
i

OBSTACLE DETECTION FOR A

SPEECH-CONTROLLED
DC MOTOR OPERATED

WHEELCHAIR
WITH ELEVATION SYSTEM

By

Lloyd Edwinson S. Arellano
Darryll Jade E. Arias

Francis Mark Adriane G. Luna
Aljon C. Santillan

A Thesis Report Submitted to the School of Electrical Engineering,
Electronics Engineering, and Computer Engineering in Partial

Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Engineering

Mapúa Institute of Technology
March 2012

ii

 iii

TABLE OF CONTENTS

TITLE PAGE i

APPROVAL SHEET ii

TABLE OF CONTENTS iii

LIST OF TABLES iv

LIST OF FIGURES v

ABSTRACT vi

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: REVIEW OF RELATED LITERATURES AND RELATED STUDIES 4

 Speech Recognition 4
 Infrared Proximity Sensor 5
 Direct Current (DC) Motors 6
 Battery Assisted Wheel Chair 7
 Voice Controlled Automation System 7
 A Survey and Experimental Evaluation of Proximity Sensors

for Space Robotics 9
 Switchgear control apparatus and relays for alternating-current circuits 9
 Obstacle Avoidance Fuzzy System for Mobile Robot with IR Sensors 10

CHAPTER 3 OBSTACLE DETECTION FOR A SPEECH-CONTROLLED DC MOTOR
OPERATED WHEELCHAIR WITH ELEVATION SYSTEM 12

Abstract 12
Introduction 12
Methodology 13

CHAPTER 4: CONCLUSION 31

CHAPTER 5: RECOMMENDATION 33

BIBLIOGRAPHY 34

APPENDICES 35

 Appendix A. User’s Manual 35

Appendix B. Pictures of Prototype 38
 Appendix C. Program Listing 40
 Appendix D. Data Sheets

iv

LIST OF TABLES

Table 3.5 Test of effectiveness of the front and back proximity sensors

Table 3.6 Test of effectiveness of the bottom proximity sensors

Table 3.7 Measurement of distance in obstacle detection

Table 3.8 Measurement of the response time in performing the movement
command

Table 3.9.A Determination of the obstacles that can be detected by front and
back sensors

Table 3.9.B Determination of the obstacles that can be detected by bottom
sensors

v

LIST OF FIGURES

Fig 3.1 Conceptual Framework of the study

Fig 3.2 Methodology Block

Fig 3.3.A Speech Recognition Module Flowchart

Fig 3.3.B Speech Recognition Algorithm

Fig 3.4.A Elevation System Flowchart

Fig 3.4.B Elevation System Algorithm

Fig 3.5.A Obstacle Detection Flowchart

Fig 3.5.B Obstacle Detection Algorithm

vi

Abstract

 Nowadays, most handicapped people who suffer mobility problem
primarily depend on using wheelchairs and most of these wheelchairs are already
automated. The designs are made in response to the condition of the target
user. Considering the users who already lost the ability to use their hands, the
researchers of this paper believe that implementing a speech control mechanism
and incorporating sensors to the wheelchair will give solution to this problem. It
is also believed that to improve its functionality, a lifting mechanism should be
considered to allow the user to move up by himself into elevated platforms. As a
result, an obstacle detection for a speech controlled dc-operated wheelchair with
elevation system is considered in this paper. The wheelchair will use voice
module that will process the user input speech command and a microcontroller
to control the movement of the wheelchair in response to the user input
command. Proximity sensors will also be used to create a system wherein
obstacle detection mechanism is present. Lastly, for the elevation system the
wheelchair will be incorporated by an electric car jack that will allow itself to lift
into the elevated platform.

Keywords: Voice module, Electric car jack, PIC microcontroller, DC
motors,Proximity Sensors

 1

Chapter 1

INTRODUCTION

 Wheelchairs are one of the commonly used devices for assisting human

mobility. It was invented as a solution to the mobility problems of paralytic

people. Most of these people are those who suffer serious cases and totally lost

their mobility. An ordinary wheelchair is a big help to them but still needs

another person for assistance.

 Nowadays, there are various types of wheelchairs that already exist. Some

of the innovations made the manually operated wheel chair into an automated

system. The most common type of automated wheelchair is the one controlled

through buttons and joysticks. Other designs implement some advance

technology such as wireless application and voice recognition to improve the

existing wheelchair designs. These wheelchairs are generally prescribed for those

people who experience difficulty in using manual wheelchair due to arm and

other disabling conditions. The condition of the user indicates the type of

electronic wheelchair to be used. For some cases, when the user lacks

coordination with his finger, hand controlled wheelchair would not be advisable.

Other means of controls must be implemented for the convenience of the

patient.

 Although there are a lot of studies regarding the improvement of a

wheelchair, most of these are concentrating on the application of easier manual

control or voice recognition alone and do not give more concern on the safety of

 2

the users. Most of them do not have the ability to elevate the wheelchair and

thus make it less reliable when the user goes to different places alone.

 This study aims to design an obstacle detection mechanism for a speech

controlled wheelchair with elevation to improve safety of users. The specific

objectives of this study are the following: a) To design an obstacle detection

mechanism using proximity sensors b) To specify possible obstacles that the

wheelchair can detect c) To determine the effectiveness of proximity sensors

when used for obstacle detection.

 With the completion of this study, people who are having problems with

mobility will have fewer worries when it comes to their safety in using a

wheelchair. They will also have the benefit of using a speech recognition

wheelchair that would allow them to manipulate the direction where they would

like to go and can elevate themselves to a certain level without using physical

strength.

 The obstacle detection mechanism comprises of proximity sensors that

can be activated to avoid accidents like falling down from a gutter and hitting a

wall. Speech recognition technology is applied to the wheelchair. There will be a

headset to be worn by the user to serve as his medium of control for the device.

There are also 2 emergency buttons; one for stop and another one for enabling

and disabling the obstacle detection system. The wheelchair will consist of 7

commands, namely, move forward, move backward, move left, move right, stop,

move up (to elevate), and move down. The headset will receive voice command

 3

from the user to determine the movement of the wheelchair and even allow it to

be elevated upon command. For instance, the user says “move-forward”, the

voice command will trigger the forward movement of the device. Similarly, there

will be another voice command for the wheelchair to turn either to the right or

left direction and to elevate or not. The input command from the headset will be

transmitted to the microcontroller through wires. The microcontroller will be

responsible in processing the input from the user. DC motors will be applied on

the wheel chair as well as relay drivers. The DC motors will serve as the main

machine in moving the device. The power will then be supplied by batteries. On

the other hand, the relay drivers will be used to supply enough power to the

motors. The microcontroller itself is not capable of providing the needed power

of the motors. The use of wheelchair is limited due to the source of power which

is a battery. The wheelchair can only perform one movement operation at a time

and has a stable speed. People who are mute cannot use the wheelchair. The

wheelchair has a limit on how high it can elevate and is mostly used only for

sidewalk banks. The design cannot elevate on stairs due to simultaneous

elevation. The obstacle mechanism can only detect large obstacle like walls and

can also detect near falling off platform. When the obstacle detection system

detects an obstacle it will then make the wheelchair to immediately stop

automatically. To enable the elevation, the user must first disable the obstacle

mechanism.

 4

CHAPTER 2

REVIEW OF RELATED LITERATURE

For the past decades, evolution of ways to improve technology that will

support people with mobility problems has been given a lot of attention. Because

of the latest trend of technology, people were able to communicate with

machines through programs. Speech is a natural mode of communication for

people and with the use of the latest technology, people have created speech

recognition programs.

Speech Recognition

Speech recognition, often called automatic speech recognition, is the

process by which a computer recognizes what a person says. Speech recognition

is the ability of a machine or program to identify words and phrases in spoken

language and convert them to a machine-readable format. However,

rudimentary speech recognition software has a limited vocabulary of words and

phrases and may only identify them if they are spoken very clearly. More

sophisticated software has the ability to accept natural speech. Speech

recognition applications include call routing, speech-to-text, voice dialling, and

voice search. Speech recognition software has two primary components. The first

piece, called the acoustic model, analyzes the sounds of the voice and converts

them to phonemes, the basic elements of speech. The second major component

of speech recognition software is the language model which analyzes the content

of the speech. It compares the combinations of phonemes to the words in its

 5

digital dictionary (Miastkowski, 2000). The structure of a standard speech

recognition system is illustrated in the figure below:

Infrared Proximity Sensor

Infrared proximity switches work by sending out beams of invisible

infrared light. A photodetector on the proximity switch detects any reflections of

this light. These reflections allow infrared proximity switches to determine

whether there is an object nearby. Proximity switches with just a light source

and photodiode are susceptible to false readings due to background light. Thus,

more complex switches modulate the transmitted light at a specific frequency

and have receivers which only respond to that frequency. Proximity sensor

captures the reflected infrared signal. The proximity readout is linearly

proportional to the captured infrared-light signal intensity and inversely

proportional to the square of the distance (Luo & Schmitz, 2009).

 6

Different types of proximity sensors can be used but Infrared Proximity

sensors would be the best choice because of their sensitivity.

Direct Current (DC) Motors

In any electric motor, operation is based on simple electromagnetism. A

current-carrying conductor generates a magnetic field; when this is placed in an

external magnetic field, it will experience a force proportional to the current in

the conductor, and to the strength of the external magnetic field. The internal

configuration of a DC motor is designed to harness the magnetic interaction

between a current-carrying conductor and an external magnetic field to generate

rotational motion. At a simplistic level, using DC motors is pretty

straightforward; put power in, and get rotary motion out (Seale, 2003). DC

motors are used on the design as a source of power in elevation and movement

of the wheelchair.

 7

Related Studies

Battery Assisted Wheel Chair

This research deals with series hybrid combination of manual and battery

powered wheelchair. The control scheme used is simpler than other hybrid

wheelchairs. It includes the sensor less control of the speed. Battery assisted

wheelchair (BAW) which is operated by a DC motor and has less number of

components in its hardware. Effort made by rider is reduced considerably. The

control scheme also includes the dead man’s switch feature. Speed loop is

provided for the smooth variation of the speed. The current limit is governed by

peak current mode control (Rahulanker & Ramanarayanan, 2006).

Voice Controlled Automation System

 This paper discusses speech recognition and its application in control

mechanism. Speech recognition can be used to automate many tasks that

usually require hands-on human interaction, such as recognizing simple spoken

commands to perform something like turning on lights or shutting a door or

driving a motor. Despite these breakthroughs, however, current efforts are still

far away from a 1000/0 recognition of natural human speech. Therefore, the

project is considered but it involves processing of a speech signal in any form as

a challenging and rewarding one. In this paper, a block diagram was used to

show the sequence on how speech will be processed.

