
1

A DistributedEmbeddedSystemfor Modular
Self-ReconfigurableRobots

Arvind Seshadri,MarcosFerretti, AndresCastanoandPeterWill

Abstract— Self-reconfigurable or metamorphic robotsare modular robots
that can change their shapeand size. Such capability is desirable in situa-
tions where robotsmay encounter unexpected obstacles or difficulties and to
performtasksthat aredifficult for fixed-shaperobots.Wewantto build homoge-
neousmetamorphic robotswith intra andinter-robotmetamorphic capabilities.
Fulfill mentof this objective calls for small-size, self-sufficient and low power
modules, with enoughcomputing powerto run relatively sophisticatedcontrol
algorithms,using mostlycommercial-off-the-shelf components. Sophisticated
programsneedto beuncoupledfromhardware managementto make themeasy
to develop andmaintain. Additionally, themodulesneedan on-board operating
system,small in sizeand with a low overhead,able to run on a small-memory
microcontroller while still providing a sufficient functionality. In this paper, we
discussthedesignof theelectrical subsystem,theoperating systemandthecom-
munication mechanismsof themodulesof our robot.

I . INTRODUCTION

Self-reconfigurable robots couldperform jobssuchasearth-
quake searchand rescue,battlefieldsurveillanceandscouting
and,spaceandinterplanetaryexploration,wheretherobotsmay
faceunexpectedsituationsor obstacles,or mayneedto perform
taskstoodifficult for fixed-shaperobots.To performthesetasks
therobot hasto beself-sufficient wherewe usethe termto de-
scribearobotwith theon-boardhardwareneededto operateun-
tethered.

We want to build metamorphic robots with both intra and
inter-robot metamorphic capabilities[6]. The requirementof
self-sufficiency requires that robots formed by a split (i.e., an
operation in which a robot is divided into two smallerrobots)
areself-sufficient. Sincethe simplestsplit operation is onein
which a robot splits a single-module robot then eachmodule
mustitself beself-sufficient: it musthavea CPU,power supply
andcontrol over its sensorsandactuators.In addition, themod-
ulesneeda communicationsystemto coordinate their actions
for global control of therobot andotherinter-modulecommuni-
cation.Thissystemmustprovideanerrorcorrectionmechanism
thatwould permit inter-robot communicationin noisyenviron-
ments,whereretransmissionis notaneffectiveoption.

Our robots arehomogeneous, i.e., all modulesare identical
andhence the positionof a module in the robot determinesits
function. Thismakesourrobotslargerin sizecomparedtometa-
morphic robotswith heterogeneous modules. In general, we
wanteachmodule to beassmall in sizeandweightaspossible,
sincesomeactionsrequire a singleactuatorto move multiple
modules. Weightandsizeconsiderationslimit us to usesmall,
low powerbatteriesto power themodules.
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The control of the robot can centralizedor distributed. In
the centralizedcontrol, either the CPU of one the modulesor
a remote hostact as a master. In contrast,distributedcontrol
makesuseof thecollaborationof agents local to eachmodule.
Thedesignof themodule doesnotmakeany assumptionsabout
thetypeof globalcontrol.Still, differentcontrol methodsplace
different demands on the processingpower of the CPU of the
modules.Typically, global controlwith a remote hostasmaster
requiresasmallcomputationalpowerwhile boththedistributed
control andthe centralizedcontrol with a local masterusually
havehighprocessingrequirements.TheCPUusedby themod-
uleshasto bepowerful enoughto meettherequirementsof the
differentcontrol methods in additionto beingableto control all
theactuators andsensorsandthecommunicationsystemof the
module.

We found that 16-bit microcontrollers provide an effective
compromisein termsof processingpower, memorysize, on-chip
peripherals, sizeandpowerconsumption. Althoughmuchmore
powerful, 32-bit microcontrollers are not appropriate alterna-
tivesdueto their sizeandpower consumption,andtheir assets,
high clock speedsanda wide varietyof peripherals,would not
beusedby themodule.

With respectto thesoftware,themodulesneedareal-timeop-
eratingsystem(RTOS) to facilitatethedevelopment andmain-
tenanceof applicationprogramsby uncoupling themfrom the
underlying hardware.TheRTOSmustprovideasufficient func-
tionality andbepredictable, efficientandsmallsinceit hasto be
deployedon16-bit microcontrollersthattypically havebetween
20–32 Kbytesof memory.

