Yocto-4-20mA-Rx, User's guide

Table of contents

L INTrOAUCTION oo 1
I o =T =T [1] PP 1
1.2. OPONAI BCCESSONES ...eteiiieeiiiitiit e e ettt e e e sttt e e e e s et et e e e e s antteeeaaesaanneaeeaeeesanntaeeeaaesannreeas 3
2. PreSENTAtiON ..o 5
2.1. COMIMON ElEMENTS ...ttt e e et e e e e s sk b r e e e e e e snbe et e e e s annnreeaeeeas 5
2.2. SPECITIC BIEMENTS ..ottt e et r e e e et e e e aaaaa e e e e e e e e e e anaaa 6
S IS STPS e 11
700 I o o7 [4= L1 [0 o PP PP PP 11
3.2. TeSt Of the MOAUIE ... e e e e e e e eaaeaaees 11
G TG T @] oo U = 11T o S PEURURR SR 12
4. Assembly and CONNECTIONS ..o 15
O (1T PP 15
4.2. USB pOWET diSEHBULION ...oiiiiiiiiiiiii ettt e et e e e s et e e e e e s e neees 16
5. Programming, general CONCEPLS ..o 17
L0 N o (oo [=0 0 11 o o F= =T Lo | o RS 17
5.2. The YOCt0-4-20MA-RX MOGUIE ..ottt 18
5.3. Module control INEEIACEiii it e e e 19
5.4. GenericSensor function INtEIfACE ooiiiiiiiii e 20
5.5. DatalLogger fUNCLON INTEITACEccuuiiiiieii e 21
5.6. What interface: Native, DLL OF SEIVICE ?uiiiiiiiiiiiiiie ettt 22
5.7. Programming, Where t0 STArt?cccooiiiiiiiiiiiiiiieeer e e e e e e e s s e e e e e e e e e aeaeaaeas 24
6. Using the Yocto-4-20mA-Rx in command line ... 27
ST 1 51 = U T Lo [P RRPSURTPRRTN 27
6.2. Use: general deSCrIPLIONc..uuiiiiiiiiiiee et e e 27
6.3. Control of the GenericSeNSor fUNCHIONoooiiiiiiiiii e 28
6.4. Control of the MOAUIE PAITuuiiiiiiieieeee e e e e e e e e e e e e e e e s e e e e 28
R T I o 111 7= 11 [0 LS PP PPPTOURUPRPT 29
7. Using Yocto-4-20mA-RX With JavasCript ..., 31

A R €T 11 To [(=TT | PP PPUURPTRRPPPRR 31

7.2. Control of the GeneriCSENSOr fUNCHIONien et e e e e eeans 31

7.3. Control of the MOAUIE PAITccoii e e e e e e e e eeeeeeas 33
A = 4 o) o= T | 1 o PSR 36
8. Using Yocto-4-20mA-RX With PHP ... 39
o I T 1] oo [=T To | TP 39
8.2. Control of the GenericSensor fUNCHIONooouiiiiiiii e 39
8.3. Control Of the MOdUIE PAITcooi e e e e e e e eeeeeeas 41
8.4. HTTP callback APl and NAT filtErsS ..o 44
o 2R T 1 o) o= T | 1 o PSR 47
9. Using Yocto-4-20mMA-RX With CH+ ..o 49
9.1. Control of the GenericSensor fUNCHIONcouuiiiiiiiiii e 49
9.2. Control Of the MOAUIE PAIT ..o e e e e e e e e e eeaeeas 51
LS IR T 1 o) o= T | 1 o PSR 54
9.4. Integration variants for the C++ Yoctopuce librarycccccciiiiiiiiiiiiiiiieeeeee e, 54
10. Using Yocto-4-20mA-Rx with Objective-C ..., 57
10.1. Control of the GenericSeNnSsor FUNCHONccoiiiiiii i e e e e e e e eaeaens 57
10.2. Control of the MOAUIE PArtooviiiiriiie e e eeees 59
(0 G TR =1 (o] gl 7=V o |7V S 61
11. Using Yocto-4-20mA-Rx with Visual Basic .NET ... 63
I3 OO 1 1S3 = 11 = L1 T o SO SPPPPP 63
11.2. Using the Yoctopuce API in a Visual BaSiC ProJECEcueeeeeiiiiriiiieeiiiiiieeee e 63
11.3. Control of the GenericSeNSOr FUNCHIONooiiiiiiiiiiiii e 64
11.4. Control of the MOAUIE PArtcoovvieiiii e e 66
I8 108 S TR =1 (o o =V o [T Vo RSP 68
12. Using YOcto-4-20mMA-RX WIith C#cocooiiec s 69
D T 1] = = o) o USRI 69
12.2. Using the Yoctopuce APl in a Visual C# ProjeCtcooeeeiiiiiiiiiciiiiiiiieeeiie e aa e 69
12.3. Control of the GenericSeNSOr FUNCHONooiiiiiiiiiiiii e 70
12.4. Control of the MOAUIE PArtoovviiiii e 72
D228 ST =1 (o] gl T=Va Lo [T Vo R 74
13. Using Yocto-4-20mA-Rx with Delphi ... 77
IR B0 R o (=6 == 11T o RS 77
13.2. Control of the GenericSeNSOr FUNCHONooiiiiiiiiiiiii e 77
13.3. Control of the MOAUIE PArtooiviiii i 79
G TR S = g o] g o F= [0 | T o PP EPPPOPTPRRRP 81
14. Using the Yocto-4-20mA-Rx with Python ..., 83
I T Yo 10 | o I8 11 =R 83
I Y o= 1 41 Tol [o] = 1Y/ 83
14.3. Control of the GenericSeNSOr FUNCHONooiiiiiiiiiii e 83
14.4. Control of the MOAUIE PAIT ..ot e e ee e 85
I ST =l (o] g F= Vg o [T T PP 87
15. Using the Yocto-4-20mA-RX With Java ... 89
LT I =Y i 1] o Y= T | RS 89
15.2. Control of the GenericSeNnSsor fUNCHONooiiiiiiiiiii e 89
15.3. Control of the MOAUIE PAIT ..o e e e e e 91

15.4. Error NANAING .ottt e et e bbb eeees 93

16. Using the Yocto-4-20mA-Rx with Android ... 95

16.1. Native access and VirtualHUD ... 95
G2 1Y 1] o Y= To | SSP 95
16.3. COmMPALtIDIlILY .o e e e e e e e e e e e e ———————————— 95
16.4. Activating the USB port under ANAroidooooiiiiiiiiien i 96
16.5. Control of the GenericSeNnsor fUNCHONccoiiiiiiiii e 98
16.6. Control of the MOAUIE PAMTcoviiiiiiiiie e e e e 100
16.7. Error NANAIING ..ot e e e e e e e e e e e e e e e e e e aaanaannann 105
17. Advanced Programming ... 107
17.1. EVENE PrOGIAMMING ...eeeeeeeeeiiniiiieae e aaitteeeae e s aateeeeeeesaaaseaeeeaessanbeeeeaaesaansseeeaaesaannsreeaaaesanns 107
17.2. THE At IOQUET oeeiiiiiieietee ettt e e e s e e s s e e e e 110
17.3. Sensor CaliDratioN ... 112
18. Using with unsupported [anguages ... 117
18.1. COMMANG TINE ...eiiiieiiiiie ettt e e e e et bt e e e e s enbb e e e e e e s aamnbbeeaaessannbreeaaaeaanns 117
18.2. VirtualHub and HTTP GET ..ooeeeiiiiiiiieeee e 117
18.3. UsiNg dynNamiC DIrariESooeiiiiiiiiiiie ettt e e e e e e e e e e 119
18.4. Porting the high level lIDraryooooiiiii e 122
19. High-level API REefEreNCe ... 123
LS I R 1= aT=T =1 I {1 o3 1o) 1 124
19.2. Module CONLIOl INTEITACEooeeeii et e e e e e e e e e eaaas 148
19.3. GenericSensor fUNCioN INEITACEoiiiiiiiiei e 193
19.4. Recorded data SEQUENCEoeeiviiiiiiieeeeeeeee e e e e ee ettt e e e ereeeeaaaaeeaeeeeeeessaaaaannnnnnnnnes 243
19.5. MEASUIEA VAIUE ..ottt e ettt e e e e et e e e e e e e abbneeeaeeaans 256
19.6. Unformatted data SEQUENCEccoii it e e e e e e e e e e e e e e eeeeeeees 262
20. TroubleSNOOTING ..o 277
20.1. LINUX @NA USB ...t s e e e e e e e et e ettt e e e e e e e e e e eeeaas ittt s s aeaeaaaaaaaeees 277
20.2. ARM Platforms: HF @nd ELcoooiiiiiiiiiiiee et 278
21, ChAr@CLEIISTICS ..o 279
2 1UT= o T PR RRRRR 281

1. Introduction

The Yocto-4-20mA-Rx is a 60x20mm module which can interface two sensors following the 4-20mA
standard. The Yocto-4-20mA-Rx is also able to power the sensors with a 23V voltage, up to 80mA.
The Yocto-4-20mA-Rx was conceived as an electrically insulated interface: there is a galvanic
insulation between the measure and the USB parts of the module. This enables you to work with
sensors which are not at the same potential as the computer driving the Yocto-4-20mA-Rx.

The Yocto-4-20mA-Rx module

Yoctopuce thanks you for buying this Yocto-4-20mA-Rx and sincerely hopes that you will be satisfied
with it. The Yoctopuce engineers have put a large amount of effort to ensure that your
Yocto-4-20mA-Rx is easy to install anywhere and easy to drive from a maximum of programming
languages. If you are nevertheless disappointed with this module, do not hesitate to contact
Yoctopuce support’.

By design, all Yoctopuce modules are driven the same way. Therefore, user's guides for all the
modules of the range are very similar. If you have already carefully read through the user's guide of
another Yoctopuce module, you can jump directly to the description of the module functions.

1.1. Prerequisites
In order to use your Yocto-4-20mA-Rx module, you should have the following items at hand.

A computer

Yoctopuce modules are intended to be driven by a computer (or possibly an embedded
microprocessor). You will write the control software yourself, according to your needs, using the
information provided in this manual.

1 support@yoctopuce.com

www.yoctopuce.com

1. Introduction

Yoctopuce provides software libraries to drive its modules for the following operating systems:
Windows, Mac OS X, Linux, and Android. Yoctopuce modules do not require installing any specific
system driver, as they leverage the standard HID driver? provided with every operating system.

Windows versions currently supported are: Windows XP, Windows 2003, Windows Vista, and
Windows 7. Both 32 bit and 64 bit versions are supported. Yoctopuce is frequently testing its
modules on Windows XP and Windows 7.

Mac OS X versions currently supported are: 10.6 (Snow Leopard), Mac OS X 10.7 (Lion), and 10.8
(Mountain Lion). Yoctopuce is frequently testing its modules on Mac OS X 10.6 and 10.7.

Linux kernels currently supported are the 2.6 branch and the 3.0 branch. Other versions of the Linux
kernel, and even other UNIX variants, are very likely to work as well, as Linux support is
implemented through the standard libusb API. Yoctopuce is frequently testing its modules on Linux
kernel 2.6.

Android versions currently supported are: Android 3.1 and later. Moreover, it is necessary for the

tablet or phone to support the Host USB mode. Yoctopuce is frequently testing its modules on
Android 4.x on a Nexus 7 and a Samsung Galaxy S3 with the Java for Android library.

A USB cable, type A-micro B

USB connectors exist in three sizes: the "standard" size that you probably use to connect your
printer, the very common mini size to connect small devices, and finally the micro size often used to
connect mobile phones, as long as they do not exhibit an apple logo. All USB modules manufactured

by Yoctopuce use micro size connectors.

=

F T °©

The most common USB 2 connectors: A, B, Mini B, Micro A, Micro B3

D

<=1 |[§]

(=[]]

o)
[&]

To connect your Yocto-4-20mA-Rx module to a computer, you need a USB cable of type A-micro B.
The price of this cable may vary a lot depending on the source, look for it under the name USB A to
micro B Data cable. Make sure not to buy a simple USB charging cable without data connectivity.
The correct type of cable is available on the Yoctopuce shop.

You must plug in your Yocto-4-20mA-Rx module with a USB cable of type A - micro B.

2The HID driver is the one that takes care of the mouse, the keyboard, etc.
3 Although they existed for some time, Mini A connectors are not available anymore http://www.usb.org/developers/
Deprecation_Announcement_052507.pdf

2 www.yoctopuce.com

1. Introduction

If you insert a USB hub between the computer and the Yocto-4-20mA-Rx module, make sure to take
into account the USB current limits. If you do not, be prepared to face unstable behaviors and
unpredictable failures. You can find more details on this topic in the chapter about assembly and
connections.

1.2. Optional accessories

The accessories below are not necessary to use the Yocto-4-20mA-Rx module but might be useful
depending on your project. These are mostly common products that you can buy from your favourite
hacking store. To save you the tedious job of looking for them, most of them are also available on the
Yoctopuce shop.

Screws and spacers

In order to mount the Yocto-4-20mA-Rx module, you can put small screws in the 2.5mm assembly
holes, with a screw head no larger than 4.5mm. The best way is to use threaded spacers, which you
can then mount wherever you want. You can find more details on this topic in the chapter about
assembly and connections.

Micro-USB hub

If you intend to put several Yoctopuce modules in a very small space, you can connect them directly
to a micro-USB hub. Yoctopuce builds a USB hub particularly small for this purpose (down to
20mmx36mm), on which you can directly solder a USB cable instead of using a USB plug. For more
details, see the micro-USB hub information sheet.

YoctoHub-Ethernet and YoctoHub-Wireless

You can add network connectivity to your Yocto-4-20mA-Rx, thanks to the YoctoHub-Ethernet and
the YoctoHub-Wireless. The YoctoHub-Ethernet provides Ethernet connectivity and the YoctoHub-
Wireless provides WiFi connectivity. Both can drive up to three devices and behave exactly like a
regular computer running a VirtualHub.

Enclosures

Your Yocto-4-20mA-Rx has been designed to be installed as is in your project. Nevertheless,
Yoctopuce sells enclosures specifically designed for Yoctopuce devices. These enclosures have
removable mounting brackets and magnets allowing them to stick on ferromagnetic surfaces. More
details are available on the Yoctopuce web site 4. The suggested enclosure model for your
Yocto-4-20mA-Rx is the YoctoBox-Long-Thick-Black-Vents.

You can install your Yocto-4-20mA-Rx in an optional enclosure

4 http://www.yoctopuce.com/EN/products/category/enclosures

www.yoctopuce.com 3

www.yoctopuce.com

2. Presentation

&5,

852
O\

Micro-B USB socket 7: Sensor 1 led
Yocto-button 8: Sensor 1 input overload led
:: Yocto-led 9: Sensor 2 power supply

Sensor 1 power supply 10: Sensor 2 current loop
Sensor 1 current loop 11: Sensor 2 ground
Sensor 1 ground 12: Sensor 2 led

13: Sensor 2 input overload led

R)

2.1. Common elements

All Yocto-modules share a number of common functionalities.

USB connector

Yoctopuce modules all come with a micro-B USB socket. The corresponding cables are not the most
common, but the sockets are the smallest available.

www.yoctopuce.com

2. Presentation

Warning: the USB connector is simply soldered in surface and can be pulled out if the USB plug acts
as a lever. In this case, if the tracks stayed in position, the connector can be soldered back with a
good iron and using flux to avoid bridges. Alternatively, you can solder a USB cable directly in the
1.27mm-spaced holes near the connector.

Yocto-button

The Yocto-button has two functionalities. First, it can activate the Yocto-beacon mode (see below
under Yocto-led). Second, if you plug in a Yocto-module while keeping this button pressed, you can
then reprogram its firmware with a new version. Note that there is a simpler Ul-based method to
update the firmware, but this one works even in case of severely damaged firmware.

Yocto-led

Normally, the Yocto-led is used to indicate that the module is working smoothly. The Yocto-led then
emits a low blue light which varies slowly, mimicking breathing. The Yocto-led stops breathing when
the module is not communicating any more, as for instance when powered by a USB hub which is
disconnected from any active computer.

When you press the Yocto-button, the Yocto-led switches to Yocto-beacon mode. It starts flashing
faster with a stronger light, in order to facilitate the localization of a module when you have several
identical ones. It is indeed possible to trigger off the Yocto-beacon by software, as it is possible to
detect by software that a Yocto-beacon is on.

The Yocto-led has a third functionality, which is less pleasant. when the internal software which
controls the module encounters a fatal error, the Yocto-led starts emitting an SOS in morse . If this
happens, unplug and re-plug the module. If it happens again, check that the module contains the
latest version of the firmware, and, if it is the case, contact Yoctopuce support?.

Current sensor

Each Yocto-module is able to measure its own current consumption on the USB bus. Current supply
on a USB bus being quite critical, this functionality can be of great help. You can only view the
current consumption of a module by software.

Serial number

Each Yocto-module has a unique serial number assigned to it at the factory. For Yocto-4-20mA-Rx
modules, this number starts with RX420MA1. The module can be software driven using this serial
number. The serial number cannot be modified.

Logical name

The logical name is similar to the serial number: it is a supposedly unique character string which
allows you to reference your module by software. However, in the opposite of the serial number, the
logical name can be modified at will. The benefit is to enable you to build several copies of the same
project without needing to modify the driving software. You only need to program the same logical
name in each copy. Warning: the behavior of a project becomes unpredictable when it contains
several modules with the same logical name and when the driving software tries to access one of
these modules through its logical name. When leaving the factory, modules do not have an assigned
logical name. It is yours to define.

2.2. Specific elements

Inputs

There are two inputs in the Yocto-4-20mA-Rx to connect sensors following the 4-20mA standard. As
implied by their name, these sensors have the specificity to transmit the measured values using a

1 short-short-short long-long-long short-short-short
support@yoctopuce.com

6 www.yoctopuce.com

2. Presentation

current loop, regulating a current varying linearly between 4 and 20 mA depending on the measure.
The Yocto-4-20mA-Rx is essentially a precision mini-ammeter able to measure this current.

The current loop used to transmit the measure starts from the pole marked 23V on the
Yocto-4-20mA-Rx, goes through the sensor which controls the current, and returns to the
Yocto-4-20mA-Rx on the pole marked with a loop sign. Here is a simplified diagram of the electrical
interface:

+23V
O
@ﬂ 122-23v
-
23V o e
—
Sensor
C
3
GND
O

Yocto-4-20mA-RX

Electrical diagram equivalent to the input of the Yocto-4-20mA-Rx

The Yocto-4-20mA-Rx performs its current measure with the help of a 50 Ohm resistance, which
limits the voltage drop of the measure to 1V at the maximum with regards to the module ground.
About 22V remain available for the current loop. Most sensors require a minimum 12V to work, which
leaves a 10V or so margin to overcome the electric cable resistance between the Yocto-4-20mA-Rx
and the sensor. This allows a distance of more than 2500 meters using AWG 24 cable.

Automatic conversion

The Yocto-4-20mA-Rx is able to automatically convert the measured current into the physical
quantity measured by the sensor. The conversion is a simple linear conversion based on the
mapping of the [4mA ...20mA] range and the range of extreme values that the sensor is able to
measure. You can configure this mapping in the Yocto-4-20mA-Rx, with the help of the VirtualHub for
example. You can extend the measure range up to OmA, but it is useful to keep a non-null minimal
value to detect sensor connection errors.

The green led

Each Yocto-4-20mA-Rx input is equipped with a green led. Its intensity provides an indication of the
value read on the current loop. This led is off when the sensor is not properly connected.

Sensor power supply

To power themselves, many 4..20mA sensors simply take the necessary energy on the current loop,
using the always available 4mA. Some sensors require a little more power. The Yocto-4-20mA-Rx
can provide it with the help of the 23V power supply regulated between the 23V pole and the pole
marked with the ground sign. Beware, the current available for both sensors together is a total of
80mA, including current used in the loop. If you go above this value, the behavior of the 4..20mA
sensor will probably be modified and you even risk to damage the 23V power supply of the
Yocto-4-20mA-Rx. If your sensors require more power to work, you must use an independent power
supply (see diagrams below).

When the 23V power supply of the Yocto-4-20mA-Rx is in use, the Yocto-4-20mA-Rx starts to heat.
This is a normal behavior. Make sure that this heat can be evacuated.

4..20mA
sensor

-

www.yoctopuce.com 7

2. Presentation

4..20mA
sensor

4. 20mA
sensor

Power source

J

Wiring for a 3 wire sensor, with an independent power supply with common ground.

4 N

4..20mA

sensor
1|

Power source

- J
Wiring of a 4 wire sensor, with an independent power supply.

We recommend that you turn off the Yocto-4-20mA-Rx before you connect a sensor. If this is not
possible and you use a 3 wire sensor, make sure to always connect the ground of the sensor first.
Otherwise, you risk to provoke an overload on the measuring loop, which makes the Yocto-4-20mA-
Rx go into protection mode.

The overload (red) led

The Yocto-4-20mA-Rx was not designed to measure more than 20mA. If a higher intensity is
detected in the current loop, because of a short for instance, the corresponding input goes into
protection mode and the corresponding red led is switched on. If the Yocto-4-20mA-Rx reports
values above 20mA, you must consider them to be inaccurate.

The Yocto-4-20mA-Rx internal resistance is only 50Q, this allows the use of very long wire for the
4-20mA sensor. However, in some cases, the low resistance combined with sensors using big
capacitors may cause protection problems a power up: the capacitors charging process will cause a
current rush greater than 20mA and trigger the protection mode. This can be avoided by adding a
100-200Q resistor on the sensor power supply wire.

100..200Q2

S

4..20mA
sensor

Insulation

The measuring part of the Yocto-4-20mA-Rx is electrically insulated from the USB part. This means
that you can use sensors with external power supplies which do not share the same electrical

8 www.yoctopuce.com

2. Presentation

potential® as your driving computer without risking to damage your equipment. However, the two
inputs are not insulated from one another, they share a common ground.

3 This kind of situation happens in particular when separate parts of an installation, connected to the mains, are powered by
distinct phases.

www.yoctopuce.com 9

10

www.yoctopuce.com

3. First steps

When reading this chapter, your Yocto-4-20mA-Rx should be connected to your computer, which
should have recognized it. It is time to make it work.

Go to the Yoctopuce web site and download the Virtual Hub software'. It is available for Windows,
Linux, and Mac OS X. Normally, the Virtual Hub software serves as an abstraction layer for
languages which cannot access the hardware layers of your computer. However, it also offers a
succinct interface to configure your modules and to test their basic functions. You access this
interface with a simple web browser?. Start the Virtual Hub software in a command line, open your
preferred web browser and enter the URL http://127.0.0.1:4444. The list of the Yoctopuce modules
connected to your computer is displayed.

Serial Logical Mame Description
VIRTHUBO-7d1=a86fb0 VirtualHub
MA1-11D52 Yocto-4-20mA-Rx

Module list as displayed in your web bowser.

3.1. Localization

You can then physically localize each of the displayed modules by clicking on the beacon button.
This puts the Yocto-led of the corresponding module in Yocto-beacon mode. It starts flashing, which
allows you to easily localize it. The second effect is to display a little blue circle on the screen. You
obtain the same behavior when pressing the Yocto-button of the module.

3.2. Test of the module

The first item to check is that your module is working well: click on the serial number corresponding
to your module. This displays a window summarizing the properties of your Yocto-4-20mA-Rx.

T www.yoctopuce.com/EN/virtualhub.php
2 The interface was tested on FireFox 3+, IE 6+, Safari, and Chrome. It does not work with Opera.

www.yoctopuce.com 11

3. First steps

37| RX420MA1-11D52 is a 20x60mm board

|| which can power andlor read two
4-20mA sensors

Kernel
Serial # R¥420MA1-11D52
Product name: Yocto-4-20mA-Rx

Logical name:

Product release 1

Firmware: 12696

Consumption: 231 mA

Beacon: Inactive (Zum on)

Luminosity: 50%

Sensors

Min Current Max

Sensor 1 2372 deg 237.6 deg 23727 deg
(14.558 mA)

Sensor2 20 mA = 4 mA
(0 mA)

Misc

Open AP browser (pop-up)
Getuser manual from yoctopuce.com

Properties of the Yocto-4-20mA-Rx module.

This window allows you, among other things, to play with your module to check that it is working
properly. Values measured by the Yocto-4-20mA-Rx are indeed displayed in real time.

3.3. Configuration

When, in the module list, you click on the configure button corresponding to your module, the

configuration window is displayed.

Firmware

Edit parameters for device RX420MA1-11D52, and click on the Save
button.

Serial # RX420MA1-11D52

Product name: Yocto-4-20mA-Rx

Firmware: 12696

Logical name: | |

Luminosity: ﬂ (signal leds only)
Device functions

Each function of the device has a physical name and a logical name.
You can change the logical name using the rename button. You can
map the signal read by the device to any physical measure in the
range -25000.000 ... +25000.000

RX420MA1-11D52.genericSensor?/ (rename)
Mapping type: |4 20mA
Mapped value for 4mA: o |
Mapped value for 20mA: \360 \
Mapped value unit \deg \
Display rasolution \DT :

RX420MA1-11D52.genericSensor2 / (rename)
Mapping type: [4.20mA[]
Mapped value for 4mA: \4 \
Mapped value for 20mA: \20 \
Wapped value unit |ma |
Display resolution [0.001 :

[save| [cancel|

Yocto-4-20mA-Rx module configuration.

The module firmware can easily be updated with the help of the interface. To do so, you must
beforehand have the adequate firmware on your local disk. Firmware destined for Yoctopuce
modules are available as .byn files and can be downloaded from the Yoctopuce web site.

To update a firmware, simply click on the upgrade button on the configuration window and follow the
instructions. If the update fails for one reason or another, unplug and re-plug the module and start
the update process again. This solves the issue in most cases. If the module was unplugged while it
was being reprogrammed, it does probably not work anymore and is not listed in the interface.

12

www.yoctopuce.com

3. First steps

However, it is always possible to reprogram the module correctly by using the Virtual Hub software 3
in command line “.

Logical name of the module

The logical name is a name that you choose, which allows you to access your module, in the same
way a file name allows you to access its content. A logical name has a maximum length of 19
characters. Authorized characters are A..7Z, a..z, 0..9, , and -. If you assign the same logical name
to two modules connected to the same computer and you try to access one of them through this
logical name, behavior is undetermined: you have no way of knowing which of the two modules
answers.

Luminosity

This parameter allows you to act on the maximal intensity of the leds of the module. This enables
you, if necessary, to make it a little more discreet, while limiting its power consumption. Note that this
parameter acts on all the signposting leds of the module, including the Yocto-led. If you connect a
module and no led turns on, it may mean that its luminosity was set to zero.

Logical names of functions

Each Yoctopuce module has a serial number and a logical name. In the same way, each function on
each Yoctopuce module has a hardware name and a logical name, the latter can be freely chosen by
the user. Using logical names for functions provides a greater flexibility when programming modules.

The functions provided by the Yocto-4-20mA-Rx module are the two "genericSensor1" and
"genericSensor2" functions, corresponding to the two channels. Simply click on the corresponding
"rename" buttons to assign them new logical names.

mA to physical quantity conversion

You can define on which basis you want to perform the conversion between the current measured in
mA and the physical quantity measured by the sensor connected to the Yocto-4-20mA-Rx. You can
also define a conversion based on a range other than 4..20mA. Some exotic sensors work with other
ranges, such as 1.20mA, for example.

3 www.yoctopuce.com/EN/virtualhub.php
4 More information available in the virtual hub documentation

www.yoctopuce.com 13

14

www.yoctopuce.com

4. Assembly and connections

This chapter provides important information regarding the use of the Yocto-4-20mA-Rx module in
real-world situations. Make sure to read it carefully before going too far into your project if you want
to avoid pitfalls.

4.1. Fixing

While developing your project, you can simply let the module hang at the end of its cable. Check only
that it does not come in contact with any conducting material (such as your tools). When your project
is almost at an end, you need to find a way for your modules to stop moving around.

Examples of assembly on supports

The Yocto-4-20mA-Rx module contains 2.5mm assembly holes. You can use these holes for screws.
The screw head diameter must not be larger than 4.5mm or they will damage the module circuits.
Make sure that the lower surface of the module is not in contact with the support. We recommend
using spacers, but other methods are possible. Nothing prevents you from fixing the module with a
glue gun; it will not be good-looking, but it will hold.

If your intend to screw your module directly against a conducting part, for example a metallic frame,
insert an isolating layer in between. Otherwise you are bound to induce a short circuit: there are
naked pads under your module. Simple packaging tape should be enough for electric insulation.

www.yoctopuce.com 15

4. Assembly and connections

While working, the Yocto-4-20mA-Rx can heat up, in particular when using its 23V power supply.
This is a normal behavior. When fixing your module, make sure that the heat cannot accumulate.
Avoid hermetically closed enclosures.

4.2. USB power distribution

Although USB means Universal Serial BUS, USB devices are not physically organized as a flat bus
but as a tree, using point-to-point connections. This has consequences on power distribution: to
make it simple, every USB port must supply power to all devices directly or indirectly connected to it.
And USB puts some limits.

In theory, a USB port provides 100mA, and may provide up to 500mA if available and requested by
the device. In the case of a hub without external power supply, 100mA are available for the hub itself,
and the hub should distribute no more than 100mA to each of its ports. This is it, and this is not
much. In particular, it means that in theory, it is not possible to connect USB devices through two
cascaded hubs without external power supply. In order to cascade hubs, it is necessary to use self-
powered USB hubs, that provide a full 500mA to each subport.

In practice, USB would not have been as successful if it was really so picky about power distribution.
As it happens, most USB hub manufacturers have been doing savings by not implementing current
limitation on ports: they simply connect the computer power supply to every port, and declare
themselves as self-powered hub even when they are taking all their power from the USB bus (in
order to prevent any power consumption check in the operating system). This looks a bit dirty, but
given the fact that computer USB ports are usually well protected by a hardware current limitation
around 2000mA, it actually works in every day life, and seldom makes hardware damage.

What you should remember: if you connect Yoctopuce modules through one, or more, USB hub
without external power supply, you have no safe-guard and you depend entirely on your computer
manufacturer attention to provide as much current as possible on the USB ports, and to detect
overloads before they lead to problems or to hardware damages. When modules are not provided
enough current, they may work erratically and create unpredictable bugs. If you want to prevent any
risk, do not cascade hubs without external power supply, and do not connect peripherals requiring
more than 100mA behind a bus-powered hub.

In order to help controlling and planning overall power consumption for your project, all Yoctopuce
modules include a built-in current sensor that tells (with 5mA precision) the consumption of the
module on the USB bus.

16 www.yoctopuce.com

5. Programming, general concepts

The Yoctopuce API was designed to be at the same time simple to use and sufficiently generic for
the concepts used to be valid for all the modules in the Yoctopuce range, and this in all the available
programming languages. Therefore, when you have understood how to drive your Yocto-4-20mA-Rx
with your favorite programming language, learning to use another module, even with a different
language, will most likely take you only a minimum of time.

5.1. Programming paradigm

The Yoctopuce API is object oriented. However, for simplicity's sake, only the basics of object
programming were used. Even if you are not familiar with object programming, it is unlikely that this
will be a hinderance for using Yoctopuce products. Note that you will never need to allocate or
deallocate an object linked to the Yoctopuce API: it is automatically managed.

There is one class per Yoctopuce function type. The name of these classes always starts with a Y
followed by the name of the function, for example YTemperature, YRelay, YPressure, etc.. There is
also a YModule class, dedicated to managing the modules themselves, and finally there is the static
YAPI class, that supervises the global workings of the APl and manages low level communications.

Low level handling) Module handling . Feature handling

[YAPI] [YModuIe] YTemperature

YRelay

o
[YPressure |
-

]

[Y Xxx

Structure of the Yoctopuce API.

In the Yoctopuce API, priority was put on the ease of access to the module functions by offering the
possibility to make abstractions of the modules implementing them. Therefore, it is quite possible to
work with a set of functions without ever knowing exactly which module are hosting them at the
hardware level. This tremendously simplifies programming projects with a large number of modules.

www.yoctopuce.com 17

5. Programming, general concepts

From the programming stand point, your Yocto-4-20mA-Rx is viewed as a module hosting a given
number of functions. In the API, these functions are objects which can be found independently, in
several ways.

Access to the functions of a module

Access by logical name

Each function can be assigned an arbitrary and persistent logical name: this logical name is stored in
the flash memory of the module, even if this module is disconnected. An object corresponding to an
Xxx function to which a logical name has been assigned can then be directly found with this logical
name and the YXxx.FindXxx method. Note however that a logical name must be unique among all
the connected modules.

Access by enumeration
You can enumerate all the functions of the same type on all the connected modules with the help of
the classic enumeration functions FirstXxx and nextXxxx available for each YXxx class.

Access by hardware name

Each module function has a hardware name, assigned at the factory and which cannot be modified.
The functions of a module can also be found directly with this hardware name and the YXxx.FindXxx
function of the corresponding class.

Difference between Find and First

The YXxx.FindXxxx and YXxx.FirstXxxx methods do not work exactly the same way. If there is no
available module, YXxx.FirstXxxx returns a null value. On the opposite, even if there is no
corresponding module, YXxx.FindXxxx returns a valid object, which is not online but which could
become so if the corresponding module is later connected.

Function handling

When the object corresponding to a function is found, its methods are available in a classic way.
Note that most of these subfunctions require the module hosting the function to be connected in
order to be handled. This is generally not guaranteed, as a USB module can be disconnected after
the control software has started. The isOnline method, available in all the classes, is then very
helpful.

Access to the modules

Even if it is perfectly possible to build a complete project while making a total abstraction of which
function is hosted on which module, the modules themselves are also accessible from the API. In
fact, they can be handled in a way quite similar to the functions. They are assigned a serial number
at the factory which allows you to find the corresponding object with YModule.Find(). You can also
assign arbitrary logical names to the modules to make finding them easier. Finally, the YModule
class contains the YModule.FirstModule() and nextModule() enumeration methods allowing you to list
the connected modules.

Functions/Module interaction

From the API standpoint, the modules and their functions are strongly uncorrelated by design.
Nevertheless, the API provides the possibility to go from one to the other. Thus, the get _module()
method, available for each function class, allows you to find the object corresponding to the module
hosting this function. Inversely, the YModule class provides several methods allowing you to
enumerate the functions available on a module.

5.2. The Yocto-4-20mA-Rx module

The Yocto-4-20mA-Rx module provides two instances of the genericSensor function, each based on
the measure of one of the two current loops used to connect external 4-20mA sensors.

module : Module

18 www.yoctopuce.com

5. Programming, general concepts

attribute type modifiable ?
productName String read-only
serialNumber String read-only
logicalName String modifiable
productId Hexadecimal number read-only
productRelease Hexadecimal number read-only
firmwareRelease String read-only
persistentSettings Enumerated modifiable
luminosity 0..100% modifiable
beacon On/Off modifiable
upTime Time read-only
usbCurrent Used current (mA) read-only
rebootCountdown Integer modifiable
usbBandwidth Enumerated modifiable
genericSensor1 : GenericSensor
genericSensor2 : GenericSensor
attribute type modifiable ?
logicalName String modifiable
advertisedValue String read-only
unit String modifiable
currentValue Fixed-point number read-only
lowestValue Fixed-point number modifiable
highestValue Fixed-point number modifiable
currentRawValue Fixed-point number read-only
logFrequency Frequency modifiable
reportFrequency Frequency modifiable
calibrationParam 16 bit word array modifiable
resolution Floating-point number modifiable
signalValue Fixed-point number read-only
signalUnit String read-only
signalRange Value range modifiable
valueRange Value range modifiable
datalLogger : DataLogger
attribute type modifiable ?
logicalName String modifiable
advertisedvalue String read-only
currentRunIndex Integer read-only
timeUTC UTC time modifiable
recording On/Off modifiable
autoStart On/Off modifiable
clearHistory Boolean modifiable

5.3. Module control interface

This interface is identical for all Yoctopuce USB modules. It can be used to control the module global
parameters, and to enumerate the functions provided by each module.

productName
Character string containing the commercial name of the module, as set by the factory.

serialNumber

Character string containing the serial number, unique and programmed at the factory. For a
Yocto-4-20mA-Rx module, this serial number always starts with RX420MA1. You can use the serial
number to access a given module by software.

www.yoctopuce.com 19

5. Programming, general concepts

logicalName

Character string containing the logical name of the module, initially empty. This attribute can be
modified at will by the user. Once initialized to an non-empty value, it can be used to access a given
module. If two modules with the same logical name are in the same project, there is no way to
determine which one answers when one tries accessing by logical name. The logical name is limited
to 19 characters among A..7,a..z,0..9, ,and -.

productid

USB device identifier of the module, preprogrammed to 55 at the factory.

productRelease
Release number of the module hardware, preprogrammed at the factory.

firmwareRelease
Release version of the embedded firmware, changes each time the embedded software is updated.

persistentSettings

State of persistent module settings: loaded from flash memory, modified by the user or saved to flash
memory.

luminosity

Lighting strength of the informative leds (e.g. the Yocto-Led) contained in the module. It is an integer
value which varies between 0 (leds turned off) and 100 (maximum led intensity). The default value is
50. To change the strength of the module leds, or to turn them off completely, you only need to
change this value.

beacon

Activity of the localization beacon of the module.

upTime
Time elapsed since the last time the module was powered on.

usbCurrent
Current consumed by the module on the USB bus, in milli-amps.

rebootCountdown
Countdown to use for triggering a reboot of the module.

usbBandwidth

Number of USB interfaces used by the device. If this parameter is set to DOUBLE, the device can
send twice as much data, but this may saturate the USB hub. Remember to call the saveToFlash
() method and then to reboot the module to apply this setting.

5.4. GenericSensor function interface

The Yoctopuce application programming interface allows you to read an instant measure of the
sensor, as well as the minimal and maximal values observed.

logicalName

Character string containing the logical name of the generic sensor, initially empty. This attribute can
be modified at will by the user. Once initialized to an non-empty value, it can be used to access the
generic sensor directly. If two generic sensors with the same logical name are used in the same

20 www.yoctopuce.com

5. Programming, general concepts

project, there is no way to determine which one answers when one tries accessing by logical name.
The logical name is limited to 19 characters among A..Z,a..2,0..9, , and -.

advertisedValue

Short character string summarizing the current state of the generic sensor, that is automatically
advertised up to the parent hub. For a generic sensor, the advertised value is the measured value.
unit

Short character string representing the measuring unit for the measured value.

currentValue
Current value of the physical value measured by the sensor, as a floating point number.

lowestValue
Minimal value of the physical value measured by the sensor, as a floating point number.

highestValue

Maximal value of the physical value measured by the sensor, as a floating point number.

logFrequency

Datalogger recording frequency, or "OFF" when measures should not be stored in the data logger
flash memory.

reportFrequency

Timed value notification frequency, or "OFF" when timed value notifications are disabled for this
function.

calibrationParam

Extra calibration parameters (for instance to compensate for the effects of an enclosure), as an array
of 16 bit words.

resolution

Measure resolution (i.e. precision of the numeric representation, not necessarily of the measure
itself).

signalValue

Current value of the electrical signal generated by the sensor, as a floating point number.

signalUnit
Short character string representing the measuring unit of the electrical signal used by the sensor.

signalRange
Electric signal range used by the sensor.

valueRange
Physical value range measured by the sensor, used to convert the signal.

5.5. DataLogger function interface

Yoctopuce sensors include a non-volatile memory capable of storing ongoing measured data
automatically, without requiring a permanent connection to a computer. The DatalLogger function
controls the global parameters of the internal data logger.

www.yoctopuce.com 21

5. Programming, general concepts

logicalName

Character string containing the logical name of the data logger, initially empty. This attribute can be
modified at will by the user. Once initialized to an non-empty value, it can be used to access the data
logger directly. If two data loggers with the same logical name are used in the same project, there is
no way to determine which one answers when one tries accessing by logical name. The logical name
is limited to 19 characters among A..Z,a..z,0..9, ,and -.

advertisedValue

Short character string summarizing the current state of the data logger, that is automatically
advertised up to the parent hub. For a data logger, the advertised value is its recording state (ON or
OFF).

currentRunindex

Current run number, corresponding to the number of time the module was powered on with the
dataLogger enabled at some point.

timeUTC

Current UTC time, in case it is desirable to bind an absolute time reference to the data stored by the
data logger. This time must be set up by software.

recording

Activation state of the data logger. The data logger can be enabled and disabled at will, using this
attribute, but its state on power on is determined by the autoStart persistent attribute.

autoStart

Automatic start of the data logger on power on. Setting this attribute ensures that the data logger is
always turned on when the device is powered up, without need for a software command.

clearHistory
Attribute that can be set to true to clear recorded data.

5.6. What interface: Native, DLL or Service ?

There are several methods to control you Yoctopuce module by software.

Native control

In this case, the software driving your project is compiled directly with a library which provides control
of the modules. Obijectively, it is the simplest and most elegant solution for the end user. The end
user then only needs to plug the USB cable and run your software for everything to work.
Unfortunately, this method is not always available or even possible.

()

application

native
libra
i e ry

ofil«—

The application uses the native library to control the locally connected module

22 www.yoctopuce.com

5. Programming, general concepts

Native control by DLL

Here, the main part of the code controlling the modules is located in a DLL. The software is compiled
with a small library which provides control of the DLL. It is the fastest method to code module support
in a given language. Indeed, the "useful" part of the control code is located in the DLL which is the
same for all languages: the effort to support a new language is limited to coding the small library
which controls the DLL. From the end user stand point, there are few differences: one must simply
make sure that the DLL is installed on the end user's computer at the same time as the main
software.