 8

Pattern matching was also discussed and was stated that the comparison of two

speech signals is nothing but basically their pattern matching. The speech signal

can be represented as the set of numbers representing certain features of the

speech that is to be described. For further processing, it is useful to construct a

vector out of these numbers by assigning each measured value to one

component of the vector. It is also stated that an uttered voice can differ from a

stored template due to interference, noise, and other magnitude distortions

which corrupt the input signal and can make it sound different from the

reference signal. Also, unexpected pauses, unusually fast or slow speaking

styles, and other changes in speed can randomly shift the position of the input

relative to the template. The same person can utter the same word in slightly

different ways each time. The person can pause, speak faster, speak slower, or

emphasize certain syllables. These differences are called intra-speaker

differences. The differences between the same words uttered by the different

speakers or different words uttered by same speaker or different speakers are

called inter-speaker differences. These differences are large as compared to intra

speaker differences (Haleem, 2008).

 9

A Survey and Experimental Evaluation of Proximity Sensors for Space

Robotics

 The paper provides an overview selection process for proximity sensors

for manipulator collision avoidance. Five categories of sensors have been

considered for this use in space operations: intensity of reflection, triangulation,

time of flight, capacitive, and inductive. From these categories, the most

promising commercial and mature laboratory prototype sensors have been

selected and tested. After reviewing the selection process and the experimental

results, conclusions are drawn about which sensors are best and why. The report

has detailed the selection of proximity sensors for manipulator collision

avoidance. In this paper proximity sensors were tested and their capabilities

were known. Optical intensity of reflection sensors are probably the most widely

available in the number of manufacturers, the number of models, and the ranges

of operation. Many of these sensors have adjustable ranges, which are set by

turning a potentiometer on the sensor housing. Therefore, the ranges listed for

some sensors may not be attainable by one sensor setting (Volpe & Ivlev, 1994).

Switchgear control apparatus and relays for alternating-current circuits

The paper stated that control relays are a standard practice for a correct

design and it is very important to lay-out such relays in the circuit. With this, the

system depends on the proper action of relays because this will take a large part

on the success of the operation of circuit. Implementing relays to control a circuit

 10

requires that the circuit must be controlled by only one signal. Multiple relays can

be activated at the same time, thus a different operation must be done with

single activated relay; different combinations can have different operations. In

the article, relays are used to control the alternating currents of a switchgear

control apparatus. The relay here has a single moving element which moves

under the action of the currents. The team also stated that if the circuit is in

breakdown, the overload on the single overloaded phase must be much greater

than before for the relay to operate. This means that if the circuit has no relays

the overloading will occur simultaneously on each of the operation phases but if

relays are installed, this overloading will only occur in only one phase, thus make

the circuit safe for more damage that it will take from breakdown (Garrard,

2010).

 Obstacle Avoidance Fuzzy System for Mobile Robot with IR Sensors

 The paper deals with the navigation problem of mobile robots in an

unknown indoor environment with the use of infrared sensors. In this paper, the

robot has the ability to plan motion and to navigate autonomously avoiding any

type of obstacles. This is a reactive strategy and is completely based on sensory

information. This gives the idea that infrared sensors can be used as proximity

sensors for an obstacle detection mechanism. It has been stated in the article

that infrared detectors have built-in optical filters that allow very little light which

is the main idea of detecting an obstacle whether it is physically present or not.

 11

By using infrared sensors, a program can be designed for obstacle detection and

thus allow the possibility of creating a machine that would be used for collision

avoidance. This article proves that a collision free navigation system is possible in

a machine that uses infrared sensors and is programmed in the most appropriate

way they should be.

 12

Chapter 3

OBSTACLE DETECTION FOR A SPEECH-CONTROLLED

DC MOTOR OPERATED WHEELCHAIR WITH ELEVATION SYSTEM

Abstract

A speech-controlled dc motor operated wheel chair with proximity sensors

as an obstacle detection is proposed in this paper. The user can control the

wheel chair through speech command and is capable of moving forward, turning

either to the left or right direction and can climb up elevated surfaces.

Introduction

Most automated wheelchairs nowadays implement advance technology in

their designs. Some designs implement different medium of control like buttons,

joysticks and wireless technology to make wheelchair more convenient to use.

But in some cases, these existing designs are not enough to give solution for the

mobility of people who suffer extreme case of disability. Some of these people

have already lost the functionality of their arm. In such cases, where buttons,

joysticks and other arm-controlled medium are not anymore applicable, a speech

controlled wheelchair can be used. Additional safety features will also be needed

to ensure the safety of the user. The combination of a speech controlled

wheelchair and proximity sensor would allow the user to move independently

without worrying about his safety.

 13

Methodology

The study is divided into 3 major parts. The first part is all about the

implementation of speech control to a dc operated wheelchair. The next part is

designing the elevation system for the wheel chair. And the last part, which is

the core of the study, is all about the development of obstacle detection

mechanism.

Figure 3.1 below shows the conceptual framework of the study. The figure

shows the process in designing the speech controlled dc operated wheelchair

with an obstacle detection mechanism.

Fig 3.1 Conceptual Framework of the study

 The design process starts by incorporating DC motors to the

manually operated wheel chair. This DC motors will be responsible for the

movement of the wheelchair. There will be 4 DC motors to be applied. Each

Wheelchair

DC motors

Microcontroller

Speech
Recognition

Module

Sensors

Elevation motors

 14

wheel at the back will have its own motor to operate and another 2 motors for

the elevation process. These motors will be controlled by the microcontroller. In

this study, the researchers will use a PIC16F877A microcontroller. This

microcontroller will control the movement of the motors depending on the input

it receives. The input will come from the speech recognition module. Each

wheelchair movement has a corresponding speech command. The last process is

the integration of proximity sensors on the wheelchair. The proximity sensors will

serve as the medium in detecting obstacle in the wheelchair’s movement.

 Figure 3.2 shows the methodology block of the study.

Fig 3.2 Methodology Block

Development of the Wheelchair Elevation
System

Review of Related Literature

Development of hardware components

Development of Speech Recognition

Algorithm

Development of Obstacle Detection

System

Integration of Hardware and Software

components

Results and Discussion

Testing

Conclusion

 15

 The first step the researchers must do is to do a review of related

literatures about the study. Through this, the researchers will be able to

determine the needed materials as well as the necessary steps in designing the

device. After the review of related literatures, the researcher will develop the

hardware components. This includes the integration of the basic hardware parts

such as the DC motors, electric car jack, relays, microcontroller, battery and

speech recognition module. Then the next step is to develop the speech

recognition module algorithm.

 Figure 3.3 shows the speech recognition module flowchart and

algorithm. It describes the flow of program to be designed for the speech

recognition module.

 16

Yes

Yes

Yes

No

No

No

If Speech Command
== Stop

Perform Stop
Function

Perform Left Function

Perform Right
Function

Perform Backward
Function

Perform Forward
Function

Obstacle
Detection
System

Obstacle
Detected

If Speech Command
== Forward

If Speech Command
== Backward

If Speech Command
== Right

If Speech Command
== Left

Obstacle
Detected

Obstacle
Detected

Obstacle
Detected

If Speech Command
== Move

Input Second
Speech Command

Valid Speech
Command

Start

Input First Speech
Command

Valid Speech
Command

1

2

3

Yes No

Yes No

No

Yes

 17

Fig 3.3.A Speech Recognition Module Flowchart

Start
 get First Speech Command
 If Speech Command is Valid
 Switch (First Speech Command)
 Case “Stop”:
 Perform Stop Function; Break;
 Case: “Move”
 Input Second Speech Command
 If Speech Command is Valid
 Switch (Second Speech Command)
 Case “Forward”:
 Call Obstacle Detection System;
 If Obstacle is considerable
 else
 Perform Forward Function;
 Break;
 Case “Backward”:
 Call Obstacle Detection System;

3

Input Stop
Command

Perform Stop
Function

1

End

2

Elevation
System

 18

 If Obstacle is considerable
 else
 Perform Backward Function;
 Break;
 Case “Left”:
 Call Obstacle Detection System;
 If Obstacle is considerable
 else
 Perform Left Function;
 Break;
 Case “Right”:
 Call Obstacle Detection System;
 If Obstacle is considerable
 else
 Perform Forward Function;
 Break;
 Default:
 Call Elevation System Function;
 Get Stop Input Command
 Perform Stop Command
End

Fig 3.3.B Speech Recognition Algorithm

First, the speech recognition will accept a first degree command of move

or stop. When the command is Stop, it will perform the stop function that

instantly stops the current function of the wheelchair. While when the command

is Move, it will wait for a second degree command such as forward, backward,

left, right, up and down. Forward, Backward, Left and Right commands will

trigger the obstacle detection system while Up and Down commands will affect

the elevation system. Other commands that are not included in the given sets of

command are voided.

 After designing the algorithm for the speech recognition module,

the implementation of the elevation system is next. This includes integrating the

 19

other 2 DC motors to the wheelchair. One motor will be responsible for lifting the

wheelchair while the other one is for the forward movement of the wheelchair

while being elevated.

 Figure 3.4 below shows the algorithm for the elevation mechanism

of the wheelchair. First, there will be an input speech command from the user.

The input speech command will be verified if it is for elevating the wheelchair or

for moving it down”. If the command falls either for these commands, that

specific command will be executed. If it is invalid, the microcontroller will do

nothing.

Fig 3.4.A Elevation System Flowchart

Start

Perform
up?

Perform Up
Function

Perform Down
Function

End

Perform
Down?

T

T

F

F

 20

Start

Sensor1

Set Signal1 Clear Signal1

Sensor2

Set Signal2 Clear Signal2

Sensor3

Set Signal3 Clear Signal3

1

Sensor5

Set Signal5 Clear Signal5

Sensor4

Set Signal4 Clear Signal4

Sensor6

Set Signal6 Clear Signal6

End

1

Start
 If Operation is Up
 Perform Up Function
 Else
 Perform Down Function

Return

Fig 3.4.B Elevation System Algorithm

When the speech recognition module and elevation system

algorithm are finished, the next thing to design is the mechanism for obstacle

detection of the wheelchair. In this part, the speech controlled wheel chair will

be integrated with proximity sensors. There will be proximity sensors to be

attached at the front and back of the wheelchair. There will also be another set

of proximity sensors at the bottom of the wheelchair. This is for detecting

dangerous places such as stairs, cliffs and etc. The flowchart and algorithm for

the obstacle detection are described respectively below

Fig 3.5.A Obstacle Detection Flowchart

F

F

F

F

F

F

T

T

T

T

T

T

 21

Start

 If Sensor1 Detects an Obstacle

 Set Signal1

 Else

 Clear Signal1

 If Sensor2 Detects an Obstacle

 Set Signal2

 Else

 Clear Signal2

 If Sensor3 Detects an Obstacle

 Set Signal3

 Else

 Clear Signal3

 If Sensor4 Detects an Obstacle

 Set Signal4

 Else

 Clear Signal4

 If Sensor5 Detects an Obstacle

 Set Signal5

 Else

 Clear Signal5

 If Sensor6 Detects an Obstacle

 Set Signal6

 Else

 Clear Signa6

Return

Fig 3.5.B Obstacle Detection Algorithm

 22

 First, there will be a speech command input from the user.

Then after receiving an input voice command from the user, there will be

continuous checking of obstacles in that specific direction in relation to the

inputted voice commands. If there is an obstacle, there will be no operation, but

if there is no obstacle detected, then the command will be executed.

 The next step is to integrate the hardware with the software

components. The algorithm for the speech recognition module, the elevation

mechanism algorithm and the obstacle detection algorithm, will be programmed

to the microcontroller in interfacing the hardware to the software.