Many commercialvendorshave productslike RTXC [8] and
VxWorks[27] with small,real-timekernels.Unfortunately, the
majority of thesevendors support only 32-bit microcontrollers
andtherefore they couldnot beusedastheRTOSof our mod-
ules. Furthermore,thosefew that were partially suitablere-
quireda substantialeffort to port themto an unsupportedmi-
crocontroller. Hence,we decided to develop a customRTOS,
relatively hardware independentandeasyto port to any future
microcontrollers thatwe mayuse.Barringsomedeviations,we
usedtheUNIX [2] designphilosophyfor ourkernel,borrowing
ideasandalgorithms from Chimera[11], Linux [4], REAL/IX
[9] andEMERALDS[28].

Ourwork alsoprovidessomeguidelines for systemdesignis-
suesin otherareasof distributedembeddedsystemslike sensor
networks andubiquitous/pervasive computing. As the Internet
and computer networks become moreprominent and connec-
tivity becomesmoreeasilyavailable,theseareasarebecoming
increasingly feasibleandimportant.Likeourmodules,theseap-
plicationsusesmallmicrocontrollers. To ensurethecorrectness
of theseapplicationprograms,usuallysophisticatedandsafety
critical, it is necessaryto usea RTOSthatuncouplesthemfrom
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direct hardwaremanagementandfacilitatestheir development
anddebugging[13]. Hence,systemdesignersin theseareasface
someof the issuesthatwe addressedduring our systemdesign
stages.

In the next section,we describethe electricaldesignof the
modules. Sections3 and4 describeour operating systemand
its performance,respectively. In Sec.5 we compare our system
with theHandyBoard[14] andEMERALDS [28]. Finally, we
presentourconclusionsin Sec.6.

I I . ELECTRICAL DESIGN

Our implementation of a reconfigurable robot is called
CONRO. As shown in Fig. 1, the five main units of its mod-
ules are the microcontroller and memory, the communication
anddocking unit, thepowersupplyunit, thepitch andyaw mo-
tors,andthemodule sensors.

The first generation of CONRO modules used the Basic
StampII as their CPU [5],[18]. Although this CPU presents
advantagesfor prototypingandwith respectto powerconsump-
tion, it hasshortcomings suchas a limited program and data
memory, a lack of interrupts, dedicatedPWM generators and
ADC, anda number of general purposeI/O portsthatis insuffi-
cientfor ourneeds.

Our secondgeneration of CONRO modules,aimedto over-
cometheseproblems, is being designed around the Motorola
68HC12B32 [17] and two external memories, a 32K Atmel
AT28HC256 EEPROM [1] for persistentstorageand a 256K
ToshibaTC55V2001STI-85L SRAM[25]. Thisnew systemsat-
isfiesall the requirementsof the module. It allows us to drive
theinfrared (IR) paironthefacesof themodules usedfor serial
communicationbetweenmodulesanddocking tasks[6] andpro-
videsa RS-232link for communicationwith a remote host. It
providesinterrupt capabilitiesthatallows themodule to handle
asynchronoustasks.Likewise,the68HC12 hasdedicatedPWM
generators thatcontrol thepitch andyaw motors of themodule
which arehigh torque-to-weight ratio commercial-off-the-shelf
FutabaS3102RCservos.Finally, theCPUprovidesenoughI/O
portsto driveourmodulesensorssuchasacamera,tilt or touch
sensors.

I I I . OPERATING SYSTEM KERNEL

Our kernel deviatesfrom the UNIX philosophy in that user
programscanbemadeawareof hardwareeventsif they wantto.
UNIX providesuserprogramswith anabstract,high-level view
of thehardware through thefile system.However, in real-time
systemssomeprogramsmay want to be notified of hardware
events, sinceit maybetheonly way to ensure timely serviceof
suchevents. Hence,we designedour kernel so that thereis a
mechanism by which userprogramsthatwant to reactdirectly
to hardwareevents cando sowith very little overheadandin a
consistentmanner.