()

application
DLL interface
DLL

|

e —

The application uses the DLL to natively control the locally connected module

Control by service

Some languages do simply not allow you to easily gain access to the hardware layers of the
machine. It is the case for Javascript, for instance. To deal with this case, Yoctopuce provides a
solution in the form of a small piece of software called Virtual Hub'. It can access the modules, and
your application only needs to use a library which offers all necessary functions to control the
modules via this virtual hub. The end users will have to start the virtual hub before running the project
control software itself, unless they decide to install the hub as a service/deamon, in which case the
virtual hub starts automatically when the machine starts up.

()

application

hub library

_ Y,
C<-l'_"l<—

The application connects itself to the virtual hub to gain access to the module

The service control method comes with a non-negligible advantage: the application does not need to
run on the machine on which the modules are connected. The application can very well be located
on another machine which connects itself to the service to drive the modules. Moreover, the native
libraries and DLL mentioned above are also able to connect themselves remotely to one or several
virtual hubs.

T www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 23

5. Programming, general concepts

application

native
library

application
hub library

application

hub library

J L 3
§ 2 J \ *
E application
5
-di —_
_ e

When a virtual hub is used, the control application does not need to reside on the same machine as the module.

Whatever the selected programming language and the control paradigm used, programming itself
stays strictly identical. From one language to another, functions bear exactly the same name, and
have the same parameters. The only differences are linked to the constraints of the languages
themselves.

Language Native Native with DLL Virtual hub
C++ . . .
Objective-C .
Delphi -
Python -
VisualBasic .Net -
C# .Net -
Javascript - -
Node.js - -

PHP - -
Java - -
Java for Android . -
Command line . -
Support methods for different languages

Limitations of the Yoctopuce libraries

Natives et DLL libraries have a technical limitation. On the same computer, you cannot concurrently
run several applications accessing Yoctopuce devices directly. If you want to run several projects on
the same computer, make sure your control applications use Yoctopuce devices through a
VirtualHub software. The modification is ftrivial: it is just a matter of parameter change in the
yRegisterHub () call.

5.7. Programming, where to start?

At this point of the user's guide, you should know the main theoretical points of your Yocto-4-20mA-
Rx. It is now time to practice. You must download the Yoctopuce library for your favorite
programming language from the Yoctopuce web site?. Then skip directly to the chapter
corresponding to the chosen programming language.

All the examples described in this guide are available in the programming libraries. For some
languages, the libraries also include some complete graphical applications, with their source code.

When you have mastered the basic programming of your module, you can turn to the chapter on
advanced programming that describes some techniques that will help you make the most of your
Yocto-4-20mA-Rx.

2 http://www.yoctopuce.com/EN/libraries.php

24 www.yoctopuce.com

5. Programming, general concepts

www.yoctopuce.com

25

26

www.yoctopuce.com

6. Using the Yocto-4-20mA-Rx in command line

When you want to perform a punctual operation on your Yocto-4-20mA-Rx, such as reading a value,
assigning a logical name, and so on, you can obviously use the Virtual Hub, but there is a simpler,
faster, and more efficient method: the command line API.

The command line API is a set of executables, one by type of functionality offered by the range of
Yoctopuce products. These executables are provided pre-compiled for all the Yoctopuce officially
supported platforms/OS. Naturally, the executable sources are also provided'.

6.1. Installing

Download the command line API%. You do not need to run any setup, simply copy the executables
corresponding to your platform/OS in a directory of your choice. You may add this directory to your
PATH variable to be able to access these executables from anywhere. You are all set, you only need
to connect your Yocto-4-20mA-Rx, open a shell, and start working by typing for example:

YGenericSensor any get currentValue

To use the command API on Linux, you need either have root privileges or to define an udev rule for
your system. See the Troubleshooting chapter for more details.

6.2. Use: general description

All the command line API executables work on the same principle. They must be called the following
way

Executable [options] [target] command [parameter]

[options] manage the global workings of the commands, they allow you, for instance, to pilot a
module remotely through the network, or to force the module to save its configuration after executing
the command.

[target] is the name of the module or of the function to which the command applies. Some very
generic commands do not need a target. You can also use the aliases "any" and "all", or a list of
names separated by comas without space.

Tt you want to recompile the command line API, you also need the C++ API.
2 http://www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com 27

6. Using the Yocto-4-20mA-Rx in command line

command is the command you want to run. Almost all the functions available in the classic
programming APls are available as commands. You need to respect neither the case nor the
underlined characters in the command name.

[parameters] logically are the parameters needed by the command.

At any time, the command line API executables can provide a rather detailed help. Use for instance:

executable

to know the list of available commands for a given command line APl executable, or even:

executable command /help

to obtain a detailed description of the parameters of a command.

6.3. Control of the GenericSensor function

To control the GenericSensor function of your Yocto-4-20mA-Rx, you need the YGenericSensor
executable file.

For instance, you can launch:
YGenericSensor any get currentValue

This example uses the "any" target to indicate that we want to work on the first GenericSensor
function found among all those available on the connected Yoctopuce modules when running. This
prevents you from having to know the exact names of your function and of your module.

But you can use logical names as well, as long as you have configured them beforehand. Let us
imagine a Yocto-4-20mA-Rx module with the RX420MA1-123456 serial number which you have
called "MyModule", and its genericSensor1 function which you have renamed "MyFunction". The five
following calls are strictly equivalent (as long as MyFunction is defined only once, to avoid any
ambiguity).

YGenericSensor RX420MA1-123456.genericSensorl describe

YGenericSensor RX420MA1-123456.MyFunction describe

YGenericSensor MyModule.genericSensorl describe

YGenericSensor MyModule.MyFunction describe

YGenericSensor MyFunction describe

To work on all the GenericSensor functions at the same time, use the "all" target.

YGenericSensor all describe

For more details on the possibilities of the YGenericSensor executable, use:

YGenericSensor /help

6.4. Control of the module part

Each module can be controlled in a similar way with the help of the YModule executable. For
example, to obtain the list of all the connected modules, use:

YModule inventory

28 www.yoctopuce.com

6. Using the Yocto-4-20mA-Rx in command line

You can also use the following command to obtain an even more detailed list of the connected
modules:

YModule all describe

Each xxx property of the module can be obtained thanks to a command of the get xxxx () type,
and the properties which are not read only can be modified with the set xxx () command. For
example:

YModule RX420MA1-12346 set logicalName MonPremierModule

YModule RX420MA1-12346 get logicalName

Changing the settings of the module

When you want to change the settings of a module, simply use the corresponding set xxx
command. However, this change happens only in the module RAM: if the module restarts, the
changes are lost. To store them permanently, you must tell the module to save its current
configuration in its nonvolatile memory. To do so, use the saveToFlash command. Inversely, it is
possible to force the module to forget its current settings by using the revertFromFlash method.
For example:

YModule RX420MA1-12346 set logicalName MonPremierModule
YModule RX420MA1-12346 saveToFlash

Note that you can do the same thing in a single command with the —s option.

YModule -s RX420MA1-12346 set logicalName MonPremierModule

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

6.5. Limitations

The command line API has the same limitation than the other APlIs: there can be only one application
at a given time which can access the modules natively. By default, the command line API works in
native mode.

You can easily work around this limitation by using a Virtual Hub: run the VirtualHub® on the
concerned machine, and use the executables of the command line API with the —r option. For
example, if you use:

YModule inventory

you obtain a list of the modules connected by USB, using a native access. If another command which
accesses the modules natively is already running, this does not work. But if you run a Virtual Hub,
and you give your command in the form:

YModule -r 127.0.0.1 inventory

it works because the command is not executed natively anymore, but through the Virtual Hub. Note
that the Virtual Hub counts as a native application.

3 http://www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 29

30

www.yoctopuce.com

7. Using Yocto-4-20mA-Rx with Javascript

Javascript is probably not the first language that comes to mind to control hardware, but its ease of
use is a great advantage: with Javascript, you only need a text editor and a web browser to realize
your first tests.

At the time of writing, the Javascript library functions with any recent browser ... except Opera. It is
likely that Opera will end up working with the Yoctopuce library one of these days’, but it is not the
case right now.

Javascript is one of those languages which do not allow you to directly access the hardware layers of
your computer. Therefore you need to run the Yoctopuce TCP/IP to USB gateway, named
VirtualHub, on the machine on which your modules are connected.

7.1. Getting ready

Go to the Yoctopuce web site and download the following items:

+ The Javascript programming library?
+ The VirtualHub software?® for Windows, Mac OS X or Linux, depending on your OS

Decompress the library files in a folder of your choice, connect your modules, run the VirtualHub
software, and you are ready to start your first tests. You do not need to install any driver.

7.2. Control of the GenericSensor function

A few lines of code are enough to use a Yocto-4-20mA-Rx. Here is the skeleton of a JavaScript code
snipplet to use the GenericSensor function.

<SCRIPT type="text/javascript" src="yocto api.js"></SCRIPT>
<SCRIPT type="text/javascript" src="yocto genericsensor.js"></SCRIPT>

yRegisterHub ('http://127.0.0.1:4444/");
var genericsensor = yFindGenericSensor ("RX420MA1-123456.genericSensorl");

VirtualHuo running L1 ally

that the module is online to han >~ hot-p

if (genericsensor.isOnline ()

1 Actually, as soon as Opera implements support for the HTTP Access-Control-Allow-Origin header.
www.yoctopuce.com/EN/libraries.php
3 www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 31

7. Using Yocto-4-20mA-Rx with Javascript

{

}

Let us look at these lines in more details.

yocto_api.js and yocto_genericsensor.js

These two Javascript includes provide access to functions allowing you to manage Yoctopuce
modules. yocto api.js must always be included, yocto genericsensor.js is necessary
to manage modules containing a generic sensor, such as Yocto-4-20mA-Rx.

yRegisterHub

The yRegisterHub function allows you to indicate on which machine the Yoctopuce modules are
located, more precisely on which machine the VirtualHub software is running. In our case, the
127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port used by
Yoctopuce). You can very well modify this address, and enter the address of another machine on
which the VirtualHub software is running.

yFindGenericSensor

The yFindGenericSensor function allows you to find a generic sensor from the serial number of
the module on which it resides and from its function name. You can also use logical names, as long
as you have initialized them. Let us imagine a Yocto-4-20mA-Rx module with serial number
RX420MA1-123456 which you have named "MyModule", and for which you have given the
genericSensor1 function the name "MyFunction". The following five calls are strictly equivalent, as
long as "MyFunction" is defined only once.

var genericsensor
var genericsensor
var genericsensor
var genericsensor
var genericsensor

yFindGenericSensor ("RX420MA1-123456.genericSensorl") ;
yFindGenericSensor ("RX420MA1-123456.MyFunction") ;
yFindGenericSensor ("MyModule.genericSensorl");
yFindGenericSensor ("MyModule.MyFunction") ;
yFindGenericSensor ("MyFunction") ;

yFindGenericSensor returns an object which you can then use at will to control the generic
Sensor.

isOnline

The isOnline () method of the object returned by yFindGenericSensor allows you to know if
the corresponding module is present and in working order.

get_currentValue

The get currentValue () method of the object returned by yFindGenericSensor provides
the current currently measured by the Yocto-4-20mA-Rx. The value returned is a floating number,
converted to the physical value measured by the 4..20mA sensor.

A real example

Open your preferred text editor*, copy the code sample below, save it in the same directory as the
Yoctopuce library files and then use your preferred web browser to access this page. The code is
also provided in the directory Examples/Doc-GettingStarted-Yocto-4-20mA-Rx of the Yoctopuce
library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

The example is coded to be used either from a web server, or directly by opening the file on the local
machine. Note that this latest solution does not work with some versions of Internet Explorer, in
particular IE 9 on Windows 7, which is not able to open network connections when working on a local

4 you do not have a text editor, use Notepad rather than Microsoft Word.

32 www.yoctopuce.com

7. Using Yocto-4-20mA-Rx with Javascript

file. In order to use Internet Explorer, you should load the example from a web server. No such
problem exists with Chrome, Firefox or Safari.

If your Yocto-4-20mA-Rx is not connected on the host running the browser, replace in the example
the address 127.0.0.1 by the IP address of the host on which the Yocto-4-20mA-Rx is connected
and where you run the VirtualHub.

<HTML>

<HEAD>

<TITLE> Hello World</TITLE>

<SCRIPT type="text/javascript" src="yocto api.js"></SCRIPT>

<SCRIPT type="text/javascript" src="yocto genericSensor.js"></SCRIPT>
<SCRIPT language='javascriptl.5' type='text/JavaScript'>

Ll==
// Setup the API to use the VirtualHub on local ~h
if (yRegisterHub ('http://127.0.0.1:4444/") != YAPI

alert ("Cannot contact VirtualHub on 127.0.0.1");
}

function refresh ()
{

var sensor, serial = document.getElementById('serial') .value;

if (serial == "'") {

// or use any conected module suitable for the demo
sensor = yFirstGenericSensor () ;
if (sensor) {
serial = sensor.module () .get serialNumber () ;
document.getElementById('serial') .value = serial;
}
}
sensorl = yFindGenericSensor (serial+".genericSensorl");
sensor?2 = yFindGenericSensor (serial+".genericSensor2");
if ((sensorl.isOnline()) && (sensor2.isOnline())) {

document.getElementById('msg') .value = '';

document.getElementById("sensor-vall") .value = sensorl.get currentValue() +
sensorl.get unit () ;

document.getElementById("sensor-val2") .value = sensor2.get currentValue () +
sensor2.get unit () ;

} else {
document.getElementById('msg') .value = 'Module not connected';
}
setTimeout ('refresh()',500);
}
-=>
</SCRIPT>
</HEAD>
<BODY onload='refresh();'>
Module to use: <input id='serial'>
<input id='msg' style='color:red;border:none;' readonly>

channel 1 : <input id='sensor-vall' readonly>

channel 2 : <input id='sensor-val2' readonly>

</BODY>
</HTML>

7.3. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

<HTML>
<HEAD>
<TITLE>Module Control</TITLE>
<SCRIPT type="text/javascript" src="yocto api.js"></SCRIPT>
<SCRIPT language='javascriptl.5' type='text/JavaScript'>
Ll==
// Use explicit error handling rather than exceptions
) .

yDisableExceptions (

’

www.yoctopuce.com 33

7. Using Yocto-4-20mA-Rx with Javascript

// CSetiipn Fhe APT 115 +the Virtiia 5 em lemal mneaisd e
// Setup the API To use the Virtua 1O on local macnine

if(yRegisterHub('http://127.0.0.1:4444/') != YAPI SUCCESS) ({
alert ("Cannot contact VirtualHub on 127.0.0.1");

+A

H

}
var module;

function refresh ()

{
var serial = document.getElementById('serial') .value;
if (serial == "'") {

7 PaEmmis e eSS i md mvevdhn T 11 +able for the demc
/ Detect any conected module suitable for the demo

module = yFi}stModule().nextModule();
if (module) {
serial = module.get serialNumber ();

document.getElementById('serial') .value = serial;
}
}
module = yFindModule (serial);
if (module.isOnline()) {

document.getElementById('msg') .value = "';

var html = 'serial: '+module.get serialNumber ()+'
';
html += 'logical name: '+module.get logicalName ()+'
"';
html += 'luminosity:'+module.get luminosity()+'%$
';

html += 'beacon:';
if (module.get beacon ()==Y BEACON_ ON)

html+="ON switch off
";

else

html+="0FF switch on
";

html += 'upTime: '+parselnt (module.get upTime ()/1000)+' sec
';
html += 'USB current: '+module.get usbCurrent()+' mA
';
html += 'logs:
<pre>'+module.get lastLogs()+'</pre>
';

document.getElementById('data') .innerHTML = html;

} else {

document.getElementById('msg') .value = 'Module not connected';
}
setTimeout ('refresh()',1000) ;

}

function beacon (state)
{
module.set beacon (state);
refresh () ;
}
-——>
</SCRIPT>
</HEAD>
<BODY onload='refresh();'>
Module to use: <input id='serial'>

<input id='msg' style='color:red;border:none;' readonly>

</BODY>
</HTML>

Each property xxx of the module can be read thanks to a method of type get xxxx (), and
properties which are not read-only can be modified with the help of the set xxx () method. For

more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below

allows you to modify the logical name of a module.

<HTML>

<HEAD>

<TITLE>Change module settings</TITLE>

<SCRIPT type="text/javascript" src="yocto api.js"></SCRIPT>

34

www.yoctopuce.com

7. Using Yocto-4-20mA-Rx with Javascript

<SCRIPT language='javascriptl.5' type='text/JavaScript'>
<!—-—
// Use explicit error handling rather than exceptions

yDLsableExceptlonsO

// Setup the API to use the Virtt Hub on O na n
if (yRegisterHub ('http://127.0.0. 1:4444/) != YAPI SUCCESS) {

alert ("Cannot contact VirtualHub on 127.0.0.1");
}

var module;

function refresh()

{
var serial = document.getElementById('serial') .value;
if(serlal == "") {

Detect any nected modul =Yl
module = yFlrstModule() nextModule () ;
if (module) {

serial = module.get serialNumber () ;
document.getElementById('serial') .value = serial;
}
}
module = yFindModule (serial);
if (module.isOnline()) {
document.getElementById('msg') .value = '';
document.getElementById('curName') .value = module.get logicalName () ;
} else {
document.getElementById('msg') .value = 'Module not connected';
}
setTimeout ('refresh()',1000) ;

}

function save ()

{

var newname = document.getElementById('newName') .value;
if (!yCheckLogicalName (newname)) {

alert('invalid logical name');

return;

}
module.set logicalName (newname) ;
module.saveToFlash() ;

}

-—>

</SCRIPT>

</HEAD>
<BODY onload='refresh();'>

Module to use: <input id='serial'>

<input id='msg' style='color:red;border:none;' readonly>

Current name: <input id='curName' readonly>

New logical name: <input id='newName'>

Save

</BODY>

</HTML>

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

<HTML>

<HEAD>

<TITLE>Modules inventory</TITLE>

<SCRIPT type="text/javascript" src="yocto api.js"></SCRIPT>
<SCRIPT language='javascriptl.5' type='text/JavaScript'>

www.yoctopuce.com 35

7. Using Yocto-4-20mA-Rx with Javascript

<l —=
Jse explic error handling rather than except

yDisableE%ceptions();

Setup the API to u) 4 571, N ~~ 3 Py

if(yRegisterHub('http://l27.0.0.l:4444/') != YAPI SUCCESS) {
alert ("Cannot contact VirtualHub on 127.0.0.1");
}

function refresh ()

{
yUpdateDevicelList () ;

70 o
’

var htmlcode =
var module = yFirstModule () ;
while (module) {
htmlcode += module.get serialNumber ()
+' ('+module.get productName () +")
";
module = module.nextModule () ;

}
document.getElementById('list').innerHTML=htmlcode;
setTimeout ('refresh()',500);
}
-—>
</SCRIPT>
</HEAD>
<BODY onload='refresh();'>
<H1>Device list</H1>
<tt></tt>
</BODY>
</HTML>

7.4. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

+ If your code catches the exception and handles it, everything goes well.

* If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

» Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the yDisableExceptions () function to commute the library
to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing

36 www.yoctopuce.com

7. Using Yocto-4-20mA-Rx with Javascript

your program. At worst, if you display the value without testing it, it will be outside the expected
bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPI SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 37

38

www.yoctopuce.com

8. Using Yocto-4-20mA-Rx with PHP

PHP is, like Javascript, an atypical language when interfacing with hardware is at stakes.
Nevertheless, using PHP with Yoctopuce modules provides you with the opportunity to very easily
create web sites which are able to interact with their physical environment, and this is not available to
every web server. This technique has a direct application in home automation: a few Yoctopuce
modules, a PHP server, and you can interact with your home from anywhere on the planet, as long
as you have an internet connection.

PHP is one of those languages which do not allow you to directly access the hardware layers of your
computer. Therefore you need to run a virtual hub on the machine on which your modules are
connected.

To start your tests with PHP, you need a PHP 5.3 (or more) server', preferably locally on you
machine. If you wish to use the PHP server of your internet provider, it is possible, but you will

probably need to configure your ADSL router for it to accept and forward TCP request on the 4444
port.

8.1. Getting ready

Go to the Yoctopuce web site and download the following items:

+ The PHP programming library?
+ The VirtualHub software® for Windows, Mac OS X, or Linux, depending on your OS

Decompress the library files in a folder of your choice accessible to your web server, connect your

modules, run the VirtualHub software, and you are ready to start your first tests. You do not need to
install any driver.

8.2. Control of the GenericSensor function

A few lines of code are enough to use a Yocto-4-20mA-Rx. Here is the skeleton of a PHP code
snipplet to use the GenericSensor function.

include ('yocto api.php');
include ('yocto genericsensor.php');

A couple of free PHP servers: easyPHP for Windows, MAMP for Mac OS X.
www.yoctopuce.com/EN/libraries.php
3 www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 39

8. Using Yocto-4-20mA-Rx with PHP

et access Jevice he 1 tualHuk

yRegisterHub('httb://127.0.0.1:4444?',$errmsg);
Sgenericsensor = yFindGenericSensor ("RX420MA1-123456.genericSensorl") ;

Check that the mod e 1s online

if (genericsensor->isOnline ())
{
}

Let's look at these lines in more details.

yocto_api.php and yocto_genericsensor.php

These two PHP includes provides access to the functions allowing you to manage Yoctopuce
modules. yocto api.php must always be included, yocto genericsensor.php is
necessary to manage modules containing a generic sensor, such as Yocto-4-20mA-Rx.

yRegisterHub

The yRegisterHub function allows you to indicate on which machine the Yoctopuce modules are
located, more precisely on which machine the VirtualHub software is running. In our case, the
127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port used by
Yoctopuce). You can very well modify this address, and enter the address of another machine on
which the VirtualHub software is running.

yFindGenericSensor

The yFindGenericSensor function allows you to find a generic sensor from the serial number of
the module on which it resides and from its function name. You can use logical names as well, as
long as you have initialized them. Let us imagine a Yocto-4-20mA-Rx module with serial number
RX420MA1-123456 which you have named "MyModule", and for which you have given the
genericSensor1 function the name "MyFunction". The following five calls are strictly equivalent, as
long as "MyFunction" is defined only once.

Sgenericsensor = yFindGenericSensor ("RX420MA1-123456.genericSensorl") ;
Sgenericsensor = yFindGenericSensor ("RX420MA1-123456.MyFunction") ;
Sgenericsensor = yFindGenericSensor ("MyModule.genericSensorl") ;
Sgenericsensor = yFindGenericSensor ("MyModule.MyFunction") ;
Sgenericsensor = yFindGenericSensor ("MyFunction");

yFindGenericSensor returns an object which you can then use at will to control the generic
Sensor.

isOnline

The isOnline () method of the object returned by yFindGenericSensor allows you to know if
the corresponding module is present and in working order.

get_currentValue

The get currentValue () method of the object returned by yFindGenericSensor provides
the current currently measured by the Yocto-4-20mA-Rx. The value returned is a floating number,
converted to the physical value measured by the 4..20mA sensor.

A real example

Open your preferred text editor*, copy the code sample below, save it with the Yoctopuce library files
in a location which is accessible to you web server, then use your preferred web browser to access
this page. The code is also provided in the directory Examples/Doc-GettingStarted-Yocto-4-20mA-
Rx of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

4 you do not have a text editor, use Notepad rather than Microsoft Word.

40 www.yoctopuce.com

8. Using Yocto-4-20mA-Rx with PHP

<HTML>
<HEAD>
<TITLE>Hello World</TITLE>
</HEAD>
<BODY>
<?php
include ('yocto _api.php');
include ('yocto genericSensor.php');

// Use explicit error handling rather than exceptions
yDisableExceptions () ;

// Setup the API to use the VirtualHub on local machine
if (yRegisterHub ('http://127.0.0.1:4444/"',Serrmsg) != YAPI SUCCESS) {
die ("Cannot contact VirtualHub on 127.0.0.1")

’

}

@S$serial = $ GET['serial'l;

if ($serial !'= '') {
// Check if a specified module is available online
Ssensor = yFindGenericSensor ("Sserial.genericSensorl");
if (!$sensor->isOnline()) {
die ("Module not connected (check serial and USB cable)");
}
} else {
// or use any connected module suitable for the demo
$sensor = yFirstGenericSensor () ;
if (is_null($sensor)) {
die ("No module connected (check USB cable)");
} else {
$serial = $sensor->module () ->get serialnumber ();

}
}

Print ("Module to use: <input name='serial' value='S$serial'>
");

$sensorl = yFindGenericSensor ("$serial.genericSensorl");
Printf ("GenericSensor channel 1: %.1f %s
",S$sensorl->get currentValue(), $sensorl-
>get unit());

Ssensor?2 = yFindGenericSensor ("$serial.genericSensor2");
Printf ("GenericSensor channel 2: %$.1f %s
",$sensorZ—>get_currentValue(),$sensor2—
>get unit());

// trigger auto-refresh after one second
Print ("<script language='javascriptl.5' type='text/JavaScript'>\n");

Print ("setTimeout ('window.location.reload()',1000);");
Print ("</script>\n") ;

?>

</BODY>

</HTML>

8.3. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

<HTML>
<HEAD>
<TITLE>Module Control</TITLE>
</HEAD>
<BODY>
<FORM method='get'>
<?php
include ('yocto api.php');

// Use explicit error handling rather than exceptions
yDisableExceptions () ;

// Setup the API to use the VirtualHub on local machine

if (yRegisterHub ('http://127.0.0.1:4444/"',$errmsg) != YAPI SUCCESS) {
die ("Cannot contact VirtualHub on 127.0.0.1 : ".Serrmsqg);

}

www.yoctopuce.com 41

8. Using Yocto-4-20mA-Rx with PHP

@Sserial = $ GET['serial'l;
if ($serial != '"') {

I e (L € S avaiilable onliir

0}

// Check if a specified module

Smodule = yFindModule ("$serial");

if (!Smodule->isOnline()) {
die ("Module not connected (check serial and USB cable)");

}

} else {
// or use any co 3 i
Smodule = yFirstModule () ;
if (Smodule) { // skip VirtualHub
Smodule = Smodule->nextModule () ;
}
if (is_null (Smodule)) {
die ("No module connected (check USB cable)");
} else {
$serial = Smodule->get serialnumber () ;

}
}

Print ("Module to use: <input name='serial' value='$serial'>
");

if (isset($_GET['beacon'l)) {
if ($ _GET['beacon']=='ON")
$module->set beacon (Y BEACON ON) ;
else

$module->set beacon (Y BEACON OFF) ;
}
printf ('serial: $s
', Smodule->get serialNumber());
printf ('logical name: %$s
', Smodule->get logicalName ());
printf ('luminosity: %s
', Smodule->get luminosity());
print ('beacon: ');
if (Smodule->get beacon() == Y BEACON ON) {
printf ("<input type='radio' name='beacon' value='ON' checked>ON ");
printf ("<input type='radio' name='beacon' value='OFF'>OFF
");
} else {
printf ("<input type='radio' name='beacon' wvalue='ON'>ON ");
printf ("<input type='radio' name='beacon' value='OFF' checked>OFF
");
}
printf ('upTime: %s sec
',intVal (Smodule->get upTime ()/1000))
printf ('USB current: $smA
', $Smodule->get usbCurrent ());
printf ('logs:
<pre>%s</pre>',Smodule->get lastLogs());
2>
<input type='submit' value='refresh'>
</FORM>
</BODY>
</HTML>

Each property xxx of the module can be read thanks to a method of type get xxxx (), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

<HTML>
<HEAD>
<TITLE>save settings</TITLE>
<BODY>
<FORM method='get'>
<?php
include ('yocto api.php');

// Use explicit error handling rather than exceptions

yDisableExceptions () ;

42 www.yoctopuce.com

8. Using Yocto-4-20mA-Rx with PHP

if (yRegisterHub ('http://127.0.0.1:4444/"',Serrmsg) != YAPI SUCCESS) {
die ("Cannot contact VirtualHub on 127.0.0.1");
}

@Sserial = $ GET['serial'l;
if (Sserial != '') {

~lk 1 F Yy apecrified modil] e Ta Aatvailab]le AN]
CK 11 a Sspeciried moduile 1S availilabie oni

Smodule = yFindModule ("$serial") ;
if (!Smodule->isOnline()) {
die ("Module not connected (check serial and USB cable)");

}

} else {
// or use any connected n table for the demo
Smodule = yFirstModule() ;
if ($Smodule) { // skip VirtualHub
Smodule = S$module->nextModule () ;
}
if (is_null (Smodule)) {
die ("No module connected (check USB cable)"):;
} else {
S$serial = Smodule->get serialnumber () ;

}
}

Print ("Module to use: <input name='serial' value='S$serial'>
");

if (isset($ GET['newname'])) {
Snewname = $ GET['newname'];
if (!yCheckLogicalName ($Snewname))
die('Invalid name');
Smodule->set logicalName ($newname) ;
Smodule->saveToFlash () ;
}

printf ("Current name: %$s
", S$module->get logicalName ()) ;

print ("New name: <input name='newname' value='' maxlength=19>
");
?>
<input type='submit'>
</FORM>
</BODY>
</HTML>

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

<HTML>
<HEAD>
<TITLE>inventory</TITLE>
</HEAD>
<BODY>
<Hl1>Device list</H1>
<TT>
<?php
include ('yocto api.php');
yRegisterHub ("http://127.0.0.1:4444/");
Smodule = yFirstModule () ;
while (!is null (Smodule)) {
printf("%$s (%s)
", Smodule->get serialNumber (),
$module—>get7productName());
Smodule=Smodule->nextModule () ;
}
2>
</TT>
</BODY>
</HTML>

www.yoctopuce.com 43

8. Using Yocto-4-20mA-Rx with PHP

8.4. HTTP callback APl and NAT filters

The PHP library is able to work in a specific mode called HTTP callback Yocto-API. With this mode,
you can control Yoctopuce devices installed behind a NAT filter, such as a DSL router for example,
and this without needing to open a port. The typical application is to control Yoctopuce devices,
located on a private network, from a public web site.

The NAT filter: advantages and disadvantages

A DSL router which translates network addresses (NAT) works somewhat like a private phone
switchboard (a PBX): internal extensions can call each other and call the outside; but seen from the
outside, there is only one official phone number, that of the switchboard itself. You cannot reach the
internal extensions from the outside.

WWW.mysite_com 192.168.0.1

(64.136.20.37)

46.14.51.32 192.168.0.102

Typical DSL configuration: LAN machines are isolated from the outside by the DSL router

Transposed to the network, we have the following: appliances connected to your home automation
network can communicate with one another using a local IP address (of the 192.168.xxx.yyy type),
and contact Internet servers through their public address. However, seen from the outside, you have
only one official IP address, assigned to the DSL router only, and you cannot reach your network
appliances directly from the outside. It is rather restrictive, but it is a relatively efficient protection
against intrusions.

request
Lk y]
O0O0O0O o g

response e

Responses from request from LAN machines are routed.

44 www.yoctopuce.com

8. Using Yocto-4-20mA-Rx with PHP

L >l) m

But requests from the outside are blocked.

Seeing Internet without being seen provides an enormous security advantage. However, this signifies
that you cannot, a priori, set up your own web server at home to control a home automation
installation from the outside. A solution to this problem, advised by numerous home automation
system dealers, consists in providing outside visibility to your home automation server itself, by
adding a routing rule in the NAT configuration of the DSL router. The issue of this solution is that it
exposes the home automation server to external attacks.

The HTTP callback API solves this issue without having to modify the DSL router configuration. The
module control script is located on an external site, and it is the VirtualHub which is in charge of
calling it a regular intervals.

VirtualHub

yoctocontrol.php

request
B < S
00O00O (o) — s

response ——emm

The HTTP callback API uses the VirtualHub which initiates the requests.

Configuration

The callback API thus uses the VirtualHub as a gateway. All the communications are initiated by the
VirtualHub. They are thus outgoing communications and therefore perfectly authorized by the DSL
router.

You must configure the VirtualHub so that it calls the PHP script on a regular basis. To do so:

1. Launch a VirtualHub

2. Access its interface, usually 127.0.0.1:4444

3. Click on the configure button of the line corresponding to the VirtualHub itself
4. Click on the edit button of the Outgoing callbacks section

Serial Logical Mame Description Action
I 11a8&fb0 VirtualHub (configure) (view log fike) -

Yocto-PowerRelay (configure) (viewlog file) (lbescon)
T Yocto-Temperature (configure) (viewlog file) ((beacon)
A | [Show device functions |

Click on the "configure" button on the first line

www.yoctopuce.com 45

8. Using Yocto-4-20mA-Rx with PHP

Edit parameters for VIRTHUBO-7d1a86f009, and click on the Save

button.

Serial # VIRTHUBO-7d1a86fb09
Product name: VirtualHub

Software version: 10789

Logical name:

Incoming connections

Authentication to read information from the devices:
Authentication to make changes to the devices:

Outgoing callbacks

Callback URL: octoHub (edit)
Delay between callbacks: min: 3[s] max 600 [s]

|'Save| [Cancel'\

Click on the "edit" button of the "Outgoing callbacks" section

This WirtualHub can post the advertised values of all devices on a specific URL on a
regular basis. If you wish to use this feature, choose the callbhack type follow the steps
below carefully.

1. Specifythe Type of callback vou want to use) Yiocto-AP| callback 'l

Yoctopuce devices can be controled through remote PHP scripts. That Yocio-AFY caliback
protocal is designed so it can pass trough MAT filters without opening ports. See your
device user manual, PHP programming section for more details.

2. Specifythe URL to use for reporting values. HTTPS protocol s not vet supported.

Callback URL: htlp:/ﬂwww rysite.compyoctotesthoctocantrol php \

3. If your callback reguires authentication, enter credentials here. Digest authentication iz
recommended, but Basic authentication works as well

Username: wocto |
Password CITTTIIT |

4. Setup the desired freguency of notifications:

Mo less than 3 \semmna hetween two notification
But notify after i) \semmnam any case

5. Press on the Test button to check your parameters.

6. When everything works, press on the OK hutton

[test] [ok] [cancel)

And select "Yocto-API callback”.

You then only need to define the URL of the PHP script and, if need be, the user name and
password to access this URL. Supported authentication methods are basic and digest. The second
method is safer than the first one because it does not allow transfer of the password on the network.

Usage

From the programmer standpoint, the only difference is at the level of the yRegisterHub function call.

Instead of using an IP address, you must use the callback string (or http://callback which is
equivalent).

include ("yocto_ api.php");
yRegisterHub ("callback") ;

The remainder of the code stays strictly identical. On the VirtualHub interface, at the bottom of the
configuration window for the HTTP callback API , there is a button allowing you to test the call to the
PHP script.

Be aware that the PHP script controlling the modules remotely through the HTTP callback API can
be called only by the VirtualHub. Indeed, it requires the information posted by the VirtualHub to
function. To code a web site which controls Yoctopuce modules interactively, you must create a user
interface which stores in a file or in a database the actions to be performed on the Yoctopuce
modules. These actions are then read and run by the control script.

46 www.yoctopuce.com

8. Using Yocto-4-20mA-Rx with PHP

Common issues

For the HTTP callback API to work, the PHP option allow_url fopen must be set. Some web site
hosts do not set it by default. The problem then manifests itself with the following error:

error: URL file-access is disabled in the server configuration

To set this option, you must create, in the repertory where the control PHP script is located, an .htaccess
file containing the following line:

php flag "allow url fopen" "On"

Depending on the security policies of the host, it is sometimes impossible to authorize this option at
the root of the web site, or even to install PHP scripts receiving data from a POST HTTP. In this
case, place the PHP script in a subdirectory.

Limitations

This method that allows you to go through NAT filters cheaply has nevertheless a price.
Communications being initiated by the VirtualHub at a more or less regular interval, reaction time to
an event is clearly longer than if the Yoctopuce modules were driven directly. You can configure the
reaction time in the specific window of the VirtualHub, but it is at least of a few seconds in the best
case.

The HTTP callback Yocto-API mode is currently available in PHP and Node.JS only.

8.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

+ If your code catches the exception and handles it, everything goes well.

» If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the yDisableExceptions () function to commute the library
to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected

www.yoctopuce.com 47

8. Using Yocto-4-20mA-Rx with PHP

bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPT SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

48 www.yoctopuce.com

9. Using Yocto-4-20mA-Rx with C++

C++ is not the simplest language to master. However, if you take care to limit yourself to its essential
functionalities, this language can very well be used for short programs quickly coded, and it has the
advantage of being easily ported from one operating system to another. Under Windows, all the
examples and the project models are tested with Microsoft Visual Studio 2010 Express, freely
available on the Microsoft web site’. Under Mac OS X, all the examples and project models are
tested with XCode 4, available on the App Store. Moreover, under Max OS X and under Linux, you
can compile the examples using a command line with GCC using the provided GNUmakefile. In
the same manner under Windows, a Makefile allows you to compile examples using a command
line, fully knowing the compilation and linking arguments.

Yoctopuce C++ libraries? are integrally provided as source files. A section of the low-level library is
written in pure C, but you should not need to interact directly with it: everything was done to ensure
the simplest possible interaction from C++. The library is naturally also available as binary files, so
that you can link it directly if you prefer.

You will soon notice that the C++ API defines many functions which return objects. You do not need
to deallocate these objects yourself, the API does it automatically at the end of the application.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface. You will find in the last section of this chapter all the information
needed to create a wholly new project linked with the Yoctopuce libraries.

9.1. Control of the GenericSensor function

A few lines of code are enough to use a Yocto-4-20mA-Rx. Here is the skeleton of a C++ code
snipplet to use the GenericSensor function.

#include "yocto api.h"
#include "yocto genericsensor.h"

[oocl
String errmsg;
YGenericSensor *genericsensor;

et access our device conne«

yRegisterHub ("usb", errmsg);
genericsensor = yFindGenericSensor ("RX420MA1-123456.genericSensorl");

1 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express
www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com

49

9. Using Yocto-4-20mA-Rx with C++

if(gene}icéensor—>isoﬁline())
{

1sor->get currentValue(),

}

Let's look at these lines in more details.

yocto_api.h et yocto_genericsensor.h

These two include files provide access to the functions allowing you to manage Yoctopuce modules.
yocto api.h must always be used, yocto genericsensor.h is necessary to manage
modules containing a generic sensor, such as Yocto-4-20mA-Rx.

yRegisterHub

The yRegisterHub function initializes the Yoctopuce API and indicates where the modules should
be looked for. When used with the parameter "usb", it will use the modules locally connected to the
computer running the library. If the initialization does not succeed, this function returns a value
different from YAPI SUCCESS and errmsg contains the error message.

yFindGenericSensor

The yFindGenericSensor function allows you to find a generic sensor from the serial number of
the module on which it resides and from its function name. You can use logical names as well, as
long as you have initialized them. Let us imagine a Yocto-4-20mA-Rx module with serial number
RX420MA1-123456 which you have named "MyModule", and for which you have given the
genericSensor1 function the name "MyFunction". The following five calls are strictly equivalent, as
long as "MyFunction" is defined only once.

YGenericSensor *genericsensor
YGenericSensor *genericsensor
YGenericSensor *genericsensor
YGenericSensor *genericsensor
YGenericSensor *genericsensor

yFindGenericSensor ("RX420MA1-123456.genericSensorl");
yFindGenericSensor ("RX420MA1-123456.MyFunction") ;
yFindGenericSensor ("MyModule.genericSensorl") ;
yFindGenericSensor ("MyModule.MyFunction") ;
yFindGenericSensor ("MyFunction") ;

yFindGenericSensor returns an object which you can then use at will to control the generic
sensor.

isOnline

The isOnline () method of the object returned by yFindGenericSensor allows you to know if
the corresponding module is present and in working order.

get_currentValue

The get currentValue () method of the object returned by yFindGenericSensor provides
the current currently measured by the Yocto-4-20mA-Rx. The value returned is a floating number,
converted to the physical value measured by the 4..20mA sensor.

