-Ref Target - Figure 29

Figure 29: Photo of Catalyst PCI Express Test Equipment

SPx4 Slot

PCIe Slot

PC

Catalyst Software
EDK/ISE

X1000_28_041408

PXP-100a PCI Express DVT Platform

X1000_29_041408

http://www.xilinx.com

Catalyst Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 23

R

In addition to using the Catalyst Bus Protocol Analyzer/Exerciser software discussed
extensively in this application note, the Catalyst SpekChekTM PCI Express Compliance Suite
has been run with this reference design to verify that the PLBv46 Endpoint Bridge meets PCI-
SIG compliance tests. The SpekCheck tests are defined in the SpekChek User Manual Version
6.5.

Several tools, including Impact, XMD, and Catalyst, are used in the setup and testing of this
reference system, and their order of use can affect functionality.

After downloading the bit file into the ML555 FPGA using Impact, the Bridge Control Register
(BCR) of the PLBv46 Endpoint Bridge is written as shown in Figure 30. The BCR enables the
PCIe Bus Master and Base Address Registers (BARs).
X-Ref Target - Figure 30

Figure 30: Writing the Bridge Control Register

X1000_30_041408

http://www.xilinx.com

Catalyst Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 24

R

Five tabs are used to setup the Catalyst PCIe Bus Protocol Analyzer/Exerciser. Figure 31
shows Catalyst Capture settings. The option selected is to Capture Everything except Idles.
In the Trigger On tab, select Pattern and Trigger on TLP (Any Type). Select Any Direction.
In the Settings tab, specify the name of the output ssf file.

X-Ref Target - Figure 31

Figure 31: Capture Settings
X1000_31_041408

http://www.xilinx.com

Catalyst Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 25

R

Figure 32 shows the setup of the Catalyst Link Settings. The ML555 can be used with either
x1 or x4 lane width. This application note uses x4 lane width. Select the Platform mode (hidden
behind the Link Status pane). Click on the Link Status button to invoke the Link Status pane
displayed. The figure shows a Link Width = 4, so the link is up and trained as x4.

X-Ref Target - Figure 32

Figure 32: Catalyst Link Settings

X1000_32_041408

http://www.xilinx.com

Catalyst Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 26

R

Figure 33 is a graphical view of the stimuli for configuring the PLBv46 Endpoint Bridge,
including BAR 0. The ml555_mb_plbv46_pcie/catalyst directory contains the
cfg_x4.sdc stimuli file. The cfg_x4.sdc project is loaded using the File -> Open pull down menu.
The *.sdc files are readable text files which contains the transactions used as stimuli.

In cfg_x4.sdc, the Device ID/Vendor ID is read. The Command Status register is written and
read. The Revision ID and Class Code register is read.

In the figure, the Name column provides the type of transaction and the Reg Num column
specifies the register in the Configuration Space Header.

BAR0 is written and read. BAR0 is a 64-bit BAR with the lower 32-bits defined at Configuration
Space Header (CSH) Register Number 4 and the higher 32-bits defined at CSH Register
Number 5.

Packets 10 and 11 are Configuration Writes and packets 12 and 13 are Configuration Reads.

In the Data field in packet 10, the endianess of the data written is swapped

X-Ref Target - Figure 33

Figure 33: Catalyst Configuration Stimuli

X1000_33_041408

http://www.xilinx.com

Catalyst Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 27

R

Figure 34 shows the Analyzer output after running cfg_x4. The results are contained in the
cfg_x4.ssf file. Registers in the Configuration Space Header are displayed in packet 0 using
Vendor ID and Device ID symbolic names, with Xilinx 0x10EE and 0x0505 values. The
Command Status Register is read. The SC in the status field indicates successful completion of
the transaction. In the figure, the Revision ID and Class Code Register field is expanded to
provide a readable table of the values in the Data field.

X-Ref Target - Figure 34

Figure 34: Results from Catalyst Configuration

X1000_34_041408

http://www.xilinx.com

Catalyst Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 28

R

Figure 35 shows an excerpt of the Exerciser cfg_x4.sdc file. The file contains the stimuli TLPs.
While it is generally easier to read and edit the TLPs using the Catalyst Display Viewer, the text
file is readable and editable, and more details are provided than can be efficiently presented in
the Display Viewer. The figure shows the content of a single Configuration Read TLP.

X-Ref Target - Figure 35

Figure 35: sdc_example

Packet_Type = “Config Read T0”
Framing_Symbol1 = “FB”
Reserved_1 = “0”
Sequence_Number = “000”
Reserved_2 = “0”
Format = “0”
Type = “04”
Reserved_3 = “0”
TC = “0”
Reserved_4 = “0”
TD = “0”
EP = “0”
Attribute = “0”
Reserved_5 = “0”
Length = “001”
Requester_ID = “0000”
Tag = “00”
Last_DW_BE = “0”
First_DW_BE = “F”
Bus_Number = “00”
Device_Number = “00”
Function_Number = “0”
Reserved_6 = “0”
Register_Address = “000”
Reserved_7 = “0”
TLP_Digest = ““
LCRC = “2AC19647”
Framing_Symbol2 = “FD”
Loop_Type = “No_Loop”
Loop_Count = ““
Iterate_After_Trigger = “No”
Delay_Count = “0”
Trigger_Source = “Immediate_Execution”
Disparity_Error = “No”
ZData = “10000000000000000001”
Symbol_View = “Collapse”
Trigger_Output = “No”
Trigger_Output_Type = “Pulse”
Global_Loop

X1000_35_041408

http://www.xilinx.com

Catalyst Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 29

R

As Root Complex, the Catalyst Exerciser performs memory writes and memory reads to the
ML555 memory. The ML555 reference design contains XPS BRAM and a Multiported Memory
Controller (MPMC) interface to DDR2. Figure 36 shows the memory addressing for Root
Complex (Catalyst) to Endpoint (ML555) transactions.The memory addressed is controlled by
the BAR value written and by the C_PCIBAR2IPIFBAR_* generic(s). In the reference design,
BAR0 is written as 0x0000000060000000. C_PCIBAR2IPIFBAR_0 addresses XPS BRAM at
0x8AE10000, and C_PCIBAR2IPIFBAR_1 addresses DDR2 at location 0x90000000.

Figure 37 shows the write then read TLPs in the wr_rd_x4.sdc file. In the figure, Packet 0 is a
MWr64 to address 0x0000000060000000 of 128 bytes. The Data Field allows the user to
specify data as Upcount, Walking Bit, or Random pattern, or a user defined pattern such as
0x12345678 can be entered. As exercises in learning to use the PLBv46 Endpoint Bridge, the
data can be varied, and the memory written/read can be changed from XPS BRAM to DDR2.

The Length field is 020H which is 32 doublewords (DWs) or 128 bytes.