The68HC12doesnothaveany hardwarememory protection
mechanism. Thus, a processwith run-time errors can easily
crashotherprocessesor thekernelitself. Sinceapplicationcode
changesfrequently, we have to protect thekernelanduserpro-
cessesfrom run-timeerrorsin otheruserprocesses.We achieve
this by pagingtheexternal SRAM to give eachuserprocessits
own addressspace.

The 68HC12hasa 64K addressspace. The external EEP-
ROM, peripheral control registersand the 68HC12’s internal
SRAM andEEPROM aremapped to theupper 32K of this ad-
dressspace,asshown in Fig. 2. Thelower32K holdsoneof the
external SRAM pages.

Thekernel coderesidespermanentlyin theexternalEEPROM
which is write protected. Along with thekernelcode,theEEP-
ROM containsthesystemcall library codethat is sharedby all
userprocesses.The EEPROM alsoholdsexecutableprogram
images.Theseimagesareusedto spawn userprocessesat sys-
temstart-up,asdiscussedin Sec.III-A. 1.

The kernelallocatesoneof the eight availableRAM pages
for its own use.Eachof theothersevenpagesservesastheuser
addressspaceof aprocess.Thiseffectivelyseparatestheaddress
spacesof all processesfrom eachotherandfrom thekernel data
segment. Having oneprocessper pagemeans that the system
cansupport a maximum of seven processesat any given time.
We foundthis numberto bequitesufficient for ouruse.

The limit of a maximum of sevenuserprocessesmeansthat
many of thekernel datastructurescanbestaticallyallocatedas
arrays. Also, in the absenceof any hardware support for en-
forcing protection, thereis little thatthekernelcando to curtail
activities of malicioususerprograms. Hence,the kerneldoes
notsupport accesscontrol andauthentication mechanisms.Both
thesefactorsleadto smallerandfasterkernelcodethusreducing
thekerneloverhead.

As seenfrom thememory map(seeFig. 2), thekernel code
is permanently mapped into the addressspaceof all userpro-
cesses.Hence,theswitchfrom userto kernelmodeduringsys-
tem calls just involves a call to the entry point in the kernel.
Thereis no needto usea trap to changethe processormode,
sincethe 68HC12doesnot have any hardware mechanismsto
enforceprotection. Thus,systemcallshaveoverheadssimilar to
subroutinecallsmakingthemveryefficient.

The kernel is fully preemptive. It handles concurrency by
usingsemaphoresto regulateaccessto all its shareddatastruc-
tures.Kernelsemaphoresusepriority inheritance [20] to avoid
theunboundedpriority inheritanceproblem [24].

We now describethe two main subsystemsin the kernel,
theprocesscontrol subsystemandhardwarecontrolsubsystem,
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shown in Fig. 3.

A. ProcessControl Subsystem

The process control subsystemis responsible for process
scheduling, memorymanagement,IPC mechanismsandtimer
management.

A.1 Scheduler andProcessManagement

Duringinitialization, thekernelallocatesanarrayof 8process
control block(PCB)entries.EachPCBentryis 128bytesin size
andincludestheprocesskernelstack.

After the kernel initializes itself, it createsthe null process
“by hand” usingPCBentryzerofor it. Thenull processcreates
userprocessesby forking andexecing theexecutable imagesin
theexternalEEPROM. After spawning userprocesses,thenull
processgoesto sleepawaitingoneof thefollowing threeevents:
1) it is scheduledwhenthereadylist is empty, 2) it is periodi-
cally scheduled to runby thesystemto removezombiesand,3)
theslaballocator, discussedin Sec. III-A. 2, mayschedule it to
runwhenit runslow on freeobjects in aparticularcache.

Figure4 shows processstatesandstatetransitions. New pro-
cessesbeingcreatedby the fork() call arein the createdstate.
Whenfully created,they transitionto thereadystate.Thehigh-
estpriority ready processis selectedby thescheduler to run. A
running processmay entersleepstateto wait for an event. Its
PCBis addedto thecorrespondingwait queue. Thekernelmod-
ule managing the wait queue wakesup the sleepingprocesses
whenthe event occurs andthencalls thescheduler. A process
that exits entersthe zombie state. Its parentmay learnof its
termination by issuingawait() call.

