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Cyclos 4 PRO Documentation
Welcome to the Cyclos 4 PRO Documentation. First, this manual contains the Installation and
maintenance guide. Second, this manual will give a detailed description and some examples
of how to connect to Cyclos using the webservices. Subsequently, this manual explains the
Cyclos scripts, these scripts can be executed by clicking on a menu link, by a scheduled task
or by an extension point on a certain function. These scripts make it possible to add new
functions to Cyclos and customize Cyclos exactly to the needs of your payment system. Finally,
this manual will give an explanation of how to login to Cyclos from an external website. This
can be useful if you have a large CMS as a website and you want to have an integrated login
to Cyclos in this website.

There are some important documentation resources that are not part of this manual, these
can be found here:

• There are two (end user) Cyclos 4 manuals (make sure you are not logged into
communities.cyclos.org):

• Administrator manual

• User manual

• Next to the manuals some functions are described with much more technical details in our
wiki:

• Configurations

• Groups

• Networks

• Advertisements

• Users records

• Transfer_authorization

• SMS

• Imports

• Cyclos instruction videos:

• Cyclos 4 communities

• Cyclos 4 PRO

http://www.cyclos.org/documentation
https://communities.cyclos.org/content/help/admin
https://communities.cyclos.org/content/help/user
http://www.cyclos.org/wiki4/index.php/System_-_Configurations
http://www.cyclos.org/wiki4/index.php/Users_-_Groups
http://www.cyclos.org/wiki4/index.php/System_-_Networks
http://www.cyclos.org/wiki4/index.php/Advertisements
http://www.cyclos.org/wiki4/index.php/Users_-_Records
http://www.cyclos.org/wiki4/index.php/Transfer_authorization
http://www.cyclos.org/wiki4/index.php/SMS_quick_steps
http://www.cyclos.org/wiki4/index.php/Imports_quick_steps
http://www.cyclos.org/documentation/cyclos-4-communities-instruction-videos
http://www.cyclos.org/documentation/cyclos-4-pro-instruction-videos
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1. Installation & maintenance
This is the installation manual for Cylcos 4 PRO. Be aware that Cyclos is server side software.
End users (customers) will be able to access Cyclos directly with a webbrowser or mobile
phone. If you have any problems when installing Cyclos using this manual, you can ask for
help at our forum.

1.1. Installation steps

System requirements
• Operation system: Any OS that can run the Java VM like Windows, Linux, FreeBSD or Mac;

• Make sure you have at least 500Mb memory available for Cyclos (if the OS runs 64 bits, for
32bits 300Mb should be enough);

• Java Runtime Environment (JRE), Java 7 is required;

• Web server: Apache Tomcat 7 or higher;

• Database server: PostgreSQL 9.3

• Cyclos installation package cyclos_version_number.war;

Install Java

You can check if you have Java installed at this site: http://java.com/en/download/installed.jsp
If you don't have Java 7 installed proceed with the steps below:

Linux (Ubuntu)

• Install the openjdk-7-jdk package.

Windows

• Download and install the last Java Development Kit ( JDK)

• Install the program to <install_dir> (for windows users e.g. C:\Program Files\Java
\jdk1.7.x_xx).

• Make sure your system knows where to find JAVA, in windows you should make an
environmental variable called "JAVA_HOME" which points to the <install_dir>:

• In windows XP: configuration > System > advanced > environmental variables.

• In windows 7: Control Panel > System and Security > System > Advanced system settings
> Environmental Variable

• To check if Java is correctly installed, go to the windows command line (type cmd and press
enter) and type:

http://www.cyclos.org/forum
http://java.com/en/download/installed.jsp
http://www.oracle.com/technetwork/java/javase/downloads/index.html


Cyclos 4 PRO Documentation 2

java -version

• Now java will reply which version of it is installed

Install PostgreSQL (database)

Windows

• If using Windows, download the latest version of PostgreSQL and PostGIS:

• PostgreSQL: http://www.postgresql.org/download/windows (for example the graphical
installer)

• PostGIS: http://postgis.net/windows_downloads (PostGIS can also be installed using the
Stack Builder, that starts after PostgreSQL is installed. Also in this case use the default
options.)

• Install both PostgreSQL and PostGIS by following the installer steps (use the default
options).

• Make sure the bin directory is included in the system variables so that you can run psql
directly from the command line:

• Go to: "Start > Control Panel > System and Security > System > Advanced system settings
> Environment Variables…".

• Then go to the system variable with the name "Path" add the bin directory of
PostgreSQL as a value, don`t forget to separate the values with a semicolon, e.g.:

• Variable name: Path

• Variable value: C:\Program Files\PostgreSQL\9.3\bin;

• Go to the windows command line and type the command (you will be asked for the
password you specified when installing PostgreSQL):

psql -U postgres

• If you see "postgres=#" you are in the PostgreSQL command line and you can follow the
instructions: Setup cyclos4 database (common steps for windows and Linux).

Linux

• If using Ubuntu Linux, these instructions are followed, type the following commands in a
terminal:

• Install PostgreSQL and PostGIS (using the official PostgreSQL packages for Ubuntu)

echo "deb http://apt.postgresql.org/pub/repos/apt/ precise-pgdg main" \

| sudo tee /etc/apt/sources.list.d/postgresql.list

wget –quiet -O – https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-key add -

http://www.postgresql.org/download/windows/
http://postgis.net/windows_downloads
http://www.postgresql.org/download/linux/ubuntu/
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sudo apt-get update 

sudo apt-get install postgresql-9.3 postgresql-contrib-9.3 postgresql-9.3-postgis-2.1 \

postgresql-9.3-postgis-2.1-scripts

• Access the postgresql command line:

sudo -u postgres psql

• If you see "postgres=#" you are in the PostgreSQL command line and you can follow the
instructions below.

Setup cyclos4 database (common steps for windows and Linux)

• Create the user cyclos with the password cyclos. This password and username you will have
to enter in the cyclos.properties file in step 5, so if you do not use the cyclos as password
and username please write them down. Type in the PostgreSQL command line:

CREATE USER cyclos WITH PASSWORD 'cyclos';

• Create the database cyclos4, type in the PostgreSQL command line:

CREATE DATABASE cyclos4 ENCODING 'UTF-8' TEMPLATE template0;

• Make sure the user cyclos can use the database cyclos4, type in the PostgreSQL command
line:

GRANT ALL PRIVILEGES ON DATABASE cyclos4 to cyclos;

• Create the PostGIS extensions on the database, type in the PostgreSQL command line:

\c cyclos4

create extension cube;

create extension earthdistance;

create extension postgis;

• Exit the PostgreSQL command line by entering "\q" (and pressing enter).

Install Tomcat (web server)
• Download Tomcat (7.0.x core) at http://tomcat.apache.org/

• Extract the zipped tomcat file into a folder <tomcat home>.

• Start tomcat: <tomcat home>/bin/startup.bat (Windows) or <tomcat home>/bin/startup.sh
(Linux). You might have to give the startup script file execute permissions.

• Open a browser and go to http://localhost:8080/ and check if tomcat is working.

• The default memory heap size of Tomcat is very low, we recommend increasing it (see
adjustments).

http://tomcat.apache.org/
http://localhost:8080/
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Install Cyclos

Make sure tomcat is working on port 8080 of the local machine (if you don't run Tomcat as
root/admin make sure that the user has write access to the webapps directory)

• Download the latest version of Cyclos from the license server. To download Cyclos from
the license server you first have to register on the license server. Registrering at the license
server allows you to use the free version of Cyclos. Please write down the loginname and
password you chose when registering for the license server (it will be needed later on).

• Unzip the cyclos_<version>.zip into a temporary directory.

• Browse to the temporary directory and copy the directory web (including its contents) into
the webapps directory (<tomcat_home>/webapps) of the tomcat installation.

• Rename this web directory to cyclos. This name will define how users access Cyclos. For
example, if you run the tomcat server on www.domain.com the URL would be http://
www.domain.com/cyclos. Of course it is also possible to run Cyclos directly under the
domain name. This can be done by extracting Cyclos directly in the root of the webapps
directory, or putting an Apache web server in front.

• In the folder <tomcat_home>/webapps/cyclos/WEB-INF/classes you'll find the file cyclos-
release.properties. The first thing to do is to copy this file and give it the name
cyclos.properties. The original name is not shipped, so in future installations you can just
override the entire folder, and your customizations won't be overwritten.

• In the cyclos.properties file you can set the database configuration, here you have to specify
the username and password, by default we use 'cyclos4' as database name and 'cyclos' as
username and password.*

cyclos.datasource.jdbcUrl = jdbc:postgresql://localhost/cyclos4

cyclos.datasource.user = cyclos

cyclos.datasource.password = cyclos

* Some systems do not resolve localhost and the default postgress port directly. In case of
database connectivity problems you might try a URL:
cyclos.datasource.jdbcUrl = jdbc:postgresql://local_ip_address:postgressport/cyclos4
example: cyclos.datasource.jdbcUrl = jdbc:postgresql://192.168.1.1:5432/cyclos4

** Windows might not see linebreaks in the property file, if this is the case we advice you to
download an more advanced text editor such as Notepad++.

*** In windows problems might occur in the Cyclos versions 4.1, 4.1.1, 4.1.2 and 4.2. It can
help to set the cyclos.tempDir variable manual. Point it to the temp directory inside the
WEB-INF directory in Cyclos. E.g. "cyclos.tempDir = C:\Program Files\Tomcat7\webapps\cyclos
\WEB-INF\temp". In some cases even forward slashes need to be used.

https://license.cyclos.org/
http://notepad-plus-plus.org/
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Startup Cyclos
• (Re)start tomcat:

• Unix: /etc/rc.d/rc.tomcat stop /etc/rc.d/rc.tomcat start

• Windows: use TomCat monitor (available after tomcat installaton

• You can also start trough <tomcat_home>/bin/startup.bat (Windows) or
<tomcat_home>/bin/startup.sh (Linux).

• When tomcat is started and Cyclos initialized browse to the web directory defined in step
5 (for the default this would be http://localhost:8080/cyclos). Be aware starting up Cyclos
for the first time might take quite some time, because the database need to be initialized.
On slow computer this could take up to 3 minutes!

• Upon the first start of Cyclos you will be asked to fill in the license information.

• After submitting the correct information, the initialization process will finish, and you will
automatically login as (global) admininstrator.

Problem solving
• Often problems can be easily detected by looking at the log files, the log files of tomcat can

be found in the logs folder inside tomcat. There are two relevant log files:

• The Catlina log shows all relevant information about the tomcat server itself.

• The Cyclos log shows all relevant information about the services and tasks that run in
Cyclos.

• If the logs can't help you to pin down the problem, you can search the Cyclos forum
(installation issues) if somebody encountered a similar problem.

• If this still has no results, you can post the (relevant) part of the logs to the Cyclos forum
(installation issues), together with a description of the problem.

An example of an error that sometimes occurs is "WARN RequestContextFilter – Couldn’t
write on the temp directory". In this case the user that started tomcat doesn’t have the write
permission. This can be modified in Linux by executing the following commands as root
(normally the name of the user is tomcat):

chown -R tomcat /var/lib/tomcat7/webapps/cyclos

chmod -R 755 /var/lib/tomcat7/webapps/cyclos

1.2. Adjustments (optional)

Enable SSL/HTTPS

Enabling SSL is highly recommended on live systems, as it protects sensitive information,
like passwords, to be sent plain over the Internet, making it readable by eavesdroppers. If

http://localhost:8080/cyclos
http://www.cyclos.org/forum/viewforum.php?f=13
http://www.cyclos.org/forum/viewforum.php?f=13
http://www.cyclos.org/forum/viewforum.php?f=13
http://www.cyclos.org/forum/viewforum.php?f=13


Cyclos 4 PRO Documentation 6

the Tomcat server is directly used from the Internet, to enable SSL / HTTPS you first have to
enable (un-comment) the https connector in the file <tomcat_home>/conf/server.xml

<Connector port="443" maxHttpHeaderSize="8192"

    maxThreads="150" minSpareThreads="25" maxSpareThreads="75"

    enableLookups="false" disableUploadTimeout="true"

    acceptCount="100" scheme="https" secure="true"

    clientAuth="false" sslProtocol="TLS" />

Generate a key with the keytool from Java:

$JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA -keystore /path/to/my/keystore

After executing this command, you will first be prompted for the keystore password.
Passwords are *case sensitive*. You will also need to specify the custom password in
the server.xml configuration file, as described later. Next, you will be prompted for
general information about this Certificate, such as company, contact name, and so on.
This information will be displayed to users who attempt to access a secure page in your
application, so make sure that the information provided here matches what they will expect.
Finally, you will be prompted for the key password, which is the password specifically for this
Certificate (as opposed to any other Certificates stored in the same keystore file). You MUST
use the same password here as was used for the keystore password itself. (Currently, the
keytool prompt will tell you that pressing the ENTER key does this for you automatically). If
everything was successful, you now have a keystore file with a Certificate that can be used
by your server.

Adjust Tomcat/Java memory

The default memory heap size of Tomcat is very low. You can augment this in the following
way:

Windows

In the bin directory of Tomcat create (if it doesn't exist) a file called setenv.bat, edit this file
and add the following line:

set JAVA_OPTS=-Xms128m -Xmx512m -XX:MaxPermSize=128M

Linux

In the bin directory of Tomcat create (if it doesn't exist) a file called setenv.sh, edit this file
and add the following line:

JAVA_OPTS="-Xms128m -Xmx512m -XX:MaxPermSize=128M"
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Clustering

Clustering is useful both for scaling (serving more requests) and for high availability (if a server
crashes, the application continues to run). The main reason for configuring a cluster in Tomcat
is to replicate HTTP sessions. Cyclos, however, doesn't use Tomcat sessions, but handles them
internally. This way, there is no special Tomcat configuration to support a Cyclos cluster.

The Cyclos application, however, needs some small configurations to enable clustering.
Cyclos uses Hazelcast to synchronize aspects (such as caches) between cluster servers. To
enable clustering, find in cyclos.properties the line containing cyclos.clusterHandler, and set
it to hazelcast.

Some extra configuration can be performed in the WEB-INF/classes/hazelcast.xml file.
Basically, if the local network runs more than a single Cyclos instance, the group needs to be
configured. Configure all files belonging to the same group with the same group name and
password. It is also possible to change the default multicast to TCP/IP communication. Just
comment the <multicast> tag and uncomment the <tcp-ip> tag, setting up the hosts / ports
which will be part of the cluster. For a TCP/IP cluster, Hazelcast needs the host name / port of
at least one node already in a cluster (it is not necessary to set all other nodes on each node).

To setup high-availability at database (Postgresql) level, please, refer to this document.

1.3. Maintenance

Backup

All data in Cyclos is stored in the database. Making a backup of the database can be done
using the pg_dump command. The only file that you need to back-up (only once) will be the
cyclos.properties configuration file. The database can be backed up manually as follows (in
this example the name of the database is cyclos4 the username cyclos and the command will
prompt for the password cyclos):

pg_dump –username=cyclos –password -hlocalhost cyclos4 > cyclos4.sql

Restore

If you want to start using cyclos with the data from a backup. You can just import the backed
up database. In this example the name of the database is cyclos4 the username cyclos and
command will prompt for the password cyclos the name of the backup is cyclos4.sql make
sure to specify the path if your not in the same directory as the file:

psql –username=cyclos –password -hlocalhost cyclos4 < cyclos4.sql

http://hazelcast.org/
https://docs.google.com/document/d/1DATNrfdBBa9kUY0XqqYMGtrjbgboXOwmgNv4PoseCkk/pub
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2. Web services
Here you will find infomation on how to call Cyclos services from 3rd party applications.

2.1. Introduction
The entire service layer in Cyclos 4 is accessible via web services. For a client to use a
web service, currently, he needs to provide the username and password (according to the
password configured on the Channels tab for the user configuration). It is planned for future
versions to have access clients, which will belong to an user, being used instead of the
username / password authentication.

The available service and API change policy is described here. In terms of security, web
services are no more and no less secure than the regular web access, since the service layer
is shared, and the same permissions / authorizations are checked in both cases.

Cyclos offers two types of web services: one for native Java clients and another one which is
client-agnostic, using JSON requests / responses over HTTP. For the latter, a PHP client library
is generated from the services, mirroring all services and methods in a PHP-friendly way.

Authentication in web services

There are 3 ways to authenticate an user in web services:

• Using username and password: In this mode, the raw username and password are sent
(over HTTPS, so should be secure) on every request. Uses the "WebServices" channel and
doesn't require any additional configuration, besides having the channel enabled. The
drawback is that the username and password need to be stored in the client application,
and changing the password on the web (if the same password type is used) will make the
application stop working.

• Logging in: In this mode, a first request is made to LoginService.login() operation, returning
a session token. Subsequent requests should pass this session token instead in the
subsequent requests. To finish a session, a request to LoginService.logout() using the
session token invalidates the session. This form also uses the "WebServices" channel and
doesn't require any additional configuration.

• Access client: This form requires the configuration of an user identification method of type
access client to be setup. Then, in a member product of users which can use this kind of
access, permissions over that type should be granted. Finally, the user (or an admin) should
create a new access client in Cyclos main access, and get the activation code for it. The
activation code is a short (4 digits) code which uniquely identifies an access client for a given
user. To use the access client, on the application side (probably a server-side application or
an interactive application), an HTTP POST request should be performed, with the following
characteristics:

http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/services/access/LoginService.html#login()
http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/services/access/LoginService.html#logout()
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• URL: <cyclos-root-url>[/network]/activate-access-client

• Standard basic authentication header: Passing the username and password

• Request body: The sole content of the request body must be the activation code
The result will be a token which should be passed in requests. The activation process should
be done only once, and the token will be valid until the access client in Cyclos is blocked
or disabled.

2.2. Java clients
Cyclos provides native Java access to services, which can be used on 3rd party Java
applications.

Dependencies

In order to use the client, you will need some JAR files which are available in the download
bundle, on the cyclos-4.x.x/web/WEB-INF/lib directory. Not all jars are required, only the
following:

• cyclos-api.jar

• log4j-*.jar

• jcl-over-slf4j-*.jar

• slf4j-api-*.jar

• slf4j-log4j12-*.jar

• httpclient-*.jar

• httpcore-*.jar

• spring-aop-*.jar

• spring-beans-*.jar

• spring-context-*.jar

• spring-core-*.jar

• spring-web-*.jar

• aopalliance-*.jar

Those jars, except the cyclos-api.jar, are provided by the following projects:

• Spring framework 4.x.x, distributed under the Apache 2.0 license.

• SLF4J logging framework 1.6.x, distributed under the MIT license.

• Apache Log4J 1.2.x, distributed under the Apache 2.0 license.