Testing and Interpretation of Results

In order to further support the study, testing will be performed

after the process of integrating the software and hardware is done. There will be

four types of test that will be performed in measuring the performance of the

design.

Test on the effectiveness of the front and back proximity sensors

The first test focuses in measuring the effectiveness of the front

and back sensors in obstacle detection. The purpose of this test is to determine if

the proximity sensor is effective in detecting the obstacle to avoid collision. In

 23

this test, four of the wheelchair’s movement command will be tested upon the

obstacles located at varying locations as described in Table 3.5. Upon

encountering an obstacle, the wheelchair will disable the movement command

used with respect to the location of the obstacle.

The procedures to be performed for this test are described below.

Procedure:

1.) The four movement commands namely “move forward”, “move

backward”, “move left” and “move right” will be put to test while

obstacles are placed on different location as specified in Table 3.5

2.) The movement command that will not be done in response to the

detection of an obstacle will be marked as “disabled” and others will be

marked as “working”.

3.) Results will be obtained and recorded at the given table.

Table 3.5 Test of effectiveness of the front and back proximity sensors

Location of
obstacle

Forward
Command

Backward
Command

Turn Left
Command

Turn Right
Command

1.) Front Disabled Working Working Working
2.) Back Working Disabled Working Working
3.) Left Working Working Disabled Working
4.) Right Working Working Working Disabled
5.) Front and
Left

Disabled Working Disabled Working

6.) Front and
Right

Disabled Working Working Disabled

7.) Front and
Back

Disabled Disabled Working Working

8.) Back and
Right

Working Disabled Working Disabled

 24

9.) Back and Left Working Disabled Disabled Working
10.) Left and
Right

Working Working Disabled Disabled

11.) All direction Disabled Disabled Disabled Disabled

 As shown, Table 3.5 shows that the design is successful in disabling

the movement of the wheelchair upon encountering an obstacle. All of the

wheelchair’s movement commands tested show independent behavior in

response to the obstacle detected. As shown in the table, the obstacle detected

at the front will not affect the functionality of the other movements like move

back, move left and move right.

Test on the effectiveness of the bottom proximity sensors

 After performing the first test, the next test will be performed. This

test focuses in measuring the effectiveness of the bottom sensors. The purpose

of this test is to determine if the proximity sensors is effective in detecting

continuous surface which will help in avoiding accidents like falling from stairs

and etc. Similar to the first test, the four movement command will be tested

upon discontinuous surface (stairs, gutter etc.) at varying locations. Upon

encountering no floor surface, the wheelchair will disable the movement

command used with respect to the location of the discontinuous surface.

 25

The set of procedures to be performed for this test is described

below.

Procedure:

1.) The four movement command namely “move forward”, “move

backward”, “move left” and “move right” will be put to test with the

position of the discontinuous path on different positions.

2.) The movement command that will not be done in response to the

detection of an obstacle will be marked as “disabled” and others will be

marked as “working”.

3.) Results will be obtained and recorded at the given table.

Table 3.6 Test of effectiveness of the bottom proximity sensors

Location of
discontinuous

path

Forward
Command

Backward
Command

Turn Left
Command

Turn Right
Command

1.) Front Disabled Working Working Working
2.) Right Working Working Working Disabled
3.) Left Working Working Disabled Working
4.) Front and
Right

Working Working Working Disabled

5.) Front and Left Disabled Working Disabled Working
6.) Right and Left Working Working Disabled Disabled

 Table 3.6 shows that the wheelchair is completely successful at

disabling the movement command upon encountering a discontinuous path.

Results shown in Table 3.6 show the same response in relation to the results

shown in Table 3.5. The disablement of each command is independent to other

 26

commands. On the other hand, some of the limitations that had been observed

during the implementation of test is that the discontinuous path cannot be

detected when it is located at the back.

Measurement of distance in obstacle detection

 The next test to be performed is to measure the distance at which

the wheelchair can detect obstacles. The purpose of this test is to determine at

how far the wheelchair will disable its movement upon encountering an obstacle.

The data obtain would help in determining if the wheelchair is disabling the

commands accurately in the distance specified by the designers.

The procedures to be performed for this test are described below.

Procedure:

1.) The four movement command namely “move forward”, “move

backward”, “move left” and “move right” will be put to test with an

obstacle placed at varying distance from the wheelchair.

2.) Upon stopping of the wheelchair in doing the movement command,

the distance of the wheelchair will be measured from the obstacle.

3.) Results will be obtained and recorded at the given table.

 27

Table 3.7 Measurement of distance in obstacle detection

Distance
of

obstacle

Distance at
which

Forward
Command is

disabled

Distance at
which

Backward
Command is

disabled

Distance at
which Turn

Left Command
is disabled

Distance at
which Turn

Right
Command is

disabled

1.) 0.2 m 0.2m 0.2m 0.2m 0.2m
2.) 0.4 m 0.4 m 0.4 m 0.4 m 0.4 m
3.) 0.6 m 0.6 m 0.6 m 0.6 m 0.6 m
4.) 0.8 m 0.8 m 0.8 m 0.8 m 0.8 m
5.) 1.0 m 0.8 m 0.8 m 0.8 m 0.8 m
6.) 1.2 m 0.8 m 0.8 m 0.8 m 0.8 m
7.) 1.4 m 0.8 m 0.8 m 0.8 m 0.8 m

Table 3.7 shows the results in testing the obstacle detection of the

wheelchair at varying distances. Results show that at a range of less than or

equal to 0.8 meters (distance ≤ 0.8m), the wheelchair would disable the

movement command. When the distance of the obstacle is greater than 0.8m,

the wheelchair will continue its forward or backward movement until it reaches

0.8 meters from the obstacle. The same goes in performing the move left and

right command. The wheelchair will continue to rotate when the distance of the

obstacle is not on the range of detection of the wheelchair.

Measurement of the response time in performing the movement command

 The next test focuses in determining the response time of the

wheelchair. The purpose of this is to identify the time interval at which the

wheelchair will perform the movement command specified by the user.

 28

The set of procedures to be performed for this test is described

below.

Procedure:

1.) All of the wheelchair’s speech commands will be tested by the

researcher.

2.) The researcher will measure the time interval upon the glowing of the

orange LED button up to the time the wheelchair started to perform

the command.

3.) Results will be obtained and recorded at the given table.

Table 3.8 Measurement of the response time in performing the

movement command

Speech Command Response Time

1.) Move Forward 0.593 sec

2.) Move Left 0.597 sec

3.) Move Right 0.6 sec

4.) Move Up 0.593 sec

5.) Move Down 0.595 sec

6.) Move Backward 0.6 sec

7.) Stop 0.595 sec

 29

Table 3.8. shows the results of the test in measuring the response

time in performing the speech command. Based form the results, the time

interval in performing the speech commands is approximately 0.6 sec.

Determination of the obstacles that can be detected

 The last part of the test focuses in determining the possible

obstacle that the wheelchair can detect. This test covers all the proximity sensors

including those installed at the bottom of the wheelchair. The purpose of this

test is to determine the limitations as well as the capabilities of the wheelchair in

obstacle detection. In this test, those obstacles specified at Table 3.8 that can be

detected will be marked as “success” while those cannot be detected will be

mark as “failed”

The set of procedures to be performed for this test is described

below.

Procedure:

1.) The wheelchair’s obstacle detection will be tested for 5 consecutive

trials for each obstacles specified in Table 3.7.

2.) Results will be obtained and recorded at the given table.

3.) Upon obtaining the results in each trial of the given types of elevated

platforms, the percentage of success will be computed. Computing for

the percentage of success is described by the formula below:

 30

The percentage of success for each type of obstacle will determine

if the wheelchair is either capable or not capable of detecting that specific

obstacle. Obstacles with a percentage of success lower than 80% will be

considered to be an object

Table 3.9.A Determination of the obstacles that can be detected by

front and back sensors

Obstacles Front and Back Proximity Sensors

Trial
1

Trial
2

Trial
3

Trial
4

Trial
5

Percentage of
Success

(%)
Solid Objects

1.) Gate Success Success Success Success Success 100%

2.) Wall Success Success Success Success Success 100%

3.) Human Success Success Success Success Success 100%

4.) Lamp Post

Failed Success Failed Failed Success 40%

5.) School Table Success Success Success Success Success 100%

6.) School Chair Success Success Success Failed Success 80%

Translucent/Glass/Light passing Objects
1.) Mirror Success Failed Failed Success Success 60%

2.) Sliding Glass
Door

Success Success Failed Success Success 80%

3.) Curtains Success Success Success Success Success 100%

4.) Stainless Roof Success Success Success Success Success 100%

Colored Obstacles (Wall)

1.) Red colored
obstacle

Success Success Success Success Success 100%

2.) Yellow colored
obstacle

Success Success Success Success Success 100%

3.) White colored
obstacle

Success Success Success Success Success 100%

4.) Brown colored
obstacle

Success Success Success Success Success 100%

5.) Blue colored
obstacle

Success Success Success Success Success 100%

 31

Table 3.9.B Determination of the obstacles that can be detected by

bottom sensors

Obstacles Bottom Proximity Sensors
Trial

1
Trial

2
Trial

3
Trial

4
Trial

5
Percentage of

Success
(%)

1.) Stairs

Success Success Success Success Success 100%

2.) Gutter Success Success Success Success Success 100%

3.) Man Hole Success Success Success Success Success 100%

4.) Pothole Success Success Failed Success Failed 80%

5.) Inclined Plane Failed Failed Failed Failed Failed 0%

 Table 3.8.A shows the results of the test in detecting various types

of obstacles. Based from the results, the wheelchair is able to easily detect an

object with wide and large area. On the other hand, a thin object like the lamp

post shows lower percentage of success compared to other obstacles. Also based

from the results, reflective objects are not easily detected by the proximity

sensors. And in terms of the color of the obstacles, the obstacle detection of the

system is not much affected by color of the obstacle. The obstacle detection of

that specific object (even with varying color) shows high percentage of success

in terms of detection.

 Table 3.8.B shows the result in detecting discontinuous paths.

Based from the results, the wheelchair is able to detect steep surfaces as

described in the table. Movement commands are still working at shallow

discontinuous surfaces such as an inclined plane is not considered as an

obstacle.

 32

Chapter 4

CONCLUSION

In this paper, a hardware design of obstacle detection of a speech control

with elevation system is presented. This design is intended mainly for the use of

handicapped persons especially those who have lost their ability in using their

arms and to insure that the user will be safe while using the hardware design.

The design is guided by a main objective and specific objectives. The main

objective is met. The device is able to detect the given specific obstacles

mentioned in the objectives and tests. The obstacle detection system of the

device consists of six infrared sensors. The sensors will be controlled by the PIC

16F877A. The two pair of sensors will be responsible for detecting hindrance

objects while the other pair of sensors will be detecting if the wheelchair will

encounter situation wherein it will fall.