Thekernel hasanELF loader [16], [26] to handletheexec()
systemcall andtheinsmod() systemcall thatisusedfor dynamic
devicedriver loading, asdescribedin Sec.III-B.1.

Thescheduler usestwo scheduling algorithms (Fig. 5). The
maximum-urgency-first (MUF) algorithm [23] schedules the
critical set, that is computed offline. All processesin the crit-
ical sethavea3-bit criticality [23], a3-bit dynamicpriority [23]
andanoptional3-bit userpriority [23]. Thesethreevalues are
usedto computea9-bit urgency value[23]. Processesnot in the
critical setareassigneda criticality valueof zero. Usersmay
specifyauserpriority for suchprocesses.

Processesoutsidethe critical set are scheduled by a fixed-
priority scheduler basedon their assigneduserpriority. Pro-
cesseshaving the same priority are normally scheduledin
a round-robin fashion by time-slicing where a time-slice is
4096� s on a 2MHz 68HC12. Time-slicingis optional andcan
beturnedoff by userprograms.

TheMUF scheduler allowsthefixed-priority scheduler to run
if thereis timeleft overafterall processesin thecritical sethave
beenscheduled. Thus,asfar astheutilization of thecritical set
is lessthanone,processesoutsidethecritical setwill berun.

The fixed-priority scheduler is also useful becauseit gives
usersthe ability to usethe systemas an event driven system,
efficiently. To implement aneventdriven system,theuserscan
disabletheMUF scheduler by settingthe criticality of all pro-
cessesto zero.Thekernel will thenusethefixedpriority sched-
uler for all processes.This leadsto a lowerschedulingoverhead
comparedto usingtheMUF scheduler for this purpose.

A.2 Memory Management

This module consistsof thekernel memory allocatorandthe
usermemory manager, asshown in Fig. 6.

Thekernelmemory allocatorusestwo methods, theslaballo-
catorandfirst-fit algorithm.

Theslaballocator[3] maintains cachesof objectsof themost
frequently requestedsizes.This reduces internalfragmentation
andmakesallocationanddeallocation fastandmakesit suitable
for handling real-timememory requests.At systemstart-up, the
slaballocatorallocatescachesfor all commonly requestedmem-
ory sizes.Device drivers maycreatetheir own objectcachesif
they havespecialrequirements.

As mentioned earlier, the slab allocatorschedules the null
process to allocateslabsrun whenever it runs low on free ob-
jectsin a particular cache.However, afterprofiling the kernel,
wehavebeenableto comeupwith slabsizesfor thecommonly
usedcaches,suchthat they rarely run out of free space.This
is possiblebecauseof thefixedandrelatively small limit on the
maximum number of processes.

Thefirst-fit algorithm[12] handlesnon-real-timeblockmem-
ory requestsfrom theprogramloaderandhardwarecontrol sub-
system.It alsoallocatesnew slabsto object cachesof theslab
allocatoron receiving requestsfrom thenull process.

Theusermemory mapconsistsof theprocesscodesegment,
followed by initialized and uninitialized data of the process.
This is followed by theheap. Thestackpointeris initialized to
top of usermemory. Spacein theheapis allocatedanddeallo-
catedby brk(). Userprogramobtaindynamic memory through
callsto malloc().

A.3 InterprocessCommunication

Interprocesscommunicationmechanismsaresignals,sema-
phores,sharedmemory andmessagepassing(Fig. 7).

Signalsarebasedon thesignalsemanticsdefinedin POSIX
[10]. In addition, signalshave priorities andmultiple signalsof
thesametypeareconsideredto bedistinct.Signalsalsoindicate
the event or processthat generatedthe signal. The priority of
a receivedsignalis a 16-bit value, theuppereightbits coming
fromthepriority of theeventorprocessthatgeneratedthesignal
andthe lower eightbits comingfrom thepriority of thesignal.
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Thehighestpriority non-maskedsignalis deliveredto aprocess
whenit switchesfrom kernelto usermode.

Both binary and counting semaphores are available to user
processes.Priority inheritance [20] is usedto avoid the un-
boundedpriority inversionproblem[24].