Packet 1 is a MRd64 of address 0x0000000060000000, used to verify the written data. The
MRd64 TLP address endianess differs from the CfgWr address endiness used when the BAR
was written with a CfgWr in Figure 33. Bit Order and Endianess can be defined by right clicking
a field to invoke a pop up menu.

X-Ref Target - Figure 36

Figure 36: Catalyst Root Complex

X-Ref Target - Figure 37

Figure 37: wr_rd_x4 TLP Stimuli

Catalyst

Root Complex

ML555

End Point

PLBv46 PCIe
C_PCIBAR2IPIFBAR0 = 0X8AE10000
C_PCIBAR2IPIFBAR1 = 0X90000000

XPS
BRAM

0x8AE10000

MPMC/DDR2
0x90000000

X1000_36_041408

PCIe x4

X1000_37_041408

http://www.xilinx.com

Catalyst Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 30

R

Figure 38 shows the results after running a version of wr_rd_x4.sdc in which a pattern of
0xAA55AA55AA55AA55 is transmitted followed by a pattern of 0x1234567812345678.

X-Ref Target - Figure 38

Figure 38: Catalyst wr_rd_x4 Results

X1000_38_041808

http://www.xilinx.com

Using Catalyst to test PCIe Performance

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 31

R

Figure 39 shows the use of XMD to read ML555 DDR2 memory to provide a second verification
that the wr_rd_x4.sdc script functioned as intended. The data read in XMD should be the same
as the data in the Analyzer waveform display.

Using Catalyst
to test PCIe
Performance

Catalyst is used for performance testing. This section provides performance tests for Root
Complex to Endpoint transactions, first for read transactions and then for write transactions.
The test setup is defined and then performance results are given for various lengths for 32 and
64 bit transactions.

Figure 40 shows the physical link setup for the performance test. For the
ml555_mb_plbv46_pcie project, change the Physical Layer Settings Link Width to x4.

X-Ref Target - Figure 39

Figure 39: Verifying Root Complex to Endpoint Transactions with XMD

X1000_23_041408

X-Ref Target - Figure 40

Figure 40: Performance Test Physical Settings
X1000_40_041408

http://www.xilinx.com

Using Catalyst to test PCIe Performance

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 32

R

Root Complex to Endpoint Performance Tests

To setup the performance test, the ML555 is inserted into the Catalyst. The bitstream is
downloaded into the FPGA. Use XMD to write 0x003F0107 to the PLBv46 Endpoint Bridge
Bridge Control Register to enable the bus master and the Base Address Register(s).

Root Complex to Endpoint Read Operations

Figure 41 shows the opening of the rc2ep_rd64 performance project. Performance projects use
the spf extension.

The four tabs used in performance projects are the Exercise Program, Performance Items, Link
Settings, and Settings. In Performance Items, the type of performance tests run are defined.
The PCIe traffic used in the performance measurement is defined in the Exercise Program.

X-Ref Target - Figure 41

Figure 41: Opening a Catalyst Performance Test

X1000_41_041408

http://www.xilinx.com

Using Catalyst to test PCIe Performance

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 33

R

Figure 42 shows a single TLP used in the performance measurements of Rd64 transactions of
length = 003. Click the TLP button below Performance Items to add the TLP to the Exercise
Program. Using the pop up menu, select Memory → Read Request 64 bits. Fill out the
address and Len fields. Select the Continuous radio button so that the TLP is continuously
transmitted.

The next two figures show the performance results of MRd64 transactions, varying the length of
the TLP. The single continuously transmitted TLP stimuli just defined is shown in the pane at the
bottom of the figure. The left pane is a Link Chart which provides the average payload size. The
right pane is a Link Chart which provides the data throughput and the payload throughput.

In the Performance Items tab, Link Usage, Number of Packets, and Latency are unchecked.
Under Report Directions, Aggregate is checked.

In the following tests, Data Throughput is the overall bus traffic of all non-idle packets divided by
the update interval. Payload Throughput is the payload data of TLPs divided by the update
interval. The update interval, defined in the Settings tab, for performance measurements in this
document is 1 s.

The MRd performance is the round trip time including the MRd command and the Completion
with Data packet.

X-Ref Target - Figure 42

Figure 42: Defining MRd64 Performance Stimuli

X1000_42_041408

http://www.xilinx.com

Using Catalyst to test PCIe Performance

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 34

R

Figure 43 shows the performance results of a MRd64 TLP of length 10. The data and payload
throughput are 314.2 MB/s and 163.9 MB/s.

X-Ref Target - Figure 43

Figure 43: MRd64 Performance Results - Length = 10

X1000_43_041408

http://www.xilinx.com

Using Catalyst to test PCIe Performance

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 35

R

Figure 44 shows the performance results of a MRd64 TLP of length 100. The data and payload
throughput are 298.5MB/s and 215.1MB/s.

The maximum length TLP which can be measured by the Catalyst software at the time of this
measurement is 400 bytes.

X-Ref Target - Figure 44

Figure 44: MRd64 Performance Results - Length = 100

X1000_48_041408

http://www.xilinx.com

Using Catalyst to test PCIe Performance

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 36

R

Figure 45 shows the performance of MRd32 transactions of length = 3.The data and payload
throughput are 114.6MB/s and 15.4 MB/s.

X-Ref Target - Figure 45

Figure 45: MRd32 Performance Results - Length = 3

X1000_45_041408

http://www.xilinx.com

Using Catalyst to test PCIe Performance

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 37

R

Root Complex to Endpoint Write Transactions

Figure 46 shows a write transaction. The length field is set to 020H or 128 bytes. The data
written is an Upcount pattern. The Continuous radio button is selected.

X-Ref Target - Figure 46

Figure 46: MWr64 Performance Results, Length = 20

X1000_46_041408

http://www.xilinx.com

Using Catalyst to test PCIe Performance

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 38

R

Figure 47 shows the performance results from running a continuous MWr32 transaction. The
data and payload throughput are 508.4 MB/s and 391.3 MB/s.

X-Ref Target - Figure 47

Figure 47: MWr32 Performance Results, Length = 20

X1000_47_041408

http://www.xilinx.com

Endpoint to Root Complex Transactions

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 39

R

Endpoint to
Root Complex
Transactions

This section measures the performance of Endpoint to Root Complex transactions. The stimuli
for these transactions are generated using the Xilinx XPS Central DMA Controller in the
reference system. The functionality of the DMA controller is discussed earlier in this application
note. The DMA transaction is from the address specified in the DMAC Source Address register
to the address specified in the DMAC Destination Address register. The length of the DMA
transaction is specified by the value in the DMAC Length register.

Prior to generating the stimuli, the performance test is set up. Figure 48 shows the importing of
the performance test setup file catalyst/pcie_dma.spf. The throughput measurements in
this application note are aggregate throughput.

