

$\mathbf{AssayMax}^{\mathsf{TM}}$

Human Amylase ELISA Kit

Assaypro LLC 3400 Harry S Truman Blvd St. Charles, MO 63301 T (636) 447-9175 F (636) 395-7419 www.assaypro.com

For any questions regarding troubleshooting or performing the assay, please contact our support team at support@assaypro.com.

Assay Summary

Step 1. Add 50 μ l of Standard or Sample per well. Incubate 2 hours.

Step 2. Wash, then add 50 μ l of Biotinylated Antibody per well. Incubate 1 hour.

Step 3. Wash, then add 50 μ l of SP Conjugate per well. Incubate 30 minutes.

Step 4. Wash, then add 50 μ l of Chromogen Substrate per well. Incubate 12 minutes.

Step 5. Add 50 μ l of Stop Solution per well. Read at 450 nm immediately.

Symbol Key

Consult instructions for use.

Assay Template

Ą	В	0	Q	Е	Ą	9	I
	A	4 8	4 B V	4 B U			

Human Pancreatic Amylase ELISA Kit

Catalog No. EA6501-1

Sample insert for reference use only

Introduction

Human pancreatic amylase is a secreted enzyme that is present in saliva and pancreatic secretions in the form of alpha-amylase with 496 amino acids and 56 kDa (1-3). Salivary alpha-amylase catalyses the hydrolysis of 1,4- α -glycosidic bonds of starch into disaccharide maltose, trisaccharide maltotriose, and small dextrins. Pancreatic alpha-amylase continues the hydrolysis of starch into disaccharides and trisaccharides, which are converted by alpha-glucosidases to absorbable glucose, fructose, and galactose in the small intestine (4-6). By retardation of carbohydrate digestion, the amylase inhibitor could have anti-obesity and anti-diabetes effects (7, 8).

Principle of the Assay

The AssayMax Human Pancreatic Amylase ELISA (Enzyme-Linked Immunosorbent Assay) kit is designed for detection of human amylase in plasma, serum, urine, milk, saliva, and cell culture samples. This assay employs a quantitative sandwich enzyme immunoassay technique that measures amylase in less than 4 hours. A polyclonal antibody specific for amylase has been pre-coated onto a 96-well microplate with removable strips. Amylase in standards and samples is sandwiched by the immobilized antibody and the biotinylated polyclonal antibody specific for amylase, which is recognized by a streptavidin-peroxidase conjugate. All unbound material is washed away and a peroxidase enzyme substrate is added. The color development is stopped and the intensity of the color is measured.

Caution and Warning

- This product is for Research Use Only and is Not For Use In Diagnostic Procedures.
- Prepare all reagents (working diluent buffer, wash buffer, standard, biotinylated antibody, and SP conjugate) as instructed, prior to running the assay.
- Prepare all samples prior to running the assay. The dilution factors for the samples are suggested in this insert. However, the user should determine the optimal dilution factor.
- Spin down the SP conjugate vial and the biotinylated antibody vial before opening and using contents.

- The Stop Solution is an acidic solution.
- The kit should not be used beyond the expiration date.

Reagents

- Human Amylase Microplate: A 96-well polystyrene microplate (12 strips of 8 wells) coated with a polyclonal antibody against human amylase.
- Sealing Tapes: Each kit contains 3 precut, pressure sensitive sealing tapes that can be cut to fit the format of the individual assay.
- Human Amylase Standard: Human amylase in a buffered protein base (160 mU, lyophilized).
- **Biotinylated Human Amylase Antibody (100x):** A 100-fold concentrated biotinylated polyclonal antibody against amylase (80 µl).
- MIX Diluent Concentrate (10x): A 10-fold concentrated buffered protein base (30 ml).
- Wash Buffer Concentrate (20x): A 20-fold concentrated buffered surfactant (30 ml, 2 bottles).
- Streptavidin-Peroxidase Conjugate (SP Conjugate): A 100-fold concentrate (80 μl).
- Chromogen Substrate: A ready-to-use stabilized peroxidase chromogen substrate tetramethylbenzidine (8 ml).
- Stop Solution: A 0.5 N hydrochloric acid to stop the chromogen substrate reaction (12 ml).

