
Hugs ���

The Nottingham and Yale Haskell User�s System

User Manual

Mark P� Jones
Department of Computer Science
The University of Nottingham
Nottingham NG� �RD� England

Technical Report
NOTTCS�TR�����

John C� Peterson
Department of Computer Science

Yale University
New Haven CT� �	
������
� USA

Research Report
YALEU�DCS�RR����

April ����

Contents

� Introduction �

� A technical summary of Hugs ��� �

� Hugs for beginners �

�� Expressions �

�� Commands � 	

�
 Programs � 	

� Starting Hugs �

��� Environment options ��
��� Options ��

� Set search path ��
� Set editor ��
� Print statistics �

� Print type after evaluation ��
� Terminate on error ��
� Garbage collector noti�cation �

� Literate modules �	
� List �les loaded ��
� Display dots while loading ��
� Use �show� to display results ��
� Detailed kind errors ��
� Import chasing ��
� Set heap size ��
� Set prompt ��
� Set repeat string ��

� Hugs commands ��

�� Basic commands ��
� Evaluate expression ��
� View or change settings �	
� Shell escape ��
� List commands ��
� Change module ��
� Change directory ��
� Force a garbage collection ��

i

� Exit the interpreter ��

�� Loading and editing modules and projects � � � � � � � � � � � � � ��

� Load de�nitions from module ��
� Load additional �les �
�
� Repeat last load command �
�
� Load project �
�
� Edit �le �
�
� Find de�nition �

�
 Finding information about the system � � � � � � � � � � � � � � � �

� List names �

� Print type of expression �
�
� Display information about names � � � � � � � � � � � � � � � � �
�

� Library overview �	

	�� Standard Libraries �
�
	�� Portable Libraries �
�
	�
 Hugs�Speci�c Libraries ��

 Other Hugs programs ��

��� Stand�alone program execution �	
��� Hugs for Windows ��

	 Conformance with Haskell ��� �	

��� Haskell ��� features not in Hugs ��
��� Libraries ��
��
 Haskell ��� extensions �
�

� Pointers to further information ��

References ��

ii

Conditions of use� duplication and

distribution

Hugs ��� is copyright c� The University of Nottingham and Yale University�
����������

Permission to use� copy� modify� and distribute Hugs for any personal or educa�
tional use without fee is hereby granted� provided that�

�a� This copyright notice is retained in both source code and supporting doc�
umentation�

�b� Modi�ed versions of this software are redistributed only if accompanied
by a complete history �date� author� description� of modi�cations made�
the intention here is to give appropriate credit to those involved� while
simultaneously ensuring that any recipient can determine the origin of the
software�

�c� The same conditions are also applied to any software system derived either
in full or in part from Hugs�

No part of Hugs may be distributed as a part or accompaniment of any commer�
cial package or product without the explicit written permission of the authors
and copyright holders� The distribution of commercial products which require
or make use of Hugs will normally be permitted if the Hugs distribution is sup�
plied separately to and o�ered at cost price to the purchaser of the commercial
product�

In specifying these conditions� our intention is to permit widespread use of Hugs
while� at the same time� protecting the interests� rights and e�orts of all those
involved� Please contact the authors and copyright holders to arrange alternative
terms and conditions if your intended use of Hugs is not permitted by the terms
and conditions in this notice�

NOTICE� Hugs is provided �as is� without express or implied warranty�

iii

�� Introduction

Hugs ��� is a functional programming system based on Haskell� the de facto
standard for non�strict functional programming languages� This manual should
give you all the information that you need to start using Hugs� However� it is not
intended as a tutorial on either functional programming in general or on Haskell
in particular�

The �rst two sections provide introductory material�

� Section �� A brief technical summary of the main features of Hugs ���� and
the ways that it di�ers from previous releases�

� Section
� A short tutorial on the concepts that you need to understand to
be able to use Hugs�

The remaining sections provide reference material� including�

� Section �� A summary of the command line syntax� environment variables�
and command line options used by Hugs�

� Section
� A summary of commands that can be used within the interpreter�

� Section 	� An overview of the Hugs libraries�

� Section �� Information about other ways of running Hugs programs�

� Section �� A list of di�erences between Hugs ��� and standard Haskell�

� Section �� Pointers to further information�

Whether you are a beginner or a seasoned old�timer� we hope that you will enjoy
working with Hugs� and that� if you will pardon the pun� you will use it to
embrace functional programming�

Acknowledgements� The development of Hugs has bene�ted considerably from
the feedback� suggestions� and bug reports provided by its users� There are too
many people to name here� but thanks are due for all of their contributions� A
special thank you also to our friends and colleagues in the functional programming
groups at Nottingham and at Yale for their input to the current release�

�

�� A technical summary of Hugs ���

Hugs ��� provides an almost complete implementation of Haskell ��� ���� including�

� Lazy evaluation� higher order functions� and pattern matching�

� A wide range of built�in types� from characters to bignums� and lists to
functions� with comprehensive facilities for de�ning new datatypes and type
synonyms�

� An advanced polymorphic type system with type and constructor class
overloading�

� All of the features of the Haskell ��� expression and pattern syntax in�
cluding lambda� case� conditional and let expressions� list comprehensions�
do�notation� operator sections� and wildcard� irrefutable and �as� patterns�

� An implementation of the main Haskell ��� primitives for monadic I�O� with
support for simple interactive programs� access to text �les� handle�based
I�O� and exception handling�

� An almost complete implementation of the Haskell module system� The
primary omission is that mutually recursive modules are not yet supported�

Hugs is implemented as an interpreter that provides�

� A relatively small� portable system that can be used on a range of di�erent
machines� from home computers� to Unix workstations�

� A read�eval�print loop for displaying the value of each expression that is
entered into the interpreter�

� Fast loading� type checking� and compilation of Haskell programs� with
facilities for automatic loading of imported modules�

� Integration with an external editor� chosen by the user� to allow for rapid
development� and for location of errors�

� Modest browsing facilities that can be used to �nd information about the
operations and types that are available�

�

Hugs is a successor to Gofer � an experimental functional programming system
that was �rst released in September ���� � and users of Gofer will see much that
is familiar in Hugs� However� Hugs o�ers much greater compatibility with the
Haskell standard� indeed� the name Hugs was originally chosen as a mnemonic
for the �Haskell users� Gofer system��

There have been many modi�cations and enhancements to Hugs since its �rst
release on Valentines day� February ��� in ���
� Some of the most obvious im�
provements include�

� Full support for new Haskell ��
 and ��� features� including the labelled
�eld syntax� do�notation� newtype� strictness annotations in datatypes� the
Eval class� ISO character set� etc�

� Support for Haskell modules� and a growing collection of library modules�
that includes facilities for X window and Win
� programming�

� User interface enhancements� particularly the import chasing and search
pathfeatures� which were motivated by a greater emphasis on the role of
libraries in Haskell ����

� Small improvements in runtime performance� and more reliable space usage�
thanks to the use of non�conservative garbage collection during program
execution�

� A graphical user interface for the Hugs systems that runs on the Windows
operating system�

There have also been a number of other enhancements� and �xes for bugs in
previous releases� some more serious than others�

�� Hugs for beginners

This section covers the basics that you need to understand to start using Hugs�
Most of the points discussed here will be familiar to anyone with experience of
previous versions of Hugs or Gofer� To begin with� we need to start the inter�
preter� the usual way to do this is by using the command hugs� which produces
a startup banner something like the following��

��� ��� ��� ��� ���������� ����������

� � � � � � � � � �������� � �������� Hugs ���

� ����� � � � � � � � ����� � ������� The Nottingham and Yale

� ���� � � � � � � � �� � ������� � Haskell User�s System

� � � � � ����� � � ����� � �������� � February� ���	

���� ���� ����������� ����������� �����������

Copyright
c� The University of Nottingham and Yale University� ��������	�

Bug reports
 hugs�bugs�haskell�org� Web
 http
��www�haskell�org�hugs�

Reading script file ��Hugs�lib�Prelude�hs�

Hugs session for

�Hugs�lib�Prelude�hs

The �le �Hugs�lib�Prelude�hs mentioned here contains standard de�nitions
that are loaded into Hugs each time that the interpreter is started� the �lename
will vary from one installation to the next�� You may notice a pause while the
interpreter is initialized and the prelude de�nitions are loaded into the system�

��� Expressions

In essence� using Hugs is just like using a calculator� the interpreter simply eval�
uates each expression that is entered� printing the results as it goes�

Prelude�
������

��

�On Windows ���NT� the installation procedure adds Hugs to the start menu� You can also
start the interpreter by double clicking on a �hs or �lhs �le�

�If Hugs does not load correctly� and complains that it cannot �nd the prelude� then Hugs
has not been installed correctly and you should look at the installation instructions�

�

Prelude� sum �������

��

Prelude�

The Prelude� characters at the begining of the �rst� third and �fth lines here is
the Hugs prompt� This indicates that the system is ready to accept input from
the user� and that it will use de�nitions from the module Prelude module to
evaluate each expression that is entered� The Hugs prelude is a special module
that contains de�nitions for the built�in operations of Haskell� such as �� �� and
sum� In response to the �rst prompt� the user entered the expression ����	�
�
which was evaluated to produce the result ��� In response to the second prompt�
the user typed the expression sum
������� The notation
������ represents
the list of integers between � and �� inclusive� and sum is a prelude function that
calculates the sum of a list of numbers� So the result obtained by Hugs is�

� � � � � � � � � � � � 	 � � � � � �� � ���

In fact� we could have typed this sum directly into Hugs�

Prelude� � � � � � � � � � � � � 	 � � � � � ��

��

Prelude�

Unlike many calculators� however� Hugs is not limited to working with num�
bers� expressions can involve many di�erent types of value� including numbers�
booleans� characters� strings� lists� functions� and user�de�ned datatypes� Some
of these are illustrated in the following example�

Prelude�
not True� �� False

False

Prelude� reverse �Hugs is cool�

�looc si sguH�

Prelude� filter even �������

��� �� �� �� ���

Prelude� take �� fibs where fibs � �
�
zipWith
�� fibs
tail fibs�

��� �� �� �� �� �� �� ��� ��� ���

Prelude�

You cannot create new de�nitions at the command prompt�these must be placed
in �les and loaded� as described later� The de�nition of fib in the last example
above is local to that expression and will not be remembered for later use� Also�
the expressions entered must �t on a single line�

Hugs even allows whole programs to be used as values in calculations� For exam�
ple� putStr �hello� � is a simple program that outputs the string �hello� ��

Combining this with a similar program to print the string �world�� gives�

Prelude� putStr �hello� � �� putStr �world�

hello� world

Prelude�

Just as there are standard operations for dealing with numbers� so there are stan�
dard operations for dealing with programs� For example� the �� operator used
here constructs a new program from the programs supplied as its operands� run�
ning one after the other� Normally� Hugs just prints the value of each expression
entered� But� as this example shows� if the expression evaluates to a program�
then Hugs will run it instead� Hugs distinguishes programs from other expres�
sions by looking at the type of the expression entered� The type of the putStr

function� IO �	� identi�es it as a program to be executed rather than a value to
be printed�

��� Commands

Each line that you enter in response to the Hugs prompt is treated as a command
to the interpreter� For example� when you enter an expression into Hugs� it is
treated as a command to evaluate that expression� and to display the result�
There are two commands that are particularly worth remembering�

� �q exits the interpreter� On most systems� you can also terminate Hugs by
typing the end�of��le character�

� �� prints a list of all the commands� which can be useful if you forget the
name of the command that you want to use�

Like most other commands in Hugs� these commands both start with a colon� ��
The full set of Hugs commands is described in Section
�

Note that the interrupt key �control�C or control�Break on most systems� can be
used to abandon the process of compiling �les or evaluating expressions� When
the interrupt is detected� Hugs prints �Interrupted�� and returns to the prompt
so that further commands can be entered�

��� Programs

Functions like sum� �� and take� used in the examples above� are all de�ned in the
Hugs prelude� you can actually do quite a lot using just the types and operations
provided by the prelude� But� in general� you will also want to de�ne new types

	

and operations� storing them in modules that can be loaded and used by Hugs� A
module is simply a collection of de�nitions stored in a �le� For example� suppose
we enter the following module�

module Fact where

fact

 Integer �� Integer

fact n � product ����n�

into a �le called Fact�hs� �By convention� Hugs modules are stored in �les ending
with the characters �hs� The �le name should match the name of the module it
contains�� The product function used here is also de�ned in the prelude� and can
be used to calculate the product of a list of numbers� just as you might use sum
to calculate the corresponding sum� So the line above de�nes a function fact

that takes an argument n and calculates its factorial� In standard mathematical
notation� fact n � n�� which is usually de�ned by an equation�

n� � � � � � ��� �
n��� � n

Once you become familiar with the notation� you will see that the Hugs de�nition
is really very similar to this informal� mathematical version� the factorial of a
number n is the product of the numbers from � to n�

Before we can use this de�nition in a Hugs session� we have to load Fact�hs into
the interpreter� One of the simplest ways to do this uses the �load command�

Prelude�
load fact�hs

Reading file �fact�hs�

Hugs session for

�Hugs�lib�Prelude�hs

Fact�hs

Fact�

Notice the list of �lenames displayed after Hugs session for�� this tells you
which module �les are currently being used by Hugs� the �rst of which is always
the standard prelude� The prompt is now Fact and evaluation will take place
within this new module� We can start to use the fact function that we have
de�ned�

Fact� fact �

	��

Fact� fact � � fact 	

�	��

Fact� fact 	 �div� fact �

	

Fact�

�

As another example� the standard formula for the number of di�erent ways of
choosing r objects from a collection of n objects is n� �div� �r� � �n�r	�	�
One simple and direct �but otherwise not particularly good� de�nition for this
function in Hugs is as follows�

comb n r � fact n �div�
fact r � fact
n�r��

One way to use this function is to include its de�nition as part of an expression
entered in directly to Hugs�

Fact� comb � � where comb n r � fact n �div�
fact r � fact
n�r��

��

Fact�

The de�nition of comb here is local to this expression� If we want to use comb

several times� then it would be sensible to add its de�nition to the �le Fact�hs�
Once this has been done� and the Fact�hs �le has been reloaded� then we can
use the comb function like any other built�in operator�

Fact�
reload

Reading file �fact�hs�

Hugs session for

�Hugs�lib�Prelude�hs

Fact�hs

Fact� comb � �

��

Fact�

�

�� Starting Hugs

On Unix machines� the Hugs interpreter is usually started with a command line
of the form�

hugs �option � file� ���

On Windows �
�NT� Hugs may be started by selecting it from the start menu
or by double clicking on a �le with the �hs or �lhs extension� �This manual
assumes that Hugs has already been successfully installed on your system��

Hugs uses options to set system parameters� These options are distinguished by a
leading � or � and are used to customize the behaviour of the interpreter� When
Hugs starts� the interpreter performs the following tasks�

� Options in the environment are processed� The variable HUGSFLAGS holds
these options� On Windows �
�NT� the registry is queried if HUGSFLAGS is
unde�ned�

� Command line options are processed�

� Internal data structures are initialized� In particular� the heap is initialized�
and its size is �xed at this point� if you want to run the interpreter with a
heap size other than the default� then this must be speci�ed using options
on the command line� in the environment or in the registry�

� The prelude �le is loaded� The interpreter will look for the prelude �le
on the path speci�ed by the �P option� If the prelude� located in the �le
Prelude�hs� cannot be found in one of the path directories or in the current
directory� then Hugs will terminate� Hugs will not run without the prelude
�le�

� Program �les speci�ed on the command line are loaded� The e�ect of a
command hugs f� ��� fn is the same as starting up Hugs with the hugs
command and then typing �load f� ��� fn� In particular� the interpreter
will not terminate if a problem occurs while it is trying to load one of the
speci�ed �les� but it will abort the attempted load command�

The environment variables and command line options used by Hugs are described
in the following sections�

�

��� Environment options

Before options on the command line are processed� initial option values are set
from the environment� On Windows �
�NT� these settings are added to the reg�
istry during setup� On other systems� the initial settings are determined by the
HUGSFLAGS environment variable� The syntax used in this case is the same as on
the command line� options are single letters� preceeded by � or �� and sometimes
followed by a value� Option settings are separated by spaces� option values con�
taining spaces are encoded using Haskell string syntax� The environment should
be set up before the interpreter is used so that the search path is correctly de�ned
to include the prelude� The built�in defaults� however� may allow Hugs to be run
without any help from the environment on some systems�

It is usually more convenient to save preferred option settings in the environ�
ment rather than specifying them on the command line� they will then be used
automatically each time the interpreter is started� The method for setting these
options depends on the machine and operating system that you are using� and on
the way that the Hugs system was installed� The following examples show some
typical settings for Unix machines and PCs�

� The method for setting HUGSFLAGS on a Unix machine depends on the choice
of shell� For example� a C�shell user might add something like the following
to their �cshrc �le�

set HUGSFLAGS �P�usr�Hugs�lib
�usr�Hugs�libhugs �E�vi ��d �s�

The P option is used to set the search path and the E is used to set the editor�
The string quotes are necessary for the value of the E option becauses it
contains spaces� The setting for the path assumes that the system has been
installed in �usr�local�Hugs and will need to be modi�ed accordingly if a
di�erent directory was chosen� The editor speci�ed here is vi� which allows
the user to specify a startup line number by preceding it with a � character�
The settings are easily changed to accommodate other editors�

If you are installing Hugs for the bene�t of several di�erent users� then
you should probably use a script �le that sets appropriate values for the
environment variables� and then invokes the interpreter�

 ��bin�sh

HUGSFLAGS��usr�Hugs�lib
�usr�Hugs�libhugs �E�vi ��d �s� �s

export HUGSFLAGS

exec �usr�local�bin�hugs !�

One advantage of this approach is that individual users do not have to
worry about setting the environment variables themselves� In addition to

��

the E and P options� other options�such as �s in this example�can be set�
It is easy for more advanced users to copy and customize a script like this
to suit their own needs�

� Users of DOS or Windows
�� might add the following line to autoexec�bat�

set HUGSFLAGS��P"hugs"lib#"hugs"libhugs �E�vi ���d ��s�

The setting for the path assumes that the system has been installed in
a top�level hugs directory� and will need to be modi�ed accordingly if a
di�erent directory was chosen� In a similar way� the setting for the editor
will only work if you have installed the editor program� in this case vi� that
it refers to�

� On Windows �
�NT� the setup program initializes the environment� and
this can be changed subsequently �on these systems only� by using either the
�set command or a registry editor� The InstallShield script that performs
the installation initializes the path using the installation directory� other
directories can be added using �P� Installed options are stored under the
HKEY�LOCAL�MACHINE key� changes to these options using �set are placed
under HKEY�CURRENT�USER so that di�erent users do not alter each other�s
options�

For completeness� we should also mention the other environment variables that
are used by Hugs�

� The SHELL variable on a Unix machine� or the COMSPEC variable on a DOS
machine� determines which shell is used by the �� command�

� The EDITOR variable is used to try and locate an editor if no editor option
has been set� Note� however� that this variable does not normally provide
the extra information that is needed to be able to start the editor at a
speci�c line in the input �le�

��� Options

The behaviour of the interpreter� particularly the read�eval�print loop� can be
customized using options� For example� you might use�

hugs �i �g �h��K

to start the interpreter with the i option �import chasing� disabled� the g option
�garbage collector messages� enabled� and with a heap of thirty thousand cells�

��

As this example suggests� many of the options are toggles� meaning that they
can either be switched on �by preceding the option with a � character� or o�
�by using a � character�� Options may also be grouped together� For example�
hugs �stf �le is equivalent to hugs �s �t �f �l �e�

Option settings can be speci�ed in a number of di�erent ways�the HUGSFLAGS

environment variable� the Windows registry� the command line� and the �set

command�but the same syntax is used in each case� To avoid any confusion
with �lenames entered on the command line� option settings must always begin
with a leading � or � character� However� in some cases�the h� p� r� P� and
E options�the choice is not signi�cant� With the exception of the heap size
option� h� all options can be changed while the interpreter is running using the
�set command� The same command can be used �without any arguments� to
display a summary of the available options and to inspect their current settings�

The complete set of Hugs options is described in the sections below�

Set search path �Phpathi

The �Phpathi option changes the Hugs search path to the speci�ed hpathi� The
search path is usually initialized in the environment and should always include
the directory containing the Hugs prelude and the standard libraries� When an
unknown module is imported� Hugs searches for a �le with the same name as the
module along this path� The current directory is always searched before the path
is used� Directory names should be separated by colons or� on Windows�DOS
machines� by semicolons� Empty components in the path refer to the prior value
of the path� For example� setting the path to dir� �dir� on Windows�DOS�
would add dir to the front of the current path� Within the path� �Hugs� refers
to the directory containing the Hugs libraries so one might use a path such as
�Hugs��lib��Hugs��lib�hugs�

Set editor �Ehcmdi

A �Ehcmdi option can be used to change the editor string to the speci�ed hcmdi
while the interpreter is running� The editor string is usually initialized from the
environment when the interpreter starts running�

Any occurrences of �d and �s in the editor option are replaced by the start line
number and the name of the �le to be edited� respectively� when the editor is
invoked� If speci�ed� the line number parameter is used to let the interpreter
start the editor at the line where an error was detected� or� in the case of the
�find command� where a speci�ed variable was de�ned�

��

Other editors can be selected� For example� you can use the following value to
con�gure Hugs to use emacs�

�E�emacs ��d �s�

More commonly� emacsclient or gnuclient is used to avoid starting a new
emacs with every edit�

OnWindows�DOS� you can use �Eedit for the standard DOS editor� or �Enotepad
for the Windows notepad editor� However� neither edit or notepad allow you to
specify a start line number� so you may prefer to install a di�erent editor�

Print statistics �s��s

Normally� Hugs just shows the result of evaluating each expression�

Prelude� map
"x �� x�x� �������

��� �� �� ��� ��� ��� ��� ��� ��� ����

Prelude� �����

��� �� �� �� $Interrupted�%

Prelude�

With the �s option� the interpreter will also display statistics about the total
number of reductions and cells� the former gives a measure of the work done�
while the latter gives an indication of the amount of memory used� For example�

Prelude�
set �s

Prelude� map
"x �� x�x� �������

��� �� �� ��� ��� ��� ��� ��� ��� ����

��� reductions� ��� cells�

Prelude� �����

��� �� �� �� $Interrupted�%

�� reductions� �� cells�

Prelude�

Note that the statistics produced by �s are an extremely crude measure of the
behaviour of a program� and can easily be misinterpreted� For example�

� The fact that one expression requires more reductions than another does
not necessarily mean that the �rst is slower� some reductions require much
more work than others� and it may be that the average cost of reductions
in the �rst expression is much lower than the average for the second�

� The cell count does not give any information about residency� which is the
number of cells that are being used at any given time� For example� it
does not distinguish between computations that run in constant space and

�

computations with residency proportional to the size of the input�

One reasonable use of the statistics produced by �s would be to observe general
trends in the behaviour of a single algorithm with variations in its input�

Print type after evaluation �t��t

With the �t option� the interpreter will display both the result and type of each
expression entered at the Hugs prompt�

Prelude�
set �t

Prelude� map
"x �� x�x� �������

��� �� �� ��� ��� ��� ��� ��� ��� ����

 �Int�

Prelude� not True

False

 Bool

Prelude� "x �� x

&&function��

 a �� a

Prelude�

Note that the interpreter will not display the type of an expression if its evaluation
is interrupted or fails with a run�time error� In addition� the interpreter will not
print the type� IO �	� of a program in the IO monad� the interpreter treats these
as a special case� giving the programmer more control over the output that is
produced�

Terminate on error �f��f

In normal use� the evaluation of an expression is abandoned completely if a run�
time error occurs� such as a failed pattern match or an attempt to divide by zero�
For example�

Prelude� �� �div� ��

�

Program error
 $primDivInt � �%

Prelude� �� �div� �� ��

�

Program error
 $primDivInt � �%

Prelude�

This is often useful during program development because it means that errors are
detected as soon as they occur� However� technically speaking� the two expres�
sions above have di�erent meanings� the �rst is a singleton list� while the second
has two elements� Unfortunately� the output produced by Hugs does not allow
us to distinguish between the values�

��

The �f option can be used to make the Hugs printing option a littlemore accurate�
this should normally be combined with �u because the built�in printer is better
than the user�de�ned show functions at recovering from evaluation errors� With
these settings� if the interpreter encounters an irreducible subexpression� then it
prints the expression between a matching pair of braces and attempts to continue
with the evaluation of other parts of the original expression� For the examples
above� we get�

Prelude�
set �u �f

Prelude� �� �div� �� �� value is �bottom�

�$primDivInt � �%�

Prelude� �� �div� �� ��

�$primDivInt � �%� �� �� value is �bottom� ��

Prelude�

Reading an expression in braces as bottom� �� the output produced here shows
the correct values� according to the semantics of Haskell� Of course� it is not
possible to detect all occurrences of bottom like this� such as those produced by
a nonterminating computation�

Prelude� last �����

'C$Interrupted�% �� nothing printed until interrupted

Prelude�

Note that the basic method of evaluation is the same with both the �f and
�f options� all that changes is the way that the printing mechanism deals with
certain kinds of runtime error�

Garbage collector noti�cation �g��g

It is sometimes useful to monitor uses of the garbage collector� and to determine
how many cells are recovered with each collection� If the �g option is set� then
the interpreter will print a message of the form ��Gc�num�� each time that the
garbage collector is invoked� The number after the colon indicates the total
number of cells that are recovered�

As a simple application� we can use garbage collector messages to observe that
an attempt to sum an in�nite list� although non�terminating� will at least run in
constant space�

Prelude�
set �g

Prelude� sum �����

$$Gc
��	��%%$$Gc
��	��%%$$Gc
��	��%%$$Gc
��	��%%$Interrupted�%

Prelude�

�

Garbage collector messages may be printed at almost any stage in a computation
�or indeed while loading� type checking or compiling a �le of de�nitions�� For this
reason� it is often best to turn garbage collector messages o� �using �set �g� for
example� if they are not required�

Literate modules �l��l��e��e

Like most programming languages� Hugs usually treats source �le input as a
sequence of lines in which program text is the norm� and comments play a sec�
ondary role� In Hugs� as in Haskell� comments are introduced by the character
sequences �� and �� ��� ���

An alternative approach� using an idea described by Knuth as �literate program�
ming�� gives more emphasis to comments and documentation� with additional
characters needed to distinguish program text from comments� Hugs supports a
form of literate programming based on an idea due to Richard Bird and originally
implemented as part of the functional programming language Orwell�

In a Hugs literate module� program lines are marked by a � character in the
�rst column� any other line is treated as a program comment� This makes it
particularly easy to write a document which is both an executable Hugs module
and� at the same time� without need for any preprocessing� suitable for use with
document preparation software such as LATEX�

Hugs will treat any input �le with a name ending in �hs as a normal module and
any input �le with a name ending in �lhs as a literate module� If the �l option is
selected� then any other �le loaded into Hugs will be treated as a normal module�
Conversely� if �l is selected� then these �les will be treated as literate modules�

The e�ect of using literate modules can be thought of as applying a preproces�
sor to each input �le that is loaded into Hugs� This has a particularly simple
de�nition in Hugs�

illiterate

 String �� String

illiterate cs � unlines � � � �� xs �
���
xs� &� lines cs �

The system of literate modules that was used in Orwell is a little more complicated
than this and requires the programmer to adopt two further conventions in an
attempt to catch simple errors in literate modules�

� Every input �le must contain at least one line whose �rst character is ��
This prevents modules with no de�nitions �because the programmer has
forgotten to use the � character to mark de�nitions� from being accepted�

�	

� Lines containing de�nitions must be separated from comment lines by one
or more blank lines �i�e�� lines containing only space and tab characters��
This is useful for catching programs where the leading � character has been
omitted from one or more lines in the de�nition of a function� For example�

� map f �� � ��

map f
x
xs� � f x
 map f xs

would be treated as an error�

Hugs will report on errors of this kind whenever the �e option is enabled �the
default setting��

The Haskell Report de�nes a second style of literate programming in which code
is surrounded by �begin�code� and �end�code�� See Appendix C of the Haskell
Report for more information about literate programming in Haskell�

List �les loaded �w��w

By default� Hugs prints a complete list of all the �les that have been loaded into
the system after every successful load or reload command� The �w option can
be used to turn this feature o�� Note that the �info command� without any
arguments� can also be used to list the names of currently loaded �les�

Display dots while loading �����

As Hugs loads each �le into the interpreter� it prints a short sequence of messages
to indicate progress through the various stages of parsing the module� dependency
analysis� type checking� and compilation� With the default setting� ��� the in�
terpreter prints the name of each stage� backspacing over it to erase it from the
screen when the stage is complete� If you are fortunate enough to be using a fast
machine� you may not always see the individual words as they �ash past� After
loading a �le� your screen will typically look something like this�

Prelude�
l Array

Reading file ��Hugs�lib�Array�hs�

Hugs session for

�Hugs�lib�Prelude�hs

�Hugs�lib�Array�hs

Prelude�

On some systems� the use of backspace characters to erase a line may not work
properly�for example� if you try to run Hugs from within emacs� In this case�

��

you may prefer to use the �� setting which prints a separate line for each stage�
with a row of dots to indicate progress�

Prelude�
load Array

Reading file ��Hugs�lib�Array�hs�

Parsing��

Dependency analysis��

Type checking��

Compiling��

Hugs session for

�Hugs�lib�Prelude�hs

�Hugs�lib�Array�hs

Prelude�

This setting can also be useful on very slow machines where the growing line of
dots provides con�rmation that the interpreter is making progress through the
various stages involved in loading a �le� You should note� however� that the
mechanisms used to display the rows of dots can add a substantial overhead to
the time that it takes to load �les� in one experiment� a particular program took
nearly �ve times longer to load when the �� option was used�

Use �show� to display results �u��u

In normal use� Hugs displays the value of each expression entered into the inter�
preter by applying the standard prelude function�

show

 Show a �� a �� String

to it and displaying the resulting string of characters� This approach works
well for any value whose type is an instance of the standard Show class� for
example� the prelude de�nes instances of Show for all of the built�in datatypes� It
is also easy for users to extend the class with new datatypes� either by providing
a handwritten instance declaration� or by requesting an automatically derived
instance as part of the datatype de�nition� as in�

data Rainbow � Red � Orange � Yellow � Green � Blue � Indigo � Violet

deriving Show

The advantage of using show is that it allows programmers to display the results
of evaluations in whatever form is most convenient for users�which is not always
the same as the way in which the values are represented�

This is probably all that most users will ever need� However� there are some cir�
cumstances where it is not convenient� for example� for certain kinds of debugging
or for work with datatypes that are not instances of Show� In these situations�

��

the �u option can be used to prevent the use of show� In its place� Hugs will use
a built�in printing mechanism that works for all datatypes� and uses the repre�
sentation of a value to determine what gets printed� At any point� the default
printing mechanism can be restored by setting �u�

Detailed kind errors �k��k

Haskell uses a system of kinds to ensure that type expressions are well�formed�
for example� to make sure that each type constructor is applied to the appropriate
number of arguments� For example� the following program�

module Main where

data Tree a � Leaf a � Tree a
'
 Tree a

type Example � Tree Int Bool

will cause an error�

ERROR �Main�hs�
line ��
 Illegal type �Tree Int Bool� in

constructor application

The problem here is that Tree is a unary constructor of kind � �� �� but the
de�nition of Example uses it as a binary constructor with at least two arguments�
and hence expecting a kind of the form �� �� � �� k	� for some kind k�

By default� Hugs reports problems like this with a simple message like the one
shown above� However� if the �k option is selected� then the interpreter will print
a more detailed version of the error message� including details about the kinds of
the type expressions that are involved�

ERROR �Main�hs�
line ��
 Kind error in constructor application

��� expression
 Tree Int Bool

��� constructor
 Tree

��� kind
 � �� �

��� does not match
 � �� a �� b

In addition� if the �k option is used� then Hugs will also include information
about kinds in the information produced by the �info command�

Prelude�
info Tree

�� type constructor with kind � �� �

data Tree a

�� constructors

Leaf

 a �� Tree a

'
�

 Tree a �� Tree a �� Tree a

��

�� instances

instance Eval
Tree a�

Prelude�

Import chasing �i��i

Import chasing is a simple� but �exible mechanism for dealing with programs
that involve multiple modules� It works in a natural way� using the information
in import statements at the beginning of modules� and is particularly useful for
large programs� or for programs that use standard Hugs libraries�

For example� consider a module Demo�hs that requires the facilities provided
by the STArray library� This dependency might be re�ected by including the
following import statement at the beginning of Demo�hs�

import STArray

Now� if we try to load this module into Hugs� then the system will automatically
search for the STArray library and load it into Hugs� before Demo�hs is loaded�
In fact� the STArray library module also begins with some import statements�

import ST

import Array

So� Hugs will actually load the ST and Array libraries �rst� then the STArray

library� and only then will it try to read the rest of Demo�hs�

Prelude�
load Demo

Reading file �Demo�hs�

Reading file ��hugs�libhugs�STArray�hs�

Reading file ��hugs�libhugs�ST�hs�

Reading file ��hugs�lib�Array�hs�

Reading file ��hugs�libhugs�STArray�hs�

Reading file �Demo�hs�

Demo�

Initially� the interpreter reads only the �rst part of any module loaded into the
system� upto and including any import statements� Only one module is allowed
in each �le� �les with no module declaration are assumed to declare the Main

module� If there are no imports� or if the modules speci�ed as imports have
already been loaded� then the system carries on and loads the module as normal�
On the other hand� if the module includes import statements for modules that
have not already been loaded� then the interpreter postpones the task of reading
the current module until all of the speci�ed imports have been successfully loaded�

��

This explains why Demo�hs and STArray�hs are read twice in the example above�
�rst to determine which imports are required� and then to read in the rest of the
�le once the necessary imports have been loaded�

The list of directories and �lenames that Hugs tries in an attempt to locate the
source for a module Mod named in an import statement can be speci�ed by�

�
dir��Mod���suf� � dir &� �d� �� path �� �����

suf &� ���� ��hs�� ��lhs���

The search starts in the directory d where the �le containing the import statement
was found� then tries each of the directories in the current path �as de�ned by
the �P option�� represented here by path� and ends with ��� which gives a search
relative to the current directory� The fact that the search starts in d is particularly
important because it means that you can load a multi��le program into Hugs
without having to change to the directory where its source code is located� For
example� suppose that �tmp contains the �les� A�hs� B�hs� and C�hs� that B

imports A� and that C imports B� Now� regardless of the current working directory�
you can load the whole program with the command �load �tmp�C� the import
in C will be taken as a reference to �tmp�B�hs� while the import in that �le will
be taken as a reference to �tmp�A�hs�

Import chasing is often very useful� but you should also be aware of its limitations�

� Mutually recursive modules are not supported� if A imports B� then B must
not import A� either directly or indirectly through another one of its imports�

� Import chasing assumes a direct mapping from module names to the names
of the �les that they are stored in� If A imports B� then the code for B must
be in a �le called either B� B�hs� or B�lhs� and must be located in one of
the directories speci�ed above�

On rare occasions� it is useful to specify a particular pathname as the target
for an import statement� Hugs allows string literals to be used as module
identi�ers for this purpose�

import ����TypeChecker�Types�hs�

Note� however� that this is a nonstandard feature of Hugs� and that it is not
valid Haskell syntax� You should also be aware that Hugs uses the names
of �les in deciding whether a particular import has already been loaded� so
you should avoid situations where a single �le is referred to by more than
one name� For example� you should not assume that Hugs will be able to
determine whether Demo�hs and ��Demo�hs are references to the same �le�

��

Import chasing is usually enabled by default �setting �i�� but it can also be
disabled using the �i option�

Set heap size �hhsizei

A �hhsizei option can be used to request a particular heap size for the interpreter�
the total number of cells that are available at any one time�when Hugs is �rst
loaded� The request will only be honoured if it falls within a certain range� which
depends on the machine� and the version of Hugs that is used� The hsizei param�
eter may include a K or k su�x� which acts as a multiplier by ������ For example�
either of the following commands�

hugs �h�����

hugs �h��K

will usually start the Hugs interpreter with a heap of �
���� cells� Cells are
generally � bytes wide �except on the �	 bit Hugs running on DOS� and Hugs
allocates a single heap� Note that the heap is used to hold an intermediate
�parsed� form of each module while it is being read� type checked and compiled�
It follows that� the larger the module� the larger the heap required to enable that
module to be loaded into Hugs� In practice� most large programs are written
�and loaded� as a number of separate modules which means that this does not
usually cause problems�

Unlike all of the other options described here� the heap size setting cannot be
changed fromwithin the interpreter using a �set command� However� on Window
�
�NT� changing the heap size with �set will a�ect the next running of Hugs
since it saves all options in the registry�

Set prompt �phstringi

A �phstri option can be used to change the prompt to the speci�ed string� hstri�

Prelude�
set �p�Hugs� �

Hugs�
set �p�(�

(

Note that you will need to use quotes around the prompt string if you want to
include spaces or special characters� Any �s in the prompt will be replaced by
the current module name� The default prompt is ��s� ��

Set repeat string �rhstringi

Hugs allows the user to recall the last expression entered into the interpreter by

��

typing the characters �� as part of the next expression�

Prelude� map
��� �������

��� �� �� �� �� 	� �� �� ��� ���

Prelude� filter even !!