X-Ref Target - Figure 48

Figure 48: Importing Performance Test Setup

X1000_48_041408

http://www.xilinx.com

Endpoint to Root Complex Transactions

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 40

R

To generate stimuli, either C code or an XMD script is used to write the DMAC registers.
Figure 49 shows an XMD script to generate stimuli. Using XMD scripts and commands allows
the relatively quick verification that the operation is functioning correctly. After running a DMA
operation, a mrd command can be used to verify that the data in the source and destination
regions are equivalent. XMD commands may be too slow to give maximum performance
results.

The DMA Status Register is monitored to determine if the DMAC is Busy. When it is not busy,
a DMA transaction is initiated by a write to the DMAC Length register.

X-Ref Target - Figure 49

Figure 49: dma.tcl

set outfile [open "dma.txt" "w"]
connect mb mdm
rst

puts $outfile [mwr 0x85C001E0 0x003F0107]

puts $outfile [mwr 0x80200000 0x0000000A]
puts $outfile [mwr 0x80200030 0x00000003]
puts $outfile [mwr 0x80200004 0xC0000004]
puts $outfile [mwr 0x80200008 0x20000000]
puts $outfile [mwr 0x8020000C 0x20002000]

puts $outfile [mwr 0x20000000 0x12345678 100]
puts $outfile [mwr 0x20002000 0x0 100]

set DMASR [mrd 0x80200014 1]
set DMASR_BUSY 0x40000000

puts $outfile "DMA Status Register = $DMASR"

#while {1} {
for {set i 1} {$i<1000} {incr i} {
if {$DMASR != $DMASR_BUSY} {
puts $outfile [mwr 0x80200010 64]
}
}

puts $outfile [mrd 0x20000000 100]
puts $outfile [mrd 0x20002000 100]

close $outfile
exit

X1000_49_041408

http://www.xilinx.com

Endpoint to Root Complex Transactions

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 41

R

Figure 50 shows the Catalyst SPX4 Analyzer/Exerciser output after running the ep2rc_*.spf
performance analyzer project. The payload throughput depends on various factors such as the
size of the transfer, if print statements are included in the source code, and if the verification is
included in the source code. For this run, all print statements are removed, there is no
verification, and length is set to 20. This is a hex value of doublewords, so the TLP lenght is 128
bytes. The transfer is from XPS BRAM to Catalyst memory across the PCIe link. The data
throughput is 19.0 MB/s and the payload throughput is 8.3 MB/s.

X-Ref Target - Figure 50

Figure 50: EP to RC Performance - Length = 20

X1000_50_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 42

R

Figure 51 shows the performance of an Endpoint to Root Complex transaction using C code
(pcie_dma_0.c) to generate stimuli with the length = 200. The data throughput is 61.8 MB/s and
the payload throughput is 36.8 MB/s. In this test, the Source Address is XPS BRAM, which is
0x8AE10000, and the Destination Address is written to 0x20000000, which translates to
Catalyst memory, across the PCIe link.

LeCroy Testing Use the LeCroy - ML555 test setup shown in Figure 52 to verify the PLBv46 Endpoint Bridge
using the LeCroy tester as root complex, including configuration and data transactions. The
ML555 is inserted into the host emulator.

The ml555_mb_plbv46_pcie/lecroy directory contains the stimuli files which use peg as
the filename extension.

This section discusses the procedures used in setting up the LeCroy, including defining the
Recording and Generation Options. Root Complex to Endpoint transactions are discussed,
followed by a section on Endpoint to Root Complex transactions.

X-Ref Target - Figure 51

Figure 51: EP to RC Performance - Length = 200

X1000_51_041408

X-Ref Target - Figure 52

Figure 52: LeCroy Test Setup

SPx4 Slot

PCIe Slot

PC

Catalyst Software
EDK/ISE

X1000_52_041408

PXP-100a PCI Express DVT Platform

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 43

R

Figure 53 is a photograph of the LeCroy test setup. The ML555 is inserted into the LeCroy Host
Emulator. The Platform Cable USB Programming cable is connected to the ML555 JTAG
connector.

X-Ref Target - Figure 53

Figure 53: LeCroy Test Equipment

X1000_53_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 44

R

Figure 54 shows the menu for setting Generation Options after selecting Setup -> Generation
Options.

The LeCroy ML test equipment is selected. Link Width is specified as x4. Select Host as the
Interposer.

X-Ref Target - Figure 54

Figure 54: Setting Generation Options

X1000_54_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 45

R

Figure 55 shows the menu for setting Recording Options after selecting Setup -> Recording
Options. The Simple Mode is used. An Event Trigger is selected.

The Buffer Size is specified as 32 MB and the Trigger Position is set at 90% post triggering.The
x4 Lane Width is selected.

X-Ref Target - Figure 55

Figure 55: Setting Recording Options

X1000_55_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 46

R

Figure 56 shows using File → Open to open a LeCroy stimuli (peg) file.

The LeCroy PETracer software provides the interface to the PETracer (Analyzer) and PETrainer
(Exerciser). To run an analysis, click on the Record icon (the Sun) in the menu bar. Click the
Traffic Light icon at the bottom left of the GUI. After the status bar indicates Traffic Finished,
click the Stop icon (black filled square next to the Sun). This causes results to be shown in the
Display area. Results files have a pex extension. Like peg files, pex files can be opened using
File -> Open.

X-Ref Target - Figure 56

Figure 56: Opening a LeCroy PEG File

X1000_56_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 47

R

Figure 57 shows the use of XMD to enable the PLBv46 Endpoint Bridge Bridge Control
Register. The BCR enables the Bus Master and Base Address Registers (BARs).

After generation and recording options are specified and the BCR is written, the link must be
trained. The Link State is displayed at the bottom of the PETracer GUI. Prior to training, the Link
State is displayed as Detect.Quiet as shown at the bottom of Figure 56. After training, the Link
State is displayed as L0. To initiate training, click on the Connect icon. To disable a trained link,
click on the Disconnect icon.

X-Ref Target - Figure 57

Figure 57: Using XMD Commands to Write the Bridge Control Register

X1000_57_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 48

R

Figure 58 shows that the LeCroy - ML555 PLBv46 Endpoint Bridge link is trained with the
LTFSM in L0. If the clocking and resets are correct, link training occurs in less than one second.
If link training is unsuccessful, the LTFSM cycles through training states.
X-Ref Target - Figure 58

Figure 58: LeCroy After Link Trained

X1000_58_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 49

R

Root Complex to Endpoint Transactions

As Root Complex, the LeCroy Trainer generates memory writes and memory reads to the
ML555 memory. The ML555 reference design contains XPS BRAM and an MPMC interface to
DDR2. Figure 59 shows the memory addressing for Root Complex (Catalyst) to Endpoint
(ML555) transactions.The memory addressed is controlled by the BAR value written and by the
C_PCIBAR2IPIFBAR_* generics. In the reference design, PCI BAR0 is written as
0x0000000060000000. C_PCIBAR2IPIFBAR_0 addresses XPS BRAM at 0x8AE10000, and
C_PCIBAR2IPIFBAR_1 addresses DDR2 at location 0x90000000.