A real example

Launch your C++ environment and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-4-20mA-Rx of the Yoctopuce library. If you prefer to work
with your favorite text editor, open the file main. cpp, and type make to build the example when you
are done.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

#include "yocto api.h"

#include "yocto genericsensor.h"
#include <iostream>

#include <stdlib.h>

using namespace std;

50 www.yoctopuce.com

9. Using Yocto-4-20mA-Rx with C++

static void usage (void)

{

cout << "usage: demo <serial number> " << endl;
cout << " demo <logical name>" << endl;
cout << " demo any (use any discovered device)" << endl;
u64 now = yGetTickCount () // dirty active wait loop
while (yGetTickCount ()-now<3000) ;
exit (1) ;
}
int main(int argc, const char * argvl[])
{
string errmsg,target;
YGenericSensor *sensor;
if (argc < 2) {
usage () ;
}
target = (string) argv[l];
// Setup the API to use local USB devices
if (yRegisterHub ("usb", errmsg) != YAPI SUCCESS) {
cerr << "RegisterHub error: " << errmsg << endl;
return 1;
}
if (target == "any") {
sensor = yFirstGenericSensor();

if (sensor==NULL) {
cout << "No module connected (check USB cable)" << endl;

return 1;

}
} else {

sensor = yFindGenericSensor (target + ".temperaturel");
}
YGenericSensor *sl = yFindGenericSensor (sensor->get module () ->get serialNumber () +

".genericSensorl");

YGenericSensor *s2 = yFindGenericSensor (sensor->get module () ->get serialNumber () +

".genericSensor2") ;
string unitSensorl,unitSensor?2;

if (sl->isOnline()) unitSensorl = sl->get unit();
if (s2->isOnline()) unitSensor2 = s2->get unit();

while (sl->isOnline() && s2->isOnline()) {
double value =sl->get currentValue();
cout << "Channel 1 : " << sl->get currentValue() << unitSensorl;
value =s2->get currentValue();
cout << "Channel 2 : " << s2->get currentValue() << unitSensor2;
cout << " (press Ctrl-C to exit)" << endl;
ySleep (1000, errmsqg) ;

}i

cout << "Module not connected (check identification and USB cable)";
return 0;

9.2. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#include <iostream>
#include <stdlib.h>

#include "yocto api.h"
using namespace std;

static void usage (const char *exe)

www.yoctopuce.com 51

9. Using Yocto-4-20mA-Rx with C++

cout << "usage: " << exe << " <serial or logical name> [ON/OFF]" << endl;
exit (1) ;

int main(int argc, const char * argv[])

{

string errmsg;

// Setup the API to use local devices

if (yRegisterHub ("usb", errmsg) != YAPI SUCCESS) {
cerr << "RegisterHub error: " << errmsg << endl;
return 1;

}

if (argc < 2)
usage (argv[0]) ;

YModule *module = yFindModule(argv([l]); // use serial or logical name
if (module->isOnline()) {
if (argc > 2) {
if (string(argv[2]) == "ON")
module->set beacon (Y BEACON_ON) ;
else

module->set beacon (Y BEACON OFF) ;
}

cout << "serial: " << module->get serialNumber () << endl;
cout << "logical name: " << module->get logicalName () << endl;
cout << "luminosity: " << module->get luminosity() << endl;
cout << "beacon: e
if (module->get beacon ()==Y BEACON ON)
cout << "ON" << endl;
else
cout << "OFF" << endl;
cout << "upTime: " << module->get upTime () /1000 << " sec" << endl;
cout << "USB current: " << module->get usbCurrent() << " mA" << endl;
cout << "Logs:"<< endl << module->get lastLogs() << endl;
} else {
cout << argv[l] << " not connected (check identification and USB cable)"
<< endl;
}
return 0;

Each property xxx of the module can be read thanks to a method of type get xxxx (), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

#include <iostream>
#include <stdlib.h>

#include "yocto api.h"

using namespace std;

static void usage (const char *exe)

{ cerr << "usage: " << exe << " <serial> <newLogicalName>" << endl;
exit (1) ;

}

int main(int argc, const char * argv[])

52 www.yoctopuce.com

9. Using Yocto-4-20mA-Rx with C++

string errmsg;

// Setup the API to use local USB devices

if (yRegisterHub ("usb", errmsgqg) YAPI SUCCESS) {
cerr << "RegisterHub error: " << errmsg << endl;
return 1;

}

if (argc < 2)
usage (argv[0]) ;

YModule *module = yFindModule (argv[1l]);

if (module->isOnline()) {
if (argc >= 3){
string newname = argv[2];
if (!yCheckLogicalName (newname)) {
cerr << "Invalid name (" << newname << ")" << endl;

usage (argv[0]) ;
}
module->set logicalName (newname) ;
module->saveToFlash () ;

}

cout << "Current name: " << module->get logicalName () << endl;
} else {
cout << argv[l] << " not connected (check identification and USB cable)"
<< endl;
}
return 0;

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure

you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a

short example listing the connected modules.

#include <iostream>
#include "yocto_api.h"
using namespace std;

int main(int argc, const char * argvl[])

{

string errmsg;

// Setup the API to use local USB devices

if (yRegisterHub ("usb", errmsg) != YAPI SUCCESS) {
cerr << "RegisterHub error: " << errmsg << endl;
return 1;

}

cout << "Device list: " << endl;

YModule *module = yFirstModule () ;

while (module != NULL) {
cout << module->get serialNumber() << " ";
cout << module->get productName () << endl;
module = module->nextModule () ;

}

return 0;

www.yoctopuce.com

53

9. Using Yocto-4-20mA-Rx with C++

9.3. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the yDisableExceptions () function to commute the library
to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected
bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPT SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

9.4. Integration variants for the C++ Yoctopuce library

Depending on your needs and on your preferences, you can integrate the library into your projects in
several distinct manners. This section explains how to implement the different options.

Integration in source format
Integrating all the sources of the library into your projects has several advantages:

* |t guaranties the respect of the compilation conventions of your project (32/64 bits, inclusion of
debugging symbols, unicode or ASCII characters, etc.);

+ It facilitates debugging if you are looking for the cause of a problem linked to the Yoctopuce
library;

+ It reduces the dependencies on third party components, for example in the case where you
would need to recompile this project for another architecture in many years;

* It does not require the installation of a dynamic library specific to Yoctopuce on the final
system, everything is in the executable.

54 www.yoctopuce.com

9. Using Yocto-4-20mA-Rx with C++

To integrate the source code, the easiest way is to simply include the Sources directory of your
Yoctopuce library into your IncludePath, and to add all the files of this directory (including the sub-
directory yapi) to your project.

For your project to build correctly, you need to link with your project the prerequisite system libraries,
that is:

* For Windows: the libraries are added automatically
* For Mac OS X: I10Kit.framework and CoreFoundation.framework
* For Linux: libm, libpthread, libusb1.0, and libstdc++

Integration as a static library

Integration of the Yoctopuce library as a static library is a simpler manner to build a small executable
which uses Yoctopuce modules. You can quickly compile the program with a single command. You
do not need to install a dynamic library specific to Yoctopuce, everything is in the executable.

To integrate the static Yoctopuce library to your project, you must include the Sources directory of
the Yoctopuce library into your IncludePath, and add the sub-directory Binaries/...
corresponding to your operating system into your libPath.

Then, for you project to build correctly, you need to link with your project the Yoctopuce library and
the prerequisite system libraries:

* For Windows: yocto-static.lib
* For Mac OS X: libyocto-static.a, IOKit.framework, and CoreFoundation.framework
* For Linux: libyocto-static.a, libm, libpthread, libusb1.0, and libstdc++.

Note, under Linux, if you wish to compile in command line with GCC, it is generally advisable to link
system libraries as dynamic libraries, rather than as static ones. To mix static and dynamic libraries
on the same command line, you must pass the following arguments:

gcc (...) -Wl,-Bstatic -lyocto-static -Wl,-Bdynamic -1m -lpthread -lusb-1.0 -lstdc++

Integration as a dynamic library

Integration of the Yoctopuce library as a dynamic library allows you to produce an executable smaller
than with the two previous methods, and to possibly update this library, if a patch reveals itself
necessary, without needing to recompile the source code of the application. On the other hand, it is
an integration mode which systematically requires you to copy the dynamic library on the target
machine where the application will run (yocto.dll for Windows, libyocto.s0.1.0.1 for Mac OS X and
Linux).

To integrate the dynamic Yoctopuce library to your project, you must include the Sources directory
of the Yoctopuce library into your IncludePath, and add the sub-directory Binaries/...
corresponding to your operating system into your LibPath.

Then, for you project to build correctly, you need to link with your project the dynamic Yoctopuce
library and the prerequisite system libraries:

» For Windows: yocto.lib
* For Mac OS X: libyocto, I0OKit.framework, and CoreFoundation.framework
* For Linux: libyocto, libm, libpthread, libusb1.0, and libstdc++.

With GCC, the command line to compile is simply:

gcc (...) —-lyocto -1lm -lpthread -lusb-1.0 -lstdc++

www.yoctopuce.com 55

56

www.yoctopuce.com

10. Using Yocto-4-20mA-Rx with Objective-C

Objective-C is language of choice for programming on Mac OS X, due to its integration with the
Cocoa framework. In order to use the Objective-C library, you need XCode version 4.2 (earlier
versions will not work), available freely when you run Lion. If you are still under Snow Leopard, you
need to be registered as Apple developer to be able to download XCode 4.2. The Yoctopuce library
is ARC compatible. You can therefore implement your projects either using the traditional retain /
release method, or using the Automatic Reference Counting.

Yoctopuce Objective-C libraries’ are integrally provided as source files. A section of the low-level
library is written in pure C, but you should not need to interact directly with it: everything was done to
ensure the simplest possible interaction from Objective-C.

You will soon notice that the Objective-C API defines many functions which return objects. You do
not need to deallocate these objects yourself, the APl does it automatically at the end of the
application.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface. You can find on Yoctopuce blog a detailed example? with video
shots showing how to integrate the library into your projects.

10.1. Control of the GenericSensor function

Launch Xcode 4.2 and open the corresponding sample project provided in the directory Examples/
Doc-GettingStarted-Yocto-4-20mA-Rx of the Yoctopuce library.

#import <Foundation/Foundation.h>
#import "yocto api.h"
#import "yocto genericsensor.h"

static void usage (void)

{

NSLog (@"usage: demo <serial number> ");
NSLog (@" demo <logical name>");
NSLog (@" demo any (use any discovered device)");
exit (1)
}
int main(int argc, const char * argv[])

{

1 www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com/EN/article/new-objective-c-library-for-mac-os-x

www.yoctopuce.com 57

10. Using Yocto-4-20mA-Rx with Objective-C

NSError *error;
YGenericSensor *sensor, *sensorl, *sensor2;

if (argc < 2) {

usage () ;
}
@autoreleasepool {
NSString *target = [NSString stringWithUTF8String:argv([1l]];
if([YAPi RegisterHub:@"usb": &error] != YAPI SUCCESS) {
NSLog (@"RegisterHub error: %$@", [error localizedDescriptionl]);
return 1;

}

reive any generic se

if ([target isEqualToString:@"any"]) {

SOz

sensor = [YGenéricSensor FirstGenericSensor];
if (sensor==NULL) {

NSLog (@"No module connected (check USB cable)");

return 1;
}
} else {
sensor = [YGenericSensor FindGenericSensor:target];
}
// we need to retreive both DC and AC current the
if (![sensor isOnline]) {
NSLog (@"No module connected (check USB cable)");
return 1;
}
YModule *m = [sensor module];
sensorl = [YGenericSensor FindGenericSensor: [m.serialNumber
stringByAppendingString:@".genericSensorl"]];
sensor?2 = [YGenericSensor FindGenericSensor: [m.serialNumber

stringByAppendingString:@".genericSensor2"]1];

while([m isOnlinel]) {
NSLog (@"Channel 1 : %f %@Q@", [sensorl currentValue], [sensorl get unit]);
NSLog (@"Channel 2 : %f %@", [sensor2 currentValue], [sensor2 get unit]);
NSLog (@" (press Ctrl-C to exit)");

[YAPI Sleep:1000:NULL];
}

NSLog (@"Module not connected (check identification and USB cable)");

}

return 0;

}

There are only a few really important lines in this example. We will look at them in details.

yocto_api.h et yocto_genericsensor.h

These two import files provide access to the functions allowing you to manage Yoctopuce modules.
yocto api.h must always be used, yocto genericsensor.h is necessary to manage
modules containing a generic sensor, such as Yocto-4-20mA-Rx.

yRegisterHub

The yRegisterHub function initializes the Yoctopuce APl and indicates where the modules should
be looked for. When used with the parameter @"usb", it will use the modules locally connected to
the computer running the library. If the initialization does not succeed, this function returns a value
different from YAPI SUCCESS and errmsg contains the error message.

yFindGenericSensor

The yFindGenericSensor function allows you to find a generic sensor from the serial number of
the module on which it resides and from its function name. You can use logical names as well, as
long as you have initialized them. Let us imagine a Yocto-4-20mA-Rx module with serial number
RX420MA1-123456 which you have named "MyModule", and for which you have given the
genericSensor1 function the name "MyFunction". The following five calls are strictly equivalent, as
long as "MyFunction" is defined only once.

58

www.yoctopuce.com

10. Using Yocto-4-20mA-Rx with Objective-C

YGenericSensor *genericsensor = yFindGenericSensor (@"RX420MA1-123456.genericSensorl") ;
YGenericSensor *genericsensor = yFindGenericSensor (@"RX420MA1-123456.MyFunction");
YGenericSensor *genericsensor = yFindGenericSensor (@"MyModule.genericSensorl");
YGenericSensor *genericsensor = yFindGenericSensor (@"MyModule.MyFunction") ;
YGenericSensor *genericsensor = yFindGenericSensor (@"MyFunction");

yFindGenericSensor returns an object which you can then use at will to control the generic
sensor.

isOnline

The isOnline () method of the object returned by yFindGenericSensor allows you to know if
the corresponding module is present and in working order.

get_currentValue

The get currentValue () method of the object returned by yFindGenericSensor provides
the current currently measured by the Yocto-4-20mA-Rx. The value returned is a floating number,
converted to the physical value measured by the 4..20mA sensor.

10.2. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#import <Foundation/Foundation.h>
#import "yocto api.h"

static void usage (const char *exe)

{
NSLog (@"usage: %$s <serial or logical name> [ON/OFF]\n", exe);
exit (1) ;

int main (int argc, const char * argvl[])
{

NSError *error;

@autoreleasepool {

// Setup the API to use local SB devices
if ([YAPI RegisterHub:Q@"usb": &error] != YAPI SUCCESS) {
NSLog (@"RegisterHub error: %$@", [error localizedDescriptionl]);

return 1;

}
if (argc < 2)
usage (argv[0]) ;
NSString *serial or name =[NSString stringWithUTF8String:argv[1l]];

YModule *module = [YModule FindModule:serial or name]; // use serial or logical
if ([module isOnline]) {
if (argc > 2) {
if (strcmp(argv[2], "ON")==0)
[module setBeacon:Y BEACON ON];
else

[module setBeacon:Y BEACON OFF];
}

NSLog (@"serial: %@\n", [module serialNumber]) ;
NSLog (@"logical name: %@\n", [module logicalName]) ;
NSLog (@"luminosity: $d\n", [module luminosity]):;
NSLog (@"beacon: WY g
if ([module beacon] == Y BEACON_ ON)

NSLog (@"ON\n") ;
else

NSLog (@"OFF\n") ;
NSLog (@"upTime: %d sec\n", [module upTime]/1000) ;
NSLog (@"USB current: %d mA\n", [module usbCurrent]) ;
NSLog (@"logs: %Q@\n", [module get lastLogs]);

} else {

NSLog (@"%@ not connected (check identification and USB cable)\n",serial or name

www.yoctopuce.com 59

10. Using Yocto-4-20mA-Rx with Objective-C

}

return 0;

Each property xxx of the module can be read thanks to a method of type get xxxx, and
properties which are not read-only can be modified with the help of the set xxx: method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx: function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash method. The short example below
allows you to modify the logical name of a module.

#import <Foundation/Foundation.h>
#import "yocto api.h"

static void usage (const char *exe)

{
NSLog (@"usage: %s <serial> <newLogicalName>\n", exe) ;
exit (1) ;

}

int main (int argc, const char * argvl[])

{

NSError *error;

@autoreleasepool {
f(yReglsterHub(@"usb” &error) != YAPI SUCCESS) ({
NSLog (@"RegisterHub error: %@", [error localizedDescription]);
return 1;

if (argc < 2)
usage (argv[0]) ;

NSString *serial or name =[NSString stringWithUTF8String:argv[1l]];
YModule *module = yFlndModule(serlal or name) ; // use serial or logical name

if (module.isOnline) {
if (argc >= 3){
NSString *newname = [NSString stringWithUTF8String:argv[2]];
if (!yCheckLogicalName (newname)) {
NSLog (@"Invalid name (%@)\n", newname) ;
usage (argv[0]) ;
}
module.logicalName = newname;
[module saveToFlash];
}
NSLog (@"Current name: %@\n", module.logicalName) ;
} else {
NSLog (@"%@ not connected (check identification and USB cable)\n",serial or name

}
}

return 0;

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash function only 100000 times in the life of the module. Make sure you
do not call this function within a loop.

60 www.yoctopuce.com

10. Using Yocto-4-20mA-Rx with Objective-C

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

#import <Foundation/Foundation.h>
#import "yocto api.h"

int main (int argc, const char * argvl[])
{

NSError *error;

@autoreleasepool {
if(yRegisterEub(@"usb”, &error) != YAPI SUCCESS) {
NSLog (@"RegisterHub error: %Q@\n", [error localizedDescription]);
return 1;

}
NSLog (@"Device list:\n");

YModule *module = yFirstModule () ;

while (module != nil) {
NSLog (@"%@ %@",module.serialNumber, module.productName) ;
module = [module nextModule];
}
}
return 0;

10.3. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to i1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the yDisableExceptions () function to commute the library
to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any

www.yoctopuce.com 61

10. Using Yocto-4-20mA-Rx with Objective-C

case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected
bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPT SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

62 www.yoctopuce.com

11. Using Yocto-4-20mA-Rx with Visual Basic .NET

VisualBasic has long been the most favored entrance path to the Microsoft world. Therefore, we had
to provide our library for this language, even if the new trend is shifting to C#. All the examples and
the project models are tested with Microsoft VisualBasic 2010 Express, freely available on the
Microsoft web site’.

11.1. Installation

Download the Visual Basic Yoctopuce library from the Yoctopuce web site?. There is no setup
program, simply copy the content of the zip file into the directory of your choice. You mostly need the
content of the Sources directory. The other directories contain the documentation and a few
sample programs. All sample projects are Visual Basic 2010, projects, if you are using a previous
version, you may have to recreate the projects structure from scratch.

11.2. Using the Yoctopuce API in a Visual Basic project

The Visual Basic.NET Yoctopuce library is composed of a DLL and of source files in Visual Basic.
The DLL is not a.NET DLL, but a classic DLL, written in C, which manages the low level
communications with the modules®. The source files in Visual Basic manage the high level part of the
API. Therefore, your need both this DLL and the .vb files of the sources directory to create a
project managing Yoctopuce modules.

Configuring a Visual Basic project

The following indications are provided for Visual Studio Express 2010, but the process is similar for
other versions. Start by creating your project. Then, on the Solution Explorer panel, right click on your
project, and select "Add" and then "Add an existing item".

A file selection window opens. Select the yocto api.vb file and the files corresponding to the
functions of the Yoctopuce modules that your project is going to manage. If in doubt, select all the
files.

You then have the choice between simply adding these files to your project, or to add them as links
(the Add button is in fact a scroll-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply keeps a link on the original files. We
recommend you to use links, which makes updates of the library much easier.

1 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-basic-express
www.yoctopuce.com/EN/libraries.php
The sources of this DLL are available in the C++ API

www.yoctopuce.com 63

11. Using Yocto-4-20mA-Rx with Visual Basic .NET

Then add in the same manner the yapi.d11 DLL, located in the Sources/d11 directory*. Then,
from the Solution Explorer window, right click on the DLL, select Properties and in the Properties
panel, set the Copy to output folder to always. You are now ready to use your Yoctopuce modules
from Visual Studio.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

11.3. Control of the GenericSensor function

A few lines of code are enough to use a Yocto-4-20mA-Rx. Here is the skeleton of a Visual Basic
code snipplet to use the GenericSensor function.

[...]
Dim errmsg As String errmsg
Dim genericsensor As YGenericSensor

B EaE AEemas e vour device onnected locallv on USB fo nce
1r device, connectea locall on USB for 1

yRegisterHub ("usb", errmsqg)
genericsensor = yFindGenericSensor ("RX420MA1-123456.genericSensorl")

REM Hot-plug

If (gene}icéen or

“hec that the device s el lnE
ICCA C al CIIC UcC L CC =) Q111 1

i ¢ Oniine ()) Then

ot c tvalue (),

Let's look at these lines in more details.

yRegisterHub

The yRegisterHub function initializes the Yoctopuce API and indicates where the modules should
be looked for. When used with the parameter "usb", it will use the modules locally connected to the
computer running the library. If the initialization does not succeed, this function returns a value
different from YAPI SUCCESS and errmsg contains the error message.

yFindGenericSensor

The yFindGenericSensor function allows you to find a generic sensor from the serial number of
the module on which it resides and from its function name. You can use logical names as well, as
long as you have initialized them. Let us imagine a Yocto-4-20mA-Rx module with serial number
RX420MA1-123456 which you have named "MyModule", and for which you have given the
genericSensor1 function the name "MyFunction". The following five calls are strictly equivalent, as
long as "MyFunction" is defined only once.

genericsensor = yFindGenericSensor ("RX420MA1-123456.genericSensorl")
genericsensor = yFindGenericSensor ("RX420MA1-123456.MyFunction")
genericsensor = yFindGenericSensor ("MyModule.genericSensorl")
genericsensor = yFindGenericSensor ("MyModule.MyFunction")
genericsensor = yFindGenericSensor ("MyFunction")

yFindGenericSensor returns an object which you can then use at will to control the generic
sensor.
isOnline

The isOnline () method of the object returned by yFindGenericSensor allows you to know if
the corresponding module is present and in working order.

4 Remember to change the filter of the selection window, otherwise the DLL will not show.

64 www.yoctopuce.com

11. Using Yocto-4-20mA-Rx with Visual Basic .NET

get_currentValue

The get currentValue () method of the object returned by yFindGenericSensor provides
the current currently measured by the Yocto-4-20mA-Rx. The value returned is a floating number,
converted to the physical value measured by the 4..20mA sensor.

A real example

Launch Microsoft VisualBasic and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-4-20mA-Rx of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

Module Modulel

Private Sub Usage()
Dim execname = System.AppDomain.CurrentDomain.FriendlyName
Console.WritelLine ("Usage:")
Console.WriteLine (execname+" <serial number>")
Console.WriteLine (execname+" <logical name>")
Console.WriteLine (execname+" any ")
System.Threading.Thread.Sleep (2500)

End
End Sub

Sub Main ()
Dim argv () As String = System.Environment.GetCommandLineArgs ()
Dim errmsg As String = ""
Dim target, serial As String

Dim sensor, chl, ch2 As YGenericSensor

If argv.Length < 2 Then Usage ()

target = argv(l)

REM Setup the API to use local USB devices

If (yRegisterHub ("usb", errmsg) <> YAPI SUCCESS) Then

Console.WriteLine ("RegisterHub error: " + errmsg)
End

End If

If target = "any" Then
sensor = yFirstGenericSensor ()

If sensor Is Nothing Then
Console.WriteLine ("No module connected (check USB cable) ")

End
End If
Console.WriteLine ("using:" + sensor.get module () .get serialNumber ())
Else
sensor = yFindGenericSensor (target + ".genericSensorl")
End If

nels

REM ve both cha
chl yFindGenericSensor (serial + ".genericSensorl")
ch2 = yFindGenericSensor (serial + ".genericSensor2")

While (chl.isOnline() And ch2.isOnline ())

Console.Write("channel 1: " + Str(chl.get currentValue()) + chl.get unit()
Console.Write("channel 2: " + Str(ch2.get currentValue()) + chl.get unit()
Console.WriteLine (" (press Ctrl-C to exit)")
ySleep (1000, errmsg)

End While

Console.WriteLine ("Module not connected (check identification and USB cable)")

End Sub

www.yoctopuce.com 65

11. Using Yocto-4-20mA-Rx with Visual Basic .NET

End Module

11.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

Imports System.IO
Imports System.Environment

Module Modulel

Sub usage ()

Console.WriteLine ("usage: demo <serial or logical name> [ON/OFF]")

End

End Sub

Sub Main ()
Dim argv () As String = System.Environment.GetCommandLineArgs ()
Dim errmsg As String = ""

Dim m As ymodule

If (yRegisterHub ("usb", errmsg) <> YAPI SUCCESS) Then
Console.WriteLine ("RegisterHub error:" + errmsg)

End
End If

If argv.Length < 2 Then usage ()

m = yFindModule (argv(l)) REM use serial or logical me
If (m.isOnline()) Then
If argv.Length > 2 Then
If argv(2) = "ON" Then m.set beacon (Y BEACON_ON)
If argv(2) = "OFF" Then m.set beacon (Y BEACON OFF)
End If
Console.WriteLine ("serial: " + m.get serialNumber ())
Console.WriteLine("logical name: " + m.get logicalName ())
Console.WriteLine ("luminosity: " + Str(m.get luminosity()))
Console.Write ("beacon: ")
If (m.get beacon() = Y BEACON ON) Then
Console.WriteLine ("ON")
Else
Console.WriteLine ("OFF")
End If
Console.WritelLine ("upTime: " + Str(m.get upTime() / 1000) + " sec")
Console.WriteLine ("USB current: " + Str(m.get usbCurrent()) + " mA")

Console.WriteLine
Console.WriteLine
Else

"Logs:")
m.get lastLogs ()

Console.WritelLine(argv(l) + " not connected

End If

End Sub

End Module

(check identification and USB cable)")

Each property xxx of the module can be read thanks to a method of type get xxxx (), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them

66

www.yoctopuce.com

11. Using Yocto-4-20mA-Rx with Visual Basic .NET

persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below

allows you to modify the logical name of a module.

Module Modulel

Sub usage ()

Console.WriteLine ("usage: demo <serial or logical name> <new logical name>")

End
End Sub

Sub Main ()

Dim argv () As String = System.Environment.GetCommandLineArgs ()

Dim errmsg As String =
Dim newname As String
Dim m As YModule

If (argv.Length <> 3) Then usage ()

[S +he APT to use local USB devices
h A S ob Aeg (S5

<> YAPI SUCCESS Then

If yRegisterHub ("usb", errmsg)

Console.WriteLine ("RegisterHub error: " + errmsqg)
End
End If
m = yFindModule (argv(l)) REM use serial or logical name

If m.isOnline () Then

newname = argv(2)

If (Not yCheckLogicalName (newname)) Then
Console.WritelLine ("Invalid name (" + newname + ")")
End

End If

m.set logicalName (newname)

m.saveToFlash () RE

Console.Write ("Module: serial= " + m.get serialNumber)

Console.Write(" / name= " + m.get logicalName ())
Else

Console.Write ("not connected (check identification and USB cable")

End If

End Sub

End Module

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure

you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not Nothing. Below a

short example listing the connected modules.

Module Modulel

Sub Main ()

Dim M As ymodule

Dim errmsg As String = ""
I Setup the API t use local USB devices

If yRegisterHub ("usb", errmsg) <> YAPI SUCCESS Then
Console.WriteLine ("RegisterHub error: " + errmsg)
End

End If

www.yoctopuce.com

67

11. Using Yocto-4-20mA-Rx with Visual Basic .NET

Console.WriteLine ("Device list")

M = yFirstModule ()

While M IsNot Nothing
Console.WriteLine (M.get serialNumber () + " (" + M.get productName() + ")")
M = M.nextModule ()

End While

End Sub

End Module

11.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the yDisableExceptions () function to commute the library
to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected
bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPI SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

68 www.yoctopuce.com

12. Using Yocto-4-20mA-Rx with C#

C# (pronounced C-Sharp) is an object-oriented programming language promoted by Microsoft, it is
somewhat similar to Java. Like Visual-Basic and Delphi, it allows you to create Windows applications
quite easily. All the examples and the project models are tested with Microsoft C# 2010 Express,
freely available on the Microsoft web site’.

12.1. Installation

Download the Visual C# Yoctopuce library from the Yoctopuce web site?. There is no setup program,
simply copy the content of the zip file into the directory of your choice. You mostly need the content
of the Sources directory. The other directories contain the documentation and a few sample
programs. All sample projects are Visual C# 2010, projects, if you are using a previous version, you
may have to recreate the projects structure from scratch.

12.2. Using the Yoctopuce API in a Visual C# project

The Visual C#NET Yoctopuce library is composed of a DLL and of source files in Visual C#. The
DLL is not a .NET DLL, but a classic DLL, written in C, which manages the low level communications
with the modules®. The source files in Visual C# manage the high level part of the API. Therefore,
your need both this DLL and the .cs files of the sources directory to create a project managing
Yoctopuce modules.

Configuring a Visual C# project

The following indications are provided for Visual Studio Express 2010, but the process is similar for
other versions. Start by creating your project. Then, on the Solution Explorer panel, right click on your
project, and select "Add" and then "Add an existing item".

A file selection window opens. Select the yocto api.cs file and the files corresponding to the
functions of the Yoctopuce modules that your project is going to manage. If in doubt, select all the
files.

You then have the choice between simply adding these files to your project, or to add them as links
(the Add button is in fact a scroll-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply keeps a link on the original files. We
recommend you to use links, which makes updates of the library much easier.

1 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-csharp-express
www.yoctopuce.com/EN/libraries.php
3 The sources of this DLL are available in the C++ API

www.yoctopuce.com 69

12. Using Yocto-4-20mA-Rx with C#

Then add in the same manner the yapi.d11 DLL, located in the Sources/d11 directory*. Then,
from the Solution Explorer window, right click on the DLL, select Properties and in the Properties
panel, set the Copy to output folder to always. You are now ready to use your Yoctopuce modules
from Visual Studio.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

12.3. Control of the GenericSensor function

A few lines of code are enough to use a Yocto-4-20mA-Rx. Here is the skeleton of a C# code
snipplet to use the GenericSensor function.

[...]
string errmsg ="";
YGenericSensor genericsensor;

Oor 1nstance

YAPI.RegisterHub ("usb", errmsg);
genericsensor = YGenericSensor.FindGenericSensor ("RX420MA1-123456.genericSensorl") ;

if (genériésen or.i
{ / TTea donari
}

Let's look at these lines in more details.

YAPIL.RegisterHub

The YAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPTI . SUCCESS and errmsg contains the error message.

YGenericSensor.FindGenericSensor

The YGenericSensor.FindGenericSensor function allows you to find a generic sensor from
the serial number of the module on which it resides and from its function name. You can use logical
names as well, as long as you have initialized them. Let us imagine a Yocto-4-20mA-Rx module with
serial number RX420MA1-123456 which you have named "MyModule", and for which you have given
the genericSensor1 function the name "MyFunction". The following five calls are strictly equivalent,
as long as "MyfFunction" is defined only once.

genericsensor = YGenericSensor.FindGenericSensor ("RX420MA1-123456.genericSensorl™) ;
genericsensor = YGenericSensor.FindGenericSensor ("RX420MA1-123456.MyFunction");
genericsensor = YGenericSensor.FindGenericSensor ("MyModule.genericSensorl") ;
genericsensor = YGenericSensor.FindGenericSensor ("MyModule.MyFunction") ;
genericsensor = YGenericSensor.FindGenericSensor ("MyFunction");

YGenericSensor.FindGenericSensor returns an object which you can then use at will to
control the generic sensor.

isOnline

The isOnline () method of the object returned by YGenericSensor.FindGenericSensor
allows you to know if the corresponding module is present and in working order.

4 Remember to change the filter of the selection window, otherwise the DLL will not show.

70 www.yoctopuce.com

12. Using Yocto-4-20mA-Rx with C#

get_currentValue

The get currentValue () method of the object returned by
GenericSensor.FindGenericSensor provides the current currently measured by the
Yocto-4-20mA-Rx. The value returned is a floating number, converted to the physical value
measured by the 4..20mA sensor.

A real example

Launch Microsoft Visual C# and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-4-20mA-Rx of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl
{

class Program

{

static void usage ()

{ string execname = System.AppDomain.CurrentDomain.FriendlyName;
Console.Writeline (execname+" <serial number>");
Console.Writeline (execname+" <logical name>");
Console.WriteLine (execname+" any ");
System.Threading.Thread.Sleep (2500) ;
Environment.Exit (0) ;

}

static void Main(string[] args)
{
string errmsg =
string target;

wn .
’

YGenericSensor tsensor;

if (args.Length < 1) usage();
target = args[0].ToUpper () ;

// Setup the API to use local USB devices
if (YAPI.RegisterHub ("usb", ref errmsg YAPI.SUCCESS)
{

Console.WritelLine ("RegisterHub error: " + errmsgqg);

Environment.Exit (0) ;

if (target == "ANY")

{
tsensor = YGenericSensor.FirstGenericSensor () ;
if (tsensor == null)

{
Console.WritelLine ("No module connected (check USB cable) ");
Environment.Exit (0) ;
}
Console.WritelLine ("Using: " + tsensor.get module () .get serialNumber()) ;
}
else
{
tsensor = YGenericSensor.FindGenericSensor (target + ".genericSensorl");
}

// retreive module serial
string serial = tsensor.get module() .get serialNumber () ;
// retreive both channels

YGenericSensor chl = YGenericSensor.FindGenericSensor (serial + ".genericSensorl");

YGenericSensor ch2 = YGenericSensor.FindGenericSensor (serial + ".genericSensor2");
string unitSensorl="", unitSensor2="";
if (chl.isOnline()) unitSensorl =chl.get unit();

www.yoctopuce.com 71

12. Using Yocto-4-20mA-Rx with C#

if (ch2.isOnline()) unitSensor2 = ch2.get unit();

while (chl.isOnline() && ch2.isOnline())

{ Console.Write("Channel 1 : " + chl.get currentValue().ToString() + unitSensorl);
Console.Write (" Channel 2 : " + ch2.get currentValue() .ToString() + unitSensor2);
Console.WriteLine (" (press Ctrl-C to exit)"):;

YAPI.Sleep (1000, ref errmsg);
}

Console.WriteLine ("Module not connected (check identification and USB cable)");

12.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl
{
class Program
{
static void usage()
{ string execname = System.AppDomain.CurrentDomain.FriendlyName;
Console.WriteLine ("Usage:");
Console.WriteLine (execname+" <serial or logical name> [ON/OFF]");
System.Threading.Thread.Sleep (2500) ;
Environment.Exit (0) ;

}

static void Main(string[] args)
{

YModule m;

string errmsg = "";

if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS)
{
Console.WritelLine ("RegisterHub error: " + errmsqg);
Environment.Exit (0) ;

if (args.Length < 1) usage () ;
m = YModule.FindModule (args[0]); // use serial or logical name

if (m.isOnline())

{
if (args.Length >= 2)
{

if (args[1l].ToUpper() == "ON") { m.set beacon (YModule.BEACON ON) ;

if (args[l].ToUpper() == "OFF") { m.set beacon(YModule.BEACON OFF); }
}
Console.WritelLine ("serial: " + m.get serialNumber());
Console.WritelLine("logical name: " + m.get logicalName());
Console.WriteLine ("luminosity: " + m.get luminosity().ToString()):;
Console.Write ("beacon: W 2
if (m.get beacon() == YModule.BEACON_ON)

Console.WriteLine ("ON") ;
else

Console.WriteLine ("OFE") ;
Console.WriteLine ("upTime: " + (m.get upTime() / 1000).ToString()+ " sec");
Console.WriteLine ("USB current: " + m.get usbCurrent().ToString() + " mA");

Console.WriteLine ("Logs:\r\n"+ m.get lastLogs());

72

www.yoctopuce.com

12. Using Yocto-4-20mA-Rx with C#

}
else
Console.WriteLine (args[0] + " not connected (check identification and USB cable)");

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl
{
class Program
{
static void usage ()
{ string execname = System.AppDomain.CurrentDomain.FriendlyName;
Console.WriteLine ("Usage:");
Console.WriteLine ("usage: demo <serial or logical name> <new logical name>");
System.Threading.Thread.Sleep(2500);
Environment.Exit (0) ;

}

static void Main(string[] args)
{

YModule m;

string errmsg = "";

string newname;

if (args.Length != 2) usage();
if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS)
{

Console.WritelLine ("RegisterHub error: " + errmsqg);

Environment.Exit (0) ;

}

YModule.FindModule (args[0]); // use serial or loc

if (m.isOnline())
{
newname = args[1l];
if (!YAPI.CheckLogicalName (newname))
{
Console.WriteLine ("Invalid name (" + newname + ")");
Environment.Exit (0) ;

}

m.set logicalName (newname) ;
m.saveToFlash(); // do not

rorget tnis

Console.Write ("Module: serial= " + m.get serialNumber());
Console.WriteLine (" / name= " + m.get logicalName());

}

else

Console.Write ("not connected (check identification and USB cable");

www.yoctopuce.com 73

12. Using Yocto-4-20mA-Rx with C#

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl
{ class Program
{ static void Main(string[] args)
{ YModule m;
string errmsg = "";

if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS)
{

Console.WriteLine ("RegisterHub error: " + errmsqg);
Environment.Exit (0) ;

}

Console.WriteLine ("Device list");

m = YModule.FirstModule () ;

while (m!=null)

{ Console.WriteLine (m.get serialNumber () + " (" + m.get productName() + ")");
m = m.nextModule () ;

}

12.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

74 www.yoctopuce.com

12. Using Yocto-4-20mA-Rx with C#

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

* If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

» Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the yDisableExceptions () function to commute the library
to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected
bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPT SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 75

76

www.yoctopuce.com

13. Using Yocto-4-20mA-Rx with Delphi

Delphi is a descendent of Turbo-Pascal. Originally, Delphi was produced by Borland, Embarcadero
now edits it. The strength of this language resides in its ease of use, as anyone with some notions of
the Pascal language can develop a Windows application in next to no time. Its only disadvantage is
to cost something’.

Delphi libraries are provided not as VCL components, but directly as source files. These files are
compatible with most Delphi versions.?

To keep them simple, all the examples provided in this documentation are console applications.
Obviously, the libraries work in a strictly identical way with VCL applications.

You will soon notice that the Delphi APl defines many functions which return objects. You do not
need to deallocate these objects yourself, the API does it automatically at the end of the application.

13.1. Preparation

Go to the Yoctopuce web site and download the Yoctopuce Delphi libraries®. Uncompress everythin?
in a directory of your choice, add the subdirectory sources in the list of directories of Delphi libraries.

By default, the Yoctopuce Delphi library uses the yapi.dll DLL, all the applications you will create with
Delphi must have access to this DLL. The simplest way to ensure this is to make sure yapi.dll is
located in the same directory as the executable file of your application.

13.2. Control of the GenericSensor function

Launch your Delphi environment, copy the yapi.dll DLL in a directory, create a new console
application in the same directory, and copy-paste the piece of code below:

program helloworld;
{SAPPTYPE CONSOLE}
uses

SysUtils,

Windows,

yocto_ api,

yocto genericsensor;

1 Actually, Borland provided free versions (for personal use) of Delphi 2006 and 2007. Look for them on the Internet, you
may still be able to download them.

2 Delphi libraries are regularly tested with Delphi 5 and Delphi XE2.

3 www.yoctopuce.com/EN/libraries.php

4 Use the Tools / Environment options menu.

www.yoctopuce.com 77

13. Using Yocto-4-20mA-Rx with Delphi

Procedure Usage();
var
exe : string;

begin
exe:= ExtractFileName (paramstr (0)) ;
Writeln (exe+' <serial number>"');
Writeln (exe+' <logical name>');
Writeln (exe+' any');
sleep (3000) ;

halt;
End;
var
sensor,chl,ch2 : TYGenericSensor;
module : TYModule;
errmsg, serial : string;

unitSensorl,unitSensor2:string;
begin

if (paramcount<l) then usage();
// Setup the API to use local USB devices
if yRegisterHub('usb', errmsg)<>YAPI SUCCESS then
begin
Write ('RegisterHub error: '+errmsgqg);
halt;
end;

if paramstr(l)='any' then
begin
sensor := yFirstGenericSensor();
if sensor=nil then
begin
writeln ('No module connected (check USB cable)');
halt;
end
end
else

sensor:= YFindGenericSensor (paramstr(l)+'.genericSensorl');

module:=sensor.get module () ;

serial:=module.get serialNumber () ;
chl:=YFindGenericSensor (serial+'.genericSensorl');
ch2:=YFindGenericSensor (serial+'.genericSensor2');

if chl.isOnline() then unitSensorl:= chl.get unit();
if ch2.isOnline() then unitSensor2:= ch2.get unit();

while chl.isOnline() and ch2.isOnline() do

begin
Write('Channel 1: '4+FloatToStr(chl.get currentValue())+unitSensorl);
Write ('Channel 2: '+FloatToStr (ch2.get currentValue ())+unitSensor2);
Writeln (' (press Ctrl-C to exit)');
Sleep (1000) ;

end;

Writeln ('Module not connected (check identification and USB cable)');

end.

There are only a few really important lines in this sample example. We will look at them in details.

yocto_api and yocto_genericsensor

These two units provide access to the functions allowing you to manage Yoctopuce modules.
yocto api must always be used, yocto genericsensor is necessary to manage modules
containing a generic sensor, such as Yocto-4-20mA-Rx.

78

www.yoctopuce.com

13. Using Yocto-4-20mA-Rx with Delphi

yRegisterHub

The yRegisterHub function initializes the Yoctopuce API and specifies where the modules should
be looked for. When used with the parameter 'usb', it will use the modules locally connected to the
computer running the library. If the initialization does not succeed, this function returns a value
different from YAPI SUCCESS and errmsg contains the error message.

yFindGenericSensor

The yFindGenericSensor function allows you to find a generic sensor from the serial number of
the module on which it resides and from its function name. You can also use logical names, as long
as you have initialized them. Let us imagine a Yocto-4-20mA-Rx module with serial number
RX420MA1-123456 which you have named "MyModule", and for which you have given the
genericSensor1 function the name "MyFunction". The following five calls are strictly equivalent, as
long as "MyFunction" is defined only once.

genericsensor := yFindGenericSensor ("RX420MA1-123456.genericSensorl");
genericsensor := yFindGenericSensor ("RX420MA1-123456.MyFunction");
genericsensor := yFindGenericSensor ("MyModule.genericSensorl");
genericsensor := yFindGenericSensor ("MyModule.MyFunction") ;
genericsensor := yFindGenericSensor ("MyFunction");

yFindGenericSensor returns an object which you can then use at will to control the generic
Sensor.

isOnline

The isOnline () method of the object returned by yFindGenericSensor allows you to know if
the corresponding module is present and in working order.

get_currentValue

The get currentValue () method of the object returned by yFindGenericSensor provides
the current currently measured by the Yocto-4-20mA-Rx. The value returned is a floating number,
converted to the physical value measured by the 4..20mA sensor.