• Apache HttpComponents 4.x, distributed under the Apache 2.0 license.

http://projects.spring.io/spring-framework/
http://www.apache.org/licenses/LICENSE-2.0
http://www.slf4j.org/
http://en.wikipedia.org/wiki/MIT_License
http://logging.apache.org/log4j/1.2
http://www.apache.org/licenses/LICENSE-2.0
http://hc.apache.org/
http://www.apache.org/licenses/LICENSE-2.0
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• AOP Alliance (required by the Spring Framework), which is licensed as Public Domain.

Using services from a 3rd party Java application

The Java client for Cyclos 4 uses the Spring HTTP invokers to communicate with the server and
invoke the web services. It works in a similar fashion as RMI or remote EJB proxies – a dynamic
proxy for the service interface is obtained and methods can be invoked on it as if it were a local
object. The proxy, however, passes the parameters to the server and returns the result back
to the client. The Cyclos 4 API library provides the org.cyclos.server.utils.HttpServiceFactory
class, which is used to obtain the service proxies, and is very easy to use. With it, service
proxies can be obtained like this:

HttpServiceFactory factory = new HttpServiceFactory();

factory.setRootUrl("https://www.my-cyclos.com/network");

factory.setInvocationData(HttpServiceInvocationData.stateless("username", "password"));

// OR factory.setInvocationData(HttpServiceInvocationData.stateful("session token"));

// OR factory.setInvocationData(HttpServiceInvocationData.accessClient("access client token")); 

AccountService accountService = factory.getProxy(AccountService.class);

In the above example, the AccountService can be used to query account information. The
permissions are the same as in the main Cyclos application. The user may be either a regular
user or an administrator. When an administrator, will allow performing operations over
regular users (managed by that administrator). Otherwise, the web services will only affect
the own user.

Examples

Configure Cyclos

All following examples use the following class to configure the web services:.

import org.cyclos.server.utils.HttpServiceFactory;

import org.cyclos.server.utils.HttpServiceInvocationData;

/**

 * This class will provide the Cyclos server configuration for the web service

 * samples

 */

public class Cyclos {

    private static final String       ROOT_URL = "http://localhost:8888/england";

    private static HttpServiceFactory factory;

    static {

        factory = new HttpServiceFactory();

        factory.setRootUrl(ROOT_URL);

        factory.setInvocationData(HttpServiceInvocationData.stateless(

            "admin", "1234"));

    }

    public static HttpServiceFactory getServiceFactory() {

http://aopalliance.sourceforge.net/
http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/remoting.html#remoting-httpinvoker
http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/server/utils/HttpServiceFactory.html
http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/services/banking/AccountService.html
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        return factory;

    }

    public static HttpServiceFactory getServiceFactory(

        HttpServiceInvocationData invocationData) {

        HttpServiceFactory factory = new HttpServiceFactory();

        factory.setRootUrl(ROOT_URL);

        factory.setInvocationData(invocationData);

        return factory;

    }

}

Search users

import org.cyclos.model.users.users.UserDetailedVO;

import org.cyclos.model.users.users.UserQuery;

import org.cyclos.services.users.UserService;

import org.cyclos.utils.Page;

/**

 * Provides a sample on searching for users

 */

public class SearchUsers {

    public static void main(String[] args) throws Exception {

        UserService userService = Cyclos.getServiceFactory().getProxy(

            UserService.class);

        // Search for the top 5 users by keywords

        UserQuery query = new UserQuery();

        query.setKeywords("John*");

        query.setPageSize(5);

        Page<UserDetailedVO> users = userService.search(query);

        System.out.printf("Found a total of %d users\n",

            users.getTotalCount());

        for (UserDetailedVO user : users) {

            System.out.printf("* %s (%s)\n", user.getName(),

                user.getUsername());

        }

    }

}

Search advertisements

import org.cyclos.model.marketplace.advertisements.BasicAdQuery;

import org.cyclos.model.marketplace.advertisements.BasicAdVO;

import org.cyclos.services.marketplace.AdService;

import org.cyclos.utils.Page;

/**

 * Provides a sample on searching for advertisements

 */

public class SearchAds {
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    public static void main(String[] args) throws Exception {

        AdService adService = Cyclos.getServiceFactory().getProxy(

            AdService.class);

        BasicAdQuery query = new BasicAdQuery();

        query.setKeywords("Gear");

        query.setHasImages(true);

        Page<BasicAdVO> ads = adService.search(query);

        System.out.printf("Found a total of %d advertisements\n",

            ads.getTotalCount());

        for (BasicAdVO ad : ads) {

            System.out.printf("%s\nBy: %s\n%s\n-------\n",

                ad.getName(),

                ad.getOwner().getName(),

                ad.getDescription());

        }

    }

}

Register user

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collections;

import java.util.List;

import org.cyclos.model.system.fields.CustomFieldDetailedVO;

import org.cyclos.model.system.fields.CustomFieldPossibleValueVO;

import org.cyclos.model.users.addresses.UserAddressDTO;

import org.cyclos.model.users.fields.UserCustomFieldValueDTO;

import org.cyclos.model.users.groups.GroupVO;

import org.cyclos.model.users.phones.LandLinePhoneDTO;

import org.cyclos.model.users.phones.MobilePhoneDTO;

import org.cyclos.model.users.users.RegistrationStatus;

import org.cyclos.model.users.users.UserData;

import org.cyclos.model.users.users.UserRegistrationDTO;

import org.cyclos.model.users.users.UserRegistrationResult;

import org.cyclos.model.users.users.UserSearchContext;

import org.cyclos.model.users.users.UserSearchData;

import org.cyclos.services.users.UserService;

import org.cyclos.utils.CustomFieldHelper;

/**

 * Provides a sample on registering an user with all custom fields, addresse

 * and phones

 */

public class RegisterUser {

    public static void main(String[] args) {

        // Get the services

        UserService userService = Cyclos.getServiceFactory().getProxy(

            UserService.class);

        // The available groups for new users are obtained in the search data

        UserSearchData searchData = userService

            .getSearchData(UserSearchContext.REGULAR);
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        List<GroupVO> possibleGroups = searchData.getInitialGroups();

        // Find the consumers group

        GroupVO group = null;

        for (GroupVO current : possibleGroups) {

            if (current.getName().equals("Consumers")) {

                group = current;

                break;

            }

        }

        // Get data for a new user

        UserData data = userService.getDataForNew(group.getId());

        // Basic fields

        UserRegistrationDTO user = new UserRegistrationDTO();

        user.setGroup(group);

        user.setName("John Smith");

        user.setUsername("johnsmith");

        user.setEmail("john.smith@mail.com");

        user.setAssignPassword(true);

        user.setPassword("1234");

        user.setSkipActivationEmail(true);

        user.setConfirmPassword(user.getPassword());

        user.setForcePasswordChange(true);

        // Custom fields

        List<CustomFieldDetailedVO> customFields = CustomFieldHelper

            .getCustomFields(data.getCustomFieldActions());

        CustomFieldDetailedVO gender = null;

        CustomFieldDetailedVO idNumber = null;

        for (CustomFieldDetailedVO customField : customFields) {

            if (customField.getInternalName().equals("gender")) {

                gender = customField;

            }

            if (customField.getInternalName().equals("idNumber")) {

                idNumber = customField;

            }

        }

        user.setCustomValues(new ArrayList<UserCustomFieldValueDTO>());

        // Value for the gender custom field

        UserCustomFieldValueDTO genderValue = new UserCustomFieldValueDTO();

        genderValue.setField(gender);

        for (CustomFieldPossibleValueVO possibleValue : gender

            .getPossibleValues()) {

            if (possibleValue.getValue().equals("Male")) {

                // Found the value for 'Male'

                genderValue.setEnumeratedValues(Collections

                    .singleton(possibleValue));

                break;

            }

        }

        user.getCustomValues().add(genderValue);

        // Value for id number custom field

        UserCustomFieldValueDTO idNumberValue = new UserCustomFieldValueDTO();

        idNumberValue.setField(idNumber);
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        idNumberValue.setStringValue("123.456.789-10");

        user.getCustomValues().add(idNumberValue);

        // Address

        UserAddressDTO address = new UserAddressDTO();

        address.setName("Home");

        address.setAddressLine1("John's Street, 500");

        address.setCity("John's City");

        address.setRegion("John's Region");

        address.setCountry("BR"); // Country is given in 2-letter ISO code

        user.setAddresses(Arrays.asList(address));

        // Landline phone

        LandLinePhoneDTO landLinePhone = new LandLinePhoneDTO();

        landLinePhone.setName("Home");

        landLinePhone.setRawNumber("+551133333333");

        user.setLandLinePhones(Arrays.asList(landLinePhone));

        // Mobile phone

        MobilePhoneDTO mobilePhone = new MobilePhoneDTO();

        mobilePhone.setName("Mobile phone 1");

        mobilePhone.setRawNumber("+5511999999999");

        user.setMobilePhones(Arrays.asList(mobilePhone));

        // Effectively register the user

        UserRegistrationResult result = userService.register(user);

        RegistrationStatus status = result.getStatus();

        switch (status) {

            case ACTIVE:

                System.out.println("The user is now active");

                break;

            case ACTIVE_GENERATED_PASSWORD:

                System.out.println("The user is now active, "

                    + "and a password has been emailed");

                break;

            case INACTIVE:

                System.out.println("The user is in an inactive group, "

                    + "and needs activation by administrators");

                break;

            case EMAIL_VALIDATION:

                System.out.println("The user needs to validate the e-mail "

                    + "address in order to confirm the registration");

                break;

        }

    }

}

Edit user profile

import java.util.List;

import org.cyclos.model.users.fields.UserCustomFieldValueDTO;

import org.cyclos.model.users.users.EditProfileData;

import org.cyclos.model.users.users.UserDTO;

import org.cyclos.model.users.users.UserDetailedVO;

import org.cyclos.model.users.users.UserLocatorVO;

import org.cyclos.server.utils.HttpServiceFactory;
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import org.cyclos.services.users.UserService;

public class EditUser {

    public static void main(String[] args) {

        // Get the services

        HttpServiceFactory factory = Cyclos.getServiceFactory();

        UserService userService = factory.getProxy(UserService.class);

        // Locate the user by username, so we get the id

        UserLocatorVO locator = new UserLocatorVO();

        locator.setUsername("someuser");

        UserDetailedVO userVO = userService.locate(locator);

        // Get the profile data

        EditProfileData data = (EditProfileData) userService.getData(userVO

            .getId());

        UserDTO user = data.getDTO();

        user.setName("Some modified name");

        List<UserCustomFieldValueDTO> customValues = user.getCustomValues();

        for (UserCustomFieldValueDTO fieldValue : customValues) {

            if (fieldValue.getField().getInternalName().equals("website")) {

                fieldValue.setStringValue("http://new.url.com");

            }

        }

        // Update the user

        userService.save(user);

    }

}

Login user

import java.util.List;

import org.cyclos.model.access.LoggedOutException;

import org.cyclos.model.access.channels.BuiltInChannel;

import org.cyclos.model.banking.accounts.AccountSummaryVO;

import org.cyclos.model.users.users.UserLocatorVO;

import org.cyclos.model.users.users.UserLoginDTO;

import org.cyclos.model.users.users.UserLoginResult;

import org.cyclos.model.users.users.UserVO;

import org.cyclos.server.utils.HttpServiceFactory;

import org.cyclos.server.utils.HttpServiceInvocationData;

import org.cyclos.services.access.LoginService;

import org.cyclos.services.banking.AccountService;

/**

 * Cyclos web service example: logs-in an user via web services.

 * This is useful when creating an alternative front-end for Cyclos.

 */

public class LoginUser {

    public static void main(String[] args) throws Exception {

        // This LoginService has the administrator credentials

        LoginService LoginService =
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            Cyclos.getServiceFactory().getProxy(LoginService.class);

        // Another option is to use an access client to connect with the

        // server (for the admin)

        // To make it works you must:

        // 1- create an access client

        // 2- assign it to the admin (to obtain the activation code)

        // 3- activate it making a HTTP POST to the server using this url:

        // ROOT_URL/activate-access-client containing only the activation code

        // as the body

        // 4- put the token returned from the servlet as the parameter of the

        // HttpServiceInvocationData.accessClient(...) method

        // 5- comment the first line (that using user and password and

        // uncomment the following two sentences

        // HttpServiceInvocationData adminSessionInvocationData =

        // HttpServiceInvocationData

        // .accessClient("put_the_token_here");

        // LoginService LoginService = Cyclos.getServiceFactory(

        // adminSessionInvocationData).getProxy(LoginService.class);

        String remoteAddress = "192.168.1.200";

        // Set the login parameters

        UserLoginDTO params = new UserLoginDTO();

        UserLocatorVO locator = new UserLocatorVO(UserLocatorVO.PRINCIPAL,

            "c1");

        params.setUser(locator);

        params.setPassword("1234");

        params.setRemoteAddress(remoteAddress);

        params.setChannel(BuiltInChannel.MAIN.getInternalName());

        // Login the user

        UserLoginResult result = LoginService.loginUser(params);

        UserVO user = result.getUser();

        String sessionToken = result.getSessionToken();

        System.out.println("Logged-in '" + user.getName()

            + "' with session token = " + sessionToken);

        // Do something as user. As the session token is only valid per ip

        // address, we need to pass-in the client ip address again

        HttpServiceInvocationData sessionInvocationData = HttpServiceInvocationData

            .stateful(sessionToken, remoteAddress);

        // The services acquired by the following factory will carry on the

        // user session data

        HttpServiceFactory userFactory = Cyclos

            .getServiceFactory(sessionInvocationData);

        AccountService accountService = userFactory

            .getProxy(AccountService.class);

        List<AccountSummaryVO> accounts = accountService.getAccountsSummary(

            user, null);

        for (AccountSummaryVO account : accounts) {

            System.out.println(account.getName() + ", balance: "

                + account.getStatus().getBalance());

        }

        // Logout. There are 2 possibilities:
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        // - Logout as administrator:

        LoginService.logoutUser(sessionToken);

        // - OR logout as own user:

        try {

            userFactory.getProxy(LoginService.class).logout();

        } catch (LoggedOutException e) {

            // already logged out

        }

    }

}

Get account information

import java.math.BigDecimal;

import java.util.List;

import org.cyclos.model.banking.accounts.AccountHistoryEntryVO;

import org.cyclos.model.banking.accounts.AccountHistoryQuery;

import org.cyclos.model.banking.accounts.AccountSummaryVO;

import org.cyclos.model.banking.accounts.AccountVO;

import org.cyclos.model.banking.accounttypes.AccountTypeNature;

import org.cyclos.model.banking.accounttypes.AccountTypeVO;

import org.cyclos.model.users.users.UserLocatorVO;

import org.cyclos.model.users.users.UserVO;

import org.cyclos.model.utils.CurrencyAmountDTO;

import org.cyclos.services.banking.AccountService;

import org.cyclos.utils.Page;

/**

 * Provides a sample on getting the account information for a given user.

 */

public class GetAccountInformation {

    public static void main(String[] args) throws Exception {

        AccountService accountService = Cyclos.getServiceFactory().getProxy(

            AccountService.class);

        // Get the accounts summary

        UserLocatorVO user = new UserLocatorVO();

        user.setUsername("some-user");

        List<AccountSummaryVO> summaries = accountService.getAccountsSummary(

            user, null);

        // For each account, we'll show the balances

        for (AccountSummaryVO summary : summaries) {

            CurrencyAmountDTO balance = summary.getBalance();

            System.out.printf("%s has balance of %.2f %s\n",

                summary.getName(),

                balance.getAmount(),

                balance.getCurrency());

            // Also, search for the last 5 payments on each account

            AccountHistoryQuery query = new AccountHistoryQuery();

            query.setAccount(new AccountVO(summary.getId()));

            query.setPageSize(5);
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            Page<AccountHistoryEntryVO> entries = accountService

                .searchAccountHistory(query);

            for (AccountHistoryEntryVO entry : entries) {

                AccountVO relatedAccount = entry.getRelatedAccount();

                AccountTypeVO relatedType = relatedAccount.getType();

                AccountTypeNature relatedNature = relatedType.getNature();

                // The from or to...