The display area shows the TLPs defined in the peg file. Figure 60 shows an excerpt from the
lc_rc2ep_wr_rd.peg file. The lc_rc2ep_wr_rd.peg shown is writes FFFFFFFFs to the six BAR
registers in the Configuration Space header. This is done using the Repeat construct. The first
register written is BAR0, located at offset 0x10.

X-Ref Target - Figure 59

Figure 59: LeCroy Complex

X-Ref Target - Figure 60

Figure 60: RC to EP Write/Read Test

LeCroy

Root Complex

ML555

End Point

PLBv46 PCIe
C_PCIBAR2IPIFBAR0 = 0x8AE10000
C_PCIBAR2IPIFBAR1 = 0x90000000

XPS
BRAM

0x8AE10000

MPMC/DDR2
0x90000000

X1000_59_041408

PCIe x4

X1000_60_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 50

R

The next figures show BAR0 configuration packets, followed by write then read operations on
BAR0.

Figure 61 shows the configuration of BAR0 and the read, write, and read transactions. The
address of BAR0 is 0x0000000060000000. Packet 0 is a CfgWr of the lower order address
and packet 2 is a CfgWr of the higher order address. Packets 4 and 5 use CfgRd TLPs to verify
the configuration writes. Packets 6, 7, and 8 are MRd32, MWr32, and MRd32 TLPs used to
read and write BAR0 memory.

Double click on the Data field in packet 7 to display the 1234678 value.

The endianess of the address in the CfgWr0 TLP differs from the endianess of the address in
the MWr32 and MRd32 TLPs.

X-Ref Target - Figure 61

Figure 61: Configuring and Testing BAR0

X1000_61_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 51

R

Figure 62 shows the results after running rc2ep_cfg_wr_rd_bar0.peg. Packet 9 is a MWr32 of
0x12345678 to address 0x0000000060000000. This address is translated using the
generic C_PCIBAR2IPIFBAR0 to the XPS BRAM at 0x8AE10000. In packet 12, the data value
0x12345678 is returned in the CplD packet.

The status fields indicate Successful Completion (SC).

Figure 63 shows the verification of the Endpoint to Root Complex PCIe transactions using
XMD. In the system.mhs, the PLBv46 Endpoint Bridge generic C_PCIBAR2IPIFBAR0 is
0x8AE10000, the location of XPS BRAM. This shows that the 0x12346578 written by the
LeCroy Root Complex MWr64 TLP is resident in XPS BRAM.

X-Ref Target - Figure 62

Figure 62: BAR0 Test Results

X-Ref Target - Figure 63

Figure 63: XMD Verification of BAR0 Tests

X1000_62_041808

X1000_63_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 52

R

Figure 64 shows an excerpt of a peg file.

The peg file used as stimuli in LeCroy transactions is readable and editable. In the figure,
templates are defined for Configuration Write and Configuration Read TLPs. The Configuration
Write template is called in the repeat loop to write FFFFFFFFs to the six Configuration Space
Header BARs.

The peg files in ml555_mb_plbv46_pcie/lecroy can be used to test the PLBv46 Endpoint
Bridge on the ML555.

X-Ref Target - Figure 64

Figure 64: PEG Example

template = TLP{
Name = “MyCfgWrite”
; Template name
TlpType = CfgWr0
; Write device Configuration Space
FirstDwBe = 0xF;
 First DW Byte Enables
Length = 1
;1 DWORD
Payload = (0xFFFFFFFF)
template = TLP
{
Name = “MyCfgRead”
; Template name
TlpType = CfgRd0
; Read device Configuration Space
FirstDwBe = 0xF; First DW Byte Enables
Length = 1
; 1 DWORD
}
; Enumerate all 6 Base Address registers
repeat = Begin { Count = 6 Counter = i }
; Write 0xFFFFFFFF into Base Address register
packet = “MyCfgWrite” {
Register = (0x10 + i * 4)
; Wait for completion received
wait = TLP {
 TLPType = Cpl
}
; Read Base Address register
packet = “MyCfgRead” {
 Register = (0x10 + i * 4)
}
; Wait for completion received
wait = TLP {
 TLPType = CplD
}

repeat = End

X1000_64_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 53

R

Endpoint to Root Complex Transactions

In Endpoint to Root Complex transactions, the read and write operations originate from the
ML555 and target the LeCroy. The LeCroy model used in this application note (ML) does not
have target memory. For read operations, the peg files are written to respond with read data.

Invoke PETracer and run File → Open lecroy/ep2rc_mrd32_1dw.

Endpoint to Root Complex transactions are generated with XMD commands or C code. Since
the MWr and MRd TLPs originate from the ML555, the LeCroy peg files cause the LeCroy to
wait for the TLP(s) from the ML555. Figure 65 shows the peg for the EP to RC MRd32. The
LeCroy waits for the MRd32 packet from the ML555. When the MRd32 packet is received, the
LeCroy returns a Completion with Data (CplD) packet with a 0x12345678 payload.

Figure 66 defines the functionality of the LeCroy Root Complex when receiving a MRd32
transaction from the PLBv46 Endpoint Bridge endpoint on the ML555.

X-Ref Target - Figure 65

Figure 65: ep2rc_mrd32

X-Ref Target - Figure 66

Figure 66: EP to RC MRd32 Test Stimuli (1 DW)

wait = TLP {TLPType = MRd32 }
Packet=TLP {TLPType=CplD CompleterID = (0:1:0)
Length = 1 ByteCount = 0 LowerAddr = 0x00
Payload = (0x12345678)}

X1000_65_041408

X1000_66_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 54

R

Figure 67 shows results from running the EP to RC memory read. The peg is loaded. Start
recording by clicking on the Sun icon in the menu bar. Click the Traffic Light icon. Generate a 1
doubleword read using XMD.

mrd 0x20000000 1

Click the Black Square icon to stop recording and view the results.

Figure 68 shows the ep2rc_mrd32_4dw.peg for a four doubleword Endpoint to Root Complex
MRd32.

X-Ref Target - Figure 67

Figure 67: EP to RC MRd32 Test Results (1 DW)

X-Ref Target - Figure 68

Figure 68: EP to RC MRd32 Test Stimuli (4 DW)

X1000_67_041408

X1000_68_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 55

R

Figure 69 shows results from running the XMD command below.

mrd 0x20000000 4

Endpoint to Root Complex Write Transactions

Figure 70 shows the peg for the EP to RC MWr32. As with EP to RC memory reads, start
recording by clicking on the Sun icon, and then click on the traffic light.