In terms of obstacle detection, the design has successfully met this

objective. The hardware design is able to detect obstacles using infrared

proximity. The pair of sensors at the front and back of the wheelchair detects at

a range of distance ≤ 0.8m form the obstacle thus, preventing the wheelchair

from possible collisions. Upon detection of the obstacle, the wheelchair will halt

its movement operation. That specific movement command will be disabled until

such time that there is no obstacle detected. The same goes to the bottom

sensors. The movement of the wheelchair will continue until such time that the

 33

sensors do not detect the floor. Upon encountering discontinuous path, that

specific movement commands with will be disabled.

Another objective of the study is to determine the possible objects that

the wheelchair can detect. Based on the results, the wheelchair is able to detect

wide and large obstacles. Thin objects are sometimes not detected due to the

position of the sensors which are located at the arm of the wheelchair. Reflective

objects also show lower detection especially in bright environments. In terms of

the obstacle colour, the capability of infrared proximity sensors in obstacle

detection are not much affected. In terms of the bottom sensors detection, the

wheelchair is able to detect steep surfaces.

To summarize it all, the obstacle detection of the wheelchair helps

improve the safety of the user. The wheelchair is able to automatically stop upon

encountering an obstacle which will help in preventing collisions. It is also able to

detect discontinuous surfaces which will help the user to prevent accidents like

falling into the stairs and etc. There is also an emergency stop button installed to

stop the wheelchair movement in case of emergency.

Some of the limitations of the wheelchair design are:

1.) Wheelchair cannot detect discontinuous surface at the back of the

wheelchair

2.) Obstacle detection does not work accurately at extremely bright

environment.

 34

Chapter 5

RECOMMENDATION

Some modifications can be made to improve the design prototype in order to

please the user and receive a positive feedback. The recommendations are as

follows:

1. Addition of possible obstacles it can detect by installing additional sensors at

the blind spot of the wheelchair specifically at the middle front and middle back.

2. Provide an LCD display that would inform the user how high the system has

elevated and at the same time show the battery level.

3. Improve the speech recognition system by using noise filters.

4. Installation of backrest and seat cushion for the users comfort.

5. Improve the maximum weight limit by installing supports at the bottom of the

wheelchair.

6. Improve the maximum height limit the wheelchair can elevate.

7. Change the location of the bottom proximity sensors that will enable the

wheelchair to stop at long distance from the discontinuous surface.

8. Add a feature that will enable the wheelchair to be moved manually in

instance that the wheelchair can no longer move.

 35

Bibliography

R. Rahulanker, V. Ramanarayanan (2006). Battery Assisted Wheel Chair, 2006

IEEE Region, 167 – 171.

Haleem, M.S. (2008). Voice Controlled Automation System, 2008 IEEE Region,

508 - 512.

Volpe, R., Ivlev, R. (1994). A Survey and Experimental Evaluation of Proximity

Sensors for Space Robotics, 2002 IEEE Region, 3466 - 3473.

C. Garrard (2010). Switchgear control apparatus and relays for alternating-

current circuits, 2010 IEEE Region, 588-611.

Rusu, C.G., Birou, I.T., Szö ke , E. (2009). Fuzzy based obstacle avoidance

system for autonomous mobile robot, 10th International Conference on

Development and Application Systems, 26-29.

Cook, N.P (2004). Electronics a complete course, 2nd Edition, McGraw-Hill, USA

Godse, A.P (2007). Microprocessor and microcontrollers, Technical Publications,

USA

 36

Appendix A. User’s Manual

 This part of the paper describes the important things on how to effectively

use the speech controlled dc-motor operated wheelchair with elevation system.

Also included in this part of the paper are the safety precautions to be followed

by the user.

 The following procedures below are the basic steps in operating the

wheelchair:

1. Attached the power supply clips to their respective polarity in the battery.

2. Turn on the power button of the microphone and wait for it to be ready.

(The green LED indicator will blink when the microphone is ready to

accept input.)

3. Input a voice command (either “move” or”stop”).

4. Wait for the green LED indicator to glow. If the green LED glows, proceed

to step 5 else go back to step 3. The green LED will glow if the command

input is valid.

5. If the first word input is “move” then proceed to step 6 else repeat step 3.

6. Input the second voice command (“forward”, ”backward”, ”left”, “right”,

“up”, “down”). An orange LED will glow once the second input word is

recognize else go back to step 3.

7. Wait for the wheelchair’s output and proceed to step 3.

In order to further understand how the wheelchair operates, a summary of

the wheelchair’s function is described by the table below

 37

Table 4. Summary of the movement operation of the speech

controlled dc-motor operated wheelchair with elevation system.

First Word Command + Second Word

Command

Wheelchair’s Response

Move + Forward The wheelchair will continuously move forward

Move + Backward The wheelchair will continuously move backward

Move + Left The wheelchair will continuously turn counter-

clockwise

(rotate left)

Move + Right The wheelchair will continuously turn clockwise

(rotate right)

Move + Up The wheelchair will lift its front wheels.

Move + Down The wheelchair will land its front wheels

Stop The wheelchair stops from moving

 Safety switch- use to as an emergency stop for the wheelchair’s

movement. It is located at the front of the right arm of the wheelchair.

 And for the safety precautions in using the design, the information below

will give the user the necessary precautions to be followed to prevent damaging

the wheelchair as well as to prevent accidents.

 38

Safety precautions:

1. Always remove the power supply clip from the battery if the wheelchair is

not in used.

2. Always ensure that the power supply clips are correctly attached to the

polarity of the battery. (RED-Positive; BLACK-Negative)

3. As much as possible, turn off the microphone if the wheelchair is not in

used.

4. Remember to always have a hand to the safety switch.

 39

Appendix B. Pictures of Prototype

 40

 41

Appendix C. Program Listing

;***

; filename: VoiceChair04.asm
 processor 16F877A
 include <P16F877A.inc>
 __config _HS_OSC & _WDT_OFF & _PWRTE_ON & _LVP_OFF & _BODEN_OFF
& _CP_ALL
;***

; Variable Declaration
Voice_Var equ H'20' ;
 ;
SWA_New equ H'30' ;
SWA_Prev equ H'31' ;
SWE_New equ H'32' ;
SWE_Prev equ H'33' ;
 ;
LED1_Tmr equ H'40' ;
LED2_Tmr equ H'41' ;
 ;
Sensor equ H'42' ;
 ;
ADC0 equ H'50' ;
ADC1 equ H'51' ;
ADC2 equ H'52' ;
ADC3 equ H'53' ;
ADC4 equ H'54' ;
ADC5 equ H'55' ;
ADC6 equ H'56' ;
ADC7 equ H'57' ;
ADC_Sel equ H'5A' ;
 ;
is_data equ H'60' ;
rx_data equ H'61' ;
tx_data equ H'62' ;
 ;
I equ H'70' ;
J equ H'71' ;
 ;
Temp1 equ H'78' ;

 42

Temp2 equ H'79' ;
Temp3 equ H'7A' ;
Temp4 equ H'7B' ;
W_TEMP equ H'7C' ;
STAT_TEMP equ H'7D' ;
;***

; Reset Vector Starts at Address 0x0000.
;***

 org 0x0000 ; start of reset vector.
 goto Initialize ;
 ;
 org 0x0004 ; start of interrupt service routine.
 goto ISR_routine ;
;***

; Initialization Routine.
;***

Initialize: clrf TMR0 ; Clear TMR0
 clrf INTCON ; Disable Interrupts and clear T0IF
 bcf STATUS,RP1 ;
 bsf STATUS,RP0 ; Select Bank 1
 movlw B'11000011' ;
 movwf OPTION_REG ; prescaler of 1:16
 ;
 movlw B'00000001' ;Set PortA and PortE all Analog RA3= +Vref
 movwf ADCON1 ; Left Justified
 ;
 movlw B'11111111' ; 0=OUT 1=IN
 movwf TRISA ; Port A. 11xx xxxx:TTL
 ;
 movlw B'00000000' ; 0=OUT 1=IN
 movwf TRISB ; Port B. xxxx xxxx:TTL
 ;
 movlw B'11001111' ; 0=OUT 1=IN
 movwf TRISC ; Port C. xxxx xxxx:schmitt
 ;
 movlw B'00000000' ; 0=OUT 1=IN
 movwf TRISD ; Port D. xxxx xxxx:schmitt
 ;
 movlw B'00000111' ; 0=OUT 1=IN
 movwf TRISE ; Port E. xxxx xxxx:schmitt

 43

 ;
 bcf STATUS,RP0 ; Select Bank 0
 ;
 call Init_Var ;
 call Init_UART ;
 call Init_VR ;
;***

; Main Program Starts Here.
;***

Main: call VR_Recognize ;
 goto Main ;
;***

; The Interrupt Service Routine.
;***

ISR_routine: nop ; Save Registers
 ;
 retfie ; Return from Interrupt.
;***

Init_Var: clrf PORTB ;
 clrf PORTC ;
 clrf PORTD ;
 clrf tx_data ;
 clrf LED1_Tmr ;
 clrf LED2_Tmr ;
 movf PORTA,W ;
 movwf SWA_New ;
 movwf SWA_Prev ;
 movf PORTE,W ;
 movwf SWE_New ;
 movwf SWE_Prev ;
 movlw B'10000001' ;
 movwf ADCON0 ;
 clrf ADC_Sel ;
 clrf ADC0 ;
 clrf ADC1 ;
 clrf ADC2 ;
 clrf ADC3 ;
 clrf ADC4 ;
 clrf ADC5 ;

 44

 clrf ADC6 ;
 clrf ADC7 ;
 clrf Sensor ;
 return ;
;***

; Voice Recognition
;==
====================
; Constant Declaration
;==
====================
; Protocol Command ;
CMD_BREAK equ "b" ; abort recog or ping
CMD_SLEEP equ "s" ; go to power down
CMD_KNOB equ "k" ; set si knob <1>
CMD_LEVEL equ "v" ; set sd level <1>
CMD_LANGUAGE equ "l" ; set si language <1>
CMD_TIMEOUT equ "o" ; set timeout <1>
CMD_RECOG_SI equ "i" ; do si recog from ws <1>
CMD_RECOG_SD equ "d" ; do sd recog at group <1> (0 = trigger
mixed si/sd)
;==
====================
; Protocol Status ;
STS_AWAKEN equ "w" ; back from power down mode
STS_ERROR equ "e" ; signal error code <1-2>
STS_INVALID equ "v" ; invalid command or argument
STS_TIMEOUT equ "t" ; timeout expired
STS_INTERR equ "i" ; back from aborted recognition (see 'break')
STS_SUCCESS equ "o" ; no errors status
STS_RESULT equ "r" ; recognised sd command <1> - training
similar to sd <1>
STS_SIMILAR equ "s" ; recognised si <1> (in mixed si/sd) -
training similar to si <1>
;==
====================
; Protocol arguments are in the range 0x40 (-1) TO 0x60 (+31) inclusive
ARG_MIN equ H'40' ; 0x40 = 64 (ascii '@')
ARG_MAX equ H'60' ; 0x60 = 96 (ascii ''')
ARG_ZERO equ H'41' ; 0x41 = 65 (ascii 'A')
ARG_ACK equ H'20' ; 0x20 = 32 (ascii ' ') 'TO READ more status
arguments