                String fromOrTo;

                if (relatedNature == AccountTypeNature.SYSTEM) {

                    // ... might be the account type name if a system account

                    fromOrTo = relatedType.getName();

                } else {

                    // ... or just the user name and login name

                    UserVO relatedUser = (UserVO) relatedAccount.getOwner();

                    fromOrTo = relatedUser.getName() + " ("

                        + relatedUser.getUsername() + ")";

                }

                // Display the amount, which can be negative or positive

                BigDecimal amount = entry.getAmount();

                boolean debit = amount.compareTo(BigDecimal.ZERO) < 0;

                System.out.printf("Date: %s\n", entry.getDate());

                System.out

                    .printf("%s: %s\n", debit ? "To" : "From", fromOrTo);

                System.out.printf("Amount: %.2f\n", entry.getAmount());

                System.out.println();

            }

            System.out.println("**********");

        }

    }

}

Perform payment

import java.math.BigDecimal;

import java.util.List;

import org.cyclos.model.EntityNotFoundException;

import org.cyclos.model.banking.InsufficientBalanceException;

import org.cyclos.model.banking.MaxAmountExceededException;

import org.cyclos.model.banking.MaxAmountPerDayExceededException;

import org.cyclos.model.banking.MaxAmountPerMonthExceededException;

import org.cyclos.model.banking.MaxAmountPerWeekExceededException;

import org.cyclos.model.banking.MaxTransfersPerDayExceededException;

import org.cyclos.model.banking.MaxTransfersPerMonthExceededException;

import org.cyclos.model.banking.MaxTransfersPerWeekExceededException;

import org.cyclos.model.banking.MinAmountExceededException;

import org.cyclos.model.banking.MinTimeBetweenTransfersException;

import org.cyclos.model.banking.accounts.AccountOwner;

import org.cyclos.model.banking.accounts.SystemAccountOwner;

import org.cyclos.model.banking.transactions.PaymentVO;

import org.cyclos.model.banking.transactions.PerformPaymentDTO;

import org.cyclos.model.banking.transactions.PerformPaymentData;

import org.cyclos.model.banking.transactions.TransactionAuthorizationStatus;

import org.cyclos.model.banking.transfertypes.TransferTypeVO;

import org.cyclos.model.users.users.UserLocatorVO;
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import org.cyclos.server.utils.HttpServiceFactory;

import org.cyclos.services.banking.PaymentService;

import org.cyclos.services.banking.TransactionService;

import org.cyclos.utils.CollectionHelper;

/**

 * Provides a sample on performing a payment between an user and a system

 * account

 */

public class PerformPayment {

    public static void main(String[] args) {

        // Get the services

        HttpServiceFactory factory = Cyclos.getServiceFactory();

        TransactionService transactionService = factory

            .getProxy(TransactionService.class);

        PaymentService paymentService = factory

            .getProxy(PaymentService.class);

        // The payer and payee

        AccountOwner payer = new UserLocatorVO(UserLocatorVO.USERNAME,

            "user1");

        AccountOwner payee = SystemAccountOwner.instance();

        // Get data regarding the payment

        PerformPaymentData data;

        try {

            data = transactionService.getPaymentData(payer, payee);

        } catch (EntityNotFoundException e) {

            System.out.println("Some of the users were not found");

            return;

        }

        // Get the first available payment type

        List<TransferTypeVO> types = data.getPaymentTypes();

        TransferTypeVO paymentType = CollectionHelper.first(types);

        if (paymentType == null) {

            System.out.println("There is no possible payment type");

        }

        // The payment amount

        BigDecimal amount = new BigDecimal(10.5);

        // Perform the payment itself

        PerformPaymentDTO payment = new PerformPaymentDTO();

        payment.setType(paymentType);

        payment.setFrom(data.getFrom());

        payment.setTo(data.getTo());

        payment.setAmount(amount);

        try {

            PaymentVO result = paymentService.perform(payment);

            // Check whether the payment is pending authorization

            TransactionAuthorizationStatus auth = result

                .getAuthorizationStatus();

            if (auth == TransactionAuthorizationStatus.PENDING_AUTHORIZATION) {

                System.out.println("The payment is pending authorization");

            } else {
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                System.out.println("The payment has been processed");

            }

        } catch (InsufficientBalanceException e) {

            System.out.println("Insufficient balance");

        } catch (MaxTransfersPerDayExceededException e) {

            System.out.println("Maximum daily amount of transfers "

                + e.getMax()

                + " has been reached");

        } catch (MaxTransfersPerWeekExceededException e) {

            System.out.println("Maximum weekly amount of transfers "

                + e.getMax()

                + " has been reached");

        } catch (MaxTransfersPerMonthExceededException e) {

            System.out.println("Maximum monthly amount of transfers "

                + e.getMax()

                + " has been reached");

        } catch (MinTimeBetweenTransfersException e) {

            System.out

                .println("A minimum period of time should be awaited to make "

                    + "a payment of this type");

        } catch (MaxAmountPerDayExceededException e) {

            System.out.println("Maximum daily amount of " + e.getMaxAmount()

                + " has been reached");

        } catch (MaxAmountPerWeekExceededException e) {

            System.out.println("Maximum weekly amount of " + e.getMaxAmount()

                + " has been reached");

        } catch (MaxAmountPerMonthExceededException e) {

            System.out.println("Maximum monthly amount of "

                + e.getMaxAmount()

                + " has been reached");

        } catch (MaxAmountExceededException e) {

            System.out.println("Maximum amount of " + e.getMaxAmount()

                + " has been reached");

        } catch (MinAmountExceededException e) {

            System.out.println("Minimum amount of " + e.getMinAmount()

                + " has been reached");

        } catch (Exception e) {

            System.out.println("The payment couldn't be performed");

        }

    }

}

2.3. PHP clients

To make it easier to integrate Cyclos in PHP applications, a PHP library is provided. The
library uses web-rpc calls with JSON objects internally, handling requests and responses,
as well as mapping exceptions. A PHP class is generated for each Cyclos service interface,
and all methods are generated on them. The parameters and result types, however, are not
generated, and are either handled as strings, numbers, booleans or generic objects (stdclass).

You can download the PHP client for the corresponding Cyclos version here.

http://www.cyclos.org/documentation/webservices/#other
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Dependencies
• PHP 5.3 or newer

• PHP CURL extension (package php5-curl in Debian / Ubuntu)

• PHP JSON extension (package php5-json in Debian / Ubuntu)

Using services from a 3rd party PHP application

In order to use the Cyclos classes, we first register an autoload function to load the required
classes automatically, like this:

function load($c) {

    if (strpos($c, "Cyclos\\") >= 0) {

    include str_replace("\\", "/", $c) . ".php";

    }

}

spl_autoload_register("load");

Then, Cyclos is configured with the server root URL and authentication details:

Cyclos\Configuration::setRootUrl("http://192.168.1.27:8888/england");

Cyclos\Configuration::setAuthentication("admin", "1234");

// OR Cyclos\Configuration::setSessionToken("sessionToken");

// OR Cyclos\Configuration::setAccessClientToken("accessClientToken");

Afterwards, services can be instantiated using the new operator, and the corresponding
methods will be available:

$userService = new Cyclos\UserService();

$page = $userService->search(new stdclass());

Examples

Configuration

All the following examples include the configureCyclos.php file, which contains the following:

<?php

function load($c) {

    if (strpos($c, "Cyclos\\") >= 0) {

        include str_replace("\\", "/", $c) . ".php";

    }    

}

spl_autoload_register('load'); 

Cyclos\Configuration::setRootUrl("http://192.168.1.27:8888/england");

Cyclos\Configuration::setAuthentication("admin", "1234");
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Search users

<?php

require_once 'configureCyclos.php';

$userService = new Cyclos\UserService();

$query = new stdclass();

$query->keywords = 'Consumer*';

$query->pageSize = 5;

$page = $userService->search($query);

echo("Found a total of $page->totalCount users\n");

if (!empty($page->pageItems)) {

 foreach ($page->pageItems as $user) {

  echo("* $user->name ($user->username)\n"); 

 }

}

Search advertisements

<?php

require_once 'configureCyclos.php';

$adService = new Cyclos\AdService();

$query = new stdclass();

$query->keywords = 'Computer*';

$query->pageSize = 10;

$query->orderBy = 'PRICE_LOWEST';

$page = $adService->search($query);

echo("Found a total of $page->totalCount advertisements\n");

if (!empty($page->pageItems)) {

 foreach ($page->pageItems as $ad) {

  echo("* $ad->title\n"); 

 }

}

Login user

<?php

// Configure Cyclos and obtain an instance of LoginService 

require_once 'configureCyclos.php';

$loginService = new Cyclos\LoginService();

// Set the parameters

$params = new stdclass();

$params->user = array("principal" => $_POST['username']);

$params->password = $_POST['password'];

$params->remoteAddress = $_SERVER['REMOTE_ADDR'];

// Perform the login
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try {

 $result = $loginService->loginUser($params);

} catch (Cyclos\ConnectionException $e) {

 echo("Cyclos server couldn't be contacted");

 die();

} catch (Cyclos\ServiceException $e) {

 switch ($e->errorCode) {

  case 'VALIDATION':

   echo("Missing username / password");

   break;

  case 'LOGIN':

   echo("Invalid username / password");

   break;

  case 'REMOTE_ADDRESS_BLOCKED':

   echo("Your access is blocked by exceeding invalid login attempts");

   break;

  default:

   echo("Error while performing login: {$e->errorCode}");

   break;

 }

 die();

}

// Redirect the user to Cyclos with the returned session token

header("Location: "

 . Cyclos\Configuration::getRootUrl()

 . "?sessionToken="

 . $result->sessionToken);

Perform payment from system to user

<?php

require_once 'configureCyclos.php';

$transactionService = new Cyclos\TransactionService();

$paymentService = new Cyclos\PaymentService();

try {

    $data = $transactionService->getPaymentData('SYSTEM', array('username' => 'c1'));

    

    $parameters = new stdclass();

    $parameters->from = $data->from;

    $parameters->to = $data->to;

    $parameters->type = $data->paymentTypes[0];

    $parameters->amount = 5;

    $parameters->description = "Test from system to user";

    

    $paymentResult = $paymentService->perform($parameters);

    if ($paymentResult->authorizationStatus == 'PENDING_AUTHORIZATION') {

        echo("Not yet authorized\n");

    } else {

        echo("Payment done with id $paymentResult->id\n");

    }

} catch (Cyclos\ServiceException $e) {

    echo("Error while calling $e->service.$e->operation: $e->errorCode");

}
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Perform payment from user to user

<?php

require_once 'configureCyclos.php';

//Perform the payment from user c1 to c2

Cyclos\Configuration::setAuthentication("c1", "1234");

$transactionService = new Cyclos\TransactionService();

$paymentService = new Cyclos\PaymentService();

try {

    $data = $transactionService->getPaymentData(

        array('username' => 'c1'), 

        array('username' => 'c2'));

    

    $parameters = new stdclass();

    $parameters->from = $data->from;

    $parameters->to = $data->to;

    $parameters->type = $data->paymentTypes[0];

    $parameters->amount = 5;

    $parameters->description = "Test payment to user";

    

    $paymentResult = $paymentService->perform($parameters);

    if ($paymentResult->authorizationStatus == 'PENDING_AUTHORIZATION') {

        echo("Not yet authorized\n");

    } else {

        echo("Payment done with id $paymentResult->id\n");

    }

} catch (Cyclos\ServiceException $e) {

    switch ($e->errorCode) {

        case "VALIDATION":

            echo("Some of the parameters is invalid\n");

            var_dump($e->error);

            break;

        case "INSUFFICIENT_BALANCE":

            echo("Insufficient balance to perform the payment\n");

            break;

        case "MAX_AMOUNT_PER_DAY_EXCEEDED":

            echo("Maximum amount exeeded today\n");

            break;

        default:

            echo("Error with code $e->errorCode while performing the payment\n");

            break;

    }

}

Error handling

All errors thrown by the server are translated into PHP by throwing Cyclos\ServiceException.
This class has the following properties:

• service: The service path which generated the error. For example, paymentService,
accountService and so on.
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• operation: The name of the operation which generated the error. Is the same name as the
method invoked on the service.

• errorCode: Is the simple Java exception class name, uppercased, with the word 'Exception'
removed. Check the API (as described above) to see which exceptions can be thrown
by each service method. Keep in mind that many times the declared exception is
a superclass, of many possible concrete exceptions. All methods declare to throw
FrameworkException, but it is abstract, and is implemented by several concrete exception
types, like PermissionException. In this example, the errorCode will be PERMISSION.
Another example is the InsufficientBalanceException class, which has as errorCode the
string INSUFFICIENT_BALANCE.

• error: Contains details about the error. Only some specific exceptions have this field. For
example, if the errorCode is VALIDATION, and the exception variable name $e, $e->error-
>validation will provide information on errors by property, custom field or general errors.

2.4. Other clients

For other clients, a "REST level 0", or RPC-like interface is available, using JSON encoded
strings for passing parameters and receiving results from services. Each service responds
to POST requests to the following URL http[s]://cyclos.url/[network/]web-rpc/<short-service-
name>, where the short-service-name is the service with the first letter as lowercase. So,
for example, https://my.cyclos.instance.com/network/web-rpc/accountService is a valid URL,
being mapped to AccountService.

For authentication, the username and password should be passed as a HTTP header using
the standard basic authentication – a header like: "Authentication: Basic <Base64-encoded
form of username:password>". Actually, username or other principal type (user identification
method) will be chosen according to the configuration. If the configuration allows more than
one principal type, it is possible to specify a value in the "Principal-Type" header, which
must match the principal type internal name. Alternatively, it is possible to login the user
via LoginService and pass the obtained session token in the "Session-Token" header. A third
access option is to use an access client token. In this case, the header "Authorization: Bearer
<access client token>" is used to specify the access client token.

The request body must be a JSON object with the ‘operation’ and ‘params’ properties, where
operation is the method name, and params is either an array with parameters, or optionally
the parameter if the method has a single parameter (without the array) or even omitted if
the method have no parameters. For objects, the parameters are expected to be the same as
the Java counterparts (see the JavaDocs for a reference on the available properties for each
object).

As result, if the request was successful (http status code is 200), an object with a single
property called result will be returned. The object has the same structure as the object

http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/services/banking/AccountService.html
http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/services/access/LoginService.html#login()
http://documentation.cyclos.org/4.3.2/ws-api-docs/
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returned by the service method, or is a string, boolean or number for simple types. Requests
which resulted in error (status code distinct than 200) will have the following structure:

• errorCode: A string generated from the exception java class name. The unqualified class
name has the Exception suffix removed, and is transformed to all uppercase, separated
by underlines. So, for example, for org.cyclos.model.ValidationException, the error code is
VALIDATION; for org.cyclos.model.banking.InsufficientBalanceException, the error code is
INSUFFICIENT_BALANCE, and so on.

• Any other properties (public getters) the thrown exception has will also be mapped as a
property here, for example, org.cyclos.model.ValidationException holds a property called
validation which contains an object representing a org.cyclos.utils.ValidationResult.

Apart from that, all objects, when converted to JSON, will have a property called class, which
represents the fully-qualified Java class name of the source object. Most clients can just
ignore the result. However, when sending requests to classes that expect a polymorphic
object, the server needs to know which subclass the passed object represents. In those cases,
passing the class property, with the fully qualified Java class name is required. An example
is the AdService. When saving an advertisement, it could either be a simple advertisement
(AdvertisementDTO) or a webshop advertisement (AdWebShopDTO). In this case, a class
property with the fully qualified class name is required. Note, however, that in most cases,
the class information is not needed.

Examples

Assuming that <root url> points to correct URL, and that the authentication header is
correctly passed, the following request can be performed to search for users: The same
example call previously shown in Java can be obtained by, posting the following JSON to
https://my.cyclos.instance.com/network/web-rpc/userService (assuming the correct request
headers / authentication):

{

    "operation": "search",

    "params": {

        "keywords": "consumer",

        "pageSize": 5

    }

}

The resulting JSON will be something like:

{

    "result": {

        "class": "org.cyclos.utils.PageImpl",

        "currentPage": "0",

        "pageSize": "20",

        "totalCount": "2",

        "pageItems": [

http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/model/ValidationException.html
http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/model/banking/InsufficientBalanceException.html
http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/model/ValidationException.html
http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/utils/ValidationResult.html
http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/services/marketplace/AdService.html
http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/model/marketplace/advertisements/AdvertisementDTO.html
http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/model/marketplace/advertisements/AdWebShopDTO.html
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            {

                "class": "org.cyclos.model.users.users.UserDetailedVO",

                "id": "-2717327251475675143",

                "name": "Consumer 1",

                "username": "c1"

            },

            {

                "class": "org.cyclos.model.users.users.UserDetailedVO",

                "id": "-2717467988964030471",

                "name": "Consumer 3",

                "username": "c3"

            }

        ]

    }

}

2.5. Server side configuration to enable web services

For clients to invoke web services in Cyclos, the following configuration needs to be done on
the server (as global or network administrator):

• On the System management > Configurations tab, click a row to go to the configuration
details page.

• On the Channels tab, click on the Web services channel row, to go to the channel
configuration details page. If using access clients, the channel will be Access client instead.

• Make sure the channel is enabled. Click the edit icon on the right if the channel is not
defined on this configuration. Then mark the channel as enabled, choose the way users
will be able to access this channel (by default or manually) and the password type used to
access the web services channel. You can also set a confirmation password, so sensitive
operations, like performing a payment, will require that additional password.

• For the user which will be used for web services, on the view user profile page, under the
User management box, click the channels access link.

• On that page, make sure the Web services channel is enabled for that user. Also, only active
users may access any channel - on the profile page, on the same User management box,
there should be a link with actions like Enable / Block / Disable / Remove. On that page,
make sure the user status is Active.

• A side note: If performing payments via Web services, make sure the desired Transfer type is
enabled for the Web services channel. To check that, go to System management > Accounts
configuration > Account types. Then click the row of the desired account type, select the
Transfer types tab and click on the desired payment type (generated types cannot be used
for direct payment). There, make sure the Channels field has the Web services channel.



Cyclos 4 PRO Documentation 28

2.6. Available services and API Changes

The available services are documented in the JavaDocs, under each org.cyclos.services
subpackage.

 For the full set of API changes, please, refer to the online documentation.

http://documentation.cyclos.org/4.3.2/ws-api-docs/
http://www.cyclos.org/documentation
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3. Scripting

3.1. Scripting engine

The Cyclos scripting module (available from version 4.2 onwards) provides an integration
layer that allows connecting from Cyclos to third party software, as well executing custom
operations and scheduled tasks within Cyclos self. The scripting module offers an easy way
to customize and extend Cyclos, without losing compatibility with future Cyclos versions. The
scripting engine can access the full Cyclos services layer which makes it a powerful feature.
For security reasons only global administrators can add scripts. Network administrators
can be given permissions to bound the scripts to elements such as extension points
(eg. payment, user profile, advertisement), custom validations (for input fields), custom
calculations (account fees, transaction fees), custom operations and scheduled tasks. Any
internal entity in Cyclos (e.g. user, address, payment, authorization, reference etc.) can be
accessed by the scripts. When developing custom operations it is likely that you want to store
and use new values/entities. It is possible to create specific record types and custom fields
and make them available to the scripts. The record types can be of the type 'system' or 'user'
depending on the requirements.

On this page you will find links with documentation about the available extensions and
examples. In the future we will add a repository of useful scripts. If you wrote a script that
could serve other projects we will be happy to add it. Please post it on our Forum or send
it to info@cyclos.org.

Global admins can write and store scripts directly within Cyclos. Each script ‘type’ has its own
functions which have to be implemented. A network admin can chose from the available
scripts and bind them to Cyclos operations and events, or to new operations. The variables
used in the scripts can be managed outside the scripts in the extensions self (by the network
admin). This avoids the need for a global admin having to modify a script every time a new
or different input value is required. It is also possible to define additional information and
confirmation texts that can be displayed to the user when a custom operation is initiated or
submitted.

The scripting language currently supported is Groovy. It offers a powerful scripting language
that is very similar to Java, with a close to zero learning curve for Java developers. It is possible
to write scripts that will be available in a shared script library, so that other scripts within
the same context can make use of it. All scripts are compiled to Java bytecode which makes
them highly performatic. Currently Cyclos requires Java 7 or above. Be aware that JDK 7
versions ranging from 7u21 to 7u55 have bugs are buggy with regards to invokedynamic (see
information here). If you plan to use Cyclos scripting, make sure you either use 7u56+ or JDK 8

Variables bound to all scripts

http://www.cyclos.org/forum/viewforum.php?f=14
http://groovy.codehaus.org/
http://docs.codehaus.org/display/GROOVY/InvokeDynamic+support
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When running, scripts have a set of bindings, that is, available top-level variables. At runtime,
the bindings will vary according to the script type and context. For example, each extension
point type has one or more specific bindings. On all cases, however, the following variables
are bound:

• scriptParameters: In the script details page, or in every every page where a script is chosen
to be used (for example, in the extension point or custom operation details page) there will
be a textarea where parameters may be added to the script. They allow scripts to be reused
in different contexts, just with different parameters. The text is parsed as Java Properties,
and the format is described here. The library parameters are included first (if any), then the
own script parameters (if any), then the specific page parameters. This allows overridding
parameters at more specific levels.