Storage Condition

- Upon arrival, immediately store components of the kit at recommended temperatures up to the expiration date.
- Store SP Conjugate and Biotinylated Antibody at -20°C.
- Store Microplate, Diluent Concentrate (10x), Wash Buffer, Stop Solution, and Chromogen Substrate at 2-8°C.
- Unused microplate wells may be returned to the foil pouch with the desiccant packs and resealed. May be stored for up to 30 days in a vacuum desiccator.
- Diluent (1x) may be stored for up to 30 days at 2-8°C.
- Store Standard at 2-8°C before reconstituting with Diluent and at -20°C after reconstituting with Diluent.

Other Supplies Required

- Microplate reader capable of measuring absorbance at 450 nm.
- Pipettes (1-20 μl, 20-200 μl, 200-1000 μl, and multiple channel).
- Deionized or distilled reagent grade water.

Sample Collection, Preparation, and Storage

- Plasma: Collect plasma using one-tenth volume of 0.1 M sodium citrate as an anticoagulant. Centrifuge samples at 3000 x g for 10 minutes.
 Dilute samples 1:20 into MIX Diluent and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles (EDTA can also be used as an anticoagulant).
- Serum: Samples should be collected into a serum separator tube. After clot formation, centrifuge samples at 3000 x g for 10 minutes, and remove serum. Dilute samples 1:20 into MIX Diluent and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.
- **Cell Culture Supernatants:** Collect cell culture media and centrifuge at 3000 x g for 10 minutes at 4°C to remove debris. The samples can be stored at -20°C or below. Avoid repeated freeze-thaw cycles.
- Saliva: Collect saliva using sample tube. Centrifuge samples at 800 x g for 10 minutes. Dilute samples 1:15000 into MIX Diluent and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.
- Urine: Collect urine using sample pot. Centrifuge samples at 800 x g for 10 minutes. Dilute samples 1:100 into MIX Diluent and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.
- Milk: Collect milk using sample tube. Centrifuge samples at 800 x g for 10 minutes. Dilute samples 1:400 into MIX Diluent and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

Refer to Sample Dilution Guidelines below for further instruction.

	Guidelines for Dilutions of 1:100 or Greater (for reference only; please follow the insert for specific dilution suggested)			
	1:100		1:10000	
A)	4 ul sample: 396 μl buffer(100x) = 100 fold dilution Assuming the needed volume is less than or equal to 400 μl.	A) B)	4 μl sample : 396 μl buffer (100x) 4 μl of A : 396 μl buffer (100x) = 10000 fold dilution Assuming the needed volume is less than or equal to 400 μl.	
	1:1000		1:100000	
A) B)	4 μl sample : 396 μl buffer (100x) 24 μl of A : 216 μl buffer (10x) = 1000 fold dilution	A) B) C)	4 μl sample : 396 μl buffer (100x) 4 μl of A : 396 μl buffer (100x) 24 μl of B : 216 μl buffer (10x) = 100000 fold dilution	
	Assuming the needed volume is less than or equal to 240 μl.		Assuming the needed volume is less than or equal to 240 μ l.	

Reagent Preparation

- Freshly dilute all reagents and bring all reagents to room temperature before use.
- MIX Diluent Concentrate (10x): If crystals have formed in the
 concentrate, mix gently until the crystals have completely dissolved.
 Dilute the MIX Diluent Concentrate 1:10 with reagent grade water. Store
 for up to 30 days at 2-8°C.
- Standard Curve: Reconstitute the 160 mU of Human Amylase Standard with 4 ml of MIX Diluent to generate a 40 mU/ml standard stock solution. Allow the standard to sit for 10 minutes with gentle agitation prior to making dilutions. Prepare duplicate or triplicate standard points by serially diluting the standard stock solution (40 mU/ml) twofold with equal volume of MIX Diluent to produce 20, 10, 5, 2.5, 1.25, 0.625, and 0.313 mU/ml solutions. MIX Diluent serves as the zero standard (0 mU/ml). Any remaining solution should be frozen at -20°C and used within 30 days.