Figure 71 shows LeCroy Root Complex setup for analyzing an Endpoint to Root Complex
MWr32 operation.

X-Ref Target - Figure 69

Figure 69: EP to RC MRd32 Test Results (4 DW)

X-Ref Target - Figure 70

Figure 70: ep2rc_wait_mwr32.peg

X-Ref Target - Figure 71

Figure 71: EP to RC - Write Operation

X1000_69_041408

wait = TLP {
TLPType = MWr32
 }

X1000_70_041408

X1000_71_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 56

R

The xmd command below generates the stimuli for the PLBv46 Endpoint Bridge to transmit the
TLP.

mwr 0x20000000 0x12345678

Figure 72 shows the Analyzer output for an EP to Root Complex Memory Write of 0x1234567.

The write operation is easily varied using XMD. The XMD command below writes eight
locations.

mwr 0x20000000 0x12345678 8

X-Ref Target - Figure 72

Figure 72: EP to RC Write Results

X1000_72_041408

http://www.xilinx.com

LeCroy Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 57

R

Figure 73 shows the results from running the eight doubleword Endpoint to Root Complex write
transaction.

X-Ref Target - Figure 73

Figure 73: EP to RC Write Results - 8 DW

X1000_73_041408

http://www.xilinx.com

Testing with a PC

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 58

R

Testing with a
PC

Using a Personal Computer (PC) as Root Complex (RC) is an inexpensive method of verifying
PLBv46 Endpoint Bridge functionality. PCItree and the Memory Endpoint Test (MET) run on
PCs. Figure 74 shows the ML555 in a Dell 390 PC. The PC PCIe integrated circuit(s) act as
root complex. The Dell 390 has a x1 connector for PCIe slot 1 and a x8 connector for PCIe slot
4. In the Dell 390, only 4 of the 8 lanes of the x8 connector are active. The Dell 390 runs
Windows XP which has ISE, EDK, and PCItree installed.

The USB Platform Cable is connected to the ML555 JTAG port for Impact, XMD, and
ChipScope operations. A Type A to Type B USB cable is used for communicating to a
communication terminal. In the tests described in this section, the ML555 PCI/PCI Express
Development Platform is inserted into a Dell 390 x8 slot for the ml555_mb_plbv46_pcie project.

The ML555 receives power from the PCIe slot, and the power up sequence of the PC affects
the PCIe scan. In order for BIOS to recognize the drivers and PCIe BARs at power up, the
FPGA bit file should be loaded prior to PC power up.

Xilinx recommends writing the XCF32P PROM so that configuration occurs at power up. Xilinx
recommends the use of Master SelectMap mode for configuration.

Configuring the ML555 XC5VLX50T when used in a PC PCIe Slot

The ml555_mb_plbv46_pcie/ready_for_download/ml555_mb_plbv46_pcie.mcs is
the configuration file for this reference design. Because Xilinx recommends configuring from
the PROM, the next figures outline the steps for creating a mcs for the ML555. Users
generating the PROM file for the first time should reference the detailed instructions provided
on pages 101 - 108 of UG201 (v1.4) Virtex-5 FPGA ML555 Development Kit for PCI and PCI
Express Designs.

X-Ref Target - Figure 74

Figure 74: PC Test Environment

X1000_74_041408

http://www.xilinx.com

Testing with a PC

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 59

R

Figure 75 shows the ML555 Boundary Scan chain. The first XCF32P is used to configure the
FPGA. Right clicking on the XCF32P invokes the Prepare PROM GUI.

X-Ref Target - Figure 75

Figure 75: ML555 Boundary Scan Chain

X1000_75_041408

http://www.xilinx.com

Testing with a PC

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 60

R

Provide the PROM file name as shown in Figure 76.

X-Ref Target - Figure 76

Figure 76: Defining the PROM File

X1000_76_041408

http://www.xilinx.com

Testing with a PC

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 61

R

Specify the XCF32P PROM as shown in Figure 77.

X-Ref Target - Figure 77

Figure 77: Specifying the XCF32P PROM

X1000_77_041408

http://www.xilinx.com

Testing with a PC

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 62

R

Select the bit file (download.bit) as shown in Figure 78.

X-Ref Target - Figure 78

Figure 78: Specifying the Bit File

X1000_78_041408

http://www.xilinx.com

PCItree Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 63

R

Select Generate File. The generated MCS file is shown in Figure 79.

The recommended configuration mode is Master SelectMap, which is specified when the
configuration Mode Switch (SW5) should be set to M0-0 (ON), M1-0, M2-1.

Use Impact to download the mcs file into the ML555 XCF32 PROM. Select the XCF32P, left
click to invoke a menu, and select Program. Under the Programming Properties menu, check
Parallel Mode under the PROM Specific Properties.

Insert the ML555 into the PCIe slot and power-on the PC. Verify that the DONE LED lights.

It is possible to configure the FPGA after PC power up using the JTAG mode, but a warm reset
is usually required for the ML555 PLBv46 Endpoint Bridge to be recognized in a PCI scan. A
warm reset is a PC Shutdown with Restart.

PCItree Testing PCItree is shareware available from http://www.pcitree.de. It runs on Windows XP. PCItree can
be used for either PCI or PCIe tests. In the tests described in this section, the ML555 PCI/PCI
Express Development Platform is inserted into a Dell 390 x8 slot for the
ml555_mb_plbv46_pcie project.

Invoke XMD and enable the master and the BARs by writing to the PLBv46 Endpoint Bridge
Bridge Control Register.

mwr 0x85C001E0 0x003F0107

X-Ref Target - Figure 79

Figure 79: Selecting Generate File

X1000_79_041408

http://www.xilinx.com

PCItree Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 64

R

Figure 80 shows the XMD output when the PLBv46 Endpoint Bridge configuration space
header registers are read. At power-up, the Device ID is 0x0505 and the Vendor ID is 0x10EE.
BAR0 is 0x0000000C.

X-Ref Target - Figure 80

Figure 80: XMD Read of PLBv46 Endpoint Bridge Registers

X1000_80_041408

http://www.xilinx.com

PCItree Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 65

R

After invoking PCItree and running a scan, Figure 81 shows the ML555 PLBv46 Endpoint
Bridge detected as Other; Memory Controller, with Bus Number 3, Device Number 0,
Function Number 0, or BDF = 3.0.0.The Xilinx Vendor ID and Device ID are displayed. In its
Configuration Space Header, BAR0 has a value of 0x0000000C.

To edit the registers in the Configuration Space Header (CSH), highlight the register in the CSH
to edit and provide a value in the Edit ConfReg dialog box. As an example, select the
Command Status Register, write 0xFFFFFFFF in the Edit ConfReg dialog box, click Write
ConfReg, and click Refresh Dump to see the new value of the Command Status Register
(CSR) displayed. The new value of the CSR is not 0xFFFFFFFF as some of the CSR bits are
reserved.