 45

;==
====================
; Wordset ;
WST equ D'0' ; wordset trigger
WS1 equ D'1' ; Wordset 1 commands
WS2 equ D'2' ; Wordset 2 actions
WS3 equ D'3' ; Wordset 3 numbers
;==
====================
;Wordset Commands ;
WS1_Action equ D'0' ;
WS1_Move equ D'1' ;
WS1_Turn equ D'2' ;
WS1_Run equ D'3' ;
WS1_Look equ D'4' ;
WS1_Attack equ D'5' ;
WS1_Stop equ D'6' ;
WS1_Hello equ D'7' ;
 ;
WS2_Left equ D'0' ;
WS2_Right equ D'1' ;
WS2_Up equ D'2' ;
WS2_Down equ D'3' ;
WS2_Forward equ D'4' ;
WS2_Backward equ D'5' ;
 ;
WS3_Zero equ D'0' ;
WS3_One equ D'1' ;
WS3_Two equ D'2' ;
WS3_Three equ D'3' ;
WS3_Four equ D'4' ;
WS3_Five equ D'5' ;
WS3_Six equ D'6' ;
WS3_Seven equ D'7' ;
WS3_Eight equ D'8' ;
WS3_Nine equ D'9' ;
WS3_Ten equ D'10' ;
 ;
WS_Timeout equ D'254' ;
WS_Error equ D'255' ;
;==
====================
; Voice Recognition Variable

 46

;==
====================
VCountLo equ Voice_Var +D'0' ;
VCountHi equ Voice_Var +D'1' ;
VRA equ Voice_Var +D'2' ;
VRA1 equ Voice_Var +D'3' ;
VRLED equ Voice_Var +D'4' ;
WS equ Voice_Var +D'5' ;
RXC equ Voice_Var +D'6' ;
RXC_PREV equ Voice_Var +D'7' ;
VR_RecgWait equ Voice_Var +D'8' ;
;==
====================
Init_VR: clrf VCountLo ;
 clrf VCountHi ;
 clrf RXC ;
 clrf RXC_PREV ;
 ;
 call VR_Wakeup ; Wake Up Voice Module
 call VR_SetLanguage ;
 call VR_SetTimeout ;
 ;
 movlw D'1' ;
 movwf WS ;
 ;
 return ;
;==
====================
VR_Wakeup: movlw CMD_BREAK ;
 movwf tx_data ;
 call Send_tx ;
 clrf VCountHi ;
 clrf VCountLo ;
 call Get_rx ;
 movlw STS_SUCCESS ; IF VRA <> STS_SUCCESS THEN GOTO
VR_Wakeup
 subwf VRA,W ;
 btfss STATUS,Z ;
 goto VR_Wakeup ;
 call Delay ;
 return ;
;==
====================
VR_SetLanguage: ;

 47

 movlw CMD_LANGUAGE ;
 movwf tx_data ;
 call Send_tx ;
 movlw D'0' ; english language
 addlw ARG_ZERO ;
 movwf tx_data ;
 call Send_tx ;
 movlw D'100' ;
 movwf VCountHi ;
VR_LangLoop: clrf VCountLo ;
 call Get_rx ;
 movlw STS_SUCCESS ; IF VRA = STS_SUCCESS
 subwf VRA,W ;
 btfss STATUS,Z ;
 goto VR_LangLoop ;
 call Delay ;
 return ;
;==
====================
VR_SetTimeout: ;
 movlw CMD_TIMEOUT ;
 movwf tx_data ;
 call Send_tx ;
 movlw D'3' ; 3 second
 addlw ARG_ZERO ;
 movwf tx_data ;
 call Send_tx ;
 movlw D'100' ;
 movwf VCountHi ;
VR_SetTLoop: clrf VCountLo ;
 call Get_rx ;
 movlw STS_SUCCESS ; IF VRA = STS_SUCCESS THEN
 subwf VRA,W ;
 btfss STATUS,Z ;
 goto VR_SetTLoop ;
 call Delay ;
 return ;
;==
====================
VR_Recognize: ;
 movlw D'250' ;
 movwf LED1_Tmr ;
 ;
Chk_WS: movlw D'1' ;

 48

 subwf WS,W ;
 btfss STATUS,C ;
 goto WS_1 ;
 ;
 movlw D'3' ;
 subwf WS,W ;
 btfss STATUS,C ;
 goto Chk_WSDone ;
 ;
WS_1: movlw D'1' ;
 movwf WS ;
Chk_WSDone: nop ;
 ;
 movlw CMD_RECOG_SI ;
 movwf tx_data ;
 call Send_tx ;
 movf WS,W ;
 addlw ARG_ZERO ;
 movwf tx_data ;
 call Send_tx ;
 ;
 movlw D'250' ;
 movwf VCountHi ;
 clrf VCountLo ;
 call Get_rx ;
 ;
 movlw STS_SIMILAR ; IF VRA = STS_SIMILAR
 subwf VRA,W ;
 btfss STATUS,Z ;
 goto VR_RecgErr ;
 ;
 movlw ARG_ACK ;
 movwf tx_data ;
 call Send_tx ;
 ;
 clrf VCountHi ;
 clrf VCountLo ;
 call Get_rx ;
 ;
 movlw ARG_MAX ;
 subwf VRA,W ;
 btfsc STATUS,C ;
 goto VR_RecgErr ;
 movlw ARG_ZERO ;

 49

 subwf VRA,W ;
 btfss STATUS,C ;
 goto VR_RecgErr ;
 movwf I ;
 incf I,F ;
 ;
Chk_WS1: movlw D'1' ;
 subwf WS,W ;
 btfss STATUS,Z ;
 goto VR_RecgOut ;
 ;
Chk_WS1Stop: movlw D'7' ;
 subwf I,W ;
 btfss STATUS,Z ;
 goto Chk_WS1StopX ;
 clrf I ;
 goto VR_RecgOut ;
Chk_WS1StopX: nop ;
 ;
Chk_WS1Move: movlw D'2' ;
 subwf I,W ;
 btfss STATUS,Z ;
 goto Chk_WS1MoveX ;
 movlw D'2' ;
 movwf WS ;
 movlw D'250' ;
 movwf LED2_Tmr ;
Chk_WS1MoveX: nop ;
 ;
 goto VR_RecgDone ;
 ;
VR_RecgOut: movlw D'1' ;
 movwf WS ;
 movlw D'250' ;
 movwf LED2_Tmr ;
 ;
VR_Recg0: movlw D'0' ;
 subwf I,W ;
 btfsc STATUS,Z ;
 call Move_Stop ;
 ;
VR_Recg1: movlw D'1' ;
 subwf I,W ;
 btfsc STATUS,Z ;

 50

 call Turn_Left ;
 ;
VR_Recg2: movlw D'2' ;
 subwf I,W ;
 btfsc STATUS,Z ;
 call Turn_Right ;
 ;
VR_Recg3: movlw D'3' ;
 subwf I,W ;
 btfsc STATUS,Z ;
 call Move_UP ;
 ;
VR_Recg4: movlw D'4' ;
 subwf I,W ;
 btfsc STATUS,Z ;
 call Move_Down ;
 ;
VR_Recg5: movlw D'5' ;
 subwf I,W ;
 btfsc STATUS,Z ;
 call Move_FWD ;
 ;
VR_Recg6: movlw D'6' ;
 subwf I,W ;
 btfsc STATUS,Z ;
 call Move_BAK ;
 ;
 goto VR_RecgDone ;
 ;
VR_RecgErr: movlw D'1' ;
 movwf WS ;
 ;
VR_RecgDone: call Short_Delay ;
 ;
 return ;
;==
====================
Send_tx: bsf STATUS,RP0 ;
 btfss TXSTA,TRMT ; (1) if Transmit is Done
 goto $-1 ;
 bcf STATUS,RP0 ;
 btfss PIR1,TXIF ;
 goto $-1 ; wait for transmitter interrupt flag
 movf tx_data,W ;

 51

 movwf TXREG ; load data to be sent...
 call Short_Delay ;
 return ;
;==
====================
Get_rx: clrf VRA ;
 call Short_Delay ;
 incf VCountLo,F ;
 movlw D'250' ;
 subwf VCountLo,W ;
 btfss STATUS,C ;
 goto Get_rx1 ;
 clrf VCountLo ;
 decf VCountHi,F ;
 movf VCountHi,W ;
 btfsc STATUS,Z ;
 goto Get_rxDone ;
Get_rx1: call ser_in ; get UART input into W and rx_data
 btfss is_data,0 ;
 goto Get_rx ; Check until
 movf rx_data,W ;
 movwf VRA ;
Get_rxDone: return ;
;==
====================
Do_LED1: movf LED1_Tmr,W ;
 btfsc STATUS,Z ;
 goto Do_LED1OFF ;
 bsf PORTC,4 ;
 decf LED1_Tmr,F ;
 goto Do_LED1Done ;
 ;
Do_LED1OFF: movlw D'2' ;
 subwf WS,W ;
 btfss STATUS,Z ;
 bcf PORTC,4 ;
 movlw D'2' ;
 subwf WS,W ;
 btfsc STATUS,Z ;
 bsf PORTC,4 ;
Do_LED1Done: return ;
;==
====================
Do_LED2: movf LED2_Tmr,W ;

 52

 btfsc STATUS,Z ;
 goto Do_LED2OFF ;
 bsf PORTC,5 ;
 decf LED2_Tmr,F ;
 goto Do_LED2Done ;
Do_LED2OFF: bcf PORTC,5 ;
Do_LED2Done: return ;
;==
====================
Read_ADC: bsf ADCON0,0 ;
 bsf ADCON0,7 ;
 nop ;
 bsf ADCON0,2 ;
 nop ;
 btfsc ADCON0,2 ;
 goto $-1 ;
 ;
Read_ADC0: movlw D'0' ; RA0
 subwf ADC_Sel,W ; Left Front Sensor
 btfss STATUS,Z ;
 goto Read_ADC0X ;
 movf ADRESH,W ;
 movwf ADC0 ;
 ;
 clrf Temp1 ;
 movlw D'80' ; 75cm equivalent
 subwf ADC0,W ;
 btfsc STATUS,C ;
 bsf Temp1,0 ;
 btfsc Temp1,0 ;
 call Move_Stop ;
 btfsc Temp1,0 ;
 bsf PORTD,0 ;
 btfss Temp1,0 ;
 bcf PORTD,0 ;
 ;
Read_ADC0X: nop ;
 ;
Read_ADC1: movlw D'1' ; RA1
 subwf ADC_Sel,W ; Right Front Sensor
 btfss STATUS,Z ;
 goto Read_ADC1X ;
 movf ADRESH,W ;
 movwf ADC1 ;