Standard Point	Dilution	[Amylase] (mU/ml)
P1	1 part Standard (40 mU/ml) + 1 part MIX Diluent	20.00
P2	1 part P1 + 1 part MIX Diluent	10.00
P3	1 part P2 + 1 part MIX Diluent	5.000
P4	1 part P3 + 1 part MIX Diluent	2.500
P5	1 part P4 + 1 part MIX Diluent	1.250
P6	1 part P5 + 1 part MIX Diluent	0.625
P7	1 part P6 + 1 part MIX Diluent	0.313
P8	MIX Diluent	0.000

- Biotinylated Human Amylase Antibody (100x): Spin down the antibody briefly and dilute the desired amount of the antibody 1:100 with MIX Diluent. Any remaining solution should be frozen at -20°C.
- Wash Buffer Concentrate (20x): If crystals have formed in the concentrate, mix gently until the crystals have completely dissolved.
 Dilute the Wash Buffer Concentrate 1:20 with reagent grade water.
- SP Conjugate (100x): Spin down the SP Conjugate briefly and dilute the desired amount of the conjugate 1:100 with MIX Diluent. Any remaining solution should be frozen at -20°C.

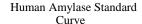
Assay Procedure

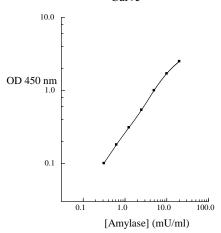
 Prepare all reagents, standard solutions, and samples as instructed. Bring all reagents to room temperature before use. The assay is performed at room temperature (20-25°C).

- Remove excess microplate strips from the plate frame and return them
 immediately to the foil pouch with desiccants inside. Reseal the pouch
 securely to minimize exposure to water vapor and store in a vacuum
 desiccator.
- Add $50\,\mu l$ of Human Amylase Standard or sample per well. Cover wells with a sealing tape and incubate for 2 hours. Start the timer after the last addition.
- Wash five times with 200 µl of Wash Buffer manually. Invert the plate
 each time and decant the contents; hit 4-5 times on absorbent material
 to completely remove the liquid. If using a machine, wash six times with
 300 µl of Wash Buffer and then invert the plate, decanting the contents;
 hit 4-5 times on absorbent material to completely remove the liquid.
- Add 50 µl of Biotinylated Human Amylase Antibody to each well and incubate for 1 hour.
- Wash the microplate as described above.
- Add 50 µl of Streptavidin-Peroxidase Conjugate per well and incubate for 30 minutes. Turn on the microplate reader and set up the program in advance.
- Wash the microplate as described above.
- Add 50 µl of Chromogen Substrate per well and incubate for 12 minutes or till the optimal blue color density develop. Gently tap the plate to ensure thorough mixing and break the bubbles in the well with pipette tip.
- Add 50 μ l of Stop Solution to each well. The color will change from blue to yellow.
- Read the absorbance on a microplate reader at a wavelength of 450 nm immediately. If wavelength correction is available, subtract readings at 570 nm from those at 450 nm to correct optical imperfections.
 Otherwise, read the plate at 450 nm only. Please note that some unstable black particles may be generated at high concentration points after stopping the reaction for about 10 minutes, which will reduce the readings.

Data Analysis

- Calculate the mean value of the duplicate or triplicate readings for each standard and sample.
- To generate a standard curve, plot the graph using the standard concentrations on the x-axis and the corresponding mean 450 nm absorbance on the y-axis. The best-fit line can be determined by regression analysis using log-log or four-parameter logistic curve-fit.
- Determine the unknown sample concentration from the Standard Curve and multiply the value by the dilution factor.


Typical Data


The typical data is provided for reference only. Individual laboratory
means may vary from the values listed. Variations between laboratories
may be caused by technique differences.

Standard Point	mU/ml	OD	Average OD
P1	20.00	2.026	2.024
P.I	20.00	2.021	2.024
P2	10.00	1.685	1.665
ΓZ	10.00	1.646	1.005
P3	5.000	1.161	1.165
FJ	5.000	1.169	1.105
P4	2.500	0.727	0.709
F 4	0.692	0.692	0.703
P5	1.250	0.423	0.416
FJ	1.230	0.401	0.410
P6	0.625	0.229	0.226
10	0.023	0.223	0.220
P7	0.313	0.132	0.128
Γ/	0.313	0.123	0.120
P8	0.000	0.034	0.037
10	0.000	0.040	0.037
Sample: Po	Sample: Pool Normal,		0.722
Sodium Citrate	Plasma (20x)	0.744	0.732

Standard Curve

 The curve is used for illustration only. A standard curve should be generated each time the assay is performed.

Reference Value

- Normal human amylase plasma levels range from 20 to 160 mU/ml.
- Human plasma and serum samples from healthy adults were tested (n=40). On average, amylase level was 68 mU/ml.

