
LabVIEWTM

Simulation Module User Manual

LabVIEW Simulation Module User Manual

November 2005
371013C-01

Support

Worldwide Technical Support and Product Information
ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada 800 433 3488, China 86 21 6555 7838, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00,
Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, India 91 80 51190000,
Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400,
Lebanon 961 0 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 0 348 433 466,
New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 095 783 68 51, Singapore 1800 226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 02 2377 2222,
Thailand 662 278 6777, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter
the info code feedback.

© 2004–2005 National Instruments Corporation. All rights reserved.

http://www.ni.com/
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=feedback

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS
WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National
Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National
Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or
service failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s
modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties,
or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright
and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may
use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal
restriction.

Trademarks
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section
on ni.com/legal for more information about National Instruments trademarks.

MATLAB®, Stateflow®, and Simulink® are the registered trademarks of The MathWorks, Inc. Further, other product and company names
mentioned herein are trademarks, registered trademarks, or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no
agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

You are only permitted to use this product in accordance with the accompanying license agreement. All rights not expressly granted to you in
the license agreement accompanying the product are reserved to NI. Further, and without limiting the forgoing, no license or any right of any
kind (whether by express license, implied license, the doctrine of exhaustion or otherwise) is granted under any NI patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdtrad
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=rdlv17

BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v LabVIEW Simulation Module User Manual

Contents

About This Manual
Conventions ...ix
Related Documentation..x

Chapter 1
Introduction to Simulation

Dynamic System Models ...1-2
Physical Models...1-2

Lumped versus Distributed Parameter Models1-2
Linear versus Nonlinear Models ...1-3
Time-Variant versus Time-Invariant Models1-3
Continuous versus Discrete Models..1-3

Empirical Models ..1-4
Linear Model Forms ..1-4

Ordinary Differential Equation Solvers ...1-4
Rapid Control Prototyping and Hardware-in-the-Loop Configurations........................1-5

Chapter 2
Building Simulations

Using the Simulation Loop ..2-1
Displaying Additional Inputs ..2-2
Removing and Rearranging Inputs..2-2

Configuring Simulation Parameters...2-3
Configuring Simulation Parameters Interactively ...2-3
Configuring Simulation Parameters Programmatically...................................2-4

Using Simulation Functions...2-4
Defining Feedthrough Behavior and Feedback Cycles2-5
Changing Icon Styles...2-8
Configuring Simulation Functions ..2-8
Configuring Discrete Simulation Functions..2-10
Stopping a Simulation Programmatically..2-11
Placing LabVIEW VIs, Functions, and Structures on the

Simulation Diagram..2-11

Contents

LabVIEW Simulation Module User Manual vi ni.com

Defining Linear Models .. 2-12
Defining Linear Models Interactively... 2-12
Defining Linear Models Programmatically .. 2-14

Defining Linear Models Using a Constant 2-14
Defining Linear Models Using the LabVIEW Control

Design Toolkit ... 2-15
Transferring Linear Model Definitions between Functions............................ 2-15

Chapter 3
Creating Simulation Subsystems

Creating and Running Subsystems.. 3-1
Creating Stand-Alone Subsystems.. 3-1
Running Subsystems within a Simulation Diagram 3-3

Defining the Feedthrough Behavior of Subsystems.. 3-4
Linearizing a Subsystem.. 3-4

Linearizing a Subsystem Interactively.. 3-5
Linearizing a Subsystem Programmatically ... 3-5

Trimming a Subsystem.. 3-7

Chapter 4
Executing Real-Time Applications

Determinism .. 4-1
Case Study: Rapid Control Prototype and Hardware-in-the-Loop Configurations....... 4-2

Offline Simulation... 4-3
Rapid Control Prototype Configuration.. 4-3
Hardware-in-the-Loop Configuration ... 4-4

Executing Simulations on ETS Targets... 4-5
Executing Simulations on RTX Targets.. 4-5

Chapter 5
Solving Ordinary Differential Equations

Simulation Discontinuities .. 5-2
ODE Solver Order and Simulation Accuracy ... 5-2
Variable Step-Size ODE Solvers versus Fixed Step-Size ODE Solvers....................... 5-3
Single-Step ODE Solvers versus Multi-Step ODE Solvers .. 5-4
Stiff Problems.. 5-4
Simulation Module ODE Solvers.. 5-5

Contents

© National Instruments Corporation vii LabVIEW Simulation Module User Manual

Chapter 6
Optimizing Design Parameters

Constructing the Dynamic System Model ...6-3
Defining a Cost Function ...6-4
Defining Inequality Constraints...6-7
Defining Parameter Bounds...6-9
Defining Initial Parameter Values and a Mesh ..6-10
Executing the SQP Algorithm ...6-11
Case Study: Designing a PID Controller for a Second-Order System6-12

Chapter 7
Using the Simulation Translator

Converting Models into LabVIEW Code ..7-1
Common Warnings ..7-2

Appendix A
Technical Support and Professional Services

Glossary

© National Instruments Corporation ix LabVIEW Simulation Module User Manual

About This Manual

This manual contains information about the purpose of simulation and the
simulation process. This manual also describes how to use the LabVIEW
Simulation Module to simulate the behavior of a dynamic system.

Use this manual to learn how to use the Simulation Module in real-time
applications and how to use the Simulation Translator to convert model
(.mdl) files developed in The MathWorks, Inc. Simulink® simulation
environment into LabVIEW VIs. This manual also describes factors to
consider when you develop a model and factors to consider when you select
an ordinary differential equation (ODE) solver to use for a simulation.

This manual requires that you have a basic understanding of the LabVIEW
environment. If you are unfamiliar with LabVIEW, refer to the Getting
Started with LabVIEW manual before reading this manual.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names; dialog box names; and pages, sections, and components of dialog
boxes.

italic Italic text denotes variables, emphasis, or a cross reference. Italic text also
denotes text that is a placeholder for a word or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard. This font is also used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines, device names, functions,
operations, variables, filenames, and extensions.

About This Manual

LabVIEW Simulation Module User Manual x ni.com

Related Documentation
The following documents contain information that you might find helpful
as you read this manual.

• LabVIEW Help

• LabVIEW Control Design Toolkit User Manual

• LabVIEW System Identification Toolkit User Manual

• LabVIEW Real-Time Module Help

• LabVIEW Execution Trace Toolkit User Guide

• NI-CAN Hardware and Software Manual

• NI-DAQmx Help

The following books contain information that pertains to simulating
dynamic systems.

• Ascher, Uri M., and Linda R. Petzold. Computer Methods for
Ordinary Differential Equations and Differential-Algebraic
Equations. Philadelphia: Society for Industrial and Applied
Mathematics, 1998.

• Dorf, Richard C., and Robert H. Bishop. Modern Control Systems,
9th ed. Upper Saddle River, NJ: Prentice-Hall, Inc., 2001.

• Franklin, Gene F., J. David Powell, and Abbas Emami-Naeini.
Feedback Control of Dynamic Systems, 4th ed. Upper Saddle River,
NJ: Prentice Hall, 2002.

• Franklin, Gene F., J. David Powell, and Michael L. Workman. Digital
Control of Dynamic Systems, 3rd ed. Menlo Park, CA: Addison
Wesley Longman, Inc., 1998.

• Nise, Norman S. Control Systems Engineering, 3rd ed. New York:
John Wiley & Sons, Inc., 2000.

• Ogata, Katsuhiko. Modern Control Engineering, 4th ed. Upper Saddle
River, NJ: Prentice-Hall, Inc. 2001.

• Shampine, Lawrence F. Numerical Solution of Ordinary Differential
Equations. New York: Chapman & Hall, Inc., 1994.

© National Instruments Corporation 1-1 LabVIEW Simulation Module User Manual

Introduction to Simulation

Simulation is a process that involves using software to recreate and analyze
the behavior of dynamic systems. You use the simulation process to lower
product development costs by accelerating product development. You also
use the simulation process to provide insight into the behavior of dynamic
systems you cannot replicate conveniently in the laboratory. For example,
simulating a jet engine saves time, labor, and money compared to building,
testing, and rebuilding an actual jet engine. Figure 1-1 shows a sample
dynamic system.

Figure 1-1. Dynamic System

The dynamic system in Figure 1-1 represents a closed-loop system, also
known as a feedback system. In closed-loop systems, the controller
monitors the output of the plant and adjusts the actuators to achieve a
specified response. You can use the LabVIEW Simulation Module to
simulate a dynamic system or a component of a dynamic system. For
example, you can simulate only the plant while using hardware for the
controller, actuators, and sensors.

This chapter provides an overview of the simulation process and describes
how to use the Simulation Module to simulate a dynamic system.

Controller Actuators

Sensors

Physical System
(Plant)

Reference

Control System

Chapter 1 Introduction to Simulation

LabVIEW Simulation Module User Manual 1-2 ni.com

Dynamic System Models
The simulation process relies upon the concept of a dynamic system model.
A dynamic system model is a mathematical representation of the dynamics
between the inputs and outputs of a dynamic system. You generally
represent dynamic system models with differential equations or difference
equations. You can use the LabVIEW System Identification Toolkit to
obtain a model of a dynamic system.

Note This document is not intended to provide a comprehensive discussion of dynamic
system models. Refer to the following books for more information about modeling:
Modern Control Systems1, Feedback Control of Dynamic Systems2, Digital Control of
Dynamic Systems3, Control Systems Engineering4, and Modern Control Engineering5.

You can use physical laws or experimental data to develop a dynamic
system model. The following sections describe features of both the physical
modeling and the empirical modeling techniques.

Physical Models
The laws of physics define the physical model of a system. The following
sections describe various classifications and features of physical models.

Lumped versus Distributed Parameter Models
If you can use an ordinary differential equation to describe a physical
system, the resulting model is a lumped parameter model. If you can use a
partial differential equation to describe a system, the resulting model is
a distributed parameter model.

1 Dorf, Richard C., and Robert H. Bishop. Modern Control Systems, 9th ed. Upper Saddle River, NJ: Prentice-Hall, Inc., 2001.
2 Franklin, Gene F., J. David Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic Systems, 4th ed. Upper Saddle

River, NJ: Prentice Hall, 2002.
3 Franklin, Gene F., J. David Powell, and Michael L. Workman. Digital Control of Dynamic Systems, 3rd ed. Menlo Park, CA:

Addison Wesley Longman, Inc., 1998.
4 Nise, Norman S. Control Systems Engineering, 3rd ed. New York: John Wiley & Sons, Inc., 2000.
5 Ogata, Katsuhiko. Modern Control Engineering, 4th ed. Upper Saddle River, NJ: Prentice-Hall, Inc. 2001.

Chapter 1 Introduction to Simulation

© National Instruments Corporation 1-3 LabVIEW Simulation Module User Manual

Linear versus Nonlinear Models
Dynamic system models are either linear or nonlinear. A linear model
obeys the principle of superposition. The following equations are true for
linear models.

y1 = ƒ(x1)

y2 = ƒ(x2)

Y = ƒ(x1 + x2) = y1 + y2

Conversely, nonlinear models do not obey the principle of superposition.
Nonlinear effects in real-world systems include saturation, dead-zone,
friction, backlash, and quantization effects; relays; switches; and rate
limiters. Many real-world systems are nonlinear, though you can linearize
nonlinear models to simplify a design or analysis procedure. Refer to the
Linearizing a Subsystem section of Chapter 3, Creating Simulation
Subsystems, for information about linearizing a nonlinear model.

Time-Variant versus Time-Invariant Models
Dynamic system models are either time-variant or time-invariant. The
parameters of a time-variant model change with time. For example, you can
use a time-variant model to describe an automobile. As fuel burns, the mass
of the vehicle changes with time.

Conversely, the parameters of a time-invariant model do not change with
time. For an example of a time-invariant model, consider a simple robot.
Generally, the dynamic characteristics of robots do not change over short
periods of time.

Continuous versus Discrete Models
Dynamic system models are either continuous or discrete. Continuous
models represent real-world signals that vary continuously with time. You
use differential equations to describe continuous systems. For example, a
model that describes the orbital motion of a satellite is a continuous model.

Conversely, discrete models represent signals that you sample at separate
intervals in time. You use difference equations to describe discrete systems.
For example, a digital computer that controls the altitude of the satellite
uses a discrete model.

Chapter 1 Introduction to Simulation

LabVIEW Simulation Module User Manual 1-4 ni.com

Generally, continuous system models are analog, and discrete system
models are digital. Both continuous and discrete system models can be
linear or nonlinear and time-invariant or time-variant.