 53

 ;
 clrf Temp1 ;
 movlw D'80' ; 75cm equivalent
 subwf ADC1,W ;
 btfsc STATUS,C ;
 bsf Temp1,0 ;
; btfsc Temp1,0 ;
; call Move_Stop ;
 btfsc Temp1,0 ;
 bsf PORTD,1 ;
 btfss Temp1,0 ;
 bcf PORTD,1 ;
 ;
Read_ADC1X: nop ;
 ;
Read_ADC2: movlw D'2' ; RA2
 subwf ADC_Sel,W ;
 btfss STATUS,Z ;
 goto Read_ADC2X ;
 movf ADRESH,W ;
 movwf ADC2 ;
Read_ADC2X: nop ;
 ;
Read_ADC3: movlw D'3' ; RA3
 subwf ADC_Sel,W ;
 btfss STATUS,Z ;
 goto Read_ADC3X ;
 movf ADRESH,W ;
 movwf ADC3 ;
Read_ADC3X: nop ;
 ;
Read_ADC4: movlw D'4' ; RA5
 subwf ADC_Sel,W ; Left Back Sensor
 btfss STATUS,Z ;
 goto Read_ADC4X ;
 movf ADRESH,W ;
 movwf ADC4 ;
 ;
 clrf Temp1 ;
 movlw D'80' ; 75cm equivalent
 subwf ADC4,W ;
 btfsc STATUS,C ;
 bsf Temp1,0 ;
; btfsc Temp1,0 ;

 54

; call Move_Stop ;
 btfsc Temp1,0 ;
 bsf PORTD,2 ;
 btfss Temp1,0 ;
 bcf PORTD,2 ;
 ;
Read_ADC4X: nop ;
 ;
Read_ADC5: movlw D'5' ; RE0
 subwf ADC_Sel,W ; Right Back Sensor
 btfss STATUS,Z ;
 goto Read_ADC5X ;
 movf ADRESH,W ;
 movwf ADC5 ;
 ;
 clrf Temp1 ;
 movlw D'80' ; 75cm equivalent
 subwf ADC5,W ;
 btfsc STATUS,C ;
 bsf Temp1,0 ;
; btfsc Temp1,0 ;
; call Move_Stop ;
 btfsc Temp1,0 ;
 bsf PORTD,3 ;
 btfss Temp1,0 ;
 bcf PORTD,3 ;
 ;
Read_ADC5X: nop ;
 ;
Read_ADC6: movlw D'6' ; RE1
 subwf ADC_Sel,W ; Left Floor Sensor
 btfss STATUS,Z ;
 goto Read_ADC6X ;
 movf ADRESH,W ;
 movwf ADC6 ;
 ;
 clrf Temp1 ;
; movlw D'60' ; 85cm equivalent
 movlw D'50' ; ??cm equivalent
 subwf ADC6,W ;
 btfss STATUS,C ;
 bsf Temp1,0 ;
; btfsc Temp1,0 ;
; call Move_Stop ;

 55

 btfsc Temp1,0 ;
 bsf PORTD,4 ;
 btfss Temp1,0 ;
 bcf PORTD,4 ;
 ;
Read_ADC6X: nop ;
 ;
Read_ADC7: movlw D'7' ; RE2
 subwf ADC_Sel,W ; Right Floor Sensor
 btfss STATUS,Z ;
 goto Read_ADC7X ;
 movf ADRESH,W ;
 movwf ADC7 ;
 ;
 clrf Temp1 ;
; movlw D'60' ; 85cm equivalent
 movlw D'50' ; ??cm equivalent
 subwf ADC7,W ;
 btfss STATUS,C ;
; bsf Temp1,0 ;
; btfsc Temp1,0 ;
 call Move_Stop ;
 btfsc Temp1,0 ;
 bsf PORTD,5 ;
 btfss Temp1,0 ;
 bcf PORTD,5 ;
 ;
Read_ADC7X: nop ;
 ;

 movf PORTD,W ;
 andlw B'00111111' ;
 movwf Sensor ;
 ;

 incf ADC_Sel,F ;
 movlw D'8' ;
 subwf ADC_Sel,W ;
 btfsc STATUS,C ;
 clrf ADC_Sel ;
 ;
Sel_ADC0: movlw D'0' ;
 subwf ADC_Sel,W ;
 btfss STATUS,Z ;

 56

 goto Sel_ADC0X ;
 movlw B'10000001' ;
 movwf ADCON0 ;
Sel_ADC0X: nop ;
 ;
Sel_ADC1: movlw D'1' ;
 subwf ADC_Sel,W ;
 btfss STATUS,Z ;
 goto Sel_ADC1X ;
 movlw B'10001001' ;
 movwf ADCON0 ;
Sel_ADC1X: nop ;
 ;
Sel_ADC2: movlw D'2' ;
 subwf ADC_Sel,W ;
 btfss STATUS,Z ;
 goto Sel_ADC2X ;
 movlw B'10010001' ;
 movwf ADCON0 ;
Sel_ADC2X: nop ;
 ;
Sel_ADC3: movlw D'3' ;
 subwf ADC_Sel,W ;
 btfss STATUS,Z ;
 goto Sel_ADC3X ;
 movlw B'10011001' ;
 movwf ADCON0 ;
Sel_ADC3X: nop ;
 ;
Sel_ADC4: movlw D'4' ;
 subwf ADC_Sel,W ;
 btfss STATUS,Z ;
 goto Sel_ADC4X ;
 movlw B'10100001' ;
 movwf ADCON0 ;
Sel_ADC4X: nop ;
 ;
Sel_ADC5: movlw D'5' ;
 subwf ADC_Sel,W ;
 btfss STATUS,Z ;
 goto Sel_ADC5X ;
 movlw B'10101001' ;
 movwf ADCON0 ;
Sel_ADC5X: nop ;

 57

 ;
Sel_ADC6: movlw D'6' ;
 subwf ADC_Sel,W ;
 btfss STATUS,Z ;
 goto Sel_ADC6X ;
 movlw B'10110001' ;
 movwf ADCON0 ;
Sel_ADC6X: nop ;
 ;
Sel_ADC7: movlw D'7' ;
 subwf ADC_Sel,W ;
 btfss STATUS,Z ;
 goto Sel_ADC7X ;
 movlw B'10111001' ;
 movwf ADCON0 ;
Sel_ADC7X: nop ;
 ;
Read_ADCX: return ;
;==
====================
Read_SW: movf PORTA,W ;
 movwf SWA_New ;
 ;
Chk_SWA4: btfsc SWA_New,4 ;
 goto Chk_SWA4Done ;
 call Move_Stop ;
Chk_SWA4Done: nop ;
 ;
;Chk_SWA0: btfsc SWA_New,0 ;
; goto Chk_SWA0Done ;
; call Move_Stop ;
;Chk_SWA0Done: nop ;
; ;
;Chk_SWA1: btfsc SWA_New,1 ;
; goto Chk_SWA1Done ;
; btfss SWA_Prev,1 ;
; goto Chk_SWA1Done ;
; call Move_FWD ;
;Chk_SWA1Done: nop ;
; ;
;Chk_SWA2: btfsc SWA_New,2 ;
; goto Chk_SWA2Done ;
; btfss SWA_Prev,2 ;
; goto Chk_SWA2Done ;

 58

; call Turn_Right ;
;Chk_SWA2Done: nop ;
; ;
;Chk_SWA3: btfsc SWA_New,3 ;
; goto Chk_SWA3Done ;
; btfss SWA_Prev,3 ;
; goto Chk_SWA3Done ;
; call Turn_Left ;
;Chk_SWA3Done: nop ;
; ;
;Chk_SWA4: btfsc SWA_New,4 ;
; goto Chk_SWA4Done ;
; btfss SWA_Prev,4 ;
; goto Chk_SWA4Done ;
; call Move_BAK ;
;Chk_SWA4Done: nop ;
; ;
;Chk_SWA5: btfsc SWA_New,5 ;
; goto Chk_SWA5Done ;
; btfss SWA_Prev,5 ;
; goto Chk_SWA5Done ;
; call Move_Down ;
;Chk_SWA5Done: nop ;
; ;
;Chk_SWE0: btfsc SWE_New,0 ;
; goto Chk_SWE0Done ;
; btfss SWE_Prev,0 ;
; goto Chk_SWE0Done ;
; call Move_UP ;
;Chk_SWE0Done: nop ;
 ;

Chk_FWD: movf PORTB,W ;
 andlw H'0F' ;
 sublw B'00000101' ;
 btfss STATUS,Z ;
 goto Chk_FWDX ;
 btfsc Sensor,0 ;Left Front
 call Move_Stop ;
 btfsc Sensor,1 ;Right Front
 call Move_Stop ;
 btfsc Sensor,4 ;Left Floor
 call Move_Stop ;
 btfsc Sensor,5 ;Right Floor

 59

 call Move_Stop ;
Chk_FWDX: nop ;
 ;
Chk_BAK: movf PORTB,W ;
 andlw H'0F' ;
 sublw B'00001010' ;
 btfss STATUS,Z ;
 goto Chk_BAKX ;
 btfsc Sensor,2 ;Left Back
 call Move_Stop ;
 btfsc Sensor,3 ;Right Back
 call Move_Stop ;
Chk_BAKX: nop ;
 ;
Chk_Left: movf PORTB,W ;
 andlw H'0F' ;
 sublw B'00000110' ;
 btfss STATUS,Z ;
 goto Chk_LeftX ;
 btfsc Sensor,0 ;Left Front
 call Move_Stop ;
 btfsc Sensor,4 ;Left Floor
 call Move_Stop ;
Chk_LeftX: nop ;
 ;
Chk_Right: movf PORTB,W ;
 andlw H'0F' ;
 sublw B'00001001' ;
 btfss STATUS,Z ;
 goto Chk_RightX ;
 btfsc Sensor,1 ;Right Front
 call Move_Stop ;
 btfsc Sensor,5 ;Right Floor
 call Move_Stop ;
Chk_RightX: nop ;
 ;
 movf SWA_New,W ;
 movwf SWA_Prev ;
 movf SWE_New,W ;
 movwf SWE_Prev ;
 return ;
;==
====================
Move_Stop: bcf PORTB,0 ;

 60

 bcf PORTB,1 ;
 bcf PORTB,2 ;
 bcf PORTB,3 ;
 bcf PORTB,4 ;
 bcf PORTB,5 ;
 bcf PORTB,6 ;
 bcf PORTB,7 ;
 call Relay_Delay ;
 return ;
 ;
Move_FWD: bcf PORTB,1 ;
 bcf PORTB,3 ;
 bcf PORTB,7 ;
 call Relay_Delay ; 76543210
 bsf PORTB,0 ; 01 0101
 bsf PORTB,2 ;
 bsf PORTB,6 ;
 return ;
 ;
Move_BAK: bcf PORTB,0 ;
 bcf PORTB,2 ;
 bcf PORTB,6 ;
 call Relay_Delay ; 76543210
 bsf PORTB,1 ; 10 1010
 bsf PORTB,3 ;
 bsf PORTB,7 ;
 return ;
 ;
Move_Left: bcf PORTB,1 ;
 bcf PORTB,2 ;
 bcf PORTB,3 ;
 bcf PORTB,6 ;
 bcf PORTB,7 ;
 call Relay_Delay ; 76543210
 bsf PORTB,2 ; 00 0100
 return ;
 ;
Move_Right: bcf PORTB,0 ;
 bcf PORTB,1 ;
 bcf PORTB,3 ;
 bcf PORTB,6 ;
 bcf PORTB,7 ;
 call Relay_Delay ; 76543210
 bsf PORTB,0 ;