Sharedmemory providesa fast IPC mechanismfor sharing
databetweenprocessesrunning on thesamemoduleof a robot.
Sharedmemory segmentsareallocatedin kernel spaceandac-
cessedthroughsmcreat(), smattach(),smrm(),read() andwrite()
systemcalls. They canoptionally beprotectedby binary sema-
phores.

As mentionedin Sec. I, control of the robot canbe central-
izedor distributed. In centralizedcontrol, themodulesof arobot
receive commandsfrom a centralcontroller, that they execute
[7]. Distributedcontrol useshormones[21], which arecontent-
basedmessages.The kernel provides a generic inter-module
communicationmechanismthroughmailboxes,thatcanbeused
with eithercontrolmethod.Processescreateamailboxfor each
typeof hormoneor commandthey want to receive. Thekernel
packet handler placesa copy of a received packet in all mail-
boxes for that type of hormoneor command andforwards the
packet to all theneighboringmodulesof therobot.

Thereis a needfor errordetectionandcorrection capabilities
in thecommunicationmechanism.Normally, thekernelensures
reliablecommunicationby meansof a selective repeatprotocol
[22]. Thisworkswell for inter-modulecommunicationbetween
two modulesthatarepartof thesamerobot. In this configura-
tion, we hardlyencounterany communicationerrors.However,
for inter-robotcommunication, theerrorsencounteredduring IR
datatransferdependon thedistancebetweentherobotsandthe
noisein theenvironment. We find thatevenfactorslike strong
fluorescent lighting leadto random bit errorsin the datapack-
ets. If theselective repeat protocol is usedfor errorrecovery in
noisyenvironments,thenumberof retransmissionsrequiredhas
meanvalueof threeandamaximum valueof eight.Thismeans
that the timing requirementsfor communicationcannot bemet
usinga selective repeat protocol. Sinceincreasingthetransmit-
tedpower is notanoption dueto theuseof low power IR LEDs,
we neederrorcorrecting codesfor inter-robotcommunication.

Thekernel uses(24,12)extended Golaycode[15] thathasthe
ability to correctup to threebit errors. Sinceerror correction
hascomputationalanddataoverheads,its usedepends on the
operating environment.Application programscanexplicitly ask
the kernel to useerror correcting codesfor their messagesor
leave it up to thekernelto decide.In thesecondcase,thekernel
monitors theerrorrateof thecommunicationchannel anduses
error correcting codesif the error ratecrossesa threshold. It
usestheselective repeatprotocolotherwise.

A.4 Real-TimeTimers

The kernelprovides two typesof dynamic real-timetimers
bothvarying in time from 1 to 65535 ticks but differing in tick
duration (Fig. 8). Thefirst varietyusesthe6812’s real-time in-
terrupt [17] andhastick duration of 4.096ms(maxtime approx
4.5min). Theothervarietyuses6812’stimermodule [17] giving
timesin multiplesof 32.768ms(maxtimeapprox 36min). Both
timerscanbe one-shot or periodic. The timersaremaintained
asa list sortedby expiration times. The list implementationis

simpleandefficient sincethenumber of dynamic timersin the
kernelat any time is quitesmall.

Userprogramscreateanddestroy timersusingtmcreat() and
tmrm(). There aretwo waysin which programscanbenotified
about timer expiration, they cansleepawaiting timer expiration
or they canusetheusereventsignalingmechanismof thekernel,
asdiscussedin Sec.III- B.2.

B. HardwareControl Subsystem

Thissubsystemhandlesdevicedrivermodularizationsupport
anduserevent signaling.

B.1 DynamicDriverLoadingandModularization

Devicedriverscanbecompiled into thekernel codeor linked
dynamically with therunning kernel (Fig. 9). Dynamic linking
is preferredsinceit is notnecessaryto recompile andreloadthe
kernelevery timehardwareis addedor removed.This is similar
to loadable kernel module support in theLinux kernel [4], [19].
After new hardwareis addedto a module, theobjectfile for the
device driver is transferred from a remotehost to the module.
Thekernelallocatesmemory in kernelspacefor thedriver and
resolvesall referencesto kernelsymbolsin the driver’s object
codeby looking up its symbol table. Thekernelthencalls the
driver’s initializationroutine. Driversareremovedby deallocat-
ing theirmemory aftercalling thedriver’s exit function.