X-Ref Target - Figure 81

Figure 81: PCItree Scan

X1000_81_041408

http://www.xilinx.com

PCItree Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 66

R

Click BAR0 and use the edit ConfReg dialog box to change the BAR0 value to xE000000C.
Click Write ConfReg and then Refresh Dump. The new value of BAR0 is displayed. Figure 82
shows the value of BAR0 re-defined to 0xE000000C.

X-Ref Target - Figure 82

Figure 82: Defining BAR0 in PCItree

X1000_82_041408

http://www.xilinx.com

PCItree Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 67

R

Figure 83 is XMD output which shows that BAR0 has been written as 0xE000000C. The XMD
mrd also shows that the data in the initial 8 addresses in XPS BRAM is 0x00000000.

X-Ref Target - Figure 83

Figure 83: XMD showing the Configuration Space Header, XPS BRAM

X1000_83_041408

http://www.xilinx.com

PCItree Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 68

R

Figure 84 shows the memory test for PCI tree. To run the memory test, click on Mem Test at
the lower left of the BAR Space GUI. Check Auto Read Memory at the top of the BAR Space
GUI to display memory values in the left side of the display. To edit a memory location, highlight
the location to be edited, and enter the value in the Edit memory dialog box. Click Write
Memory. To view the results, click on the Refr. View icon.

X-Ref Target - Figure 84

Figure 84: Running PCItree Memory Test

X1000_84_041408

http://www.xilinx.com

PCItree Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 69

R

Figure 85 shows the results of running the memory test. The leftmost column shows the count
pattern used for data. The count increments for even addresses and decrements on odd
addresses. With the PCItree read of BAR0, the data is the count value specified in the PCItree
memory test.The results (No Errors) are provided.

The ML555 memory written/read is the BRAM and/or DDR2 defined in the system.mhs and
addressed with the PLBv46 Endpoint Bridge C_PCIBAR2IPIFBAR_* generics. In this
reference system, two PLBv46 Endpoint Bridge BARs are active. The C_PCIBAR2IPIFBAR_0
generic points to the ML555 BRAM located at 0x8AE10000.

After writing the ML555 BRAM using PCI tree Edit Memory, XMD can be used to verify BRAM
(or DDR2 if the BAR is enabled) from the PLBv46 side.

X-Ref Target - Figure 85

Figure 85: PCItree Memory Test Results

X1000_85_041408

http://www.xilinx.com

PCItree Testing

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 70

R

Figure 86 shows verification that the XPS BRAM contains the data written by PCItree using
XMD commands.

In the next two figures, XMD is used to write XPS BRAM, which is then re-read by PCItree.

Figure 87 shows the writing and reading of 0x12345678 to the first four locations in XPS
BRAM.

X-Ref Target - Figure 86

Figure 86: XMD Verification of PCItree Write Operation

X-Ref Target - Figure 87

Figure 87: Writing XPS BRAM using XMD

X1000_86_041408

X1000_87_041408

http://www.xilinx.com

Memory Endpoint Test

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 71

R

Figure 88 shows a PCItree read of XPS BRAM. The first four locations are read as
0x12345678.

Memory
Endpoint Test

The Memory Endpoint Test (MET) is run on a PC with the ML555 inserted into a PCIe slot. MET
provides a simple method of writing and reading memory. Like PCItree, the ML555 memory
written/read is the BRAM and/or DDR2 defined in the system.mhs, and addressed with the
PLBv46 Endpoint Bridge C_PCIBAR2IPIFBAR_* generics.

The MET requires the installation of the Xilinx Virtex-5 PCIe Endpoint Driver. The Xilinx
application note XAPP1022 Using the Memory Endpoint Test (MET) Driver with the
Programmed Input/Output (PIO) Example Design for PCI Express Endpoint Cores provides
instructions on setting up and running the MET. XAPP1022 uses the PCIe Endpoint Block Plus
core driven by the PIO interface. This section uses MET to write and read ML555 memory
using the PLBv46 Endpoint Bridge.

Pages 6-11 of XAPP1022 provide instructions for installing the Xilinx Virtex-5 PCIe Endpoint
Driver.

X-Ref Target - Figure 88

Figure 88: PCItree Read of XPS BRAM

X1000_88_041408

http://www.xilinx.com

Memory Endpoint Test

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 72

R

Figure 89 shows the invocation of the Memory Endpoint Test. The values for the Device
Number, Vendor Number and the address indicate that the PLBv46 Endpoint Bridge on the
ML555 is detected.

Pages 11-15 of XAPP1022 provide detailed instructions on using the MET to test transfers to
PLBv46 Endpoint Bridge memory.

X-Ref Target - Figure 89

Figure 89: Invoking the Memory Endpoint Test

X1000_89_041408

http://www.xilinx.com

Memory Endpoint Test

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 73

R

Figure 90 shows basic read and write operations using the MET. In the figure, the Display (d),
Location (l), and Set (s) instructions illustrate basic memory read and write transactions.

The command

d 40

causes the values of 40 current memory locations to be displayed. The values displayed
(00000000 FFFFFFFF 00000002 FFFFFFFD ...) are the same as the values displayed by
PCItree in Figure 23 because this test was run shortly after the PCItree tests.

The location command

l 0

moves the address to location 0x00000000. All addresses are offset addresses from the BAR
start address.

The set command

s 12345678

is a memory write to the current address. In the figure, after the write of 0x12345678, the
address pointer is move back to location 0x00000000 (l 0), and the contents of the memory is
re-displayed using d 40. The 0x12345678 value just written at location 0x00000000 is
displayed.

X-Ref Target - Figure 90

Figure 90: Running the Memory Endpoint Test

X1000_90_041408

http://www.xilinx.com

Using ChipScope with the PLBv46 Endpoint Bridge

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 74

R

Using
ChipScope with
the PLBv46
Endpoint
Bridge

ChipScope is used to debug hardware problems. Debugging is done at either the system or
PLBv46 Endpoint Bridge level. To analyze PLBv46 Endpoint Bridge internal signals, insert the
ChipScope cores into pcie_bridge_wrapper.ngc. To analyze signals involving multiple cores,
insert the ChipScope cores into system.ngc. The flow for using the two debugging methods
differs. Below, an outline of the steps for debugging at the system level is provided. This is
followed by a detailed list of steps for debugging at the core level.

Inserting ChipScope at the System Level

The following steps insert the ChipScope cores into the system.

1. In XPS, select Hardware → Generate Netlist.

2. From the EDK shell in the implementation directory, run

ngcbuild -i system.ngc system2.ngc

3. Copy chipscope/ml555_mb_plbv46_pcie.cdc file to the project area (usually either
one directory above chipscope or the implementation directory).

4. Invoke ChipScope Inserter. To specify the input in the Input Design Netlist window,
browse to the system2.ngc file created in step 2. Define the Clock, Trigger, and Data
signals in Inserter, and generate the ICON and ILA cores.