Empirical Models
Empirical models use data gathered from experiments to define the
mathematical model of a system. To some degree, physical models are
empirical because you experimentally determine certain constants used to
develop the model. A variety of empirical modeling methods exist. One
method of empirical modeling uses tables of experimental data that
represent the system you want to model. Another method for developing
models uses system identification methods. System identification methods
use measured data to create differential or difference equation
representations that model the data. You can use System Identification
Toolkit to create models using system identification methods.

Linear Model Forms
You can use the Simulation Module to represent continuous and discrete
linear models in the following three forms:

• Transfer Function—These models use polynomial functions to
define the relationship between the inputs and outputs of a dynamic
system. You analyze transfer function models in the frequency domain.

• Zero-Pole-Gain—These models are transfer function models that you
rewrite to show the gain and the locations of the zeroes and poles of the
dynamic system. You analyze zero-pole-gain models in the frequency
domain.

• State-Space—These models represent the dynamic system in terms of
physical states. Continuous state-space models use first-order
differential equations to describe the dynamic system, whereas
discrete state-space models use first-order difference equations.
You analyze state-space models in the time domain.

Ordinary Differential Equation Solvers
Because dynamic system models consist of differential equations, you must
solve these differential equations to observe the behavior of the simulated
system. The Simulation Module includes ordinary differential equation
(ODE) solvers that solve these equations.

Chapter 1 Introduction to Simulation

© National Instruments Corporation 1-5 LabVIEW Simulation Module User Manual

ODE solvers use methods to approximate the solution to a differential
equation. The ODE solvers implement these methods in a variety of ways,
each with various strengths and weaknesses. Defining characteristics of an
ODE solver include the following qualities:

• Accuracy or order

• Stability

• Computational speed

• Use of a fixed time step size versus a variable time step size

• Use of a single step versus multiple steps

Refer to Chapter 5, Solving Ordinary Differential Equations, for more
information about ODE solvers.

Rapid Control Prototyping and Hardware-in-the-Loop
Configurations

Rapid control prototyping (RCP) and hardware-in-the-loop (HIL)
configurations involve simulating different components of a dynamic
system. RCP configurations simulate the controller alongside a hardware
version of the plant. HIL configurations simulate the plant alongside a
hardware version of the controller. Both configurations involve running the
simulated component on real-time (RT) hardware.

These configurations are beneficial because you can adapt simulated
models as you proceed in the design process. For example, in an RCP
configuration, you can adjust the controller model as you see the effects of
the simulated controller in real time. In an HIL configuration, you can
adjust the plant model as the simulation progresses.

You can use the Simulation Module in conjunction with the LabVIEW
Control Design Toolkit, the LabVIEW Real-Time Module, and National
Instruments RT Series hardware to design and implement RCP and HIL
configurations. Refer to Chapter 4, Executing Real-Time Applications, for
more information about RCP and HIL configurations.

© National Instruments Corporation 2-1 LabVIEW Simulation Module User Manual

Building Simulations

You use the LabVIEW Simulation Module to build a simulation diagram,
which graphically displays a simulation model in LabVIEW. You build and
execute a simulation diagram using the Simulation Loop, Simulation
functions, and other LabVIEW VIs and structures.

The simulation diagram uses an ordinary differential equation (ODE)
solver to compute the behavior of a simulation model. Refer to Chapter 5,
Solving Ordinary Differential Equations, for information about the ODE
solvers that the Simulation Module includes.

The simulation diagram supports standard LabVIEW debugging
techniques. You can use execution highlighting, breakpoints, probes,
custom probes, and single-stepping on the simulation diagram.

This chapter provides information about using the Simulation Loop and
Simulation functions to design, build, and configure simulations in
LabVIEW.

Using the Simulation Loop
The Simulation Loop forms the boundary of the simulation diagram and
contains the parameters that define how the simulation diagram executes.
Figure 2-1 shows the Simulation Loop.

Figure 2-1. Simulation Loop

Chapter 2 Building Simulations

LabVIEW Simulation Module User Manual 2-2 ni.com

The Simulation Loop has two attached nodes. Use the Input Node of the
Simulation Loop to programmatically configure parameters of a
simulation. Refer to the Configuring Simulation Parameters
Programmatically section of this chapter for information about using the
Input Node to configure simulation parameters. Use the Output Node to
view any errors that occur during the Simulation Loop.

The following sections provide information about adding, removing, and
rearranging terminals on the Input Node.

Displaying Additional Inputs
You can use three methods to display additional inputs on the Input Node.
The first method you can use is resizing the Input Node. To resize a node,
first move the cursor over the Input Node to display resizing handles. Then,
move the cursor over a resizing handle. Click and drag the handle down to
add terminals to the node.

The second method you can use is adding individual inputs. To add the next
available input, right-click the Input Node and select Add Input from the
shortcut menu.

The third method you can use is displaying all the available inputs. To
display all the available inputs, right-click the Input Node and select Show
All Inputs from the shortcut menu.

Removing and Rearranging Inputs
You can use two methods to remove unwired inputs from the Input Node.
The first method you can use is resizing the node. Click and drag the resize
handle at the bottom of the node up to remove unwired inputs from the
node.

The second method you can use is removing individual unwired inputs. To
remove the last unwired input on the Input Node, right-click the node and
select Remove Input from the shortcut menu.

You also can rearrange the order of unwired inputs on the Input Node.
Right-click an input and select Select Input from the shortcut menu to view
a list of inputs. The top half of this list contains the inputs currently
displayed on the Input Node. The input on which you right-clicked has a
checkmark by it. Select an input from the top half of the list to switch the
positions of the inputs. The bottom half of this list contains the inputs not
currently displayed on the Input Node. Select an input from the bottom half
of the list to replace the selected input with the input you select.

Chapter 2 Building Simulations

© National Instruments Corporation 2-3 LabVIEW Simulation Module User Manual

Configuring Simulation Parameters
The simulation parameters define the behavior of the simulation diagram.
You can configure simulation parameters using the following two methods:
interactively by using the Configure Simulation Parameters dialog box
and programmatically by wiring values to the Input Node of the Simulation
Loop. You also can use a combination of these two methods in the same
simulation diagram. However, values that you programmatically configure
override any equivalent settings that you make in the
Configure Simulation Parameters dialog box.

Configuring Simulation Parameters Interactively
Configure simulation parameters interactively using the Configure
Simulation Parameters dialog box. You can launch this dialog box by
double-clicking the Input Node. You also can right-click the border of the
Simulation Loop and select Configure Simulation Parameters from the
shortcut menu to launch this dialog box. When running the simulation as a
stand-alone subsystem, you can select Operate»Configure Simulation
Parameters from the pull-down menu to launch this dialog box.

The Configure Simulation Parameters dialog box has two pages that
display different categories of parameters. You configure general
simulation parameters on the Simulation Parameters page. You configure
timing parameters on the Timing Parameters page. Refer to the LabVIEW
Help, available by selecting Help»Search the LabVIEW Help, for
information about the Configure Simulation Parameters dialog box.

Chapter 2 Building Simulations

LabVIEW Simulation Module User Manual 2-4 ni.com

Configuring Simulation Parameters Programmatically
Configure simulation parameters programmatically by wiring controls to
the Input Node of the Simulation Loop. You also can wire the results of
other VIs to the Input Node. Figure 2-2 shows how you configure a
simulation diagram programmatically.

Figure 2-2. Configuring Simulation Parameters Programmatically

Figure 2-2 shows how the gray boxes on the Input Node display any values
that you configure in the Configure Simulation Parameters dialog box.
Values that you configure programmatically do not have gray boxes.

Using Simulation Functions
The Simulation functions are the elements that comprise a simulation
model. You must place all Simulation functions inside a Simulation Loop
or inside a simulation subsystem. Refer to Chapter 3, Creating Simulation
Subsystems, for information about placing functions in a simulation
subsystem.

The following Simulation functions are dynamic elements that depend on
the ODE solver.

• Integrator

• Transfer Function

• Zero-Pole-Gain

• State-Space

Chapter 2 Building Simulations

© National Instruments Corporation 2-5 LabVIEW Simulation Module User Manual

Refer to Chapter 5, Solving Ordinary Differential Equations, for
information about ODE solvers.

The following sections provide information about using Simulation
functions. The following sections also describe feedback cycles, icon
styles, and using LabVIEW VIs on the simulation diagram.

Defining Feedthrough Behavior and Feedback Cycles
The relationship between the inputs and outputs of a function defines the
feedthrough behavior of that function. An input has direct feedthrough to
an output if the function uses the input at the current step to compute the
output at the current step. An input has indirect feedthrough to an output if
the function does not use the input at the current step to compute the output
at the current step. The indirect feedthrough function uses the input from
the previous step or steps to compute the output at the current step.

This implementation of feedthrough behavior modifies the dataflow
programming model LabVIEW uses. Whereas LabVIEW VIs execute after
receiving values of all inputs, Simulation functions execute after receiving
values of all inputs with direct feedthrough to the output. Simulation
functions can execute without receiving values of inputs that have indirect
feedthrough to the output.

Therefore, on a simulation diagram, you can create a feedback cycle in
which data flow originates from an output of a function or subsystem that
has indirect feedthrough behavior and terminates as an input of the same
function or subsystem. In a feedback cycle, the output of the indirect
feedthrough function or subsystem at time t is a function of the input to the
same function or subsystem at time t – dt, t – dt2, and so on.

You can use one or more Simulation functions and other LabVIEW
functions in a feedback cycle as long as at least one Simulation function
in the feedback cycle has indirect feedthrough behavior. The indirect
feedthrough function can start the data flow by executing the function
output at the current step before receiving an input from the cycle at the
current step. Therefore, the input at the current step and the output at the
current step must not depend on each other directly in at least one function
in the cycle.

Various Simulation functions, such as the Integrator function, have indirect
feedthrough behavior and therefore utilize feedback cycles. LabVIEW
automatically determines the type of feedthrough behavior that exists
between inputs and outputs. If you attempt to wire an output to an input that

Chapter 2 Building Simulations

LabVIEW Simulation Module User Manual 2-6 ni.com

has direct feedthrough to that output, the wire breaks. Figure 2-3 shows this
behavior.

Figure 2-3. Feedback Cycles

In the first Integrator function, shown in Figure 2-3, output is wired to
input. Because input does not have direct feedthrough to output, you can
create a feedback cycle between output and input. In the second Integrator
function, output is wired to the initial condition input. Because initial
condition has direct feedthrough to output, you cannot create a feedback
cycle between output and initial condition.

Note The wires on the simulation diagram use arrows to indicate the direction of data
flow. These arrows help you identify feedback cycles on the simulation diagram by
showing data flow direction.

Feedthrough behavior differs from function to function. The following
Simulation functions have indirect feedthrough behavior:

• Integrator

• Transport Delay

• Discrete Unit Delay

• Memory

Chapter 2 Building Simulations

© National Instruments Corporation 2-7 LabVIEW Simulation Module User Manual

For other Simulation functions, the parameter values you specify determine
the feedthrough behavior. The following Simulation functions have
parameter-dependent feedthrough behavior:

• Transfer Function

• Zero-Pole-Gain

• State-Space

• Discrete Filter

• Discrete Integrator

• Discrete Transfer Function

• Discrete Zero-Pole-Gain

• Discrete State-Space

All other Simulation functions have direct feedthrough behavior. Refer to
the LabVIEW Help for information about the direct or indirect feedthrough
behavior of individual Simulation functions.

In addition to the feedback behavior of a single function, you can reverse
Simulation functions to better display the data flow of an entire feedback
system, as shown in Figure 2-4.

Figure 2-4. Reversing the Direction of the Gain Function

To reverse a Simulation function, right-click the icon and select
Reverse Terminals from the shortcut menu.

Chapter 2 Building Simulations

LabVIEW Simulation Module User Manual 2-8 ni.com

Changing Icon Styles
You can change the icon style of a Simulation function on the simulation
diagram. Right-click on a Simulation function and select Icon Style from
the shortcut menu to display the following options:

• Static—Displays the Simulation function as a standard VI.

• Dynamic—Displays the Simulation function as an object that you can
resize. Dynamic icons also display a preview of their contents. For
example, a Sine Signal function with a dynamic icon displays a sine
wave with the frequency, amplitude, and phase that you configure.

• Text Only—Displays the Simulation function as a list of parameter
values.

• Express—Displays the Simulation function with a list of parameters
below the icon. You can resize the parameter list to display more inputs
and outputs. This icon style also shows parameter values directly on
the simulation diagram.

Configuring Simulation Functions
You can configure Simulation functions using the configuration dialog box
of that function. Double-click a Simulation function to launch the
configuration dialog box of that function. You also can launch this dialog
box by right-clicking the Simulation function and selecting Configuration
from the shortcut menu. For example, Figure 2-5 shows the configuration
dialog box for the Sine Signal function.