• scriptHelper: An instance of org.cyclos.impl.system.ScriptHelper. It contains some useful
methods, like:

• wrap(object[, customFields]): wraps the given object in a Map, with some custom
characteristics:

• If the wrapped object contains custom fields, it will allow getting / setting custom field
values using the internal name

• Values will be automatically converted to the expected destination type

• If a list of custom fields are passed, then they are considered. If not, will attempt to
read the current fields for the object, which might not always be available (for example,
when creating a new record) or even no longer active (for example, when the product
of an user just removed a field, and the value is still there)

• Example:

def bean = scriptHelper.wrap(user)

def gender = bean.gender

// gender will be a org.cyclos.entities.system.CustomFieldPossibleValue

// if gender is an enumerated field

def date = bean.customDate

// date will be a java.util.Date if customDate is a date field

def relatedUser = bean.relatedUser

// relatedUser will be an org.cyclos.entities.users.User

// if relatedUser is linked entity field of type user

• bean(class): returns a bean by type. The class reference needs to be passed.

• addOnCommit(runnable), addOnRollback(runnable): Adds callbacks to be executed after
the main database transaction ends, either successfully or with failure. Be aware that
those callbacks will be invoked outside any transaction scope within Cyclos, so things like
scriptHelper.sessionData.loggedUser won't work (because it requires retrieving the User
object from the database). However, it is more efficient, as no new database access needs
to be done. This is mostly useful to notify an external application that some data has
been persisted in Cyclos (after we're 100% sure that the data is persistent). Keep in mind

http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html#load%28java.io.Reader%29
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/impl/system/ScriptHelper.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/CustomFieldPossibleValue.html
http://www.cyclos.org/dev/current/scripting-api-docs/org/cyclos/entities/users/User.html
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that there is a (very) small chance that the main transaction is committed / rolled back but
then the server crashes, and the callback weren't yet called. So, when synchronizing with
external systems, it is always wise to do some form of timeout / recovery mechanism.

• addOnCommitTransactional(runnable), addOnRollbackTransactional(runnable): Same
as the non-transactional counterparts, but they are executed inside a new transaction
in Cyclos

• sessionData: The currently bound org.cyclos.impl.access.SessionData.

• formatter: A org.cyclos.impl.utils.formatting.FormatterImpl.

• Services and Handlers: All *ServiceLocal and *Handler objects are bound via simple
names, starting with lowercase characters. Services are bound as 'nameService'
and handlers as 'nameHandler'. For example, org.cyclos.impl.users.UserServiceLocal
is bound as userService, and org.cyclos.impl.access.ConfigurationHandler is bound as
configurationHandler.

3.2. Script types

Library

Libraries are scripts which are included by other scripts, in order to reuse code, and are never
used directly by other functionality in Cyclos.

Each script (including other libraries) can have any number of libraries as dependencies.
However circular dependencies between libraries (for example, A depends on B, which
depends on C, which depends on A) are forbidden (validated when saving a library).

The order in which the code on libraries is included in the final code respects the
dependencies, but doesn't guarantee ordering between libraries in the same level. For
example, if there are both C and B libraries which depend on A, it is guaranteed that A is
included before B and C, but either B or C could be included right after A. So, in the example,
your code shouldn't rely that B comes before C. In this case, the library C should depend on
B to force the A, B, C order.

Contrary to other script types, libraries don't have bound variables per se: the bindings will
be the same as the script including the library.

Also, as libraries are just included in other scripts, no direct examples are provided here. The
provided example scripting solutions, however, use libraries.

Custom field validation

These scripts are used to validate a custom field value. The field can be of any type (users,
advertisements, user records, transactions and so on). The script code has the following
variables bound (besides the default bindings)

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/impl/access/SessionData.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/impl/utils/formatting/FormatterImpl.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/impl/users/UserServiceLocal.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/impl/access/ConfigurationHandler.html
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• object: The DTO which holds the custom field values. May be an instance of:

• org.cyclos.model.users.users.UserDTO

• org.cyclos.model.marketplace.advertisements.BasicAdDTO

• org.cyclos.model.users.records.UserRecordDTO

• org.cyclos.model.banking.transactions.PerformTransactionDTO

• org.cyclos.model.contentmanagement.documents.ProcessDynamicDocumentDTO

• org.cyclos.model.system.operations.RunCustomOperationDTO

• field: The org.cyclos.entities.system.CustomField.

• value: The actual custom field value. Depends on the custom field type. May be one of:

• String (for single line text, multi line text, rich text or url types)

• Boolean (for boolean type)

• Integer (for integer type)

• BigDecimal (for decimal type)

• org.cyclos.entities.system.CustomFieldPossibleValue (for single selection type)

• org.cyclos.entities.system.CustomFieldPossibleValue (for multiple selection type)

• org.cyclos.model.system.fields.DynamicFieldValueVO (for dynamic selection type)

• org.cyclos.entities.users.User (for user type)

The script should return one of the following:

• A boolean, indicates that the value is either valid / invalid. When invalid, the general "<Field
name> is invalid" error will be displayed;

• A string, means the field is invalid, and the string is the error message. To concatenate the
field name directly, use the {0} placeholder, like: "{0} has an unexpected value";

• Any other result will be considered valid.

Examples

E-mail

To have a custom field which is validated as an e-mail, use the following script:

import org.apache.commons.validator.routines.EmailValidator

return EmailValidator.getInstance().isValid(value)

IBAN account number

To validate an IBAN account number as a custom field, the following script can be used:

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/users/users/UserDTO.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/marketplace/advertisements/BasicAdDTO.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/users/records/UserRecordDTO.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/transactions/PerformTransactionDTO.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/contentmanagement/documents/ProcessDynamicDocumentDTO.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/system/operations/RunCustomOperationDTO.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/CustomField.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/CustomFieldPossibleValue.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/CustomFieldPossibleValue.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/system/fields/DynamicFieldValueVO.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/User.html
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import org.apache.commons.validator.routines.checkdigit.IBANCheckDigit

return IBANCheckDigit.IBAN_CHECK_DIGIT.isValid(value.replaceAll("\\s", ""))

CPF Validation

In Brazil, people are identified by a number called CPF (Cadastro de Pessoas Fisicas). It has
2 veryfing digits, which have a known formula to calculate. Here's the example for validating
it in Cyclos:

import static java.lang.Integer.parseInt

def boolean validateCPF(String cpf) {

    // Strip non-numeric chars

    cpf = cpf.replaceAll("[^0-9]", "")

    // Obvious checks: needs to be 11 digits, and not all be the same digit

    if (cpf.length() != 11 || cpf.toSet().size() == 1) {

        return false

    }

    int add = 0

    // Check for verifier digit 1

    for (int i = 0; i < 9; i++) add += parseInt(cpf[i]) * (10 - i)

    int rev = 11 - (add % 11)

    if (rev == 10 || rev == 11) rev = 0

    if (rev != parseInt(cpf[9])) return false

    add = 0;

    // Check for verifier digit 2

    for (int i = 0; i < 10; i++) add += parseInt(cpf[i]) * (11 - i)

    rev = 11 - (add % 11)

    if (rev == 10 || rev == 11) rev = 0

    if (rev != parseInt(cpf[10])) return false

    return true

}

return validateCPF(value)

Dynamic custom field handling

These scripts are used to generate the possible values for custom
fields of type 'dynamic selection'. Each possible value is an instance of
org.cyclos.model.system.fields.DynamicFieldValueVO. The field can be of any type (users,
advertisements, user records, transactions and so on).

The script code has the following variables bound (besides the default bindings):

• field: The org.cyclos.entities.system.CustomField

Also, depending on the custom field nature, there are the following additional bindings:

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/system/fields/DynamicFieldValueVO.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/CustomField.html
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User (profile) fields:

• user: The org.cyclos.entities.users.User. Even when registering an user, will always have
the 'group' property set with the org.cyclos.entities.users.Group instance.

Advertisement fields:

• ad: The org.cyclos.entities.marketplace.BasicAd. Even on inserts, is guaranteed to have the
'owner' property set with the org.cyclos.entities.users.User instance.

Record fields:

• record: The org.cyclos.entities.marketplace.BasicAd. Even on inserts, is guaranteed to have
the 'owner' property set with the org.cyclos.entities.users.User instance.

Transaction fields:

• paymentType: The transaction type, asorg.cyclos.entities.banking.PaymentTransferType

• fromOwner: The org.cyclos.model.banking.accounts.AccountOwner performing
the payment (either org.cyclos.model.banking.accounts.SystemAccountOwner or
org.cyclos.entities.users.User)

• toOwner: The org.cyclos.model.banking.accounts.AccountOwner receiving the
payment (either org.cyclos.model.banking.accounts.SystemAccountOwner or
org.cyclos.entities.users.User)

Custom operation fields:

• customOperation: The org.cyclos.entities.system.CustomOperation.

• user: The org.cyclos.entities.users.User. Only present if the custom operation's scope is
user.

Dynamic document fields:

• document: The org.cyclos.entities.contentmanagement.DynamicDocument.

In all cases, the script must return either one or a collection of:

• List of array of Strings: In this case, each element will have only values, and the
corresponding labels will be the same values.

• org.cyclos.model.system.fields.DynamicFieldValueVO (or compatible object / Map): The
dynamic field value, containing a value (the internal value) and a label (the display value).
The value must be not blank, or an error will be raised. If the label is blank, will show the
same text as the value. Also, the first dynamic value with 'defaultValue' set to true will show
up by default in the form.

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/Group.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/marketplace/BasicAd.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/Record.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/RecordType.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/PaymentTransferType.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/accounts/AccountOwner.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/accounts/SystemAccountOwner.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/accounts/AccountOwner.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/accounts/SystemAccountOwner.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/CustomOperation.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/contentmanagement/DynamicDocument.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/system/fields/DynamicFieldValueVO.html
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Examples

User profile field – values depending on the user group

This examples returns distinct values according to the user group. It should be used by an
user custom field (also called profile fields).

import org.cyclos.model.system.fields.DynamicFieldValueVO

def values = []

// Common values

values << new DynamicFieldValueVO("common1", "Common value 1")

values << new DynamicFieldValueVO("common2", "Common value 2")

values << new DynamicFieldValueVO("common3", "Common value 3")

if (user.group.internalName == "business") {

    // Values only available for businesses

    values << new DynamicFieldValueVO("business1", "Business value 1")

    values << new DynamicFieldValueVO("business2", "Business value 2")

    values << new DynamicFieldValueVO("business3", "Business value 3")

} else if (user.group.internalName == "consumer") {

    // Values only available for consumers

    values << new DynamicFieldValueVO("consumer1", "Consumer value 1")

    values << new DynamicFieldValueVO("consumer2", "Consumer value 2")

    values << new DynamicFieldValueVO("consumer3", "Consumer value 3")

}

return values

Transfer fee calculation

These scripts are used to calculate the amount of a transfer fee (a fee triggered by another
transfer). The script code has the following variables bound (besides the default bindings):

• fee: The org.cyclos.entities.banking.TransferFee

• transfer: The org.cyclos.entities.banking.Transfer which triggered the fee.

The script should return a number, which will be rounded to the currency's decimal digits. If
null or zero is returned, the fee is not charged.

Examples

Charging a fee according to an user profile field

This example allows choosing a distinct fee amount based on a profile field of the paying user.
It is assumed a custom field of type single selection with the internal name rank. It should
have 3 possible values, with internal names bronze, silver and gold. The script then chooses
a different percentage according to the user rank.

if (transfer.fromSystem) {

    // Only charge users

    return 0

}

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/TransferFee.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/Transfer.html
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// Depending on an user custom field, we'll pick the fee amount

def percentages = [bronze: 0.07, silver: 0.05, gold: 0.02]

def from = scriptHelper.wrap(transfer.fromOwner)

def rank = from.rank?.internalName ?: "bronze"

def percentage = percentages[rank]

return transfer.amount * percentage

Account fee calculation

These scripts are used to calculate the amount of an account fee (a fee which is charged
periodically or manually over many accounts, according to the 'charged account fees' setting
in member products). The script code has the following variables bound (besides the default
bindings):

• fee: The org.cyclos.entities.banking.AccountFee

• account: The org.cyclos.entities.banking.UserAccount

• executionDate: The expected fee charge date (of type java.util.Date). When scheduled,
charges usually happen a bit after the exact expected date. For manual account fees, this
will be the time the fee has started.

The script should return a number, which will be rounded to the currency's decimal digits. If
null or zero is returned, the fee is not charged.

Examples

Charge a different amount according to the user rank

This example allows choosing a distinct account fee amount based on a profile field of the
paying user. It is assumed a custom field of type single selection with the internal name rank.
It should have 3 possible values, with internal names bronze, silver and gold.

// Depending on an user custom field, we'll pick the fee amount

def amounts = [bronze: 10, silver: 7, gold: 5]

def user = scriptHelper.wrap(account.owner)

def rank = user.rank?.internalName ?: "bronze"

return amounts [rank]

Password handling

These scripts are used to check passwords. In order to use them, the password type's
password mode needs to be "Script". The script code has the following variables bound
(besides the default bindings):

• user: The org.cyclos.entities.users.BasicUser whose password is being checked

• passwordType: The org.cyclos.entities.access.PasswordType being checked.

• password: The password value being checked (string).

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/AccountFee.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/UserAccount.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/BasicUser.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/access/PasswordType.html
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The script should return a boolean, indicating whether the password is ok or not.

Examples

Matching passwords to the script parameters

This is a very simple example, which checks for passwords according to the script parameters.
The parameters can be set either in the script itself or in the password type. This example
is very insecure, and shouldn't be used in production. Normally, scripts to check passwords
would connect to third party applications, but this is just a very basic example.

// Just read the password value from the script parameters

return scriptParameters[user.username] == password

Extension points

These scripts are used on extension points (user, user record, transfer, …), and are attached
to specific events (create, update, remove, chargeback, …). The extension point scripts have
2 functions:

• The data has already been validated, but not saved yet. In this function, we know that the
data entered by users is valid, but the main event has not been saved yet.

• The data has been saved, but not committed to database yet. For example, if the script
code throws an Exception, the database transaction will be rolled-back, and no data will
be persisted.

Here are some example scenarios for performing custom logic, or integrating Cyclos with
external systems using extension points:

• limit. When an user is performing a payment, an extension point of type transaction could
be used, in the function invoked after validation, to check the current balance. It the balance
is not enough for the payment and the user has credit limit, a payment from a system
account could be done automatically to the user, completing the amount for the payment.

• A XA transaction could be done with an external system by creating data in the external
database in the function which runs after validating, then preparing the commit in the
function after the data is saved, and finally registering both a commit and a rollback
listener (see the ScriptHelper in default bindings) to either commit or rollback the prepared
transaction.

• It is also possible to 'bind' Cyclos entities with extension points. For example a payment
could create a new user record of a specific type and set some values in the record. When
a user record value is changed this could trigger another action, for example changing the
(bookkeeping) status of a payment.

• A simple notification of performed payments could be implemented by registering a
commit listener (see the ScriptHelper in default bindings) to implement the notification.

http://en.wikipedia.org/wiki/X/Open_XA
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/impl/system/ScriptHelper.html
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• The profile information of an user needs to be mirrored in an external system. In this
case, an user extension point, with the create / update events can be used to send
this information. Additional information on addresses and phones can use the same
mechanism (they are different extension points). Finally, a change status event for users,
to the status REMOVED indicates that the user has been removed.

• There could be payment custom fields which are not filled-in by users when performing
payments, but by extension points of type transaction. Payment custom fields may be
configured to not show up in the form, only automatically via extension points.

• An extension point on a new Cyclos avertisment could publish the advertisment as well in
an third party system.

These are just some examples. There are many possible uses for the extension points. In the
future we will publish usefull extension points at this site.

All extension points have the following additional variables bound to its execution:

• extensionPoint: The org.cyclos.entities.system.ExtensionPoint

• event: The org.cyclos.model.system.extensionpoints.ExtensionPointEvent. The specific
implementation depends on the extension point type.

• context: A java.util.Map<String, Object> which can be used to store attributes to be shared
between, for example, the script which runs after the data is validaded, and the one which
runs after the data is saved

The following types of extension points exist:

User extension point

Extension points which monitor events on users. Additional bindings:

• user: The org.cyclos.entities.users.User

Events:

• create: An user is being registered. IMPORTANT: When e-mail validation is enabled, the user
will be pending until confirming the e-mail. If you have e-mail confirmation enabled, this
event might not be what you need, but activate instead.

• activate: An user is being activated for the first time. For example, if e-mail validation is
enabled, after the user confirming the e-mail address this event will be triggered. However,
the initial status for users (set in group) might be, for example, disabled. In that case, only
when the user is first activated this event will be triggered.

• update: An user profile (name, username, e-mail or custom fields) is being edited.
Additional bindings:

• currentCopy: A detached copy of the user being edited, as org.cyclos.entities.users.User

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/users/users/UserStatus.html#REMOVED
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/ExtensionPoint.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/system/extensionpoints/ExtensionPointEvent.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/User.html
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• changeGroup: The user's group is being changed.

• oldGroup: The current org.cyclos.entities.users.Group

• newGroup: The new org.cyclos.entities.users.Group

• comments: The comments, as provided by the administrator when changing the group,
as string.

• changeStatus: The user's status is being changed. Argument Map:

• oldStatus: The current org.cyclos.model.users.users.UserStatus

• newStatus: The new org.cyclos.model.users.users.UserStatus

• comments: The comments, as provided by the administrator when changing the status,
as string.

Address extension point

Extension points which monitor events on addresses. Additional bindings:

• address: The org.cyclos.entities.users.UserAddress

Events:

• create:An address is being created.

• update: An address is being updated. Additional bindings:

• currentCopy: A detached copy of the address being edited, as
org.cyclos.entities.users.UserAddress

• delete: An address is being deleted.

Phone extension point

Extension points which monitor events on user phones. Additional bindings:

• phone: The org.cyclos.entities.users.Phone

Events:

• create: A phone is being created.

• update: A phone is being updated. Additional bindings:

• currentCopy: A detached copy of the phone being edited, as
org.cyclos.entities.users.Phone

• delete: A phone is being deleted.

User record extension point

Extension points which monitor events on user records. Additional bindings:

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/Group.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/Group.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/users/users/UserStatus.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/users/users/UserStatus.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/UserAddress.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/Phone.html
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• userRecord: The org.cyclos.entities.users.UserRecord

Events:

• create: An user record is being created.

• update: An user record is being created. Additional bindings:

• currentCopy: A detached copy of the user record being edited, as
org.cyclos.entities.users.UserRecord

• delete: An user record is being created.

Advertisement extension point

Extension points which monitor events on advertisements. Additional bindings:

• ad: The org.cyclos.entities.marketplace.BasicAd

Events:

• create: An advertisement is being created.

• update: An advertisement is being updated. Additional bindings:

• currentCopy: An advertisement is being updated. Additional bindings:
org.cyclos.entities.marketplace.BasicAd

• delete: An advertisement is being deleted.

Transaction extension point

Extension points which monitor events on performed transactions.