Sample	n	Average Value (mU/ml)
Human Pool Normal Plasma	10	69
Human Normal Plasma	20	59
Human Pool Normal Serum	10	76

Performance Characteristics

- The minimum detectable dose of amylase as calculated by 2SD from the mean of a zero standard was established to be 0.15 mU/ml.
- Intra-assay precision was determined by testing replicates of three plasma samples in one assay.
- Inter-assay precision was determined by testing three plasma samples in twenty assays.

	Intra-Assay Precision			Inter	-Assay Prec	ision
Sample	1	2	3	1	2	3
n	20	20	20	20	20	20
CV (%)	2.9%	3.1%	3.0%	7.7%	8.6%	7.9%
Average CV (%)		3.0%			8.0%	

Recovery

Standard Added Value	1 – 6 mU/ml
Recovery %	88 – 109%
Average Recovery %	97%

Linearity

Plasma and serum samples were serially-diluted to test for linearity.

Average Percentage of Expected Value (%)			
Sample Dilution	Plasma	Serum	
1:10	91%	92%	
1:20	98%	99%	
1:40	103%	104%	

Cross-Reactivity

Species	Cross Reactivity (%)
Canine	None
Bovine	<10%
Monkey	<95%
Mouse	None
Rat	None
Swine	None
Rabbit	None

Troubleshooting

Issue	Causes	Course of Action
١	Use of expired components	Check the expiration date listed before use. Do not interchange components from different lots.
Low Precision	Improper wash step	Check that the correct wash buffer is being used. Check that all wells are dry after aspiration. Check that the microplate washer is dispensing properly. If washing by pipette, check for proper pipetting technique.

	1	
	Splashing of reagents while loading wells	Pipette properly in a controlled and careful manner.
	Inconsistent volumes loaded into wells	 Pipette properly in a controlled and careful manner. Check pipette calibration. Check pipette for proper performance.
	Insufficient mixing of reagent dilutions	Thoroughly agitate the lyophilized components after reconstitution. Thoroughly mix dilutions.
	Improperly sealed microplate	Check the microplate pouch for proper sealing. Check that the microplate pouch has no punctures. Check that three desiccants are inside the microplate pouch prior to sealing.
gnal	Microplate was left unattended between steps	Each step of the procedure should be performed uninterrupted.
High Si	Omission of step Steps performed in incorrect order	Consult the provided procedure for complete list of steps. Consult the provided procedure for the correct order.
Unexpectedly Low or High Signal Intensity	Insufficient amount of reagents added to wells	Check pipette calibration. Check pipette for proper performance.
<u>≥</u> ⊆	Wash step was skipped	 Consult the provided procedure for all wash steps.
ĘĘ	Improper wash buffer	 Check that the correct wash buffer is being used.
xbec	Improper reagent preparation	 Consult reagent preparation section for the correct dilutions of all reagents.
Une	Insufficient or prolonged incubation periods	 Consult the provided procedure for correct incubation time.
Deficient Standard Curve Fit	Non-optimal sample dilution	 Sandwich ELISA: If samples generate OD values higher than the highest standard point (P1), dilute samples further and repeat the assay. Competitive ELISA: If samples generate OD values lower than the highest standard point (P1), dilute samples further and repeat the assay. User should determine the optimal dilution factor for samples.
tandar	Contamination of reagents	 A new tip must be used for each addition of different samples or reagents during the assay procedure.
T Si	Contents of wells evaporate	 Verify that the sealing film is firmly in place before placing the assay in the incubator or at room temperature.
Deficier	Improper pipetting	Pipette properly in a controlled and careful manner. Check pipette calibration. Check pipette for proper performance.
	Insufficient mixing of reagent dilutions	Thoroughly agitate the lyophilized components after reconstitution. Thoroughly mix dilutions.

References

- (1) Nishide T et al. (1986) Gene. 41(2-3):299-304
- (2) Wise RJ et al. (1984) Mol Biol Med. 2(5):307-322
- (3) Horii A et al. (1987) Gene. 60(1):57-64
- (4) Banks PA et al. (2006) Am J Gastroenterol. 101(10):2379-2400
- (5) Shikata J et al. (1981) Int Surg. 66(4):319-324.
- (6) Van Kley H et al. (1981) Cancer. 48(6):1444-1449
- (7) Golay A et al. (1991) Am J Clin Nutr. 53(1):61-65
- (8) Tsujita T et al. (2008) J Nutr Sci Vitaminol (Tokyo). 54(1):82-88

Version 2.1R