Chapter 2 Building Simulations

© National Instruments Corporation 2-9 LabVIEW Simulation Module User Manual

Figure 2-5. Configuration Dialog Box of the Sine Signal Function

The Parameters section lists all the parameters that you can configure for
the Sine Signal function. When you select a parameter from the
Parameters section, the Parameter Information section displays a
control you can use to set the value of that parameter.

Use the Parameter source control to specify the source of the parameter
value. If you select Terminal, LabVIEW displays an input terminal for that
parameter on the simulation diagram, and you can wire values to this input
to configure the Simulation function. If you select Configuration Dialog
Box, LabVIEW removes that input from the simulation diagram. You then
must set the value for this parameter in the configuration dialog box.

The parameters you specify for a Simulation function are unique to that
function. If you create multiple instances of the same function, you can set
different parameter values for each instance.

Chapter 2 Building Simulations

LabVIEW Simulation Module User Manual 2-10 ni.com

Configuring Discrete Simulation Functions
All discrete Simulation functions have a sample period (sec) parameter
and a sample skew (sec) parameter. These parameters are located in the
configuration dialog box of that function. The sample period (sec)
parameter sets the length of the time step of that function. The
sample skew (sec) parameter delays the execution of that time step.
Figure 2-6 shows how these two parameters affect the execution of a
discrete Simulation function.

Figure 2-6. How Period and Skew Affect a Discrete Simulation Function

The sample period (sec) of a discrete function must be a multiple of the
discrete time step of the simulation. To configure the discrete time step,
double-click the Simulation Loop to launch the Configure Simulation
Parameters dialog box. On the Simulation Parameters page, you can
enter the Discrete Time Step or place a checkmark in the Auto Discrete
Time checkbox.

Placing a checkmark in the Auto Discrete Time checkbox specifies that
you want the Simulation Module to calculate the discrete time step of the
simulation based on the sample period (sec) parameter and sample
skew (sec) parameter of each discrete Simulation function on the
simulation diagram. The step size of a fixed step-size ODE solver also
affects the discrete time step of the simulation. The step sizes of variable
step-size ODE solvers do not affect this discrete time step.

0 42 61 53 7 8 109

Execution

Time (s)

sample period (sec) = 5
sample skew (sec) = 0

0 42 61 53 7 8 109

Execution

Time (s)

sample period (sec) = 5
sample skew (sec) = 3

Chapter 2 Building Simulations

© National Instruments Corporation 2-11 LabVIEW Simulation Module User Manual

The Simulation Module calculates the floating-point greatest common
divisor (GCD) of two numbers, x1 and x2, by finding the largest value of z
such that the following equation is true:

In this equation, n is the total number of discrete Simulation functions on
the simulation diagram. x1 is the sample period (sec) parameter and the
sample skew (sec) parameter of a single discrete function on the simulation
diagram. x2 represents these parameters for a second discrete function on
the simulation diagram. z is the discrete time step of the simulation, and ε is
a small number. The Simulation Module uses an extension of this equation
to calculate the floating-point GCD of a set of discrete functions on the
simulation diagram with sample periods x1, x2 ... xn, where xn > 0.

Stopping a Simulation Programmatically
Use the Halt Simulation function to stop a simulation programmatically.
Place the Halt Simulation function on the simulation diagram and wire a
Boolean control to the Halt? input. If the Halt? Boolean control is TRUE,
the function stops the simulation after the current time step. You also can
place a Halt Simulation function in a simulation subsystem to stop the
execution of the parent simulation diagram. The Halt Simulation function
operates like the conditional terminal on a While Loop. However, you can
place more than one Halt Simulation function on the simulation diagram.
With multiple Halt Simulation functions, you can stop the simulation from
various points in a simulation diagram or subsystem.

Placing LabVIEW VIs, Functions, and Structures on the
Simulation Diagram

You can use a majority of LabVIEW VIs and functions to describe a model.
However, you cannot place certain structures, such as the Case structure,
While Loop, For Loop, Event structure, or the Sequence structures, directly
on the simulation diagram. Instead, you can place these structures in a
subVI and then place that subVI on a simulation diagram.

By default, the Simulation Module executes VIs as continuous functions.
You can change this behavior by using the SubVI Node Setup dialog box.
To launch this dialog box, right-click on a VI and select SubVI Node Setup
from the shortcut menu. You can configure a VI to execute at only major
time steps of the ODE solver, at both major and minor time steps of the
ODE solver, as a discrete function, or at initialization of the simulation

xi
z
---- round

xi
z

 – ε i,≤ 1 2…n,=

Chapter 2 Building Simulations

LabVIEW Simulation Module User Manual 2-12 ni.com

diagram. Refer to the SubVI Node Setup Dialog Box topic of the
LabVIEW Help for more information about configuring the behavior
of VIs on the simulation diagram. Refer to Chapter 5, Solving Ordinary
Differential Equations, for information about ODE solvers.

Defining Linear Models
You use the Continuous Linear Systems functions and the Discrete Linear
Systems functions to define continuous and discrete linear system models.
The Simulation Module supports transfer function, zero-pole-gain, and
state-space model forms. Refer to the Linear Model Forms section of
Chapter 1, Introduction to Simulation, for information about these forms.
The following sections provide information about defining models
interactively and programmatically.

Defining Linear Models Interactively
Use the configuration dialog box of these Simulation functions to define a
model interactively. The first step in defining the model is specifying
whether the model is single-input single-output (SISO) or multiple-input
multiple-output (MIMO). Select the appropriate option from the
Polymorphic instance pull-down list. Then, select the Transfer Function
parameter from the Parameters listbox. The Parameter Information
section shows the configuration options for the model.

You define the size of MIMO models using the Inputs and Outputs text
boxes in the Model Dimensions section. If the model is state-space, you
also define the number of states using the States text box. The Model
Dimensions section is dimmed if you configure a SISO model because
SISO models have only one input and one output. Figure 2-7 shows a
sample configuration dialog box for a MIMO transfer function model.

Chapter 2 Building Simulations

© National Instruments Corporation 2-13 LabVIEW Simulation Module User Manual

Figure 2-7. Configuring a MIMO Transfer Function Model

The example in Figure 2-7 shows a model with two inputs and two outputs.
The Inputs and Outputs text boxes define these dimensions. The
Numerator and Denominator vectors define the coefficients of the
equation at the current input-output location. The Current Input and
Current Output text boxes define the current input-output location. The
Input-Output Model matrix also shows this location graphically with a
black square.

To specify another input-output location, click an element in the
Input-Output Model matrix or adjust the values of the Current Input and
Current Output text boxes. For example, to define the bottom-left
equation of the MIMO model in Figure 2-7, decrement the value of the
Current Input text box by one. You also can click the bottom-left element
of the Input-Output Model matrix. The Numerator and Denominator
vectors then define the coefficients of the bottom-left equation.

Chapter 2 Building Simulations

LabVIEW Simulation Module User Manual 2-14 ni.com

Defining Linear Models Programmatically
You can define models programmatically using the following methods:

• Wire a constant to the input of the function.

• Wire a model you constructed with the LabVIEW Control Design
Toolkit to the input of the function.

The following sections provide information about these methods.

Defining Linear Models Using a Constant
Complete the following steps to create a constant that represents the model.

1. Define the model using the steps described in the Defining Linear
Models Interactively section of this chapter.

2. Click the Copy button on the toolbar of the configuration dialog box.

3. Select Terminal from the Parameter source pull-down list.

4. Click the OK button to close the configuration dialog box and return
to the block diagram.

5. Select Edit»Paste from the pull-down menu to paste a constant on the
block diagram. This constant contains the terms you defined in step 1.

6. Wire the output of the constant to the appropriate input of the
Simulation function.

Figure 2-8 shows a constant that defines a transfer function model.

Figure 2-8. Wiring a Constant to Define a Transfer Function

Chapter 2 Building Simulations

© National Instruments Corporation 2-15 LabVIEW Simulation Module User Manual

Defining Linear Models Using the LabVIEW Control
Design Toolkit
If you already have created a controller model using the Control Design
Toolkit, you can place that model on the block diagram and wire the output
of the model to the input of a Simulation function. The Parameter source
pull-down list on the configuration dialog box of the Simulation function
must be set to Terminal. Figure 2-9 shows a transfer function controller
model wired to a Simulation function.

Figure 2-9. Wiring a Controller Model to Define a Transfer Function

You can use the Model Conversion VIs in the Control Design Toolkit to
convert model forms and representations on the simulation diagram. For
example, you can wire a continuous controller model to the input of the
CD Convert Continuous to Discrete VI. Then, wire the output of this VI to
the input of a discrete Simulation function.

Transferring Linear Model Definitions between Functions
If you define a model interactively as described in the Defining Linear
Models Interactively section of this chapter, you can transfer that model
definition to another Simulation function using the following two methods:

• Use the Copy and Paste buttons on the toolbar of the configuration
dialog box. After defining a model, click the Copy button to copy that
definition to the clipboard. Then, place another Simulation function on
the simulation diagram, launch the configuration dialog box for that
function, and click the Paste button.

• Use the Save and Load buttons on the toolbar of the configuration
dialog box. After defining a model, click the Save button to save that
definition to a data file. This data file is compatible with the LabVIEW

Chapter 2 Building Simulations

LabVIEW Simulation Module User Manual 2-16 ni.com

Control Design Assistant. Then, place another Simulation function on
the simulation diagram, launch the configuration dialog box for that
function, and click the Load button to specify the data file you saved.
Use this method to transfer a model definition to another computer.

The following rules apply when transferring model definitions between
functions.

• If you transfer a SISO model definition to a MIMO Simulation
function or vice versa, the Simulation Module populates only the first
input-output pair of the target Simulation function.

• You cannot transfer model definitions to another model form. For
example, if you save a transfer function model definition to a data file,
you cannot load that data file into a State-Space function.

© National Instruments Corporation 3-1 LabVIEW Simulation Module User Manual

Creating Simulation
Subsystems

Simulation diagrams can require a large amount of space on the block
diagram. To reduce the amount of space required to create a simulation
diagram, you can convert a section of that simulation diagram into a
simulation subsystem. You also can create a new VI to use as a simulation
subsystem later.

Simulation subsystems are similar to LabVIEW subVIs because you can
create subsystems to reuse portions of code and simplify common tasks.
Refer to the Creating SubVIs topic of the LabVIEW Help, available by
selecting Help»Search the LabVIEW Help, for information about
subVIs.

This chapter provides information about creating, configuring, and running
simulation subsystems. This chapter also describes how to linearize and
trim a simulation subsystem.

Creating and Running Subsystems
You can run a simulation subsystem as a stand-alone VI. You also can
place a simulation subsystem within the simulation diagram of another VI.
The LabVIEW Simulation Module provides a method of creating a
subsystem for each of these situations. Although you might create a
subsystem for one situation, you can configure that subsystem to run in the
other situation. For example, if you create a subsystem to run as a
stand-alone VI, you later can place that subsystem within the simulation
diagram of another VI.

The following sections provide information about these methods.

Creating Stand-Alone Subsystems
Complete the following steps to create a simulation subsystem that runs as
a stand-alone VI.

1. Launch LabVIEW.

Chapter 3 Creating Simulation Subsystems

LabVIEW Simulation Module User Manual 3-2 ni.com

2. Select File»New from the pull-down menu.

3. Select Other Files»Simulation Subsystem from the Create New
tree.

4. Click the OK button. LabVIEW creates a new VI with a yellow block
diagram that represents a simulation diagram.

5. Create the simulation diagram code and configure simulation
parameters. Because this new subsystem has no Simulation Loop, you
configure simulation parameters, such as the ordinary differential
equation (ODE) solver, by selecting Operate»Configure
Simulation Parameters from the pull-down menu.

You also can configure properties that affect how a stand-alone
subsystem appears and runs. To configure these properties for a
stand-alone subsystem, select File»VI Properties from the pull-down
menu to launch the VI Properties dialog box. Refer to the
LabVIEW Help for more information about the VI properties you can
configure using the VI Properties dialog box.

6. Save the simulation subsystem. You can run this subsystem by running
the VI.

Although this subsystem now is configured to run as a stand-alone VI, you
can place this subsystem within the simulation diagram of another VI. If
you also want to wire controls and indicators to subsystem inputs and
outputs, you must build a connector pane for the subsystem manually. The
connector pane defines the relationships between block diagram terminals
and subsystem inputs and outputs. After you define a connector pane for a
subsystem, the Simulation Module creates a configuration dialog box for
that subsystem.