B.2 UserEvent Signaling

Userprocessesmayhave to benotifiedof occurrenceof cer-
tain events. For example, if a processis driving oneof themo-
torsandthetouchsensorinterrupts theprocessor, thenthepro-
cesswill haveto benotifiedsoit canstopthemotor. Thisnotifi-
cationis performedthroughtheuserevent signalingmechanism
(Fig. 10)thatis adaptedfrom asimilarmechanismin UNIX [9].
Processesthatwant to benotifiedof events registera call-back
function anda flag variable with thekernel for theappropriate
event. Whentheevent occurs,thekernelcallstheregistered user
function andsetstheflagvariable in userspace.

This mechanism and the io map() systemcall can be used
to implement device drivers in userspacevery efficiently. In
theabsenceof hardwareprotectionmechanismsin the68HC12,
userprocessescanaccessdevice registersdirectly at the same
speedasaccessingthemfrom thekernel. Hence,with a handler
registeredfor thedeviceinterrupt, userspacedevicedriverswill
bealmostasfastasdevicedrivers in thekernel.

Theio map()call is usedto requestdevice registersfrom the
kernel.Whenthekernel receives thiscall from auserprocess,it
checksthat theregistersbeingrequestedarenot alreadyin use
by itself or anotheruserprocess.If theregistersarefreeit grants
themto therequestingprocess.

C. Anatomyof a DeviceDriver

The68HC12hasonly oneexternal interrupt pin. Thekernel
maintainsall registered interrupt handlers in a chainandcalls
eachof themin turn whenan interrupt is received. Hence,the
all interrupts remaindisabledat leastuntil the kernel finds the
right handler for the interrupt. Thus, interruptscouldbe lost if
theinterrupt handler codeis longandit keepsinterruptsdisabled
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during its execution. Oneapproachto alleviate the problemis
to perform only critical actions in theinterrupthandler andhave
another module do rest of the processingassociatedwith the
interrupt (Fig. 10). Hence,all device drivers,except the most
trivial ones,haveaninterrupthandlerandabottomhalf [4], [19].

D. SystemCall Interface

The systemcall interface is implemented as a userlibrary.
The codein the library checksthe systemcall parameters and
calls theentrypoint in thekernel. It is alsoresponsible for any
clean-up to be donewhenthe call returns. Most systemcalls
passtheir parameters to thekernel through processorregisters.
If thenumberof registersis insufficient,theextraparametersare
copiedto68HC12’s internal SRAM thatactsasabufferbetween
userspaceandkernelspace.Thesystemcall librarycoderesides
in theexternal EEPROM andis sharedby all processes.

E. Bootloader

On power-up, the 68HC12comesup in normal singlechip
mode[17]. In this mode, it seesonly its internal memories.
Hencethe internal flash of the 68HC12has the initial boot-
loader, that switchesthe 6812 to expandednarrow mode[17]
andjumpsto startof kernelcodein theexternal EEPROM. The
initial bootloadercanalsoeraseandprogramtheexternalEEP-
ROM, receiving thenecessarydatafrom aremotehost.In addi-
tion it canswitchthe68HC12to abackgrounddebugmode[17]
thatis useful for debuggingthekernel.

IV. PERFORMANCE

Thework discussedresultedin theconstruction of prototype
hardware andanoperating systemthatwill beusedby thesec-
ondgenerationof CONRO modules.Weexpectthefinal version
of thePCBto beabout20–25%biggerin areathanthePCBof
theBasicStamp.Theprototypeboard draws approximately70-
80mA at 5V. Sinceit is poweredby a 6V K28L lithium battery
with a capacityof 160mAH we getoperatingtimesof approxi-
mately2 hours.

The kernel codeis approximately9 Kbytesin size. We use
a 2MHz clock for the 68HC12to keeppower consumption at
a minimum. At this clock speed,reschedule operation takes
156� sand21� sontheMUF andround-robin schedulerrespec-
tively. Theactualcontext switchtakes49� s. Theinterrupt han-
dlingcodein kernel is ableto serviceall interruptswithout miss-
ing any schedulingdeadlines,with sevenuserprocesses.