13.3. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

program modulecontrol;
{SAPPTYPE CONSOLE}
uses

SysUtils,

yocto api;

const
serial = 'RX420MA1-123456'; // use serial number or logical name

procedure refresh(module:Tymodule) ;

begin
if (module.isOnline()) then
begin
Writeln('"');
Writeln('Serial : ' + module.get serialNumber());
Writeln('Logical name : ' + module.get logicalName ());
Writeln('Luminosity : ' + intToStr (module.get luminosity()));

Write ('Beacon ") e
if (module.get beacon()=Y BEACON ON) then Writeln('on')
else Writeln('off');

Writeln ('uptime : ' + intToStr (module.get upTime () div 1000)+'s"');
Writeln ('USB current : ' + intToStr (module.get usbCurrent())+'mA');
Writeln('Logs s U)g
Writeln(module get lastlogs(ﬂ
Writeln ('
Writeln (' : refresh / b:beacon ON / space : beacon off');

end

www.yoctopuce.com 79

13. Using Yocto-4-20mA-Rx with Delphi

else Writeln('Module not connected (check identification and USB cable)');
end;

procedure beacon (module:Tymodule;state:integer);
begin
module.set beacon (state);
refresh (module) ;

end;
var
module : TYModule;
¢} : char;
errmsg : string;
begin
if yRegisterHub('usb', errmsg) <>YAPI SUCCESS then
begin
Write ('RegisterHub error: '+errmsgqg);
exit;
end;
module := yFindModule (serial);

refresh (module) ;

repeat
read(c) ;
case c of
'r refresh (module) ;
'b': beacon (module,Y BEACON ON) ;
' ': beacon (module,Y BEACON_ OFF) ;
end;
until ¢ = 'x';
end.

0o

Each property xxx of the module can be read thanks to a method of type get xxxx(), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

program savesettings;
{SAPPTYPE CONSOLE}
uses

SysUtils,

yocto api;

const
serial = 'RX420MA1-123456'; // use serial n or 1 e
var
module : TYModule;
errmsg : string;
newname : string;
begin
if yRegisterHub('usb', errmsg)<>YAPI SUCCESS then
begin
Write ('RegisterHub error: '+errmsgqg);
exit;
end;
module := yFindModule (serial);
if (not (module.isOnline)) then
begin

80 www.yoctopuce.com

13. Using Yocto-4-20mA-Rx with Delphi

writeln ('Module not connected (check identification and USB cable)');
exit;
end;

Writeln('Current logical name : '4module.get logicalName()) ;
Write ('Enter new name : ');
Readln (newname) ;
if (not (yCheckLogicalName (newname))) then
begin
Writeln('invalid logical name');
exit;
end;
module.set logicalName (newname) ;
module.saveToFlash () ;

Writeln('logical name is now : '+module.get logicalName ());
end.

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not nil. Below a short
example listing the connected modules.

program inventory;
{SAPPTYPE CONSOLE}
uses

SysUtils,

yocto api;

var
module : TYModule;
errmsg : string;
begin

3 > AP D use Jlocadl

if yRegisterHub('usb', errmsg)<>YAPI SUCCESS then
begin

Write ('RegisterHub error: '+errmsg);

exit;
end;

Writeln ('Device list');

module := yFirstModule();
while module<>nil do
begin
Writeln(module.get serialNumber ()+' ('+module.get productName()+')"');
module := module.nextModule () ;
end;
end.

13.4. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

www.yoctopuce.com 81

13. Using Yocto-4-20mA-Rx with Delphi

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

+ If your code catches the exception and handles it, everything goes well.

» If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the yDisableExceptions () function to commute the library
to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected
bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPT SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

82 www.yoctopuce.com

14. Using the Yocto-4-20mA-Rx with Python

Python is an interpreted object oriented language developed by Guido van Rossum. Among its
advantages is the fact that it is free, and the fact that it is available for most platforms, Windows as
well as UNIX. It is an ideal language to write small scripts on a napkin. The Yoctopuce library is
compatible with Python 2.6+ and 3+. It works under Windows, Mac OS X, and Linux, Intel as well as
ARM. The library was tested with Python 2.6 and Python 3.2. Python interpreters are available on the
Python web site’.

14.1. Source files

The Yoctopuce library classes? for Python that you will use are provided as source files. Copy all the
content of the Sources directory in the directory of your choice and add this directory to the
PYTHONPATH environment variable. If you use an IDE to program in Python, refer to its
documentation to configure it so that it automatically finds the API source files.

14.2. Dynamic library

A section of the low-level library is written in C, but you should not need to interact directly with it: it is
provided as a DLL under Windows, as a .so files under UNIX, and as a .dylib file under Mac OS X.
Everything was done to ensure the simplest possible interaction from Python: the distinct versions of
the dynamic library corresponding to the distinct operating systems and architectures are stored in
the cdll directory. The API automatically loads the correct file during its initialization. You should not
have to worry about it.

If you ever need to recompile the dynamic library, its complete source code is located in the
Yoctopuce C++ library.

In order to keep them simple, all the examples provided in this documentation are console

applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

14.3. Control of the GenericSensor function

A few lines of code are enough to use a Yocto-4-20mA-Rx. Here is the skeleton of a Python code
snipplet to use the GenericSensor function.

1 http://www.python.org/download/
www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com 83

14. Using the Yocto-4-20mA-Rx with Python

[oool

errmsg=YRefParam ()

#Get access to your device, connected locally on USB for instance
YAPI.RegisterHub ("usb", errmsqg)
genericsensor = YGenericSensor.FindGenericSensor ("RX420MA1-123456.genericSensorl"

Hot-plug is easy: just check that the device is online
if genericsensor.isOnline() :

#Use genericsensor.get currentValue ()

[oocl

Let's look at these lines in more details.

YAPIL.RegisterHub

The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPT . SUCCESS and errmsg contains the error message.

YGenericSensor.FindGenericSensor

The YGenericSensor.FindGenericSensor function allows you to find a generic sensor from
the serial number of the module on which it resides and from its function name. You can use logical
names as well, as long as you have initialized them. Let us imagine a Yocto-4-20mA-Rx module with
serial number RX420MA1-123456 which you have named "MyModule", and for which you have given
the genericSensor1 function the name "MyFunction". The following five calls are strictly equivalent,
as long as "MyfFunction" is defined only once.

genericsensor = YGenericSensor.FindGenericSensor ("RX420MA1-123456.genericSensorl™)
genericsensor = YGenericSensor.FindGenericSensor ("RX420MA1-123456.MyFunction")
genericsensor = YGenericSensor.FindGenericSensor ("MyModule.genericSensorl")
genericsensor = YGenericSensor.FindGenericSensor ("MyModule.MyFunction")
genericsensor = YGenericSensor.FindGenericSensor ("MyFunction")

YGenericSensor.FindGenericSensor returns an object which you can then use at will to
control the generic sensor.

isOnline

The isOnline () method of the object returned by YGenericSensor.FindGenericSensor
allows you to know if the corresponding module is present and in working order.

get_currentValue

The get currentValue () method of the object returned by
GenericSensor.FindGenericSensor provides the current currently measured by the
Yocto-4-20mA-Rx. The value returned is a floating number, converted to the physical value
measured by the 4..20mA sensor.

A real example
Launch Python and open the corresponding sample script provided in the directory Examples/Doc-
GettingStarted-Yocto-4-20mA-Rx of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

—— codinae
import os,sys

from yocto api import *

from yocto genericsensor import *

84 www.yoctopuce.com

14. Using the Yocto-4-20mA-Rx with Python

def usage():
scriptname =
print ("Usage:")
print (scriptname+' <serial number>')
print (scriptname+' <logical name>')
print (scriptname+' any ')
sys.exit ()

def die(msqg) :
sys.exit (msg+' (check USB cable)')
errmsg=YRefParam ()

if len(sys.argv)<2 usage ()

target=sys.argv[l]

Setup the API to use local USB devices

if YAPI.RegisterHub ("usb",
sys.exit ("init error"+errmsg.value)

if target=='any':
retr
sensor =

if sensor is None
die ('No module connected')

2ive any C}'GHE‘IiCSG‘HSOI sensor

os.path.basename (sys.argv[0])

errmsg) != YAPI.SUCCESS:

YGenericSensor.FirstGenericSensor ()

else:
sensor= YGenericSensor.FindGenericSensor (target + '.genericSensorl')
if not (sensor.isOnline()) :die('device not connected')
retreive module serial
serial=sensor.get module () .get serialNumber ()
retreive both channels
channell = YGenericSensor.FindGenericSensor (serial + '.genericSensorl')
channel?2 = YGenericSensor.FindGenericSensor (serial + '.genericSensor2')

while channell.isOnline ()
print ("channel 1: Sf

%s" %
print ("channel 2: S%f %s" %
print(" (Ctrl-C to stop)")

YAPI.Sleep(1000)

and channell.isOnline () :
(channell.get currentValue(),
(channel2.get currentValue (),

channell.get unit()))
channel2.get unit()))

14.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#!/usr/bin/python

—*- coding: utf-8 -*-
import os, sys

from yocto api import *

def usage():

sys.exit ("usage: demo <serial or logical name> [ON/OFF]")
errmsg =YRefParam()
if YAPI.RegisterHub ("usb", errmsg) != YAPI.SUCCESS:
sys.exit ("RegisterHub error: " + str(errmsqg))
if len(sys.argv)<2 usage ()
m = YModule.FindModule (sys.argv[l]) ## use serial or logical name

if m.isOnline () :

if len(sys.argv) > 2:
if sys.argv([2].upper() == "ON"
if sys.argv([2].upper () == "OFFE"

m.set beacon (YModule.BEACON_ ON)
m.set beacon (YModule.BEACON OFF)

www.yoctopuce.com

85

14. Using the Yocto-4-20mA-Rx with Python

print ("serial: " + m.get serialNumber ())
print ("logical name: " + m.get logicalName ())
print ("luminosity: " + str(m.get luminosity()))
if m.get beacon() == YModule.BEACON ON:
print ("beacon: ON")
else:
print ("beacon: OFF")
print ("upTime: " + str(m.get upTime () /1000)+" sec")
print ("USB current: " + str(m.get usbCurrent())+" mA")
print ("logs:\n" + m.get lastLogs())
else:
print(sys.argv[l] + " not connected (check identification and USB cable)")

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

import os,sys
from yocto api import *

def usage():
sys.exit ("usage: demo <serial or logical name> <new logical name>")

if len(sys.argv) != 3 : usage()

errmsg =YRefParam()

if YAPI.RegisterHub ("usb", errmsg) != YAPI.SUCCESS:
sys.exit ("RegisterHub error: " + str(errmsqg))
m = YModule.FindModule (sys.argv[l]) # use serial or logical

if m.isOnline () :

newname = sys.argvl[2]
if not YAPI.CheckLogicalName (newname) :
sys.exit ("Invalid name (" + newname + ")")

m.set logicalName (newname)

m.saveToFlash () # do not forget this

print ("Module: serial= " + m.get serialNumber ()+" / name= " + m.get logicalName ())
else:

sys.exit ("not connected (check identification and USB cable")

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

86 www.yoctopuce.com

14. Using the Yocto-4-20mA-Rx with Python

/

import os,s&s
from yocto api import *
errmsg=YRefParam()

if YAPI.RegisterHub ("usb", errmsg)!= YAPI.SUCCESS:
sys.exit ("init error"+str (errmsg))

print ('Device list')

module = YModule.FirstModule ()

while module is not None:
print (module.get serialNumber ()+' ('+module.get productName ()+')")
module = module.nextModule ()

14.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

+ If your code catches the exception and handles it, everything goes well.

* If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the yDisableExceptions () function to commute the library
to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected
bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPT SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 87

88

www.yoctopuce.com

15. Using the Yocto-4-20mA-Rx with Java

Java is an object oriented language created by Sun Microsystem. Beside being free, its main
strength is its portability. Unfortunately, this portability has an excruciating price. In Java, hardware
abstraction is so high that it is almost impossible to work directly with the hardware. Therefore, the
Yoctopuce API does not support native mode in regular Java. The Java API needs a Virtual Hub to
communicate with Yoctopuce devices.

15.1. Getting ready

Go to the Yoctopuce web site and download the following items:

+ The Java programming library®
+ The VirtualHub software? for Windows, Mac OS X or Linux, depending on your OS

The library is available as source files as well as a jar file. Decompress the library files in a folder of
your choice, connect your modules, run the VirtualHub software, and you are ready to start your first
tests. You do not need to install any driver.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

15.2. Control of the GenericSensor function

A few lines of code are enough to use a Yocto-4-20mA-Rx. Here is the skeleton of a Java code
snippet to use the GenericSensor function.

ool

~ ~cess to vour device connected o on B ‘ stand
Ces:« ’ 1 locally n USB ror 1instan

YAPI.RegisterHub("127.0.0.1");
genericsensor = YGenericSensor.FindGenericSensor ("RX420MA1-123456.genericSensorl") ;

Hot-p a S easv: 118 ~heck thsa e e =) s online

}

1 www.yoctopuce.com/EN/libraries.php
2 www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 89

15. Using the Yocto-4-20mA-Rx with Java

[oool

Let us look at these lines in more details.

YAPIL.RegisterHub

The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the Virtual Hub able to see the devices. If the
initialization does not succeed, an exception is thrown.

YGenericSensor.FindGenericSensor

The YGenericSensor.FindGenericSensor function allows you to find a generic sensor from
the serial number of the module on which it resides and from its function name. You can use logical
names as well, as long as you have initialized them. Let us imagine a Yocto-4-20mA-Rx module with
serial number RX420MA 1-123456 which you have named "MyModule", and for which you have given
the genericSensor1 function the name "MyFunction". The following five calls are strictly equivalent,
as long as "MyFunction" is defined only once.

genericsensor = YGenericSensor.FindGenericSensor ("RX420MA1-123456.genericSensorl"
genericsensor = YGenericSensor.FindGenericSensor ("RX420MA1-123456.MyFunction")
genericsensor = YGenericSensor.FindGenericSensor ("MyModule.genericSensorl")
genericsensor = YGenericSensor.FindGenericSensor ("MyModule.MyFunction")
genericsensor = YGenericSensor.FindGenericSensor ("MyFunction")

YGenericSensor.FindGenericSensor returns an object which you can then use at will to
control the generic sensor.

isOnline

The 1sOnline () method of the object returned by YGenericSensor.FindGenericSensor
allows you to know if the corresponding module is present and in working order.

get_currentValue

The get currentValue () method of the object returned by
GenericSensor.FindGenericSensor provides the current currently measured by the
Yocto-4-20mA-Rx. The value returned is a floating number, converted to the physical value
measured by the 4..20mA sensor.

A real example

Launch you Java environment and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-4-20mA-Rx of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

import com.yoctopuce.YoctoAPI.*;
public class Demo {

public static void main(String[] args) {
try {
// setup the API to use local VirtualHub
YAPI.RegisterHub ("127.0.0.1");
} catch (YAPI Exception ex) {
System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage () + ")");
System.out.println ("Ensure that the VirtualHub application is running");
System.exit (1) ;
}

YGenericSensor sensor;
if (args.length > 0) {
sensor = YGenericSensor.FindGenericSensor (args[0]);

90 www.yoctopuce.com

15. Using the Yocto-4-20mA-Rx with Java

} else {

sensor = YGenericSensor.FirstGenericSensor () ;
}
if (sensor == null) {

System.out.println("No module connected (check USB cable)");
System.exit (1);
}

try {
YGenericSensor sl = YGenericSensor.FindGenericSensor (sensor.get module (
) .get_serialNumber () + ".genericSensorl");
YGenericSensor s2 = YGenericSensor.FindGenericSensor (sensor.get module (
) .get _serialNumber () + ".genericSensor2");
while (sl.isOnline() && s2.isOnline()) {
double value =sl.get currentValue();
System.out.println("Channel 1 :" + sl.get currentValue() + " " +
sl.get unit());
value = s2.get currentValue();
System.out.println("Channel 2 : " + s2.get currentValue() + " " +
s2.get unit());
System.out.println (" (press Ctrl-C to exit)");

YAPI.Sleep(1000) ;
}

} catch (YAPI Exception ex) {
System.out.println("Module " + sensor.describe() + " disconnected (check
identification and USB cable)"):;
}
YAPI.FreeAPI();

15.3. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

import com.yoctopuce.YoctoAPI.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class Demo {

public static void main(String[] args)
{
try {
// setup the API to use local VirtualHub
YAPI.RegisterHub ("127.0.0.1");
} catch (YAPI Exception ex) ({
System.out.println ("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage () + ")");
System.out.println ("Ensure that the VirtualHub application is running");
System.exit (1) ;
}

System.out.println ("usage: demo [serial or logical name] [ON/OFF]");

YModule module;

if (args.length == 0) {
module = YModule.FirstModule () ;
if (module == null) {

System.out.println ("No module connected (check USB cable)");
System.exit (1) ;
}
} else {
module = YModule.FindModule (args[0]); // use serial or logical name

}

try {
if (args.length > 1) {
if (args[l].equalsIgnoreCase ("ON")) {
module.setBeacon (YModule.BEACON ON) ;

www.yoctopuce.com 91

15. Using the Yocto-4-20mA-Rx with Java

} else {
module.setBeacon (YModule.BEACON OFF) ;

}
}

System.out.
System.out.
System.out.

if (module.get beacon ()

println("serial:
println("logical name: " + module.get logicalName ()
println("luminosity: 3
YModule.BEACON ON) {

" + module.get serialNumber ());

" + module.get luminosity());

System.out.println ("beacon: ON") ;
} else {
System.out.println ("beacon: OFF") ;
}
System.out.println ("upTime: " + module.get upTime() / 1000
System.out.println("USB current: " + module.get usbCurrent() + "

System.out.

} catch (YAPI Exception ex)

System.out.println(args[1l]

cable)");

}

YAPI.FreeAPI () ;

{

+ o

println("logs:\n" + module.get lastLogs()):;

+ " sec"):;
mA") ;

not connected (check identification and USB

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

import com.yoctopuce.YoctoAPI.*;

public class Demo {

public static void main (Stringl[]

{

try {

YAPI.RegisterHub ("127.0.0.1");

up th

e APl to use

} catch (YAPI Exception ex)

System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage () + ")");
System.out.println ("Ensure that the VirtualHub application is running");
System.exit (1) ;

}

if (args.length != 2) {

System.out.println ("usage:

System.exit (1);

}

YModule m;

String newname;

args)

local

{

m = YModule.FindModule (args[0]) ;

try {
newname

= args[1l];

if (!YAPI.CheckLogicalName (newname))

{

}

System.out.println("Invalid name (" + newname + ")");

System.exit (1) ;

m.set logicalName (newname

m.saveToFlash(); // do no

) ;

o)

demo <serial or logical name> <new logical name>");

92

www.yoctopuce.com

15. Using the Yocto-4-20mA-Rx with Java

System.out.println("Module: serial= " + m.get serialNumber());
System.out.println(" / name= " + m.get logicalName());

} catch (YAPI Exception ex) {
System.out.println("Module " + args[0] + "not connected (check identification

and USB cable)");
System.out.println(ex.getMessage()) ;
System.exit (1);
}

YAPI.FreeAPI();

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

import com.yoctopuce.YoctoAPI.*;
public class Demo {

public static void main (String[] args)
{
try {

setl

YAPI

ne APl1 se local VirtualHub

.RegisterHub ("127.0.0.1");
} catch (YAPI Exception ex) {
System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage () + ")");
System.out.println ("Ensure that the VirtualHub application is running");
System.exit (1) ;
}

System.out.println ("Device list");
YModule module = YModule.FirstModule();
while (module != null) {

try {
System.out.println (module.get serialNumber () + " (" +
module.get productName() + ")");
} catch (YAPI Exception ex) {
break;

}

module = module.nextModule () ;

}

YAPI.FreeAPI () ;

15.4. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then

www.yoctopuce.com 93

15. Using the Yocto-4-20mA-Rx with Java

hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software.

In the Java API, error handling is implemented with exceptions. Therefore you must catch and
handle correctly all exceptions that might be thrown by the API if you do not want your software to
crash as soon as you unplug a device.

94 www.yoctopuce.com

16. Using the Yocto-4-20mA-Rx with Android

To tell the truth, Android is not a programming language, it is an operating system developed by
Google for mobile appliances such as smart phones and tablets. But it so happens that under
Android everything is programmed with the same programming language: Java. Nevertheless, the
programming paradigms and the possibilities to access the hardware are slightly different from
classical Java, and this justifies a separate chapter on Android programming.

16.1. Native access and VirtualHub

In the opposite to the classical Java API, the Java for Android API can access USB modules natively.
However, as there is no VirtualHub running under Android, it is not possible to remotely control
Yoctopuce modules connected to a machine under Android. Naturally, the Java for Android API
remains perfectly able to connect itself to a VirtualHub running on another OS.

16.2. Getting ready

Go to the Yoctopuce web site and download the Java for Android programming library. The library is
available as source files, and also as a jar file. Connect your modules, decompress the library files in
the directory of your choice, and configure your Android programming environment so that it can find
them.

To keep them simple, all the examples provided in this documentation are snippets of Android
applications. You must integrate them in your own Android applications to make them work.
However, your can find complete applications in the examples provided with the Java for Android
library.

16.3. Compatibility

In an ideal world, you would only need to have a smart phone running under Android to be able to
make Yoctopuce modules work. Unfortunately, it is not quite so in the real world. A machine running
under Android must fulfil to a few requirements to be able to manage Yoctopuce USB modules
natively.

T www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com 95

16. Using the Yocto-4-20mA-Rx with Android

Android 4.x

Android 4.0 (api 14) and following are officially supported. Theoretically, support of USB host
functions since Android 3.1. But be aware that the Yoctopuce Java for Android API is regularly tested
only from Android 4 onwards.

USB host support

Naturally, not only must your machine have a USB port, this port must also be able to run in host
mode. In host mode, the machine literally takes control of the devices which are connected to it. The
USB ports of a desktop computer, for example, work in host mode. The opposite of the host mode is
the device mode. USB keys, for instance, work in device mode: they must be controlled by a host.
Some USB ports are able to work in both modes, they are OTG (On The Go) ports. It so happens
that many mobile devices can only work in device mode: they are designed to be connected to a
charger or a desktop computer, and nothing else. It is therefore highly recommended to pay careful
attention to the technical specifications of a product working under Android before hoping to make
Yoctopuce modules work with it.

Unfortunately, having a correct version of Android and USB ports working in host mode is not enough
to guaranty that Yoctopuce modules will work well under Android. Indeed, some manufacturers
configure their Android image so that devices other than keyboard and mass storage are ignored,
and this configuration is hard to detect. As things currently stand, the best way to know if a given
Android machine works with Yoctopuce modules consists in trying.

Supported hardware
The library is tested and validated on the following machines:

Samsung Galaxy S3
Samsung Galaxy Note 2
Google Nexus 5

Google Nexus 7

Acer Iconia Tab A200

Asus Tranformer Pad TF300T
Kurio 7

If your Android machine is not able to control Yoctopuce modules natively, you still have the
possibility to remotely control modules driven by a VirtualHub on another OS, or a YoctoHub 2.

16.4. Activating the USB port under Android

By default, Android does not allow an application to access the devices connected to the USB port.
To enable your application to interact with a Yoctopuce module directly connected on your tablet on a
USB port, a few additional steps are required. If you intend to interact only with modules connected
on another machine through the network, you can ignore this section.

In your AndroidManifest.xml, you must declare using the "USB Host" functionality by adding
the <uses-feature android:name="android.hardware.usb.host™ /> tag in the
manifest section.

<manifest ...>
<uses-feature android:name="android.hardware.usb.host" />;
</manifest>

When first accessing a Yoctopuce module, Android opens a window to inform the user that the
application is going to access the connected module. The user can deny or authorize access to the
device. If the user authorizes the access, the application can access the connected device as long as

2 Yoctohubs are a plug and play way to add network connectivity to your Yoctopuce devices. more info on http:/
www.yoctopuce.com/EN/products/category/extensions-and-networking

96 www.yoctopuce.com

16. Using the Yocto-4-20mA-Rx with Android

it stays connected. To enable the Yoctopuce library to correctly manage these authorizations, your
must provide a pointer on the application context by calling the EnableUSBHost method of the YAPI
class before the first USB access. This function takes as arguments an object of the
android.content.Context class (or of a subclass). As the Activity class is a subclass of
Context, it is simpler to call YAPT .EnableUSBHost (this) ; in the method onCreate of your
application. If the object passed as parameter is not of the correct type, a YAPI Exception
exception is generated.

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
try {

// Pass the application Context to the Yoctop
YAPI .EnableUSBHost (this) ;
} catch (YAPI Exception e) {
Log.e("Yocto",e.getLocalizedMessage());

}

Autorun

It is possible to register your application as a default application for a USB module. In this case, as
soon as a module is connected to the system, the application is automatically launched. You must
add <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"/> in the
section <intent-filter> of the main activity. The section <activity> must have a pointer to an XML file
containing the list of USB modules which can run the application.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

<uses-feature android:name="android.hardware.usb.host" />

<application ... >
<activity
android:name=".MainActivity" >

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<action android:name="android.hardware.usb.action.USB DEVICE ATTACHED" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

<meta-data
android:name="android.hardware.usb.action.USB DEVICE ATTACHED"
android:resource="@xml/device filter" />
</activity>
</application>

</manifest>

The XML file containing the list of modules allowed to run the application must be saved in the res/
xml directory. This file contains a list of USB vendorld and devicelD in decimal. The following
example runs the application as soon as a Yocto-Relay or a YoctoPowerRelay is connected. You can
find the vendorID and the devicelD of Yoctopuce modules in the characteristics section of the
documentation.

<?xml version="1.0" encoding="utf-8"?>

<resources>
<usb-device vendor-id="9440" product-id="12" />
<usb-device vendor-id="9440" product-id="13" />
</resources>

www.yoctopuce.com 97

16. Using the Yocto-4-20mA-Rx with Android

16.5. Control of the GenericSensor function

A few lines of code are enough to use a Yocto-4-20mA-Rx. Here is the skeleton of a Java code
snippet to use the GenericSensor function.

ool

Retrieving the object representing the module (connected here locally by USB)

/ Ret eving the bje representing the module
YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb") ;
genericsensor = YGenericSensor.FindGenericSensor ("RX420MA1-123456.genericSensorl") ;

if (generiésensor.lsoﬁline())
{ //Use genericsensor.get currentValue ()

}
[oool

Let us look at these lines in more details.

YAPI.EnableUSBHost

The YAPI.EnableUSBHost function initializes the API with the Context of the current application.
This function takes as argument an object of the android.content.Context class (or of a
subclass). If you intend to connect your application only to other machines through the network, this
function is facultative.

YAPIL.RegisterHub

The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the virtual hub able to see the devices. If the
string "usb" is passed as parameter, the AP| works with modules locally connected to the machine. If
the initialization does not succeed, an exception is thrown.

YGenericSensor.FindGenericSensor

The YGenericSensor.FindGenericSensor function allows you to find a generic sensor from
the serial number of the module on which it resides and from its function name. You can use logical
names as well, as long as you have initialized them. Let us imagine a Yocto-4-20mA-Rx module with
serial number RX420MA1-123456 which you have named "MyModule", and for which you have given
the genericSensor1 function the name "MyFunction". The following five calls are strictly equivalent,
as long as "MyFunction" is defined only once.

genericsensor = YGenericSensor.FindGenericSensor ("RX420MA1-123456.genericSensorl™)
genericsensor = YGenericSensor.FindGenericSensor ("RX420MA1-123456.MyFunction")
genericsensor = YGenericSensor.FindGenericSensor ("MyModule.genericSensorl")
genericsensor = YGenericSensor.FindGenericSensor ("MyModule.MyFunction")
genericsensor = YGenericSensor.FindGenericSensor ("MyFunction")

YGenericSensor.FindGenericSensor returns an object which you can then use at will to
control the generic sensor.

isOnline

The isOnline () method of the object returned by YGenericSensor.FindGenericSensor
allows you to know if the corresponding module is present and in working order.

get_currentValue

The get currentValue () method of the object returned by
GenericSensor.FindGenericSensor provides the current currently measured by the
Yocto-4-20mA-Rx. The value returned is a floating number, converted to the physical value
measured by the 4..20mA sensor.

98 www.yoctopuce.com

16. Using the Yocto-4-20mA-Rx with Android

A real example

Launch you Java environment and open the corresponding sample project provided in the directory
Examples//Doc-Examples of the Yoctopuce library.

In this example, you can recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

package com.yoctopuce.doc examples;

import android.app.Ac
import android.os.Bun
import android.os.Han

tivity;
dle;
dler;

import android.view.View;
.AdapterView;
.AdapterView.OnItemSelectedListener;
.ArrayAdapter;

import android.widget
import android.widget
import android.widget
import android.widget
import android.widget

import com.yoctopuce.
import com.yoctopuce.
import com.yoctopuce.
import com.yoctopuce.

public class GettingStarted Yocto 4 20mA Rx extends Activity implements

OnItemSelectedListene

{

.Spinner;

.TextView;

YoctoAPI
YoctoAPI
YoctoAPI
YoctoAPI

r

.YAPI;

.YAPI Exception;
.YGenericSensor;
.YModule;

private ArrayAdapter<String> aa;
private String serial = "";

private Handler h

andler =

null;

private TextView mChannellField,mChannel2Field;

@Override

public void onCreate (Bundle savedInstanceState)

{

super.onCreate (savedInstanceState) ;

setContentView (R.layout.gettingstarted yocto 4 20ma_ rx);
Spinner my spin = (Spinner) findViewById(R.id.spinnerl);
my spin.setOnItemSelectedListener (this);

aa = new ArrayAdapter<String> (this,

my spin.setAdapter (aa);
handler = new Handler () :;
d = (TextView) findViewById(R.id.channellfield);
d = (TextView) findViewById(R.id.channel2field);

mChannellFiel
mChannel2Fiel

}

@Override

protected void onStart ()

{

super.onStart () ;

try {
aa.clear (

);

YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb");
YModule module =

while (module

YModule.FirstModule () ;
= null) {
if (module.get productName () .equals ("Yocto-4-20mA-Rx"))

String serial = module.get serialNumber ();
aa.add (serial) ;

}

modul

}

e = module.nextModule () ;

} catch (YAPI Exception e) {
e.printStackTrace () ;

}

aa.notifyDataSetChanged() ;

handler.postDelayed(r,

}

@Override

protected void onStop ()

{

500) ;

android.R.layout.simple spinner item);
aa.setDropDownViewResource (android.R.layout.simple spinner dropdown item) ;

www.yoctopuce.com

99

16. Using the Yocto-4-20mA-Rx with Android

super.onStop () ;
handler.removeCallbacks (r) ;
YAPI.FreeAPI();

}

@Override
public void onItemSelected (AdapterView<?> parent,

{

serial = parent.getItemAtPosition (pos).toString();

}

@Override

public void onNothingSelected (AdapterView<?> arg0)
{

}

final Runnable r = new Runnable ()

{

public void run ()

{

View view, int pos, long id)

if (serial != null) {
YGenericSensor sensorl = YGenericSensor.FindGenericSensor (serial +
".genericSensorl");
try {

mChannellField.setText (String.format ("%$.1f %$s", sensorl.getCurrentValue

(), sensorl.getUnit()));
} catch (YAPI Exception e) {
e.printStackTrace();

}

YGenericSensor sensor2 = YGenericSensor.FindGenericSensor (serial +

".genericSensor2") ;
try {

mChannel2Field.setText (String.format ("%.1f %s",

(), sensor2.getUnit()));
} catch (YAPI Exception e) {
e.printStackTrace();

}

}
handler.postDelayed(this, 1000);

16.6. Control of the module part

sensor?2.getCurrentValue

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

package com.yoctopuce.doc examples;

import android.app.Activity;
import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemSelectedListener;

import android.widget.ArrayAdapter;
import android.widget.Spinner;
import android.widget.Switch;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class ModuleControl extends Activity implements

{

private ArrayAdapter<String> aa;
private YModule module = null;

OnItemSelectedListener

100

www.yoctopuce.com

16. Using the Yocto-4-20mA-Rx with Android

@Override
public void onCreate (Bundle savedInstanceState)

{

}

super.onCreate (savedInstanceState) ;

setContentView (R.layout.modulecontrol) ;
Spinner my spin = (Spinner) findViewById(R.id.spinnerl);
my spin.setOnItemSelectedListener (this);
aa = new ArrayAdapter<String>(this, android.R.layout.simple spinner item);
aa.setDropDownViewResource (android.R.layout.simple spinner dropdown item);

my spin.setAdapter (aa);

@Override
protected void onStart ()

{

}

super.onStart () ;

try {
aa.clear () ;
YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb");

YModule r = YModule.FirstModule () ;

while (r != null) {

String hwid = r.get hardwareId();

aa.add (hwid) ;
r = r.nextModule();
}
} catch (YAPI Exception e) {
e.printStackTrace();

}

// refresh Spinner with detected relay

aa.notifyDataSetChanged() ;

@Override
protected void onStop ()

{

}

super.onStop () ;
YAPI.FreeAPI () ;

private void DisplayModuleInfo ()

{

TextView field;

if (module == null)
return;

try {
field = (TextView)

findviewById(R.id.serialfield);

field.setText (module.getSerialNumber ()) ;

field = (TextView)

findvViewById(R.id.logicalnamefield) ;

field.setText (module.getLogicalName()) ;

field = (TextView)

field.setText (String.format ("$d%%",

field = (TextView)

findViewById(R.id.luminosityfield);

findviewById(R.id.uptimefield) ;

field.setText (module.getUpTime () / 1000 + " sec");

module.getLuminosity()));

field = (TextView) findViewById(R.id.usbcurrentfield) ;
field.setText (module.getUsbCurrent () + " mA");

Switch sw = (Switch) findViewById(R.id.beaconswitch);
Log.d("switch", "beacon" + module.get beacon());
sw.setChecked (module.getBeacon () == YModule.BEACON ON) ;
field = (TextView) findViewById(R.id.logs);

field.setText (module.get lastLogs());

} catch (YAPI Exception e) {

e.printStackTrace () ;

}
}

@Override

public void onItemSelected (AdapterView<?> parent, View view,

{

String hwid = parent.getItemAtPosition (pos).toString();
module = YModule.FindModule (hwid) ;

DisplayModuleInfo () ;
}

@Override

public void onNothingSelected (AdapterView<?> arg0)

int pos,

long id)

www.yoctopuce.com

101

16. Using the Yocto-4-20mA-Rx with Android

{
}

public void refreshInfo (View view)

{
DisplayModuleInfo () ;

}

public void toggleBeacon (View view)

{

if (module == null)

return;
boolean on = ((Switch) view) .isChecked() ;
try {

if (on) {
module.setBeacon (YModule.BEACON ON) ;
} else {
module.setBeacon (YModule.BEACON OFF) ;
}
} catch (YAPI Exception e) {
e.printStackTrace();

}

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

package com.yoctopuce.doc examples;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;

import android.widget.EditText;

import android.widget.Spinner;

import android.widget.TextView;

import android.widget.Toast;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class SaveSettings extends Activity implements OnItemSelectedListener

{

private ArrayAdapter<String> aa;
private YModule module = null;

@Override
public void onCreate (Bundle savedInstanceState)
{
super.onCreate (savedInstanceState);
setContentView (R.layout.savesettings) ;
Spinner my spin = (Spinner) findViewById(R.id.spinnerl);
my spin.setOnItemSelectedListener (this);
aa = new ArrayAdapter<String>(this, android.R.layout.simple spinner item)
aa.setDropDownViewResource (android.R.layout.simple spinner dropdown item)
my spin.setAdapter (aa);

’
’

102 www.yoctopuce.com

16. Using the Yocto-4-20mA-Rx with Android

@Override
protected void onStart ()
{

super.onStart () ;

try {
aa.clear () ;
YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb");
YModule r = YModule.FirstModule () ;
while (r != null) {
String hwid = r.get hardwareId();
aa.add (hwid) ;
r = r.nextModule() ;
}
} catch (YAPI Exception e) {
e.printStackTrace () ;
}
// refresh Spinner with detected relay
aa.notifyDataSetChanged() ;

}

@Override
protected void onStop ()
{
super.onStop () ;
YAPI.FreeAPI();

}

private void DisplayModuleInfo ()
{
TextView field;
if (module == null)
return;
try {
YAPI.UpdateDevicelist ();// fixme
field = (TextView) findViewById(R.id.logicalnamefield):;
field.setText (module.getLogicalName ()) ;
} catch (YAPI Exception e) {
e.printStackTrace () ;
}
}

@Override
public void onlItemSelected(AdapterView<?> parent, View view, int pos, long id)

{
String hwid = parent.getItemAtPosition (pos).toString();

module = YModule.FindModule (hwid) ;
DisplayModuleInfo () ;
}

@Override
public void onNothingSelected (AdapterView<?> arg0)

{
}

public void saveName (View view)

{

if (module == null)
return;
EditText edit = (EditText) findViewById(R.id.newname) ;
String newname = edit.getText ().toString() ;
try {
if (!YAPI.CheckLogicalName (newname)) {
Toast.makeText (getApplicationContext (), "Invalid name (" + newname + ")",
Toast.LENGTH LONG) .show () ;
return;

}

module.set logicalName (newname) ;
module.saveToFlash(); // do not forget this
edit.setText ("");

} catch (YAPI Exception ex) {
ex.printStackTrace () ;

}
DisplayModuleInfo () ;

www.yoctopuce.com 103

16. Using the Yocto-4-20mA-Rx with Android

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

package com.yoctopuce.doc examples;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.LinearLayout;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class Inventory extends Activity

{

@Override
public void onCreate (Bundle savedInstanceState)
{
super.onCreate (savedInstanceState) ;
setContentView (R.layout.inventory) ;

}

public void refreshlInventory (View view)

{
LinearLayout layout = (LinearLayout) findViewById(R.id.inventoryList);
layout.removeAllViews () ;

try {
YAPI.UpdateDevicelList () ;
YModule module = YModule.FirstModule () ;

while (module != null) {
String line = module.get serialNumber () + " (" + module.get productName () +
myw,
TextView tx = new TextView(this);

tx.setText (1line) ;
layout.addView (tx) ;
module = module.nextModule() ;
}
} catch (YAPI Exception e) {
e.printStackTrace() ;
}
}

@Override
protected void onStart ()
{
super.onStart () ;
try {
YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb");
} catch (YAPI Exception e) {
e.printStackTrace () ;
}
refreshInventory (null) ;

}

@Override
protected void onStop ()

104 www.yoctopuce.com

16. Using the Yocto-4-20mA-Rx with Android

super.onStop () ;
YAPI.FreeAPI () ;

16.7. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software.

In the Java API for Android, error handling is implemented with exceptions. Therefore you must catch
and handle correctly all exceptions that might be thrown by the API if you do not want your software
to crash soon as you unplug a device.

www.yoctopuce.com 105

106 www.yoctopuce.com

17. Advanced programming

The preceding chapters have introduced, in each available language, the basic programming
functions which can be used with your Yocto-4-20mA-Rx module. This chapter presents in a more
generic manner a more advanced use of your module. Examples are provided in the language which
is the most popular among Yoctopuce customers, that is C#. Nevertheless, you can find complete
examples illustrating the concepts presented here in the programming libraries of each language.

To remain as concise as possible, examples provided in this chapter do not perform any error
handling. Do not copy them "as is" in a production application.

17.1. Event programming

The methods to manage Yoctopuce modules which we presented to you in preceding chapters were
polling functions, consisting in permanently asking the API if something had changed. While easy to
understand, this programming technique is not the most efficient, nor the most reactive. Therefore,
the Yoctopuce programming APl also provides an event programming model. This technique
consists in asking the API to signal by itself the important changes as soon as they are detected.
Each time a key parameter is modified, the API calls a callback function which you have defined in
advance.

Detecting module arrival and departure

Hot-plug management is important when you work with USB modules because, sooner or later, you
will have to connect or disconnect a module when your application is running. The API is designed to
manage module unexpected arrival or departure in a transparent way. But your application must take
this into account if it wants to avoid pretending to use a disconnected module.

Event programming is particularly useful to detect module connection/disconnection. Indeed, it is
simpler to be told of new connections rather than to have to permanently list the connected modules
to deduce which ones just arrived and which ones left. To be warned as soon as a module is
connected, you need three pieces of code.

The callback
The callback is the function which is called each time a new Yoctopuce module is connected. It takes
as parameter the relevant module.

static void deviceArrival (YModule m)

{

Console.WritelLine ("New module : " + m.get serialNumber());

}

www.yoctopuce.com 107

17. Advanced programming

Initialization
You must then tell the API that it must call the callback when a new module is connected.

YAPI.RegisterDeviceArrivalCallback (deviceArrival) ;

Note that if modules are already connected when the callback is registered, the callback is called for
each of the already connected modules.

Triggering callbacks

A classis issue of callback programming is that these callbacks can be triggered at any time,
including at times when the main program is not ready to receive them. This can have undesired side
effects, such as dead-locks and other race conditions. Therefore, in the Yoctopuce API, module
arrival/departure callbacks are called only when the UpdateDeviceList () function is running.
You only need to call UpdateDeviceList () at regular intervals from a timer or from a specific
thread to precisely control when the calls to these callbacks happen:

waiting LOoOoOp managling callbba
whil (true)
{

Y

YAPI.UpdateDevicelList (ref errmsg
YAPI.Sleep (500, ref érrwsg);
}

In a similar way, it is possible to have a callback when a module is disconnected. You can find a
complete example implemented in your favorite programming language in the Examples/Prog-
EventBased directory of the corresponding library.

Be aware that in most programming languages, callbacks must be global procedures, and not
methods. If you wish for the callback to call the method of an object, define your callback as a global
procedure which then calls your method.