��� �� �� �� ���

Prelude�

A �rhstri option can be used to change the repeat string�the symbol used to
recall the last expression�to hstri� For example� users of Standard ML might be
more comfortable using�

Prelude�
set �rit

Prelude� � � 	

��

Prelude� it � it

��

Prelude�

Another reason to change the repeat string is to avoid clashes with uses of the
same symbol in a particular program� for example� if �� is de�ned as an operator
in a program�

Note that the repeat string must be a valid Haskell identi�er or symbol� although
it will always be parsed as an identi�er� If the repeat string is set to a value
that is neither an identi�er or symbol �for example� �r��� then the repeat last
expression facility will be disabled�

�

�� Hugs commands

Hugs provides a number of commands that can be used to evaluate expressions�
to load �les� and to inspect or modify the behaviour of the system while the
interpreter is running� Almost all of the commands in Hugs begin with the �

character� followed by a short command word� For convenience� all but the �rst
letter of a command may be omitted� For example� �l� �s and �q can be used
as abbreviations for the �load� �set and �quit commands� respectively�

Most Hugs commands take arguments� separated from the command itself� and
from one another� by spaces� The Haskell syntax for string constants can be
used to enter parts of arguments that contain spaces� newlines� or other special
characters� For example� the command�

load My File

will be treated as a command to load two �les� My and File� Any of the following
commands can be used to load a single �le� My File� whose name includes an
embedded space�

load �My File�

load �My"SPFile�

load �My" " File�

load My� �File

You may wish to study the lexical syntax of Haskell strings to understand some
of these examples� In practice� �lenames do not usually include spaces or special
characters and can be entered without surrounding quotes� as in�

load fact�hs

The full set of Hugs commands is described in the following sections�

��� Basic commands

Evaluate expression hexpri

To evaluate an expression� the user simply enters it at the Hugs prompt� This
is treated as a special case� without the leading colon that is required for other

��

commands� The expression must �t on a single line� there is no way to continue
an expression onto the next line of input to the interpreter� The actual behaviour
of the evaluator depends on the type of hexpri�

� If hexpri has type IO �	� then it will be treated as a program using the I�O
facilities provided by the Haskell IO monad�

Prelude� putStr �Hello� world�

Hello� world

Prelude�

� In any other case� the value produced by the expression is converted to a
string by applying the show function from the standard prelude� and the
interpreter uses this to print the result�

Prelude� �Hello� �� �� � �� �world�

�Hello� world�

Prelude�

Unlike some previous versions of Hugs� there is no special treatment for
values of type String� to display a string without the enclosing quotes
and special escapes� you should turn it into a program using the putStr

function� as shown above�

The interpreter will not evaluate an expression that contains a syntax error� a
type error� or a reference to an unde�ned variable�

Prelude� sum �����

ERROR
 Syntax error in expression
unexpected ����

Prelude� sum �a�

ERROR
 Type error in application

��� expression
 sum �a�

��� term
 �a�

��� type
 Char

��� does not match
 �a�

Prelude� sum ����n�

ERROR
 Undefined variable �n�

Prelude�

Another common problem occurs if there is no show function for the expression
entered�that is� if its type is not an instance of the Show class� For example�
suppose that a module de�nes a type T without a Show instance�

module Test where

data T � A � B

�

With just these de�nitions� any attempt to evaluate an expression of type T will
cause an error�

Test� A

ERROR
 Cannot find �show� function for

��� expression
 A

��� of type
 T

Test�

To avoid problems like this� you will need to add an instance of the Show class
to your program� One of the simplest ways to do that is to request a derived
instance of Show as part of the datatype de�nition� as in�

module Test where

data T � A � B deriving Show

Once this has been loaded� Hugs will evaluate and display values of type T�

Test� A

A

Test� take �
cycle �A�B��

�A� B� A� B� A�

Test�

Values in the IO monad are only treated as programs if they return �	� For
example� getChar has type IO Char� so it is printed using show�

Prelude� getChar

&&IO Action��

Prelude�

Hugs will not execute this expression as a program because it does not specify
what should be done with the character returned by getChar� If you want to run
getChar as a program and� for example� discard its result� then you must do this
explicitly�

Prelude� do getChar# return
�

w

Prelude�

You should also note that the behaviour of the evaluator can be changed while
the interpreter is running by using the �set command to modify option settings�

View or change settings �set
hoptionsi�

Without any arguments� the �set command displays a list of the options and
their current settings� The following output shows the default settings on a

�	

typical machine�

Prelude�
set

TOGGLES
 groups begin with ��� to turn options on�off resp�

s Print no� reductions�cells after eval

t Print type after evaluation

f Terminate evaluation on first error

g Print no� cells recovered after gc

l Literate files as default

e Warn about errors in literate files

� Print dots to show progress

w Always show which files loaded

k Show kind errors in full

u Use �show� to display results

i Chase imports while loading files

OTHER OPTIONS

leading � or � makes no difference�

hnum Set heap size
cannot be changed within Hugs�

pstr Set prompt string to str

rstr Set repeat last expression string to str

Pstr Set search path for modules to str

Estr Use editor setting given by str

Current settings
 �fekui �stgl�w �h������ �p�(� �r!!

Search path
 �P�Hugs�lib
�Hugs�libhugs

Editor setting
 �E�vi ��d �s�

Prelude�

Refer to Section ��� for more detailed descriptions of each of these option settings�

The �set command can also be used to change options by supplying the required
settings as arguments� For example�

Prelude�
set �st

Prelude� � � �

�

 Int

� reductions� � cells�

Prelude�

On Windows �
�NT� all option settings are written out to the registry when a
�set command is executed� and will be used by subsequent executions of Hugs�

Shell escape ��
hcommandi�

A ��hcmdi command can be used to execute the system command hcmdi without
leaving the Hugs interpreter� For example� ��ls �or ��dir on DOS machines�
can be used to list the contents of the current directory� For convenience� the ��
command can be abbreviated to a single � character�

��

The �� command� without any arguments� starts a new shell�

� On a Unix machine� the SHELL environment variable is used to determine
which shell to use� the default is �bin�sh�

� On an DOS machine� the COMSPEC environment variable is used to determine
which shell to use� this is usually COMMAND�COM�

Most shells provide an exit command to terminate the shell and return to Hugs�

List commands ��

The �� command displays the following summary of all Hugs commands�

Prelude�
(

LIST OF COMMANDS
 Any command may be abbreviated to
c where

c is the first character in the full name�

load &filenames� load modules from specified files

load clear all files except prelude

also &filenames� read additional module files

reload repeat last load command

project &filename� use project file

edit &filename� edit file

edit edit last file

module &module� set module for evaluating expressions

&expr� evaluate expression

type &expr� print type of expression

(display this list of commands

set &options� set options

set help on options

names �pat� list names currently in scope

info &names� describe named objects

find &name� edit module containing definition of name

�command shell escape

cd dir change directory

gc force garbage collection

quit exit Hugs interpreter

Prelude�

Change module �module hmodulei

A �module hmodulei command changes the current module to one given by
hmodulei� This is the module in which evaluation takes place and in which ob�
jects named in commands are resolved� The speci�ed module must be part of the
current program� If no module is speci�ed� then the last module to be loaded is

��

assumed� �Note that the name of the current module is usually displayed as part
of the Hugs prompt��

Change directory �cd hdirectoryi

A �cd hdiri command changes the current working directory to the path given
by hdiri� If no path is speci�ed� then the command is ignored�

Force a garbage collection �gc

A �gc command can be used to force a garbage collection of the interpreter heap�
and to print the number of unused cells obtained as a result�

Prelude�
gc

Garbage collection recovered ��	�� cells

Prelude�

Exit the interpreter �quit

The �quit command terminates the current Hugs session�

��� Loading and editing modules and projects

Load de�nitions from module �load
h�lenamei ����

The �load command removes any previously loaded modules� and then attempts
to load the de�nitions from each of the listed �les� one after the other� If one of
these �les contains an error� then the load process is suspended and a suitable
error message will be displayed� Once the problem has been corrected� the load
process can be restarted using a �reload command� On some systems� the load
process will be restarted automatically after a �edit command� �The exception
occurs on Windows �
�NT because of the way that the interpreter and editor are
executed as independent processes��

If no �le names are speci�ed� the �load command just removes any previously
loaded de�nitions� leaving just the de�nitions provided by the prelude�

The �load command uses the list of directories speci�ed by the current path to
search for module �les� We can specify the list of directory and �lename pairs�
in the order that they are searched� using a Haskell list comprehension�

�
dir�file��suf� � dir &� ���� �� path� suf &� ���� ��hs�� ��lhs���

��

The file mentioned here is the name of the module �le that was entered by the
user� while path is the current Hugs search path� The search starts with the
directory ��� which usually represents a search relative to the current working
directory� So� the very �rst �lename that the system tries to load is exactly the
same �lename entered by the user� However� if the named �le cannot be accessed�
then the system will try adding a �hs su�x� and then a �lhs su�x� and then it
will repeat the process for each directory in the path� until either a suitable �le
has been located� or� otherwise� until all of the possible choices have been tried�
For example� this means that you do not have to type the �hs su�x to load a
�le Demo�hs from the current directory� provided that you do not already have
a Demo �le in the same directory� In the same way� it is not usually necesary to
include the full pathname for one of the standard Hugs libraries� For example�
provided that you do not have an Array� Array�hs� or Array�lhs �le in the
current working directory� you can load the standard Array library by typing
just �load Array�

Load additional �les �also
h�lenamei ����

The �also command can be used to load module �les� without removing any that
have previously been loaded� �However� if any of the previously modules have
been modi�ed since they were last read� then they will be reloaded automatically
before the additional �les are read��

If successful� a command of the form �load f� �� fn is equivalent to the se�
quence of commands�

load

also f�

�

�

also fn

In particular� �also uses the same mechanisms as �load to search for modules�

Repeat last load command �reload

The �reload command can be used to repeat the last load command� If none
of the previously loaded �les has been modi�ed since the last time that it was
loaded� then �reload will not have any e�ect� However� if one of the modules
has been modi�ed� then it will be reloaded� Note that modules are loaded in a
speci�c order� with the possibility that later modules may import earlier ones�
To allow for this� if one module has been reloaded� then all subsequent modules
will also be reloaded�

�

This feature is particularly useful in a windowing environment� If the interpreter
is running in one window� then �reload can be used to force the interpreter to
take account of changes made by editing modules in other windows�

Load project �project
hproject �lei�

Project �les were originally introduced to ease the task of working with programs
whose source code was spread over several �les� all of which had to be loaded at
the same time� The new facilities for import chasing usually provide a much
better way to deal with multiple �le projects� but the current version of Hugs ���
does still support the use of project �les�

The �project command takes a single argument� the name of a text �le contain�
ing a list of �le names� separated from one another by whitespace �which may
include spaces� newlines� or Haskell�style comments�� For example� the following
is a valid project �le�

$� A simple project file� Demo�prj �%

Types �� datatype definitions

Basics �� basic operations

Main �� the main program

If we load this into Hugs with a command �project Demo�prj� then the inter�
preter will read the project �le and then try to load each of the named �les� In
this particular case� the overall e�ect is� essentially� the same as that of�

load Types Basics Main

Once a project �le has been selected� the �project command �without any argu�
ments� can be used to force Hugs to reread both the project �le and the module
�les that it lists� This might be useful if� for example� the project �le itself has
been modi�ed since it was �rst read�

Project �le names may also be speci�ed on the command line when the interpreter
is invoked by preceding the project �le name with a single � character� Note that
there must be at least one space on each side of the �� Standard command line
options can also be used at the same time� but additional �lename arguments
will be ignored� Starting Hugs with a command of the form hugs � Demo�prj is
equivalent to starting Hugs without any arguments and then giving the command
�p Demo�prj�

The �project command uses the same mechanisms as �load to locate the �les
mentioned in a project �le� but it will not use the current path to locate the
project �le itself� you must specify a full pathname�

�

As has already been said� import chasing usually provides a much better way to
deal with multiple �le programs than the old project �le system� The big ad�
vantage of import chasing is that dependencies between modules are documented
within individual modules� leaving the system free to determine the order in
which the �les should be loaded� For example� if the Main module in the exam�
ple above actually needs the de�nitions in Types and Basics� then this will be
documented by import statements� and the whole program could be loaded with
a single �load Main command�

Edit �le �edit
h�lei�

The �edit command starts an editor program to modify or view a module �le�
On Windows �
�NT� the editor and interpreter are executed as independent
processes� On other systems� the current Hugs session will be suspended while
the editor is running� Then� when the editor terminates� the Hugs session will
be resumed and any �les that have been changed will be reloaded automatically�
The �E option should be used to con�gure Hugs to your preferred choice of editor�

If no �lename is speci�ed� then Hugs uses the name of the last �le that it tried to
load� This allows the �edit command to integrate smoothly with the facilities
for loading �les�

For example� suppose that you want to load four �les� f��hs� f��hs� f��hs and
f��hs into the interpreter� but the �le f��hs contains an error of some kind� If
you give the command�

load f� f� f� f�

then Hugs will successfully load f��hs and f��hs� but will abort the load com�
mand when it encounters the error in f��hs� printing an error message to describe
the problem that occured� Now� if you use the command�

edit

then Hugs will start up the editor with the cursor positioned at the relevant line
of f��hs �whenever this is possible� so that the error can be corrected and the
changes saved in f��hs� When you close down the editor and return to Hugs� the
interpreter will automatically attempt to reload f��hs and then� if successful� go
on to load the next �le� f��hs� So� after just two commands in Hugs� the error in
f��hs has been corrected and all four of the �les listed on the original command
line have been loaded into the interpreter� ready for use�

�

Find de�nition �find hnamei

The �find hnamei command starts up the editor at the de�nition of a type
constructor or function� speci�ed by the argument hnamei� in one of the �les cur�
rently loaded into Hugs� Note that Hugs must be con�gured with an appropriate
editor for this to work properly� There are four possibilities�

� If there is a type constructor with the speci�ed name� then the cursor will
be positioned at the �rst line in the de�nition of that type constructor�

� If the name is de�ned by a function or variable binding� then the cursor will
be positioned at the �rst line in the de�nition of the function or variable
�ignoring any type declaration� if present��

� If the name is a constructor function or a selector function associated with
a particular datatype� then the cursor will be positioned at the �rst line in
the de�nition of the corresponding datatype de�nition�

� If the name represents an internal Hugs function� then the cursor will be
positioned at the beginning of the standard prelude �le�

Note that names of in�x operators should be given without any enclosing them
in parentheses� Thus �f �� starts an editor on the standard prelude at the �rst
line in the de�nition of ���	� If a given name could be interpreted both as a type
constructor and as a value constructor� then the former is assumed�

��� Finding information about the system

List names �names
hpatterni ����

The �names command can be used to list the names of variables and functions
whose de�nitions are currently loaded into the interpreter� Without any argu�
ments� �names produces a list of all names known to the system� the names are
listed in alphabetical order�

The �names command can also accept one or more pattern strings� limiting the
list of names that will be printed to those matching one or more of the given
pattern strings�

Prelude�
n fold�

foldl foldl� foldl� foldr foldr�

� names listed�

Prelude�

Each pattern string consists of a string of characters and may use standard wild�
card syntax� � �matches anything�� � �matches any single character�� �c �matches
exactly the character c� and ranges of characters of the form
a�zA�Z�� etc� For
example�

Prelude�
n �map� ��Ff�ile (

! � � � � � �
 & � appendFile map mapM mapM� readFile writeFile '

�	 names listed�

Prelude�

Print type of expression �type hexpri

The �type command can be used to print the type of an expression without
evaluating it� For example�

Prelude�
t �hello� world�

�hello� world�

 String

Prelude�
t putStr �hello� world�

putStr �hello� world�

 IO
�

Prelude�
t sum �������

sum
enumFromTo � ���

Num a� Enum a� �� a

Prelude�

Note that Hugs displays the most general type that can be inferred for each
expression� For example� compare the type inferred for sum
������ above with
the type printed by the evaluator �using �set �t��

Prelude�
set �t

Prelude� sum �������

��

 Int

Prelude�

The di�erence is explained by the fact that the evaluator uses the Haskell default
mechanism to instantiate the type variable a in the most general type to the type
Int� avoiding an error with unresolved overloading�

Display information about names �info
hnamei ����

The �info command is useful for obtaining information about the �les� classes�
types and values that are currently loaded�

If there are no arguments� then �info prints a list of all the �les that are currently
loaded into the interpreter�

Prelude�
info

Hugs session for

�

�Hugs�lib�Prelude�hs

Demo�hs

Prelude�

If there are arguments� then Hugs treats each one as a name� and displays in�
formation about any corresponding type constructor� class� or function� The
following examples show the the kind of output that you can expect�

� Datatypes� The system displays the name of the datatype� the names and
types of any constructors or selectors� and a summary of related instance
declarations�

Prelude�
info Either

�� type constructor

data Either a b

�� constructors

Left

 a �� Either a b

Right

 b �� Either a b

�� instances

instance
Eq b� Eq a� �� Eq
Either a b�

instance
Ord b� Ord a� �� Ord
Either a b�

instance
Read b� Read a� �� Read
Either a b�

instance
Show b� Show a� �� Show
Either a b�

instance Eval
Either a b�

Prelude�

Newtypes are dealt with in exactly the same way� For a simple example of
a datatype with selectors� the output produced for a Time datatype�

data Time � MkTime $ hours� mins� secs

 Int %

is as follows�

Time�
info Time

�� type constructor

data Time

�� constructors

MkTime

 Int �� Int �� Int �� Time

�� selectors

hours

 Time �� Int

mins

 Time �� Int

secs

 Time �� Int

�� instances

instance Eval Time

Time�

� Type synonyms� The system displays the name and expansion�

Prelude�
info String

�� type constructor

type String � �Char�

Prelude�

The expansion is not included in the output if the synonym is restricted�

� Type classes� The system lists the name� superclasses� members� and in�
stance declarations for the speci�ed class�

Prelude�
info Num

�� type class

class
Eq a� Show a� Eval a� �� Num a where

��

 a �� a �� a

��

 a �� a �� a

��

 a �� a �� a

negate

 a �� a

abs

 a �� a

signum

 a �� a

fromInteger

 Integer �� a

fromInt

 Int �� a

�� instances

instance Num Int

instance Num Integer

instance Num Float

instance Num Double

instance Integral a �� Num
Ratio a�

Prelude�

� Other values� For example� named functions and individual constructor�
selector� and member functions are displayed with their name and type�

Time�
info �
 hours min

��

a �� b� ��
c �� a� �� c �� b

�

 a �� �a� �� �a� �� data constructor

	

hours

 Time �� Int �� selector function

min

 Ord a �� a �� a �� a �� class member

Time�

As the last example shows� the �info command can take several arguments and
prints out information about each in turn� A warning message is displayed if
there are no known references to an argument�

Prelude�
info

�

Unknown reference �

��

Prelude�

This illustrates that the arguments are treated as textual names for operators�
not syntactic expressions �for example� identi�ers�� The type of the ��	 operator
can be obtained using the command �info � as above� There is no provision for
including wildcard characters of any form in the arguments of �info commands�

If a particular argument can be interpreted as� for example� both a constructor
function� and a type constructor� depending on context� then the output for both
possibilities will be displayed�

�

�� Library overview

Haskell ��� places much greater emphasis on the use of libraries than previous
versions of the language� Following that lead� the Hugs ��� distribution includes
most of the o�cial libraries de�ned in the Haskell Library Report �	�� The distri�
bution also includes a number of uno�cial libraries� which fall into two categories�
portable libraries� which are implemented using standard Haskell or widely im�
plemented Haskell extensions� and Hugs�speci�c libraries� which use features that
are not available in other Haskell implementations�

All that you need to do to use libraries is to import them using an import

declaration� For example�

module MandlebrotSet where

import Array

import Complex

���

Of course� this assumes that HUGSPATH has been set to point to the directories
where the libraries are stored �Section ����� and that import chasing is enabled�
The default search path includes the directories containing both the standard
and uno�cial libraries�

��� Standard Libraries

The Hugs ��� distribution includes the following standard libraries� Array� Char�
Complex� IO� Ix� List� Maybe� Monad� Prelude� Ratio� and System� The library
report �	� contains full descriptions of the standard libraries� Di�erences between
the library report and the libraries supplied with Hugs are described in Section ��

��� Portable Libraries

These libraries are not part of the Haskell standard but can be ported to most
Haskell systems�

� Number This library de�nes a numeric datatype of �xed width integers
�whatever Int supplies�� However� unlike the built�in Int type� over�ows

�

are detected and cause a run�time error� To ensure that all integer arith�
metic in a given module includes over�ow protection you must include a
default declaration for Number�

module Number where

data Number �� fixed width integers

instance Eq Number �� class instances

instance Ord Number

instance Show Number

instance Enum Number

instance Num Number

instance Bounded Number

instance Real Number

instance Ix Number

instance Integral Number

� Random This library provides a random number generator� We expect that
this will be moved into an o�cial Library module soon�

� IOExtensions This module provides non�standard extensions to the IO

monad� Some of these are unsafe �they may break referential transparency�
and must be used carefully�

module IOExtensions where

readBinaryFile

 FilePath �� IO String

writeBinaryFile

 FilePath �� String �� IO
�

appendBinaryFile

 FilePath �� String �� IO
�

openBinaryFile

 FilePath �� IOMode �� IO Handle

getCh

 IO Char

fixIO

a �� IO a� �� IO a

argv

 �String�

garbageCollect

 IO
�

unsafePerformIO

 IO a �� a

unsafeInterleaveIO

 IO a �� IO a

� ListUtils This module includes list functions that were removed from the
Prelude in the move from Haskell ��� to Haskell ��
�

module ListUtils where

deleteFirstsBy

a �� a �� Bool� �� �a� �� �a� �� �a�

sums� products

 Num a �� �a� �� �a�

subsequences

 �a� �� ��a��

permutations

 �a� �� ��a��

�

� ParseLib This module provides a library of parser combinators� as de�
scribed in the paper on Monadic Parser Combinators by Graham Hutton
and Erik Meijer �
��

� Trace� This library provides a single function� that can sometimes be useful
for debugging�

module Trace where

trace

 String �� a �� a

When called� trace prints the string in its �rst argument� and then returns
the second argument as its result� The trace function is not referentially
transparent� and should only be used for debugging� or for monitoring exe�
cution� You should also be warned that� unless you understand some of the
details about the way that Hugs programs are executed� results obtained
using trace can be rather confusing� For example� the messages may not
appear in the order that you expect� Even ignoring the output that they
produce� adding calls to trace can change the semantics of your program�
Consider this a warning�

� Interact� This library provides facilities for writing simple interactive pro�
grams�

module Interact where

type Interact � String �� String

end

 Interact

readChar� peekChar

 Interact ��
Char �� Interact� �� Interact

pressAnyKey

 Interact �� Interact

unreadChar

 Char �� Interact �� Interact

writeChar

 Char �� Interact �� Interact

writeStr

 String �� Interact �� Interact

ringBell

 Interact �� Interact

readLine

 String ��
String �� Interact� �� Interact

An expression e of type Interact can be executed as a program by evalu�
ating run e�

� AnsiScreen This library de�nes some basic ANSI escape seqences for ter�
minal control�

module AnsiScreen where

type Pos �
Int�Int�

��

at

 Pos �� String �� String

highlight

 String �� String

goto

 Int �� Int �� String

home

 String

cls

 String

The de�nitions in this module will need to be adapted to work with termi�
nals that do not support ANSI escape sequences�

� AnsiInteract This library includes both Interact and AnsiScreen� and
also contains further support for screen oriented interactive I�O�

module AnsiInteract
module AnsiInteract�

module Interact�

module AnsiScreen� where

import AnsiScreen

import Interact

clearScreen

 Interact �� Interact

writeAt

 Pos �� String �� Interact �� Interact

moveTo

 Pos �� Interact �� Interact

readAt

 Pos �� �� start coords

Int �� �� max input length

String �� Interact� �� �� continuation

Interact

defReadAt

 Pos �� �� start coords

Int �� �� max input length

String �� �� default value

String �� Interact� �� �� continuation

Interact

promptReadAt

 Pos �� �� start coords

Int �� �� max input length

String �� �� prompt

String �� Interact� �� �� continuation

Interact

defPromptReadAt

 Pos �� �� start coords

Int �� �� max input length

String �� �� prompt

String �� �� default value

String �� Interact� �� �� continuation

Interact

� IORef� This library extends the Hugs IO monad with a datatype repre�
senting mutable reference cells� together with a small collection of related
operators in the style of Peyton Jones and Wadler ����

module IORef where

data Ref a �� Mutable reference cells� holding values of type a�

��

newRef

 a �� IO
Ref a�

getRef

 Ref a �� IO a

setRef

 Ref a �� a �� IO
�

eqRef

 Ref a �� Ref a �� Bool

instance Eq
Ref a�

� ST� This library provides support for lazy state threads and for the ST

monad� as described by John Launchbury and Simon Peyton Jones �
��

module ST where

data MutVar s a �� mutable variables containing values

�� of type a in state thread s�

newVar

 a �� ST s
MutVar s a�

readVar

 MutVar s a �� ST s a

writeVar

 MutVar s a �� a �� ST s
�

interleaveST

 ST s a �� ST s a

instance Eq
MutVar s a�

instance Monad
ST s�

The runST operation� used to specify encapsulation� is currently imple�
mented as a language construct� and runST is treated as a keyword�

Note that it is possible to install Hugs ��� without support for lazy state
threads� and hence the primitives described here may not be available in
all implementations� Also� in contrast with the implementation of lazy
state threads in previous releases of Hugs and Gofer� there is no direct
relationship between the ST and the IO monads�

� STArray� This library extends both the ST and Array libraries with support
for mutable arrays in the form described by John Launchbury and Simon
Peyton Jones �
��

module STArray where

data MutArr s a b �� Mutable arrays� indexed by type a� with

�� results of type b in state thread s�

newArr

 Ix a ��
a�a� �� b �� ST s
MutArr s a b�

readArr

 Ix a �� MutArr s a b �� a �� ST s b

writeArr

 Ix a �� MutArr s a b �� a �� b �� ST s
�

freezeArr

 Ix a �� MutArr s a b �� ST s
Array a b�

��

� MVar This library provides an implementation of synchronisation objects
�MVars�� exactly as described in the paper by Simon Peyton Jones� Andrew
Gordon and Sigbjorn Finne ����

There is one signi�cant di�erence between the implementation of these fea�
tures in GHC and in Hugs�

� GHC uses preemptive multitasking� Context switches can occur at
any time� except if you call a C function �like getchar� that blocks
waiting for input�

� Hugs uses cooperative multitasking� Context switches only occur when
you use one of the primitives de�ned in this module� This means that
programs such as�

main � forkIO
write �a�� �� write �b�

where write c � putChar c �� write c

will print either aaaaaaaaaaaaaa��� or bbbbbbbbbbbb���� instead of
some random interleaving of as and bs�

Cooperative multitasking is su�cient for writing coroutines�

module MVar where

data MVar a �� datatype of MVars

forkIO

 IO a �� IO
� �� Spawn a thread

newMVar

 IO
MVar a�

takeMVar

 MVar a �� IO a

putMVar

 MVar a �� a �� IO
�

instance Eq
MVar a�

� Channel This library provides an implementation of bu�ered channels� ex�
actly as described in the paper by Simon Peyton Jones� Andrew Gordon
and Sigbjorn Finne ����

module Channel where

data Channel a �� datatype of buffered channels

newChan

 IO
Channel a�

putChan

 Channel a �� a �� IO
�

getChan

 Channel a �� IO a

dupChan

 Channel a �� IO
Channel a�

� CVar This library provides an implementation of channel variables� exactly
as described in the paper by Simon Peyton Jones� Andrew Gordon and
Sigbjorn Finne ����

�

module CVar where

import MVar

type CVar a �
MVar a� �� Producer �� consumer

MVar
�� �� Consumer �� producer

newCVar

 IO
CVar a�

putCVar

 CVar a �� a �� IO
�

getCVar

 CVar a �� IO a

��� Hugs�Speci	c Libraries

� Trex This library supports TREX extensible records� These can only be
used when Hugs is compiled with TREX support using the �enable�TREX
con�guration option� TREX documentation is included in this release�

� Dynamic This library provides support for dynamic typing�

� HugsInternals This library provides primitives for accessing Hugs inter�
nals� for example� they provide the means with which to implement sim�
ple error�recovery and debugging facilities in Haskell� They should be re�
garded as an experimental feature and may not be supported in future
versions of Hugs� They can only be used if Hugs was con�gured with the
��enable�internal�prims �ag�

� GenericPrint This library provides a �generic� �or �polymorphic�� print
function in Haskell� that works in essentially the same way as Hugs� builtin
printer when the �u option is used� The module HugsInternals is required�

� CVHAssert This library provides a simple implementation of Cordy Hall�s
assertions for performance debugging� These primitives are an experimental

feature that may be removed in future versions of Hugs� They can only be
used if Hugs was con�gured with the ��enable�internal�prims �ag�

� Win�� This library contains Haskell versions for many of the functions in
the Microsoft Win
� library� It is only available on Windows �
�NT� The
��with�plugins con�guration option must be used in conjunction with
this and the other Microsoft libraries�

� Graphics A comprehensive graphics and windowing library for Win
� is
described separately� This is a higher level interface to much of the Win��
library�

� XLib This library provides facilities for X window programming�

��

� RandomIOThis library provides a random number generator� using the clock
as a seed� Currently� it is available only on Win
�� although it may be
moved into an o�cial Library module at some point in the future�

�

	� Other Hugs programs

The Hugs ��� interpreter is available in two other guises� a stand�alone system
that executes programs in a �load and go� style� without the surrounding com�
mand system� and a Windows user interface� layered on top of the basic Hugs
system�

�� Stand�alone program execution

Once a program has been developed and debugged� the Hugs command loop can
be eliminated and the program can be executed immediately without any com�
mand to run it� A slightly modi�ed version of the interpreter called runhugs loads
the literate program speci�ed as its �rst argument and runs main in module Main�
Unlike the standard Hugs system� runhugsmakes command arguments available
to the running Hugs system� The �rst argument� specifying the program� is
removed from the argument list�

On Unix systems� executable programs may be created by placing runhugs in
the �rst line of an executable �le� like so�

 ��hugs�runhugs

� module Main where

� main � putStr �Hello� World"n�

Because runHugs uses literate Haskell only� the line starting with �� is viewed
as a comment� Stand�alone programs can import other modules using import
chasing�these modules need not be literate� The runhugs program uses the
same environment variables to set Hugs options as the standard Hugs systems�
However� runhugs does not set options from the command line� all command
line options are passed into the executing Hugs program� The stand�alone Hugs
program may return an exit code�

On Windows �
�NT� runhugs is invoked using a separate �le extension that is set
up to call runhugs rather than hugs� Installation sets up the �hsx extension for
this purpose� A �hsx program will run when it is clicked on� a console window
will appear if the program writes to standard output or reads from standard
input� This window is closed immedately upon exiting the program� There is no

�	

way to pass parameters to the �hsx program when it is double�clicked� Windows
�
�NT can also use runhugs to open �les of a given type� this involves setting the
�open� command for the �le type to call runhugs� passing it the Haskell program
to run and the �le being opened� The online documentation has some examples
of this�

�� Hugs for Windows

Hugs for Windows �winhugs� o�ers a GUI front�end to the Hugs interpreter
on Microsoft Windows platforms� The user interface features a scrolling console
window that mimics the normal Hugs interface� together with a menu and toolbar
that provide additional facilities for browsing Haskell programs� Most of the
additional features are self�explanatory� although short descriptions of menu and
toolbar choices are displayed in a status line� Hugs for Windows uses the same
command line options and environment�registry variables as Hugs� It also stores
options in a �ini �le�

Further development and enhancement of the current Hugs for Windows front�
end is planned for future releases�

��

� Conformance with Haskell ���

A number of Haskell ��� features are not yet implemented in Hugs ���� All known
di�erences between the speci�cation and implementation are described here�

��� Haskell ��� features not in Hugs

� Mutually recursive modules have not been implemented�

� Some library functions have been moved into the Prelude� This is necessary
because the Prelude and the standard libraries� as de�ned in the ��� report�
are mutually recursive� This mutual recursion has been avoided by moving
the following functions into the Prelude�

� From Ix� range� index� inRange� rangeSize�
� From Char� isAscii� isControl� isPrint� isSpace� isUpper� isLower�
isAlpha� isDigit� isOctDigit� isHexDigit� isAlphanum� digitToInt�
intToDigit� toUpper� toLower� ord� and chr�

� From Ratio� Ratio� Rational� ��	� numerator� denominator� and
approxRational�

� Derived Read instances do not work for some in�x constructors� If an in�x
constructor has left associativity and the type appears recursively on the
left side of the constructor� then the read instance will loop�

� Hugs does not use the Unicode character set yet� Characters are currently
drawn from the ISO Latin�� set�

� The �oating point printer is not exactly as de�ned in the report� The
printed form of a �oating point number may re�read as a slightly di�erent
number�

� Derived instances for large tuples are not supplied� Instances for tuples
larger than
 �
 in the �	 bit PC system� are not in the Prelude�

� When using getArgs� only the stand�alone system passes arguments to the
executing program� The interactive system always uses an empty argument
list when runnning a program�

��

� Fixities are global instead of localized in each module� The same name
cannot be associated with more than one �xity even if the names are in
di�erent modules�

� The syntax for n�k patterns is slightly di�erent� For example� this parses
as an n�k pattern� f ���	 x �	 � x�

� The syntax of sections is slightly di�erent� For example� the Haskell ex�
pression �����	 must instead be written as �����	�	�

� There are some subtle di�erences between the Hugs and Haskell type sys�
tems� In particular�

� Polymorphic recursion is only supported for values whose declared
types do not include any class constraints�

� Some valid Haskell programs that make essential use of the local class
constraints that are sometimes associated with individual member
functions are treated as type errors in Hugs�

� Instead of IO�hIsEOF� Hugs provides IO�hugsHIsEOF� Whereas hIsEOF

should tell you if the next call of hGetChar would raise an EOF error�
hugsHIsEOF tells you if the last call of hGetCHar raised an EOF error �the
same as ANSI C�s feof��

� We ignore entity lists in quali�ed imports �but unquali�ed imports are
treated correctly�� For example� you can write�

import qualified Prelude
 foo �

even though foo is not exported from the Prelude and you can write�

module M
� where

import qualified Prelude
� �� import nothing

x � Prelude�length �abcd�

� The Double type is implemented as a single precision �oat �this isn�t for�
bidden by the standard but it is unusual��

��� Libraries

The following libraries are not yet available� Directory� Time� Locale� CPUTime�
Random� Bit� Nat� and Signed�

In the IO library� these functions are not de�ned� handlePosn� ReadWriteMode
hFileSize� hIsEOF� isEOF� hSetBuffering� hGetBuffering� hSeek� hIsSeekable�
hReady� and hLookahead� The following non�standard functions are exported�

��

hugsGetCh

 IO Char �� getchar without echoing to screen

hugsHIsEOF

 Handle �� IO Bool

�� same semantics as C�s �feof�
different from Haskell�s hIsEOF�

hugsIsEOF

 IO Bool

�� same semantics as C�s �feof
stdin��

hPutStrLn

 String �� IO
�

�� corresponds to Prelude�putStrLn

��� Haskell ��� extensions

Hugs ��� contains some modest extensions to the Haskell language�

� Restricted type synonyms �as implemented in Gofer��

� Import declarations may specify a �le name instead of a module name�

� TREX extensible records may be compiled into the system�

� The T���� syntax is allowed for type synonyms in import and export lists�

�

�� Pointers to further information

Hugs

The full distribution for Hugs is available on the World Wide Web from�

http���haskell�org�hugs

or by anonymous ftp from

ftp���ftp�haskell�org�ftp�hugs�

The distribution includes source code� demo programs� library �les� user doc�
umentation� and precompiled binaries for common platforms� These pages are
mirrored locally in Nottingham at

http���www�cs�nott�ac�uk�Department�Staff�mpj�hugs�html�

A mailing lists for Hugs users is at �hugs�users haskell�org�� and another for
bug reports is at �hugs�bugs haskell�org�� To subscribe� send an email mes�
sage to hugs�users�request haskell�org� or to hugs�bugs�request haskell�org�
respectively� An overview of nearly all Haskell related resources can be found at

http���haskell�org�

Functional programming

The usenet newsgroup comp�lang�functional provides a forum for general dis�
cussion about functional programming languages� A list of frequently asked ques�
tions �FAQs�� and their answers� is available from�

http���www�cs�nott�ac�uk�Department�Staff�gmh�faq�html�

The FAQ list contains many pointers to other functional programming resources
around the world�

�

Further reading

As we said at the very beginning� this manual is not intended as a tutorial on
either functional programming in general� or Haskell in particular� For these
things� our �rst recommendations would be for the Introduction to Functional

Programming by Bird and Wadler ���� and the Gentle Introduction to Haskell by
Hudak� Peterson and Fasel ���� respectively� Note� however� that there are several
other good textbooks dealing either with Haskell or related languages�

For those with an interest in the implementation of Hugs� the report about the
implementation of Gofer ���� Hugs� predecessor� should be a useful starting point�

�

Bibliography

��� R� Bird and P� Wadler� Introduction to functional programming� Prentice
Hall� �����

��� P� Hudak and J� Fasel� A gentle introduction to Haskell� ACM SIGPLAN No�

tices� ���
�� May ����� Also available as Research Report YALEU�DCS�RR�
���� Yale University� Department of Computer Science� April �����

�
� G� Hutton and E� Meijer� Monadic parser combinators� Available from
http���www�cs�nott�ac�uk�Department�Staff�gmh�bib�html� ���	�

��� M� Jones� The implementation of the Gofer functional programming sys�
tem� Research Report YALEU�DCS�RR���
�� Yale University� New Haven�
Connecticut� USA� May ����� Available on the World�Wide Web from
http���www�cs�nott�ac�uk�Department�Staff�mpj�pubs�html�

�
� J� Launchbury and S� Peyton Jones� Lazy functional state threads� In Con�

ference on Programming Language Design and Implementation� Orlando� FL�
June �����

�	� J� Peterson and K� Hammond �editors�� The Haskell library report version
���� Research Report YALEU�DCS�RR����
� Yale University� Department
of Computer Science� April �����

��� J� Peterson and K� Hammond �editors�� Report on the Programming Lan�
guage Haskell ���� A Non�strict Purely Functional Language� Research Report
YALEU�DCS�RR����	� Yale University� Department of Computer Science�
April �����

��� S� Peyton Jones� A� Gordon� and S� Finne� Concurrent haskell� In Conference

record of POPL ���� ��rd ACM SIGPLAN�SIGACT Symposium on Princi�

ples of Programming Languages� pages ��
�
��� St� Petersburg Beach� FL�
January ���	� ACM press�

��� S� Peyton Jones and P� Wadler� Imperative functional programming� In
Proceedings �	th Symposium on Principles of Programming Languages� ACM�
January ���
�

