
© November 2009 Altera Corporation

© November 2009
AN 533: Automotive Information and
Entertainment

Reference Designs

AN-533-1.3
Introduction
This application note describes automotive information and entertainment multiprocessor
software reference designs for the Platform ASSP Replacement Infotainment System (PARIS)
hardware reference design kit.

f For more information on the PARIS kit hardware, refer to the Gleichmann AAP-PARIS-
1 Manual for the FPGA module and the Gleichmann MSC EXM-MBFULL R4 User's
Manual for the PARIS motherboard, which are available on the CD shipped with the
PARIS kit hardware.

The reference designs described in this application note are examples of integration of an
infotainment system-on-a-programmable-chip (SOPC) design with an Altera® FPGA device.

The following reference designs are described in this application note:

■ PARIS infotainment reference design with audio playback from Secure Digital (SD) card,
USB Media Oriented System Transport (MOST), and Hard Disk Drive (HDD)

■ GRACE (Graphics Controller Engine) 3D reference design with hardware-accelerated 3D
graphics demo

■ GRACE video reference design with H264 video decoding

The reference designs demonstrate the following functionality running on Nios® II
embedded processors in Altera FPGAs:

■ Streaming encoded audio files (MP3 or WAV) from:

■ SD card—including SD high capacity (SDHC)

■ USB

■ HDD

■ MOST interface

■ Audio decoding using the Spirit DSP MP3 decoder software

■ Audio routing using the Bosch-enhanced digital audio routing (EDAR) module

■ H264 Video decoding with hardware accelerator

■ 2D and 3D graphics acceleration

■ Graphical User Interface (GUI) with LCD touchscreen

f For more information, refer to the following websites:

MOST interfaces: www.mostcooperation.com.
Spirit DSP: www.spiritdsp.com.
NetServices: www.smsc-ais.com.

The reference designs use the following IP from Altera and its partners:
AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

http://www.spiritdsp.com/
http://www.smsc-ais.com
http://www.mostcooperation.com
http://www.spiritdsp.com/

Page 2 System Requirements
■ Nios II processor

■ DDR2 SDRAM Controller MegaCore® function

■ LCD controller

■ Bus interfaces to on-board components:

■ EXM32 interface

■ Two I2C interfaces

■ JTAG UART

■ Flash memory interface

The reference designs use the following IP from Altera’s partners:

■ Graphics accelerator: D/AVE 2D IP from TES

■ External media interfaces:

■ SD card (including SDHC)

■ USB

■ HDD

■ MediaLB interface for MOST interface

■ Audio routing by Bosch EDAR module

■ GRACE 3D reference design—D/AVE 3D IP from TES replaces the D/AVE 2D IP

■ GRACE video reference design—H264 video decoder from Videantis IP

The reference designs use the following SOPC Builder components:

■ PLLs

■ DMAs

■ Timers

■ Half-rate bridge

■ Tristate bridge

■ System ID

■ On-chip memories

■ Parallel I/O interfaces

System Requirements
The reference designs have the following system requirements:

■ PARIS kit—PARIS-1 FPGA module and EXM32 motherboard.

■ The GRACE 3D and GRACE video reference designs require a Stratix II 2S180
PARIS FPGA module.

■ The PARIS reference design is available for both Stratix II 2S90 and 2S180
PARIS FPGA modules.

■ Quartus® II software version 9.1 and Nios II Embedded Design Suite version 9.1
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

System Requirements Page 3
■ Partner IP licenses for modifying and rebuilding the reference designs

The reference designs include the following files:

■ SRAM Object File (.sof) for FPGA programming the FPGA with pre-built
hardware reference designs

■ Software binary file (.elf) for running pre-built reference design software

■ Hardware modules not covered by third-party licenses (mostly SOPC Builder
components)

■ Application software source code or libraries for modules not covered by third-
party licenses

■ Build scripts for rebuilding software using the Nios II software build tools

FPGA Programming Files
You can configure the FPGA with the reference design from on-board flash memory at
power-up, or you can download the Altera-provided .sof to the FPGA device using
the Quartus II Programmer. Each reference design has its own associated .sof.

You can modify and rebuild the SOPC Builder project only if you obtain the
appropriate licenses for the licensed IP in the design. In most cases, OpenCore Plus
licenses allow evaluation of the IP in the SOPC Builder project at no cost.

f For more information on OpenCore Plus, refer to AN 320: OpenCore Plus Hardware
Evaluation for Megafunctions.

Software Binary Files (.elf)
The reference design software applications are delivered as .elf files. These .elf files
must be programmed into the on-board flash memory for execution at power-up, or
downloaded using the Nios II command-line tools. Download scripts are provided
with the reference design.

Each reference design has its own associated .elf, which runs only on the
corresponding FPGA configuration. If you change the FPGA configuration, you must
recompile the design. For example, adding or removing a peripheral module, requires
that you recompile the BSP (Board Support Package).

f For more information on using the Nios II software build tools, refer to the Nios II
Software Developer's Handbook.

The software can be recompiled only if all of the appropriate libraries and source code
are available to support the hardware IP. Access to some source code may require
license agreements with Altera partners.

Partner IP Licenses
Table 1 lists the partner IP contact details.
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an320.pdf

Page 4 Installing the Reference Designs
Installing the Reference Designs
The reference designs are contained in the paris_91.zip file. Unzip the paris_91.zip
file to a directory on your computer. Extracting the paris_91.zip builds the directory
structure shown in Figure 1. The directories are described in this section.

1 For more information about the reference design file directory structure and
installation instructions, refer to the readme.txt file, which is located in the paris_91
directory after the files have been extracted from the paris_91.zip file.

Table 1. Partner IP Contact Details

IP Company Contact

Hardware

USB2 OTG Ingenieurbüro für
IC-Technologie (IFI)

www.ifi-pld.de/IP/ip.html

ATA Evatronix www.evatronix.pl

ipcenter@evatronix.pl

SD card Eureka Technology Inc info@eurekatech.com

EDAR Robert Bosch GmbH www.semiconductors.bosch.de/en/

MediaLB
(MOST
interface)

Ingenieurbüro für
IC-Technologie

www.ifi-pld.de/IP/ip.html

D/AVE 2D-TS TES Electronic Solutions www.tesbv.com

D/AVE 3D TES Electronic Solutions www.tesbv.com

MP2020 Videantis GmbH www.videantis.de

Software

USB driver Emsys www.emsys.de

SD Card Driver
(SDIOWorx)

Embwise www.embwise.com

MOST
NetServices

SMSC www.smsc-ais.com

Audio codec
(MP3 decoder)

SpiritDSP www.spiritdsp.com
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

http://www.ifi-pld.de/IP/ip.html
www.evatronix.pl
mailto:ipcenter@evatronix.pl
mailto:info@eurekatech.com
www.semiconductors.bosch.de/en/
www.tesbv.com
http://www.ifi-pld.de/IP/ip.html
www.tesbv.com
www.emsys.de
www.embwise.com
http://www.smsc-ais.com
www.spiritdsp.com

www.videantis.de

Installing the Reference Designs Page 5
Quartus Directory
The Quartus directory contains archives of the FPGA projects for the reference
designs and .sof programming files for the FPGA. Each reference design is located in
a separate subdirectory.

Setup Directory
The setup directory contains additional source files required for the ThreadX real time
operating system (RTOS). If you have access to the RTOS source code and are
rebuilding the reference design software applications, review and run the
setup_threadx.sh script after installing RTOS. Review the script and make any
necessary amendments to the QUARTUS_DIR variable, depending on the location of
your Quartus IP directory.

Software Directory
The software directory contains the following subdirectories:

■ Build—contains build scripts for rebuilding the source code and libraries. The
source code can be rebuilt only if all third-party licensed source code are available.
Scripts for downloading .sof and .elf files to hardware are also provided.

■ Grace_hmi—contains source files for the Altia HMI project for the GRACE
reference designs.

■ Paris_hmi—contains source files for the Altia HMI project for the PARIS reference
designs.

■ Source—contains software source code, except software that requires third-party
license agreements. For software that requires third-party license agreements,
empty directories are present as place holders. Refer to “Application Software
Source Code”.