Detecting a modification in the value of a sensor

The Yoctopuce API also provides a callback system allowing you to be notified automatically with the
value of any sensor, either when the value has changed in a significant way or periodically at a
preset frequency. The code necessary to do so is rather similar to the code used to detect when a
new module has been connected.

This technique is useful in particular if you want to detect very quick value changes (within a few
milliseconds), as it is much more efficient than reading repeatedly the sensor value and therefore
gives better performances.

Calliback invocation

To enable a better control, value change callbacks are only called when the YAPT.Sleep () and
YAPI.HandleEvents () functions are running. Therefore, you must call one of these functions at
a regular interval, either from a timer or from a parallel thread.

while (true)

{

lnactive waliting 1loop ailiowling u Cc trigger

YAPI.Sleep (500, ref errmsqg);
}

In programming environments where only the interface thread is allowed to interact with the user, it is
often appropriate to call YAPT . HandleEvents () from this thread.

108 www.yoctopuce.com

17. Advanced programming

The value change callback
This type of callback is called when a generic sensor changes in a significant way. It takes as
parameter the relevant function and the new value, as a character string."

static void valueChangeCallback (YGenericSensor fct, string value)

{

Console.WriteLine (fct.get hardwareId() + "=" + value);

}

In most programming languages, callbacks are global procedures, not methods. If you wish for the
callback to call a method of an object, define your callback as a global procedure which then calls
your method. If you need to keep a reference to your object, you can store it directly in the
YGenericSensor object using function set userData. You can then retrieve it in the global
callback procedure using get userData.

Setting up a value change callback

The callback is set up for a given GenericSensor function with the help of the
registerValueCallback method. The following example sets up a callback for the first
available GenericSensor function.

YGenericSensor f = YGenericSensor.FirstGenericSensor () ;
f.registervValueCallback (genericSensorlChangeCallBack)

Note that each module function can thus have its own distinct callback. By the way, if you like to work
with value change callbacks, you will appreciate the fact that value change callbacks are not limited
to sensors, but are also available for all Yoctopuce devices (for instance, you can also receive a
callback any time a relay state changes).

The timed report callback

This type of callback is automatically called at a predefined time interval. The callback frequency can
be configured individually for each sensor, with frequencies going from hundred calls per seconds
down to one call per hour. The callback takes as parameter the relevant function and the measured
value, as an YMeasure object. Contrarily to the value change callback that only receives the latest
value, an YMeasure object provides both minimal, maximal and average values since the timed
report callback. Moreover, the measure includes precise timestamps, which makes it possible to use
timed reports for a time-based graph even when not handled immediately.

static void periodicCallback (YGenericSensor fct, YMeasure measure)

{
Console.WriteLine (fct.get hardwareId() + "=" +
measure.get averageValue());

Setting up a timed report callback

The callback is set up for a given GenericSensor function with the help of the
registerTimedReportCallback method. The callback will only be invoked once a callback
frequency as been set using set reportFrequency (which defaults to timed report callback
turned off). The frequency is specified as a string (same as for the data logger), by specifying the
number of calls per second (/s), per minute (/m) or per hour (/h). The maximal frequency is 100 times
per second (i.e. "100/s"), and the minimal frequency is 1 time per hour (i.e. "1/h"). When the
frequency is higher than or equal to 1/s, the measure represents an instant value. When the
frequency is below, the measure will include distinct minimal, maximal and average values based on
a sampling performed automatically by the device.

The following example sets up a timed report callback 4 times per minute for t he first available
GenericSensor function.

1 The value passed as parameter is the same as the value returned by the get advertisedValue () method.

www.yoctopuce.com 109

17. Advanced programming

YGenericSensor f = YGenericSensor.FirstGenericSensor () ;
f.set reportFrequency("4/m");
f.registerTimedReportCallback (periodicCallback) ;

As for value change callbacks, each module function can thus have its own distinct timed report
callback.

Generic callback functions

It is sometimes desirable to use the same callback function for various types of sensors (e.g. for a
generic sensor graphing application). This is possible by defining the callback for an object of class
YSensor rather than YGenericSensor. Thus, the same callback function will be usable with any
subclass of YSensor (and in particular with YGenericSensor). With the callback function, you
can use the method get unt () to get the physical unit of the sensor, if you need to display it.

A complete example
You can find a complete example implemented in your favorite programming language in the
Examples/Prog-EventBased directory of the corresponding library.

17.2. The data logger

Your Yocto-4-20mA-Rx is equipped with a data logger able to store non-stop the measures
performed by the module. The maximal frequency is 100 times per second (i.e. "100/s"), and the
minimal frequency is 1 time per hour (i.e. "1/h"). When the frequency is higher than or equal to 1/s,
the measure represents an instant value. When the frequency is below, the measure will include
distinct minimal, maximal and average values based on a sampling performed automatically by the
device.

The data logger flash memory can store about 500'000 instant measures, or 125'000 averaged
measures. When the memory is about to be saturated, the oldest measures are automatically
erased.

Make sure not to leave the data logger running at high speed unless really needed: the flash memory
can only stand a limited number of erase cycles (typically 100'000 cycles). When running at full
speed, the datalogger can burn more than 100 cycles per day ! Also be aware that it is useless to
record measures at a frequency higher than the refresh frequency of the physical sensor itself.

Starting/stopping the datalogger

The data logger can be started with the set recording () method.

YDataLogger 1 = YDataLogger.FirstDataLogger () ;
l.set recording (YDataLogger.RECORDING ON) ;

It is possible to make the data recording start automatically as soon as the module is powered on.

YDataLogger 1 = YDataLogger.FirstDataLogger () ;
l.set autoStart (YDataLogger.AUTOSTART ON) ;

l.get module () .saveToFlash () ; do not forget to save the setting
Note: Yoctopuce modules do not need an active USB connection to work: they start working as soon
as they are powered on. The Yocto-4-20mA-Rx can store data without necessarily being connected
to a computer: you only need to activate the automatic start of the data logger and to power on the
module with a simple USB charger.

Erasing the memory

The memory of the data logger can be erased with the forgetAllDataStreams () function. Be
aware that erasing cannot be undone.

YDataLogger 1 = YDatalLogger.FirstDataLogger () ;
1l.forgetAllDataStreams () ;

110 www.yoctopuce.com

17. Advanced programming

Choosing the logging frequency

The logging frequency can be set up individually for each sensor, using the method
set logFrequency (). The frequency is specified as a string (same as for timed report
callbacks), by specifying the number of calls per second (/s), per minute (/m) or per hour (/h). The
default value is "1/s".

The following example configures the logging frequency at 15 measures per minute for the first
sensor found, whatever its type:

YSensor sensor = YSensor.FirstSensor():
sensor.set logFrequency ("15/m");

To avoid wasting flash memory, it is possible to disable logging for specified functions. In order to do
so, simply use the value "OFF":

sensor.set logFrequency ("OFF") ;

Limitation: The Yocto-4-20mA-Rx cannot use a different frequency for timed-report callbacks and for
recording data into the datalogger. You can disable either of them individually, but if you enable both
timed-report callbacks and logging for a given function, the two will work at the same frequency.

Retrieving the data

To load recorded measures from the Yocto-4-20mA-Rx flash memory, you must call the
get recordedData () method of the desired sensor, and specify the time interval for which you
want to retrieve measures. The time interval is given by the start and stop UNIX timestamp. You can
also specify 0 if you don't want any start or stop limit.

The get recordedbData () method does not return directly am array of measured values, since
in some cases it would cause a huge load that could affect the responsiveness of the application.
Instead, this function will return an YDataSet object that can be used to retrieve immediately an
overview of the measured data (summary), and then to load progressively the details when desired.

Here are the main methods used to retrieve recorded measures:

dataset = sensor.get_recordedData(0,0): select the desired time interval
dataset.loadMore(): load data from the device, progressively

dataset.get_summary(): get a single measure summarizing the full time interval
dataset.get_preview(): get an array of measures representing a condensed version of the
whole set of measures on the selected time interval (reduced by a factor of approx. 200)
dataset.get_measures(): get an array with all detailled measures (that grows while
loadMore is being called repeteadly)

PwON =

o

Measures are instances of YMeasure 2. They store simultaneously the minimal, average and
maximal value at a given time, that you can retrieve using methods get_minValue(),
get_averageValue() and get_maxValue() respectively. Here is a small example that uses the
functions above:

We will retrieve a meas eg 71 thou time limit

YDataSet dataset = sensor.get recordedData (0, 0);

st cal to loadMore () loads the summary/previen

dataset.loadMore () ;
YMeasure summary = dataset.get summary();
string timeFmt = "dd MMM yyyy hh:mm:ss, £££f";
string logFmt = "from {0} to {1} : average={2:0.00}{3}";
Console.WritelLine (String.Format (logFmt,

summary.get startTimeUTC asDateTime () .ToString (timeFmt),

summary.get endTimeUTC asDateTime () .ToString (timeFmt),

summary.get averageValue (), sensor.get unit()));

2 The YMeasure objects used by the data logger are exactly the same kind as those passed as argument to the timed
report callbacks.

www.yoctopuce.com 111

17. Advanced programming

Nex dMore () will retrieve measures

Console.WriteLine ("loading details");
int progress;
do {
Console.Write(".");
progress = dataset.loadMore();
} while(progress < 100);

A measures have now beer raded

List<YMeasure> details = dataset.get measures();
foreach (YMeasure m in details) {
Console.WriteLine (String.Format (logFmt,
m.get startTimeUTC asDateTime () .ToString (timeFmt),
m.get endTimeUTC asDateTime () .ToString (timeFmt),
m.get averageValue (), sensor.get unit())):;

}

You will find a complete example demonstrating how to retrieve data from the logger for each
programming language directly in the Yoctopuce library. The example can be found in directory
Examples/Prog-Datal.ogger.

Timestamp

As the Yocto-4-20mA-Rx does not have a battery, it cannot guess alone the current time when
powered on. Nevertheless, the Yocto-4-20mA-Rx will automatically try to adjust its real-time
reference using the host to which it is connected, in order to properly attach a timestamp to each
measure in the datalogger:

* When the Yocto-4-20mA-Rx is connected to a computer running either the VirtualHub or any
application using the Yoctopuce library, it will automatically receive the time from this
computer.

* When the Yocto-4-20mA-Rx is connected to a YoctoHub-Ethernet, it will get the time that the
YoctoHub has obtained from the network (using a server from pool .ntp.orq)

* When the Yocto-4-20mA-Rx is connected to a YoctoHub-Wireless, it will get the time provided
by the YoctoHub based on its internal battery-powered real-time clock, which was itself
configured either from the network or from a computer

* When the Yocto-4-20mA-Rx is connected to an Android mobile device, it will get the time from
the mobile device as long as an app using the Yoctopuce library is launched.

When none of these conditions applies (for instance if the module is simply connected to an USB
charger), the Yocto-4-20mA-Rx will do its best effort to attach a reasonable timestamp to the
measures, using the timestamp found on the latest recorded measures. It is therefore possible to
"preset to the real time" an autonomous Yocto-4-20mA-Rx by connecting it to an Android mobile
phone, starting the data logger, then connecting the device alone on an USB charger. Nevertheless,
be aware that without external time source, the internal clock of the Yocto-4-20mA-Rx might be be
subject to a clock skew (theoretically up to 0.3%).

17.3. Sensor calibration

Your Yocto-4-20mA-Rx module is equipped with a digital sensor calibrated at the factory. The values
it returns are supposed to be reasonably correct in most cases. There are, however, situations where
external conditions can impact the measures.

The Yoctopuce API provides the mean to re-caliber the values measured by your Yocto-4-20mA-Rx.
You are not going to modify the hardware settings of the module, but rather to transform afterwards
the measures taken by the sensor. This transformation is controlled by parameters stored in the flash
memory of the module, making it specific for each module. This re-calibration is therefore a fully
software matter and remains perfectly reversible.

Before deciding to re-calibrate your Yocto-4-20mA-Rx module, make sure you have well understood
the phenomena which impact the measures of your module, and that the differences between true
values and measured values do not result from a incorrect use or an inadequate location of the
module.

112 www.yoctopuce.com

17. Advanced programming

The Yoctopuce modules support two types of calibration. On the one hand, a linear interpolation
based on 1 to 5 reference points, which can be performed directly inside the Yocto-4-20mA-Rx. On
the other hand, the API supports an external arbitrary calibration, implemented with callbacks.

1 to 5 point linear interpolation

These transformations are performed directly inside the Yocto-4-20mA-Rx which means that you
only have to store the calibration points in the module flash memory, and all the correction
computations are done in a perfectly transparent manner: The function get currentValue ()
returns the corrected value while the function get currentRawValue () keeps returning the
value before the correction.

Calibration points are simply (Raw_value, Corrected_value) couples. Let us look at the impact of the
number of calibration points on the corrections.

1 point correction

The 1 point correction only adds a shift to the measures. For example, if you provide the calibration
point (a, b), all the measured values are corrected by adding to them b-a, so that when the value
read on the sensor is a, the genericSensor1 function returns b.

(\

) Q O
> © O,
3 & &

20 |3 D
© &QJ
2 S

15 |@
@]
(&)

10

5
sensor value

5 10 15 20 25 30

Measure correction with 1 calibration point, here (5,10)

The application is very simple: you only need to call the calibrateFromPoints() method of the function
you wish to correct. The following code applies the correction illustrated on the graph above to the
first genericSensor1 function found. Note the call to the saveToFlash method of the module hosting
the function, so that the module does not forget the calibration as soon as it is disconnected.

Double[] ValuesBefore = {5};
Double[] ValuesAfter = {10};
YGenericSensor f = YGenericSensor.FirstGenericSensor();

f.calibrateFromPoints (ValuesBefore, ValuesAfter);
f.get module () .saveToFlash();

2 point correction

2 point correction allows you to perform both a shift and a multiplication by a given factor between
two points. If you provide the two points (a, b) and (c, d), the function result is multiplied (d-b)/(c-a) in
the [a, c] range and shifted, so that when the value read by the sensor is a or ¢, the genericSensor1
function returns respectively b and d. Outside of the [a, c] range, the values are simply shifted, so as
to preserve the continuity of the measures: an increase of 1 on the value read by the sensor induces
an increase of 1 on the returned value.

www.yoctopuce.com 113

17. Advanced programming

g
20 &
>
©
3
15 {2
o
o
10
5
sensor value

g
’

' ‘5 10 15 20 25 30

Measure correction with the two calibration points (10,5) and (25,10).

The code allowing you to program this calibration is very similar to the preceding code example.

Double[] ValuesBefore = {10,25};

Double[] ValuesAfter = {5,10};

YGenericSensor f = YGenericSensor.FirstGenericSensor();
f.calibrateFromPoints (ValuesBefore, ValuesAfter);

f.get module () .saveToFlash () ;

Note that the values before correction must be sorted in a strictly ascending order, otherwise they
are simply ignored.

3 to 5 point correction
3 to 5 point corrections are only a generalization of the 2 point method, allowing you to create up to 4
correction ranges for an increased precision. These ranges cannot be disjoint.

g
20 &
>
©
Q
O
15 |@
@]
(&)
10
5
sensor value

' ‘5 10 15 20 25 30

Correction example with 3 calibration points

Back to normal
To cancel the effect of a calibration on a function, call the calibrateFromPoints() method with two
empty arrays.

Double[] ValuesBefore {};
Double[] ValuesAfter {};
YGenericSensor f = YGenericSensor.FirstGenericSensor () ;

114 www.yoctopuce.com

17. Advanced programming

f.calibrateFromPoints (ValuesBefore, ValuesAfter);
f.get module () .saveToFlash();

You will find, in the Examples\Prog-Calibration directory of the Delphi, VB, and C# libraries, an
application allowing you to test the effects of the 1 to 5 point calibration.

Arbitrary interpolation

It is also possible to compute the interpolation instead of letting the module do it, in order to calculate
a spline interpolation, for instance. To do so, you only need to store a callback in the API. This
callback must specify the number of calibration points it is expecting.

public static double CustomInterpolation3Points (double rawValue, int calibType,
int[] parameters, double[] beforeValues, double[] afterValues)
ble result;

{

result =
return result;

}
YAPI.RegisterCalibrationHandler (3, CustomInterpolation3Points);

Note that these interpolation callbacks are global, and not specific to each function. Thus, each time
someone requests a value from a module which contains in its flash memory the correct number of
calibration points, the corresponding callback is called to correct the value before returning it,
enabling thus a perfectly transparent measure correction.

www.yoctopuce.com 115

116 www.yoctopuce.com

18. Using with unsupported languages

Yoctopuce modules can be driven from most common programming languages. New languages are
regularly added, depending on the interest expressed by Yoctopuce product users. Nevertheless,
some languages are not, and will never be, supported by Yoctopuce. There can be several reasons
for this: compilers which are not available anymore, unadapted environments, etc.

However, there are alternative methods to access Yoctopuce modules from an unsupported
programming language.

18.1. Command line

The easiest method to drive Yoctopuce modules from an unsupported programming language is to
use the command line API through system calls. The command line APl is in fact made of a group of
small executables which are easy to call. Their output is also easy to analyze. As most programming
languages allow you to make system calls, the issue is solved with a few lines of code.

However, if the command line API is the easiest solution, it is neither the fastest nor the most
efficient. For each call, the executable must initialize its own APl and make an inventory of USB
connected modules. This requires about one second per call.

18.2. VirtualHub and HTTP GET

The VirtualHub is available on almost all current platforms. It is generally used as a gateway to
provide access to Yoctopuce modules from languages which prevent direct access to hardware
layers of a computer (JavaScript, PHP, Java, ...).

In fact, the VirtualHub is a small web server able to route HTTP requests to Yoctopuce modules. This
means that if you can make an HTTP request from your programming language, you can drive
Yoctopuce modules, even if this language is not officially supported.

REST interface

At a low level, the modules are driven through a REST API. Thus, to control a module, you only need
to perform appropriate requests on the VirtualHub. By default, the VirtualHub HTTP port is 4444.

An important advantage of this technique is that preliminary tests are very easy to implement. You
only need a VirtualHub and a simple web browser. If you copy the following URL in your preferred
browser, while the VirtualHub is running, you obtain the list of the connected modules.

http://127.0.0.1:4444/api/services/whitePages.txt

www.yoctopuce.com 117

18. Using with unsupported languages

Note that the result is displayed as text, but if you request whitePages.xml, you obtain an XML result.
Likewise, whitePages.json allows you to obtain a JSON result. The htm/ extension even allows you to
display a rough interface where you can modify values in real time. The whole REST API is available
in these different formats.

Driving a module through the REST interface

Each Yoctopuce module has its own REST interface, available in several variants. Let us imagine a
Yocto-4-20mA-Rx with the RX420MA1-12345 serial number and the myModule logical name. The
following URL allows you to know the state of the module.

http://127.0.0.1:4444/bySerial /RX420MA1-12345/api/module. txt

You can naturally also use the module logical name rather than its serial number.

http://127.0.0.1:4444/byName/myModule/api/module. txt

To retrieve the value of a module property, simply add the name of the property below module. For
example, if you want to know the signposting led luminosity, send the following request:

http://127.0.0.1:4444/bySerial /RX420MA1-12345/api/module/luminosity

To change the value of a property, modify the corresponding attribute. Thus, to modify the luminosity,
send the following request:

http://127.0.0.1:4444/bySerial /RX420MA1-12345/api/module?luminosity=100

Driving the module functions through the REST interface

The module functions can be manipulated in the same way. To know the state of the genericsensor
function, build the following URL.:

http://127.0.0.1:4444/bySerial /RX420MA1-12345/api/genericsensor. txt

Note that if you can use logical names for the modules instead of their serial number, you cannot use
logical names for functions. Only hardware names are authorized to access functions.

You can retrieve a module function attribute in a way rather similar to that used with the modules. For
example:

http://127.0.0.1:4444/bySerial /RX420MA1-12345/api/genericsensor/logicalName

Rather logically, attributes can be modified in the same manner.

http://127.0.0.1:4444/bySerial /RX420MA1-12345/api/genericsensor?logicalName=myFunction

You can find the list of available attributes for your Yocto-4-20mA-Rx at the beginning of the
Programming chapter.

Accessing Yoctopuce data logger through the REST interface
This section only applies to devices with a built-in data logger.

The preview of all recorded data streams can be retrieved in JSON format using the following URL:

http://127.0.0.1:4444/bySerial /RX420MA1-12345/datalogger.json

Individual measures for any given stream can be obtained by appending the desired function
identifier as well as start time of the stream:

118 www.yoctopuce.com

18. Using with unsupported languages

http://127.0.0.1:4444/bySerial/RX420MA1-12345/datalogger.json?
id=genericsensor

18.3. Using dynamic libraries

The low level Yoctopuce API is available under several formats of dynamic libraries written in C. The
sources are available with the C++ API. If you use one of these low level libraries, you do not need
the VirtualHub anymore.

Filename Platform
libyapi.dylib Max OS X
libyapi-amd64.so Linux Intel (64 bits)
libyapi-armel.so Linux ARM EL
libyapi-armhf.so Linux ARM HL
libyapi-i386.s0 Linux Intel (32 bits)
yapi64.dll Windows (64 bits)
yapi.dll Windows (32 bits)

These dynamic libraries contain all the functions necessary to completely rebuild the whole high level
APl in any language able to integrate these libraries. This chapter nevertheless restrains itself to
describing basic use of the modules.

Driving a module
The three essential functions of the low level API are the following:

nt yapiInitAPI (int connection type, char *errmsg);
int yapiUpdateDevicelist (int forceupdate, char *errmsgqg);
int yapiHTTPRequest (char *device, char *request, char* buffer,int buffsize,int *fullsize,

char *errmsgqg);

The yapilnitAPI function initializes the API and must be called once at the beginning of the program.
For a USB type connection, the connection_type parameter takes value 1. The errmsg parameter
must point to a 255 character buffer to retrieve a potential error message. This pointer can also point
to null. The function returns a negative integer in case of error, zero otherwise.

The yapiUpdateDeviceList manages the inventory of connected Yoctopuce modules. It must be
called at least once. To manage hot plug and detect potential newly connected modules, this function
must be called at regular intervals. The forceupdate parameter must take value 1 to force a hardware
scan. The errmsg parameter must point to a 255 character buffer to retrieve a potential error
message. This pointer can also point to null. The function returns a negative integer in case of error,
zero otherwise.

Finally, the yapiHTTPRequest function sends HTTP requests to the module REST API. The device
parameter contains the serial number or the logical name of the module which you want to reach.
The request parameter contains the full HTTP request (including terminal line breaks). buffer points
to a character buffer long enough to contain the answer. buffsize is the size of the buffer. fullsize is a
pointer to an integer to which will be assigned the actual size of the answer. The errmsg parameter
must point to a 255 character buffer to retrieve a potential error message. This pointer can also point
to null. The function returns a negative integer in case of error, zero otherwise.

The format of the requests is the same as the one described in the VirtualHub et HTTP GET section.
All the character strings used by the API are strings made of 8-bit characters: Unicode and UTF8 are
not supported.

The resutlt returned in the buffer variable respects the HTTP protocol. It therefore includes an HTTP
header. This header ends with two empty lines, that is a sequence of four ASCII characters 13, 10,
13, 10.

Here is a sample program written in pascal using the yapi.dll DLL to read and then update the
luminosity of a module.

www.yoctopuce.com 119

18. Using with unsupported languages

// D11 functions import

function vyapiInitAPI (mode:integer;
errmsg pansichar) :integer;cdecl;
external 'yapi.dll' name 'yapiInitAPI';

function vyapiUpdateDevicelist (force:integer;errmsg pansichar) :integer;cdecl;
external 'yapi.dll' name 'yapiUpdateDeviceList';

function yapiHTTPRequest (device:pansichar;url:pansichar; buffer:pansichar;

buffsize:integer;var fullsize:integer;

errmsg pansichar) :integer;cdecl;
external 'yapi.dll' name 'yapiHTTPRequest';
var
errmsgBuffer array [0..256] of ansichar;
dataBuffer array [0..1024] of ansichar;
errmsg, data pansichar;
fullsize,p integer;
const
serial = 'RX420MA1-12345"';
getValue = 'GET /api/module/luminosity HTTP/1.1'#13#10#13#10;
setValue = 'GET /api/module?luminosity=100 HTTP/1.1'#13#10#13#10;
begin
errmsg @errmsgBuffer;
data := (@dataBuffer;
// API initialization
if (yapiInitAPI(1,errmsg)<0) then
begin
writeln (errmsqg) ;
halt;
end;
// forces a device inventory
if(yapiUpdateDevicelList (1,errmsg)<0) then
begin
writeln (errmsqg) ;
halt;
end;
// requests the module 1 inosity
if (yapiHTTPRequest (serial,getValue,data,sizeof (dataBuffer), fullsize,errmsg)<0) then
begin
writeln (errmsqg) ;
halt;
end;
// searches for the HTTP header end
P := pos (#13#10#13#10, data)
// displays the response minus the HTTP heade
writeln (copy(data,p+4,length(data)-p-3));
// changes the luminosity
if (yaleTTPRequest(serial,setValue,data,sizeof(dataBuffer),fullsize,errmsg)<0) then
begin
writeln (errmsg) ;
halt;
end;
end.

Module inventory

To perform an inventory of Yoctopuce modules, you need two functions from the dynamic library:

int yapiGetAllDevices (int *buffer,int maxsize,int *neededsize,char *errmsgqg);

int yapiGetDevicelInfo(int devdesc, yDeviceSt *infos,

char *errmsgqg);

The yapiGetAllDevices function retrieves the list of all connected modules as a list of handles. buffer
points to a 32-bit integer array which contains the returned handles. maxsize is the size in bytes of
the buffer. To neededsize is assigned the necessary size to store all the handles. From this, you can
deduce either the number of connected modules or that the input buffer is too small. The errmsg

120

www.yoctopuce.com

18. Using with unsupported languages

parameter must point to a 255 character buffer to retrieve a potential error message. This pointer can
also point to null. The function returns a negative integer in case of error, zero otherwise.

The yapiGetDevicelnfo function retrieves the information related to a module from its handle.
representing the module and which was obtained through
yapiGetAllDevices. infos points to a data structure in which the result is stored. This data structure

devdesc is a 32-bit

has the following format:

Name

vendorid
deviceid
devrelease
nbinbterfaces
manufacturer
productname
serial
logicalname
firmware
beacon

integer

Type
int
int
int
int
char(]
charf]
charf]
charf]
charf]
byte

Size
(bytes)
4
4
4
4
20
28
20
20
22
1

Description

Yoctopuce USB ID
Module USB ID
Module version

Number of USB interfaces used by the module

Yoctopuce (null terminated)
Model (null terminated)

Serial number (null terminated)
Logical name (null terminated)
Firmware version (null terminated)

Beacon state (0/1)

The errmsg parameter must point to a 255 character buffer to retrieve a potential error message.

Here is a sample program written in pascal using the yapi.dll DLL to list the connected modules.

device ¢ ~ri

type yDeviceSt

Nt i10n
ption

sty ~ture

acked record

vendorid : word;
deviceid elg
devrelease
nbinbterfaces
manufacturer [0..19] of ansichar;
productname [0..27] of ansichar;
serial [0..19] of ansichar;
logicalname [0..19] of ansichar;
firmware [0..21] of ansichar;
beacon
end;
function vyapiInitAPI (mode:integer;
errmsg : pansichar) :integer;cdecl;
external 'yapi.dll' name 'yapiInitAPI';
function yapiUpdateDevicelist (force:integer;errmsg : pansichar):

function

external

yapiGetAllDevices (buffer:point

'yvapi.dll'

name

@rf

maxsize:integer;
var neededsize:integer;

errmsg :
external

integer;

pansichar) :integer; cdecl;

'yvapi.dll' name

var infos:yDeviceSt;

errmsg : pansichar) :integer; cdecl;
external 'yapi.dll' name

6] of ansichar;

7] of integer; f 128 B

function apiGetDeviceInfo (d:

var
errmsgBuffer array [0..25
dataBuffer array [0..12
errmsg,data : pansichar;
neededsize, i integer;

devinfos yDeviceSt;

begin
errmsg = (@errmsgBuffer;
if (yapiInitAPI (1,errmsg)<0) then

begin
writeln (errmsqg) ;

integer;cdecl;

'yvapiUpdateDeviceList';

'yapiGetAllDevices';

'vapiGetDevicelInfo';

www.yoctopuce.com

121

18. Using with unsupported languages

halt;
end;

if(yapiUpdateDevicelist (1,errmsg)<0) then
begin
writeln (errmsg) ;
halt;
end;
if yapiGetAllDevices (@dataBuffer,sizeof (dataBuffer),neededsize,errmsqg)<0 then
begin
writeln (errmsg) ;
halt;
end;

es JataBuf

rets device = TEs T mevalh BemEll
JE L 1€V ce 11 rrom eacn anaite

for 1i:=0 to neededsize div sizeof (integer)-1 do
begin
if (apiGetDeviceInfo (dataBuffer[i], devinfos, errmsg)<0) then
begin
writeln (errmsqg) ;
halt;
end;
writeln (pansichar (@devinfos.serial)+' ('+pansichar (@devinfos.productname)+')"');
end;

end.

18.4. Porting the high level library

As all the sources of the Yoctopuce API are fully provided, you can very well port the whole API in
the language of your choice. Note, however, that a large portion of the API source code is
automatically generated.

Therefore, it is not necessary for you to port the complete API. You only need to port the yocto api
file and one file corresponding to a function, for example yocto relay. After a little additional work,
Yoctopuce is then able to generate all other files. Therefore, we highly recommend that you contact
Yoctopuce support before undertaking to port the Yoctopuce library in another language.
Collaborative work is advantageous to both parties.

122 www.yoctopuce.com

19. High-level APl Reference

This chapter summarizes the high-level API functions to drive your Yocto-4-20mA-Rx. Syntax and
exact type names may vary from one language to another, but, unless otherwise stated, all the
functions are available in every language. For detailed information regarding the types of arguments
and return values for a given language, refer to the definition file for this language (yocto api.*
as well as the other yocto * files that define the function interfaces).

For languages which support exceptions, all of these functions throw exceptions in case of error by
default, rather than returning the documented error value for each function. This is by design, to
facilitate debugging. It is however possible to disable the use of exceptions using the
yDisableExceptions () function, in case you prefer to work with functions that return error
values.

This chapter does not repeat the programming concepts described earlier, in order to stay as concise
as possible. In case of doubt, do not hesitate to go back to the chapter describing in details all
configurable attributes.

www.yoctopuce.com 123

19. High-level API Reference

19.1. General functions

These general functions should be used to initialize and configure the Yoctopuce library. In most cases,
a simple call to function yRegi st er Hub() should be enough. The module-specific functions
yFind...() oryFirst... () should then be used to retrieve an object that provides interaction
with the module.

In order to use the functions described here, you should include:

<script type="text/javascript' src="yocto_api.js'></script>
nodej s | var yoctolib = require(‘yoctolib’);

var YAPI = yoctolib.YAPI;

var YModule = yoctolib.YModule;

php | require_once('yocto_api.php’);
#include "yocto_api.h"
#import "yocto_api.h"
uses yocto_api;
yocto_api.vb
yocto_api.cs
import com.yoctopuce.YoctoAPI.YModule;
from yocto_api import *

Global functions
yCheckLogicalName(name)

Checks if a given string is valid as logical name for a module or a function.
yDisableExceptions()

Disables the use of exceptions to report runtime errors.
yEnableExceptions()

Re-enables the use of exceptions for runtime error handling.
yEnableUSBHost(osContext)

This function is used only on Android.
yFreeAPI()

Frees dynamically allocated memory blocks used by the Yoctopuce library.
yGetAPIVersion()

Returns the version identifier for the Yoctopuce library in use.
yGetTickCount()

Returns the current value of a monotone millisecond-based time counter.
yHandleEvents(errmsg)

Maintains the device-to-library communication channel.
yInitAPI(mode, errmsg)

Initializes the Yoctopuce programming library explicitly.
yPreregisterHub(url, errmsg)

Fault-tolerant alternative to RegisterHub().
yRegisterDeviceArrivalCallback(arrivalCallback)

Register a callback function, to be called each time a device is pluged.
yRegisterDeviceRemovalCallback(removalCallback)

Register a callback function, to be called each time a device is unpluged.
yRegisterHub(url, errmsg)

Setup the Yoctopuce library to use modules connected on a given machine.

yRegisterHubDiscoveryCallback(callback)

124 www.yoctopuce.com

19. High-level API Reference

Register a callback function, to be called each time a network hub or a VirtualHub is detected on the local
network.

yRegisterLogFunction(logfun)

Registers a log callback function.
ySelectArchitecture(arch)

Select the architecture or the library to be loaded to access to USB.
ySetDelegate(object)

(Objective-C only) Register an object that must follow the procol YDevi ceHot Pl ug.
ySetTimeout(callback, ms_timeout, arguments)

Invoke the specified callback function after a given timeout.
ySleep(ms_duration, errmsg)

Pauses the execution flow for a specified duration.
yUnregisterHub(url)

Setup the Yoctopuce library to no more use modules connected on a previously registered machine with
RegisterHub.

yUpdateDeviceList(errmsg)

Triggers a (re)detection of connected Yoctopuce modules.
yUpdateDeviceList_async(callback, context)

Triggers a (re)detection of connected Yoctopuce modules.

www.yoctopuce.com 125

19. High-level API Reference

YAPI.CheckLogicalName() YAPI
yCheckLogicalName()

Checks if a given string is valid as logical name for a module or a function.

[is |function yCheckLogicalName(name)

[nodej s | function CheckLogicalName(name)

[php | function yCheckLogicalName($name)

bool yCheckLogicalName(const string& name)

BOOL yCheckLogicalName(NSString * name)

[pas |function yCheckLogicalName(name: string): boolean

[vb |function yCheckLogicalName(ByVal name As String) As Boolean
bool CheckLogicalName(string name)

boolean CheckLogicalName(String name)

def CheckLogicalName(name)

A valid logical name has a maximum of 19 characters, allamong A. . Z,a..z,0..9, ,and-.Ifyou
try to configure a logical name with an incorrect string, the invalid characters are ignored.

Parameters :
name a string containing the name to check.

Returns :
t r ue if the name is valid, f al se otherwise.

126 www.yoctopuce.com

19. High-level API Reference

YAPI.DisableExceptions() YAPI
yDisableExceptions()

Disables the use of exceptions to report runtime errors.

function yDisableExceptions()
function DisableExceptions()
function yDisableExceptions()

[cpp | void yDisableExceptions()

void yDisableExceptions()
procedure yDisableExceptions()
procedure yDisableExceptions()
[cs |void DisableExceptions()

def DisableExceptions()

When exceptions are disabled, every function returns a specific error value which depends on its type
and which is documented in this reference manual.

www.yoctopuce.com 127

19. High-level API Reference

YAPI.EnableExceptions()
yEnableExceptions()

YAPI

Re-enables the use of exceptions for runtime error handling.

[is |function yEnableExceptions()
[nodej s | function EnableExceptions()

[php | function yEnableExceptions()

[cpp | void yEnableExceptions()

[m |void yEnableExceptions()
procedure yEnableExceptions()
procedure yEnableExceptions()
[cs |void EnableExceptions()

def EnableExceptions()

Be aware than when exceptions are enabled, every function that fails triggers an exception. If the
exception is not caught by the user code, it either fires the debugger or aborts (i.e. crash) the program.

On failure, throws an exception or returns a negative error code.

128

www.yoctopuce.com

19. High-level API Reference

YAPI.EnableUSBHost() YAPI
yEnableUSBHost()

This function is used only on Android.
synchronized static void EnableUSBHost(Object osContext)

Before calling yRegi st er Hub(" usb") you need to activate the USB host port of the system. This
function takes as argument, an object of class android.content.Context (or any subclasee). It is not
necessary to call this function to reach modules through the network.

Parameters :
osContext an object of class android.content.Context (or any subclass).

www.yoctopuce.com 129

19. High-level API Reference

YAPI.FreeAPI() YAPI
yFreeAPI()

Frees dynamically allocated memory blocks used by the Yoctopuce library.

function yFreeAPI()
[nodej s | function FreeAPI()

[php_|function yFreeAPI()

void yFreeAPI()

void yFreeAPI()

procedure yFreeAPI()

procedure yFreeAPI()
void FreeAPI()

synchronized static void FreeAPI()
def FreeAPI()

It is generally not required to call this function, unless you want to free all dynamically allocated memory
blocks in order to track a memory leak for instance. You should not call any other library function after
calling yFr eeAPI (), or your program will crash.

130 www.yoctopuce.com

19. High-level API Reference

YAPI.GetAPIVersion() YAPI
yGetAPIVersion()

Returns the version identifier for the Yoctopuce library in use.

function yGetAPIVersion()

function GetAPIVersion()

function yGetAPIVersion()

string yGetAPIVersion()

NSString* yGetAPIVersion()
function yGetAPIVersion(): string
function yGetAPIVersion() As String
String GetAPIVersion()

String GetAPIVersion()

def GetAPIVersion()

The version is a string in the form " Maj or. M nor . Bui | d", for instance "1. 01. 5535". For
languages using an external DLL (for instance C#, VisualBasic or Delphi), the character string includes
as well the DLL version, for instance " 1. 01. 5535 (1. 01.5439)".

If you want to verify in your code that the library version is compatible with the version that you have
used during development, verify that the major number is strictly equal and that the minor number is
greater or equal. The build number is not relevant with respect to the library compatibility.

Returns :
a character string describing the library version.

www.yoctopuce.com 131

19. High-level API Reference

YAPI.GetTickCount() YAPI
yGetTickCount()

Returns the current value of a monotone millisecond-based time counter.

[is |function yGetTickCount()
[nodej s | function GetTickCount()

[php | function yGetTickCount()

u64 yGetTickCount()

u64 yGetTickCount()

[pas _|function yGetTickCount(): u64

[vb |function yGetTickCount() As Long
ulong GetTickCount()

long GetTickCount()

def GetTickCount()

This counter can be used to compute delays in relation with Yoctopuce devices, which also uses the
millisecond as timebase.

Returns :
a long integer corresponding to the millisecond counter.

132 www.yoctopuce.com

19. High-level API Reference

YAPI.HandleEvents() YAPI
yHandleEvents()

Maintains the device-to-library communication channel.

function yHandleEvents(errmsg)

function HandleEvents(errmsg)

function yHandleEvents(&$errmsg)

YRETCODE yHandleEvents(string& errmsg)

YRETCODE yHandleEvents(NSError** errmsg)

function yHandleEvents(var errmsg: string): integer

function yHandleEvents(ByRef errmsg As String) As YRETCODE
YRETCODE HandleEvents(ref string errmsg)

int HandleEvents()

def HandleEvents(errmsg=None)

If your program includes significant loops, you may want to include a call to this function to make sure
that the library takes care of the information pushed by the modules on the communication channels.
This is not strictly necessary, but it may improve the reactivity of the library for the following commands.

This function may signal an error in case there is a communication problem while contacting a module.

Parameters :
errmsg a string passed by reference to receive any error message.

Returns :
YAPI _SUCCESS when the call succeeds. On failure, throws an exception or returns a negative error
code.

www.yoctopuce.com 133

19. High-level API Reference

YAPLInitAPI() YAPI
yInitAPI()

Initializes the Yoctopuce programming library explicitly.

[is |function yInitAPI(mode, errmsg)

[nodej s | function InitAPI(mode, errmsg)

[php_|function yInitAPI($mode, &$errmsg)

YRETCODE yInitAPI(int mode, string& errmsg)

YRETCODE yInitAPI(int mode, NSError* errmsg)

[pas|function yInitAPI(mode: integer, var errmsg: string): integer

[vb |function yInitAPI(ByVal mode As Integer, ByRef errmsg As String) As Integer
int InitAPI(int mode, ref string errmsg)

synchronized static int InitAPI(int mode)

def InitAPI(mode, errmsg=None)

It is not strictly needed to call yl ni t API (), as the library is automatically initialized when calling
yRegi st er Hub() for the first time.

When Y_DETECT _NONE is used as detection node, you must explicitly use yRegi st er Hub() to
point the API to the VirtualHub on which your devices are connected before trying to access them.

Parameters :
mode an integer corresponding to the type of automatic device detection to use. Possible values are
Y DETECT _NONE, Y _DETECT USB,Y DETECT NET,andY_DETECT_ALL.

errmsg a string passed by reference to receive any error message.

Returns :

YAPI _SUCCESS when the call succeeds. On failure, throws an exception or returns a negative error
code.

134 www.yoctopuce.com

19. High-level API Reference

YAPI.PreregisterHub()
yPreregisterHub()

YAPI

Fault-tolerant alternative to RegisterHub().

function yPreregisterHub(url, errmsg)
[nodej s | function PreregisterHub(url, errmsg)

function yPreregisterHub($url, &$errmsg)
YRETCODE yPreregisterHub(const string& url, string& errmsg)
YRETCODE yPreregisterHub(NSString * url, NSError** errmsg)
function yPreregisterHub(url: string, var errmsg: string): integer
function yPreregisterHub(ByVal url As String,

ByRef errmsg As String) As Integer

int PreregisterHub(string url, ref string errmsg)
synchronized static int PreregisterHub(String url)

def PreregisterHub(url, errmsg=None)

This function has the same purpose and same arguments as Regi st er Hub() , but does not trigger
an error when the selected hub is not available at the time of the function call. This makes it possible to
register a network hub independently of the current connectivity, and to try to contact it only when a

device is actively needed.

Parameters :
errmsg a string passed by reference to receive any error message.