5. From ml555_mb_plbv46_pcie/implementation, copy the file displayed in the Inserter
Output Design Netlist window, usually implementation/system2.ngo, to
implementation/system.ngc.

6. In XPS, run Hardware → Generate Bitstream.

Inserting ChipScope in the PLBv46 Endpoint Bridge

The ml555_mb_plbv46_pcie/chipscope/plbv46_pcie.cdc file is used to insert a
ChipScope ILA core into the pcie_bridge_wrapper core. Do the following steps to insert a core
and analyze PLBv46 Endpoint Bridge signals with ChipScope.

1. Invoke XPS. Run Hardware → Generate Netlist.

2. Copy chipscope/plbv46_pcie.cdc file to the project area (usually either one directory
above chipscope or the implementation directory).

3. Run Start → Programs → ChipScope Pro → ChipScope Inserter

http://www.xilinx.com

Using ChipScope with the PLBv46 Endpoint Bridge

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 75

R

4. From ChipScope Inserter, run File Open → plbv46_pcie.cdc. Figure 91 shows the
ChipScope Inserter setup GUI after File Open → plbv46_pcie.cdc.

X-Ref Target - Figure 91

Figure 91: Opening plbv46_pcie.cdc

X1000_91_041408

http://www.xilinx.com

Using ChipScope with the PLBv46 Endpoint Bridge

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 76

R

5. The plbv46_pcie.cdc provides a good starting point for analyzing designs. In most analyses,
additional nets are needed. Figure 92 shows the GUI for making net connections. Click Next
four times to move to the Modify Connections window. Select Modify Connections. The Filter
Pattern is used to find net(s). As an example of using the Filter Pattern, enter *ack* in the
dialog box to locate acknowledge signals such as Sl_AddrAck. In the Net Selections area,
select either Clock, Trigger, or Data Signals. Select the net and click Make Connections.

Correct Clock, Trigger, and/or Data signals displayed in red.

6. Click Insert to insert the core into pcie_bridge_wrapper.ngo. In the
ml555_mb_plbv46_pcie/implementation directory, copy
pcie_bridge_wrapper.ngo to pcie_bridge_wrapper.ngc.

8. In XPS, run Hardware → Generate Bitstream and Device Configuration → Download
Bitstream. Do not rerun Hardware → Generate Netlist, as this overwrites the
implementation/pcie_bridge_wrapper.ngc produced by the step above. Verify that
the file size of the pcie_bridge_wrapper.ngc with the inserted core is significantly larger than
the original version.

9. Invoke ChipScope Pro Analyzer by selecting

Start → Programs → ChipScope Pro → ChipScope Pro Analyzer

Click on the Chain icon located at the top left of Analyzer’s GUI. Verify that the message in the
transcript window indicates that an ICON is found.

X-Ref Target - Figure 92

Figure 92: Inserter Data Signals

X1000_92_041408

http://www.xilinx.com

Using ChipScope with the PLBv46 Endpoint Bridge

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 77

R

10. The ChipScope Analyzer waveform viewer displays signals named DATA*. To replace the
DATA* signal names with the familiar signal names specified in ChipScope Inserter, select File
→ Import and browse to plbv46_pcie.cdc in the dialog box.

The Analyzer waveform viewer is more readable when buses rather than discrete signals are
displayed. Select the Sl_rdDBus<*> signals, click the right mouse button, and select Add to
Bus → New Bus. With Sl_rdDBus in the waveform viewer, select and delete the discrete
Sl_rdDBus<*> signals. The signals are displayed as buses in Figure 93.

Note: The Reverse Bus Order operation is useful for analyzing buses in Analyzer.

X-Ref Target - Figure 93

Figure 93: ChipScope Pro Analyzer Waveform

X1000_93_041408

http://www.xilinx.com

Using ChipScope with the PLBv46 Endpoint Bridge

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 78

R

11. Set the trigger in the Trigger Setup window as shown in Figure 94. The trigger used
depends on the problem being debugged. Simple triggers are PA_Valid, Sl_AddrAck,
Sl_wrComp.

X-Ref Target - Figure 94

Figure 94: ChipScope Analyzer Trigger Setup

X1000_94_041408

http://www.xilinx.com

Using ChipScope with the PLBv46 Endpoint Bridge

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 79

R

12. Arm the trigger by selecting Trigger Setup → Arm, or clicking on the Arm icon as shown
in Figure 95.

13. Run XMD or GDB to trigger patterns which cause ChipScope to display waveform output.
For example, set the trigger to Sl_wrComp, arm the trigger, and run

xmd -tcl xmd_commands/dma.tcl

at the command prompt. This produces signal activity in the Analyzer waveform viewer.

X-Ref Target - Figure 95

Figure 95: ChipScope Analyzer with Trigger Armed

X1000_95_041408

http://www.xilinx.com

Using ChipScope with the PLBv46 Endpoint Bridge

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 80

R

14. ChipScope results are analyzed in the waveform window, as shown in Figure 96. This figure
shows the bus signals generated in Step 10.

To share the results with remote colleagues, save the results in the waveform window as a
Value Change Dump (vcd) file. The vcd files can be translated and viewed in most simulators.
The vcd2wlf translator in ModelSim reads a vcd file and generates a waveform log file (wlf)
file for viewing in the ModelSim waveform viewer. The vcd file is opened in the Cadence Design
System, Inc. Simvision design tool by selecting

File → Open Database.

After running ChipScope, it is sometimes necessary to revise the Trigger or Data nets, or both,
used in a debug operation. Saving Inserter and Analyzer projects simplifies this procedure. The
saved project can be re-opened in Inserter, and edits can be made.

X-Ref Target - Figure 96

Figure 96: ChipScope Pro Analyzer Triggered

X1000_96_041408

http://www.xilinx.com

Using ChipScope with the PLBv46 Endpoint Bridge

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 81

R

Figure 97 is the waveform output of a ChipScope inserted into the reference system when
running the endpoint to root complex performance tests. The
chipscope/ml555_mb_plbv46_pcie_scs.vcd file can be used to view all of the signals more
clearly.

As show in Figure 97, memory, XPS Central DMA and PLBv46 Endpoint Bridge transactions
are monitored simultaneously. The trigger is
PCIe_bridge/comp_slave_bridge/sig_request_complete. The
ml555_mb_plbv46_pcie_scs.cdc is included in the chipscope directory.