Figure 1. Reference Design Top-level Directories

paris_91

Quartus

grace_3D

grace_video

paris_2s90

paris_2s180

setup

ThreadX

software

build

grace_hmi

paris_hmi

source
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 6 Downloading the Reference Designs to Hardware
Downloading the Reference Designs to Hardware
You can download the .sof programming files to the PARIS kit hardware with the
Quartus II Programmer or with the nios2-configure-sof command in a Nios II
command shell. Scripts that download the .sof and .elf files in a single step in a
Nios II command shell are provided for each reference design. For example, the
2s180_paris_download_all.sh script downloads the .sof and .elf files to the
/software/build/paris_2s180 directory.

Copying Media Files to the Hard Disk Drive
Ensure that you use the latest version of the PARIS reference design by downloading
the .sof and .elf files from the paris_2s90 or paris_2s180 directory, depending on the
version of your PARIS kit.

To transfer files from a USB flash drive to your PARIS kit Hard Disk Drive (HDD),
follow these steps:

1. Transfer the files you want to copy onto a USB flash drive. If you want to erase the
HDD before copying the files, then include a file or directory named
do_delete_hdd in the top-level directory.

2. Insert the USB flash drive in the lower PARIS motherboard USB port.

3. Touch AUDIO on the touchscreen. The audio screen displays.

4. On the Audio screen, touch USB. The USB screen displays.

5. On the USB screen, touch COPY. The screen displays the message "Copying to
HDD." All files on the USB flash drive are copied to the root directory of the HDD,
retaining the same directory structure. When the file transfer is complete, the
screen displays the message "HDD Stopped." After file transfer is complete, you
can remove the USB flash drive.

Navigating through Directories
Directory names are shown in the track list enclosed by brackets, for example,
[music].

To navigate through directories, follow these steps:

1. Select the directory in the track list.

2. On the touchscreen, touch PLAY.

3. To return to a higher directory, select [..] in the track list.

4. Touch PLAY.

SOPC Builder System Description
This section describes the SOPC Builder system and its components. Figure 2 shows a
simplified block diagram of the SOPC Builder system.
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

SOPC Builder System Description Page 7
Clocks
The Gleichmann clock factory allows you to define the frequency of the different clock
inputs to the system.

External Clocks
Table 2 describes the three external clocks in the SOPC Builder system.

Figure 3 shows the clock factory settings.

Figure 2. SOPC Builder System

Note to Figure 2:

(1) D/AVE 3D and MP2020 are used in GRACE.

LCD ControllerD/AVE
2D or 3D1

SD Card

FPGA

ATAUSB Host MediaLB

TouchscreenSD or SDHCHDDPHY OS81050

16-bit 533
(32 MB) DDR2

SDRAM

DDR2 SDRAM
Controller

16-bit 16 MB
Flash

Memory

Flash
Interface

System Nios II
Processor

Audio Nios II
Processor

EDAR Audio
Routing

Audio CODECs

Optics

MP20201

Table 2. External Clocks

Name Frequency (MHz) Description

clk_in 50 Clock factory reference Clk0.

omck 24.576 Clock factory reference Clk13.

clk_ata 50 Generated by a PLL external to the SOPC system. The clock
factory reference for the PLL clock input is Clk1.
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 8 SOPC Builder System Description
FPGA-Generated Clocks
The 50MHz FPGA input clock is multiplied internally and distributed around the
FPGA. The DDR2 SDRAM High-Performance Controller MegaCore function,
described in “DDR2 SDRAM High-Performance Controller” instantiates a PLL, which
generates the system clocks and the clocks required by the memory controller.

Table 3 describes the clocks used in the SOPC system.

Nios II System Processor
The Nios II system processor (SOPC instance cpu) runs the application software and
drives all the system peripherals.

The Nios II system processor is a Nios II fast processor with hardware
implementation of multiplication and division, 8K data cache, and 8K instruction
cache. The Nios II system processor reset vector is located at the 0x10_0000 address
in the external flash memory and its exception vector is located at the 0x40_0020
address in the DDR2 SDRAM.

Figure 3. Clock Factory Settings

Table 3. Generated Clocks

Name Frequency (MHz) Description

altmemddr_0_auxhalf 65 The system clock. Its frequency is half of the DDR2 SDRAM
High-Performance Controller MegaCore function clock.

altmemddr_0_auxfull 130 Half-rate bridge master clock.

i2sclk 64 × fs = 3.072 Audio clock for I2S interface for the EDAR IP (not used).
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

SOPC Builder System Description Page 9
f For more information, refer to the Instantiating the Nios II Processor in SOPC Builder
chapter in the Nios II Processor Reference Handbook.

Nios II Audio Processor
The Nios II audio processor (SOPC instance cpu_mp3) decodes MP3 audio. The
Nios II audio processor communicates with the cpu via the mp3_control_buffer.

The Nios II audio processor is a Nios II fast processor with hardware implementation
of multiplication and division, 8K data cache, and 8K instruction cache. The Nios II
audio processor reset vector is located at the 0x00_0000 address in the external flash
memory. The Nios II audio processor exception vector is located at the 0x00_0020
address in the DDR2 SDRAM.

The Spirit MP3 decoder library uses Nios II custom instructions to accelerate the MP3
decode process. The PARIS and GRACE applications are supplied with an OpenCore
Plus license to enable these instructions and allow evaluation of the MP3 decoder.

System-to-DDR2 SDRAM Interface
This section describes the system-to-DDR2 SDRAM interface.

Half-Rate Bridge
DDR2 SDRAMs require a high minimum operating frequency. Moreover, delays in
memory accesses by the controller are dependent on the clock used for the memory
controller (the faster the clock, the shorter the delay).

To address these two limitations, the FPGA configuration uses a half-rate bridge.
Interfaces to the DDR2 SDRAM are made through a data bus of 64-bits at a frequency
driven by altmemddr_0_auxhalf. Other SOPC Builder components that do not
support the 64-bit interface do not benefit from the full bus bandwidth. Figure 4
shows the half-rate bridge settings in SOPC Builder.
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pd

Page 10 SOPC Builder System Description
The half-rate bridge uses a set of Synopsys Design Constraints (.sdc) for timing
analysis. These constraints are stored in the standard.sdc file.

DDR2 SDRAM High-Performance Controller
The DDR2 SDRAM High-Performance Controller MegaCore function runs at 130
MHz and interfaces only with the half-rate bridge. Two 16-bit 32MB banks of DDR2
memory are available on the FPGA module.

The infotainment demonstration uses a single bank of memory. The GRACE video
demonstration uses both banks of memory. Review the SOPC Builder design and the
project pin assignments to determine the configuration of the two memory banks.

f For more information, refer to the DDR and DDR2 SDRAM High-Performance
Controller and ALTMEMPHY User Guide.

External Flash
The PARIS FPGA module has a 16MB flash memory. The flash interface is configured
in 16-bit mode. The flash memory stores the FPGA configuration, the boot loader with
default screen image for cpu, and the demonstration code running on the two Nios II
processors.

Table 4 describes the flash memory mapping for this system.

Figure 4. Half-Rate Bridge Settings
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf
www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf

SOPC Builder System Description Page 11
LCD Interface
This section describes the LCD controller and the touchscreen interface.

LCD Controller
The LCD controller is parameterized for the 800x480 WVGA display in the package. If
you want to use different display, you can change the parameters by double-clicking
the parameter in the SOPC Builder as shown in Figure 5.

Table 5 describes the LCD controller parameters.

Table 4. Flash Memory Mapping

Address Range (hex) Content

000000 to 0FFFFF cpu_mp3 code

100000 to 1FFFFF cpu custom boot loader code

110000 to 1FFFFF Default screen image

200000 to 7FFFFF cpu application code

800000 to 80FFFF Options for FPGA configuration

810000 to FFFFFF FPGA configuration .sof data

Figure 5. LCD Controller Timing Parameters

Table 5. LCD Controller Parameters

Parameter Description

Device Target device (not used).