Returns :
YAPI _SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

url a string containing either "usb","callback" or the root URL of the hub to monitor

www.yoctopuce.com

135

19. High-level API Reference

YAPI.RegisterDeviceArrivalCallback() YAPI
yRegisterDeviceArrivalCallback()

Register a callback function, to be called each time a device is pluged.

function yRegisterDeviceArrivalCallback(arrivalCallback)

[nodej s | function RegisterDeviceArrivalCallback(arrivalCallback)

[php | function yRegisterDeviceArrivalCallback($arrivalCallback)

void yRegisterDeviceArrivalCallback(yDeviceUpdateCallback arrivalCallback)

void yRegisterDeviceArrivalCallback(yDeviceUpdateCallback arrivalCallback)

procedure yRegisterDeviceArrivalCallback(arrivalCallback: yDeviceUpdateFunc)

procedure yRegisterDeviceArrivalCallback(ByVal arrivalCallback As yDeviceUpdateFunc)
void RegisterDeviceArrivalCallback(yDeviceUpdateFunc arrivalCallback)

synchronized static void RegisterDeviceArrivalCallback(DeviceArrivalCallback arrivalCallback)
def RegisterDeviceArrivalCallback(arrivalCallback)

This callback will be invoked while yUpdat eDevi ceLi st is running. You will have to call this function
on a regular basis.

Parameters :
arrivalCallback a procedure taking a YMbdul e parameter, or nul |

136 www.yoctopuce.com

19. High-level API Reference

YAPI.RegisterDeviceRemovalCallback() YAPI
yRegisterDeviceRemovalCallback()

Register a callback function, to be called each time a device is unpluged.

function yRegisterDeviceRemovalCallback(removalCallback)

function RegisterDeviceRemovalCallback(removalCallback)

function yRegisterDeviceRemovalCallback($removalCallback)

m void yRegisterDeviceRemovalCallback(yDeviceUpdateCallback removalCallback)

void yRegisterDeviceRemovalCallback(yDeviceUpdateCallback removalCallback)

procedure yRegisterDeviceRemovalCallback(removalCallback: yDeviceUpdateFunc)

procedure yRegisterDeviceRemovalCallback(ByVal removalCallback As yDeviceUpdateFunc)
void RegisterDeviceRemovalCallback(yDeviceUpdateFunc removalCallback)

synchronized static void RegisterDeviceRemovalCallback(DeviceRemovalCallback removalCallback)
def RegisterDeviceRemovalCallback(removalCallback)

This callback will be invoked while yUpdat eDevi celLi st is running. You will have to call this function
on a regular basis.

Parameters :
removalCallback a procedure taking a YMbdul e parameter, or nul |

www.yoctopuce.com 137

19. High-level API Reference

YAPI.RegisterHub() YAPI
yRegisterHub()

Setup the Yoctopuce library to use modules connected on a given machine.

[is |function yRegisterHub(url, errmsg)
[nodej s | function RegisterHub(url, errmsg)
[php | function yRegisterHub($url, &$errmsg)
YRETCODE yRegisterHub(const string& url, string& errmsg)
YRETCODE yRegisterHub(NSString * url, NSError** errmsg)
function yRegisterHub(url: string, var errmsg: string): integer
[vb |function yRegisterHub(ByVal url As String,

ByRef errmsg As String) As Integer
int RegisterHub(string url, ref string errmsg)
synchronized static int RegisterHub(String url)
def RegisterHub(url, errmsg=None)

The parameter will determine how the API will work. Use the follwing values:

ush: When the usb keyword is used, the API will work with devices connected directly to the USB bus.
Some programming languages such a Javascript, PHP, and Java don't provide direct access to USB
harware, so usb will not work with these. In this case, use a VirtualHub or a networked YoctoHub (see
below).

X.X.x.x or hostname: The API will use the devices connected to the host with the given IP address or
hostname. That host can be a regular computer running a VirtualHub, or a networked YoctoHub such
as YoctoHub-Ethernet or YoctoHub-Wireless. If you want to use the VirtualHub running on you local
computer, use the IP address 127.0.0.1.

callback: that keywork make the API run in "HTTP Callback” mode. This a special mode allowing to
take control of Yoctopuce devices through a NAT filter when using a VirtualHub ou a networked
YoctoHub. You only need to configure your hub to call your server script on a regular basis. This mode
is currently available for PHP and Node.JS only.

Be aware that only one application can use direct USB access at a given time on a machine. Multiple
access would cause conflicts while trying to access the USB modules. In particular, this means that you
must stop the VirtualHub software before starting an application that uses direct USB access. The
workaround for this limitation is to setup the library to use the VirtualHub rather than direct USB access.

If acces control has been activated on the hub, virtual or not, you want to reach, the URL parameter
should look like:

htt p://usernane: passwor d@dr esse: port

You can call RegisterHub several times to connect to several machines.

Parameters :
url a string containing either "usb","callback" or the root URL of the hub to monitor
errmsg a string passed by reference to receive any error message.

Returns :
YAPI _SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

138 www.yoctopuce.com

19. High-level API Reference

YAPI.RegisterHubDiscoveryCallback() YAPI
yRegisterHubDiscoveryCallback()

Register a callback function, to be called each time a network hub or a VirtualHub is detected on the
local network.

void RegisterHubDiscoveryCallback(NewHubCallback callback)

Parameters :
callback a procedure taking a two string as parameter, or null

www.yoctopuce.com 139

19. High-level API Reference

YAPI.RegisterLogFunction() YAPI
yRegisterLogFunction()

Registers a log callback function.

[cpp | void yRegisterLogFunction(yLogFunction logfun)

void yRegisterLogFunction(yLogCallback logfun)

procedure yRegisterLogFunction(logfun: yLogFunc)
procedure yRegisterLogFunction(ByVal logfun As yLogFunc)
[cs |void RegisterLogFunction(yLogFunc logfun)

[java |void RegisterLogFunction(LogCallback logfun)

def RegisterLogFunction(logfun)

This callback will be called each time the API have something to say. Quite usefull to debug the API.

Parameters :

logfun a procedure taking a string parameter, or nul |

140 www.yoctopuce.com

19. High-level API Reference

YAPI.SelectArchitecture() YAPI
ySelectArchitecture()

Select the architecture or the library to be loaded to access to USB.

def SelectArchitecture(arch)

By default, the Python library automatically detects the appropriate library to use. However, for Linux
ARM, it not possible to reliably distinguish between a Hard Float (armhf) and a Soft Float (armel) install.
For in this case, it is therefore recommended to manually select the proper architecture by calling
Sel ect Archi t ect ure() before any other call to the library.

Vs

Parameters :

arch A string containing the architecture to use. Possibles value are: "ar mhf" "armel ",
"i386","x86_64""32bit", "64bit"

Returns :
nothing.

On failure, throws an exception.

www.yoctopuce.com 141

19. High-level API Reference

YAPI.SetDelegate() YAPI
ySetDelegate()

(Objective-C only) Register an object that must follow the procol YDevi ceHot Pl ug.
void ySetDelegate(id object)

The methodes yDeviceArrival and yDevi ceRemoval will be invoked while
yUpdat eDevi celLi st is running. You will have to call this function on a regular basis.

Parameters :
object an object that must follow the procol YAPI Del egat e, or ni |

142 www.yoctopuce.com

19. High-level API Reference

YAPI.SetTimeout() YAPI
ySetTimeout()

Invoke the specified callback function after a given timeout.

[is |function ySetTimeout(callback, ms_timeout, arguments)
[nodej s | function SetTimeout(callback, ms_timeout, arguments)

This function behaves more or less like Javascript set Ti meout , but during the waiting time, it will call
yHandl eEvent s and yUpdat eDevi ceLi st periodically, in order to keep the API up-to-date with
current devices.

~

Parameters :

callback the function to call after the timeout occurs. On Microsoft Internet Explorer, the callback must
be provided as a string to be evaluated.

ms_timeout an integer corresponding to the duration of the timeout, in milliseconds.

arguments additional arguments to be passed to the callback function can be provided, if needed (not
supported on Microsoft Internet Explorer).

Returns :
YAPI _SUCCESS when the call succeeds. On failure, throws an exception or returns a negative error
code.

www.yoctopuce.com 143

19. High-level API Reference

YAPI.Sleep() YAPI
ySleep()

Pauses the execution flow for a specified duration.

[is |function ySleep(ms_duration, errmsg)
[nodej s | function Sleep(ms_duration, errmsg)
[php_|function ySleep($ms_duration, &$errmsg)
YRETCODE ySleep(unsigned ms_duration, string& errmsg)
YRETCODE ySleep(unsigned ms_duration, NSError ** errmsg)
function ySleep(ms_duration: integer, var errmsg: string): integer
[vb |function ySleep(ByVal ms_duration As Integer,
ByRef errmsg As String) As Integer
int Sleep(int ms_duration, ref string errmsg)
int Sleep(long ms_duration)
def Sleep(ms_duration, errmsg=None)

This function implements a passive waiting loop, meaning that it does not consume CPU cycles
significatively. The processor is left available for other threads and processes. During the pause, the
library nevertheless reads from time to time information from the Yoctopuce modules by calling
yHandl eEvent s() , in order to stay up-to-date.

This function may signal an error in case there is a communication problem while contacting a module.

Parameters :
ms_duration an integer corresponding to the duration of the pause, in milliseconds.
errmsg a string passed by reference to receive any error message.
Returns :
YAPI _SUCCESS when the call succeeds. On failure, throws an exception or returns a negative error
code.

144 www.yoctopuce.com

19. High-level API Reference

YAPI.UnregisterHub() YAPI
yUnregisterHub()

Setup the Yoctopuce library to no more use modules connected on a previously registered machine
with RegisterHub.

[is |function yUnregisterHub(url)

[nodej s | function UnregisterHub(url)

function yUnregisterHub($url)

[cpp | void yUnregisterHub(const string& url)

[m |void yUnregisterHub(NSString * url)

procedure yUnregisterHub(url: string)

procedure yUnregisterHub(ByVal url As String)

[cs |void UnregisterHub(string url)

synchronized static void UnregisterHub(String url)
def UnregisterHub(url)

Parameters :
url a string containing either "usb" or the

www.yoctopuce.com 145

19. High-level API Reference

YAPI.UpdateDeviceList() YAPI
yUpdateDeviceList()

Triggers a (re)detection of connected Yoctopuce modules.

[is |function yUpdateDeviceList(errmsg)

[nodej s | function UpdateDeviceList(errmsg)

[php | function yUpdateDeviceList(&$errmsg)

YRETCODE yUpdateDeviceList(string& errmsg)

YRETCODE yUpdateDeviceList(NSError** errmsg)

[pas |function yUpdateDeviceList(var errmsg: string): integer

[vb |function yUpdateDeviceList(ByRef errmsg As String) As YRETCODE
YRETCODE UpdateDevicelList(ref string errmsg)

int UpdateDeviceList()

def UpdateDeviceList(errmsg=None)

The library searches the machines or USB ports previously registered using yRegi st er Hub() , and
invokes any user-defined callback function in case a change in the list of connected devices is
detected.

This function can be called as frequently as desired to refresh the device list and to make the
application aware of hot-plug events.

p
Parameters :
errmsg a string passed by reference to receive any error message.

Returns :
YAPI _SUCCESS when the call succeeds. On failure, throws an exception or returns a negative error
code.

146 www.yoctopuce.com

19. High-level API Reference

YAPI.UpdateDeviceList_async() YAPI
yUpdateDeviceList_async()

Triggers a (re)detection of connected Yoctopuce modules.

function yUpdateDeviceList_async(callback, context)
[nodej s | function UpdateDeviceList_async(callback, context)

The library searches the machines or USB ports previously registered using yRegi st er Hub() , and
invokes any user-defined callback function in case a change in the list of connected devices is
detected.

This function can be called as frequently as desired to refresh the device list and to make the
application aware of hot-plug events.

This asynchronous version exists only in Javascript. It uses a callback instead of a return value in order
to avoid blocking Firefox Javascript VM that does not implement context switching during blocking I/O
calls.

Parameters :
callback callback function that is invoked when the result is known. The callback function receives three

arguments: the caller-specific context object, the result code (YAPI _SUCCESS if the operation
completes successfully) and the error message.

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

www.yoctopuce.com 147

19. High-level API Reference

19.2. Module control interface

This interface is identical for all Yoctopuce USB modules. It can be used to control the module global
parameters, and to enumerate the functions provided by each module.

In order to use the functions described here, you should include:

<script type="text/javascript' src="yocto_api.js"></script>
nodej s | var yoctolib = require(‘yoctolib’);

var YAPI = yoctolib.YAPI;

var YModule = yoctolib.YModule;

php | require_once('yocto_api.php");
#include "yocto_api.h"
#import "yocto_api.h"
uses yocto_api;
yocto_api.vb
yocto_api.cs
import com.yoctopuce.YoctoAPl.YModule;
from yocto_api import *

Global functions
yFindModule(func)

Allows you to find a module from its serial number or from its logical name.
yFirstModule()
Starts the enumeration of modules currently accessible.

YModul e methods
module - describe()

Returns a descriptive text that identifies the module.
module - download(pathname)

Downloads the specified built-in file and returns a binary buffer with its content.
module - functionCount()

Returns the number of functions (beside the "module” interface) available on the module.
module - functionld(functionindex)

Retrieves the hardware identifier of the nth function on the module.
module - functionName(functionindex)

Retrieves the logical name of the nth function on the module.
module - functionValue(functionindex)

Retrieves the advertised value of the nth function on the module.
module - get_beacon()

Returns the state of the localization beacon.
module - get_errorMessage()

Returns the error message of the latest error with this module object.
module - get_errorType()

Returns the numerical error code of the latest error with this module object.
module - get_firmwareRelease()

Returns the version of the firmware embedded in the module.
module - get_hardwareld()

Returns the unique hardware identifier of the module.

module - get_icon2d()

148 www.yoctopuce.com

19. High-level API Reference

Returns the icon of the module.
module - get_lastLogs()

Returns a string with last logs of the module.
module - get_logicalName()

Returns the logical name of the module.

module - get_luminosity()
Returns the luminosity of the module informative leds (from 0O to 100).

module - get_persistentSettings()
Returns the current state of persistent module settings.

module - get_productld()
Returns the USB device identifier of the module.

module - get_productName()
Returns the commercial name of the module, as set by the factory.

module - get_productRelease()
Returns the hardware release version of the module.

module - get_rebootCountdown()

Returns the remaining number of seconds before the module restarts, or zero when no reboot has been
scheduled.

module - get_serialNumber()
Returns the serial number of the module, as set by the factory.

module - get_upTime()
Returns the number of milliseconds spent since the module was powered on.

module - get_usbBandwidth()
Returns the number of USB interfaces used by the module.

module - get_usbCurrent()
Returns the current consumed by the module on the USB bus, in milli-amps.

module - get_userData()
Returns the value of the userData attribute, as previously stored using method set _user Dat a.

module - isOnline()
Checks if the module is currently reachable, without raising any error.

module -isOnline_async(callback, context)
Checks if the module is currently reachable, without raising any error.

module - load(msValidity)
Preloads the module cache with a specified validity duration.

module - load_async(msValidity, callback, context)

Preloads the module cache with a specified validity duration (asynchronous version).
module - nextModule()

Continues the module enumeration started using Y Fi r st Modul e() .
module - reboot(secBeforeReboot)

Schedules a simple module reboot after the given number of seconds.
module - revertFromFlash()

Reloads the settings stored in the nonvolatile memory, as when the module is powered on.
module - saveToFlash()

Saves current settings in the nonvolatile memory of the module.

module - set_beacon(newval)
Turns on or off the module localization beacon.

www.yoctopuce.com 149

19. High-level API Reference

module - set_logicalName(newval)
Changes the logical name of the module.

module - set_luminosity(newval)
Changes the luminosity of the module informative leds.

module - set_usbBandwidth(newval)
Changes the number of USB interfaces used by the module.

module - set_userData(data)

Stores a user context provided as argument in the userData attribute of the function.

module - triggerFirmwareUpdate(secBeforeReboot)
Schedules a module reboot into special firmware update mode.

module - wait_async(callback, context)

Waits for all pending asynchronous commands on the module to complete, and invoke the user-provided

callback function.

150

www.yoctopuce.com

19. High-level API Reference

YModule.FindModule() YModule
yFindModule()

Allows you to find a module from its serial number or from its logical name.

function yFindModule(func)

[nodej s | function FindModule(func)

function yFindModule($func)

YModule* yFindModule(string func)

+(YModule*) yFindModule : (NSString*) func

function yFindModule(func: string): TYModule

function yFindModule(ByVal func As String) As YModule
[cs | 'YModule FindModule(string func)

[java | YModule FindModule(String func)

def FindModule(func)

This function does not require that the module is online at the time it is invoked. The returned object is
nevertheless valid. Use the method YModul e. i sOnl i ne() to test if the module is indeed online at a
given time. In case of ambiguity when looking for a module by logical nhame, no error is notified: the first
instance found is returned. The search is performed first by hardware name, then by logical name.

~

Parameters :
func a string containing either the serial number or the logical name of the desired module

Returns :
a YMbdul e object allowing you to drive the module or get additional information on the module.

www.yoctopuce.com 151

19. High-level API Reference

YModule.FirstModule() YModule
yFirstModule()

Starts the enumeration of modules currently accessible.

[is |function yFirstModule()
[nodej s | function FirstModule()

[php | function yFirstModule()

YModule* yFirstModule()

YModule* yFirstModule()

function yFirstModule(): TYModule
function yFirstModule() As YModule
YModule FirstModule()

YModule FirstModule()

def FirstModule()

Use the method YMbdul e. next Modul e() to iterate on the next modules.

Returns :

a pointer to a YModul e object, corresponding to the first module currently online, or a hul | pointer if
there are none.

152 www.yoctopuce.com

19. High-level API Reference

module - describe()

YModule

Returns a descriptive text that identifies the module.

[is |function describe()

function describe()

function describe()

string describe()
-(NSString*) describe
function describe(): string
function describe() As String
string describe()

String describe()

def describe()

The text may include either the logical name or the serial number of the module.

Returns :
a string that describes the module

www.yoctopuce.com

153

19. High-level API Reference

module - download() YModule

Downloads the specified built-in file and returns a binary buffer with its content.

[is |function download(pathname)

[nodej s | function download(pathname)

[php | function download($pathname)

string download(string pathname)

-(NSData*) download : (NSString*) pathname

[pas_|function download(pathname: string): TByteArray
[vb |function download() As Byte

def download(pathname)

YModule target download pathname

s N
Parameters :
pathname name of the new file to load

Returns :
a binary buffer with the file content

On failure, throws an exception or returns an empty content.

154 www.yoctopuce.com

19. High-level API Reference

module - functionCount() YModule

Returns the number of functions (beside the "module"” interface) available on the module.

function functionCount()

function functionCount()

function functionCount()

int functionCount()

-(int) functionCount

function functionCount(): integer
function functionCount() As Integer
int functionCount()

def functionCount()

Returns :
the number of functions on the module

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 155

19. High-level API Reference

module - functionld() YModule

Retrieves the hardware identifier of the nth function on the module.

function functionld(functionindex)

[nodej s | function functionld(functionindex)

[php | function functionld($functionindex)

string functionld(int functionindex)

-(NSString*) functionld : (int) functionindex

[pas|function functionld(functionindex: integer): string

[vb |function functionld(ByVal functionindex As Integer) As String
string functionld(int functionindex)

def functionld(functionindex)

Parameters :
functionindex the index of the function for which the information is desired, starting at O for the first
function.
Returns :

a string corresponding to the unambiguous hardware identifier of the requested module function

On failure, throws an exception or returns an empty string.

156 www.yoctopuce.com

19. High-level API Reference

module - functionName() YModule

Retrieves the logical name of the nth function on the module.

function functionName(functionindex)

function functionName(functionindex)

function functionName($functionindex)

string functionName(int functionindex)

-(NSString*) functionName : (int) functionindex

function functionName(functionindex: integer): string

function functionName(ByVal functionindex As Integer) As String
string functionName(int functionindex)

def functionName(functionindex)

Ve

Parameters :
functionindex the index of the function for which the information is desired, starting at O for the first
function.
Returns :

a string corresponding to the logical name of the requested module function

On failure, throws an exception or returns an empty string.

www.yoctopuce.com 157

19. High-level API Reference

module - functionValue() YModule

Retrieves the advertised value of the nth function on the module.

function functionValue(functionindex)

[nodej s | function functionValue(functionindex)

[php_|function functionValue($functionindex)

string functionValue(int functionindex)

-(NSString*) functionValue : (int) functionindex

[pas |function functionValue(functionindex: integer): string

[vb |function functionValue(ByVal functionindex As Integer) As String
string functionValue(int functionindex)

def functionValue(functionindex)

Parameters :
functionindex the index of the function for which the information is desired, starting at O for the first
function.
Returns :

a short string (up to 6 characters) corresponding to the advertised value of the requested module function

On failure, throws an exception or returns an empty string.

158 www.yoctopuce.com

19. High-level API Reference

module - get_beacon() YModule
module - beacon()

Returns the state of the localization beacon.

function get_beacon()

function get_beacon()

function get_beacon()
Y_BEACON_enum get_beacon()
-(Y_BEACON_enum) beacon
function get_beacon(): Integer
function get_beacon() As Integer
int get_beacon()

int get_beacon()

def get_beacon()

YModule target get_beacon

Returns :
either Y _BEACON_OFF or Y_BEACON_ON, according to the state of the localization beacon

On failure, throws an exception or returns Y_BEACON_| NVALI D.

www.yoctopuce.com 159

19. High-level API Reference

module - get_errorMessage() YModule
module - errorMessage()

Returns the error message of the latest error with this module object.

[is |function get_errorMessage()
[nodej s | function get_errorMessage()

function get_errorMessage()

string get_errorMessage()
-(NSString*) errorMessage

[pas |function get_errorMessage(): string
function get_errorMessage() As String
string get_errorMessage()

String get_errorMessage()

def get_errorMessage()

This method is mostly useful when using the Yoctopuce library with exceptions disabled.

Returns :
a string corresponding to the latest error message that occured while using this module object

160 www.yoctopuce.com

19. High-level API Reference

module - get_errorType() YModule
module - errorType()

Returns the numerical error code of the latest error with this module object.

function get_errorType()

function get_errorType()

function get_errorType()

YRETCODE get_errorType()

function get_errorType(): YRETCODE
function get_errorType() As YRETCODE
YRETCODE get_errorType()

int get_errorType()

def get_errorType()

This method is mostly useful when using the Yoctopuce library with exceptions disabled.

Returns :
a number corresponding to the code of the latest error that occured while using this module object

www.yoctopuce.com 161

19. High-level API Reference

module - get_firmwareRelease()
module - firmwareRelease()

YModule

Returns the version of the firmware embedded in the module.

[is |function get_firmwareRelease()
[nodej s | function get_firmwareRelease()
function get_firmwareRelease()

string get_firmwareRelease()
-(NSString*) firmwareRelease

[pas |function get_firmwareRelease(): string
function get_firmwareRelease() As String
string get_firmwareRelease()

String get_firmwareRelease()

def get_firmwareRelease()

YModule target get_firmwareRelease

Returns :
a string corresponding to the version of the firmware embedded in the module

On failure, throws an exception or returns Y_FI RMAMARERELEASE | NVALI D.

162

www.yoctopuce.com

19. High-level API Reference

module - get_hardwareld() YModule
module - hardwareld()

Returns the unique hardware identifier of the module.

function get_hardwareld()

function get_hardwareld()

function get_hardwareld()

string get_hardwareld()
-(NSString*) hardwareld

function get_hardwareld() As String
string get_hardwareld()

String get_hardwareld()

def get_hardwareld()

The unique hardware identifier is made of the device serial number followed by string ".module".

Returns :
a string that uniquely identifies the module

www.yoctopuce.com 163

19. High-level API Reference

module - get_icon2d()
module -icon2d()

YModule

Returns the icon of the module.

[i's |function get_icon2d()
[nodej s | function get_icon2d()

[php | function get_icon2d()

string get_icon2d()

-(NSData*) icon2d

[pas|function get_icon2d(): TByteArray
[vb |function get_icon2d() As Byte

def get_icon2d()

YModule target get_icon2d

The icon is a PNG image and does not exceeds 1536 bytes.

Returns :
a binary buffer with module icon, in png format.

164

www.yoctopuce.com

19. High-level API Reference

module - get_lastLogs()
module - lastLogs()

YModule

Returns a string with last logs of the module.

function get_lastLogs()
function get_lastLogs()
function get_lastLogs()

string get_lastLogs()
-(NSString*) lastLogs

function get_lastLogs(): string
function get_lastLogs() As String
string get_lastLogs()

String get_lastLogs()

def get_lastLogs()

YModule target get_lastLogs

This method return only logs that are still in the module.

Returns :
a string with last logs of the module.

www.yoctopuce.com

165

19. High-level API Reference

module - get_logicalName()
module - logicalName()

YModule

Returns the logical name of the module.

[is |function get_logicalName()
[nodej s | function get_logicalName()

[php | function get_logicalName()

string get_logicalName()
-(NSString*) logicalName

[pas |function get_logicalName(): string
[vb |function get_logicalName() As String
string get_logicalName()

String get_logicalName()

def get_logicalName()

YModule target get_logicalName

Returns :
a string corresponding to the logical name of the module

On failure, throws an exception or returns Y_LOG CALNAME_| NVALI D.

166

www.yoctopuce.com

19. High-level API Reference

module - get_luminosity() YModule
module - luminosity()

Returns the luminosity of the module informative leds (from 0 to 100).

function get_luminosity()

function get_luminosity()

function get_luminosity()

int get_luminosity()

-(int) luminosity

[pas_|function get_luminosity(): Longint
function get_luminosity() As Integer
int get_luminosity()

int get_luminosity()

def get_luminosity()

YModule target get_luminosity

Returns :
an integer corresponding to the luminosity of the module informative leds (from 0 to 100)

On failure, throws an exception or returns Y_LUM NOSI TY_I NVALI D.

www.yoctopuce.com 167

19. High-level API Reference

module - get_persistentSettings() YModule
module - persistentSettings()

Returns the current state of persistent module settings.

function get_persistentSettings()

function get_persistentSettings()

function get_persistentSettings()
Y_PERSISTENTSETTINGS_enum get_persistentSettings()
-(Y_PERSISTENTSETTINGS_enum) persistentSettings
[pas |function get_persistentSettings(): Integer

[vb |function get_persistentSettings() As Integer

int get_persistentSettings()

int get_persistentSettings()

def get_persistentSettings()

YModule target get_persistentSettings

Returns :
a value among Y_PERSI STENTSETTI NGS_LOADED, Y_PERSI STENTSETTI NGS_SAVED and

Y_PERSI STENTSETTI NGS_MODI FI ED corresponding to the current state of persistent module
settings

On failure, throws an exception or returns Y_PERSI STENTSETTI NGS_| NVALI D.

168 www.yoctopuce.com

19. High-level API Reference

module - get_productld()
module - productld()

YModule

Returns the USB device identifier of the module.

function get_productld()

function get_productld()

function get_productid()

int get_productld()

-(int) productld

function get_productld(): Longint
function get_productld() As Integer
int get_productld()

int get_productld()

def get_productld()

YModule target get_productld

Returns :
an integer corresponding to the USB device identifier of the module

On failure, throws an exception or returns Y_PRCDUCTI D_| NVALI D.

www.yoctopuce.com

169

19. High-level API Reference

module - get_productName()
module - productName()

YModule

Returns the commercial name of the module, as set by the factory.

[is |function get_productName()
[nodej s | function get_productName()

[php | function get_productName()

string get_productName()
-(NSString*) productName

[pas |function get_productName(): string
[vb |function get_productName() As String
string get_productName()

String get_productName()

def get_productName()

YModule target get_productName

Returns :
a string corresponding to the commercial name of the module, as set by the factory

On failure, throws an exception or returns Y_PRODUCTNAME_| NVALI D.

170

www.yoctopuce.com

19. High-level API Reference

module - get_productRelease() YModule
module - productRelease()

Returns the hardware release version of the module.

function get_productRelease()

function get_productRelease()

function get_productRelease()

int get_productRelease()

-(int) productRelease

function get_productRelease(): Longint
function get_productRelease() As Integer
int get_productRelease()

int get_productRelease()

def get_productRelease()

YModule target get_productRelease

Returns :
an integer corresponding to the hardware release version of the module

On failure, throws an exception or returns Y_PRODUCTRELEASE_| NVALI D.

www.yoctopuce.com 171

19. High-level API Reference

module - get_rebootCountdown() YModule
module - rebootCountdown()

Returns the remaining number of seconds before the module restarts, or zero when no reboot has
been scheduled.

[is |function get_rebootCountdown()
[nodej s | function get_rebootCountdown()

[php | function get_rebootCountdown()

int get_rebootCountdown()

-(int) rebootCountdown

[pas |function get_rebootCountdown(): Longint
[vb |function get_rebootCountdown() As Integer
int get_rebootCountdown()

int get_rebootCountdown()

def get_rebootCountdown()

YModule target get_rebootCountdown

Returns :

an integer corresponding to the remaining number of seconds before the module restarts, or zero when no
reboot has been scheduled

On failure, throws an exception or returns Y_REBOOTCOUNTDOMN | NVALI D.

172 www.yoctopuce.com

19. High-level API Reference

module - get_serialNumber() YModule
module - serialNumber()

Returns the serial number of the module, as set by the factory.

function get_serialNumber()
function get_serialNumber()
function get_serialNumber()

string get_serialNumber()
-(NSString*) serialNumber

function get_serialNumber(): string
function get_serialNumber() As String
string get_serialNumber()

String get_serialNumber()

def get_serialNumber()

YModule target get_serialNumber

Returns :
a string corresponding to the serial number of the module, as set by the factory

On failure, throws an exception or returns Y_SERI ALNUVBER _| NVALI D.

www.yoctopuce.com 173

19. High-level API Reference

module - get_upTime() YModule
module - upTime()

Returns the number of milliseconds spent since the module was powered on.

[is |function get_upTime()
[nodej s | function get_upTime()

[php | function get_upTime()

s64 get_upTime()

-(s64) upTime

[pas |function get_upTime(): int64
[vb |function get_upTime() As Long
long get_upTime()

long get_upTime()

def get_upTime()

YModule target get_upTime

Returns :
an integer corresponding to the number of milliseconds spent since the module was powered on

On failure, throws an exception or returns Y_UPTI ME_I NVALI D.

174 www.yoctopuce.com

19. High-level API Reference

module - get_usbBandwidth() YModule
module - usbBandwidth()

Returns the number of USB interfaces used by the module.

function get_usbBandwidth()

function get_usbBandwidth()

function get_usbBandwidth()
Y_USBBANDWIDTH_enum get_usbhBandwidth()
-(Y_USBBANDWIDTH_enum) usbBandwidth
function get_usbBandwidth(): Integer
function get_usbBandwidth() As Integer
int get_usbBandwidth()

int get_usbBandwidth()

def get_usbBandwidth()

YModule target get_usbBandwidth

Returns :

either Y_USBBANDW DTH_SI MPLE or Y_USBBANDW DTH_DOUBLE, according to the number of
USB interfaces used by the module

On failure, throws an exception or returns Y_USBBANDW DTH | NVALI D.

www.yoctopuce.com 175

19. High-level API Reference

module - get_usbCurrent() YModule
module - usbCurrent()

Returns the current consumed by the module on the USB bus, in milli-amps.

[is |function get_usbCurrent()
[nodej s | function get_usbCurrent()

[php | function get_usbCurrent()

int get_usbCurrent()

-(int) usbCurrent

[pas |function get_usbCurrent(): LongInt
[vb |function get_usbCurrent() As Integer
int get_usbCurrent()

int get_usbCurrent()

def get_usbCurrent()

YModule target get_usbCurrent

Returns :
an integer corresponding to the current consumed by the module on the USB bus, in milli-amps

On failure, throws an exception or returns Y_USBCURRENT _| NVALI D.

176 www.yoctopuce.com

19. High-level API Reference

module - get_userData() YModule
module - userData()

Returns the value of the userData attribute, as previously stored using method set _user Dat a.

function get_userData()

function get_userData()

function get_userData()

[cpp_|void * get_userData()

-(void*) userData

function get_userData(): Tobject
function get_userData() As Object
object get_userData()

Object get_userData()

def get_userData()

This attribute is never touched directly by the API, and is at disposal of the caller to store a context.

Returns :
the object stored previously by the caller.

www.yoctopuce.com 177

19. High-level API Reference

module - isOnline() YModule

Checks if the module is currently reachable, without raising any error.

[is |function isOnline()
[nodej s | function isOnline()

[php | function isOnline()

bool isOnline()

-(BOOL) isOnline

[pas|function isOnline(): boolean

[vb |function isOnline() As Boolean
bool isOnline()

boolean isOnline()

def isOnline()

If there are valid cached values for the module, that have not yet expired, the device is considered
reachable. No exception is raised if there is an error while trying to contact the requested module.

Returns :
t r ue if the module can be reached, and f al se otherwise

178 www.yoctopuce.com

19. High-level API Reference

module - isOnline_async() YModule

Checks if the module is currently reachable, without raising any error.

function isOnline_async(callback, context)
[nodej s | function isOnline_async(callback, context)

If there are valid cached values for the module, that have not yet expired, the device is considered
reachable. No exception is raised if there is an error while trying to contact the requested module.

This asynchronous version exists only in Javascript. It uses a callback instead of a return value in order
to avoid blocking Firefox Javascript VM that does not implement context switching during blocking 1/0
calls.

~

Parameters :

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving module object and the boolean result

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

www.yoctopuce.com 179

19. High-level API Reference

module - load() YModule

Preloads the module cache with a specified validity duration.

function load(msValidity)

[nodej s | function load(msValidity)

[php | function load($msValidity)

YRETCODE load(int msValidity)

-(YRETCODE) load : (int) msValidity

[pas|function load(msValidity: integer): YRETCODE

[vb |function load(ByVal msValidity As Integer) As YRETCODE
YRETCODE load(int msValidity)

int load(long msValidity)

def load(msValidity)

By default, whenever accessing a device, all module attributes are kept in cache for the standard
duration (5 ms). This method can be used to temporarily mark the cache as valid for a longer period, in
order to reduce network trafic for instance.

Parameters :

msValidity an integer corresponding to the validity attributed to the loaded module parameters, in
milliseconds

Returns :
YAPI _SUCCESS when the call succeeds. On failure, throws an exception or returns a negative error
code.

180 www.yoctopuce.com

19. High-level API Reference

module - load_async() YModule

Preloads the module cache with a specified validity duration (asynchronous version).

[is |function load_async(msValidity, callback, context)
[nodej s | function load_async(msValidity, callback, context)

By default, whenever accessing a device, all module attributes are kept in cache for the standard
duration (5 ms). This method can be used to temporarily mark the cache as valid for a longer period, in
order to reduce network trafic for instance. This asynchronous version exists only in Javascript. It uses
a callback instead of a return value in order to avoid blocking Firefox javascript VM that does not
implement context switching during blocking I/O calls. See the documentation section on asynchronous
Javascript calls for more details.

p
Parameters :
msValidity an integer corresponding to the validity of the loaded module parameters, in milliseconds

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving module object and the error code

(or YAPI _SUCCESS)

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

www.yoctopuce.com 181

19. High-level API Reference

module - nextModule() YModule

Continues the module enumeration started using yFi r st Modul e() .

[is |function nextModule()
[nodej s | function nextModule()
function nextModule()

YModule * nextModule()
-(YModule*) nextModule

[pas_|function nextModule(): TYModule
function nextModule() As YModule
YModule nextModule()

YModule nextModule()

def nextModule()

Returns :

a pointer to a YModul e object, corresponding to the next module found, or a nul | pointer if there are no
more modules to enumerate.

182 www.yoctopuce.com

19. High-level API Reference

module - reboot() YModule

Schedules a simple module reboot after the given number of seconds.

function reboot(secBeforeReboot)
function reboot(secBeforeReboot)
function reboot($secBeforeReboot)

int reboot(int secBeforeReboot)

-(int) reboot : (int) secBeforeReboot
function reboot(secBeforeReboot: Longlint): Longint
function reboot() As Integer

int reboot(int secBeforeReboot)

int reboot(int secBeforeReboot)

def reboot(secBeforeReboot)

YModule target reboot secBeforeReboot

Ve

Parameters :
secBeforeReboot number of seconds before rebooting

Returns :

YAPI _SUCCESS when the call succeeds. On failure, throws an exception or returns a negative error
code.

www.yoctopuce.com 183

19. High-level API Reference

module - revertFromFlash() YModule

Reloads the settings stored in the nonvolatile memory, as when the module is powered on.

function revertFromFlash()
[nodej s | function revertFromFlash()

[php | function revertFromFlash()

int revertFromFlash()

-(int) revertFromFlash

[pas |function revertFromFlash(): Longint
[vb |function revertFromFlash() As Integer
int revertFromFlash()

int revertFromFlash()

def revertFromFlash()

YModule target revertFromFlash

Returns :

YAPI _SUCCESS when the call succeeds. On failure, throws an exception or returns a negative error
code.

184 www.yoctopuce.com

19. High-level API Reference

module - saveToFlash() YModule

Saves current settings in the nonvolatile memory of the module.

function saveToFlash()

function saveToFlash()

function saveToFlash()

int saveToFlash()

-(int) saveToFlash

function saveToFlash(): Longint
function saveToFlash() As Integer
int saveToFlash()

int saveToFlash()

def saveToFlash()

YModule target saveToFlash

Warning: the number of allowed save operations during a module life is limited (about 100000 cycles).
Do not call this function within a loop.

Returns :
YAPI _SUCCESS when the call succeeds. On failure, throws an exception or returns a negative error
code.

www.yoctopuce.com 185

19. High-level API Reference

module - set_beacon()
module - setBeacon()

YModule

Turns on or off the module localization beacon.

[is |function set_beacon(newval)
[nodej s | function set_beacon(newval)

function set_beacon($newval)

int set_beacon(Y_BEACON_enum newval)
-(int) setBeacon : (Y_BEACON_enum) newval
[pas |function set_beacon(newval: Integer): integer
[vb |function set_beacon(ByVal newval As Integer) As Integer
int set_beacon(int newval)

int set_beacon(int newval)

def set_beacon(newval)

YModule target set_beacon newval

Parameters :
newval either Y BEACON_OFF or Y_BEACON_ON

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

186

www.yoctopuce.com

19. High-level API Reference

module - set_logicalName()
module - setLogicalName()

YModule

Changes the logical name of the module.

function set_logicalName(newval)

function set_logicalName(newval)

function set_logicalName($newval)

int set_logicalName(const string& newval)

-(int) setLogicalName : (NSString*) newval
function set_logicalName(newval: string): integer
function set_logicalName(ByVal newval As String) As Integer
int set_logicalName(string newval)

int set_logicalName(String newval)

def set_logicalName(newval)

YModule target set_logicalName newval

You can use yCheckLogi cal Name() prior to this call to make sure that your parameter is valid.
Remember to call the saveToFl ash() method of the module if the modification must be kept.

Parameters :
newval a string corresponding to the logical name of the module

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com

187

19. High-level API Reference

module - set_luminosity()
module - setLuminosity()

YModule

Changes the luminosity of the module informative leds.

[is |function set_luminosity(newval)

[nodej s | function set_luminosity(newval)

[php_|function set_luminosity($newval)

int set_luminosity(int newval)

-(int) setLuminosity : (int) newval

[pas|function set_luminosity(newval: Longint): integer
[vb |function set_luminosity(ByVal newval As Integer) As Integer
int set_luminosity(int newval)

int set_luminosity(int newval)

def set_luminosity(newval)

YModule target set_luminosity newval

The parameter is a value between 0 and 100. Remember to call the saveToFl ash() method of the

module if the modification must be kept.

Parameters :
newval an integer corresponding to the luminosity of the module informative leds

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

188

www.yoctopuce.com

19. High-level API Reference

module - set_usbBandwidth() YModule
module - setUsbBandwidth()

Changes the number of USB interfaces used by the module.

function set_usbBandwidth(newval)

function set_usbBandwidth(newval)

function set_usbBandwidth($newval)

int set_usbBandwidth(Y_USBBANDWIDTH_enum newval)
-(int) setUsbBandwidth : (Y_USBBANDWIDTH_enum) newval
function set_usbBandwidth(newval: Integer): integer
function set_usbBandwidth(ByVal newval As Integer) As Integer
int set_usbBandwidth(int newval)

int set_usbBandwidth(int newval)

def set_usbBandwidth(newval)

YModule target set_usbBandwidth newval

You must reboot the module after changing this setting.

Ve

Parameters :

newval either Y_USBBANDW DTH_SI MPLE or Y_USBBANDW DTH_DOUBLE, according to the
number of USB interfaces used by the module

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 189

19. High-level API Reference

module - set_userData() YModule
module - setUserData()

Stores a user context provided as argument in the userData attribute of the function.

[is |function set_userData(data)

[nodej s | function set_userData(data)

function set_userData($data)

[cpp | void set_userData(void* data)

-(void) setUserData : (void*) data

procedure set_userData(data: Tobject)
procedure set_userData(ByVal data As Object)
void set_userData(object data)

void set_userData(Object data)

def set_userData(data)

This attribute is never touched by the API, and is at disposal of the caller to store a context.

Parameters :
data any kind of object to be stored

190 www.yoctopuce.com

19. High-level API Reference

module - triggerFirmwareUpdate()

YModule

Schedules a module reboot into special firmware update mode.

function triggerFirmwareUpdate(secBeforeReboot)
function triggerFirmwareUpdate(secBeforeReboot)
function triggerFirmwareUpdate($secBeforeReboot)

int triggerFirmwareUpdate(int secBeforeReboot)

-(int) triggerFirmwareUpdate : (int) secBeforeReboot
function triggerFirmwareUpdate(secBeforeReboot: Longint): Longint
function triggerFirmwareUpdate() As Integer

int triggerFirmwareUpdate(int secBeforeReboot)

int triggerFirmwareUpdate(int secBeforeReboot)

def triggerFirmwareUpdate(secBeforeReboot)

YModule target triggerFirmwareUpdate secBeforeReboot

Ve

Parameters :
secBeforeReboot number of seconds before rebooting

Returns :

code.