The following additional bindings are available for both preview and confirm events:

• performTransaction: The org.cyclos.model.banking.transactions.PerformTransactionDTO

• paymentType: The transaction type, as org.cyclos.entities.banking.PaymentTransferType

• fromOwner: The org.cyclos.model.banking.accounts.AccountOwner performing
the payment (either org.cyclos.model.banking.accounts.SystemAccountOwner or
org.cyclos.entities.users.User)

• toOwner: The org.cyclos.model.banking.accounts.AccountOwner receiving the
payment (either org.cyclos.model.banking.accounts.SystemAccountOwner or
org.cyclos.entities.users.User)

• authorizationLevel: The org.cyclos.entities.banking.AuthorizationLevel of the transaction,
if it would be pending authorization, or null if already processed. For the confirm event, will
only be available in the script which runs after save.

Events:

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/UserRecord.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/UserRecord.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/marketplace/BasicAd.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/marketplace/BasicAd.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/transactions/PerformTransactionDTO.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/PaymentTransferType.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/accounts/AccountOwner.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/accounts/SystemAccountOwner.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/accounts/AccountOwner.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/accounts/SystemAccountOwner.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/AuthorizationLevel.html
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• preview: The user is previewing the transaction. Note that, as there is nothing really being
saved, both scripts will run at the same time, i.e., there's no phase 'after validate' and 'after
save'. Additional bindings:

• preview: The org.cyclos.model.banking.transactions.TransactionPreviewVO

• confirm: The transaction has been confirmed, that is, is being performed. Additional
bindings:

• transaction: The org.cyclos.entities.banking.Transaction. Only available for the script
which runs after save.

• change status: A scheduled payment status has changed. Additional bindings:

• transaction: The org.cyclos.entities.banking.ScheduledPayment.

• oldStatus: The previous status, as
org.cyclos.model.banking.transactions.ScheduledPaymentStatus.

• newStatus: The new status, as
org.cyclos.model.banking.transactions.ScheduledPaymentStatus.

• change installment status: A scheduled payment installment status has changed.
Additional bindings:

• installment: The org.cyclos.entities.banking.ScheduledPaymentInstallment.

• oldStatus: The previous status, as
org.cyclos.model.banking.transactions.ScheduledPaymentInstallmentStatus.

• newStatus: The new status, as
org.cyclos.model.banking.transactions.ScheduledPaymentInstallmentStatus.

Transaction authorization extension point

Extension points which monitor transaction authorization actions. Additional bindings:

• transaction: The org.cyclos.entities.banking.Transaction

• currentLevel: The current org.cyclos.entities.banking.AuthorizationLevel

• comment: The comment entered by the user performing the action, as string

Events:

• authorize: The transaction is being authorized. Be careful: there might be more
authorization levels which need to be authorized before the transaction is finally processed.
Additional bindings:

• nextLevel: The next current org.cyclos.entities.banking.AuthorizationLevel. If the transfer
should be processed after the current authorization is saved, this value will be null.

• deny: The transaction is being denied by the authorizer.

• cancel: The transaction is being canceled by the performed.

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/transactions/TransactionPreviewVO.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/Transaction.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/ScheduledPayment.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/transactions/ScheduledPaymentStatus.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/transactions/ScheduledPaymentStatus.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/ScheduledPaymentInstallment.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/transactions/ScheduledPaymentInstallmentStatus.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/banking/transactions/ScheduledPaymentInstallmentStatus.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/Transaction.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/AuthorizationLevel.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/AuthorizationLevel.html
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Transfer extension point

Argument Map (common for all events):

• transfer: The transfer being affected.

Events:

• create: A transfer is being created.

• chargeback: A transfer is being charged-back. Additional bindings:

• chargeback: The org.cyclos.entities.banking.Chargeback. Only available in the script
which runs after the data is saved.

• changeStatus: The transfer is being set to a new status. Additional bindings:

• flow: The org.cyclos.entities.banking.TransferStatusFlow of the status being changed

• oldStatus: The current org.cyclos.entities.banking.TransferStatus

• newStatus: The new org.cyclos.entities.banking.TransferStatus

• comments: The comments, as provided by the administrator when changing the status,
as string.

Examples

Granting extra credit (on demand) before payments

This example allows, with a custom profile field, to define an extra credit limit the user can use
on demand. When performing a payment, if the available balance is not enough, a payment
is performed from a system account to the user, up to the limit specified in that profile field.
Once the payment is done, the profile field is subtracted. This example expects the system
account to have the internal name debitAccount, and it should have a payment transfer type
to the user account. That payment transfer type should have the internal name extraCredit.
Finally, the custom profile field needs to have the internal name availableCredit, and needs
to be of type decimal, and enabled for the user. Then create an extension point of type
Transaction, enabled and for the confirm event.

import org.cyclos.entities.banking.Account

import org.cyclos.entities.banking.PaymentTransferType

import org.cyclos.entities.banking.SystemAccountType

import org.cyclos.model.banking.accounts.SystemAccountOwner

import org.cyclos.model.banking.transactions.PerformPaymentDTO

import org.cyclos.model.banking.transfertypes.TransferTypeVO

// Only process direct payments. Scheduled payments are skipped

if (!(performTransaction instanceof PerformPaymentDTO)) {

    return

}

// Get the available credit as a profile field

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/Chargeback.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/TransferStatusFlow.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/TransferStatus.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/TransferStatus.html
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def payer = scriptHelper.wrap(fromOwner)

BigDecimal availableCredit = payer.availableCredit?.abs()

if (availableCredit == null || availableCredit < 0.01) {

    // Nothing to do - no available credit

    return

}

// Get the account and balance

Account account = accountService.load(fromOwner, paymentType.from)

BigDecimal availableBalance = accountService.getAvailableBalance(account, null)

BigDecimal needs = performTransaction.amount - availableBalance

if (needs > 0 && needs < availableCredit) {

    // Needs some extra credit, and has it available - make a payment from system

    // Find the system account and payment type

    SystemAccountType systemAccountType = entityManagerHandler.find(

            SystemAccountType, "debitAccount")

    PaymentTransferType paymentType =  entityManagerHandler.find(

            PaymentTransferType, "extraCredit", systemAccountType)

    PerformPaymentDTO credit = new PerformPaymentDTO()

    credit.from = SystemAccountOwner.instance()

    credit.to = fromOwner

    credit.type = new TransferTypeVO(paymentType.id)

    credit.amount = needs

    paymentService.perform(credit)

    // Now there should be enough credit to perform the payment

    // Update the user available credit

    payer.availableCredit -= needs

}

Send an e-mail on every payment

This example allows, for the selected payment types in the extension point details, to send
an e-mail to an speficic address.

import javax.mail.internet.InternetAddress

import org.cyclos.model.ValidationException

import org.cyclos.server.utils.MessageProcessingHelper

import org.springframework.mail.javamail.MimeMessageHelper

// Get the e-mail subject and body

def tx = scriptHelper.wrap(transaction)

def vars = [

    payer: tx.fromOwner.name,

    amount: formatter.format(tx.currencyAmount),

    date: formatter.formatAsDate(new Date()),

    time: formatter.formatAsTime(new Date())

]

def subject = MessageProcessingHelper.processVariables(scriptParameters.subject, vars)

if (subject == null || subject.empty) {

    throw new ValidationException("Missing the 'subject' script parameter")

}

def body = MessageProcessingHelper.processVariables(scriptParameters.message, vars)

if (body == null || body.empty) {

    throw new ValidationException("Missing the 'message' script parameter")
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}

def toEmail = tx.email

def fromEmail = sessionData.configuration.smtpConfiguration.fromAddress

def sender = mailHandler.mailSender

// Send the message after commit, so we guarantee the transaction is persisted when the e-mail is sent

scriptHelper.addOnCommit {

    def message = sender.createMimeMessage()

    def helper = new MimeMessageHelper(message)

    helper.to = new InternetAddress(toEmail)

    helper.from = new InternetAddress(fromEmail)

    helper.subject = subject

    helper.text = body

    // Send the message

    sender.send message

}

Custom operations

These scripts are invoked when an user runs a custom operation. A custom operation is
configured to return different data types, and the script must behave accordingly (see System
– Operations for more details).

Custom operations can have different scopes:

• System: Those are executed by administrators (with granted permissions), directly from the
main menu

• User: Custom operations which are related to an user, and can either be executed by
the own user (with granted permissions), from the main menu or run by administrator
or brokers (also, with granted permissions) when viewing the user profile. In both cases,
the custom operation needs to be enabled to users via member products. For example,
there might be operations which applies only to businesses, not consumers, and even
administrators with permission to run them shouldn't be able to run them over consumers.
It is enforced that administrators / brokers will only be able to run custom operations over
users they manage.

Bound variables:

• customOperation: The org.cyclos.entities.system.CustomOperation

• user: The org.cyclos.entities.users.User. Only present if the custom operation's scope is
user.

• inputFile: The org.cyclos.model.utils.FileInfo. Only present if the custom operation is
configured to accept a file upload, and if a file was selected.

• formParameters: A java.util.Map<String, Object>, keyed by the form field internal
name. The value depends on the field type. Could be a string, a number, a
boolean, a date, a org.cyclos.entities.system.CustomFieldPossibleValue or a collection of
org.cyclos.entities.system.CustomFieldPossibleValue.

http://www.cyclos.org/wiki4/index.php/System_-_Operations
http://www.cyclos.org/wiki4/index.php/System_-_Operations
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/CustomOperation.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/utils/FileInfo.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/CustomFieldPossibleValue.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/CustomFieldPossibleValue.html
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• currentPage: An integer indicating the current page, when getting paged results. Starts with
zero. Only available if the result type is result page.

• pageSize: An integer indicating the requested page size when getting paged results. Only
available if the result type is result page.

• returnUrl: Only if the custom operation return type is external redirect. Contains the url
(as string) which Cyclos expects the external site to redirect the user after the operation
completes.

• request: The org.cyclos.model.utils.RequestInfo. Only if the custom operation return type is
external redirect. Contains the information about the current request, so the script function
which handles the callback can identify the context to complete the process.

Return value: The required return value depends on the custom operation result type:

• Notification: The script must return a string which will be shown as a notification to the user.
If the string starts with the following special prefixes: [INFO], [WARN] or [ERROR], those
prefixes are removed from the notification and the notification style for the corresponding
types is chosen (for example, shows a yellow notification with a warning icon when [WARN]).
If no such prefixes, assumes an information notificaiton.

• Plain text: The script should return a string, which is interpreted as plain text. The text is
shown in the page body and can be printed by the user.

• Rich text: The script should return a string, which is interpreted as HTML text. The text is
shown in the page body and can be printed by the user.

• File download: The script should return an instance of org.cyclos.model.utils.FileInfo, or an
object or Map with the same properties. The properties are:

• content: Required. The file content. May be an InputStream, a File or a String (containing
the file content itself).

• contentType: Required. The MIME type, such as text/plain, text/html, image/jpeg,
application/pdf, etc.

• name: Optional file name, which will be used by browsers to suggest the file name to
save.

• length: Optional file length, which may aid browsers to monitor the progress of file
downloads.

• Page results: The script should return an instance of
org.cyclos.model.system.operations.CustomOperationPageResult, or an object or Map
with the same properties. The properties are:

• headers: Required. A list containing the column headers.

• results: Optional. A list of lists, containing the table cells. The inner lists should have the
same size as the headers.

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/utils/RequestInfo.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/utils/FileInfo.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/system/operations/CustomOperationPageResult.html
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• totalCount: Optional. The total count of records. For example, if all matching records are
1000, but the page size is 20, the results would normally have 20 records, and the total
count would be 1000. This allows paginating through the results. When not returned, the
results won't be paginable.

• External redirect: The first script function must return a string, representing a valid URL.
That URL will be used to redirect the user to the external site. The second script function
(called after the external site redirects the user back to Cyclos) must return a string, which
will be shown as a notification to the user (with support for the same prefixes as the
Notification result type above). As the return url will make the Cyclos application have no
context (which is maintained as JavaScript in the browser page), the user will see the home
page with that notification.

Examples

Contact us page

This example allows creating a "contact us" page, which sends an e-mail to a specified
address. To use it, you will need the following content in the script parameters box:

to=admin@project.org

from=noreply@project.org

subject=Contact form

message=The message was sent.\nThank you for your contact.

mailHeader=An user has sent a contact form with the following data:

mailFrom=From:

mailEmail=E-Mail:

mailSubject=Subject:

mailMessage=Message:

invalidEmail=Invalid e-mail address

Then, use the following script code:

import javax.mail.internet.InternetAddress

import org.cyclos.impl.utils.validation.validations.PropertyValidations

import org.cyclos.model.ValidationException

import org.springframework.mail.javamail.MimeMessageHelper

def sender = mailHandler.mailSender

def message = sender.createMimeMessage()

def helper = new MimeMessageHelper(message)

if (PropertyValidations.email().validate(null, null, formParameters.email)) {

    throw new ValidationException(scriptParameters.invalidEmail);

}

helper.to = new InternetAddress(scriptParameters.to)

helper.from = new InternetAddress(scriptParameters.from)

helper.subject = scriptParameters.subject
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helper.text = """

${scriptParameters.mailHeader}

${scriptParameters.mailFrom} ${formParameters.from}

${scriptParameters.mailEmail} ${formParameters.email}

${scriptParameters.mailSubject} ${formParameters.subject}

${scriptParameters.mailMessage} ${formParameters.message}

"""

sender.send message

return scriptParameters.message

Returning a string (notification / rich / plain text) and external redirect

Examples of a custom operation which returning a text (a notification in that case) can
be found in the loan solution example. An example of an external redirect is the PayPal
integration example.

Returning a file

This is an example where the user selects a document to download. It is assumed that the
custom operation has a form field of type single selection with internal name file. Then, each
possible value should have the internal name corresponding to a pdf file in a given folder.
Once the user chooses the file, it is downloaded.

import org.cyclos.model.ValidationException

// Assume there is a pdf file for each possible value of the field

String fileName = formParameters.file.internalName

String dir = scriptParameters.dir ?: "/usr/share/documents"

File file = new File(dir, "${fileName}.pdf")

if (!file.exists()) {

    throw new ValidationException("File not found")

}

return [

    content: file,

    contentType: "application/pdf",

    name: file.name,

    length: file.length(),

    lastModified: file.lastModified()

]

Returning a result list

In this example, an user can see the other users he has traded with (either performed or
received payments). The custom operation needs to have user scope and result type list.

import org.cyclos.entities.banking.QTransaction

import org.cyclos.entities.users.QUser

import com.mysema.query.types.QList

QTransaction t = QTransaction.transaction

QUser u = QUser.user
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List<Object> results = entityManagerHandler

        .from(t)

        .innerJoin(u)

        .on(t.fromUser().id.when(user.id)

        .then(t.toUser().id)

        .otherwise(t.fromUser().id)

        .eq(u.id))

        .where(t.fromUser.eq(user).or(t.toUser.eq(user)))

        .groupBy(u.username, u.name)

        .orderBy(u.username.asc())

        .list(new QList(u.username, u.name, u.id.count()))

return [

    headers: [

        "Login name",

        "Full name",

        "Transactions"

    ],

    results: results

]

Custom scheduled tasks

These scripts are called periodically by custom scheduled tasks. See System – Scheduled tasks
for more details.

The bound variables are:

• scheduledTask: The org.cyclos.entities.system.CustomScheduledTask being executed

• log: The org.cyclos.entities.system.CustomScheduledTaskLog for this execution

Return value:

• The script should return a string, which is logged as message, and can be viewed on the
application

Examples

Periodically update a static HTML page

In this example, every time the scheduled task runs, a static HTML file is updated. In the file,
it is written the total number of users and the balances of each system account.

import groovy.xml.MarkupBuilder

import org.cyclos.entities.users.QUser

import org.cyclos.model.banking.accounts.AccountSummaryVO

import org.cyclos.model.banking.accounts.SystemAccountOwner

import org.cyclos.model.users.groups.BasicGroupNature

import org.cyclos.model.users.users.UserStatus

def now = new Date()

QUser u = QUser.user

http://www.cyclos.org/wiki4/index.php/System_-_Scheduled_tasks
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/CustomScheduledTask.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/CustomScheduledTaskLog.html
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int users = entityManagerHandler

        .from(u)

        .where(u.status.ne(UserStatus.REMOVED),

        u.group.nature.eq(BasicGroupNature.USER_GROUP))

        .count()

List<AccountSummaryVO> accounts = accountService.

        getAccountsSummary(SystemAccountOwner.instance(), null)

File out = new File("/var/www/html/summary.html")

def sessionData = binding.sessionData

def formatter = binding.formatter

MarkupBuilder builder = new MarkupBuilder(new FileWriter(out))

builder.html {

    head {

        title "${sessionData.configuration.applicationName} summary"

        meta charset: "UTF-8"

    }

    body {

        p {

            b "Total users"

            span ": ${users}"

        }

        accounts.each { a ->

            p {

                b a.name

                span " balance: ${formatter.format(a.balance)}"

            }

        }

        br()

        br()

        br()

        p style: "font-size: small", "Last updated: ${formatter.format(now)}"

    }

}

return "File ${out.absolutePath} updated"

Custom SMS operations

These scripts are invoked when an user executes a custom sms operation, as configured
in the sms channel in the configuration. The function should implement the logic for that
operation.

Bound variables:

• configuration: The org.cyclos.entities.system.CustomSmsOperationConfiguration. With it,
it is possible to navigate up to the org.cyclos.entities.system.SmsChannelConfiguration.

• phone: The org.cyclos.entities.users.MobilePhone

• sms: The org.cyclos.impl.utils.sms.InboundSmsData, containing the operation alias and the
operation parameters

• parameterProcessor: The org.cyclos.impl.utils.sms.SmsParameterProcessor, which is a
helper class to obtain operation parameters as specific data types

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/CustomSmsOperationConfiguration.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/SmsChannelConfiguration.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/MobilePhone.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/impl/utils/sms/InboundSmsData.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/impl/utils/sms/SmsParameterProcessor.html
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There are no expected return values for this script.