Avalon interface type Type of Avalon® master interface this component is using: DEFAULT or BURST. For more
details on BURST mode, refer to the Avalon Interface Specifications.
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

www.altera.com/literature/manual/mnl_avalon_spec.pdf

Page 12 SOPC Builder System Description
Touchscreen Interface
The application software running on cpu drives the touchscreen interface using the
I2C0 interface.

Audio Interface
This section describes the audio interface.

MASTER_DATA_WIDTH Width of the data bus from the three Avalon Memory-Mapped (Avalon-MM) master ports
of the component. 32 or 64 bits.

Timing parameters The value for different timing parameters must be set to the LCD display that you use.
Figure 6 and Figure 7 show the LCD controller timing parameters. Active frame is the
part when lines are displayed; active line is when the frame is active and the time when
the line is displayed at a rate of one pixel per clock cycle.

Figure 6. LCD Controller Timing Parameters—pixel_clk and Hsync

Figure 7. LCD Controller Timing Parameters—Hsync and Vsync

Table 5. LCD Controller Parameters

Parameter Description

Pixel_clk

Hsync

HBlank End

HSyncEnd

HLineEnd

HBlank Begin

Active line
800 clk
cycles

88 clk
cycles

40 clk
cycles

128 clk
cycles

VBlankEnd

VSyncEnd

VFrameEnd

VBlankBegin

Vsync

Active Frame
480 Hsync Cycles

Hsync

32
Hsync
Cycles

2
Hsync
Cycles

9 Hsync
Cycles
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

SOPC Builder System Description Page 13
Audio Routing
The decoded audio PCM data is read from a location in the DDR2 SDRAM, and is
written to the EDAR IP slave interface with the edar_dma. The EDAR IP routes this
stereo channel to the DAC with the I2S interface 0.

The application software running on cpu sets up the various IP to configure this path.

Audio DAC Configuration Interface
The application software running on cpu configures the DAC with the I2C1 interface.
Refer to the board documentation for information regarding the DAC settings.

EXM-ATA Interface
The motherboard has configuration options that you can change using the EXM32
bus. This bus interface shares pins with the HDDATA interface. The EXM32 bus and
the HDD interfaces use the EXM_ATA_IF top-level file.

EXM_ATA_IF Ports
The ATA interface uses the component clock clk_ata, which also uses
altmemddr_0_auxhalf for the Avalon-MM and EXM32 bus interfaces.

The ATA IP from Evatronix use the following ports:

■ ata_avalon_slave

■ ata_dma_master

■ sfr_slave ports

The exm_avalon_slave port is a direct mapping of the EXM bus address space.

Setting up the EXM_ATA_IF Component
The Altera-provided EXM_ATA_IF component, which includes the EXM32 bus
interface and the EXM_ATA_IF top-level file, is incomplete. You must obtain the
ATA IP from Evatronix to use the EXM_ATA_IF component. To set-up the ATA IP,
follow these steps:

1. Delete the chip_ataif.v and chip_ataif_hw.tcl files, which are located in the
Evatronix src directory.

2. Copy the remaining source files from the Evatronix src directory to the exm_ata
directory in your project.

Third-Party Multimedia Interfaces
Third-party IP partners provide the SD card, USB, and MediaLB media interfaces. The
cpu application software runs these interfaces.

f For more information, refer to the relevant IP documentation.

USB Interface
The IFI USB2 Highspeed OTG interface is shipped with timing constraints in an .sdc
file that is incompatible with the PARIS architecture.
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 14 SOPC Builder System Description
To resolve the .sdc file incompatibility, perform the following steps:

1. Generate the system in SOPC builder.

2. Open the std_2s60.qip file in the Quartus II Text Editor.

3. Remove the line that refers to ifi_usb2_high_otg_const.sdc. Removing the line
removes the .sdc file entry for the IFI USB2 Highspeed OTG interface.

After you remove the .sdc file entry for the IFI USB2 Highspeed OTG interface from
the project’s .qip file, the system uses the timing constraints that are provided in the
project constraint .sdc file.

Arbitration Shares
To guarantee efficient access to memory, arbitration shares are used in the SOPC
builder design.

Nios II processors are connected to memory using arbitration shares of 8 to match the
burst length of the Nios II caches, as shown in Figure 8.

The LCD controller is connected using 32 arbitration shares to match the burst length
of its Avalon masters. Other masters are similarly connected using corresponding
arbitration shares, as shown in Figure 9.

Figure 8. Nios II Processor Arbitration Shares
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

SOPC Builder System Description Page 15
Note that the connections to the memory are routed through a pipeline bridge and a
half-rate bridge. These extra connections do not require arbitration shares because one
master only is connected to each slave (pipeline bridge master to half-rate bridge
slave and half-rate bridge master to DDR2 SDRAM controller slave).

I/O
Table 6 through Table 12 provide cross-references between I/O connectors on the
PARIS motherboard and the corresponding FPGA pins for interfaces that connect
directly to the I/O.

1 For full details of motherboard connector placement and pin orientation, refer to the
Gleichmann MSC EXM-MBFULL R4 User's Manual for the PARIS motherboard.

Figure 9. Arbitration Shares

Table 6. Motherboard X24 LCD1 TTL 31-Pin FPC Connector (Part 1 of 2)

Pin Signal FPGA Pin

1 GND n/a

2 CLK N30
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 16 SOPC Builder System Description
3 HSYNC M30

4 VSYNC M29

5 GND n/a

6 R0 G30

7 R1 G29

8 R2 H32

9 R3 H31

10 R4 H30

11 R5 H29

12 GND n/a

13 G0 F32

14 G1 F31

15 G2 F30

16 G3 F29

17 G4 G32

18 G5 G31

19 GND n/a

20 B0 D32

21 B1 D31

22 B2 E32

23 B3 E31

24 B4 E30

25 B5 E29

26 GND n/a

27 DE M32

28 VCC n/a

29 VCC n/a

30 R/L n/a

31 U/D n/a

Table 7. Motherboard X38 GPIO/LCD2 50-Pin Connector

Motherboard X38 GPIO LCD2 50-Pin Connector

Pin Signal FPGA Pin Pin Signal FPGA Pin

1 5V n/a 2 5V -n/a

3 3.3V n/a 4 3.3V -n/a

5 I2 SCL N28 6 I2C SDA P32

7 I2 INT# n/a 8 GND n/a

9 n.c. n/a 10 GND n/a

11 D0 H28 12 D1 H27

Table 6. Motherboard X24 LCD1 TTL 31-Pin FPC Connector (Part 2 of 2)

Pin Signal FPGA Pin
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

SOPC Builder System Description Page 17
13 D2 J27 14 D3 J26

15 D4 K27 16 D5 K26

17 D6 K24 18 D7 K25

19 GND n/a 20 GND n/a

21 n.c. n/a 22 M DE K32

23 n.c n/a 24 HSYNC K30

25 VSYNC K29 26 n.c n/a

27 SHFCLK L31 28 n.c n/a

29 GND n/a 30 GND n/a

31 D8 L26 32 D9 L25

33 D10 L24 34 D11 L23

35 D12 M27 36 D13 M26

37 D14 M25 38 D15 M24

39 GND n/a 40 GND n/a

41 VDON J31 42 n.c n/a

43 VCON K31 44 n.c n/a

45 n.c n/a 46 DON L32

47 n.c n/a 48 BLON L30

49 I2C A0 n/a 50 I2CA1 n/a

Table 8. Motherboard X14 COM0 9-Pin D-Sub Connector (Not currently used by PARIS/GRACE
applications)

Pin Signal FPGA Pin

1 DCD# n/a

2 RXD P28

3 TXD P29

4 DTR# n/a

5 GND n/a

6 DSR# n/a

7 RTS# P27

8 CTS# P26

9 RI# n/a

Table 9. Motherboard X14 COM1 9-Pin D-Sub Connector (Not currently used by PARIS/GRACE
applications) (Part 1 of 2)

Pin Signal FPGA Pin

1 DCD# n/a

2 RXD P24

Table 7. Motherboard X38 GPIO/LCD2 50-Pin Connector

Motherboard X38 GPIO LCD2 50-Pin Connector

Pin Signal FPGA Pin Pin Signal FPGA Pin
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 18 SOPC Builder System Description
3 TXD P25