 61

 return ;
 ;
Turn_Left: bcf PORTB,1 ;
 bcf PORTB,2 ;
 bcf PORTB,6 ;
 bcf PORTB,7 ;
 call Relay_Delay ; 76543210
 bsf PORTB,1 ; 00 0110
 bsf PORTB,2 ;
 return ;
 ;
Turn_Right: bcf PORTB,0 ;
 bcf PORTB,3 ;
 bcf PORTB,6 ;
 bcf PORTB,7 ;
 call Relay_Delay ; 76543210
 bsf PORTB,0 ; 00 1001
 bsf PORTB,3 ;
 return ;
 ;
Move_UP: bcf PORTB,0 ;
 bcf PORTB,1 ;
 bcf PORTB,2 ;
 bcf PORTB,3 ;
 bcf PORTB,6 ;
 bcf PORTB,7 ;
 bcf PORTB,4 ;
 call Relay_Delay ; 76543210
 bsf PORTB,5 ; 10
 return ;
 ;
Move_Down: bcf PORTB,0 ;
 bcf PORTB,1 ;
 bcf PORTB,2 ;
 bcf PORTB,3 ;
 bcf PORTB,6 ;
 bcf PORTB,7 ;
 bcf PORTB,5 ;
 call Relay_Delay ; 76543210
 bsf PORTB,4 ; 01
 return ;
;==
====================
Relay_Delay: movlw D'250' ;

 62

 movwf I ;
RDly_Loop: decf I,F ;
 movf I,W ;
 btfss STATUS,Z ;
 goto RDly_Loop ;
 return ;
;==
====================
Short_Delay: movlw D'250' ;
 movwf I ;
SDly_Loop: decf I,F ;
 movf I,W ;
 btfss STATUS,Z ;
 goto SDly_Loop ;
 call Do_LED1 ;
 call Do_LED2 ;
 call Read_SW ;
 call Read_ADC ;
 return ;
;==
====================
Delay: movlw D'100' ;
 movwf J ;
Dly_Loop1: call Short_Delay ;
 decf J,F ;
 movf J,W ;
 btfss STATUS,Z ;
 goto Dly_Loop1 ;
 return ;
;==
===================
; CONFIGURE SERIAL PORT
;==
===================
Init_UART: ;uart specific initialization
 ;txsta=Transmit STAtus and control reg.
 bsf STATUS,RP0 ;Select Bank 1
 bcf STATUS,RP1 ;
 ;
 bcf TXSTA,CSRC ; <7> (0) don't care in asynch mode
 bcf TXSTA,TX9 ; <6> 0 select 8 bit mode
 bsf TXSTA,TXEN ; <5> 1 enable transmit function
 ; *MUST* be 1 for transmit to work!!!
 bcf TXSTA,SYNC ; <4> 0 asynchronous mode.

 63

 ; *MUST* be 0 !!!
 ; If NOT 0 the async mode is NOT selected!
 ; <3> (0) not implemented
;==
===================
 bsf TXSTA,BRGH ; <2> 1 ENABLE high baud rate generator !!!
 ; 0 DISABLE High Baud Rate Generator
;==
===================
 ; <1> (0) trmt is read only.
 bcf TXSTA,TX9D ; <0> (0) tx9d data cleared to 0.
;baudrate = d'9600' ;desired baudrate.
spbrg_value = d'103' ; for BRGH = 1 (see TABLE 10-3 of
30292c.pdf)
; @16Mhz Crystal ;
 movlw spbrg_value ;set baud rate generator value
 movwf SPBRG ;
;***

 bcf STATUS,RP0 ;allow access to page 0 stuff again. (normal)
 ;more uart specific initializat4ion
 ;rcsta=ReCeive STAtus and control register
 bsf RCSTA,SPEN ; 7 spen 1=rx/tx set for serial uart mode
 ; !!! very important to set spen=1
 bcf RCSTA,RX9 ; 6 rc8/9 0=8 bit mode
 bcf RCSTA,SREN ; 5 sren 0=don't care in uart mode
 bsf RCSTA,CREN ; 4 cren 1=enable constant reception
 ;!!! (and low clears errors)
 ; 3 not used / 0 / don't care
 bcf RCSTA,FERR ; 2 ferr input framing error bit. 1=error
 ; 1 oerr input overrun error bit. 1=error
 ;It is only cleared when you pulse cren low.
 bcf RCSTA,RX9D ; 0 rx9d input (9th data bit). ignore.
 ;
 movf RCREG,W ;clear uart receiver
 movf RCREG,W ; including fifo
 movf RCREG,W ; which is three deep.
 ;
 movlw 0 ;any character will do.
 movwf TXREG ;send out dummy character
 ; to get transmit flag valid!
 return ;
;***

 64

; RS-232 SERIAL IN / SERIAL OUT ROUTINES
;***

;exit with received serial data in W and in variable rx_data
ser_in: clrf is_data ;Reset Flag
 btfsc RCSTA,OERR ;
 goto overerror ;if overflow error...
 btfsc RCSTA,FERR ;
 goto frameerror ;if framing error...
 ;
 clrw ;
uart_ready: btfss PIR1,RCIF ;
 goto ser_inX ;
 movf RCREG,W ;recover uart data
 movwf rx_data ;save for later
 bsf is_data,0 ;
ser_inX: return ;
 ;
overerror: bcf RCSTA,CREN ;pulse cren off...
 movf RCREG,W ;flush fifo
 movf RCREG,W ; all three elements.
 movf RCREG,W ;
 bsf RCSTA,CREN ;turn cren back on.
 ;this pulsing of cren
 ;will clear the oerr flag.
 goto ser_inX ;try again...
 ;
frameerror: movf RCREG,W ;reading rcreg clears ferr flag.
 goto ser_inX ;try again...
;***

 end ;
;***

64

PI
C

16
F8

77
/8

74

PIC16F87X

28/40-Pin 8-Bit CMOS FLASH Microcontrollers

Devices Included in this Data Sheet: Pin Diagram

• PIC16F873

• PIC16F876

PDIP
• PIC16F874 • PIC16F877

Microcontroller Core Features:

• High performance RISC CPU
• Only 35 single word instructions to learn
• All single cycle instructions except for program

branches which are two cycle
• Operating speed: DC - 20 MHz clock input

DC - 200 ns instruction cycle
• Up to 8K x 14 words of FLASH Program Memory,

Up to 368 x 8 bytes of Data Memory (RAM)
Up to 256 x 8 bytes of EEPROM Data Memory

• Pinout compatible to the PIC16C73B/74B/76/77
• Interrupt capability (up to 14 sources)
• Eight level deep hardware stack
• Direct, indirect and relative addressing modes
• Power-on Reset (POR)
• Power-up Timer (PWRT) and

MCLR/VPP 1
RA0/AN0 2
RA1/AN1 3

RA2/AN2/VREF- 4
RA3/AN3/VREF+ 5

RA4/T0CKI 6
RA5/AN4/SS 7
RE0/RD/AN5 8
RE1/WR/AN6 9
RE2/CS/AN7 10

VDD 11
VSS 12

OSC1/CLKIN 13
OSC2/CLKOUT 14

RC0/T1OSO/T1CKI 15
RC1/T1OSI/CCP2 16

RC2/CCP1 17
RC3/SCK/SCL 18

RD0/PSP0 19
RD1/PSP1 20

40 RB7/PGD
39 RB6/PGC
38 RB5
37 RB4
36 RB3/PGM
35 RB2
34 RB1
33 RB0/INT
32 VDD

31 VSS

30 RD7/PSP7
29 RD6/PSP6
28 RD5/PSP5
27 RD4/PSP4
26 RC7/RX/DT
25 RC6/TX/CK
24 RC5/SDO
23 RC4/SDI/SDA
22 RD3/PSP3
21 RD2/PSP2

Oscillator Start-up Timer (OST)
• Watchdog Timer (WDT) with its own on-chip RC

oscillator for reliable operation
• Programmable code protection
• Power saving SLEEP mode
• Selectable oscillator options
• Low power, high speed CMOS FLASH/EEPROM

technology
• Fully static design
• In-Circuit Serial Programming (ICSP) via two

pins
• Single 5V In-Circuit Serial Programming capability
• In-Circuit Debugging via two pins
• Processor read/write access to program memory
• Wide operating voltage range: 2.0V to 5.5V
• High Sink/Source Current: 25 mA
• Commercial, Industrial and Extended temperature

ranges
• Low-power consumption:

- < 0.6 mA typical @ 3V, 4 MHz
- 20 µA typical @ 3V, 32 kHz
- < 1 µA typical standby current

Peripheral Features:

• Timer0: 8-bit timer/counter with 8-bit prescaler
• Timer1: 16-bit timer/counter with prescaler,

can be incremented during SLEEP via external
crystal/clock

• Timer2: 8-bit timer/counter with 8-bit period
register, prescaler and postscaler

• Two Capture, Compare, PWM modules
- Capture is 16-bit, max. resolution is 12.5 ns
- Compare is 16-bit, max. resolution is 200 ns
- PWM max. resolution is 10-bit

• 10-bit multi-channel Analog-to-Digital converter
• Synchronous Serial Port (SSP) with SPI (Master

mode) and I2C (Master/Slave)
• Universal Synchronous Asynchronous Receiver

Transmitter (USART/SCI) with 9-bit address
detection

• Parallel Slave Port (PSP) 8-bits wide, with
external RD, WR and CS controls (40/44-pin only)

• Brown-out detection circuitry for
Brown-out Reset (BOR)