YAPI _SUCCESS when the call succeeds. On failure, throws an exception or returns a negative error

www.yoctopuce.com

191

19. High-level API Reference

module - wait_async() YModule

Waits for all pending asynchronous commands on the module to complete, and invoke the user-
provided callback function.

[is |function wait_async(callback, context)
[nodej s | function wait_async(callback, context)

The callback function can therefore freely issue synchronous or asynchronous commands, without
risking to block the Javascript VM.

Parameters :

callback callback function that is invoked when all pending commands on the module are completed. The
callback function receives two arguments: the caller-specific context object and the receiving
function object.

context caller-specific object that is passed as-is to the callback function

Returns :
nothing.

192 www.yoctopuce.com

19. High-level API Reference

19.3. GenericSensor function interface

The Yoctopuce application programming interface allows you to read an instant measure of the sensor,
as well as the minimal and maximal values observed.

In order to use the functions described here, you should include:

<script type="text/javascript' src="yocto_genericsensor.js"></script>

nodej s | var yoctolib = require(‘yoctolib’);

var YGenericSensor = yoctolib.YGenericSensor;
php | require_once('yocto_genericsensor.php');

#include "yocto_genericsensor.h"

#import "yocto_genericsensor.h”

uses yocto_genericsensor;

yocto_genericsensor.vb

yocto_genericsensor.cs

import com.yoctopuce.YoctoAPI.YGenericSensor;

from yocto_genericsensor import *

Global functions
yFindGenericSensor(func)

Retrieves a generic sensor for a given identifier.

yFirstGenericSensor()
Starts the enumeration of generic sensors currently accessible.

YCeneri cSensor methods
genericsensor - calibrateFromPoints(rawValues, refValues)

Configures error correction data points, in particular to compensate for a possible perturbation of the measure
caused by an enclosure.

genericsensor —describe()

Returns a short text that describes the generic sensor in the form
TYPE(NAME) =SERI AL. FUNCTI ONI D.

genericsensor — get_advertisedValue()
Returns the current value of the generic sensor (no more than 6 characters).

genericsensor —get_currentRawValue()
Returns the uncalibrated, unrounded raw value returned by the sensor.

genericsensor —get_currentValue()
Returns the current measured value.

genericsensor - get_errorMessage()
Returns the error message of the latest error with the generic sensor.

genericsensor —get_errorType()
Returns the numerical error code of the latest error with the generic sensor.

genericsensor —get_friendlyName()

Returns a global identifier of the generic sensor in the format MODULE_NAME. FUNCTI ON_NAME.
genericsensor —get_functionDescriptor()

Returns a unique identifier of type YFUN_DESCR corresponding to the function.

genericsensor - get_functionld()
Returns the hardware identifier of the generic sensor, without reference to the module.

genericsensor - get_hardwareld()

Returns the unique hardware identifier of the generic sensor in the form SERI AL. FUNCTI ONI D.

www.yoctopuce.com 193

19. High-level API Reference

genericsensor —get_highestValue()
Returns the maximal value observed.

genericsensor - get_logFrequency()

Returns the datalogger recording frequency for this function, or "OFF" when measures are not stored in the
data logger flash memory.

genericsensor - get_logicalName()
Returns the logical name of the generic sensor.

genericsensor - get_lowestValue()
Returns the minimal value observed.

genericsensor —get_module()

Gets the YMbdul e object for the device on which the function is located.
genericsensor - get_module_async(callback, context)

Gets the YMbdul e object for the device on which the function is located (asynchronous version).
genericsensor —get_recordedData(startTime, endTime)

Retrieves a DataSet object holding historical data for this sensor, for a specified time interval.

genericsensor - get_reportFrequency()

Returns the timed value notification frequency, or "OFF" if timed value notifications are disabled for this
function.

genericsensor —get_resolution()
Returns the resolution of the measured values.

genericsensor - get_signalRange()
Returns the electric signal range used by the sensor.

genericsensor —get_signalUnit()
Returns the measuring unit of the electrical signal used by the sensor.

genericsensor —get_signalValue()
Returns the measured value of the electrical signal used by the sensor.

genericsensor —get_unit()
Returns the measuring unit for the measured value.

genericsensor - get_userData()
Returns the value of the userData attribute, as previously stored using method set _user Dat a.

genericsensor - get_valueRange()
Returns the physical value range measured by the sensor.

genericsensor —isOnline()
Checks if the generic sensor is currently reachable, without raising any error.

genericsensor —isOnline_async(callback, context)
Checks if the generic sensor is currently reachable, without raising any error (asynchronous version).

genericsensor —load(msValidity)

Preloads the generic sensor cache with a specified validity duration.
genericsensor —loadCalibrationPoints(rawValues, refValues)

Retrieves error correction data points previously entered using the method cal i br at eFr onPoi nt s.
genericsensor —load_async(msValidity, callback, context)

Preloads the generic sensor cache with a specified validity duration (asynchronous version).
genericsensor — nextGenericSensor()

Continues the enumeration of generic sensors started using YFi r st Generi cSensor ().

genericsensor —registerTimedReportCallback(callback)
Registers the callback function that is invoked on every periodic timed notification.

194 www.yoctopuce.com

19. High-level API Reference

genericsensor —registerValueCallback(callback)
Registers the callback function that is invoked on every change of advertised value.

genericsensor —set_highestValue(newval)
Changes the recorded maximal value observed.

genericsensor —set_logFrequency(newval)
Changes the datalogger recording frequency for this function.

genericsensor —set_logicalName(newval)
Changes the logical name of the generic sensor.

genericsensor —set_lowestValue(newval)
Changes the recorded minimal value observed.

genericsensor —set_reportFrequency(newval)
Changes the timed value notification frequency for this function.

genericsensor - set_resolution(newval)
Changes the resolution of the measured physical values.

genericsensor —set_signalRange(newval)
Changes the electric signal range used by the sensor.

genericsensor —set_unit(newval)
Changes the measuring unit for the measured value.

genericsensor —set_userData(data)

Stores a user context provided as argument in the userData attribute of the function.

genericsensor —set_valueRange(newval)
Changes the physical value range measured by the sensor.

genericsensor —wait_async(callback, context)

Waits for all pending asynchronous commands on the module to complete, and invoke the user-provided

callback function.

www.yoctopuce.com

195

19. High-level API Reference

YGenericSensor.FindGenericSensor()
yFindGenericSensor()

YGenericSensor

Retrieves a generic sensor for a given identifier.

[is |function yFindGenericSensor(func)

[nodej s | function FindGenericSensor(func)

[php | function yFindGenericSensor($func)

YGenericSensor* yFindGenericSensor(const string& func)
YGenericSensor* yFindGenericSensor(NSString* func)

function yFindGenericSensor(func: string): TYGenericSensor

function yFindGenericSensor(ByVal func As String) As YGenericSensor
YGenericSensor FindGenericSensor(string func)

YGenericSensor FindGenericSensor(String func)

def FindGenericSensor(func)

The identifier can be specified using several formats:

- FunctionLogicalName

- ModuleSerialNumber.Functionldentifier

- ModuleSerialNumber.FunctionLogicalName
- ModuleLogicalName.Functionldentifier

- ModuleLogicalName.FunctionLogicalName

This function does not require that the generic sensor is online at the time it is invoked. The returned
object is nevertheless valid. Use the method YGener i cSensor. i sOnl i ne() to test if the generic
sensor is indeed online at a given time. In case of ambiguity when looking for a generic sensor by
logical name, no error is notified: the first instance found is returned. The search is performed first by

hardware name, then by logical name.

Parameters :
func a string that uniquely characterizes the generic sensor

Returns :
aYGeneri cSensor object allowing you to drive the generic sensor.

196

www.yoctopuce.com

19. High-level API Reference

YGenericSensor.FirstGenericSensor() YGenericSensor
yFirstGenericSensor()

Starts the enumeration of generic sensors currently accessible.

function yFirstGenericSensor()

function FirstGenericSensor()

function yFirstGenericSensor()

YGenericSensor* yFirstGenericSensor()
YGenericSensor* yFirstGenericSensor()

function yFirstGenericSensor(): TYGenericSensor
function yFirstGenericSensor() As YGenericSensor
YGenericSensor FirstGenericSensor()
YGenericSensor FirstGenericSensor()

def FirstGenericSensor()

Use the method YGener i cSensor . next Generi cSensor () to iterate on next generic sensors.

Returns :
a pointer to a YGener i cSensor object, corresponding to the first generic sensor currently online, or a
nul | pointer if there are none.

www.yoctopuce.com 197

19. High-level API Reference

genericsensor - calibrateFromPoints() YGenericSensor

Configures error correction data points, in particular to compensate for a possible perturbation of the
measure caused by an enclosure.

[is |function calibrateFromPoints(rawValues, refValues)

[nodej s | function calibrateFromPoints(rawValues, refValues)

[php_|function calibrateFromPoints($rawValues, $refValues)

int calibrateFromPoints(vector<double> rawValues,
vector<double> refValues)

-(int) calibrateFromPoints : (NSMutableArray*) rawValues
- (NSMutableArray*) refValues

function calibrateFromPoints(rawValues: TDoubleArray,
refValues: TDoubleArray): Longint

procedure calibrateFromPoints()
int calibrateFromPoints(List<double> rawValues,
List<double> refValues)

int calibrateFromPoints(ArrayList<Double> rawValues,
ArrayList<Double> refValues)

def calibrateFromPoints(rawValues, refValues)

[cmd | YGenericSensor target calibrateFromPoints rawValues refValues

It is possible to configure up to five correction points. Correction points must be provided in ascending
order, and be in the range of the sensor. The device will automatically perform a linear interpolation of
the error correction between specified points. Remember to call the saveToFl ash() method of the
modaule if the modification must be kept.

For more information on advanced capabilities to refine the calibration of sensors, please contact
support@yoctopuce.com.

Ve

Parameters :

rawValues array of floating point numbers, corresponding to the raw values returned by the sensor for the
correction points.

refValues array of floating point numbers, corresponding to the corrected

198 www.yoctopuce.com

19. High-level API Reference

genericsensor - describe() YGenericSensor

Returns a short text that describes the generic sensor in the form
TYPE(NAME) =SERI AL. FUNCTI ONI D.

[is |function describe()
[nodej s | function describe()

[php | function describe()

string describe()
-(NSString*) describe
function describe(): string
function describe() As String
string describe()

String describe()

def describe()

More precisely, TYPE is the type of the function, NAME it the name used for the first access to the
function, SERI AL is the serial number of the module if the module is connected or " unr esol ved",
and FUNCTI ONI D is the hardware identifier of the function if the module is connected. For example,
this method returns Rel ay(MyCust omNane. r el ay1l) =RELAYLOL- 123456. rel ayl if the
module is already connected or Rel ay(BadCust oneNan®e. r el ayl) =unr esol ved if the module
has not yet been connected. This method does not trigger any USB or TCP transaction and can
therefore be used in a debugger.

Returns :
a string that describes the generic sensor (ex: Rel ay(MyCust onNane. r el ayl) =RELAYLOL-

123456. rel ayl)

www.yoctopuce.com 199

19. High-level API Reference

genericsensor - get_advertisedValue() YGenericSensor
genericsensor - advertisedValue()

Returns the current value of the generic sensor (no more than 6 characters).

[is |function get_advertisedValue()
[nodej s | function get_advertisedValue()

[php | function get_advertisedValue()

string get_advertisedValue()
-(NSString*) advertisedValue

[pas|function get_advertisedValue(): string

[vb |function get_advertisedValue() As String
string get_advertisedValue()

String get_advertisedValue()

def get_advertisedValue()
YGenericSensor target get_advertisedValue

Returns :
a string corresponding to the current value of the generic sensor (no more than 6 characters). On failure,
throws an exception or returns Y_ADVERT| SEDVALUE_| NVALI D.

200 www.yoctopuce.com

19. High-level API Reference

genericsensor - get_currentRawValue() YGenericSensor
genericsensor - currentRawValue()

Returns the uncalibrated, unrounded raw value returned by the sensor.

function get_currentRawValue()

function get_currentRawValue()

function get_currentRawValue()

double get_currentRawValue()

-(double) currentRawValue

function get_currentRawValue(): double
function get_currentRawValue() As Double
double get_currentRawValue()

double get_currentRawValue()

def get_currentRawValue()
YGenericSensor target get_currentRawValue

Returns :
a floating point number corresponding to the uncalibrated, unrounded raw value returned by the sensor

On failure, throws an exception or returns Y_CURRENTRAW/ALUE_| NVALI D.

www.yoctopuce.com 201

19. High-level API Reference

genericsensor - get_currentValue()
genericsensor - currentValue()

YGenericSensor

Returns the current measured value.

[is |function get_currentValue()

function get_currentValue()

function get_currentValue()

double get_currentValue()

-(double) currentValue

[pas |function get_currentValue(): double

[vb |function get_currentValue() As Double
double get_currentValue()

double get_currentValue()

def get_currentValue()
YGenericSensor target get_currentValue

Returns :
a floating point number corresponding to the current measured value

On failure, throws an exception or returns Y_CURRENTVALUE_| NVALI D.

202

www.yoctopuce.com

19. High-level API Reference

genericsensor - get_errorMessage() YGenericSensor
genericsensor - errorMessage()

Returns the error message of the latest error with the generic sensor.

function get_errorMessage()

function get_errorMessage()

function get_errorMessage()

string get_errorMessage()
-(NSString*) errorMessage

function get_errorMessage(): string
function get_errorMessage() As String
string get_errorMessage()

String get_errorMessage()

def get_errorMessage()

This method is mostly useful when using the Yoctopuce library with exceptions disabled.

Returns :
a string corresponding to the latest error message that occured while using the generic sensor object

www.yoctopuce.com 203

19. High-level API Reference

genericsensor —»get_errorType() YGenericSensor
genericsensor -errorType()

Returns the numerical error code of the latest error with the generic sensor.

function get_errorType()

function get_errorType()

function get_errorType()

YRETCODE get_errorType()

[pas |function get_errorType(): YRETCODE
function get_errorType() As YRETCODE
YRETCODE get_errorType()

int get_errorType()

def get_errorType()

This method is mostly useful when using the Yoctopuce library with exceptions disabled.

Returns :
a number corresponding to the code of the latest error that occured while using the generic sensor object

204 www.yoctopuce.com

19. High-level API Reference

genericsensor - get_friendlyName() YGenericSensor
genericsensor - friendlyName()

Returns a global identifier of the generic sensor in the format MODULE _NAME. FUNCTI ON_NAMVE.

function get_friendlyName()
function get_friendlyName()
function get_friendlyName()
string get_friendlyName()
-(NSString*) friendlyName
string get_friendlyName()
String get_friendlyName()
def get_friendlyName()

The returned string uses the logical names of the module and of the generic sensor if they are defined,
otherwise the serial number of the module and the hardware identifier of the generic sensor (for
exemple: MyCust omNane. rel ayl)

Returns :
a string that uniquely identifies the generic sensor using logical names (ex: MyCust omNane. r el ayl)
On failure, throws an exception or returns Y_FRI ENDLYNAME_| NVALI D.

www.yoctopuce.com 205

19. High-level API Reference

genericsensor - get_functionDescriptor() YGenericSensor
genericsensor - functionDescriptor()

Returns a unique identifier of type YFUN_DESCR corresponding to the function.

[is |function get_functionDescriptor()

[nodej s | function get_functionDescriptor()

function get_functionDescriptor()

YFUN_DESCR get_functionDescriptor()
-(YFUN_DESCR) functionDescriptor

[pas_|function get_functionDescriptor(): YFUN_DESCR
function get_functionDescriptor() As YFUN_DESCR
YFUN_DESCR get_functionDescriptor()

String get_functionDescriptor()

def get_functionDescriptor()

This identifier can be used to test if two instances of YFunct i on reference the same physical function
on the same physical device.

Returns :

an identifier of type YFUN_DESCR. If the function has never been contacted, the returned value is
Y_FUNCTI ONDESCRI PTOR _| NVALI D.

206 www.yoctopuce.com

19. High-level API Reference

genericsensor »get_functionld() YGenericSensor
genericsensor - functionld()

Returns the hardware identifier of the generic sensor, without reference to the module.

function get_functionld()

function get_functionld()

function get_functionld()

string get_functionld()
-(NSString*) functionld

function get_functionld() As String
string get_functionld()

String get_functionld()

def get_functionld()

For example r el ay1l

Returns :

a string that identifies the generic sensor (ex: r el ayl) On failure, throws an exception or returns
Y_FUNCTI ONI D_I NVALI D.

www.yoctopuce.com 207

19. High-level API Reference

genericsensor »get_hardwareld() YGenericSensor
genericsensor - hardwareld()

Returns the unique hardware identifier of the generic sensor in the form SERI AL. FUNCTI ONI D.

[is |function get_hardwareld()
[nodej s | function get_hardwareld()
function get_hardwareld()

string get_hardwareld()
-(NSString*) hardwareld

[vb |function get_hardwareld() As String
string get_hardwareld()

String get_hardwareld()

def get_hardwareld()

The unique hardware identifier is composed of the device serial number and of the hardware identifier
of the generic sensor. (for example RELAYLOL- 123456. r el ay1)

Returns :
a string that uniquely identifies the generic sensor (ex: RELAYLOL- 123456. r el ay1) On failure,
throws an exception or returns Y_HARDWAREI D _| NVALI D.

208 www.yoctopuce.com

19. High-level API Reference

genericsensor - get_highestValue()
genericsensor - highestValue()

YGenericSensor

Returns the maximal value observed.

function get_highestValue()

function get_highestValue()

function get_highestValue()

double get_highestValue()

-(double) highestValue

function get_highestValue(): double
function get_highestValue() As Double
double get_highestValue()

double get_highestValue()

def get_highestValue()
YGenericSensor target get_highestValue

Returns :
a floating point number corresponding to the maximal value observed

On failure, throws an exception or returns Y_HI GHESTVALUE_| NVALI D.

www.yoctopuce.com

209

19. High-level API Reference

genericsensor - get_logFrequency() YGenericSensor
genericsensor - logFrequency()

Returns the datalogger recording frequency for this function, or "OFF" when measures are not
stored in the data logger flash memory.

[is |function get_logFrequency()
[nodej s | function get_logFrequency()

[php | function get_logFrequency()

string get_logFrequency()
-(NSString*) logFrequency

[pas |function get_logFrequency(): string

[vb |function get_logFrequency() As String
string get_logFrequency()

String get_logFrequency()

def get_logFrequency()
YGenericSensor target get_logFrequency

Returns :

a string corresponding to the datalogger recording frequency for this function, or "OFF" when measures are
not stored in the data logger flash memory

On failure, throws an exception or returns Y_LOGFREQUENCY | NVALI D.

210 www.yoctopuce.com

19. High-level API Reference

genericsensor - get_logicalName() YGenericSensor
genericsensor - logicalName()

Returns the logical name of the generic sensor.

function get_logicalName()

function get_logicalName()

function get_logicalName()

string get_logicalName()
-(NSString*) logicalName

function get_logicalName(): string
function get_logicalName() As String
string get_logicalName()

String get_logicalName()

def get_logicalName()
YGenericSensor target get_logicalName

Returns :

a string corresponding to the logical name of the generic sensor. On failure, throws an exception or returns
Y_LOG CALNAME | NVALI D.

www.yoctopuce.com 211

19. High-level API Reference

genericsensor - get_lowestValue()
genericsensor - lowestValue()

YGenericSensor

Returns the minimal value observed.

function get_lowestValue()

function get_lowestValue()

function get_lowestValue()

double get_lowestValue()

-(double) lowestValue

[pas|function get_lowestValue(): double

[vb |function get_lowestValue() As Double
double get_lowestValue()

double get_lowestValue()

def get_lowestValue()
YGenericSensor target get_lowestValue

Returns :
a floating point number corresponding to the minimal value observed

On failure, throws an exception or returns Y_LOWNESTVALUE_| NVALI D.

212

www.yoctopuce.com

19. High-level API Reference

genericsensor . get_module() YGenericSensor
genericsensor -module()

Gets the YMbdul e object for the device on which the function is located.

function get_module()

function get_module()

function get_module()

YModule * get_module()
-(YModule*) module

function get_module(): TYModule
function get_module() As YModule
YModule get_module()

YModule get_module()

def get_module()

If the function cannot be located on any module, the returned instance of YModul e is not shown as on-
line.

Returns :
an instance of YModul e

www.yoctopuce.com 213

19. High-level API Reference

genericsensor - get_module_async() YGenericSensor
genericsensor -~module_async()

Gets the YMbdul e object for the device on which the function is located (asynchronous version).

[is |function get_module_async(callback, context)
[nodej s | function get_module_async(callback, context)

If the function cannot be located on any module, the returned YModul e object does not show as on-
line. This asynchronous version exists only in Javascript. It uses a callback instead of a return value in
order to avoid blocking Firefox javascript VM that does not implement context switching during blocking
I/O calls. See the documentation section on asynchronous Javascript calls for more details.

p
Parameters :

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving function object and the requested

YModul e object

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

214 www.yoctopuce.com

19. High-level API Reference

genericsensor - get_recordedData() YGenericSensor
genericsensor —»recordedData()

Retrieves a DataSet object holding historical data for this sensor, for a specified time interval.

function get_recordedData(startTime, endTime)
function get_recordedData(startTime, endTime)
function get_recordedData($startTime, $endTime)
YDataSet get_recordedData(s64 startTime, s64 endTime)
-(YDataSet*) recordedData : (s64) startTime

: (s64) endTime
function get_recordedData(startTime: int64, endTime: int64): TYDataSet
function get_recordedData() As YDataSet
YDataSet get_recordedData(long startTime, long endTime)
YDataSet get_recordedData(long startTime, long endTime)
def get_recordedData(startTime, endTime)
YGenericSensor target get_recordedData startTime endTime

The measures will be retrieved from the data logger, which must have been turned on at the desired
time. See the documentation of the DataSet class for information on how to get an overview of the
recorded data, and how to load progressively a large set of measures from the data logger.

This function only works if the device uses a recent firmware, as DataSet objects are not supported by
firmwares older than version 13000.

p
Parameters :

startTime the start of the desired measure time interval, as a Unix timestamp, i.e. the number of seconds
since January 1, 1970 UTC. The special value 0 can be used to include any meaasure, without
initial limit.

endTime the end of the desired measure time interval, as a Unix timestamp, i.e. the number of seconds
since January 1, 1970 UTC. The special value 0 can be used to include any meaasure, without
ending limit.

Returns :
an instance of YDataSet, providing access to historical data. Past measures can be loaded progressively
using methods from the YDataSet object.

www.yoctopuce.com 215

19. High-level API Reference

genericsensor - get_reportFrequency() YGenericSensor
genericsensor - reportFrequency()

Returns the timed value notification frequency, or "OFF" if timed value notifications are disabled for
this function.

[is |function get_reportFrequency()
[nodej s | function get_reportFrequency()

[php | function get_reportFrequency()

string get_reportFrequency()
-(NSString*) reportFrequency

[pas |function get_reportFrequency(): string
function get_reportFrequency() As String
string get_reportFrequency()

String get_reportFrequency()

def get_reportFrequency()
YGenericSensor target get_reportFrequency

Returns :
a string corresponding to the timed value notification frequency, or "OFF" if timed value notifications are
disabled for this function

On failure, throws an exception or returns Y_REPORTFREQUENCY _| NVALI D.

216 www.yoctopuce.com

19. High-level API Reference

genericsensor »get_resolution() YGenericSensor
genericsensor —resolution()

Returns the resolution of the measured values.

function get_resolution()

function get_resolution()

function get_resolution()

double get_resolution()

-(double) resolution

function get_resolution(): double
function get_resolution() As Double
double get_resolution()

double get_resolution()

def get_resolution()
YGenericSensor target get_resolution

The resolution corresponds to the numerical precision of the measures, which is not always the same
as the actual precision of the sensor.

Returns :
a floating point number corresponding to the resolution of the measured values

On failure, throws an exception or returns Y_RESCLUTI ON_| NVALI D.

www.yoctopuce.com 217

19. High-level API Reference

genericsensor - get_signalRange()
genericsensor - signalRange()

YGenericSensor

Returns the electric signal range used by the sensor.

[is |function get_signalRange()
[nodej s | function get_signalRange()

[php | function get_signalRange()

string get_signalRange()
-(NSString*) signalRange

[pas |function get_signalRange(): string

[vb |function get_signalRange() As String
string get_signalRange()

String get_signalRange()

def get_signalRange()
YGenericSensor target get_signalRange

Returns :
a string corresponding to the electric signal range used by the sensor

On failure, throws an exception or returns Y_SI GNALRANGE_| NVALI D.

218

www.yoctopuce.com

19. High-level API Reference

genericsensor »get_signalUnit() YGenericSensor
genericsensor - signalUnit()

Returns the measuring unit of the electrical signal used by the sensor.

function get_signalUnit()

function get_signalUnit()

function get_signalUnit()

string get_signalUnit()
-(NSString*) signalUnit

function get_signalUnit(): string
function get_signalUnit() As String
string get_signalUnit()

String get_signalUnit()

def get_signalUnit()
YGenericSensor target get_signalUnit

Returns :
a string corresponding to the measuring unit of the electrical signal used by the sensor

On failure, throws an exception or returns Y_SI GNALUNI T_I NVALI D.

www.yoctopuce.com 219

19. High-level API Reference

genericsensor - get_signalValue() YGenericSensor
genericsensor - signalValue()

Returns the measured value of the electrical signal used by the sensor.

[is |function get_signalValue()
[nodej s | function get_signalValue()

[php | function get_signalValue()

double get_signalValue()

-(double) signalValue

[pas |function get_signalValue(): double

[vb |function get_signalValue() As Double
double get_signalValue()

double get_signalValue()

def get_signalValue()
YGenericSensor target get_signalValue

Returns :
a floating point number corresponding to the measured value of the electrical signal used by the sensor

On failure, throws an exception or returns Y_SI GNALVALUE_| NVALI D.

220 www.yoctopuce.com

19. High-level API Reference

genericsensor - get_unit()
genericsensor - unit()

YGenericSensor

Returns the measuring unit for the measured value.

function get_unit()

function get_unit()

function get_unit()

string get_unit()
-(NSString*) unit

function get_unit(): string
function get_unit() As String
string get_unit()

String get_unit()

def get_unit()
YGenericSensor target get_unit

Returns :
a string corresponding to the measuring unit for the measured value

On failure, throws an exception or returns Y_UNI T_I NVALI D.

www.yoctopuce.com

221

19. High-level API Reference

genericsensor - get_userData() YGenericSensor
genericsensor - userData()

Returns the value of the userData attribute, as previously stored using method set _user Dat a.

function get_userData()

function get_userData()

function get_userData()

[cpp | void * get_userData()

-(void*) userData

function get_userData(): Tobject
function get_userData() As Object
object get_userData()

Object get_userData()

def get_userData()

This attribute is never touched directly by the API, and is at disposal of the caller to store a context.

Returns :
the object stored previously by the caller.

222 www.yoctopuce.com

19. High-level API Reference

genericsensor - get_valueRange()
genericsensor - valueRange()

YGenericSensor

Returns the physical value range measured by the sensor.

function get_valueRange()

function get_valueRange()

function get_valueRange()

string get_valueRange()
-(NSString*) valueRange

function get_valueRange(): string
function get_valueRange() As String
string get_valueRange()

String get_valueRange()

def get_valueRange()
YGenericSensor target get_valueRange

Returns :
a string corresponding to the physical value range measured by the sensor

On failure, throws an exception or returns Y_VALUERANGE_| NVALI D.

www.yoctopuce.com

223

19. High-level API Reference

genericsensor —isOnline() YGenericSensor

Checks if the generic sensor is currently reachable, without raising any error.

[is |function isOnline()
[nodej s | function isOnline()

[php | function isOnline()

bool isOnline()

-(BOOL) isOnline

[pas|function isOnline(): boolean

[vb |function isOnline() As Boolean
bool isOnline()

boolean isOnline()

def isOnline()

If there is a cached value for the generic sensor in cache, that has not yet expired, the device is
considered reachable. No exception is raised if there is an error while trying to contact the device
hosting the generic sensor.

Returns :
t r ue if the generic sensor can be reached, and f al se otherwise

224 www.yoctopuce.com

19. High-level API Reference

genericsensor -»isOnline_async() YGenericSensor

Checks if the generic sensor is currently reachable, without raising any error (asynchronous
version).

[is |function isOnline_async(callback, context)
[nodej s | function isOnline_async(callback, context)

If there is a cached value for the generic sensor in cache, that has not yet expired, the device is
considered reachable. No exception is raised if there is an error while trying to contact the device
hosting the requested function.

This asynchronous version exists only in Javascript. It uses a callback instead of a return value in order
to avoid blocking the Javascript virtual machine.

p
Parameters :

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving function object and the boolean result

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

www.yoctopuce.com 225

19. High-level API Reference

genericsensor —load() YGenericSensor

Preloads the generic sensor cache with a specified validity duration.

function load(msValidity)

[nodej s | function load(msValidity)

[php | function load($msValidity)

YRETCODE load(int msValidity)

-(YRETCODE) load : (int) msValidity

[pas|function load(msValidity: integer): YRETCODE

[vb |function load(ByVal msValidity As Integer) As YRETCODE
YRETCODE load(int msValidity)

int load(long msValidity)

def load(msValidity)

By default, whenever accessing a device, all function attributes are kept in cache for the standard
duration (5 ms). This method can be used to temporarily mark the cache as valid for a longer period, in
order to reduce network trafic for instance.

Parameters :

msValidity an integer corresponding to the validity attributed to the loaded function parameters, in
milliseconds

Returns :
YAPI _SUCCESS when the call succeeds. On failure, throws an exception or returns a negative error
code.

226 www.yoctopuce.com

19. High-level API Reference

genericsensor - loadCalibrationPoints() YGenericSensor

Retrieves error correction data points previously entered using the method
cal i brateFromPoi nts.

[is |function loadCalibrationPoints(rawValues, refvalues)
[nodej s | function loadCalibrationPoints(rawValues, refvalues)
function loadCalibrationPoints(&$rawValues, &$refValues)
int loadCalibrationPoints(vector<double>& rawValues,
vector<double>& refValues)

-(int) loadCalibrationPoints : (NSMutableArray*) rawValues
: (NSMutableArray*) refValues

function loadCalibrationPoints(var rawValues: TDoubleArray,
var refValues: TDoubleArray): Longint
procedure loadCalibrationPoints()
int loadCalibrationPoints(List<double> rawValues,
List<double> refValues)

int loadCalibrationPoints(ArrayList<Double> rawValues,
ArrayList<Double> refValues)

def loadCalibrationPoints(rawValues, refValues)

YGenericSensor target loadCalibrationPoints rawValues refValues

Parameters :

rawValues array of floating point numbers, that will be filled by the function with the raw sensor values for
the correction points.

refValues array of floating point numbers, that will be filled by the function with the desired values for the
correction points.

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 227

19. High-level API Reference

genericsensor - load_async() YGenericSensor

Preloads the generic sensor cache with a specified validity duration (asynchronous version).

[is |function load_async(msValidity, callback, context)
[nodej s | function load_async(msValidity, callback, context)

By default, whenever accessing a device, all function attributes are kept in cache for the standard
duration (5 ms). This method can be used to temporarily mark the cache as valid for a longer period, in
order to reduce network trafic for instance. This asynchronous version exists only in Javascript. It uses
a callback instead of a return value in order to avoid blocking the Javascript virtual machine.

Parameters :
msValidity an integer corresponding to the validity of the loaded function parameters, in milliseconds

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving function object and the error code

(or YAPI _SUCCESS)
context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

228 www.yoctopuce.com

19. High-level API Reference

genericsensor - nextGenericSensor() YGenericSensor

Continues the enumeration of generic sensors started using yFi r st Generi cSensor ().

function nextGenericSensor()

function nextGenericSensor()

function nextGenericSensor()

YGenericSensor * nextGenericSensor()
-(YGenericSensor*) nextGenericSensor

function nextGenericSensor(): TYGenericSensor
function nextGenericSensor() As YGenericSensor
YGenericSensor nextGenericSensor()
YGenericSensor nextGenericSensor()

def nextGenericSensor()

Returns :
a pointer to a YGener i cSensor object, corresponding to a generic sensor currently online, or a nul |
pointer if there are no more generic sensors to enumerate.

www.yoctopuce.com 229

19. High-level API Reference

genericsensor -registerTimedReportCallback() YGenericSensor

Registers the callback function that is invoked on every periodic timed notification.

[is |function registerTimedReportCallback(callback)

[nodej s | function registerTimedReportCallback(callback)

[php | function registerTimedReportCallback($callback)

int registerTimedReportCallback(YGenericSensorTimedReportCallback callback)

-(int) registerTimedReportCallback : (YGenericSensorTimedReportCallback) callback

[pas |function registerTimedReportCallback(callback: TYGenericSensorTimedReportCallback): Longint
[vb |function registerTimedReportCallback() As Integer

int registerTimedReportCallback(TimedReportCallback callback)

int registerTimedReportCallback(TimedReportCallback callback)

def registerTimedReportCallback(callback)

The callback is invoked only during the execution of yS| eep or yHandl eEvent s. This provides
control over the time when the callback is triggered. For good responsiveness, remember to call one of
these two functions periodically. To unregister a callback, pass a null pointer as argument.

Parameters :

callback the callback function to call, or a null pointer. The callback function should take two arguments:
the function object of which the value has changed, and an YMeasure object describing the new
advertised value.

230 www.yoctopuce.com

19. High-level API Reference

genericsensor »registerValueCallback() YGenericSensor

Registers the callback function that is invoked on every change of advertised value.

function registerValueCallback(callback)

function registerValueCallback(callback)

function registerValueCallback($callback)

int registerValueCallback(YGenericSensorValueCallback callback)

-(int) registerValueCallback : (YGenericSensorValueCallback) callback

function registerValueCallback(callback: TYGenericSensorValueCallback): Longint
function registerValueCallback() As Integer

int registerValueCallback(ValueCallback callback)

int registerValueCallback(UpdateCallback callback)

def registerValueCallback(callback)

The callback is invoked only during the execution of yS| eep or yHandl eEvent s. This provides
control over the time when the callback is triggered. For good responsiveness, remember to call one of
these two functions periodically. To unregister a callback, pass a null pointer as argument.

Parameters :

callback the callback function to call, or a null pointer. The callback function should take two arguments:
the function object of which the value has changed, and the character string describing the new
advertised value.

www.yoctopuce.com 231

19. High-level API Reference

genericsensor - set_highestValue()
genericsensor - setHighestValue()

YGenericSensor

Changes the recorded maximal value observed.

[is |function set_highestValue(newval)
[nodej s | function set_highestValue(newval)

[php | function set_highestValue($newval)

int set_highestValue(double newval)

-(int) setHighestValue : (double) newval

[pas|function set_highestValue(newval: double): integer
[vb |function set_highestValue(ByVal newval As Double) As Integer
int set_highestValue(double newval)

int set_highestValue(double newval)

def set_highestValue(newval)

YGenericSensor target set_highestValue newval

Parameters :

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

newval a floating point number corresponding to the recorded maximal value observed

232

www.yoctopuce.com

19. High-level API Reference

genericsensor - set_logFrequency|() YGenericSensor
genericsensor - setLogFrequency()

Changes the datalogger recording frequency for this function.

function set_logFrequency(newval)

function set_logFrequency(newval)

function set_logFrequency($newval)

int set_logFrequency(const string& newval)

-(int) setLogFrequency : (NSString*) newval
function set_logFrequency(newval: string): integer
function set_logFrequency(ByVal newval As String) As Integer
int set_logFrequency(string newval)

int set_logFrequency(String newval)

def set_logFrequency(newval)

YGenericSensor target set_logFrequency newval

The frequency can be specified as samples per second, as sample per minute (for instance "15/m") or
in samples per hour (eg. "4/h"). To disable recording for this function, use the value "OFF".

Ve

Parameters :
newval a string corresponding to the datalogger recording frequency for this function

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 233

19. High-level API Reference

genericsensor - set_logicalName() YGenericSensor
genericsensor - setLogicalName()

Changes the logical name of the generic sensor.

[is |function set_logicalName(newval)
[nodej s | function set_logicalName(newval)

function set_logicalName($newval)

int set_logicalName(const string& newval)

-(int) setLogicalName : (NSString*) newval

[pas_|function set_logicalName(newval: string): integer
[vb |function set_logicalName(ByVal newval As String) As Integer
int set_logicalName(string newval)

int set_logicalName(String newval)

def set_logicalName(newval)

YGenericSensor target set_logicalName newval

You can use yCheckLogi cal Name() prior to this call to make sure that your parameter is valid.
Remember to call the saveToFl ash() method of the module if the modification must be kept.

Parameters :
newval a string corresponding to the logical name of the generic sensor.

Returns :
YAPI _ SUCCESS if the call succeeds. On failure, throws an exception or returns a negative error code.

234 www.yoctopuce.com

19. High-level API Reference

genericsensor - set_lowestValue()
genericsensor - setLowestValue()

YGenericSensor

Changes the recorded minimal value observed.

function set_lowestValue(newval)

function set_lowestValue(newval)

function set_lowestValue($newval)

int set_lowestValue(double newval)

-(int) setLowestValue : (double) newval

function set_lowestValue(newval: double): integer
function set_lowestValue(ByVal newval As Double) As Integer
int set_lowestValue(double newval)

int set_lowestValue(double newval)

def set_lowestValue(newval)

YGenericSensor target set_lowestValue newval

Ve

Parameters :

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

newval a floating point number corresponding to the recorded minimal value observed

www.yoctopuce.com

235

19. High-level API Reference

genericsensor - set_reportFrequency() YGenericSensor
genericsensor - setReportFrequency()

Changes the timed value notification frequency for this function.

[is |function set_reportFrequency(newval)

[nodej s | function set_reportFrequency(newval)

function set_reportFrequency($newval)

int set_reportFrequency(const string& newval)

-(int) setReportFrequency : (NSString*) newval

[pas|function set_reportFrequency(newval: string): integer

[vb |function set_reportFrequency(ByVal newval As String) As Integer
int set_reportFrequency(string newval)

int set_reportFrequency(String newval)

def set_reportFrequency(newval)
YGenericSensor target set_reportFrequency newval

The frequency can be specified as samples per second, as sample per minute (for instance "15/m") or
in samples per hour (eg. "4/h"). To disable timed value notifications for this function, use the value
"OFF".

Parameters :
newval a string corresponding to the timed value notification frequency for this function

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

236 www.yoctopuce.com

19. High-level API Reference

genericsensor - set_resolution()

genericsensor - setResolution()

YGenericSensor

Changes the resolution of the measured physical values.

function set_resolution(newval)

function set_resolution(newval)

function set_resolution($newval)

int set_resolution(double newval)

-(int) setResolution : (double) newval

function set_resolution(newval: double): integer

function set_resolution(ByVal newval As Double) As Integer
int set_resolution(double newval)

int set_resolution(double newval)

def set_resolution(newval)
YGenericSensor target set_resolution newval

The resolution corresponds to the numerical precision when displaying value. It does not change the
precision of the measure itself.

Ve

Parameters :
newval a floating point number corresponding to the resolution of the measured physical values

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com

237

19. High-level API Reference

genericsensor —set_signalRange() YGenericSensor
genericsensor - setSignalRange()

Changes the electric signal range used by the sensor.

[is |function set_signalRange(newval)
[nodej s | function set_signalRange(newval)

[php | function set_signalRange($newval)

int set_signalRange(const string& newval)

-(int) setSignalRange : (NSString*) newval

[pas |function set_signalRange(newval: string): integer
[vb |function set_signalRange(ByVal newval As String) As Integer
int set_signalRange(string newval)

int set_signalRange(String newval)

def set_signalRange(newval)

YGenericSensor target set_signalRange newval

Parameters :
newval a string corresponding to the electric signal range used by the sensor

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

238 www.yoctopuce.com

19. High-level API Reference

genericsensor - set_unit()
genericsensor - setUnit()

YGenericSensor

Changes the measuring unit for the measured value.

function set_unit(newval)

function set_unit(newval)

function set_unit($newval)

int set_unit(const string& newval)

-(int) setUnit : (NSString*) newval

[pas_|function set_unit(newval: string): integer
function set_unit(ByVal newval As String) As Integer
int set_unit(string newval)

int set_unit(String newval)

def set_unit(newval)

YGenericSensor target set_unit newval

Remember to call the saveToFl ash() method of the module if the modification must be kept.

Ve

Parameters :
newval a string corresponding to the measuring unit for the measured value

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com

239

19. High-level API Reference

genericsensor - set_userData() YGenericSensor
genericsensor - setUserData()

Stores a user context provided as argument in the userData attribute of the function.

[is |function set_userData(data)

[nodej s | function set_userData(data)

function set_userData($data)

[cpp | void set_userData(void* data)

-(void) setUserData : (void*) data

procedure set_userData(data: Tobject)
procedure set_userData(ByVal data As Object)
void set_userData(object data)

void set_userData(Object data)

def set_userData(data)

This attribute is never touched by the API, and is at disposal of the caller to store a context.