4 DTR# n/a

5 GND n/a

6 DSR# n/a

7 RTS# P29

8 CTS# R28

9 RI n/a

Table 10. Motherboard X19 PATA/ATAPI 44-Pin Connector

Motherboard X38 GPIO LCD2 50-Pin Connector

Pin Signal FPGA Pin Pin Signal FPGA Pin

1 RESET# n/a 2 GND n/a

3 D7 (1) 4 DS (1)

5 D6 (1) 6 D9 (1)

7 D5 (1) 8 D10 (1)

9 D4 (1) 10 D11 (1)

11 D3 (1) 12 D12 (1)

13 D2 (1) 14 D13 (1)

15 D1 (1) 16 D14 (1)

17 D0 (1) 18 D15 (1)

19 GND n/a 20 n.c. n/a

21 DMARQ L4 22 GND n/a

23 IOW# B13 24 GND n/a

25 IOR# E14 26 GND n/a

27 IORDY# C9 28 CSEL# n/a

29 DMACK# M4 30 GND n/a

31 INTRQ A7 32 n.c. n/a

33 A1 (1) 34 CBLID# n/a

35 A0 (1) 36 A2 (1)

37 CS0# E9 38 CS1# A8

39 DASP# n/a 40 GND n/a

41 5V n/a 42 FV n/a

43 GND n/a 44 Reserved n/a

Note:
(1) Pins shared with motherboard EXM bus. Refer to Gleichmann MSC EXM-MBFULL R4 User's

Manual.

Table 9. Motherboard X14 COM1 9-Pin D-Sub Connector (Not currently used by PARIS/GRACE
applications) (Part 2 of 2)

Pin Signal FPGA Pin
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

SOPC Builder System Description Page 19
Table 11. Motherboard X37 Digital Video 50-pin connector (Not currently used by PARIS/GRACE
applications)

Motherboard X37 Digital Video 50-Pin Connector

Pin Signal FPGA Pin Pin Signal FPGA Pin

1 5V n/a 2 5V n/a

3 3.3V n/a 4 3.3V n/a

5 I2 SCL N28 6 I2C SDA P32

7 I2C INT# n/a 8 GND n/a

9 n.c. n/a 10 GND n/a

11 DV0 D0 C26 12 DV0 D1 D26

13 DV0 D2 E26 14 DV0 D3 A25

15 DV0 D4 B25 16 DV0 D5 C25

17 DV0 D6 D25 18 DV07 E25

19 GND n/a 20 GND n/a

21 n.c. n/a 22 DV0 DE AV# B22

23 n.c. n/a 24 DV0 HSYNC C22

25 DV0 VSYNC D22 26 n.c. n/a

27 DV0 CLK A22 28 n.c. n/a

29 GND n/a 30 GND n/a

31 DV1 D0 A24 32 DV1 D1 B24

33 DV1 D2 C24 34 DV1 D3 E24

35 DV1 D4 A23 36 DV1 D5 B23

37 DV1 D6 C23 38 DV1 D7 B23

39 GND n/a 40 GND n/a

41 n.c. n/a 42 DV0 DE AV# B21

43 n.c. n/a 44 DV0 HSYNC C21

45 DV0 VSYNC D21 46 n.c. n/a

47 DV0 CLK A21 48 n.c. n/a

49 I2C A0 n/a 50 I2C A1 n/a

Table 12. Motherboard X23 SDIO Card Socket (Part 1 of 2)

Pin Signal FPGA Pin

1 DAT3 N22

2 CMD N26

3 GND n/a

4 VDD n/a

5 CLK M22

6 GND n/a

7 DAT0 N25

8 DAT1 N24

9 DAT2 N23
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 20 SOPC Builder System Description
Table 13 through Table 19 give a cross reference between signals for the remaining
I/O and FPGA pins. These signals are routed through motherboard components (e.g.
USB PHY) so have no direct correspondence to motherboard I/O connectors.

10 CD# N27

11 COM n/a

12 WP M23

13 CHASSIS n/a

14 n.c. n/a

Table 13. DDR2 SDRAM Interface 0 (Part 1 of 2)

Signal FPGA Pin

ddr2_0_a[0] AC15

ddr2_0_a[1] AG11

ddr2_0_a[2] AE14

ddr2_0_a[3] AD12

ddr2_0_a[4] AG16

ddr2_0_a[5] AD13

ddr2_0_a[6] AC16

ddr2_0_a[7] AE13

ddr2_0_a[8] AL16

ddr2_0_a[9] AL11

ddr2_0_a[10] AB13

ddr2_0_a[11] AL13

ddr2_0_a[12] AK13

ddr2_0_ba[0] AB14

ddr2_0_ba[1] AC14

ddr2_0_cas_n AD14

ddr2_0_cke[0] AK11

ddr2_0_clk[0] AJ15

ddr2_0_clk_n[0] AH15

ddr2_0_cs_n[0] AM16

ddr2_0_dm[0] AH16

ddr2_0_dm[1] AH14

ddr2_0_dq[0] AK12

ddr2_0_dq[1] AM11

ddr2_0_dq[2] AH11

ddr2_0_dq[3] AM12

ddr2_0_dq[4] AL10

ddr2_0_dq[5] AJ12

Table 12. Motherboard X23 SDIO Card Socket (Part 2 of 2)

Pin Signal FPGA Pin
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

SOPC Builder System Description Page 21
ddr2_0_dq[6] AM10

ddr2_0_dq[7] AJ11

ddr2_0_dq[8] AJ14

ddr2_0_dq[9] AG13

ddr2_0_dq[10] AJ13

ddr2_0_dq[11] AH13

ddr2_0_dq[12] AF13

ddr2_0_dq[13] AG15

ddr2_0_dq[14] AM14

ddr2_0_dq[15] AL14

ddr2_0_dqs[0] AK10

ddr2_0_dqs[1] AG14

ddr2_0_odt[0] AB16

ddr2_0_ras_n AB15

ddr2_0_we_n AL12

Table 14. DDR2 SDRAM Interface 1 (Part 1 of 2)

Signal FPGA Pin

ddr2_1_a[0] AH9

ddr2_1_a[1] AH7

ddr2_1_a[2] AG9

ddr2_1_a[3] AJ5

ddr2_1_a[4] AE11

ddr2_1_a[5] AL4

ddr2_1_a[6] AL8

ddr2_1_a[7] AM4

ddr2_1_a[8] AF11

ddr2_1_a[9] AK5

ddr2_1_a[10] AH6

ddr2_1_a[11] AL9

ddr2_1_a[12] AG8

ddr2_1_ba[0] AH5

ddr2_1_ba[1] AL6

ddr2_1_cas_n AE10

ddr2_1_cke[0] AK4

ddr2_1_clk[0] AL15

ddr2_1_clk_n[0] AK15

ddr2_1_cs_n[0] AD11

ddr2_1_dm[0] AC13

Table 13. DDR2 SDRAM Interface 0 (Part 2 of 2)

Signal FPGA Pin
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 22 SOPC Builder System Description
ddr2_1_dm[1] AE12

ddr2_1_dq[0] AM7

ddr2_1_dq[1] AK7

ddr2_1_dq[2] AM6

ddr2_1_dq[3] AM5

ddr2_1_dq[4] AJ7

ddr2_1_dq[5] AM8

ddr2_1_dq[6] AK6

ddr2_1_dq[7] AJ6

ddr2_1_dq[8] AG10

ddr2_1_dq[9] AK8

ddr2_1_dq[10] AJ10

ddr2_1_dq[11] AF10

ddr2_1_dq[12] AJ8

ddr2_1_dq[13] AG12

ddr2_1_dq[14] AM9

ddr2_1_dq[15] AF12

ddr2_1_dqs[0] AL5

ddr2_1_dqs[1] AK9

ddr2_1_odt[0] AC12

ddr2_1_ras_n AL7

ddr2_1_we_n AH8

Table 15. USB2.0 Interface 0

Signal FPGA Pin

usb0_clkout U1

usb0_data[0] W2

usb0_data[1] W1

usb0_data[2] V5

usb0_data[3] V4

usb0_data[4] V3

usb0_data[5] V2

usb0_data[6] U6

usb0_data[7] U5

usb0_dir Y2

usb0_nxt W2

usb0_reset Y3

usb0_stp W4

usb0_oc Y4

Table 14. DDR2 SDRAM Interface 1 (Part 2 of 2)

Signal FPGA Pin
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

Setting Up the Environment Page 23
Setting Up the Environment
To set your Quartus II environment to use the PARIS reference design, perform the
following steps to obtain the necessary licenses for third-party IP, and set up the
Quartus II software to find the IP and the licenses.