Inter-modulecommunicationbetweenmodules on the same
robot is very reliable and fails only when the hardware fails.
With a (24,12) extended Golay code,we did not find any er-
rors in inter-robotcommunicationduringour tests,even in en-
vironmentswherewe werepreviously encounteringerror rates
as high as 20%. Hence,this schemeis fasterthanuseof re-
transmissionsin noisy environmentseven though it hashigher
computationalanddataoverheads.

V. COMPARISON WITH OTHER SYSTEMS

The Handy Board[14] is a 68HC11basedcontroller board
designedfor experimentalwork in mobile robotics. Programs
arewritten in a language calledInteractive C, that is compiled

by acustomcompiler intopseudocodefor astackmachine. The
HandyBoardhasaninterpreter for thepseudo codein theform
of aresidentmini-OS.InteractiveC supportsmultitasking using
around-robin schedulerin theresidentOS.ThereareC libraries
for hardwareinterfacingfunctionslikemotorcontrol, sensorin-
put,IR communication, timermanagementandtonegeneration.
An interpretedexecutionenvironmentoffers theadvantagethat
programscanbe checked for run-time errors. Thus,programs
with run-time errors do not crashthe systembut this comesat
theexpenseof programexecution speed.

By following theUNIX designphilosophyfor ourkernel,we
areableto support a richer functionality compared to Interac-
tive C, without sacrificingprogramexecution speed. Writing
programsonly requiresaC compiler capableof generating ELF
executablesfor the 68HC12. We addressin the issueof run-
timeerrorsin programsbyseparating theprocessaddressspaces
(Sec.III) . We arein theprocessof extending thedebugging fa-
cilities of thekernel so thatuserprogramscanbedebuggedon
the board using the backgrounddebug mode of the 68HC12.
Thisshouldmakeit easyto trackdown andcorrect any run-time
errors in programs. In addition, our kernel supports schedul-
ing algorithmsthatenablesusto handle real-time deadlinesand
events,a rich setof IPC mechanisms,a powerful memoryman-
agement routines andreal-timetimers.Userprogramsseehard-
ware devices as files and accessthemusing systemcalls like
read()andwrite(), andthe catch-allioctl() call. Thus,neither
the systemcall interfacenor the C libraries change whennew
devicesareadded.

EMERALDS [28] is a real-time microkernel for small-
memory microcontrollers that relieson thepresenceof a hard-
warememory managementunit (MMU) toenforcememory pro-
tections.As of date,noneof the16-bit microcontrollers have a
hardwareMMU. But, in embeddedsystemsall processesareco-
operativeandtherearenomaliciousprograms.Hence,it is pos-
sible,by paging thememory, to protect processesfrom errors in
otherprocesses.As the memory-chip-density-to-costratio be-
comesmorefavorable this method of memoryprotectionlooks
moreattractiveon thesmallermicrocontrollers thatdo nothave
a hardwareMMU. It hastheaddedbenefitof reducing thesize
of thekerneldatasegment sincetherearenopagetables.

A seconddifferencebetweenEMERALDS andour kernelis
thesupport for modular device drivers. This enablesus to sup-
portdynamicreconfiguration of module hardwarewithoutusing
a microkernelarchitecture.

VI . CONCLUSION

As we workedwith thecurrent prototype,we found two lim-
itationsthat we hope to overcomein the next generation hard-
ware.First,we would like oursystemto work at lowervoltages
to prolong batterylife andsecond, we would like to usea mi-
crocontrollerwith multipleexternal interrupt pinsanda built-in
programmable interrupt controller. Wearelookingfor asuitable
3.3V microcontroller.

Theoperating systemkernelis beingenhancedby adding er-
ror andexception handling facilitiessimilar to thosein Chimera
3.2[11] to ourkernel.We will alsobeextending thedebugging
facilities of the kernel, so that userprogramscanbe debugged
on theboardusingthebackground debugmodeof the68HC12.
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As microcontrollers become morecapable with advancesin
VLSI technology andnetwork connectivity becomesmoreeas-
ily available, embedded systemsfind new and interestingap-
plication areas,aswe mentioned in Sec. I. We hope that by
providing someinsightson systemdesignissuesin theseareas,
this paperspeedsup theirdevelopment.
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