Refer to the Placing SubVIs on Block Diagrams topic of the LabVIEW Help
for information about placing subsystems within other VIs. Refer to the
Creating SubVIs topic of the LabVIEW Help for information about setting
up a connector pane. Refer to the Configuring Simulation Functions section
of Chapter 2, Building Simulations, for information about using the
configuration dialog box.

As you create the connector pane, consider the parameter requirements and
the initial value of each parameter. The default source for a subsystem
parameter depends on whether you specify that parameter as required,
recommended, or optional. The initial value for the parameter is the default
value of the parameter control.

Chapter 3 Creating Simulation Subsystems

© National Instruments Corporation 3-3 LabVIEW Simulation Module User Manual

The following list describes the availability and default sources of
parameters.

• If the connection is required, the parameter is available only as a
terminal on the simulation diagram. The parameter is not visible in the
configuration dialog box.

• If the connection is recommended, the default source of the parameter
is the terminal. You also have the option to configure the parameter
using the configuration dialog box.

• If the connection is optional, the default source of the parameter is the
configuration dialog box. You also have the option to configure the
parameter using a terminal on the node.

Running Subsystems within a Simulation Diagram
Complete the following steps to create a simulation subsystem that runs
within another simulation diagram.

1. Launch LabVIEW and create a new blank VI.

2. Place a Simulation Loop on the block diagram.

3. Create the simulation diagram code and configure simulation
parameters using the Configure Simulation Parameters dialog box.
Refer to the Configuring Simulation Parameters section of Chapter 2,
Building Simulations, for information about using this dialog box to
configure simulation parameters.

4. Select a section of simulation diagram code and select Edit»
Create Simulation Subsystem from the pull-down menu. LabVIEW
replaces the code you selected with a single node that represents the
simulation subsystem. The node icon shows the block diagram of the
simulation subsystem.

5. Run the subsystem by running the VI that contains the subsystem.

Note When you create a subsystem using this method, the Simulation Module
automatically creates a connector pane and configuration dialog box for the simulation
subsystem. To launch this configuration dialog box, double-click the subsystem icon. To
edit the front panel or block diagram of the subsystem, right-click the subsystem icon and
select Open Subsystem from the shortcut menu.

Subsystems within a simulation diagram inherit the simulation parameters,
such as the ODE solver to use, of that simulation diagram. These
subsystems also inherit properties, such as those you set using the
VI Properties dialog box, from the parent VI. If you want to run that

Chapter 3 Creating Simulation Subsystems

LabVIEW Simulation Module User Manual 3-4 ni.com

subsystem as a stand-alone VI, you must open the subsystem and select
Operate»Configure Simulation Parameters or File»VI Properties from
the pull-down menu.

When you are debugging a subsystem that is within another simulation
diagram, you cannot use execution highlighting, breakpoints, probes, or
single-stepping. You also cannot step into a subsystem. You can set a
breakpoint on the entire subsystem by right-clicking the subsystem and
selecting Set Breakpoint from the shortcut menu. You also can use a probe
or a custom probe to monitor the subsystem output.

Note You cannot create a polymorphic simulation subsystem.

Defining the Feedthrough Behavior of Subsystems
LabVIEW flattens the hierarchy of a simulation subsystem when you run
that subsystem. This flattened hierarchy means Simulation functions inside
a simulation subsystem can execute when that function receives all the
inputs that function uses, even if the subsystem did not receive all the inputs
the subsystem uses. A simulation subsystem saves a feedthrough mapping
from all inputs to all outputs. If a subsystem input does not depend on the
subsystem output at the current time step, you can use the subsystem as an
indirect feedthrough function in a feedback cycle. Refer to the Defining
Feedthrough Behavior and Feedback Cycles section of Chapter 2, Building
Simulations, for more information about feedback cycles.

Linearizing a Subsystem
Linearizing a continuous nonlinear subsystem involves approximating the
behavior of the subsystem around an operating point. The operating point
is the set of the inputs and states of the subsystem. When you linearize a
subsystem, the result is a linear time-invariant (LTI) state-space model.
You can design a controller for LTI models using the LabVIEW Control
Design Toolkit. Refer to the Linear versus Nonlinear Models section of
Chapter 1, Introduction to Simulation, for information about linear and
nonlinear models.

Before you linearize a subsystem, you must choose the subsystem inputs
and outputs to include in the LTI model. If an input or output is constant,
you can exclude that input or output from the LTI model. You cannot
exclude a subsystem state from the LTI model.

Chapter 3 Creating Simulation Subsystems

© National Instruments Corporation 3-5 LabVIEW Simulation Module User Manual

You also can change the value of subsystem inputs and states. You cannot
change the value of subsystem outputs, because outputs are functions of the
inputs and states of the subsystem. However, you can trim a subsystem to
specify certain output conditions. Refer to the Trimming a Subsystem
section of this chapter for information about trimming a subsystem.

You can linearize a subsystem interactively by using the Linearize
Subsystem dialog box or programmatically by using the SIM Linearize VI.
The following sections provide information about using these two methods
to linearize a subsystem.

Linearizing a Subsystem Interactively
You can linearize a subsystem using the Linearize Subsystem dialog box.
You use this dialog box to select the inputs and outputs of a subsystem that
you want to include in the LTI model. To launch this dialog box, select
Tools»Control Design and Simulation»Linearize Subsystem from the
pull-down menu. Refer to the LabVIEW Help for more information about
using the Linearize Subsystem dialog box.

Linearizing a Subsystem Programmatically
You can linearize a subsystem using the SIM Linearize VI. By default, this
VI includes all subsystem states, inputs, and outputs in the LTI model. You
can exclude inputs and outputs from the LTI model using the SIM Query
Subsystem VI and the SIM Set Parameter Value VI. You also use these VIs
to change the value of an input or state.

First, wire a path or reference to a subsystem to the Path input of the
SIM Query Subsystem VI. This VI returns the States, Inputs, and Outputs
of the subsystem. Second, wire the States, Inputs, or Outputs parameter
to the Parameters In input of the SIM Set Parameter Value VI. You must
use one SIM Set Parameter Value VI for each parameter on which you want
to operate. Use the this VI to change the LTI model in the following ways:

• Exclude an input or output from the LTI model—Set the
Parameter Type of that input or output to Static. Because you cannot
exclude a state from the LTI model, changing the Parameter Type of
a state to Static does not change the LTI model.

• Include an input or output in the LTI model—Set the Parameter
Type of that input or output to Variable.

Chapter 3 Creating Simulation Subsystems

LabVIEW Simulation Module User Manual 3-6 ni.com

• Change the value of an input or state that is included in the LTI
model—Change the Value of that input or state. Because subsystem
inputs and states influence the output, directly changing the Value of
an output does not change the LTI model.

Note The default Parameter Type of each state, input, and output is Variable.

Finally, wire the modified States, Inputs, or Outputs parameter to the
appropriate input of the SIM Linearize VI. You also must wire a path or
reference to the subsystem to this VI. The resulting State-Space Model
includes all the subsystem states and any inputs and outputs you set to
Variable. The State-Space Model does not include any inputs and outputs
you set to Static.

For example, consider a subsystem that is a nonlinear model of a car,
car.vi. If you want to approximate the behavior of this model when the
engine speed of the car is 50 miles per hour, linearize the model using a
value of 50 mph for the engine speed parameter. Also consider any
parameters you want exclude from the LTI model. For example, you
generally do not need to account for gravitational acceleration in an LTI
model because gravitational acceleration is a constant. Figure 3-1 shows a
LabVIEW block diagram that linearizes a car model using these
specifications.

Figure 3-1. Linearizing a Nonlinear Subsystem

The example in Figure 3-1 executes the following steps:

1. Obtains the value of the Inputs parameter of the car model using the
SIM Query Subsystem VI. The Inputs parameter contains subsystem
inputs such as engine speed and gravitational
acceleration.

2. Wires the Inputs parameter to the Parameters In input of the SIM Set
Parameter Value VI. This VI sets the Value of engine speed to 50
and sets the Parameter Type to Variable.

Chapter 3 Creating Simulation Subsystems

© National Instruments Corporation 3-7 LabVIEW Simulation Module User Manual

3. Wires the modified Inputs parameter to the Parameters In input of
another SIM Set Parameter Value VI. This VI sets the Parameter
Type of gravitational acceleration to Static. Because this
example does not specify a Value for gravitational
acceleration, the SIM Set Parameter Value VI does not change the
value of gravitational acceleration. Therefore, the LTI model
uses the default value of gravitational acceleration that the
SIM Query Subsystem VI returned.

4. Wires the modified Inputs parameter to the Inputs input of the SIM
Linearize VI. This VI returns an LTI model, State-Space Model, that
approximates the behavior of the car model when the engine speed is
50 mph.

Note You can specify the subsystem to linearize using a Path or Reference to the
subsystem. Using a path to a subsystem causes the subsystem to load into memory every
time a VI accesses the subsystem. Using a reference to a subsystem ensures that the
subsystem loads into memory only once.

To obtain the parameter names or parameter values for a subsystem, use the
SIM Get Parameter Names VI or the SIM Get Parameter Value VI,
respectively. Refer to the LabVIEW Help for more information about the
Trim & Linearize VIs.

Trimming a Subsystem
Use the SIM Trim VI to trim a continuous simulation subsystem. Trimming
a subsystem involves searching for values of subsystem inputs and states
that satisfy any conditions you specify. By default, this VI trims a
subsystem to a steady state in which all state derivatives are zero. By
default, this VI does not specify any conditions and includes all inputs and
states in the search. You can use the SIM Query Subsystem VI and the SIM
Set Parameter Value VI to change the behavior of SIM Trim VI in the
following ways:

• Trim a subsystem to a transient state—Specify a non-zero Value for
one or more state derivatives. You also must set the Parameter Type
of these state derivatives to Fixed.

• Specify one or more state, input, and/or output
conditions—Specify a Value for one or more states, inputs, and/or
outputs. You also must set the Parameter Type of these states, inputs,
and/or outputs to Fixed.

Chapter 3 Creating Simulation Subsystems

LabVIEW Simulation Module User Manual 3-8 ni.com

• Change the initial search location—Specify a Value for one or more
states, inputs, and/or outputs. The values of these parameters form the
location at which the SIM Trim VI begins the search. You also must set
the Parameter Type of these states, inputs, and/or outputs to
Variable.

• Exclude a state and/or input from the search—Specify a Value for
each input and/or state that you want to exclude. You also must set the
Parameter Type of these states and/or inputs to Static.

Refer to the Linearizing a Subsystem Programmatically section of this
chapter for information about using the SIM Query Subsystem VI and the
SIM Set Parameter Value VI to change the Value and/or Parameter Type
of subsystem states, inputs, outputs, and state derivatives. Refer to the SIM
Set Parameter Value topic of the LabVIEW Help for information about the
difference between parameter types.

For example, consider a car model car.vi that contains car position
as a state. The car model has a cruise-control system that must set the
position of the accelerator to maintain forward movement at a specified
velocity. You can specify the velocity of the car using the derivative of car
position. Figure 3-2 shows a LabVIEW block diagram that trims the car
model using a specified velocity of 60 miles per hour.

Figure 3-2. Trimming a Subsystem

The example in Figure 3-2 executes the following steps:

1. Obtains the value of the State Derivatives parameter of the car model
using the SIM Query Subsystem VI. The State Derivatives parameter
contains car position, which is equivalent to the velocity of the car.

2. Wires the State Derivatives parameter to the Parameters In input of
the SIM Set Parameter Value VI. This VI sets the Value of car
position to 60. The Parameter Type of car position is Fixed,

Chapter 3 Creating Simulation Subsystems

© National Instruments Corporation 3-9 LabVIEW Simulation Module User Manual

which indicates this parameter is a condition that the SIM Trim VI
must satisfy. This VI must return values of states and inputs that keep
the velocity of the car at 60 mph.

3. Wires the modified State Derivatives parameter to the State
Derivatives input of the SIM Trim VI. This VI returns the Trimmed
Inputs and Trimmed States parameters that the cruise-control system
must use to maintain a velocity of 60 mph. This VI also returns the
Trimmed Outputs and Trimmed State Derivatives parameters that
the car model returns when the cruise-control system uses the values
of the Trimmed States and Trimmed Inputs parameters.

Note If the SIM Trim VI cannot satisfy all specified conditions, this VI returns the closest
values to the specified conditions.

Refer to the Linearizing a Subsystem Programmatically section of this
chapter for information about obtaining parameter names and specifying a
subsystem by path or by reference. Refer to the LabVIEW Help for more
information about the Trim & Linearize VIs.