Examples

Pay taxi with an SMS message

In this example SMS operation, users can pay taxi drivers via SMS. It expects a single transfer
type for the SMS operations channel to be enabled, and the user performing the operation
needs to have permission to perform that payment. Besides, a custom profile field with
internal name taxiId of type single line text, and marked as unique needs to be enabled for
the product of taxi owners. Then, in the configuration details, in the channels tab, enable SMS
operations and add an operation with alias taxi and the selected script. Then, customers can
perform the payment by sending an sms in the format: taxi <taxi id> <amount>

import org.cyclos.model.ValidationException

import org.cyclos.model.banking.TransferException

import org.cyclos.model.banking.transactions.PerformPaymentDTO

import org.cyclos.model.banking.transactions.PerformPaymentData

import org.cyclos.model.messaging.sms.OutboundSmsType

import org.cyclos.model.system.fields.CustomFieldVO

import org.cyclos.model.users.fields.UserCustomFieldValueVO

import org.cyclos.model.users.users.UserLocatorVO

// Read the parameters

String taxiId = parameterProcessor.nextString("taxiId")

BigDecimal amount = parameterProcessor.nextDecimal("amount")

// Find the user by taxi id

def locator = new UserLocatorVO()

locator.fieldValue = new UserCustomFieldValueVO([

    field: new CustomFieldVO([internalName: "taxiId"]),

    stringValue: taxiId

])

// Find the payment type

PerformPaymentData data = transactionService.getPaymentData(

        phone.user, locator)

if (data.paymentTypes?.size == 0) {

    throw new ValidationException("No possible payment types")

}

// Perform the payment

def pmt = new PerformPaymentDTO()

pmt.amount = amount

pmt.from = data.from

pmt.to = data.to

pmt.type = data.paymentTypes[0]

try {

    vo = paymentService.perform(pmt)

    outboundSmsHandler.send(phone,

            "The payment was successful",

            OutboundSmsType.SMS_OPERATION_RESPONSE)

    // Also notify the taxi, for example, by connecting to the

    // taxi company system, which notifies the taxi driver...
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} catch (TransferException e) {

    outboundSmsHandler.send(phone,

            "The payment couldn't be performed",

            OutboundSmsType.SMS_OPERATION_RESPONSE)

}

Outbound SMS handling

These scripts are invoked to send SMS messages. By default, Cyclos connects to gateways
via HTTP POST / GET, which can be set in the configuration. However, the sending can be
customized (or totally replaced) via a script. As in most cases the custom sending just wants
to customize some aspects of the sending, not all, it is possible that the script just creates
a subclass of org.cyclos.impl.utils.sms.GatewaySmsSender, customizing some aspects of it
(for example, by overridding the buildRequest method and adding some headers, or the
resolveVariables method to have some additional variables which can be sent in the POST
body).

Bound variables:

• configuration: The org.cyclos.impl.system.ConfigurationAccessor

• phone: The org.cyclos.entities.users.MobilePhone. May be null, if is a reply to an
unregistered user.

• phoneNumber: The international phone number, in the E.164 standard string. Never null.

• message: The SMS message to send

Return value:

• An org.cyclos.model.messaging.sms.OutboundSmsStatus enum value

• A string which represents the exact name of an OutboundSmsStatus enum value

• If null is returned, it is assumed a sending success

Examples

Sending SMS requests as XML

This example posts the SMS message as XML to the gateway, and awaits the response before
returning the status:

import static groovyx.net.http.ContentType.*

import static groovyx.net.http.Method.*

import groovyx.net.http.HTTPBuilder

import java.util.concurrent.CountDownLatch

import org.cyclos.model.messaging.sms.OutboundSmsStatus

// Read the gateway URL from the configuration

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/impl/utils/sms/GatewaySmsSender.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/impl/system/ConfigurationAccessor.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/users/MobilePhone.html
http://en.wikipedia.org/wiki/E.164
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/messaging/sms/OutboundSmsStatus.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/messaging/sms/OutboundSmsStatus.html
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def url = configuration.outboundSmsConfiguration.gatewayUrl

// Send the POST request

def http = new HTTPBuilder(url)

CountDownLatch latch = new CountDownLatch(1)

def error = false

http.request(POST, XML) {

    // Pass the body as a closure - parsed as XML

    body = {

        "sms-message" {

            "destination-phone" phoneNumber

            text message

        }

    }

    response.success = { resp, xml ->

        latch.countDown()

    }

    response.failure = { resp ->

        error = true

        latch.countDown()

    }

}

//Await for the response

latch.await()

return error ? OutboundSmsStatus.SUCCESS : OutboundSmsStatus.UNKNOWN_ERROR

Inbound SMS handling

These scripts are invoked when a gateway sends SMS messages to Cyclos. There are two
functions in this script: one to generate the gateway response and another one to resolve
basic SMS data from an inbound HTTP request. Both functions are optional, defaulting to the
normal behavior (when not using a script).

The common bound variables are:

• configuration: The org.cyclos.impl.system.ConfigurationAccessor for the inbound SMS

• channelConfiguration: The org.cyclos.entities.system.SmsChannelConfiguration

The functions are:

• Resolve basic SMS data: Function used to read an inbound sms request and return an object
containing the phone number, the SMS message and the splitted SMS message into parts.
Only the phone number and SMS message are required. If the message parts are empty,
it will be assumed the message will be split by spaces.

• Bound variables:

• request: The org.cyclos.model.utils.RequestInfo

• Return value:

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/impl/system/ConfigurationAccessor.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/system/SmsChannelConfiguration.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/utils/RequestInfo.html
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• An org.cyclos.impl.utils.sms.InboundSmsBasicData instance, or a compatible Object or
Map

• If null is returned, falls back to the default processing

• Generate gateway response: Function used to determine the HTTP status code, headers
and body to be returned to the SMS gateway. It can be called either when the bare minimum
parameters – mobile phone number and sms message – were not sent by the gateway or
when the gateway has sent a valid SMS. Keep in mind that if an operation has resulted in
error, from a gateway perspective, the SMS was still delivered correctly, and the response
should be a successful one. Maybe when the bare minimum parameters weren't send,
the script could choose to return a different message. When no code is given, the default
processing will be done, returning the HTTP status code 200 with "OK" in the body.

• Bound variables:

• request: The org.cyclos.model.utils.RequestInfo Only present if the inbound SMS was
valid (there was a phone number and sms message)

• inboundSmsData: The org.cyclos.impl.utils.sms.InboundSmsData, which contains the
operation alias and parameters

• inboundSms: The org.cyclos.entities.messaging.InboundSms, which is a log of the
incoming message

• Return value:

• An org.cyclos.model.utils.ResponseInfo instance, or a compatible Object or Map

• If null is returned, falls back to the default processing

Examples

Receiving a SMS with a custom format

This example reads the phone number from a request header, and the message from the
request body:

import org.apache.commons.io.IOUtils

import org.cyclos.impl.utils.sms.InboundSmsBasicData

// Read the phone from a header, and the message from the body

InboundSmsBasicData result = new InboundSmsBasicData()

result.phoneNumber = request.headers."phone-number"

result.message = IOUtils.toString(request.body, "UTF-8")

return result

Transfer status handling

These scripts are used to determine to which status(es) a transfer may be set after the current
status. By default, if no script is used, the possible next statuses (as configured in the transfer

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/impl/utils/sms/InboundSmsBasicData.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/utils/RequestInfo.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/impl/utils/sms/InboundSmsData.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/messaging/InboundSms.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/model/utils/ResponseInfo.html
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status details page) will be available. Using a script, however, allows using finer-grained
controls. For example, an specific status could be allowed only by specific administrators,
or only under special conditions (for example, checking the account balance or any other
condition).

The script code has the following variables bound (besides the default bindings):

• transfer: The org.cyclos.entities.banking.Transfer

• flow: The org.cyclos.entities.banking.TransferStatusFlow of the status being affected.

• status: The org.cyclos.entities.banking.TransferStatus

The script should return one of the following:

• A single org.cyclos.entities.banking.TransferStatus (only that status is available as next);

• An array / list / iterator of org.cyclos.entities.banking.TransferStatus (all are available as
next, possibly empty);

• Null – assumes the default behavior: the possible next configured in the status are
assumed.

Examples

Restricting a specific status for administrators

In this example, any user can change a transfer status in a given flow. However, only
administrators can set a transfer to the status with internal name finished.

import org.cyclos.model.access.Role

// Only administrators can set the status to finished

return status.possibleNext.findAll { st ->

    sessionData.hasRole(Role.ADMIN) || st.internalName != "finished"

}

3.3. Solutions using scripts
Examples of solutions that require a single script can be found directly in the specific script
description page (links directly above). Solutions that need several scripts and configurations
can be found in this section.

PayPal Integration

It is possible to integrate Cyclos with PayPal, allowing users to buy units with their PayPal
account. This is done with a custom operation which allows users to confirm the payment
in PayPal and then, once the payment is confirmed, a payment from a system account
is performed to the corresponding user account, automating the process of buying units.
However, keep in mind the rates charged by PayPal, which vary according to some conditions.

http://www.cyclos.org/documentation/#bindings
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/Transfer.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/TransferStatusFlow.html
http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/entities/banking/TransferStatus.html
http://www.paypal.com/
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To do so, first you'll need a PayPal premium or business account (for testing – using PayPal
sandbox – any account is enough). You'll need to go to the PayPal Developer page to create
an application, and get the client id and secret.

Then several configurations are required in Cyclos. Scripts can only be created as global
administrators switched to a network, so it is advised to use a global admin to perform the
configuration. Carefully follow each of the following steps:

Check the root URL

Make sure that the configuration for users use a correct root url. In System > System
configuration > Configurations, select the configuration set for users and make sure the Main
URL field points to the correct external URL. It will be used to generate the links which will be
sent to PayPal redirect users back to Cyclos after confirming / canceling the operation.

Enable transaction number in currency

This can be checked under System > Currencies select the currency used for this operation,
mark the Enable transfer number option and fill in the required parameters.

Create a system record type to store the client id and secret

Under System > System configuration > Record types, create a new system record type, with
the following characteristics:

• Name: PayPal Authentication

• Internal name: paypalAuth

• Display style: Single form

• Editable: yes

For this record type, create the following fields:

• Client ID

• Internal name: clientId

• Data type: Single line text

• Required: yes

• Client Secret

• Internal name: clientSecret

• Data type: Single line text

• Required: yes

• Token

• Internal name: token

https://developer.paypal.com/webapps/developer/applications/myapps
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• Data type: Single line text

• Token expiration

• Internal name: tokenExpiration

• Data type: Date

Create an user record type to store each payment information

Under System > System configuration > Record types, create a new user record type, with the
following characteristics:

• Name: PayPal payment

• Internal name: paypalPayment

• Display style: List

• Editable: checked

For this record type, create the following fields:

• Payment ID

• Internal name: paymentId

• Data type: Single line text

• Required: no

• Amount

• Internal name: amount

• Data type: Decimal

• Required: no

• Transaction

• Internal name: transaction

• Data type: Linked entity

• Linked entity type: Transaction

• Required: no

Create the library script

Under System > Tools > Scripts, create a new library script, with the following characteristics:

• Name: PayPal

• Type: Library

• Included libraries: none
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• Parameters:

# Settings for the access token record type

auth.recordType = paypalAuth

auth.clientId = clientId

auth.clientSecret = clientSecret

auth.token = token

auth.tokenExpiration = tokenExpiration

# Settings for the payment record type

payment.recordType = paypalPayment

payment.paymentId = paymentId

payment.amount = amount

payment.transaction = transaction

# Settings for PayPal

mode = sandbox

currency = EUR

paymentDescription = Buy Cyclos units

# Settings for the Cyclos payment

amountMultiplier = 1

accountType = debitUnits

paymentType = paypalCredits

# Messages

error.invalidRequest = Invalid request

error.transactionNotFound = Transaction not found

error.transactionAlreadyApproved = The transaction was already approved

error.payment = There was an error while processing the payment. Please, try again.

error.notApproved = The payment was not approved

message.canceled = You have cancelled the operation.\nFeel free to start again if needed.

message.done = You have successfully completed the payment. Thank you.

• Script code:

import static groovyx.net.http.ContentType.*

import static groovyx.net.http.Method.*

import groovyx.net.http.HTTPBuilder

import java.util.concurrent.CountDownLatch

import org.apache.commons.codec.binary.Base64

import org.cyclos.entities.banking.PaymentTransferType

import org.cyclos.entities.banking.SystemAccountType

import org.cyclos.entities.users.RecordCustomField

import org.cyclos.entities.users.SystemRecord

import org.cyclos.entities.users.SystemRecordType

import org.cyclos.entities.users.User

import org.cyclos.entities.users.UserRecord

import org.cyclos.entities.users.UserRecordType

import org.cyclos.impl.banking.PaymentServiceLocal

import org.cyclos.impl.system.ScriptHelper

import org.cyclos.impl.users.RecordServiceLocal

import org.cyclos.impl.utils.IdMask

import org.cyclos.impl.utils.persistence.EntityManagerHandler

import org.cyclos.model.EntityNotFoundException
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import org.cyclos.model.banking.accounts.SystemAccountOwner

import org.cyclos.model.banking.transactions.PaymentVO

import org.cyclos.model.banking.transactions.PerformPaymentDTO

import org.cyclos.model.banking.transfertypes.TransferTypeVO

import org.cyclos.model.users.records.RecordDataParams

import org.cyclos.model.users.records.UserRecordDTO

/**

 * Class used to store / retrieve the authentication information for PayPal

 * A system record type is used, with the following fields: client id (string),

 * client secret (string), access token (string) and token expiration (date)

 */

class PayPalAuth {

    String recordTypeName

    String clientIdName

    String clientSecretName

    String tokenName

    String tokenExpirationName

    SystemRecordType recordType

    SystemRecord record

    Map<String, Object> wrapped

    public PayPalAuth(Object binding) {

        def params = binding.scriptParameters

        recordTypeName = params.'auth.recordType' ?: 'paypalAuth'

        clientIdName = params.'auth.clientId' ?: 'clientId'

        clientSecretName = params.'auth.clientSecret' ?: 'clientSecret'

        tokenName = params.'auth.token' ?: 'token'

        tokenExpirationName = params.'auth.tokenExpiration' ?: 'tokenExpiration'

        // Read the record type and the parameters for field internal names

        recordType = binding.entityManagerHandler

                .find(SystemRecordType, recordTypeName)

        // Should return the existing instance, of a single form type.

        // Otherwise it would be an error

        record = binding.recordService.newEntity(

                new RecordDataParams(recordTypeId: recordType.id))

        if (!record.persistent) throw new IllegalStateException(

            "No instance of system record ${recordType.name} was found")

        wrapped = binding.scriptHelper.wrap(record, recordType.fields)

    }

    public String getClientId() {

        wrapped[clientIdName]

    }

    public void setClientId(String clientId) {

        wrapped[clientIdName] = clientId

    }

    public String getClientSecret() {

        wrapped[clientSecretName]

    }

    public void setClientSecret(String clientSecret) {

        wrapped[clientSecretName] = clientSecret

    }

    public String getToken() {

        wrapped[tokenName]



Cyclos 4 PRO Documentation 59

    }

    public void setToken(String token) {

        wrapped[tokenName] = token

    }

    public Date getTokenExpiration() {

        wrapped[tokenExpirationName]

    }

    public void setTokenExpiration(Date tokenExpiration) {

        wrapped[tokenExpirationName] = tokenExpiration

    }

}

/**

 * Class used to store / retrieve PayPal payments as user records in Cyclos

 */

class PayPalRecord {

    String recordTypeName

    String paymentIdName

    String amountName

    String transactionName

    UserRecordType recordType

    Map<String, RecordCustomField> fields

    private EntityManagerHandler entityManagerHandler

    private RecordServiceLocal recordService

    private ScriptHelper scriptHelper

    public PayPalRecord(Object binding) {

        def params = binding.scriptParameters

        recordTypeName = params.'payment.recordType' ?: 'paypalPayment'

        paymentIdName = params.'payment.paymentId' ?: 'paymentId'

        amountName = params.'payment.amount' ?: 'amount'

        transactionName = params.'payment.transaction' ?: 'transaction'

        entityManagerHandler = binding.entityManagerHandler

        recordService = binding.recordService

        scriptHelper = binding.scriptHelper

        recordType = binding.entityManagerHandler.find(UserRecordType, recordTypeName)

        fields = [:]

        recordType.fields.each {f -> fields[f.internalName] = f}

    }

    /**

     * Creates a payment record, for the given user and JSON,

     * as returned from PayPal's create payment REST method

     */

    public UserRecord create(User user, Number amount) {

        RecordDataParams newParams = new RecordDataParams(

                [userId: user.id, recordTypeId: recordType.id])

        UserRecordDTO dto = recordService.getDataForNew(newParams).getDTO()

        Map<String, Object> wrapped = scriptHelper.wrap(dto, recordType.fields)

        wrapped[amountName] = amount

        // Save the record DTO and return the entity

        Long id = recordService.save(dto)

        return entityManagerHandler.find(UserRecord, id)

    }
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    /**

     * Finds the record by id

     */

    public UserRecord find(Long id) {

        try {

            UserRecord userRecord = entityManagerHandler.find(UserRecord, id)

            if (userRecord.type != recordType) {

                return null

            }

            return userRecord

        } catch (EntityNotFoundException e) {

            return null

        }

    }

    /**

     * Removes the given record, but only if it is of the

     * expected type and hasn't been confirmed

     */

    public void remove(UserRecord userRecord) {

        if (userRecord.type != recordType) {

            return

        }

        Map<String, Object> wrapped = scriptHelper

                .wrap(userRecord, recordType.fields)

        if (wrapped[transactionName] != null) return

            entityManagerHandler.remove(userRecord)

    }

}

/**

 * Class used to interact with PayPal services

 */

class PayPalService {

    String mode

    String baseUrl

    String currency

    String paymentDescription

    String accountTypeName

    String paymentTypeName

    double multiplier

    SystemAccountType accountType

    PaymentTransferType paymentType

    private ScriptHelper scriptHelper

    private PaymentServiceLocal paymentService

    private IdMask idMask

    private PayPalAuth auth

    private PayPalRecord record

    public PayPalService(

    Object binding, PayPalAuth auth, PayPalRecord record) {

        this.auth = auth

        this.record = record
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        scriptHelper = binding.scriptHelper

        paymentService = binding.paymentService

        idMask = binding.applicationHandler.idMask

        def params = binding.scriptParameters

        mode = params.mode ?: 'sandbox'

        if (mode != 'sandbox' && mode != 'live') {

            throw new IllegalArgumentException("Invalid PayPal parameter " +

            "'mode': ${mode}. Should be either sandbox or live")

        }

        baseUrl = mode == 'sandbox'

                ? 'https://api.sandbox.paypal.com' : 'https://api.paypal.com'

        currency = params.currency

        if (currency == null || currency.empty) {

            throw new IllegalArgumentException(

            "Missing PayPal parameter 'currency'")

        }

        EntityManagerHandler emh = binding.entityManagerHandler

        accountTypeName = params.accountType

        if (accountTypeName == null || accountTypeName.empty)

            throw new IllegalArgumentException(

            "Missing PayPal parameter 'accountType'")

        paymentTypeName = params.paymentType

        if (paymentTypeName == null || paymentTypeName.empty)

            throw new IllegalArgumentException(

            "Missing PayPal parameter 'paymentType'")

        accountType = emh.find(SystemAccountType, accountTypeName)

        if (!accountType.currency.transactionNumber?.used) {

            throw new IllegalStateException("Currency " + accountType.currency

            + " doesn't have transaction number enabled")