1. Add licenses to the LM_LICENSE_FILE environment variable, or manually add
them in the License Setup page of the Options dialog box in the Quartus II
software.

Table 16. USB2.0 Interface 1

Signal FPGA Pin

usb0_clkout U3

usb0_data[0] AB4

usb0_data[1] AB3

usb0_data[2] AB2

usb0_data[3] AB1

usb0_data[4] AA4

usb0_data[5] AA3

usb0_data[6] AA2

usb0_data[7] AA1

usb0_dir AC2

usb0_nxt AC1

usb0_reset AC3

usb0_stp AB5

Table 17. MediaLB Interface

Signal FPGA Pin

mlbclk C27

mlbdat B26

mlbsig E27

Table 18. I2C0 Interface

Signal FPGA Pin

i2c0_scl R31

i2c0_sda P31

Table 19. I2C1 Interface

Signal FPGA Pin

i2c1_scl P32

i2c1_sda N28
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 24 Software Architecture Description
2. To add the path to all the IP in the Quartus II project libraries list, follow these
steps:

a. On the Assignments menu, click Settings.

b. Under Categories, click Libraries.

c. Under Project Libraries, add the paths to the IP libraries.

Software Architecture Description
Figure 10 shows the architecture of the infotainment application software. The
application runs on a multiprocessor system with two Nios II embedded processors.

One Nios II processor runs the main application software using the ThreadX real time
operating system (RTOS). Lower-level layers of the software include the following
items:

■ FAT32 file system for accessing audio on USB, SD card, and HDD

■ Altia’s user interface tools

■ SMSC’s MOST NetServices API v2 for controlling and streaming audio data from
the MOST ring

■ Low-level hardware drivers

Figure 10. Software Architecture

Touchscreen
Drivers

D/AVE
Drivers

Altia NetServices
V2

SD Card
Drivers

ATA
Drivers

USB Host
Drivers

File X FAT32 File System

RTOS Abstraction Layer

Nios II Processor

ThreadX RTOS

MediaLB Low
Level Driver

TouchscreenLCD
Panel

SD or SDHCHDDUSB Memory
Stick

MOST
Interface

MP3
Decoder

Spirit DSP
Library

Nios II Custom
Instructions

EDAR
HSL

Audio
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

Software Architecture Description Page 25
The second Nios II processor decodes MP3 audio using the Spirit DSP MP3 decoder
software. Nios II custom instructions accelerate critical parts of the MP3 decoder
software.

Data transfer between the two Nios II processors occurs via the system’s DDR2
SDRAM. Control and status information is passed via the MP3 control buffer, which is
a small on-chip buffer implemented in a single M4K memory. This buffer has a known
base address (defined in the SOPC Builder project), which can be determined from the
system library system description file, system.h.

An RTOS abstraction layer simplifies porting the application to a different RTOS.

Initialization
The C main() function starts the ThreadX kernel. The ThreadX callback function
tx_application_define() creates a number of threads and other resources used
by the application. Some threads begin execution immediately, while other threads
are created, but not started until further initialization is complete.

Threads
This section describes the following threads:

■ Initialization Thread

■ EDAR ISR Thread

■ File Reader Thread

■ NetServices Service Thread

■ NetServices Trace Thread

■ NetServices Application CD Thread

■ NetServices Application Thread

■ Debug Thread

■ Infotainment Application Thread

■ MP3 Nios II Threads

Initialization Thread
The initialization thread, thread_0, executes immediately after creation. This thread
calls the initialization functions for the low level hardware drivers and also for
NetServices.

The following initialization occurs:

■ Initialize audio CODEC

■ Initialize EDAR

■ Initialize EDAR DMA

■ Initialize infotainment application (data structures, buffers) and start infotainment
application thread

■ Initialize NetServices required resources (mutex, event flags)
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 26 Software Architecture Description
■ Initialize MediaLB device interface macro (DIM) and low level drivers (LLDs)

■ Start NetServices application thread:

■ Resume NetServices trace thread

■ Resume NetServices service thread

■ Resume NetServices application thread

■ Call InitNetServices()

The initialization thread is suspended when initialization is complete.

EDAR ISR Thread
The EDAR interrupt service routine (ISR) thread is initiated by an event flag that is set
by the EDAR ISR. The thread launches a DMA to transfer decoder samples from the
MP3 decoder to the EDAR input FIFO.

The EDAR ISR thread is started automatically once created.

File Reader Thread
The file reader thread reads data from the file system (SD card, USB, or HDD) as
required, to keep the file buffer populated with data for the MP3 decoder.

The file reader thread is created in a suspended state. The thread resumes when a file
is played and is suspended again when the file play ends.

NetServices Service Thread
The NetServices service thread runs periodically to call NetServices functions,
MostService() and Most CheckTimers(), or to service requests from the
MediaLB low-level driver.

The service thread is created in a suspended state. The thread resumes when the call
to InitNetServices() completes.

NetServices Trace Thread
The NetServices trace thread outputs NetServices trace (debug) information to the
Nios II console via the JTAG UART.

f For more information on selecting the level of trace detail, refer to the NetServices
documentation from SMSC.

The trace thread is created in a suspended state. The thread resumes when the
NetServices application thread is started and is never suspended.

NetServices Application CD Thread
When you select MOST audio playback in the GUI, the NetServices application CD
thread (most_app_cd_thread) starts (from thread_0) when NetServices
initializes and the NetServices service thread starts. When the SMSC DVDPlayer 4
MOST detects activity on the MOST ring it ejects and then reloads any disc that is
already present. The CD thread sets up a streaming data connection and waits until
the disc is loaded.
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

Software Architecture Description Page 27
The CD thread is created in a suspended state. The thread resumes when you select
MOST audio playback in the GUI; the NetServices application starts and is never
suspended.

NetServices Application Thread
The NetServices application thread runs periodically to service the NetServices
application state machine through the app_run() function call. The state machine
runs communication between the application and NetServices.

The NetServices application thread is created in a suspended state and resumes with
the app_start() function call from thread_0.

Debug Thread
The debug thread receives messages through a buffer in the SDRAM to be sent to the
JTAG UART for display in the host system's console window. This buffer allows
non-blocking, thread-safe I/O for debug messages from other threads.

The debug thread suspends when no messages are waiting to be sent. Transmission of
debug messages prevents the GUI thread from running and affects the GUI update
rate.

Messages from the debug thread are interleaved with messages from the NetServices
trace thread (if enabled).

Infotainment Application Thread
After completing initialization of data, GUI display, and establishing communication
with the MP3 decoder, the infotainment application is a simple loop that performs the
following tasks:

■ Polls for touchscreen activity

■ Calls user interface code to display the GUI based on current activity

The appropriate action function is called in response to touchscreen activity. For
example, to select the audio source or start playback, and so on. These functions run
in the infotainment application thread. When all user requested activity is complete,
the infotainment application thread sleeps for 200 ms.

MP3 Nios II Threads
The MP3 decoder Nios II processor runs two threads. One is functionally identical to
the debug thread on the application, as described in “Debug Thread”.

The main thread initializes required data, initializes the SpiritDSP library, waits for
communication from the Nios II application, and then runs in an endless loop
accepting commands (for example, play or stop) from the Nios II application and
calling the Spirit DSP MP3 decoder when required.

Interrupts
This section describes the following interrupts:

■ EDAR DMA Request

■ MediaLB Channel Interrupt
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 28 Software Architecture Description
■ SDIO Host Controller

■ USB

■ ATA

■ LCD Controller Interrupt

EDAR DMA Request
The EDAR DMA request interrupt sets an event flag, causing the EDAR ISR thread to
run.