© National Instruments Corporation 4-1 LabVIEW Simulation Module User Manual

Executing Real-Time
Applications

You can use the LabVIEW Simulation Module with the LabVIEW
Real-Time Module and various real-time (RT) targets to implement
simulations and controllers in real time with real-world inputs and outputs.
For example, you can combine this software and hardware to design and
implement a rapid control prototype (RCP) or hardware-in-the-loop (HIL)
configuration.

The Simulation Module supports RT targets running the real-time
operating system of the Ardence Phar Lap Embedded Tool Suite (ETS) and
RT targets using the Ardence Real-Time Extension (RTX). Refer to the
Executing Simulations on ETS Targets section and the Executing
Simulations on RTX Targets section of this chapter for information about
executing simulations on ETS and RTX targets, respectively.

This chapter provides an overview of a real-time application and describes
a case study that involves RCP and HIL configurations.

Determinism
Running a simulation or controller in real time means that the simulation
time must equal the wall-clock time at each point at which the simulation
or controller interacts with the real world. Generally, these physical
interaction points correspond to the sampling points of the input and output
hardware. Thus, at each sampling time, the simulation time must equal the
wall-clock time.

To meet the real-time deadline, the software implementing the simulation
or controller must execute deterministically, that is, the software must
maintain a strict upper bound on the execution time of the software.
Executing a model in real time requires that you use deterministic
algorithms in the time-critical portion of the application. Deterministic
algorithms ensure that block diagram code running at each time step meets
the deadlines imposed by the timing of the hardware inputs and outputs.

Chapter 4 Executing Real-Time Applications

LabVIEW Simulation Module User Manual 4-2 ni.com

To meet determinism requirements, you must use a deterministic ordinary
differential equation (ODE) solver. Deterministic ODE solvers have fixed
step sizes. The Simulation Module includes the following deterministic
ODE solvers:

• Runge-Kutta 1

• Runge Kutta 2

• Runge-Kutta 3

• Runge-Kutta 4

• Discrete States Only

Refer to the Simulation Module ODE Solvers section of Chapter 5, Solving
Ordinary Differential Equations, for more information about these and
other ODE solvers.

All of the discrete ODE solvers have an inherently fixed time step size and
are inherently deterministic. Therefore, the discrete ODE solvers are
appropriate for real-time implementation. The Discrete Systems functions
use the discrete ODE solvers in their implementation. ODE solver
determinism is important only when you use continuous dynamic
functions, such as the Integrator, State-Space, Transfer Function, and
Zero-Pole-Gain functions.

Case Study: Rapid Control Prototype and
Hardware-in-the-Loop Configurations

The following sections provide an overview of the process you might use
to simulate a dynamic system. The following sections also describe an
example offline simulation, RCP configuration, and HIL configuration.

Chapter 4 Executing Real-Time Applications

© National Instruments Corporation 4-3 LabVIEW Simulation Module User Manual

Offline Simulation
The starting point is an offline simulation of the full dynamic system.
Offline systems are not connected to any hardware. The simulation
diagram in Figure 4-1 represents a simple control system. The system
contains a controller, a model of the plant, and a front panel control that
represents the set point or reference signal.

Figure 4-1. Full System Simulation

If you are running an offline simulation on a Windows operating system,
National Instruments recommends you place a checkmark in the
Software Timing checkbox on the Timing Parameters page of the
Configure Simulation Parameters dialog box for optimal performance.
Refer to the Configure Simulation Parameters Dialog Box topic in the
LabVIEW Help, available by selecting Help»Search the LabVIEW Help,
for more information about the timing parameters of the Simulation Loop.

Rapid Control Prototype Configuration
An RCP configuration simulates the controller model when the controller
model is connected to hardware actuators and hardware sensors. To convert
an offline simulation to an RCP configuration, remove the plant model
from the simulation. Replace the plant input with an output from a
hardware device, and replace the plant output with an input from a
hardware device.

Chapter 4 Executing Real-Time Applications

LabVIEW Simulation Module User Manual 4-4 ni.com

Figure 4-2 shows an RCP configuration of the example in Figure 4-1.

Figure 4-2. Rapid Control Prototype Configuration

The example in Figure 4-2 uses NI-DAQmx driver software to
communicate with the hardware plant. The DAQmx Read VI receives an
analog value from the hardware plant, and the DAQmx Write VI returns an
analog value to the hardware plant.

Hardware-in-the-Loop Configuration
A HIL configuration simulates the plant model when the plant model is
connected to a hardware controller. To convert an offline simulation to a
HIL configuration, remove the controller model from the simulation.
Replace the controller input with an output from a hardware device, and
replace the controller output with an input from a hardware device. The
result is a system similar to the RCP implementation, except with the
controller model, not the plant model, replaced with physical hardware
inputs and outputs.

Figure 4-3 shows a HIL configuration of the example in Figure 4-1.

Figure 4-3. Hardware-in-the-Loop Implementation

Chapter 4 Executing Real-Time Applications

© National Instruments Corporation 4-5 LabVIEW Simulation Module User Manual

The example in Figure 4-3 uses NI-DAQmx driver software to
communicate with the hardware controller. The DAQmx Read VI receives
an analog value from the hardware controller, and the DAQmx Write VI
returns an analog value to the hardware controller.

Executing Simulations on ETS Targets
If you are executing a simulation on an ETS target, National Instruments
recommends you let the Simulation Module calculate the necessary value
of the simulation period. To automatically calculate the period, place a
checkmark in the Auto Period checkbox, which is located on the Timing
Parameters page of the Configure Simulation Parameters dialog box.

Executing Simulations on RTX Targets
If you are executing a simulation with a non-zero period on an RTX target,
you must use software timing to avoid run-time errors. Place a checkmark
in the Software Timing checkbox, which is located on the Timing
Parameters page of the Configure Simulation Parameters dialog box.
Then, place a subVI that contains a Wait Until Next ms Multiple function
on the simulation diagram or subsystem, and set the millisecond multiple
accordingly.

When you follow this procedure, other tasks can to continue to execute
when the simulation is not scheduled to execute. Refer to the
LabVIEW Help for more information about using the LabVIEW Real-Time
Module for RTX Targets.

© National Instruments Corporation 5-1 LabVIEW Simulation Module User Manual

Solving Ordinary Differential
Equations

To compute the behavior of a continuous model over time, the LabVIEW
Simulation Module must solve the following initial value problem:

In these equations, y represents the outputs of the Integrator or Discrete
Integrator functions, y0 represents the initial conditions for those Integrator
functions, and f(t, y) represents the non-integrating functions on the
simulation diagram.

The Simulation Module provides a number of solution methods for this
problem. Each ordinary differential equation (ODE) solver approximates
the behavior of the model at time t + dt based on the behavior of the model
from t0 to t. The quantity dt is the step size of the ODE solver, and the
interval from t to t + dt is one time step taken by the ODE solver.

A time step at time t + dt is a major time step of the ODE solver. All ODE
solvers might need to evaluate the simulation diagram multiple times
between major time steps to compute accurate values for time t + dt. A time
step at these intermediate evaluation times is a minor time step of the ODE
solver. Because LabVIEW indicators update only at major time steps, you
might notice data flowing through the simulation diagram several times
before LabVIEW updates the indicators and graphs.

Understanding the various strengths and weaknesses of the ODE solvers
when simulating different types of models is useful so you can determine
the appropriate ODE solver to use for an application. Refer to the following
books for more information about ODE solvers: Computer Methods for

dy
dt
------ f t y,()=

y t0() y0=

Chapter 5 Solving Ordinary Differential Equations

LabVIEW Simulation Module User Manual 5-2 ni.com

Ordinary Differential Equations and Differential-Algebraic Equations1
and Numerical Solution of Ordinary Differential Equations2.

Simulation Discontinuities
In general, the Simulation Module ODE solvers assume that all simulation
diagram signals and signal derivatives are continuous throughout any time
step. To get the most accurate solution possible, the ODE solver must stop
and restart whenever the solver encounters a discontinuity. Therefore, the
presence of many discontinuities in a simulation limits the maximum step
size that an ODE solver can take. The number of discontinuities influences
which ODE solver you choose.

LabVIEW already accounts for discontinuities that the Nonlinear Systems
and Discrete Linear Systems functions introduce. However, if a model
contains continuous subVIs whose outputs or output derivatives are not
continuous, the model must reset the ODE solver at the points of
discontinuity. To ensure the model resets the ODE solver correctly, you can
use the Detect Zero Crossing function or configure the Integrator function
to reset when the appropriate signal crosses zero. Refer to the Detect Zero
Crossing and Integrator topics of the LabVIEW Help for more information
about these configuring and using functions.

ODE Solver Order and Simulation Accuracy
To measure the accuracy of a simulation, you can measure the error
introduced into the solution per time step, which is known as the local error.
You also can measure the maximum difference between the computed
solution and the exact solution, which is known as the global error. The
amount the error changes when you vary the step size depends on the order
of the ODE solver you use. If you reduce the step size of an ODE solver by
a factor of λ, then the local error is reduced by approximately λn + 1, where
n is the order of the ODE solver. Depending on the simulation, the global
error might be reduced by approximately λn. Reducing the error by any
amount corresponds to improving the accuracy by the same amount.

For example, consider a simulation that uses a first-order ODE solver. If
you run the simulation once with a step size of 0.1 and then run the
simulation with a step size of 0.05, you might reduce the global error by

1 Ascher, Uri M., and Linda R. Petzold. Computer Methods for Ordinary Differential Equations and Differential-Algebraic
Equations. Philadelphia: Society for Industrial and Applied Mathematics, 1998.

2 Shampine, Lawrence F. Numerical Solution of Ordinary Differential Equations. New York: Chapman & Hall, Inc., 1994.

Chapter 5 Solving Ordinary Differential Equations

© National Instruments Corporation 5-3 LabVIEW Simulation Module User Manual

approximately 2 times (λ = 2, n = 1). This reduction in error doubles the
accuracy of the simulation. If you use a second-order ODE solver under the
same conditions, the second run might reduce the global error by
approximately 4 times (λ = 2, n = 2). In this case, the reduction in error
quadruples the accuracy of the simulation.

As these examples show, high-order ODE solvers usually are more accurate
than low-order ODE solvers. In general, you can use fewer time steps and
larger step sizes with a high-order ODE solver to get the accuracy you need.
Using fewer time steps decreases the effects of round-off in the solution and
potentially reduces the amount of time needed to compute the solution.

However, simulations using high-order ODE solvers typically require more
computational resources, such as processing power and memory, per
time step than simulations using low-order ODE solvers. If you are running
a simulation on limited computational resources, consider using a
low-order ODE solver and smaller step sizes.

Variable Step-Size ODE Solvers versus Fixed Step-Size
ODE Solvers

Some of the ODE solvers the Simulation Module provides estimate the
error introduced by the ODE solver at each time step. These ODE solvers
then adjust the step size throughout the simulation to ensure that this
per-step error remains at a given relative and absolute tolerance. For each
integrator variable y, the ODE solver varies the step size to control the error
according to the following approximation:

Variable step-size ODE solvers can take small time steps when the
simulation variables vary rapidly and can take larger time steps when the
simulation variables vary slowly. This ability to change step sizes can
increase computational efficiency.

Variable step-size ODE solvers are not appropriate for deterministic
real-time applications because the computational overhead of taking a time
step varies over the course of a simulation. Therefore, the Simulation
Module also provides fixed step-size, deterministic ODE solvers for use in
real-time applications. These ODE solvers do not estimate the local
per-step error and maintain a fixed step size throughout a simulation. Refer
to Chapter 4, Executing Real-Time Applications, for information about
using the Simulation Module in real-time applications.

per-step error y * relative tolerance absolute tolerance+≈

Chapter 5 Solving Ordinary Differential Equations

LabVIEW Simulation Module User Manual 5-4 ni.com

Single-Step ODE Solvers versus Multi-Step ODE Solvers
Single-step ODE solvers approximate the behavior of the model at time
t + dt by taking into account only the behavior of the model between t and
t + dt. Conversely, multi-step ODE solvers approximate the behavior at the
end of the time step by taking into account the model behavior at a number
of previous time steps.

To achieve high order accuracy, single-step ODE solvers might need to
evaluate the simulation diagram more often per time step than multi-step
ODE solvers. Therefore, single-step ODE solvers might incur a higher
computational cost per step than multi-step ODE solvers. Because of this
cost, multi-step ODE solvers might be able to compute an accurate solution
more efficiently than single-step ODE solvers.

However, multi-step ODE solvers require a certain amount of computation
to initialize. This computation takes place each time the simulation resets
an Integrator function or encounters a discontinuity. A single-step ODE
solver might be more efficient for simulations that reset the ODE solver
often.