        }

        paymentType = emh.find(

                PaymentTransferType, paymentTypeName, accountType)

        multiplier = Double.parseDouble(params.amountMultiplier ?: "1")

        paymentDescription = params.paymentDescription ?: ""

    }

    /**

     * Creates a payment in PayPal and the corresponding user record

     */

    public Object createPayment(User user, Number amount, String callbackUrl) {

        // Create the UserRecord for this payment

        UserRecord userRecord = record.create(user, amount)

        Long maskedId = idMask.apply(userRecord.id)

        String returnUrl = "${callbackUrl}?succes=true&recordId=${maskedId}"

        String cancelUrl = "${callbackUrl}?cancel=true&recordId=${maskedId}"

        def jsonBody = [

            intent: "sale",

            redirect_urls: [

                return_url: returnUrl,
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                cancel_url: cancelUrl

            ],

            payer: [

                payment_method: "paypal"

            ],

            transactions: [

                [

                    description: paymentDescription,

                    amount: [

                        total: amount,

                        currency: currency

                    ]

                ]

            ]

        ]

        // Create the payment in PayPal

        Object json = postJson("${baseUrl}/v1/payments/payment", jsonBody)

        // Update the payment id

        def wrapped = scriptHelper.wrap(userRecord)

        wrapped[record.paymentIdName] = json.id

        return json

    }

    /**

     * Executes a PayPal payment, and creates the payment in Cyclos

     */

    public Object execute(String payerId, UserRecord userRecord) {

        Object wrapped = scriptHelper.wrap(userRecord)

        String paymentId = wrapped[record.paymentIdName]

        BigDecimal amount = wrapped[record.amountName]

        BigDecimal finalAmount = amount * multiplier

        // Execute the payment in PayPal

        Object json = postJson(

                "${baseUrl}/v1/payments/payment/${paymentId}/execute",

                [payer_id: payerId])

        if (json.state == 'approved') {

            // Perform the payment in Cyclos

            PerformPaymentDTO dto = new PerformPaymentDTO()

            dto.from = SystemAccountOwner.instance()

            dto.to = userRecord.user

            dto.amount = finalAmount

            dto.type = new TransferTypeVO(paymentType.id)

            PaymentVO vo = paymentService.perform(dto)

            // Update the record, setting the linked transaction

            wrapped[record.transactionName] = vo

            userRecord.lastModifiedDate = new Date()

        }

        return json

    }

    /**

     * Performs a synchronous request, posting and accepting JSON

     */
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    private postJson(url, jsonBody) {

        def http = new HTTPBuilder(url)

        CountDownLatch latch = new CountDownLatch(1)

        def responseJson = null

        def responseError = []

        // Check if we need a new token

        if (auth.token == null || auth.tokenExpiration < new Date()) {

            refreshToken()

        }

        // Perform the request

        http.request(POST, JSON) {

            headers.'Authorization' = "Bearer ${auth.token}"

            body = jsonBody

            response.success = { resp, json ->

                responseJson = json

                latch.countDown()

            }

            response.failure = { resp ->

                responseError << resp.statusLine.statusCode

                responseError << resp.statusLine.reasonPhrase

                latch.countDown()

            }

        }

        latch.await()

        if (!responseError.empty) {

            throw new RuntimeException("Error making PayPal request to ${url}"

            + ", got error code ${responseError[0]}: ${responseError[1]}")

        }

        return responseJson

    }

    /**

     * Refreshes the access token

     */

    private void refreshToken() {

        def http = new HTTPBuilder("${baseUrl}/v1/oauth2/token")

        CountDownLatch latch = new CountDownLatch(1)

        def responseJson = null

        def responseError = []

        http.request(POST, JSON) {

            String auth = Base64.encodeBase64String((auth.clientId + ":"

                    + auth.clientSecret).getBytes("UTF-8"))

            headers.'Accept-Language' = 'en_US'

            headers.'Authorization' = "Basic ${auth}"

            send URLENC, [

                grant_type: "client_credentials"

            ]

            response.success = { resp, json ->
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                responseJson = json

                latch.countDown()

            }

            response.failure = { resp ->

                responseError << resp.statusLine.statusCode

                responseError << resp.statusLine.reasonPhrase

                latch.countDown()

            }

        }

        latch.await()

        if (!responseError.empty) {

            throw new RuntimeException("Error getting PayPal token, " +

            "got error code ${responseError[0]}: ${responseError[1]}")

        }

        // Update the authentication data

        auth.token = responseJson.access_token

        auth.tokenExpiration = new Date(System.currentTimeMillis() +

                ((responseJson.expires_in - 30) * 1000))

    }

}

// Instantiate the objects

PayPalAuth auth = new PayPalAuth(binding)

PayPalRecord record = new PayPalRecord(binding)

PayPalService paypal = new PayPalService(binding, auth, record)

Create the custom operation script

Under System > Tools > Scripts, create a new custom operation script, with the following
characteristics:

• Name: Buy units with PayPal

• Type: Custom operation

• Included libraries: PayPal

• Parameters: leave empty

• Script code executed when the custom operation is executed:

def result = paypal.createPayment(user, formParameters.amount, returnUrl)

def link = result.links.find {it.rel == "approval_url"}

if (link) {

 return link.href + "&useraction=commit"

} else {

    throw new IllegalStateException("No approval url returned from PayPal")

}

• Script code executed when the external site redirects the user back to Cyclos:

import org.cyclos.entities.users.UserRecord
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def recordId = request.parameters.recordId as Long

def payerId = request.parameters.PayerID

// No record?

if (recordId == null) {

    return "[ERROR] " +

    (scriptParameters.'error.invalidRequest' ?: "Invalid request")

}

// Find the corresponding record

UserRecord userRecord = record.find(applicationHandler.idMask.remove(recordId))

if (userRecord == null) {

    return "[ERROR] " +

    (scriptParameters.'error.transactionNotFound' ?: "Transaction not found")

}

def wrapped = scriptHelper.wrap(userRecord)

if (request.parameters.cancel) {

    // The operation has been canceled. Remove the record and send a message.

    record.remove(userRecord)

    return "[WARN]" + scriptParameters.'message.canceled'

    ?: "You have cancelled the operation.\nFeel free to start again if needed."

} else {

    // Execute the payment

    try {

        def json = paypal.execute(payerId, userRecord)

        if (json.state == 'approved') {

            return scriptParameters.'message.done'

            ?: "You have successfully completed the payment. Thank you."

        } else {

            return "[ERROR] " + scriptParameters.'error.notApproved'

            ?: "The payment was not approved"

        }

    } catch (Exception e) {

        return "[ERROR] " + scriptParameters.'error.payment'

        ?: "There was an error while processing the payment. Please, try again."

    }

}

Create the custom operation

Under System > Tools > Custom operations, create a new one with the following
characteristics:

• Name: Buy units with PayPal (can be changed – will be the label displayed on the menu)

• Enabled: yes

• Scope: user

• Script: Buy units with PayPal

• Script parameters: leave empty

• Result type: External redirect

• Has file upload: no
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• Main menu: Banking

• User management section: Banking

• Information text: you can add here some text explaining the process – it will be displayed
in the operation page

• Confirmation text: leave empty (can be used to show a dialog asking the user to confirm
before submitting, but in this case is not needed)

For this custom operation create the following field:

• Name: Amount

• Internal name: amount

• Data type: Decimal

• Required: yes

Configure the system account from which payments will be performed to users

Under System > Accounts configuration > Account types, choose the (normally unlimited)
account from which payments will be performed to users. Then set its internal name to some
meaningful name. The example configuration uses debitUnits as internal name, but it can be
changed. Save the form.

Configure the payment type which will be used on payments

Still in the details page for the account type, on the Transfer types tab, create a new Payment
transfer type with the following characteristics:

• Name: Units bought with PayPal (can be changed as desired)

• Internal name: paypalCredits (can be changed as desired, but this name is used in the
example configuration)

• Default description: Units bought using PayPal (can be changed as desired, is the
description for payments, visible in the account history)

• To: select the user account which will receive the payment

• Enabled: yes

Grant the administrator permissions

Under System > User configuration > Groups, select the Network administrators group. Then,
in the Permissions tab:

• In System > System records, make the Paypal authentication record visible and editable

• In User data > User records, make the Paypal payment visible only (not editable, as it is not
meant to be manually edited)
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• Save the permissions

Setup the PayPal credentials

Click Reports & data > System records > Paypal authentication. If this menu entry is not
showing up, refresh the browser page (by pressing F5) and try again. Update the Client ID
and Client Secret fields exactly with the ones you got in the application you registered in the
PayPal Developer page. Remember that PayPal has a sandbox, which can be used to test the
application, and a live environment. For now, use the sandbox credentials. The other 2 fields
can be left blank. Save the record.

Once the record is properly set, if you want to remove it from the menu, you can just remove
the permission to view this system record in the adminitrator group page.

Grant the user permissions / enable the operation

In System > User configuration > Products (permissions), select the member product for users
which will run the operation. In the Custom operations field, make the Buy units with PayPal
both enabled and allowed to run. From this moment, the operation will show up for users in
the banking menu. Also on the Records enable the PayPal payment record.

Configuring the script parameters

In the PayPal library script, in parameters, there are several configurations which can be done.
All those settings can be overridden in the custom operation's script parameters, allowing
using distinct configurations for distinct operations. For example, it is possible to have distinct
operations to perform payments in distinct currencies. In that case, the script parameters for
each operation would define the currency again.

Here are some elements which can be configured:

• Internal names for the records used to store the credentials and payments.

• Paypal mode: the 'mode' settings can be either sandbox or live, indicating that operations
are performed either in a test or in the real environment. To go live, you'll need a premium
or business account in PayPal, and you need to use the live credentials (client ID and client
secret) in Cyclos.

• Payment currency: the 'currency' defines the 3-letter, ISO 4217 code for the currency in
PayPal. Sometimes, according to country-specific laws, the currency used for payments
may be limited. For example, Brazilians can only pay other Brazilians in Reais.

• Description for payments in PayPal: using the 'paymentDescription' setting.

• Amount multiplier: Sometimes it may be desired that the payment performed in Cyclos
isn't of the exact amount of the payment in PayPal. This can normally be resolved using
transfer fees, but it could also be handy to use this multiplier. If left in 1, the payment in
Cyclos will have the same amount as the one in PayPal. If greater / less than 1, the payment

https://developer.paypal.com/webapps/developer/applications/myapps
http://en.wikipedia.org/wiki/ISO_4217
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in Cyclos will be greater / less than the one in PayPal. For example, if the multiplier is 1.05,
and the PayPal payment was 100 USD, the payment in Cyclos will have the amount 105.
Or, if the multiplier is 0.95 and the PayPal payment was 200 EUR, the payment in Cyclos
will be of 190.

• System account from which the payment will be performed to users: the 'accountType'
setting is the internal name of the system account type from which payments will be
performed, as explained previously. Make sure it is exactly the same as set in the account
type.

• Payment type: the 'paymentType' setting is the internal name of the payment transfer type
used. Make sure it is exactly the same internal name set in the payment type that was
created in previous steps.

• Messages: several messages (displayed to the user) can be set / translated here.

Other considerations

Make sure the payment type is from an unlimited account, so payments in Cyclos won't
fail because of funds. The way the example script is done, first the payment is executed in
PayPal and, if authorized, a payment is made in Cyclos. If this payment fails, there could be
an inconsistency between the Cyclos account an the PayPal payment. Improvements could
be done to the script, to handle the case where the Cyclos payment failed. To do this, the
ScriptHelper.addOnRollbackTransactional method can be used, for example, to notify some
specific administrator or to refund the PayPal payment. But this handling is outside the scope
of this example.

Loan module

Loan features in Cyclos 4 can be implemented using scripting. As loans tend to be very specific
for each project, having it implemented with scripts brings the possibility to tailor the behavior
to each project.

The example provided works as follows:

• An administrator has a custom operation to grant the loan, setting the amount, number of
installments and first installment date.

• The loan is a payment from a system account to an user. It has a status, which can be either
open or closed.

• The same custom operation also performs a scheduled payment from the user to system,
with each installment amount and due date corresponding to the loan installments. This
scheduled payment has (with a custom field) a link to the original loan. Also, the loan
payment has a link to the scheduled payment, making it easy to navigate between them.

• Each installment will be processed at the respective due date, allowing users to repay the
loan with internal units. The administrator can, however, mark individual installments as

http://documentation.cyclos.org/4.3.2/scripting-api-docs/org/cyclos/impl/system/ScriptHelper.html#addOnRollbackTransactional%28java.lang.Runnable%29


Cyclos 4 PRO Documentation 69

settled, which means the installment won't be repaid internally, but with some other way
(for example, with money or using other Cyclos payments).

• Once the scheduled payment is closed, an extension point updates the status of the original
payment to closed.

In order to configure the loan script, follow carefully each of the following steps:

Enable transaction number in currency

This can be checked under System > Currencies select the currency used for this operation,
mark the Enable transfer number option and fill in the required parameters.

Create the transfer status flow

Under System > Accounts configuration > Transfer status flows, create a new one, with the
following characteristics:

• Name: Loan status (can be changed as desired)

• Internal name: loan (can be changed as desired, but this name is used in the example
configuration)

After saving, create the following statuses:

• Closed (can be changed as desired)

• Internal name: closed

• Open (can be changed as desired)

• Internal name: open

• Possible next statuses: Closed

Create the payment custom fields

Under System > Accounts configuration > Payment fields, create a new one, with the following
fields:

• Loan

• Name: Loan (can be changed as desired)

• Internal name: loan (can be changed as desired, but this name is used in the example
configuration)

• Data type: Linked entity

• Linked entity type: Transaction

• Required: yes

• Repayment
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• Name: Repayment (can be changed as desired)

• Internal name: repayment (can be changed as desired, but this name is used in the
example configuration)

• Data type: Linked entity

• Linked entity type: Transaction

• Required: no

Configure the system account from which payments will be performed to users

Under System > Accounts configuration > Account types, choose the (normally unlimited)
account from which payments will be performed to users. Then set its internal name to some
meaningful name. The example configuration uses debitUnits as internal name, but it can be
changed later. Save the form.

Create the payment type which will be used to grant the loan

Still in the system account type details page for the account type, on the Transfer types tab,
create a new Payment transfer type with the following characteristics:

• Name: Loan (can be changed as desired)

• Internal name: loanGrant (can be changed as desired, but this name is used in the example
configuration)

• Default description: Loan grant (can be changed as desired, is the description for payments,
visible in the account history)

• To: select the user account which will receive the payment

• Transfer status flows: Loan status

• Initial status for Loan status: Open

• Enabled: yes

After saving, on the Payment fields tab, add the custom field named Repayment.

Configure the user account which will receive loans

Under System > Accounts configuration > Account types, choose the user account which
will receive payments. Then set its internal name to some meaningful name. The example
configuration uses userUnits as internal name, but it can be changed later. Save the form.

Create the payment type which will be used to repay the loan

Still in the user account type details page, on the Transfer types tab, create a new Payment
transfer type with the following characteristics:

• Name: Loan repayment (can be changed as desired)
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• Internal name: loanRepayment (can be changed as desired, but this name is used in the
example configuration)

• Default description: Loan repayment (can be changed as desired, is the description for
payments, visible in the account history)

• To: select the system account which granted the loan

• Enabled: yes

• Allows scheduled payment: yes

• Max installments on scheduled payments: 36 (any value greater than zero is fine)

• Show scheduled payments to receiver: yes

• Reserve total amount on scheduled payments: no

After saving, on the Payment fields tab, add the custom field named Loan.

Create the library script

Under System > Tools > Scripts, create a new library script, with the following characteristics:

• Name: Loan

• Type: Library

• Included libraries: none

• Parameters:

# Loan configuration

loan.account = debitUnits

loan.type = loanGrant

#loan.description = 

# Repayment configuration

repayment.account = userUnits

repayment.type = loanRepayment

#repayment.description

# Payment custom fields

field.loan = loan

field.repayment = repayment

# Monthly compound interest rate (zero for none)

monthlyInterestRate = 0

# Transfer status configuration

status.flow = loan

status.open = open

status.closed = closed

# Custom operation configuration

operation.amount = amount

operation.installments = installments
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operation.firstDueDate = firstDueDate

# Messages

message.invalidInstallments = The number of installments is invalid

message.invalidLoanAmount = Invalid loan amount

message.invalidFirstDueDate = The first due date cannot be lower than tomorrow

message.loanGranted = The loan was successfully granted

• Script code:

import org.cyclos.entities.banking.Payment

import org.cyclos.entities.banking.PaymentTransferType

import org.cyclos.entities.banking.ScheduledPayment

import org.cyclos.entities.banking.SystemAccountType

import org.cyclos.entities.banking.TransactionCustomField

import org.cyclos.entities.banking.Transfer

import org.cyclos.entities.banking.TransferStatus

import org.cyclos.entities.banking.TransferStatusFlow

import org.cyclos.entities.banking.UserAccountType

import org.cyclos.entities.users.User

import org.cyclos.impl.banking.PaymentServiceLocal

import org.cyclos.impl.banking.ScheduledPaymentServiceLocal

import org.cyclos.impl.banking.TransferStatusServiceLocal

import org.cyclos.impl.system.ConfigurationAccessor

import org.cyclos.impl.system.ScriptHelper

import org.cyclos.impl.utils.persistence.EntityManagerHandler

import org.cyclos.model.ValidationException

import org.cyclos.model.banking.accounts.SystemAccountOwner

import org.cyclos.model.banking.transactions.PaymentVO

import org.cyclos.model.banking.transactions.PerformPaymentDTO

import org.cyclos.model.banking.transactions.PerformScheduledPaymentDTO

import org.cyclos.model.banking.transactions.ScheduledPaymentInstallmentDTO

import org.cyclos.model.banking.transactions.ScheduledPaymentVO

import org.cyclos.model.banking.transfers.TransferVO

import org.cyclos.model.banking.transferstatus.ChangeTransferStatusDTO

import org.cyclos.model.banking.transferstatus.TransferStatusVO

import org.cyclos.model.banking.transfertypes.TransferTypeVO

import org.cyclos.server.utils.DateHelper

import org.cyclos.utils.BigDecimalHelper

class Loan {

    Map<String, Object> config

    EntityManagerHandler entityManagerHandler

    PaymentServiceLocal paymentService

    ScheduledPaymentServiceLocal scheduledPaymentService

    TransferStatusServiceLocal transferStatusService

    ScriptHelper scriptHelper

    ConfigurationAccessor configuration

    double monthlyInterestRate

    SystemAccountType systemAccount

    UserAccountType userAccount

    PaymentTransferType loanType

    PaymentTransferType repaymentType

    TransactionCustomField loanField

    TransactionCustomField repaymentField
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    TransferStatusFlow flow