MediaLB Channel Interrupt
Interrupts from the MediaLB DIM are handled by the low-level drivers (LLD) to
maintain transmit and receive buffers for the MediaLB channels.

SDIO Host Controller
Interrupts from the secure digital input output (SDIO) host controller are handled by
SDIOWorx.

USB
The Emsys driver handles interrupts from the USB host controller.

ATA
The Evatronix driver handles interrupts from the ATA controller Evatronix driver.

LCD Controller Interrupt
The Altia code uses double buffering. The ISR updates the frame buffer to be
displayed by the LCD controller. The ISR is part of the Altia library and it uses the
default LCD controller driver provided with the D/AVE IP.

Data Flow During Audio Playback
Figure 11 shows the flow of audio data through the system.

MP3 data from SD card, USB, and HDD is accessed as a standard FAT32 file system
through FileX.

Data from the MOST interface is streamed through the MediaLB interface.

Audio samples are streamed from the EDAR to an audio CODEC via an I2S interface.

Figure 11. Audio Data Flow

Net
Services

FIFO ARU

EDAR

Spirit
DSP MP3
Decoder
(not WAV)

MLBMOST

USBUSB

HDDHard
Disk

SDIO
Worx

SD Card

FileX

I2S I2S

WAV
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

Software Architecture Description Page 29
MP3 Decoder
MP3 decoding utilizes the SpiritDSP MP3 decoder libraries. A dedicated Nios II
embedded processor is instantiated in the system to run this software. Nios II custom
instructions accelerate the MP3 decoding.

MP3 encoded input samples are passed through a circular buffer in SDRAM. The
main system processor replenishes data in this buffer (the file reader thread) as it is
consumed by the MP3 decode process.

Decoded output samples are passed through a second circular buffer in SDRAM. The
output buffer is large enough to hold 1,024 samples. Whenever there is sufficient
space in the buffer for 384 samples, the SpiritMP3 decode routine is called.

Control and status buffers are located in FPGA on-chip M4K memory (512 bytes)
instantiated in the SOPC Builder project, which allows the base address of the buffers
to be determined at software compile time. Pointers to the input and output buffers
are passed to the MP3 decoder thread through the control buffer. Figure 12 shows the
SpiritDSP MP3 decoder process.

Memory Bandwidth Discussion – Dual Nios II system
Figure 13 shows an expanded view of the data flow in the system when decoding
MP3 audio from the SD card. The system implements a pull model where data is
pulled through at a rate determined by the I2S data rate from the EDAR. The EDAR
FIFO can be shared by multiple streams (up to 8) with a maximum depth (if only one
stream) of 1K words (1,024 samples comprising 512 left and 512 right channels for a
stereo stream). To allow for future use of multiple streams being handled by EDAR,
the FIFO for decoded MP3 data is restricted (somewhat arbitrarily) to 192 samples
with a low watermark (LWM) at 64 samples. The FIFO is refilled in response to the
LWM interrupt with a DMA transfer of 128 samples.

Figure 12. Spirit DSP MP3 Decoder Process

Spirit DSP
MP3 Decoder

Nios II MP3 Decoder

Nios II System

Output
Buffer

Input
Buffer

Control
Buffer

Status
Buffer
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 30 Software Architecture Description
LWM of 32 stereo samples at 48 kHz allows for a latency of 666 s from interrupt to
first DMA data received in EDAR FIFO. The EDAR deferred ISR thread is the highest
priority thread, apart from IRQ handling, so this allowance is more than adequate.

The EDAR buffer is partitioned into 16 buffers of 128 samples (the length of a DMA),
which are filled from the Spirit DSP PCM buffer by calling the SpritMP3decode()
function. If enough decoded samples are available in the MP3 decoders internal PCM
buffer, they are returned. If insufficient samples are available in the PCM buffer, the
MP3 decoder requests more encoded data, through the read callback function, and
decodes more MP3 samples. The MP3 decoder decodes 576 stereo (1,152 total)
samples at once. The decoded PCM data are stored in the PCM buffer, until they are
retrieved by the application. The file buffer is a circular buffer and is refilled by a call
to the FileX file system whenever at least 512 bytes are free. The SDIOWorx SDIO host
drivers refill the file buffer, using the DMA controller function in the Eureka SDIO
host controller.

The MP3 data and the PCM buffers are private resources within the MP3 decoder
with no direct user access. The MP3 decoder loads/unloads these buffers using
pointers provided as parameters in the decode function and the callback function.

WAV File Playback
Figure 14 shows the simpler data flow for WAV file playback. DMA direct from the
SDIO host controller to the EDAR is not possible, because the EDAR FIFO port
occupies a single data word in the address space.

Figure 13. MP3 Data Flow

PCM
Buffer

2,304 bytes

EDAR
Buffer

2,048 bytes

EDAR

DDR SDRAM

callback() Process
Spirit DSP MP3

decode()

DMA
128 bytes

MP3
Data

MP3 Bitstream
320 kbps max
(plus headers

around 500 Kbps)

16-bit Stereo
PCM Samples

at 48 kHz (around 200 KBps)

File
Buffer

Eureka
SDIO
Host

SD
Card

FileX/SDIO Worx
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

Software Architecture Description Page 31
Audio Playback from the MOST Interface
Playback of CD audio is very similar to that of WAV file playback from SD card (see
Figure 14).

GRACE 3D Graphics Application
The GRACE (Graphics Controller Engine) 3D graphics application builds upon the
infotainment application with the addition of 3D graphics demos.

The 3D graphics demo have no additional threads or interrupt sources. The software
build scripts for the GRACE video application include additional source files and
enable features in the existing source code through conditional compilation. While the
3D demo is running, each loop of the Infotainment Application Thread, as described
in “Infotainment Application Thread” on page 2–27 causes the demo function to draw
the next frame of the 3D display.

The 3D demos are built upon the OpenGL-ES library for the D/AVE 3D graphics
accelerator. Texture files for the display objects must be copied to the HDD in a
directory named textures\compressed before the demos can be run.

GRACE Video Application
The GRACE Video application builds upon the infotainment application with the
addition of H264 video playback. The audio playback software infrastructure is used
for video playback with no additional threads or interrupts. The software build
scripts for the GRACE video application include additional source files and enable
features in the existing source code through conditional compilation.

The additional source code files for the GRACE video application include the
firmware that must be downloaded to the Videantis H.264 decoder. The audio and
video streams are read separately from files on the HDD. The two streams must use
the same filename, the H.264 encoded video with a .264 file extension, and the audio
encoded as MP3 audio with a .mp3 file extension.

Figure 14. WAV Data Flow

EDAR

DDR SDRAM

DMA
128 bytes

16-bit Stereo
PCM Samples

at 48 kHz (around 200 KBps)

File
Buffer

Eureka
SDIO
Host

SD
Card

FileX/SDIO Worx
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 32 Using the LCD GUI
Decoded video frames are written directly to a frame buffer for display by the LCD
controller. All three layers of the LCD controller (two display layers and one alpha
layer) are activated for the GRACE video application. The alpha layer is written
during operation to allow the user interface to be overlaid on top of the video.

Using the LCD GUI
You interact with the application via a GUI on the LCD touchscreen.

Splash Screen
Figure 15 shows the splash screen that displays on initial power-up, and while the
application is loading. The splash screen displays logos and names of infotainment
hardware and software IP partners.

Application Screen
Figure 16 shows the application screen, which displays when the application loads.

Figure 15. Splash Screen
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

Using the LCD GUI Page 33
Table 20 describes the application screen functions.

Setup Screen
Figure 17 shows the setup screen, which allows you to set various application
parameters.

Figure 16. Application Screen

Table 20. Application Screen Functions

Button Function

AUDIO Displays the audio screen.

SETUP Displays the setup screen.

Other buttons The VIDEO button, which displays a list of available tracks, is available in the
GRACE video reference design.

The remaining buttons in the application screen are non-functional for the
PARIS reference design.
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 34 Using the LCD GUI
Table 21 describes the setup screen functions.

The time display is a simulated clock and resets to 13:00 each time the application is
run.

Audio Screen
Figure 18 shows the audio screen where you can select the audio source.