Stiff Problems
Certain problems, such as problems with transients that vary more quickly
than the problem solution, can be difficult to solve numerically. These
problems are stiff problems. When you solve stiff problems without a stiff
ODE solver, you might notice that variable step-size ODE solvers take
smaller and smaller time steps until the ODE solver can no longer make
progress on the simulation. You also might notice an inaccurate and rapidly
growing oscillatory solution no matter how small a step size you use. In this
situation, you can use a stiff ODE solver to get a more accurate solution.

Chapter 5 Solving Ordinary Differential Equations

© National Instruments Corporation 5-5 LabVIEW Simulation Module User Manual

Simulation Module ODE Solvers
You specify the ODE solver you want by using the Configure Simulation
Parameters dialog box or the Input Node of the Simulation Loop. Refer to
Chapter 2, Building Simulations, for more information about the
Configure Simulation Parameters dialog box and the Simulation Loop.

The Simulation Module includes the following ODE solvers:

• Runge-Kutta 1 (Euler)—A fixed step-size, single-step explicit
Runge-Kutta ODE solver of first order.

• Runge-Kutta 2—A fixed step-size, single-step explicit Runge-Kutta
ODE solver of second order.

• Runge-Kutta 3—A fixed step-size, single-step explicit Runge-Kutta
ODE solver of third order.

• Runge-Kutta 4—A fixed step-size, single-step explicit Runge-Kutta
ODE solver of fourth order.

• Runge-Kutta 23—A variable step-size, single-step explicit
Runge-Kutta ODE solver of third order.

• Runge-Kutta 45—A variable step-size, single-step explicit
Runge-Kutta ODE solver of fifth order, which uses the
Dormand-Prince coefficients.

• BDF—A variable step-size, variable order (orders 1 through 5)
implementation of the multi-step backwards difference formula
(BDF), also known as Gear’s Method. This method is adequate for
moderately stiff problems.

• Adams-Moulton—A variable step-size, multi-step variable order
(orders 1 through 12) implementation of the Adams-Moulton
predictor-corrector pair in predict-evaluate-correct-evaluate (PECE)
mode.

• Rosenbrock—A variable step-size, single-step explicit solver. This
method is adequate for some stiff problems.

• Discrete States Only—A fixed step-size solver. Use this ODE solver
for simulations that do not contain any continuous functions.

© National Instruments Corporation 6-1 LabVIEW Simulation Module User Manual

Optimizing Design Parameters

One important application of simulating dynamic system models is using
the simulation to determine parameter values that maximize some measure
of performance. The LabVIEW Simulation Module includes the
SIM Optimal Design VI, which you can use to obtain parameters that
minimize a cost function while satisfying constraints on a dynamic system.
You can use this VI with both linear and nonlinear systems, although the
Simulation Module includes pre-defined options for only linear systems.

Design problems can range from designing physical elements, such as
springs, to designing more abstract elements such as controllers or digital
filters. Correspondingly, performance specifications might range from
simple mechanical limits on outputs to more sophisticated requirements
such as frequency domain norms for controlled systems.

For example, when designing a suspension system for a car, you must select
a stiffness constant for a spring and a damping constant for a dissipative
element. The goal is to find a parameter set that provides maximum
comfort. This optimal parameter set corresponds to a performance
measure, such as the average deviation of the passenger from a desired
height as the car travels down the road. You use parameter design to
determine this optimal parameter set while taking into account the
dynamics of the system and the expected operating conditions and
disturbances.

You can use several techniques to determine this parameter set. For some
problems, you might be able to compute the optimum analytically.
However, analytical solutions typically are difficult or impossible to
compute. In such cases, you can use numerical optimization instead. A
powerful and general purpose numerical optimization algorithm is
sequential quadratic programming (SQP). The SIM Optimal Design VI
uses this algorithm. This VI provides domain-specific functions you can
use to perform parameter optimization for design purposes. Specifically,
you can use this VI to determine optimal parameters from finite-horizon
time-domain dynamics simulations.

Chapter 6 Optimizing Design Parameters

LabVIEW Simulation Module User Manual 6-2 ni.com

The following expressions define the nonlinear optimization problem.

where p is a parameter value, J(p) is a cost function, and H(p) is a set of
constraints. The objective of the SQP algorithm is to minimize J(p) and
satisfy while keeping p within specified minimum and
maximum values.

Designing a system using the SQP algorithm involves the following steps:

1. Constructing the dynamic system model and specifying the component
of that model for which you want to find optimal parameter values.

2. Defining a performance measure, also known as a cost function, you
want to minimize.

3. Defining any constraints on the dynamic system that any feasible
parameter values must satisfy.

4. Defining minimum and maximum values for each parameter.

5. Defining a set of initial parameter values and an initial parameters
mesh, which generates additional sets of initial parameter values.

6. Executing the SQP algorithm, using the information you specified in
steps 1 through 5, by running the SIM Optimal Design VI.

Note The cost function, inequality constraints, and component to optimize make up the
Problem Specification parameter of the SIM Optimal Design VI. For each option, you can
choose from pre-defined types or specify a customized version.

The following sections provide information about each of these steps,
including the pre-defined and custom types of information you can specify
for each step.

min J p()()
hl H p() hu≤ ≤

pl p pu≤ ≤

hl H p() hu≤ ≤

Chapter 6 Optimizing Design Parameters

© National Instruments Corporation 6-3 LabVIEW Simulation Module User Manual

Constructing the Dynamic System Model
By default, the SIM Optimal Design VI computes optimal design
parameters for a proportional integral derivative (PID) controller placed in
a closed-loop dynamic system. Figure 6-1 shows this controller and the
dynamic system structure.

Figure 6-1. Default Dynamic System

F1, F2, C, G1, G2, and S consist of transfer functions and associated
information, such as delays and sampling time. You can use the
SIM Construct Default System VI to construct these transfer functions and
specify reference input signals r, ru, and ry . This VI returns the necessary
dynamic system information in the System Data output, which you then
can wire to the System Data input of the SIM Optimal Design VI. The
SIM Optimal Design VI then excites the system using the defined inputs
and obtains the time response.

Use the System response type parameter of the SIM Optimal Design VI to
specify if you want this VI to return optimal parameter values for C, F1, or
F2. By default, C is a parallel PID controller defined by the following
equation:

where α = 0.01, U is the control action, s is the Laplace variable, and KP,
KI, and KD are the proportional, integral, and derivative gains, respectively.

Controller
C

Control
Feedforward

Filter
F2

ur

ru

Output
Feedforward

Filter
G2

ry

y

+
+Reference

Filter
F1

+

–

Plant
G1

Sensor
S

+
+

U s() KPe
KI
s

KDs

αs 1+
---------------+ +=

Chapter 6 Optimizing Design Parameters

LabVIEW Simulation Module User Manual 6-4 ni.com

You also can define a custom type of system response data you want to
optimize by using VI templates. To access these templates, select File»New
from the pull-down menu to launch the New dialog box. Then select
VI»From Template»Simulation»Optimization Based Design from the
Create New tree. Double-click SIM System response (Modify
Controller Only).vit to modify only the structure of the controller.
Double-click SIM System response (General).vit to define a new
dynamic system structure.

If you define a new dynamic system structure, the block diagram code you
write must generate the output vector y and the time vector Time. The code
also must generate the control action vector u unless the optimization
problem does not require a control action. For example, if you use the
SIM Optimal Design VI to design the physical parameters of a mechanism,
you do not need to specify a control action. In this situation, ensure the cost
function and inequality constraints you specify do not take a control action
into account.

Defining a Cost Function
A cost function is the performance measure you want to minimize.
Examples of cost include total power consumption, integrated error, and
deviation from a reference value of a signal. The cost function is a
functional equation, which maps a set of points in a time series to a single
scalar value. This scalar value is the cost.

Use the Cost type parameter of the SIM Optimal Design VI to specify the
type of cost function you want this VI to minimize. The Simulation Module
includes the following types of cost functions:

• IE—A cost function that integrates the error.

• IAE—A cost function that integrates the absolute value of the error.

• ISE—A cost function that integrates the square of the error.

• ITAE—A cost function that integrates the time multiplied by the
absolute value of the error.

• ITE—A cost function that integrates the time multiplied by the error.

• ITSE—A cost function that integrates the time multiplied by the
square of the error.

Chapter 6 Optimizing Design Parameters

© National Instruments Corporation 6-5 LabVIEW Simulation Module User Manual

• ISTE—A cost function that integrates the square of the time multiplied
by the square of the error.

• LQ—A linear quadratic cost function.

• Sum of Variances—A cost function based on the variance of the error
multiplied by the variance of the control action.

Refer to the SIM Optimal Design topic of the LabVIEW Help, available by
selecting Help»Search the LabVIEW Help from the pull-down menu, for
the equations of these cost functions.

You also can define a custom cost function using a VI template. To load this
template, in the New dialog box, select VI»From Template»Simulation»
Optimization Based Design»SIM Compute Cost.vit from the Create
New tree.

The block diagram of this template contains several parameters including
the control action u, the dynamic system output y, an array of input signals,
and a time series vector. You also can specify any weights on any part of the
cost function.

After you define these parameters, you can write LabVIEW block diagram
code to manipulate the parameters according to the cost function. For
example, the following equation defines the IE cost function.

where e(t) is the measured error, N is the total number of samples in the
time response, n is the current time response sample, and i is the index of
the current output.

JIE ei t() td
0

T

∫
i
∑ ∆t ei n()⋅()

n 0=

N

∑
i
∑≅=

Chapter 6 Optimizing Design Parameters

LabVIEW Simulation Module User Manual 6-6 ni.com

Figure 6-2 shows the LabVIEW block diagram that represents this cost
function.

Figure 6-2. LabVIEW Block Diagram of the IE Cost Function

You can view the LabVIEW block diagrams of other cost functions in the
labview\vi.lib\addons\simulation\Optimization Based

Design\Cost\ directory.

Note The IE cost function in Figure 6-2 does not take the control action into account. In
this case, do not delete the u parameter from the block diagram. Deleting this parameter
breaks the connector pane structure on which the SIM Optimal Design VI depends.
Instead, leave the parameter unwired.

After you save the custom cost function as a VI, you must specify the
location of the custom function in the Problem Specification parameter of
the SIM Optimal Design VI. Select User defined for the Cost type
parameter and specify the path to the VI in the File path user defined
custom cost calculation path control.

Chapter 6 Optimizing Design Parameters

© National Instruments Corporation 6-7 LabVIEW Simulation Module User Manual

Defining Inequality Constraints
Inequality constraints represent trade-offs implicit in the problem
specification. For example, you might be able to remove error in a control
loop by applying a very large control action. However, the necessary
control action might be impossible to achieve in the real world. If you
specify constraints on the control action before executing the SQP
algorithm, you can eliminate optimal values that require an unfeasible
control action.

Note Constraints add a great deal of complexity to the optimization problem. If possible,
minimize the number of constraints before executing the SQP algorithm. One strategy to
minimize the number of constraints involves first finding optimal values with no
constraints, then gradually adding constraints and determining the least amount of
constraints required for the dynamic system.

Because the optimization problem is based on a finite-horizon time-domain
simulation, you specify the inequality constraints as envelopes that bound
the time response of the control action and the output. You also can place
inequality constraint envelopes on the rate of change of the control action
and the rate of change of the output.

These envelopes are piecewise linear curves that specify the upper and
lower limits on a signal at all instants of simulation time. The SIM Optimal
Design VI then calculates H(p) as the minimum and maximum distance of
the time series points from these envelopes.

Use the Inequality Constraints parameter of the SIM Optimal Design VI
to define these envelopes. This parameter specifies the upper and lower
constraint envelopes on four areas of the dynamic system: the control
action, the output, the rate of change of the control action, and the rate of
change of the output.

Note You can use the Graphically Specify Inequality Constraints VI, located in the
labview\examples\simulation\Optimization Based Design\Graphically

Specify Inequality Constraints\ directory, to draw the upper and lower
envelopes. This VI returns a set of points you then can wire to the Inequality Constraints
parameter.

Chapter 6 Optimizing Design Parameters

LabVIEW Simulation Module User Manual 6-8 ni.com

For example, consider an output yi(t) constrained by envelopes as shown in
Figure 6-3.

Figure 6-3. Upper and Lower Constraint Envelopes

A, B, C, and D are points that define the upper envelope UEi(t), and E, F,
G, and H are points that define the lower envelope LEi(t). The SIM Optimal
Design VI then constrains yi(t) to the following relationship:

This VI encodes this constraint by computing the clearance between the
output and each envelope. The upper clearance UCi is defined as
max (UEi(t) – yi(t)). The lower clearance LCi is defined as
max (yi(t) – LEi(t)). These clearances further clarify the constraints, as the
following relationships show:

where ε = 1e–21.