    TransferStatus open

    TransferStatus closed

    Loan(binding) {

        config = [:]

        def params = binding.scriptParameters

        [

            'loan.account': 'systemAccount',

            'loan.type': 'loanGrant',

            'loan.description': null,

            'repayment.account': 'userUnits',

            'repayment.type': 'loanRepayment',

            'repayment.description': null,

            'field.loan': 'loan',

            'field.repayment': 'repayment',

            'monthlyInterestRate' : null,

            'status.flow': 'loan',

            'status.open': 'open',

            'status.closed': 'closed',

            'operation.amount': 'amount',

            'operation.installments': 'installments',

            'operation.firstDueDate': 'firstDueDate',

            'message.invalidInstallments':

            'The number of installments is invalid',

            'message.invalidLoanAmount': 'Invalid loan amount',

            'message.invalidFirstDueDate':

            'The first due date cannot be lower than tomorrow',

            'message.loanGranted':

            'The loan was successfully granted to the user'

        ].each { k, v ->

            def value = params[k] ?: v

            config[k] = value

        }

        entityManagerHandler = binding.entityManagerHandler

        paymentService = binding.paymentService

        scheduledPaymentService = binding.scheduledPaymentService

        transferStatusService = binding.transferStatusService

        scriptHelper = binding.scriptHelper

        configuration = binding.sessionData.configuration

        systemAccount = entityManagerHandler.find(

                SystemAccountType, config.'loan.account')

        if (systemAccount.currency.transactionNumber == null

        || !systemAccount.currency.transactionNumber.used) {

            throw new IllegalStateException(

            "The currency ${systemAccount.currency.name} doesn't "

            + "have transaction number enabled")

        }

        loanType = entityManagerHandler.find(

                PaymentTransferType, config.'loan.type', systemAccount)

        userAccount = entityManagerHandler.find(

                UserAccountType, config.'repayment.account')

        repaymentType = entityManagerHandler.find(

                PaymentTransferType, config.'repayment.type', userAccount)

        if (!repaymentType.allowsScheduledPayments) {

            throw new IllegalStateException("The repayment type " +

            "${repaymentType.name} doesn't allows scheduled payment")
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        }

        loanField = entityManagerHandler.find(

                TransactionCustomField, config.'field.loan')

        repaymentField = entityManagerHandler.find(

                TransactionCustomField, config.'field.repayment')

        if (!loanType.customFields.contains(repaymentField)) {

            throw new IllegalStateException("The loan type ${loanType.name} "

            + "doesn't contain the custom field ${repaymentField.name}")

        }

        if (!repaymentType.customFields.contains(loanField)) {

            throw new IllegalStateException("The repayment type "

            + "${repaymentType.name} doesn't contain the "

            + "custom field ${loanField.name}")

        }

        flow = entityManagerHandler.find(

                TransferStatusFlow, config.'status.flow')

        open = entityManagerHandler.find(

                TransferStatus, config.'status.open', flow)

        closed = entityManagerHandler.find(

                TransferStatus, config.'status.closed', flow)

        monthlyInterestRate = config.monthlyInterestRate?.toDouble() ?: 0

    }

    def BigDecimal calculateInstallmentAmount(BigDecimal amount,

            int installments, Date grantDate, Date firstInstallmentDate) {

        // Calculate the delay

        Date shouldBeFirstExpiration = grantDate + 30

        int delay = firstInstallmentDate - shouldBeFirstExpiration

        if (delay < 0) {

            delay = 0

        }

        double interest = monthlyInterestRate / 100.0

        double numerator = ((1 + interest) **

                (installments + delay / 30.0)) * interest

        double denominator = ((1 + interest) ** installments) - 1

        BigDecimal result = amount * numerator / denominator

        return BigDecimalHelper.round(result, systemAccount.currency.precision)

    }

    def grant(User user, formParameters) {

        BigDecimal loanAmount = formParameters[config.'operation.amount']

        int installments = formParameters[config.'operation.installments']

        Date firstDueDate = formParameters[config.'operation.firstDueDate']

        Date minDate = DateHelper.shiftToNextDay(

                new Date(), configuration.timeZone)

        if (installments < 1 || installments > repaymentType.maxInstallments)

            throw new ValidationException(config.'message.invalidInstallments')

        if (loanAmount < 1)

            throw new ValidationException(config.'message.invalidLoanAmount')

        if (firstDueDate < minDate)

            throw new ValidationException(config.'message.invalidFirstDueDate')

        // Grant the loan

        PaymentVO loanVO = paymentService.perform(new PerformPaymentDTO([

            from: SystemAccountOwner.instance(),

            to: user,
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            type: new TransferTypeVO(loanType.id),

            amount: loanAmount,

            description: config.'loan.description'

        ]))

        Payment loan = entityManagerHandler.find(Payment, loanVO.id)

        // Ensure the initial status is correct

        Transfer loanTransfer = loan.transfer

        if (loanTransfer == null) {

            throw new IllegalStateException(

            "The loan was not processed (probably pending authorization)")

        }

        TransferStatus currentStatus = loanTransfer.getStatus(flow)

        if (currentStatus != open) {

            throw new IllegalStateException(

            "The initial status for flow ${flow.name} in ${loanType.name} "

            + "is not the expected one: ${open.name}, "

            + "but ${currentStatus} instead")

        }

        // Perform the repayment scheduled payment

        PerformScheduledPaymentDTO dto = new PerformScheduledPaymentDTO()

        def bean = scriptHelper.wrap(dto, [loanField])

        bean.from = user

        bean.to = SystemAccountOwner.instance()

        bean.type = repaymentType

        bean.amount = loanAmount

        bean.description = config.'repayment.description'

        bean.installmentsCount = installments

        bean.firstInstallmentDate = firstDueDate

        bean[loanField.internalName] = loan

        // Interest

        if (monthlyInterestRate > 0.00001) {

            BigDecimal installmentAmount = calculateInstallmentAmount(

                    loanAmount, installments, new Date(), firstDueDate)

            dto.installments = []

            Date dueDate = firstDueDate

            for (int i = 0; i < installments; i++) {

                def installment = new ScheduledPaymentInstallmentDTO()

                def instBean = scriptHelper.wrap(installment)

                instBean.dueDate = dueDate

                instBean.amount = installmentAmount

                dto.installments << installment

                dueDate += 30

            }

            bean.amount = installmentAmount * installments

        }

        ScheduledPaymentVO repaymentVO = scheduledPaymentService.perform(dto)

        ScheduledPayment repayment = entityManagerHandler.find(

                ScheduledPayment, repaymentVO.id)

        // Update the loan with the repayment link

        bean = scriptHelper.wrap(loan, [repaymentField])

        bean[repaymentField.internalName] = repayment

    }
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    def close(ScheduledPayment scheduledPayment) {

        Payment loan = scriptHelper.wrap(scheduledPayment)

        [loanField.internalName]

        Transfer loanTransfer = loan.transfer

        TransferStatus status = loanTransfer.getStatus(flow)

        if (status != closed) {

            // The loan was not closed: close it

            transferStatusService.changeStatus(new ChangeTransferStatusDTO([

                transfer: new TransferVO(loanTransfer.id),

                newStatus: new TransferStatusVO(closed.id)

            ]))

        }

    }

}

Loan loan = new Loan(binding)

Create the custom operation script

Create a new script for the custom operation, with the following characteristics:

• Name: Grant loan

• Type: Custom operation

• Included libraries: Loan

• Parameters: leave empty

• Script code executed when the custom operation is executed:

loan.grant(user, formParameters)

return loan.config.'message.loanGranted'

Create the extension point script

Create a new script for the transaction extension point, with the following characteristics:

• Name: Loan closing

• Type: Extension point

• Included libraries: Loan

• Parameters: leave empty

• Script code executed when the data is saved:

import org.cyclos.model.ValidationException

import org.cyclos.model.banking.transactions.ScheduledPaymentStatus

if (transaction.status == ScheduledPaymentStatus.CANCELED) {

    // Should never cancel a loan scheduled payment

    throw new ValidationException("Cannot cancel a loan")

} else if (transaction.status == ScheduledPaymentStatus.CLOSED) {

    // Close the loan
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    loan.close(transaction)

}

Create the custom operation

Under System > Tools > Custom operations, create a new one, with the following
characteristics:

• Name: Grant loan (can be changed, is the label displayed to users)

• Enabled: yes

• Scope: User

• Script: Grant loan

• Script parameters: leave empty

• Result type: Notification

• Has file upload: no

• Main menu: Banking

• User management section: Banking

• Information text: you can add here some text explaining the process – it will be displayed
in the operation page

• Confirmation text: add here some text which will be displayed in a confirmation dialog
before granting the loan

After saving, create the following fields:

• Amount

• Internal name: amount

• Data type: Decimal

• Required: yes

• Installment count

• Internal name: installments

• Data type: Integer

• Required: yes

• First due date

• Internal name: firstDueDate

• Data type: Date

• Required: yes
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Create the extension point

Under System > Tools > Extension points, create a new of type Transaction, with the following
characteristics:

• Name: Close loan

• Type: Transaction

• Enabled: yes

• Transfer types: Units account – Loan repayment (choose the loan repayment type)

• Events: Change status

• Script: Loan closing

• Script parameters: leave empty

Grant the administrator permissions

Under System > User configuration > Groups, select the Network administrators group. Then,
in the Permissions tab:

• Under User management > Run custom operations over users, check the Grant loan
operation and save

• Under Accounts > Transfer status flows, make Loan visible, but not editable.

Enable the custom operation for users which will be able to receive loans

In System > User configuration > Products (permissions), select the member product for users
which will be able to receive loans. In the Custom operations field, make the Grant loan
operation enabled. Leave the run checkbox unchecked (or users would be able to grant loans
to themselves!).

You can permit users to to repay loan installments anticipated in Units. For this you have to
check in the member product 'process installment' and the user need to have permissions
to make a payment of the transaction type used for the loan repayments.
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4. External login
Starting with Cyclos 4.2, using web services together with the right configuration, it is possible
to add a Cyclos login form to an external website. The user types in his/hers Cyclos username
and password in that form and, after a successful login, is redirected to Cyclos, where the
session will be already valid, and the user can perform the operations as usual. After the user
clicks logout, or his/hers session expires, the user is redirected back to the external website.

4.1. The following aspects should be considered:
• It is needed to have an administrator whose group is granted the permission "Login users

via web services". This is needed because the website will relay logins from users their
clients to Cyclos.

• The website needs to have that administrator's username and password configured in
order to make the web services call. It is planned for Cyclos 4.3 the creation of access clients,
which will allow using a separated key instead of the username / password.

• It is a good practice to create a separated configuration for that administrator. That
configuration should have an IP address whitelist for the web services channel. Doing that,
no other server, even if the adminitrator username / password is known by someone else,
will be able to perform such operations.

• The Cyclos configuration for users needs the following settings:

• Redirect login to URL: This is the URL of the external website which contains the login
form. This is used to redirect the user when his session expires and a new login is needed,
or when the user navigates directly to some URL in Cyclos (as guest) and then clicks
"Login";

• URL to redirect after logout: This is the URL where the user will be redirected after
clicking "Logout" in Cyclos. It might be the same URL as the one for redirect login, but
not necessarily.

• Finally, the web service code needs to be created, and deployed to the website. Here is an
example, which receives the username and password parameters, calls the web service to
create a session for the user (passing his remote address), redirecting the user to Cyclos.

<?php

// Configure Cyclos and obtain an instance of LoginService 

require_once 'configureCyclos.php';

$loginService = new Cyclos\LoginService();

// Set the parameters

$params = new stdclass();

$params->user = array("principal" => $_POST['username']);

$params->password = $_POST['password'];

$params->remoteAddress = $_SERVER['REMOTE_ADDR'];
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// Perform the login

try {

 $result = $loginService->loginUser($params);

} catch (Cyclos\ConnectionException $e) {

 echo("Cyclos server couldn't be contacted");

 die();

} catch (Cyclos\ServiceException $e) {

 switch ($e->errorCode) {

  case 'VALIDATION':

   echo("Missing username / password");

   break;

  case 'LOGIN':

   echo("Invalid username / password");

   break;

  case 'REMOTE_ADDRESS_BLOCKED':

   echo("Your access is blocked by exceeding invalid login attempts");

   break;

  default:

   echo("Error while performing login: {$e->errorCode}");

   break;

 }

 die();

}

// Redirect the user to Cyclos with the returned session token

header("Location: "

 . Cyclos\Configuration::getRootUrl()

 . "?sessionToken="

 . $result->sessionToken);

4.2. Important notes
• In case there is a wrong configuration for the "Redirect login to URL" setting, it won't be

possible anymore to login to Cyclos. In that case, if the configuration problem is within
a network, it is possible to use a global administrator to login in global mode (using the
<server-root>/global/login URL), then switch to the network and fix the configuration. If
the configuration error is in global mode, you can use a special URL to prevent redirect:
<server-root>/global/login!noRedirect=true . However, this flag only works in global mode,
to prevent end-users from using it to bypass the redirect.

• Users should never have username / password requested in a plain HTTP connection.
Always use a secure (HTTPS) connection. Also, just having an iframe with the form on a
secure page, where the iframe itself is displayed in a plain page would encrypt the traffic,
but browsers won't show the page as secure. Users won't notice that page as secure, could
refuse to provide credentials in such situation.
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4.3. Creating an alternate frontend to Cyclos
It is possible to not only place a login form in an external website, but to create an entire
fronted for users to interact with Cyclos. At first glimpse, this can be great, but consider the
following:

• It is a very big effort to create a frontend, as there are several Cyclos services involved, and it
might not be clear without a deep analysis on the API which service / method / parameters
should be used on each case.

• The API will change. Even if we try not to break compatibility, it is possible that changes
between 4.x to 4.y will contain (sometimes incompatible) changes to the API.

• You will always have a limited subset of the functionality Cyclos offers. You may think that
only the very basic features are needed, there will inevitably be the need for more features,
and the custom frontend will need to grow. By using Cyclos standard web, all this comes
automatically.

Neverthless, some (large) organizations might find it is better to provide their users with a
single, integrated interface. In that case the application server of that interface will be the
only one interacting with Cyclos (i.e, users won't directly browse the Cyclos interface). The
application will relay web service calls to Cyclos in behalf of users.

To accomplish that, it is needed to first login users in the same way as explained in
the previous section. However, after the login is complete, instead of redirecting users to
Cyclos, the application needs to store the session token, and probably the user id (as some
operations requires passing the logged user id) – both data received after logging in – in
a session (in the interface application server). Then, the next web service requests should
be sent using that session token and client remote address, instead of the administrator
credentials. The way of passing that data depends on the web service access type being used:

• Java clients: Create another HttpServiceFactory, using a stateful HttpServiceInvocationData.
Here is an example:

import java.util.List;

import org.cyclos.model.access.LoggedOutException;

import org.cyclos.model.access.channels.BuiltInChannel;

import org.cyclos.model.banking.accounts.AccountSummaryVO;

import org.cyclos.model.users.users.UserLocatorVO;

import org.cyclos.model.users.users.UserLoginDTO;

import org.cyclos.model.users.users.UserLoginResult;

import org.cyclos.model.users.users.UserVO;

import org.cyclos.server.utils.HttpServiceFactory;

import org.cyclos.server.utils.HttpServiceInvocationData;

import org.cyclos.services.access.LoginService;

import org.cyclos.services.banking.AccountService;

/**

 * Cyclos web service example: logs-in an user via web services.

http://documentation.cyclos.org/4.3.2/ws-api-docs/
http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/server/utils/HttpServiceFactory.html
http://documentation.cyclos.org/4.3.2/ws-api-docs/org/cyclos/server/utils/HttpServiceInvocationData.html
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 * This is useful when creating an alternative front-end for Cyclos.

 */

public class LoginUser {

    public static void main(String[] args) throws Exception {

        // This LoginService has the administrator credentials

        LoginService LoginService =

            Cyclos.getServiceFactory().getProxy(LoginService.class);

        // Another option is to use an access client to connect with the

        // server (for the admin)

        // To make it works you must:

        // 1- create an access client

        // 2- assign it to the admin (to obtain the activation code)

        // 3- activate it making a HTTP POST to the server using this url:

        // ROOT_URL/activate-access-client containing only the activation code

        // as the body

        // 4- put the token returned from the servlet as the parameter of the

        // HttpServiceInvocationData.accessClient(...) method

        // 5- comment the first line (that using user and password and

        // uncomment the following two sentences

        // HttpServiceInvocationData adminSessionInvocationData =

        // HttpServiceInvocationData

        // .accessClient("put_the_token_here");

        // LoginService LoginService = Cyclos.getServiceFactory(

        // adminSessionInvocationData).getProxy(LoginService.class);

        String remoteAddress = "192.168.1.200";

        // Set the login parameters

        UserLoginDTO params = new UserLoginDTO();

        UserLocatorVO locator = new UserLocatorVO(UserLocatorVO.PRINCIPAL,

            "c1");

        params.setUser(locator);

        params.setPassword("1234");

        params.setRemoteAddress(remoteAddress);

        params.setChannel(BuiltInChannel.MAIN.getInternalName());

        // Login the user

        UserLoginResult result = LoginService.loginUser(params);

        UserVO user = result.getUser();

        String sessionToken = result.getSessionToken();

        System.out.println("Logged-in '" + user.getName()

            + "' with session token = " + sessionToken);

        // Do something as user. As the session token is only valid per ip

        // address, we need to pass-in the client ip address again

        HttpServiceInvocationData sessionInvocationData = HttpServiceInvocationData

            .stateful(sessionToken, remoteAddress);

        // The services acquired by the following factory will carry on the

        // user session data

        HttpServiceFactory userFactory = Cyclos

            .getServiceFactory(sessionInvocationData);

        AccountService accountService = userFactory

            .getProxy(AccountService.class);

        List<AccountSummaryVO> accounts = accountService.getAccountsSummary(

            user, null);
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        for (AccountSummaryVO account : accounts) {

            System.out.println(account.getName() + ", balance: "

                + account.getStatus().getBalance());

        }

        // Logout. There are 2 possibilities:

        // - Logout as administrator:

        LoginService.logoutUser(sessionToken);

        // - OR logout as own user:

        try {

            userFactory.getProxy(LoginService.class).logout();

        } catch (LoggedOutException e) {

            // already logged out

        }

    }

}

• PHP clients: In the configuration file, instead of calling Cyclos
\Configuration::setAuthentication($username, $password), call the following: Cyclos
\Configuration::setSessionToken($sessionToken) and Cyclos
\Configuration::setForwardRemoteAddress(true), which will automatically send the
$_SERVER['REMOTE_ADDR'] value on requests.

• WEB-RPC: If sending JSON requests directly, instead of passing the Authentication header
with the username / password, pass the following headers: Session-Token and Remote-
Address.
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