Figure 17. Setup Screen

Table 21. Setup Screen Functions

Button Function

Hour + Move the displayed time forward by 1 hour.

Hour – Move the displayed time backward by 1 hour.

12/24 Toggle the time display between 12 and 24 hour modes.

Min + Move the displayed time forward by 1 minute.

Min – Move the displayed time backward by 1 minute.

Labels Toggle the text labels on the GUI buttons on or off.

BACK Return to the application screen.
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

Using the LCD GUI Page 35
Table 22 describes the audio screen functions.

Playback Screen
Figure 19 shows the playback screen, which displays a list of tracks, if available from
the selected source. For SD card, USB, and HDD, the media is searched for audio in
MP3 or WAV format. The screen displays the list of files. The highlight bar in the
middle of the screen displays the current track. For audio from the MOST network,
the highlight bar displays only the currently playing track number.

Figure 18. Audio Screen

Table 22. Audio Screen Functions

Button Function

SD Select SD card as the audio source.

USB Select USB (memory stick) as the audio source.

HDD Select HDD as audio the source.

MOST Select the MOST network as the audio source. The infotainment application supports
playback from CD audio discs in an SMSC DVD4 MOST player.

VOL + Increase the audio volume.

VOL – Decrease the audio volume.
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 36 Application Software Source Code
Table 23 describes the playback screen functions.

Application Software Source Code
Recompiling the application source requires you to obtain licensed source code from a
number of third-party vendors in addition to the source code that is supplied with the
reference designs. The software project delivered with the infotainment application
contains empty directories, which are place-holders for the licensed source code.
Figure 20 shows the directory structure.

Figure 19. Playback Screen

Table 23. Playback Screen Functions

Button Function

▲ Scroll tracklist up.

▼ Scroll tracklist down.

>|| Toggle between play and pause.

■ Stop playback.

<< Skip one track forward.

>> Skip one track backward.
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

Application Software Source Code Page 37
The infotainment application requires the following other third-party software:

■ Express Logic ThreadX RTOS

■ Express Logic FileX file system

■ Altia Design and Deepscreen

f For more information on Express Logic software, refer to www.rtos.com. For more
information on Altia software, refer to www.altia.com.

Figure 20. Directory Structure

software
Top-level project directory.

build
Contains build scripts for reference design BSPs, libraries, and applications.
grace_hmi
Contains Altia project files for the GRACE 3D user interface.
paris_hmi
Contains Altia project files for the PARIS and GRACE Video user interface.

hsl
Contains dource files for the Bosch EDAR Hardware Support Layer, which requires a license.

ParisNetServicesApp
Contains C source code and include files for the NetServices application for streaming audio data
from a SMSC DVDPlayer 4 MOST across the MOST network. Also contains NetServices include files
which must be used in place of the default files delivered with NetServices (adjust1.h, adjust2.h).

ParisNetServicesLLD
Contains the low-level driver (LLD) software for the SMSC OS62400 MediaLB DIM. The LLD is
originally available from the SMSC website but this version is modified to be specific to the PARIS
platform.

ParisNetServices
Contains ParisNetServices subdirectories.

SDIOWorx
This directory is empty and is a place-holder for third-party software that you must license from
EmbWise.
You must use the sd_FileX_App.c provided with the PARIS application (in the top level directory),

grace
Contains source code specific to the GRACE 3D and GRACE Video reference designs.
mp3
Contains C source code, mp3_main.c, for the MP3 decoder function running on the mp3_nios
Nios II processor.

evatronix
This directory is empty and is a place holder for the ATA host controller, which you must license
from Evatronix (www.evatronix.pl)

emsys
This directory is empty and is a place holder for the USB host controller core, which you must
license from Emsys (www.emsys.de).

source
Contains the boot_loader, common, grace, mp3, and paris subdirectories.

boot_loader
Contains source code for the custom bootloader used by the PARIS and GRACE reference designs
when programmed into flash memory.
common
Contains the emsys, Evatronix, HSL, include, ParisNetServices, ParisNetServicesApp,
ParisNetServicesLLD, and SDIOWorx subdirectories.

include
Contains include files for the application, but not those related to NetServices.

paris
Contains source code specific to the PARIS reference design.
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

http://www.rtos.com/
http://www.altia.com/

Page 38 Modifying the Reference Designs
RTOS Abstraction Layer
The RTOS abstraction layer simplifies the task of porting the demonstration to an
RTOS other than Express Logic ThreadX, by collecting all ThreadX-specific function
calls into two C modules named user_os.c and app_os.c. Wrapper functions make the
ThreadX-specific function calls available to the application. You need to edit only
these wrapper functions to use a different RTOS.

Modifying the Reference Designs

Hardware Example 1 - Enabling the Second DDR2 SDRAM Memory Bank
The PARIS FPGA module supports two banks of DDR2 SDRAM memory, but only
one bank is used in the infotainment design. To use the second bank, as you would
with the GRACE video application, you must add a second DDR2 high-performance
controller to the SOPC Builder project, configure the new controller, and then update
port connections. Use the procedures in this section to add and enable the second
DDR2 SDRAM memory bank.

Adding a Second DDR2 SDRAM High Performance Controller in the SOPC Builder
Perform the following steps to add a second DDR2 high-performance controller to the
SOPC Builder project:

1. Open your project in the Quartus II software.

2. Open the standard.bdf schematic file.

3. Double-clicking the std_2s60 instance in the schematic to open the component in
the SOPC Builder.

4. On the System Contents tab, double-click DDR2 SDRAM High Performance
Controller under SDRAM in the Component list. The MegaWizard interface
appears.

5. Specify the following settings on the Memory Settings page under General
Settings.

a. In the PLL reference clock frequency box, type 50 MHz.

b. In the Memory clock frequency box, type 130 MHz.

c. Set Local interface clock frequency to Full.
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

Modifying the Reference Designs Page 39
6. Select Micron MT47H16M16BG-37E in the Presets list under Memory Presets.

7. Click Modify parameters. The Preset Editor dialog box opens. Specify the
following settings in the Preset Editor dialog box:

a. Set Output clock pairs from FPGA to 1 pair.

b. Set Total Memory interface DQ width to 16 bits.

c. Set Memory on-die termination (ODT) setting to 50 ohm.

d. Click OK.

e. Click the PHY Settings tab.

Figure 21. Memory Settings Page
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 40 Modifying the Reference Designs
8. On the PHY Settings page, turn on Instantiate DLL externally under Advanced
PHY Settings.

Figure 22. Preset Editor Dialog Box
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

Modifying the Reference Designs Page 41
9. On the Controller Settings page, turn on Use clocks from another controller
under Multiple Controller Clock Sharing.

10. Click Finish.

Configuring the DDR2 SDRAM High-Performance Controller MegaCore Function
To configure the DDR2 SDRAM high-performance controller, perform the following
steps:

1. In the Connections pane, move the new controller instance directly underneath
the existing controller instance.

2. Create a connection between the new controller instance and the master port of the
half rate bridge by clicking the connection dot in the Connections column.

3. Create connections between the new controller clock inputs and the sources of the
existing controller instance clock inputs as shown in Figure 24.

Figure 23. PHY Settings Page
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 42 Modifying the Reference Designs
4. Once the connections are made, you must reparametrize the master port of the
half-rate bridge. Double-click the ssg_aim_half_rate_adapter_burst_master_0
instance in the Connections pane. The MegaWizard interface appears.

5. Under Upstream Settings and Downstream Settings, increase the master and
slave address widths by one bit.

6. Click Finish.

7. Once you have finished editing the design, for example, adding or removing other
components, you may need to change the address map to accommodate the extra
memory. You can change the address map by editing values in the Base column in
the System Contents tab.

8. Once you have completed all modifications to the design, click Generate.

1 You must rebuild the BSP if you make any changes to the address map.

Figure 24. Second DDR2 SDRAM High-Performance Controller MegaCore function Instance

Figure 25. Reparameterized Half Rate Bridge
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

Modifying the Reference Designs Page 43
Updating the Port Connections
After the SOPC system generates, you can update the port connections of the std_2s60
instance. Perform the following steps to update the port connections:

1. Open the std_2s60 instance in the Quartus II Block Editor.

2. Connect the dqs_delay_ctrl_export_from_the_altmemddr_0[5..0]
output of the original controller to the
dqs_delay_ctrl_import_to_the_altmemddr_0[5..0] input of the second
controller.