Parameters :
data any kind of object to be stored

240 www.yoctopuce.com

19. High-level API Reference

genericsensor - set_valueRange()
genericsensor — setValueRange()

YGenericSensor

Changes the physical value range measured by the sensor.

function set_valueRange(newval)

function set_valueRange(newval)

function set_valueRange($newval)

int set_valueRange(const string& newval)

-(int) setValueRange : (NSString*) newval
function set_valueRange(newval: string): integer
function set_valueRange(ByVal newval As String) As Integer
int set_valueRange(string newval)

int set_valueRange(String newval)

def set_valueRange(newval)

YGenericSensor target set_valueRange newval

The range change may have a side effect on the display resolution, as it may be adapted automatically.

Ve

Parameters :
newval a string corresponding to the physical value range measured by the sensor

Returns :
YAPI _ SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com

241

19. High-level API Reference

genericsensor —wait_async() YGenericSensor

Waits for all pending asynchronous commands on the module to complete, and invoke the user-
provided callback function.

[is |function wait_async(callback, context)
[nodej s | function wait_async(callback, context)

The callback function can therefore freely issue synchronous or asynchronous commands, without
risking to block the Javascript VM.

Parameters :

callback callback function that is invoked when all pending commands on the module are completed. The
callback function receives two arguments: the caller-specific context object and the receiving
function object.

context caller-specific object that is passed as-is to the callback function

Returns :
nothing.

242 www.yoctopuce.com

19. High-level API Reference

19.4. Recorded data sequence

YDataSet objects make it possible to retrieve a set of recorded measures for a given sensor and a
specified time interval. They can be used to load data points with a progress report. When the
YDataSet object is instanciated by the get _recor dedDat a() function, no data is yet loaded from
the module. It is only when the | oadMor e() method is called over and over than data will be
effectively loaded from the dataLogger.

A preview of available measures is available using the function get _previ ew() as soon as
| oadMor e() has been called once. Measures themselves are available using function
get _neasur es() when loaded by subsequent calls to | oadMor e() .

This class can only be used on devices that use a recent firmware, as YDataSet objects are not
supported by firmwares older than version 13000.

In order to use the functions described here, you should include:

<script type="text/javascript' src="yocto_api.js"></script>
nodej s | var yoctolib = require('yoctolib’);

var YAPI = yoctolib.YAPI;

var YModule = yoctolib.YModule;

php | require_once('yocto_api.php’);
#include "yocto_api.h"
#import "yocto_api.h"
uses yocto_api;
yocto_api.vb
yocto_api.cs
import com.yoctopuce.YoctoAPI.YModule;
from yocto_api import *

YDat aSet methods
dataset -~ get_endTimeUTC()

Returns the end time of the dataset, relative to the Jan 1, 1970.
dataset — get_functionld()
Returns the hardware identifier of the function that performed the measure, without reference to the module.
dataset — get_hardwareld()
Returns the unique hardware identifier of the function who performed the measures, in the form
SERI AL. FUNCTI ONI D.
dataset — get_measures()
Returns all measured values currently available for this DataSet, as a list of YMeasure objects.
dataset - get_preview()

Returns a condensed version of the measures that can retrieved in this YDataSet, as a list of YMeasure
objects.

dataset - get_progress()
Returns the progress of the downloads of the measures from the data logger, on a scale from 0 to 100.
dataset - get_startTimeUTC()
Returns the start time of the dataset, relative to the Jan 1, 1970.
dataset - get_summary()
Returns an YMeasure object which summarizes the whole DataSet.
dataset — get_unit()
Returns the measuring unit for the measured value.

www.yoctopuce.com 243

19. High-level API Reference

dataset —loadMore()

Loads the the next block of measures from the dataLogger, and updates the progress indicator.
dataset —loadMore_async(callback, context)

Loads the the next block of measures from the dataLogger asynchronously.

244 www.yoctopuce.com

19. High-level API Reference

dataset - get_endTimeUTC() YDataSet
dataset - endTimeUTC()

Returns the end time of the dataset, relative to the Jan 1, 1970.

function get_endTimeUTC()

function get_endTimeUTC()

function get_endTimeUTC()

s64 get_endTimeUTC()

-(s64) endTimeUTC

function get_endTimeUTC(): int64
function get_endTimeUTC() As Long
long get_endTimeUTC()

long get_endTimeUTC()

def get_endTimeUTC()

When the YDataSet is created, the end time is the value passed in parameter to the get _dat aSet ()
function. After the very first call to | oadMbr e() , the end time is updated to reflect the timestamp of the
last measure actually found in the datalLogger within the specified range.

Returns :
an unsigned number corresponding to the number of seconds between the Jan 1, 1970 and the end of this
data set (i.e. Unix time representation of the absolute time).

www.yoctopuce.com 245

19. High-level API Reference

dataset - get_functionld() YDataSet
dataset - functionld()

Returns the hardware identifier of the function that performed the measure, without reference to the
module.

[is |function get_functionld()
[nodej s | function get_functionld()

[php | function get_functionld()

string get_functionld()
-(NSString*) functionld

[pas |function get_functionld(): string
function get_functionld() As String
string get_functionld()

String get_functionld()

def get_functionld()

For example t enper at ur el.

Returns :
a string that identifies the function (ex: t enper at ur el)

246 www.yoctopuce.com

19. High-level API Reference

dataset - get_hardwareld() YDataSet
dataset - hardwareld()

Returns the unique hardware identifier of the function who performed the measures, in the form
SERI AL. FUNCTI ONI D.

function get_hardwareld()

function get_hardwareld()

function get_hardwareld()

string get_hardwareld()
-(NSString*) hardwareld

function get_hardwareld(): string
function get_hardwareld() As String
string get_hardwareld()

String get_hardwareld()

def get_hardwareld()

The unique hardware identifier is composed of the device serial number and of the hardware identifier
of the function (for example THRMCPL1- 123456. t enper at ur el)

Returns :
a string that uniquely identifies the function (ex: THRMCPL1- 123456. t enper at ur el)

On failure, throws an exception or returns Y_HARDWAREI D | NVALI D.

www.yoctopuce.com 247

19. High-level API Reference

dataset . get_measures() YDataSet
dataset -~ measures()

Returns all measured values currently available for this DataSet, as a list of YMeasure objects.

[is |function get_measures()

[nodej s | function get_measures()

[php |function get_measures()

[cpp | vector<YMeasure> get_measures()
-(NSMutableArray*) measures

[pas_|function get_measures(): TYMeasureArray
[vb |function get_measures() As List
List<YMeasure> get_measures()
ArrayList<YMeasure> get_measures()

def get_measures()

Each item includes: - the start of the measure time interval - the end of the measure time interval - the
minimal value observed during the time interval - the average value observed during the time interval -
the maximal value observed during the time interval

Before calling this method, you should call | oadMor e() to load data from the device. You may have
to call loadMore() several time until all rows are loaded, but you can start looking at available data rows
before the load is complete.

The oldest measures are always loaded first, and the most recent measures will be loaded last. As a
result, timestamps are normally sorted in ascending order within the measure table, unless there was
an unexpected adjustment of the datalogger UTC clock.

Returns :
a table of records, where each record depicts the measured value for a given time interval

On failure, throws an exception or returns an empty array.

248 www.yoctopuce.com

19. High-level API Reference

dataset . get_preview() YDataSet
dataset - preview()

Returns a condensed version of the measures that can retrieved in this YDataSet, as a list of
YMeasure objects.

function get_preview()

function get_preview()

function get_preview()
vector<YMeasure> get_preview()
-(NSMutableArray*) preview

function get_preview(): TYMeasureArray
function get_preview() As List
List<YMeasure> get_preview()
ArrayList<YMeasure> get_preview()

def get_preview()

Each item includes: - the start of a time interval - the end of a time interval - the minimal value observed
during the time interval - the average value observed during the time interval - the maximal value
observed during the time interval

This preview is available as soon as | oadMor e() has been called for the first time.

Returns :
a table of records, where each record depicts the measured values during a time interval

On failure, throws an exception or returns an empty array.

www.yoctopuce.com 249

19. High-level API Reference

dataset —get_progress() YDataSet
dataset - progress()

Returns the progress of the downloads of the measures from the data logger, on a scale from 0 to
100.

[is |function get_progress()
[nodej s | function get_progress()

[php | function get_progress()

int get_progress()

-(int) progress

[pas |function get_progress(): Longint
[vb |function get_progress() As Integer
int get_progress()

int get_progress()

def get_progress()

When the object is instanciated by get _dat aSet , the progress is zero. Each time | oadMor e() is
invoked, the progress is updated, to reach the value 100 only once all measures have been loaded.

Returns :
an integer in the range 0 to 100 (percentage of completion).

250 www.yoctopuce.com

19. High-level API Reference

dataset - get_startTimeUTC() YDataSet
dataset - startTimeUTC()

Returns the start time of the dataset, relative to the Jan 1, 1970.

function get_startTimeUTC()

function get_startTimeUTC()

function get_startTimeUTC()

s64 get_startTimeUTC()

-(s64) startTimeUTC

function get_startTimeUTC(): int64
function get_startTimeUTC() As Long
long get_startTimeUTC()

long get_startTimeUTC()

def get_startTimeUTC()

When the YDataSet is created, the start time is the value passed in parameter to the
get _dat aSet () function. After the very first call to | oadMor e() , the start time is updated to reflect
the timestamp of the first measure actually found in the datalLogger within the specified range.

Returns :
an unsigned number corresponding to the number of seconds between the Jan 1, 1970 and the beginning of
this data set (i.e. Unix time representation of the absolute time).

www.yoctopuce.com 251

19. High-level API Reference

dataset -~ get_summary() YDataSet
dataset - summary()

Returns an YMeasure object which summarizes the whole DataSet.

[is |function get_summary()
[nodej s | function get_summary()

[php | function get_summary()

YMeasure get_summary()
-(YMeasure*) summary

[pas|function get_summary(): TYMeasure
[vb |function get_summary() As YMeasure
YMeasure get_summary()

YMeasure get_summary()

def get_summary()

In includes the following information: - the start of a time interval - the end of a time interval - the
minimal value observed during the time interval - the average value observed during the time interval -
the maximal value observed during the time interval

This summary is available as soon as | oadMor e() has been called for the first time.

Returns :
an YMeasure object

252 www.yoctopuce.com

19. High-level API Reference

dataset - get_unit()
dataset - unit()

YDataSet

Returns the measuring unit for the measured value.

function get_unit()

function get_unit()

function get_unit()

string get_unit()
-(NSString*) unit

function get_unit(): string
function get_unit() As String
string get_unit()

String get_unit()

def get_unit()

Returns :
a string that represents a physical unit.

On failure, throws an exception or returns Y_UNI T_| NVALI D.

www.yoctopuce.com

253

19. High-level API Reference

dataset - loadMore() YDataSet

Loads the the next block of measures from the dataLogger, and updates the progress indicator.

[is |function loadMore()
[nodej s | function loadMore()

[php_|function loadMore()

int loadMore()

-(int) loadMore

[pas|function loadMore(): Longlnt
[vb |function loadMore() As Integer
int loadMore()

int loadMore()

def loadMore()

Returns :
an integer in the range 0 to 100 (percentage of completion), or a negative error code in case of failure.

On failure, throws an exception or returns a negative error code.

254 www.yoctopuce.com

19. High-level API Reference

dataset - loadMore_async() YDataSet

Loads the the next block of measures from the dataLogger asynchronously.

[is |function loadMore_async(callback, context)
[nodej s | function loadMore_async(callback, context)

Parameters :

callback callback function that is invoked when the w The callback function receives three arguments: -
the user-specific context object - the YDataSet object whose loadMore_async was invoked - the
load result: either the progress indicator (0...100), or a negative error code in case of failure.

context user-specific object that is passed as-is to the callback function

Returns :
nothing.

www.yoctopuce.com 255

19. High-level API Reference

19.5. Measured value

YMeasure objects are used within the API to represent a value measured at a specified time. These
objects are used in particular in conjunction with the YDataSet class.

In order to use the functions described here, you should include:

<script type="text/javascript' src="yocto_api.js"></script>
nodej s | var yoctolib = require(‘yoctolib’);

var YAPI = yoctolib.YAPI;

var YModule = yoctolib.YModule;

php | require_once('yocto_api.php");
#include "yocto_api.h"
#import "yocto_api.h"
uses yocto_api;
yocto_api.vb
yocto_api.cs
import com.yoctopuce.YoctoAPl.YModule;
from yocto_api import *

YMeasur e methods
measure - get_averageValue()

Returns the average value observed during the time interval covered by this measure.
measure - get_endTimeUTC()

Returns the end time of the measure, relative to the Jan 1, 1970 UTC (Unix timestamp).
measure - get_maxValue()

Returns the largest value observed during the time interval covered by this measure.
measure - get_minValue()

Returns the smallest value observed during the time interval covered by this measure.
measure - get_startTimeUTC()

Returns the start time of the measure, relative to the Jan 1, 1970 UTC (Unix timestamp).

256 www.yoctopuce.com

19. High-level API Reference

measure - get_averageValue() YMeasure
measure - averageValue()

Returns the average value observed during the time interval covered by this measure.

function get_averageValue()

function get_averageValue()

function get_averageValue()

double get_averageValue()

-(double) averageValue

function get_averageValue(): double
function get_averageValue() As Double
double get_averageValue()

double get_averageValue()

def get_averageValue()

Returns :
a floating-point number corresponding to the average value observed.

www.yoctopuce.com 257

19. High-level API Reference

measure - get_endTimeUTC() YMeasure
measure - endTimeUTC()

Returns the end time of the measure, relative to the Jan 1, 1970 UTC (Unix timestamp).

[is |function get_endTimeUTC()

function get_endTimeUTC()

function get_endTimeUTC()

double get_endTimeUTC()

-(double) endTimeUTC

[pas |function get_endTimeUTC(): double

[vb |function get_endTimeUTC() As Double
double get_endTimeUTC()

double get_endTimeUTC()

def get_endTimeUTC()

When the recording rate is higher then 1 sample per second, the timestamp may have a fractional part.

Returns :
an floating point number corresponding to the number of seconds between the Jan 1, 1970 UTC and the end
of this measure.

258 www.yoctopuce.com

19. High-level API Reference

measure - get_maxValue() YMeasure
measure - maxValue()

Returns the largest value observed during the time interval covered by this measure.

function get_maxValue()

function get_maxValue()

function get_maxValue()

double get_maxValue()

-(double) maxValue

function get_maxValue(): double
function get_maxValue() As Double
double get_maxValue()

double get_maxValue()

def get_maxValue()

Returns :
a floating-point number corresponding to the largest value observed.

www.yoctopuce.com 259

19. High-level API Reference

measure - get_minValue() YMeasure
measure - minValue()

Returns the smallest value observed during the time interval covered by this measure.

[is |function get_minVvalue()
[nodej s | function get_minValue()

[php | function get_minVvalue()

double get_minValue()

-(double) minValue

[pas|function get_minValue(): double

[vb |function get_minValue() As Double
double get_minValue()

double get_minValue()

def get_minValue()

Returns :
a floating-point number corresponding to the smallest value observed.

260 www.yoctopuce.com

19. High-level API Reference

measure - get_startTimeUTC() YMeasure
measure - startTimeUTC()

Returns the start time of the measure, relative to the Jan 1, 1970 UTC (Unix timestamp).

function get_startTimeUTC()

function get_startTimeUTC()

function get_startTimeUTC()

double get_startTimeUTC()

-(double) startTimeUTC

function get_startTimeUTC(): double
function get_startTimeUTC() As Double
double get_startTimeUTC()

double get_startTimeUTC()

def get_startTimeUTC()

When the recording rate is higher then 1 sample per second, the timestamp may have a fractional part.

Returns :
an floating point number corresponding to the number of seconds between the Jan 1, 1970 UTC and the
beginning of this measure.

www.yoctopuce.com 261

19. High-level API Reference

19.6. Unformatted data sequence

YDataStream objects represent bare recorded measure sequences, exactly as found within the data
logger present on Yoctopuce sensors.

In most cases, it is not necessary to use YDataStream objects directly, as the YDataSet objects
(returned by the get _r ecor dedDat a() method from sensors and the get _dat aSet s() method
from the data logger) provide a more convenient interface.

In order to use the functions described here, you should include:

<script type="text/javascript' src="yocto_api.js'></script>
nodej s | var yoctolib = require(‘yoctolib’);

var YAPI = yoctolib.YAPI;

var YModule = yoctolib.YModule;

php | require_once('yocto_api.php’);
#include "yocto_api.h"
#import "yocto_api.h"
uses yocto_api;
yocto_api.vb
yocto_api.cs
import com.yoctopuce.YoctoAPI.YModule;
from yocto_api import *

YDat aSt r eammethods
datastream - get_averageValue()

Returns the average of all measures observed within this stream.
datastream - get_columnCount()
Returns the number of data columns present in this stream.
datastream - get_columnNames()
Returns the title (or meaning) of each data column present in this stream.
datastream - get_data(row, col)
Returns a single measure from the data stream, specified by its row and column index.
datastream - get_dataRows()
Returns the whole data set contained in the stream, as a bidimensional table of numbers.
datastream - get_dataSamplesintervalMs()
Returns the number of milliseconds between two consecutive rows of this data stream.
datastream - get_duration()
Returns the approximate duration of this stream, in seconds.
datastream - get_maxValue()
Returns the largest measure observed within this stream.
datastream - get_minValue()
Returns the smallest measure observed within this stream.
datastream - get_rowCount()
Returns the number of data rows present in this stream.
datastream - get_runindex()
Returns the run index of the data stream.
datastream - get_startTime()
Returns the relative start time of the data stream, measured in seconds.

datastream - get_startTimeUTC()

262 www.yoctopuce.com

19. High-level API Reference

Returns the start time of the data stream, relative to the Jan 1, 1970.

www.yoctopuce.com 263

19. High-level API Reference

datastream - get_averageValue() YDataStream
datastream - averageValue()

Returns the average of all measures observed within this stream.

function get_averageValue()

function get_averageValue()

function get_averageValue()

double get_averageValue()

-(double) averageValue

[pas|function get_averageValue(): double
function get_averageValue() As Double
double get_averageValue()

double get_averageValue()

def get_averageValue()

If the device uses a firmware older than version 13000, this method will always return
Y_DATA_INVALID.

Returns :
a floating-point number corresponding to the average value, or Y_DATA_INVALID if the stream is not yet
complete (still recording).

On failure, throws an exception or returns Y_DATA_INVALID.

264 www.yoctopuce.com

19. High-level API Reference

datastream - get_columnCount()
datastream - columnCount()

YDataStream

Returns the number of data columns present in this stream.

function get_columnCount()

function get_columnCount()

function get_columnCount()

int get_columnCount()

-(int) columnCount

| pas_|function get_columnCount(): Longint
function get_columnCount() As Integer
int get_columnCount()

int get_columnCount()

def get_columnCount()

The meaning of the values present in each column can be obtained using the method

get _col umNanes() .

If the device uses a firmware older than version 13000, this method fetches the whole data stream from

the device if not yet done, which can cause a little delay.

Returns :
an unsigned number corresponding to the number of columns.

On failure, throws an exception or returns zero.

www.yoctopuce.com

265

19. High-level API Reference

datastream - get_columnNames() YDataStream
datastream - columnNames()

Returns the title (or meaning) of each data column present in this stream.

[is |function get_columnNames()
[nodej s | function get_columnNames()

[php | function get_columnNames()

[cpp | vector<string> get_columnNames()
-(NSMutableArray*) columnNames

| pas|function get_columnNames(): TStringArray
[vb |function get_columnNames() As List
List<string> get_columnNames()
ArrayList<String> get_columnNames()

def get_columnNames()

In most case, the title of the data column is the hardware identifier of the sensor that produced the data.
For streams recorded at a lower recording rate, the dataLogger stores the min, average and max value
during each measure interval into three columns with suffixes _min, _avg and _max respectively.

If the device uses a firmware older than version 13000, this method fetches the whole data stream from
the device if not yet done, which can cause a little delay.

Returns :
a list containing as many strings as there are columns in the data stream.

On failure, throws an exception or returns an empty array.

266 www.yoctopuce.com

19. High-level API Reference

datastream - get_data() YDataStream
datastream - data()

Returns a single measure from the data stream, specified by its row and column index.

function get_data(row, col)
function get_data(row, col)
function get_data($row, $col)
double get_data(int row, int col)
-(double) data : (int) row

: (int) col
function get_data(row: Longint, col: Longint): double
function get_data() As Double
double get_data(int row, int col)
double get_data(int row, int col)
def get_data(row, col)

The meaning of the values present in each column can be obtained using the method
get_columnNames().

This method fetches the whole data stream from the device, if not yet done.

p
Parameters :
row row index
col column index

Returns :
a floating-point number

On failure, throws an exception or returns Y_DATA_INVALID.

www.yoctopuce.com 267

19. High-level API Reference

datastream - get_dataRows() YDataStream
datastream - dataRows()

Returns the whole data set contained in the stream, as a bidimensional table of numbers.

[is |function get_dataRows()
function get_dataRows()
function get_dataRows()

[cpp | vector< vector<double> > get_dataRows()
-(NSMutableArray*) dataRows

function get_dataRows(): TDoubleArrayArray
[vb |function get_dataRows() As List
List<List<double>> get_dataRows()
ArrayList<ArrayList<Double>> get_dataRows()

def get_dataRows()

The meaning of the values present in each column can be obtained using the method
get _col umNanes() .

This method fetches the whole data stream from the device, if not yet done.

Returns :
a list containing as many elements as there are rows in the data stream. Each row itself is a list of floating-
point numbers.

On failure, throws an exception or returns an empty array.

268 www.yoctopuce.com

19. High-level API Reference

datastream - get_dataSamplesintervalMs() YDataStream
datastream - dataSamplesintervalMs()

Returns the number of milliseconds between two consecutive rows of this data stream.

function get_dataSamplesintervalMs()

function get_dataSamplesintervalMs()

function get_dataSamplesintervalMs()

int get_dataSamplesintervalMs()

-(int) dataSamplesintervalMs

function get_dataSamplesintervalMs(): Longint
function get_dataSamplesintervalMs() As Integer
int get_dataSamplesintervalMs()

int get_dataSamplesintervalMs()

def get_dataSamplesintervalMs()

By default, the data logger records one row per second, but the recording frequency can be changed
for each device function

Returns :
an unsigned number corresponding to a number of milliseconds.

www.yoctopuce.com 269

19. High-level API Reference

datastream - get_duration() YDataStream
datastream - duration()

Returns the approximate duration of this stream, in seconds.

[is |function get_duration()
[nodej s | function get_duration()

[php | function get_duration()

int get_duration()

-(int) duration

[pas|function get_duration(): Longint
[vb |function get_duration() As Integer
int get_duration()

int get_duration()

def get_duration()

Returns :
the number of seconds covered by this stream.

On failure, throws an exception or returns Y_DURATION_INVALID.

270 www.yoctopuce.com

19. High-level API Reference

datastream - get_maxValue() YDataStream
datastream - maxValue()

Returns the largest measure observed within this stream.

function get_maxValue()

function get_maxValue()

function get_maxValue()

double get_maxValue()

-(double) maxValue

function get_maxValue(): double
function get_maxValue() As Double
double get_maxValue()

double get_maxValue()

def get_maxValue()

If the device uses a firmware older than version 13000, this method will always return
Y_DATA_INVALID.

Returns :
a floating-point number corresponding to the largest value, or Y_DATA_INVALID if the stream is not yet
complete (still recording).

On failure, throws an exception or returns Y_DATA_INVALID.

www.yoctopuce.com 271

19. High-level API Reference

datastream - get_minValue() YDataStream
datastream - minValue()

Returns the smallest measure observed within this stream.

[is |function get_minVvalue()
[nodej s | function get_minValue()

[php | function get_minVvalue()

double get_minValue()

-(double) minValue

[pas|function get_minValue(): double

[vb |function get_minValue() As Double
double get_minValue()

double get_minValue()

def get_minValue()

If the device uses a firmware older than version 13000, this method will always return
Y_DATA_INVALID.

Returns :
a floating-point number corresponding to the smallest value, or Y_DATA_INVALID if the stream is not yet
complete (still recording).

On failure, throws an exception or returns Y_DATA_INVALID.

272 www.yoctopuce.com

19. High-level API Reference

datastream - get_rowCount() YDataStream
datastream - rowCount()

Returns the number of data rows present in this stream.

function get_rowCount()

function get_rowCount()

function get_rowCount()

int get_rowCount()

-(int) rowCount

function get_rowCount(): Longint
function get_rowCount() As Integer
int get_rowCount()

int get_rowCount()

def get_rowCount()

If the device uses a firmware older than version 13000, this method fetches the whole data stream from
the device if not yet done, which can cause a little delay.

Returns :
an unsigned number corresponding to the number of rows.

On failure, throws an exception or returns zero.

www.yoctopuce.com 273

19. High-level API Reference

datastream - get_runindex()
datastream - runindex()

YDataStream

Returns the run index of the data stream.

[is |function get_runindex()
[nodej s | function get_runindex()

[php | function get_runindex()

int get_runindex()

-(int) runindex

[pas |function get_runindex(): LongInt
[vb |function get_runindex() As Integer
int get_runindex()

int get_runindex()

def get_runindex()

A run can be made of multiple datastreams, for different time intervals.

Returns :
an unsigned number corresponding to the run index.

274

www.yoctopuce.com

19. High-level API Reference

datastream - get_startTime() YDataStream
datastream - startTime()

Returns the relative start time of the data stream, measured in seconds.

function get_startTime()

function get_startTime()

function get_startTime()

int get_startTime()

-(int) startTime

function get_startTime(): LongInt
function get_startTime() As Integer
int get_startTime()

int get_startTime()

def get_startTime()

For recent firmwares, the value is relative to the present time, which means the value is always
negative. If the device uses a firmware older than version 13000, value is relative to the start of the time
the device was powered on, and is always positive. If you need an absolute UTC timestamp, use
get _start Ti meUTC().

Returns :
an unsigned number corresponding to the number of seconds between the start of the run and the beginning
of this data stream.

www.yoctopuce.com 275

19. High-level API Reference

datastream - get_startTimeUTC() YDataStream
datastream - startTimeUTC()

Returns the start time of the data stream, relative to the Jan 1, 1970.

[is |function get_startTimeUTC()
[nodej s | function get_startTimeUTC()

[php | function get_startTimeUTC()

s64 get_startTimeUTC()

-(s64) startTimeUTC

[pas_|function get_startTimeUTC(): int64

[vb |function get_startTimeUTC() As Long
long get_startTimeUTC()

long get_startTimeUTC()

def get_startTimeUTC()

If the UTC time was not set in the datalogger at the time of the recording of this data stream, this
method returns O.

Returns :
an unsigned number corresponding to the number of seconds between the Jan 1, 1970 and the beginning of
this data stream (i.e. Unix time representation of the absolute time).

276 www.yoctopuce.com

20. Troubleshooting
20.1. Linux and USB

To work correctly under Linux, the the library needs to have write access to all the Yoctopuce USB
peripherals. However, by default under Linux, USB privileges of the non-root users are limited to read
access. To avoid having to run the VirtualHub as root, you need to create a new udev rule to
authorize one or several users to have write access to the Yoctopuce peripherals.

To add a new udev rule to your installation, you must add a file with a name following the "##-
arbitraryName.rules" format, in the "/etc/udev/rules.d" directory. When the system is
starting, udev reads all the files with a ".rules" extension in this directory, respecting the
alphabetical order (for example, the "51-custom.rules" file is interpreted AFTER the "50-
udev-default.rules"file).

The "50-udev-default" file contains the system default udev rules. To modify the default
behavior, you therefore need to create a file with a name that starts with a number larger than 50,
that will override the system default rules. Note that to add a rule, you need a root access on the
system.

In the udev conf directory of the VirtualHub for Linux' archive, there are two rule examples which
you can use as a basis.

Example 1: 51-yoctopuce.rules

This rule provides all the users with read and write access to the Yoctopuce USB peripherals. Access
rights for all other peripherals are not modified. If this scenario suits you, you only need to copy the
"51-yoctopuce all.rules"file into the "/etc/udev/rules.d" directory and to restart your
system.

udev rules to allow write access to all users
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0666"

Example 2: 51-yoctopuce_group.rules

This rule authorizes the "yoctogroup" group to have read and write access to Yoctopuce USB
peripherals. Access rights for all other peripherals are not modified. If this scenario suits you, you

1 http://www.yoctopuce.com/FR/virtualhub.php

www.yoctopuce.com 277

20. Troubleshooting

only need to copy the "51-yoctopuce group.rules" file into the "/etc/udev/rules.d"
directory and restart your system.

udev rules to allow write access to all users of "yoctogroup"
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0664", GROUP="yoctogroup"

20.2. ARM Platforms: HF and EL

There are two main flavors of executable on ARM: HF (Hard Float) binaries, and EL (EABI Little
Endian) binaries. These two families are not compatible at all. The compatibility of a given ARM
platform with of one of these two families depends on the hardware and on the OS build. ArmHL and
ArmEL compatibility problems are quite difficult to detect. Most of the time, the OS itself is unable to
make a difference between an HF and an EL executable and will return meaningless messages
when you try to use the wrong type of binary.

All pre-compiled Yoctopuce binaries are provided in both formats, as two separate ArmHF et ArmEL
executables. If you do not know what family your ARM platform belongs to, just try one executable
from each family.

278 www.yoctopuce.com

21. Characteristics

You can find below a summary of the main technical characteristics of your Yocto-4-20mA-Rx

module.

Resolution

Width

Length

Weight

USB connector

Channels

Refresh rate

Input impedance

Accuracy

Supported Operating Systems
Drivers

APl / SDK/ Libraries (USB+TCP)
APl / SDK / Libraries (TCP only)
RoHS

USB Vendor ID

USB Device ID

Suggested enclosure

Cables and enclosures

0.001 mA

20 mm

60 mm

109

micro-B

2

50 Hz

50 Q

0.01 %

Windows, Linux (Intel + ARM), Mac OS X, Android
no driver needed

C++, Objective-C, C#, VB .NET, Delphi, Python, Java/Android
Javascript, Node.js, PHP, Java

yes

0x24E0

0x0037

YoctoBox-Long-Thick-Black-Vents

available separately

www.yoctopuce.com

279

21. Characteristics

280 www.yoctopuce.com

A

/

=]

20

15.5

o [=0
do

YO [[NOY0

11.8

S P SN o

43

RECOM
RKz-0612D

T 00T

All dimensions are in mm
Toutes les dimensions sont en mm

Yocto-4-20mA-RX

A4

cale
.
.

21

hel

Index

A FirstModule, YModule 151

Fixing 15
Access 9_5 FreeAPI, YAPI 129
Accessories 3 functionCount, YModule 154
Activating 96 functionld, YModule 155
Advanced 107 functionName, YModule 156
Android 95, 96 Functions 124
Assembly 15 functionValue, YModule 157
B G
Basic _63 General 17, 27,124
Blueprint 281 GenericSensor 20, 28, 31, 39, 49, 57, 64, 70, 77,

83, 89, 98, 193

C get_advertisedValue, YGenericSensor 199
C# 69 get_averageValue, YDataStream 263
C++ 49,54 get_averageValue, YMeasure 256
calibrateFromPoints, YGenericSensor 197 get_beacon, YModule 158
Calibration 112 get_columnCount, YDataStream 264
Callback 44 get_columnNames, YDataStream 265
Characteristics 279 get_currentRawValue, YGenericSensor 200
CheckLogicalName, YAPI 125 get_currentValue, YGenericSensor 201
Command 27, 117 get_data, YDataStream 266
Compatibility 95 get_dataRows, YDataStream 267

get_dataSamplesintervalMs, YDataStream 268
get_duration, YDataStream 269
get_endTimeUTC, YDataSet 244

get_ endTimeUTC, YMeasure 257

Concepts 17
Configuration 12
Connections 15

D get_errorMessage, YGenericSensor 202
get_errorMessage, YModule 159
Data 110, 243, 262 get_errorType, YGenericSensor 203
DatalLogger 21 get_errorType, YModule 160
Delphi 77 get_firmwareRelease, YModule 161
describe, YGenericSensor 198 get_friendlyName, YGenericSensor 204
describe, YModule 152 get_functionDescriptor, YGenericSensor 205
Description 27 get_functionld, YDataSet 245
DisableExceptions, YAPI 126 get_functionld, YGenericSensor 206
Distribution 16 get_hardwareld, YDataSet 246
download, YModule 153 get_hardwareld, YGenericSensor 207
Dynamic 83, 119 get_hardwareld, YModule 162
get_highestValue, YGenericSensor 208
E get_icon2d, YModule 163

get_lastLogs, YModule 164
get_logFrequency, YGenericSensor 209
get_logicalName, YGenericSensor 210
get_logicalName, YModule 165
get_lowestValue, YGenericSensor 211

Elements 5, 6

EnableExceptions, YAPI 127
EnableUSBHost, YAPI 128

Error 36, 47, 54, 61, 68, 74, 81, 87, 93, 105

Event 107 get_luminosity, YModule 166
get_maxValue, YDataStream 270
F get_maxValue, YMeasure 258
Files 83 get_measures, YDataSet 247
Filters 44 get_minValue, YDataStream 271
FindGenericSensor, YGenericSensor 195 get_minValue, YMeasure 259
FindModule, YModule 150 get_module, YGenericSensor 212

FirstGenericSensor, YGenericSensor 196 get_module_async, YGenericSensor 213

get_persistentSettings, YModule 167 Limitations 29

get_preview, YDataSet 248 Linux 277

get_productld, YModule 168 load, YGenericSensor 225
get_productName, YModule 169 load, YModule 179
get_productRelease, YModule 170 load_async, YGenericSensor 227
get_progress, YDataSet 249 load_async, YModule 180
get_rebootCountdown, YModule 171 loadCalibrationPoints, YGenericSensor 226
get_recordedData, YGenericSensor 214 loadMore, YDataSet 253
get_reportFrequency, YGenericSensor 215 loadMore_async, YDataSet 254
get_resolution, YGenericSensor 216 Localization 11

get_rowCount, YDataStream 272 Logger 110

get_runindex, YDataStream 273

get_serialNumber, YModule 172 M

get_signalRange, YGenericSensor 217
get_signalUnit, YGenericSensor 218
get_signalValue, YGenericSensor 219
get_startTime, YDataStream 274
get_startTimeUTC, YDataSet 250

Measured 256
Module 11, 18, 19, 28, 33, 41, 51, 59, 66, 72, 79,
85, 91, 100, 148

get_startTimeUTC, YDataStream 275 N

get_startTimeUTC, YMeasure 260 Native 22, 95

get_summary, YDataSet 251 .NET 63

get_unit, YDataSet 252 nextGenericSensor, YGenericSensor 228
get_unit, YGenericSensor 220 nextModule, YModule 181

get_upTime, YModule 173

get_usbBandwidth, YModule 174 O

get_usbCurrent, YModule 175

get_userData, YGenericSensor 221 Objective-C 57

get_userData, YModule 176 Optional 3
get_valueRange, YGenericSensor 222
GetAPIVersion, YAPI 130 P
GetTickCount, YAPI 131 Paradigm 17
Platforms 278
H Port 96
HandleEvents, YAPI 132 Porting 122
High-level 123 Power 16
HTTP 44,117 Preparation 77

PreregisterHub, YAPI 134
| Prerequisites 1
Presentation 5

InitAPI, YAPI 133 Programming 17, 24, 107
Installation 63, 69 Project 63, 69

Installing 27 Python 83

Integration 54

Interface 148, 193 R

Introduction 1
isOnline, YGenericSensor 223 reboot, YModule 182
isOnline, YModule 177 Recorded 243

isOnline_async, YGenericSensor 224 Refe_rence 1_23 .
isOnline_async, YModule 178 RegisterDeviceArrivalCallback, YAPI 135

RegisterDeviceRemovalCallback, YAPI 136

J RegisterHub, YAPI 137
RegisterHubDiscoveryCallback, YAPI 138
Java 89 RegisterLogFunction, YAPI 139
Javascript 31 registerTimedReportCallback, YGenericSensor
229
|_ registerValueCallback, YGenericSensor 230

Languages 117 revertFromFlash, YModule 183

Libraries 119
Library 54, 83, 122

S

saveToFlash, YModule 184
SelectArchitecture, YAPI 140

Sensor 112

Sequence 243, 262

Service 22

set_beacon, YModule 185
set_highestValue, YGenericSensor 231
set_logFrequency, YGenericSensor 232
set_logicalName, YGenericSensor 233
set_logicalName, YModule 186
set_lowestValue, YGenericSensor 234
set_luminosity, YModule 187
set_reportFrequency, YGenericSensor 235
set_resolution, YGenericSensor 236
set_signalRange, YGenericSensor 237
set_unit, YGenericSensor 238
set_usbBandwidth, YModule 188
set_userData, YGenericSensor 239
set_userData, YModule 189
set_valueRange, YGenericSensor 240
SetDelegate, YAPI 141

SetTimeout, YAPI 142

Sleep, YAPI 143

Source 83

Start 24

T

Test 11
triggerFirmwareUpdate, YModule 190
Troubleshooting 277

U

Unformatted 262

UnregisterHub, YAPI 144
Unsupported 117
UpdateDevicelist, YAPI 145
UpdateDeviceList_async, YAPI 146

V

Value 256
Variants 54
VirtualHub 95, 117
Visual 63, 69

W

wait_async, YGenericSensor 241
wait_async, YModule 191

Y

YAP| 125-146

yCheckLogicalName 125

YDataSet 244-254

YDataStream 263-275

yDisableExceptions 126

yEnableExceptions 127

yEnableUSBHost 128

yFindGenericSensor 195

yFindModule 150

yFirstGenericSensor 196

yFirstModule 151

yFreeAPI 129

YGenericSensor 195-241

yGetAPIVersion 130

yGetTickCount 131

yHandleEvents 132

yInitAPI 133

YMeasure 256-260

YModule 150-191

Yocto-4-20mA-Rx 18, 27, 31, 39, 49, 57, 63, 69,
77,83, 89, 95

yPreregisterHub 134

yRegisterDeviceArrivalCallback 135

yRegisterDeviceRemovalCallback 136

yRegisterHub 137

yRegisterHubDiscoveryCallback 138

yRegisterLogFunction 139

ySelectArchitecture 140

ySetDelegate 141

ySetTimeout 142

ySleep 143

yUnregisterHub 144

yUpdateDeviceList 145

yUpdateDeviceList_async 146

	Table of contents
	1. Introduction
	1.1. Prerequisites
	1.2. Optional accessories

	2. Presentation
	2.1. Common elements
	2.2. Specific elements

	3. First steps
	3.1. Localization
	3.2. Test of the module
	3.3. Configuration

	4. Assembly and connections
	4.1. Fixing
	4.2. USB power distribution

	5. Programming, general concepts
	5.1. Programming paradigm
	5.2. The Yocto-4-20mA-Rx module
	5.3. Module control interface
	5.4. GenericSensor function interface
	5.5. DataLogger function interface
	5.6. What interface: Native, DLL or Service ?
	5.7. Programming, where to start?

	6. Using the Yocto-4-20mA-Rx in command line
	6.1. Installing
	6.2. Use: general description
	6.3. Control of the GenericSensor function
	6.4. Control of the module part
	6.5. Limitations

	7. Using Yocto-4-20mA-Rx with Javascript
	7.1. Getting ready
	7.2. Control of the GenericSensor function
	7.3. Control of the module part
	7.4. Error handling

	8. Using Yocto-4-20mA-Rx with PHP
	8.1. Getting ready
	8.2. Control of the GenericSensor function
	8.3. Control of the module part
	8.4. HTTP callback API and NAT filters
	8.5. Error handling

	9. Using Yocto-4-20mA-Rx with C++
	9.1. Control of the GenericSensor function
	9.2. Control of the module part
	9.3. Error handling
	9.4. Integration variants for the C++ Yoctopuce library

	10. Using Yocto-4-20mA-Rx with Objective-C
	10.1. Control of the GenericSensor function
	10.2. Control of the module part
	10.3. Error handling

	11. Using Yocto-4-20mA-Rx with Visual Basic .NET
	11.1. Installation
	11.2. Using the Yoctopuce API in a Visual Basic project
	11.3. Control of the GenericSensor function
	11.4. Control of the module part
	11.5. Error handling

	12. Using Yocto-4-20mA-Rx with C#
	12.1. Installation
	12.2. Using the Yoctopuce API in a Visual C# project
	12.3. Control of the GenericSensor function
	12.4. Control of the module part
	12.5. Error handling

	13. Using Yocto-4-20mA-Rx with Delphi
	13.1. Preparation
	13.2. Control of the GenericSensor function
	13.3. Control of the module part
	13.4. Error handling

	14. Using the Yocto-4-20mA-Rx with Python
	14.1. Source files
	14.2. Dynamic library
	14.3. Control of the GenericSensor function
	14.4. Control of the module part
	14.5. Error handling

	15. Using the Yocto-4-20mA-Rx with Java
	15.1. Getting ready
	15.2. Control of the GenericSensor function
	15.3. Control of the module part
	15.4. Error handling

	16. Using the Yocto-4-20mA-Rx with Android
	16.1. Native access and VirtualHub
	16.2. Getting ready
	16.3. Compatibility
	16.4. Activating the USB port under Android
	16.5. Control of the GenericSensor function
	16.6. Control of the module part
	16.7. Error handling

	17. Advanced programming
	17.1. Event programming
	17.2. The data logger
	17.3. Sensor calibration

	18. Using with unsupported languages
	18.1. Command line
	18.2. VirtualHub and HTTP GET
	18.3. Using dynamic libraries
	18.4. Porting the high level library

	19. High-level API Reference
	19.1. General functions
	19.2. Module control interface
	19.3. GenericSensor function interface
	19.4. Recorded data sequence
	19.5. Measured value
	19.6. Unformatted data sequence

	20. Troubleshooting
	20.1. Linux and USB
	20.2. ARM Platforms: HF and EL

	21. Characteristics
	Blueprint