LEi t() yi t() UEi t()< <

ε– UCi ∞< <

ε– LCi ∞< <

Chapter 6 Optimizing Design Parameters

© National Instruments Corporation 6-9 LabVIEW Simulation Module User Manual

You also can place constraints on the rate of change of control actions and
outputs. If at least five points are available, this VI computes these rates of
change using the following equation:

where t is the simulation time, h is the space between time steps, and f(t) is
an output or control action signal.

At boundaries, or if fewer than five points are available, this VI uses the
following equations instead:

You can use a VI template to specify custom calculations for implementing
the inequality constraints. To load this template, in the New dialog box,
select VI»From Template»Simulation»Optimization Based Design»
SIM Compute Inequality Constraints.vit from the Create New tree. To
see an example of how to define and manipulate these parameters, open the
SIM Compute Inequality Constraints (Default) VI, located in the
labview\vi.lib\addons\simulation\Optimization Based

Design\Constraints\ directory. This VI implements the inequality
constraints the previous equations specified.

After you save the custom inequality constraint calculations as a VI, you
must specify the location of the custom function in the Problem
Specification parameter of the SIM Optimal Design VI. Select User
defined for the Inequality constraints type parameter and specify the path
to the VI in the File path user defined inequality constraints path control.

Defining Parameter Bounds
Parameter bounds are constraints on parameter values being optimized. For
example, while searching for the best value of the spring constant, you
might know that springs are available only in a certain range. In this case,
you can specify the parameter k must stay within minimum and maximum
values. Parameter bounds are important because these bounds define the
parameter space in which the SQP algorithm searches for optimal values.

Use the Parameter Bounds parameter of the SIM Optimal Design VI to
specify minimum and maximum values for each parameter.

f· t() f t 2h–() 8f t h–()– 8f t h+() f t 2h+()–+
12h

--=

f· t() f t h+() f t h–()–
2h

---= or f· t() f t h+() f t()–
h

--------------------------------=

Chapter 6 Optimizing Design Parameters

LabVIEW Simulation Module User Manual 6-10 ni.com

Defining Initial Parameter Values and a Mesh
After you define the parameter space using the minimum and maximum
values of each parameter, you must specify the initial values of each
parameter. These initial parameter values determine where the SQP
algorithm begins the search for optimal values. However, if you choose
only a single initial set of initial values, the SQP algorithm might return
local optimal values. Local optimal values are values that minimize the cost
function within only a subset of parameter space. Local optimal values are
not the true solution to the SQP algorithm because the true optimal values
might exist outside the parameter space the algorithm searched.

To mitigate this problem, you can execute the SQP algorithm several times,
using a different set of initial parameter values each time. If you use a large
enough range of initial parameter values within the given parameter space,
you can be relatively confident that the SQP algorithm finds the global
optimal values.

You can implement this strategy by defining an initial parameters mesh.
The initial parameters mesh defines the distribution pattern of these sets of
initial values and the total number of initial value sets to generate. You can
choose from four patterns depending on the needs of the problem:
Uniform grid, Uniform random, Quasirandom, and Random walk.

Each pattern has unique characteristics and strengths. For example, the
simplest possible option is the uniform grid, which generates a specified
number of equally-spaced locations in the parameter space. However, the
uniform random and quasirandom options often provide better coverage of
the parameter space while using a fewer number of points than the uniform
grid option. The random walk option biases the search to explore close to
the initial values but eventually explores a larger region of parameter space.
This option is useful if you think a particular parameter space contains the
optimal values and you want to focus on a certain region of that space, such
as the center.

Use the Initial Parameters parameter of the SIM Optimal Design VI to
specify initial parameter values. Use the Initial Parameters Mesh
parameter of this VI to define an initial parameters mesh.

Chapter 6 Optimizing Design Parameters

© National Instruments Corporation 6-11 LabVIEW Simulation Module User Manual

Executing the SQP Algorithm
The SIM Optimal Design VI uses an internal simulation diagram to obtain
the finite-horizon time-domain response of the dynamic system model. Use
the Solver Parameters parameter of this VI to configure the simulation.
You also can configure the SQP algorithm using the beginning state,
cno settings, and stopping criteria parameters.

This VI returns the following information:

• Optimal parameters—A list of possible optimal parameter values.
Each column of this array corresponds to one parameter you specified
in the Parameter Bounds array. Each row of this array corresponds to
one execution of the SQP algorithm.

• Optimal costs—The results of the specified cost function that
correspond to each row of the Optimal parameters array.

• Design parameters—The set of parameter values that minimize the
specified cost function. These values are the optimal parameter values.

• Design cost—The result of the specified cost function if you apply the
values from the Design parameters array.

• Signals—The finite-horizon time-response data for the output and
control action of the dynamic system, evaluated at each point specified
in the Optimal parameters array.

The SQP algorithm takes as long to execute as the product of the number
of function evaluations and the run time of the simulation. If you specify
only one set of initial parameter values, the algorithm must solve, on
average, between 30 and 200 functions. The front panel of the SIM Optimal
Design VI includes a Current Data page that you can use to monitor the
progress of the algorithm as the VI runs. This page updates each time the
SQP algorithm executes from one set of initial parameter values.

The Optimal Design Parameters page of this VI also includes the Best
Parameters (Infeasible Constraints) and Best cost (Infeasible
Constraints) parameters. These parameters return optimal parameter
values and the associated cost function result with no constraints. This
information can be useful when revising the constraint envelopes.

If the dynamic system has constraints and the SQP algorithm does not
return feasible optimal values, try ensuring that the specified cost function
remains constant when parameter values are outside the feasible range.
This method helps you set reasonable parameter bounds. Additionally,
reducing system discontinuities helps the SQP algorithm execute precisely.

Chapter 6 Optimizing Design Parameters

LabVIEW Simulation Module User Manual 6-12 ni.com

You can use several methods to reduce discontinuities, for example,
avoiding saturation effects and rate limiters in the system model. Refer to
the Simulation Discontinuities section of Chapter 5, Solving Ordinary
Differential Equations, for information about discontinuities.

Case Study: Designing a PID Controller for a
Second-Order System

This section examines the PID Design for Second Order Continuous
System VI, which determines the optimal gain values KP, KI, and KD for a
PID controller in a second-order continuous dynamic system. This VI is
located in the labview\examples\simulation\Optimization
Based Design\ directory. Figure 6-4 shows the block diagram of this VI.

Figure 6-4. Block Diagram of the PID Design for Second Order Continuous System VI

Chapter 6 Optimizing Design Parameters

© National Instruments Corporation 6-13 LabVIEW Simulation Module User Manual

This VI constructs a dynamic system model using the SIM Construct
Default System VI. Refer to the Constructing the Dynamic System Model
section of this chapter for the structure of this dynamic system. In this
example, the dynamic system has only three components: a controller C,
a plant G1, and a reference input signal r. The SIM Optimal Design VI
excites the dynamic system with the reference input signal to determine the
optimal settings for the controller.

The following transfer function equation defines the plant G1.

Figure 6-5 shows the System Matrices control that represents this
equation.

Figure 6-5. Defining the Plant G1

G1 s() 1
s2 4s 2+ +
--------------------------=

Chapter 6 Optimizing Design Parameters

LabVIEW Simulation Module User Manual 6-14 ni.com

The Signal Parameters Array parameter of the SIM Construct Default
System VI specifies the reference input signal r that excites this system.
This example excites the dynamic system with a step input signal.
Figure 6-6 shows this parameter.

Figure 6-6. Exciting the Controller with a Step Input Signal

Note Notice in Figure 6-6 that r is the third element, or index number 2, of the Signal
Parameters Array. ru and ry correspond to the first and second elements of this array,
respectively. If you define a custom dynamic system, you also can define custom reference
signals beginning with the third element of this array.

Chapter 6 Optimizing Design Parameters

© National Instruments Corporation 6-15 LabVIEW Simulation Module User Manual

Figure 6-7 shows the Problem Specification parameter of the
SIM Optimal Design VI.

Figure 6-7. Specifying the Problem this Example Solves

The System response type parameter in Figure 6-7 shows this example
optimizes parameters for the controller C. The Inequality constraints type
parameter shows this example uses the default calculations for the
inequality constraint envelopes. The Cost type parameter shows this
example minimizes the linear quadratic (LQ) cost function. The following
equation shows this cost function.

The Weights for cost function parameter in Figure 6-7 shows this example
uses the following weight matrix W:

This weight matrix penalizes the control action but emphasizes that this
example minimizes the position error. W also reflects the difference in scale
between the control action range and the output range.

JLQ eT t()Wu t() td
0

T

∫ ∆t eT n()Wu n()⋅
n 0=

N

∑≅=

W 100 0
0 1

=

Chapter 6 Optimizing Design Parameters

LabVIEW Simulation Module User Manual 6-16 ni.com

Figure 6-8 shows the Inequality Constraints parameter that defines the
inequality constraints envelopes.

Figure 6-8. Specifying Inequality Constraints on the Output and Control Action

Chapter 6 Optimizing Design Parameters

© National Instruments Corporation 6-17 LabVIEW Simulation Module User Manual

The upper constraint envelope on the output is a line with points (0, 1.25)
and (10, 1.05). The lower constraint envelope on the output has points
(0, 0), (0, 1.5), and (10, 0.95). Figure 6-9 shows these envelopes.

Figure 6-9. Constraints on the Output

Figure 6-8 also shows the constraints on the control action. The upper
constraint envelope is a line with points (0, 75) and (10, 20). The lower

Chapter 6 Optimizing Design Parameters

LabVIEW Simulation Module User Manual 6-18 ni.com

constraint envelope is a line with points (0, –75) and (10, –25). Figure 6-10
shows these envelopes.

Figure 6-10. Constraints on the Control Action

This example does not place inequality constraints on either the rate of
control action or the rate of output.

Figure 6-11 shows the parameter bounds this example uses for each gain
parameter of the PID controller.

Figure 6-11. Specifying Parameter Bounds for the Gain Parameters of the
PID Controller

These bounds form the parameter space in which this VI searches for
optimal values.

Chapter 6 Optimizing Design Parameters

© National Instruments Corporation 6-19 LabVIEW Simulation Module User Manual

Figure 6-12 shows the initial parameter values this example uses. Each
element of this array corresponds to same element of the Parameter
Bounds array.

Figure 6-12. Initializing the Values of the PID Controller Parameters

This example uses an initial parameters mesh to generate two additional
search locations quasirandomly. Figure 6-13 shows this Initial
Parameters Mesh.

Figure 6-13. Specifying the Initial Parameters Mesh

When you run this VI, the SQP algorithm executes once using the values
from the Initial Parameters parameter. The algorithm then executes two
more times, using the Initial Parameters Mesh parameter to generate two
sets of initial parameter values.

Chapter 6 Optimizing Design Parameters

LabVIEW Simulation Module User Manual 6-20 ni.com

Figure 6-14 shows all three sets of initial parameter values.

Figure 6-14. All Sets of Initial Parameter Values

The first row of Figure 6-14 is the same as the values shown in Figure 6-12.
The second and third rows contain quasirandomly-generated locations
within the Parameter Bounds of each parameter.

Note The Array of Initial Parameters parameter is on the Debug Information page of
the SIM Optimal Design VI.

After the SQP algorithm executes, this VI returns all possible optimal
parameter values, as shown in Figure 6-15.

Figure 6-15. Possible Sets of Optimal Parameter Values

Of the parameter value sets shown in Figure 6-15, one set minimizes the
LQ cost function. The SIM Optimal Design VI returns this optimal set of

Chapter 6 Optimizing Design Parameters

© National Instruments Corporation 6-21 LabVIEW Simulation Module User Manual

parameter values in the Design parameters array. Figure 6-16 shows this
array and the corresponding value of the cost function.

Figure 6-16. Optimal Parameters and Cost Function Value
for the Controller of this Dynamic System

Therefore, the optimal gain values for KP, KI, and KD are 14.7257, 11.2553,
and 0.203472, respectively.

© National Instruments Corporation 7-1 LabVIEW Simulation Module User Manual

Using the Simulation Translator

You can use the Simulation Translator to convert a .mdl file, developed in
The MathWorks, Inc. Simulink® simulation environment, into a LabVIEW
VI that consists of a simulation diagram containing LabVIEW functions,
wires, and simulation subsystems corresponding to the contents of the
.mdl file.

Note The Simulation Translator cannot convert diagrams developed with The
MathWorks, Inc. Stateflow® application software or other Simulink blocksets.

This chapter provides information about using the Simulation Translator to
convert models developed in the Simulink simulation environment into
LabVIEW code.

Converting Models into LabVIEW Code
Select Tools»Control Design and Simulation»Simulation Translator
from the pull-down menu to launch the Simulation Translator dialog box.
Refer to the Simulation Translator Dialog Box topic of the LabVIEW Help,
available by selecting Help»Search the LabVIEW Help, for information
about specific Simulation Translator options.

The Simulation Translator executes the following steps:

1. Executes any .m files that the .mdl file includes in addition to any
.m files you specify in the dialog box. This step obtains the values of
any parameters and equations that the .m file contains. However, the
Simulation Translator executes this step only if The MathWorks, Inc.
MATLAB® software is installed on the same computer as the
LabVIEW Simulation Module.

2. Parses the .mdl file for model information such as timing and ordinary
differential equation (ODE) solver settings.

3. Stores each system, subsystem, block, and line in an XML-based
Common Graph Description (CGD) format.

4. Generates a LabVIEW simulation subsystem corresponding to each
model subsystem, in order. Converting in order ensures that the
Simulation Translator generates every LabVIEW subsystem that has a

Chapter 7 Using the Simulation Translator

LabVIEW Simulation Module User Manual 7-2 ni.com

parent simulation diagram before generating the parent simulation
diagram. The Simulation Translator converts all blocks into one or
more LabVIEW functions or simulation subsystems. The Simulation
Translator also converts lines into wires that connect terminals on the
LabVIEW functions and simulation subsystems.

Common Warnings
If the Simulation Translator cannot find a value for a parameter in the .mdl
file it is converting, LabVIEW displays a warning. In these cases, the
Simulation Translator uses the default value of the parameter in the
corresponding LabVIEW function.

Note In some cases, the Simulation Translator cannot find a value for a parameter because
the parameter contains an expression instead of a constant value. If the MATLAB software
is installed on the computer, the Simulation Translator attempts to evaluate the MATLAB
software expressions in the .mdl file prior to converting the file. If the Simulation
Translator successfully evaluates the expression, the Simulation Translator uses the result
of that evaluation as the parameter value and does not produce a warning.

The Simulation Translator cannot fully convert all functions of every model
to LabVIEW block diagram code. If the Simulation Translator encounters
a block it cannot convert, you receive a warning. In these cases, the
Simulation Translator creates a placeholder simulation subsystem. You
must create a simulation subsystem using a LabVIEW VI to accomplish the
same functionality as the block to replace this placeholder simulation
subsystem. Refer to the Unsupported Blocks topic of the LabVIEW Help for
a list of the blocks the Simulation Translator cannot convert.

Because LabVIEW is strict about data types, the converted simulation
subsystem might have broken wires. In this case, add block diagram code
to convert between converted data types.

© National Instruments Corporation A-1 LabVIEW Simulation Module User Manual

Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support
include the following:

– Self-Help Resources—For answers and solutions, visit the
award-winning National Instruments Web site for software drivers
and updates, a searchable KnowledgeBase, product manuals,
step-by-step troubleshooting wizards, thousands of example
programs, tutorials, application notes, instrument drivers, and
so on.

– Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Developer Exchange at
ni.com/exchange. National Instruments Application Engineers
make sure every question receives an answer.

For information about other technical support options in your
area, visit ni.com/services or contact your local office at
ni.com/contact.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. To learn more, call your local
NI office or visit ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

http://www.ni.com/
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbp04
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbpex
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdserv
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdcont
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbp08
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbp09
http://www.ni.com/
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbp10

© National Instruments Corporation G-1 LabVIEW Simulation Module User Manual

Glossary

B

BDF Backwards difference formula. Also known as Gear’s Method.

C

CGD Common Graph Description. The format the Simulation Translator uses to
store each system, subsystem, block, and line from a model developed in
The MathWorks, Inc. Simulink® simulation environment.

continuous model Dynamic system model used to represent real-world signals that vary
continuously with time. A continuous model is characterized by differential
equations.

controller Device that regulates the operation of a dynamic system.

D

direct feedthrough Relationship between a function input and a function output in which the
function uses the input at the current step to calculate the output at the
current step.

discrete model Dynamic system model used to represent signals that are sampled in time
at discrete intervals. A discrete model is characterized by difference
equations.

distributed parameter
model

Physical model that can be described by partial differential equations.

dynamic system System whose behavior varies with time.

E

empirical modeling Modeling technique in which you use experimental data to define a system
model.

Glossary

LabVIEW Simulation Module User Manual G-2 ni.com

F

feedback cycle Cycle in which data flow originates from an output of a function or
subsystem and terminates as an input of the same function or subsystem.

G

global error Maximum difference between the solution the function computes and the
exact solution.

H

HIL Hardware-in-the-loop. A simulation configuration in which you test
a controller implementation with a software model of the plant.

I

indirect feedthrough Relationship between a function input and a function output in which the
function does not use the input at the current step to compute the output at
the current step.

Input Node A collection of input terminals attached to the Simulation Loop. Use the
Input Node to configure simulation parameters programmatically.

L

linear model Model that obeys the principle of superposition.

linearize A procedure that approximates the behavior of a nonlinear model.

local error Error introduced into the solution per time step.

lumped parameter
model

Physical model described by an ordinary differential equation.

Glossary

© National Instruments Corporation G-3 LabVIEW Simulation Module User Manual

M

major time step A time step evaluated at time t + dt.

minor time step A time step evaluated between major time steps.

multi-step ODE
solver

ODE solver that approximates the behavior of a model at time t + dt by
taking into account the behavior of the model at a number of previous time
steps.

model Set of differential or difference equations that represent the behavior of a
controller, simulation, or dynamic system.

N

nonlinear model Model that does not obey the principle of superposition.

O

ODE Ordinary differential equation.

order ODE solver characteristic that determines how much the error amount
changes when you vary the step size.

Output Node An output terminal on the Simulation Loop. Use the Output Node to view
any errors the simulation diagram generates.

P

PECE Predict-evaluate-correct-evaluate.

period The amount of time in which a discrete Simulation function must complete.

physical modeling Modeling technique in which you use the laws of physics to define a system
model.

plant Physical system whose behavior you want to observe, replicate, or
manipulate.

Glossary

LabVIEW Simulation Module User Manual G-4 ni.com

R

RCP Rapid control prototype. A simulation configuration in which you test plant
hardware with a software model of the controller.

S

simulation diagram LabVIEW diagram that allows you to use Simulation functions within a
Simulation Loop or simulation subsystem. A simulation diagram, like other
LabVIEW diagrams, has the following semantic properties:

• The order of operations is not completely specified by the user.

• The order of operations is implied by data interdependencies.

• A function may only execute after all necessary inputs have become
available.

• Outputs are generated after a function completes execution.

Simulation Loop Loop that executes the simulation diagram over multiple time steps.

single-step ODE
solver

ODE solver that approximates the behavior of a model at time t + dt by
taking into account only the behavior of the model at time t.

skew The amount of time by which you want to delay the execution of a discrete
Simulation function.

step size Size of the interval of one time step.

stiff ODE solver ODE solver used to evaluate a stiff model.

stiff system System whose dynamics are described by widely varying time constants.

subsystem A section of a simulation diagram you represent with a single icon instead
of multiple Simulation functions and wires.

T

time step Interval from t to t + dt.

time-invariant model Model whose parameters do not change with time.

Glossary

© National Instruments Corporation G-5 LabVIEW Simulation Module User Manual

time-variant model Model whose parameters change with time.

trim A procedure that searches for the values of states and inputs that produce
output and/or state derivative conditions you specify.

V

variable step-size
ODE solver

ODE solver that adjusts the step size throughout the simulation to ensure
that the per-step error remains at a given relative and absolute tolerance.

	LabVIEW Simulation Module User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction to Simulation
	Figure 1-1. Dynamic System
	Dynamic System Models
	Physical Models
	Lumped versus Distributed Parameter Models
	Linear versus Nonlinear Models
	Time-Variant versus Time-Invariant Models
	Continuous versus Discrete Models

	Empirical Models
	Linear Model Forms

	Ordinary Differential Equation Solvers
	Rapid Control Prototyping and Hardware-in-the-Loop Configurations

	Chapter 2 Building Simulations
	Using the Simulation Loop
	Figure 2-1. Simulation Loop
	Displaying Additional Inputs
	Removing and Rearranging Inputs

	Configuring Simulation Parameters
	Configuring Simulation Parameters Interactively
	Configuring Simulation Parameters Programmatically
	Figure 2-2. Configuring Simulation Parameters Programmatically

	Using Simulation Functions
	Defining Feedthrough Behavior and Feedback Cycles
	Figure 2-3. Feedback Cycles
	Figure 2-4. Reversing the Direction of the Gain Function

	Changing Icon Styles
	Configuring Simulation Functions
	Figure 2-5. Configuration Dialog Box of the Sine Signal Function

	Configuring Discrete Simulation Functions
	Figure 2-6. How Period and Skew Affect a Discrete Simulation Function

	Stopping a Simulation Programmatically
	Placing LabVIEW VIs, Functions, and Structures on the Simulation Diagram

	Defining Linear Models
	Defining Linear Models Interactively
	Figure 2-7. Configuring a MIMO Transfer Function Model

	Defining Linear Models Programmatically
	Defining Linear Models Using a Constant
	Figure 2-8. Wiring a Constant to Define a Transfer Function
	Defining Linear Models Using the LabVIEW Control Design Toolkit
	Figure 2-9. Wiring a Controller Model to Define a Transfer Function

	Transferring Linear Model Definitions between Functions

	Chapter 3 Creating Simulation Subsystems
	Creating and Running Subsystems
	Creating Stand-Alone Subsystems
	Running Subsystems within a Simulation Diagram

	Defining the Feedthrough Behavior of Subsystems
	Linearizing a Subsystem
	Linearizing a Subsystem Interactively
	Linearizing a Subsystem Programmatically
	Figure 3-1. Linearizing a Nonlinear Subsystem

	Trimming a Subsystem
	Figure 3-2. Trimming a Subsystem

	Chapter 4 Executing Real-Time Applications
	Determinism
	Case Study: Rapid Control Prototype and Hardware-in-the-Loop Configurations
	Offline Simulation
	Figure 4-1. Full System Simulation

	Rapid Control Prototype Configuration
	Figure 4-2. Rapid Control Prototype Configuration

	Hardware-in-the-Loop Configuration
	Figure 4-3. Hardware-in-the-Loop Implementation

	Executing Simulations on ETS Targets
	Executing Simulations on RTX Targets

	Chapter 5 Solving Ordinary Differential Equations
	Simulation Discontinuities
	ODE Solver Order and Simulation Accuracy
	Variable Step-Size ODE Solvers versus Fixed Step-Size ODE Solvers
	Single-Step ODE Solvers versus Multi-Step ODE Solvers
	Stiff Problems
	Simulation Module ODE Solvers

	Chapter 6 Optimizing Design Parameters
	Constructing the Dynamic System Model
	Figure 6-1. Default Dynamic System

	Defining a Cost Function
	Figure 6-2. LabVIEW Block Diagram of the IE Cost Function

	Defining Inequality Constraints
	Figure 6-3. Upper and Lower Constraint Envelopes

	Defining Parameter Bounds
	Defining Initial Parameter Values and a Mesh
	Executing the SQP Algorithm
	Case Study: Designing a PID Controller for a Second-Order System
	Figure 6-4. Block Diagram of the PID Design for Second Order Continuous System VI
	Figure 6-5. Defining the Plant G1
	Figure 6-6. Exciting the Controller with a Step Input Signal
	Figure 6-7. Specifying the Problem this Example Solves
	Figure 6-8. Specifying Inequality Constraints on the Output and Control Action
	Figure 6-9. Constraints on the Output
	Figure 6-10. Constraints on the Control Action
	Figure 6-11. Specifying Parameter Bounds for the Gain Parameters of the PID Controller
	Figure 6-12. Initializing the Values of the PID Controller Parameters
	Figure 6-13. Specifying the Initial Parameters Mesh
	Figure 6-14. All Sets of Initial Parameter Values
	Figure 6-15. Possible Sets of Optimal Parameter Values
	Figure 6-16. Optimal Parameters and Cost Function Value for the Controller of this Dynamic System

	Chapter 7 Using the Simulation Translator
	Converting Models into LabVIEW Code
	Common Warnings

	Appendix A Technical Support and Professional Services
	Glossary
	B-E
	F-L
	M-P
	R-T
	V