X-Ref Target - Figure 97

Figure 97: System Debugging Using ChipScope Analyzer

Table 5: ChipScope Signals in Debugging Reference System

Component Signal

Trigger

PCIe_Bridge

Sl_wrDAck

Sl_addrAck

comp_slave_bridge/sig_request_complete

xps_central_dma_0

SLAVE_ATTACHMENT_I/dma_status_reg[0]

Sl_addrAck

MPLB_MWrBTerm

M_rdBurst

M_wrBurst

Data

X1000_97_041408

http://www.xilinx.com

Using ChipScope with the PLBv46 Endpoint Bridge

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 82

R

PCIe_Bridge

PLB_ABus[0:31]

sig_sb_txsof_n

comp_tlif/TxESM/TxEOFn

sig_sb_txeof_n

comp_slave_bridge/sig_ip2bus_wrgo_bar

sigIP2Bus_Cond_Wr_Go

sig_IP2Bus_Cond_Rd_Go

comp_slave_bridge/sig_cmd_rnw

comp_slave_bridge/sig_memory_request

comp_hard_pcie/mim_dll_bwen

comp_hard_pcie/mim_tx_bwen

comp_slave_bridge/sig_cmd_burst

comp_slave_bridge/sig_cmd_bar_num[0]

comp_slave_bridge/sig_cmd_complete

comp_hard_pcie/gt_tx_data_reg[0]

comp_hard_pcie/gt_rx_data_reg[0]

comp_hard_pcie/dst_req_n

comp_tlif/RxESM/PendingWrite

comp_tlif/RxISM/Load

comp_tlif/TxESM/LoadPipe

comp_tlif/TxESM/TxRdEn

comp_tlif/TxSOFn

comp_tlif/TxEOFn

comp_tlif/TxESM/TxSOPn

comp_tlif/TxESM/TxEOPn

comp_tlif/TxESM/TxSrcRdyN

comp_slave_bridge/sig_completion_request

comp_plbv46_slave/I_SLAVE_ATTACHMENT/bus2ip_rnw_i

comp_registers/sig_bus2ip_rnw

comp_slave_bridge/sig_IP2Bus_WrAck_bar

comp_registers/IP2Bus_WrAck

sig_IP2Bus_Cond_Wr

sig_IP2Bus_Cond_Wr_Go

sig_IP2Bus_Cond_Rd_Go

comp_slave_bridge/sig_ip2bus_wrgo_bar

comp_slave_bridge_ip2bus_rdgo_bar

comp_slave_bridge/sig_rxtlif_completed

comp_slave_bridge/sig_rxtlif_request

Table 5: ChipScope Signals in Debugging Reference System (Cont’d)

Component Signal

http://www.xilinx.com

Using ChipScope with the PLBv46 Endpoint Bridge

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 83

R

DDR2_SDRAM_32Mx32
SPLB0_PLB_ABus[31:0]

SPLB0_Sl_rdDAck

xps_central_dma_0

SLAVE_ATTACHMENT_I/dma_status_reg[0]

SLAVE_ATTACHMENT_I/dma_status_reg[1]

M_ABus[0:31]

Sl_rdDAck

SPLB_RNW

MPLB_MWrBTerm

MPLB_MWrDAck

M_wrBurst

Sl_addrAck

MPLB_MAddrAck

Table 5: ChipScope Signals in Debugging Reference System (Cont’d)

Component Signal

http://www.xilinx.com

Reference Design Matrix

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 84

R

Reference
Design Matrix

The reference design matrix is shown in Table 6.

Table 6: Reference Design Matrix

General

Developer Name Xilinx

Target devices (stepping level, ES, production, speed grades) Virtex-5 XC5VLX50T
(Production Silicon)

Source code provided No

Source code format Verilog/VHDL

Design uses code/IP from an existing reference design/application
note, 3rd party, or CORE Generator software No

Simulation

Functional simulation performed No

Timing simulation performed No

Testbench used for functional simulations provided No

Testbench format N/A

Simulator software used/version (i.e., ISE software, Mentor,
Cadence, other) N/A

SPICE/IBIS simulations No

Implementation

Synthesis software XST

EDK Software EDK10.1

Implementation software tools used/versions ISE10.1

Static timing analysis performed Yes

Hardware Verification

Hardware verified Yes

Hardware platform used for verification ML555

http://www.xilinx.com

References

XAPP1000 (v1.0.1) May 6, 2008 www.xilinx.com 85

R

References 1. UG197: Virtex-5 FPGA Integrated Endpoint Block for PCI Express Designs User Guide

2. UG201: Virtex-5 FPGA ML555 Development Kit for PCI and PCI Express Designs User
Guide (v1.4) March 10, 2008

3. XAPP1022: Using the Memory Endpoint Driver (MET) with the Programmed Input/Output
Example Design for PCI Express Endpoint Cores

4. LeCroy PCI Express Multi-Lane Exerciser User Manual Version 5.0

5. SpekChek User Manual Version 6.5

6. Catalyst - PCI Express Bus Protocol Analyzer/Exerciser User’s Guide

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This
Application Note is one possible implementation of this feature, application, or standard, and is
subject to change without further notice from Xilinx. You are responsible for obtaining any rights
you may require in connection with your use or implementation of this Application Note. XILINX
MAKES NO REPRESENTATIONS OR WARRANTIES, WHETHER EXPRESS OR IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, IMPLIED
WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF DATA,
LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

Date Version Revision

04/25/08 1.0 Initial release.

5/6/08 1.0.1 Made minor non-technical edits.

http://www.xilinx.com/support/documentation/user_guides/ug197.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/boards_and_kits/ug201.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1022.pdf

	Reference System: PLBv46 Endpoint Bridge for PCI Express in a ML555 PCI/PCI Express Development Platform
	Abstract
	Included System
	Introduction
	Hardware and Software Requirements
	Reference System Specifics
	Implementation Results
	ML555 Setup
	Interfacing to a Communication Terminal
	Installing CP210x USB-to-UART Bridge VCP Drivers
	CP210X Installation Directory Creation
	CP210x USB-to-UART First Driver Installation
	CP210x USB-to-UART Second Driver Installation
	Verification of USB-to-UART Driver Installation
	Opening a HyperTerminal Console

	Executing the Reference System
	Testing the PLBv46 Endpoint Bridge
	Endpoint to Root Complex Transactions
	DMA Transactions

	Catalyst Testing
	Using Catalyst to test PCIe Performance
	Root Complex to Endpoint Performance Tests
	Root Complex to Endpoint Read Operations
	Root Complex to Endpoint Write Transactions

	Endpoint to Root Complex Transactions
	LeCroy Testing
	Root Complex to Endpoint Transactions
	Endpoint to Root Complex Transactions
	Endpoint to Root Complex Write Transactions

	Testing with a PC
	Configuring the ML555 XC5VLX50T when used in a PC PCIe Slot

	PCItree Testing
	Memory Endpoint Test
	Using ChipScope with the PLBv46 Endpoint Bridge
	Inserting ChipScope at the System Level
	Inserting ChipScope in the PLBv46 Endpoint Bridge

	Reference Design Matrix
	References
	Revision History
	Notice of Disclaimer