3. Connect the global_reset_n_to_the_altmemddr_1 input of the second
controller to the pld_clr_n signal.

4. Add appropriate I/O symbols to the second SDRAM DDR2 high-performance
controller as shown in Figure 26.

5. Add the I/O assignments in Table 14 for the second SDRAM DDR2 high-
performance controller with the Quartus II Assignment Editor.

6. Open the altmemddr_1_pin_assignments.tcl file in the Text Editor and make the
following edits:

■ Set SOPC mode to NO.

■ Set pin_prefix to ddr2_.

■ Set mem_addr_pin_name to ${pin_prefix}a.

7. Run the altmemddr_1_pin_assignments.tcl Tcl script.

Figure 26. SDRAM DDR2 Controller Connections
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 44 Modifying the Reference Designs
8. If you are using the IFI USB2 Highspeed OTG, open the std_2s60.qip file in the
Text Editor and remove the line that refers to ifi_usb2_high_otg_const.sdc.

9. On the Processing menu, click Start Compilation.

Hardware Example 2 - Adding a Second LCD Controller
Perform the following steps to add a second LCD controller to the SOPC Builder
project:

1. Use the procedures described in “Hardware Example 1 - Enabling the Second
DDR2 SDRAM Memory Bank” to add a second instance of the
variable_2layer_lcd_controller_nbc component, except parameterize the
component according to the requirements of the new display.

For example, Figure 27 shows the parameterization for the 800x480 WVGA
displays supplied with the PARIS kit.

2. Edit the schematic to accommodate the new symbol and add the new I/O
connections. The required I/O assignments for the second display, using the 50-
pin connector X38 on the PARIS motherboard, are given in Table 7 on page 16.

3. Compile the Quartus II project.

Figure 27. LCD Controller Parameterization for 800x480 PARIS Display
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

Modifying the Reference Designs Page 45
Software Example - Adding the File Copy Function
This section describes the method used for adding the file copy function to the PARIS
infotainment application, which allows you to copy media files from USB or SD
memory to the Hard Disc Drive (HDD). The file copy function already exists in the
PARIS infotainment application, so you do not need to perform the steps described in
this section; however, you can adapt this procedure to add your own functions.

Part 1 - Modifying the Altia User Interface

1 Familiarity with the Altia design tools is helpful with adding the file copy function
with the Altia user interface.

1. Designate a button for the copy function—The audio screen, shown on Figure 18,
has a blank button, which is the third button down on the right of the screen. The
blank button is used to select the copy function.

2. Create new button images—Two new button images are created by editing the
existing song_r3_blank_down and song_r3_blank_up blank images files to
song_r3_copy_down and song_r3_copy_up, respectively, to represent the COPY
button in up and down states. See Figure 28.

The blank images for the Song_r3 button are replaced by the new images in the
Altia project.

The new code for the user interface was generated using the code generation
menu in the Altia tools.

Part 2 - Modifying the Software
1. Activate the copy function—To implement the copy function, the new COPY

button must be activated by touching the new COPY button on the COPY screen,
which must be detected by the software. Then the selected source (SD or USB)
must be parsed to find all files (including those in subdirectories) and copy them
to the HDD.

2. Add the new buttons to the enums in the gui_buttons.h file—The source files
gui_buttons.h and gui_buttons.c define the action taken when a touchscreen
button is activated. The new button is added to the e_action and e_button enums
(AUDIO_DOWNLOAD and BUTTON_DOWNLOAD respectively) in the
gui_buttons.h file. The action_button and button_select arrays are similarly
augmented with the new enum values.

Figure 28. Copy Button Up and Down States

Up Down
© November 2009 Altera Corporation AN 533: Automotive Information and Entertainment Reference Designs
Preliminary

Page 46 Modifying the Reference Designs
3. Decode the button action—To decode the button action, the
AUDIO_DOWNLOAD case is added to the switch statement in the
action_function() function in gui_buttons.c file. The code added for this case
stops the current track playing (if any), calls a function to copy the files, and then
displays the new contents of the HDD.

4. Add the copy function to the paris_hdd.c source file—The new copy function
copy_to_hdd() is added to the paris_hdd.c source file. This function first searches
for a directory entry (that is, a directory or file name) do_delete_hdd. If such a
directory entry is found, then the HDD contents are deleted before the new files
are copied.

The del_all_files() and copy_all_files() functions are not documented here, and are
located in the user_fs.c source file.

Rebuilding the Hardware Projects
To regenerate the hardware projects in the SOPC Builder and compile them in the
Quartus II software, you must have access to all of the third-party IP required for your
modified design.

Rebuilding the Software Projects
The reference design package includes build scripts for all of the software applications
to make rebuilding software projects easy. The build scripts are described in this
section.

Rebuild the BSP
If you modify the design in SOPC Builder, you must rebuild the Board Support
Package (BSP). For example, for the paris 2s180 reference design, you must run the
build_bsp_2s180_paris.sh and build_bsp_2s180_paris_mp3.sh scripts to build the
BSPs for the main system Nios and the MP3 decoder Nios. These scripts are located in
the software\build\paris_2s180 directory.

Rebuild the Libraries
Once you have built the BSP, you can rebuild the libraries. The NetServices library is
common to all projects and the build script is located in the software\build\libs
directory. Other library build scripts are located in project-specific directories, for
example, software\build\paris_2s180\libs.

Rebuild the Application
Once you have updated the BSP and libraries, you can rebuild the applications by
using scripts provided in the project-specific directories. For the PARIS 2S180
example, run the build_2s180_paris.sh and build_2s180_paris_mp3.sh scripts.

Follow the instructions in “Downloading the Reference Designs to Hardware” to
download your new .sof and .elf to the PARIS kit hardware.
AN 533: Automotive Information and Entertainment Reference Designs © November 2009 Altera Corporation
Preliminary

Document Revision History
101 Innovation Drive
San Jose, CA 95134
www.altera.com
Technical Support
www.altera.com/support

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized
Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service
marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected
under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are
advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

Document Revision History
Table 24 shows the revision history for this application note.

Table 24. Document Revision History

Date and Document Version Changes Made Summary of Changes

October 2009 v2.1 ■ Added GRACE demonstration
designs

■ Added examples of modifying
the design

■ Added I/O pinouts

—

October 2008 v2.0 ■ Renamed to the infotainment
application

■ Corrected audio dataflow
diagram

—

July 2008 v1.1 Corrected directory structure. —

July 2008 v1.0 First release. —

http://www.altera.com
http://www.altera.com/support

	AN 533: Automotive Information and Entertainment Reference Designs
	Introduction
	System Requirements
	FPGA Programming Files
	Software Binary Files (.elf)
	Partner IP Licenses

	Installing the Reference Designs
	Quartus Directory
	Setup Directory
	Software Directory

	Downloading the Reference Designs to Hardware
	Copying Media Files to the Hard Disk Drive
	Navigating through Directories
	SOPC Builder System Description
	Clocks
	Nios II System Processor
	Nios II Audio Processor
	System-to-DDR2 SDRAM Interface
	External Flash
	LCD Interface
	Audio Interface
	EXM-ATA Interface
	Third-Party Multimedia Interfaces
	USB Interface
	Arbitration Shares
	I/O

	Setting Up the Environment
	Software Architecture Description
	Initialization
	Threads
	Interrupts
	Data Flow During Audio Playback
	GRACE 3D Graphics Application
	GRACE Video Application

	Using the LCD GUI
	Splash Screen
	Application Screen
	Setup Screen
	Audio Screen
	Playback Screen

	Application Software Source Code
	RTOS Abstraction Layer

	Modifying the Reference Designs
	Hardware Example 1 - Enabling the Second DDR2 SDRAM Memory Bank
	Hardware Example 2 - Adding a Second LCD Controller
	Software Example - Adding the File Copy Function
	Rebuilding the Hardware Projects
	Rebuilding the Software Projects

	Document Revision History