PIC16F87X

65

PI
C

16
F8

76
/8

73

R
A

3/
A

N
3/

VR
E

F+

R
A

2/
A

N
2/

VR
E

F-

R
A

1/
A

N
1

R
A

0/
A

N
0

M
C

LR
/V

P
P

N

C

R
B

7/
P

G
D

R

B
6/

P
G

C

R
B

5
R

B
4

N
C

6 5 4 3 2

RA4/T0CKI RA5/AN4/SS
RE0/RD/AN5
RE1/WR/AN6
RE2/CS/AN7

16

R
C

1/
T1

O
SI

/C
C

P2

R
C

2/
C

C
P1

R

C
3/

SC
K/

SC
L

R
D

0/
P

S
P

0
R

D
1/

P
S

P
1

R
D

2/
P

S
P

2
R

D
3/

P
S

P
3

R
C

4/
SD

I/S
D

A

R
C

5/
SD

O

R
C

6/
TX

/C
K

N

C

18

19

20

21

22

23

24

25

26

27

28
 NC

1 44

43

42

41

40

33

44

43

42

41

40

39

38

37

36

35

34

R
C

6/
TX

/C
K

R

C
5/

SD
O

R

C
4/

SD
I/S

D
A

R
D

3/
P

S
P

3
R

D
2/

P
S

P
2

R
D

1/
P

S
P

1
R

D
0/

P
S

P
0

R
C

3/
SC

K/
SC

L
R

C
2/

C
C

P
1

R
C

1/
T1

O
SI

/C
C

P
2

N
C

RC7/RX/DT

1

33

NC

RD4/PSP4 2 32 RC0/T1OSO/T1CKI
RD5/PSP5 3 31 OSC2/CLKOUT
RD6/PSP6 4 30 OSC1/CLKIN
RD7/PSP7 5 PIC16 F877 29 VSS

27

N
C

N

C

R
B

4
R

B
5

R
B6

/P
G

C

R
B7

/P
G

D

M
C

LR
/V

P
P

R

A
0/

A
N

0
R

A
1/

A
N

1
R

A
2/

AN
2/

VR
E

F-

R
A

3/
A

N
3/

VR
E

F+

12

13

14

15

16

17

18

19

20

21

22

Pin Diagrams

PDIP, SOIC

MCLR/VPP 28 RB7/PGD
RA0/AN0 27 RB6/PGC
RA1/AN1 26 RB5

RA2/AN2/VREF- 25 RB4
RA3/AN3/VREF+ 24 RB3/PGM

RA4/T0CKI 23 RB2
RA5/AN4/SS 22 RB1

VSS 21 RB0/INT
OSC1/CLKIN 20 VDD

OSC2/CLKOUT 19 VSS
RC0/T1OSO/T1CKI 18 RC7/RX/DT

RC1/T1OSI/CCP2 17 RC6/TX/CK
RC2/CCP1 16 RC5/SDO

RC3/SCK/SCL 15 RC4/SDI/SDA

PLCC

7
8
9
10

VDD
11

VSS
12

OSC1/CLKIN 13
OSC2/CLKOUT 14

RC0/T1OSO/T1CK1 15
17

39
38
37
36

PIC16F877 35
PIC16F874 34

32
31
30
29

RB3/PGM
RB2
RB1
RB0/INT
VDD
VSS
RD7/PSP7
RD6/PSP6
RD5/PSP5
RD4/PSP4
RC7/RX/DT

QFP

VSS
VDD

RB0/INT
RB1
RB2

RB3/PGM

6 PIC16F874 28
7
8 26
9 25
10 24
11 23

VDD
RE2/AN7/CS
RE1/AN6/WR
RE0/AN5/RD
RA5/AN4/SS
RA4/T0CKI

PIC16F87X

66

Key Features PICmicro™ Mid-
Range Reference Manual

(DS33023)

PIC16F873

PIC16F874

PIC16F876

PIC16F877

Operating Frequency DC - 20 MHz DC - 20 MHz DC - 20 MHz DC - 20 MHz
RESETS (and Delays) POR, BOR

(PWRT, OST)
POR, BOR

(PWRT, OST)
POR, BOR

(PWRT, OST)
POR, BOR

(PWRT, OST)
FLASH Program Memory

(14-bit words)

4K

4K

8K

8K
Data Memory (bytes) 192 192 368 368

EEPROM Data Memory 128 128 256 256
Interrupts 13 14 13 14
I/O Ports Ports A,B,C Ports A,B,C,D,E Ports A,B,C Ports A,B,C,D,E
Timers 3 3 3 3

Capture/Compare/PWM Modules 2 2 2 2
Serial Communications MSSP, USART MSSP, USART MSSP, USART MSSP, USART

Parallel Communications — PSP — PSP
10-bit Analog-to-Digital Module 5 input channels 8 input channels 5 input channels 8 input channels

Instruction Set 35 instructions 35 instructions 35 instructions 35 instructions

PIC16F87X

67

Legend: I = input O = output I/O = input/output P = power
 — = Not used TTL = TTL input ST = Schmitt Trigger input

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION

Pin Name DIP

Pin#
PLCC
Pin#

QFP
Pin#

I/O/P
Type

Buffer
Type

Description

OSC1/CLKIN 13 14 30 I ST/CMOS(4) Oscillator crystal input/external clock source input.
OSC2/CLKOUT 14 15 31 O — Oscillator crystal output. Connects to crystal or resonator

in crystal oscillator mode. In RC mode, OSC2 pin outputs
CLKOUT which has 1/4 the frequency of OSC1, and
denotes the instruction cycle rate.

MCLR/VPP 1 2 18 I/P ST Master Clear (Reset) input or programming voltage input.
This pin is an active low RESET to the device.

RA0/AN0
RA1/AN1
RA2/AN2/VREF-

RA3/AN3/VREF+

RA4/T0CKI

RA5/SS/AN4

2
3
4

5

6

7

3
4
5

6

7

8

19
20
21

22

23

24

I/O
I/O
I/O

I/O

I/O

I/O

TTL
TTL
TTL

TTL

ST

TTL

PORTA is a bi-directional I/O port.
RA0 can also be analog input0.
RA1 can also be analog input1.
RA2 can also be analog input2 or negative
analog reference voltage.
RA3 can also be analog input3 or positive
analog reference voltage.
RA4 can also be the clock input to the Timer0 timer/
counter. Output is open drain type.
RA5 can also be analog input4 or the slave select for
the synchronous serial port.

RB0/INT
RB1
RB2
RB3/PGM
RB4
RB5
RB6/PGC

RB7/PGD

33
34
35
36
37
38
39

40

36
37
38
39
41
42
43

44

8
9
10
11
14
15
16

17

I/O
I/O
I/O
I/O
I/O
I/O
I/O

I/O

TTL/ST(1)

TTL TTL
TTL TTL

TTL
TTL/ST(2)

TTL/ST(2)

PORTB is a bi-directional I/O port. PORTB can be soft-
ware programmed for internal weak pull-up on all inputs.

RB0 can also be the external interrupt pin.

RB3 can also be the low voltage programming input.
Interrupt-on-change pin.
Interrupt-on-change pin.
Interrupt-on-change pin or In-Circuit Debugger pin.
Serial programming clock.
Interrupt-on-change pin or In-Circuit Debugger pin.
Serial programming data.

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel

Slave Port mode (for interfacing to a microprocessor bus).
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

PIC16F87X

68

Legend: I = input O = output I/O = input/output P = power
 — = Not used TTL = TTL input ST = Schmitt Trigger input

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION (CONTINUED)

Pin Name DIP

Pin#
PLCC
Pin#

QFP
Pin#

I/O/P
Type

Buffer
Type

Description

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RC4/SDI/SDA

RC5/SDO
RC6/TX/CK

RC7/RX/DT

15

16

17

18

23

24
25

26

16

18

19

20

25

26
27

29

32

35

36

37

42

43
44

1

I/O

I/O

I/O

I/O

I/O

I/O
I/O

I/O

ST

ST

ST

ST

ST

ST
ST

ST

PORTC is a bi-directional I/O port.
RC0 can also be the Timer1 oscillator output or a
Timer1 clock input.
RC1 can also be the Timer1 oscillator input or
Capture2 input/Compare2 output/PWM2 output.
RC2 can also be the Capture1 input/Compare1
output/PWM1 output.
RC3 can also be the synchronous serial clock input/
output for both SPI and I2C modes.
RC4 can also be the SPI Data In (SPI mode) or
data I/O (I2C mode).
RC5 can also be the SPI Data Out (SPI mode).
RC6 can also be the USART Asynchronous Transmit
or Synchronous Clock.
RC7 can also be the USART Asynchronous Receive
or Synchronous Data.

RD0/PSP0
RD1/PSP1
RD2/PSP2
RD3/PSP3
RD4/PSP4
RD5/PSP5
RD6/PSP6
RD7/PSP7

19
20
21
22
27
28
29
30

21
22
23
24
30
31
32
33

38
39
40
41
2
3
4
5

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

ST/TTL(3)

ST/TTL(3)

ST/TTL(3)

ST/TTL(3)

ST/TTL(3)

ST/TTL(3)

ST/TTL(3)

ST/TTL(3)

PORTD is a bi-directional I/O port or parallel slave port
when interfacing to a microprocessor bus.

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

8

9

10

9

10

11

25

26

27

I/O

I/O

I/O

ST/TTL(3)

ST/TTL(3)

ST/TTL(3)

PORTE is a bi-directional I/O port.
RE0 can also be read control for the parallel slave
port, or analog input5.
RE1 can also be write control for the parallel slave
port, or analog input6.
RE2 can also be select control for the parallel slave
port, or analog input7.

VSS 12,31 13,34 6,29 P — Ground reference for logic and I/O pins.
VDD 11,32 12,35 7,28 P — Positive supply for logic and I/O pins.
NC — 1,17,28,

40
12,13,
33,34 — These pins are not internally connected. These pins

should be left unconnected.

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel

Slave Port mode (for interfacing to a microprocessor bus).
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

PIC16F87X

69

EN

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an

FIGURE 3-1: BLOCK DIAGRAM OF
RA3:RA0 AND RA5 PINS

alternate function for the peripheral features on the Data Data Latch

device. In general, when a peripheral is enabled, that
pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the
PICmicro™ Mid-Range Reference Manual, (DS33023).

Bus

WR
Port

D Q

CK Q

VDD

P

I/O pin(1)

3.1 PORTA and the TRISA Register

TRIS Latch

N
PORTA is a 6-bit wide, bi-directional port. The corre-
sponding data direction register is TRISA. Setting a
TRISA bit (= 1) will make the corresponding PORTA pin

D Q

WR
TRIS

VSS

an input (i.e., put the corresponding output driver in a
Hi-Impedance mode). Clearing a TRISA bit (= 0) will
make the corresponding PORTA pin an output (i.e., put
the contents of the output latch on the selected pin).
Reading the PORTA register reads the status of the
pins, whereas writing to it will write to the port latch. All
write operations are read-modify-write operations.
Therefore, a write to a port implies that the port pins are
read, the value is modified and then written to the port
data latch.

Pin RA4 is multiplexed with the Timer0 module clock
input to become the RA4/T0CKI pin. The RA4/T0CKI
pin is a Schmitt Trigger input and an open drain output.
All other PORTA pins have TTL input levels and full

RD
TRIS

RD Port

CK Q
Analog
Input
Mode

Q D

EN

TTL
Input
Buffer

CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs
and analog VREF input. The operation of each pin is
selected by clearing/setting the control bits in the
ADCON1 register (A/D Control Register1).

Note: On a Power-on Reset, these pins are con-

To A/D Converter

Note 1: I/O pins have protection diodes to VDD and VSS.

FIGURE 3-2: BLOCK DIAGRAM OF

RA4/T0CKI PIN

figured as analog inputs and read as '0'. Data Data Latch

The TRISA register controls the direction of the RA
pins, even when they are being used as analog inputs.
The user must ensure the bits in the TRISA register are

Bus

WR
Port

D Q

CK Q

N I/O pin(1)

maintained set when using them as analog inputs. TRIS Latch

EXAMPLE 3-1: INITIALIZING PORTA

BCF STATUS, RP0 ;
BCF STATUS, RP1 ; Bank0
CLRF PORTA ; Initialize PORTA by

; clearing output
; data latches

BSF STATUS, RP0 ; Select Bank 1
MOVLW 0x06 ; Configure all pins
MOVWF ADCON1 ; as digital inputs
MOVLW 0xCF ; Value used to

; initialize data
; direction

MOVWF TRISA ; Set RA<3:0> as inputs
; RA<5:4> as outputs

WR
TRIS

RD
TRIS

RD Port

D Q

CK Q

VSS

Schmitt
Trigger
Input
Buffer

Q D

EN

; TRISA<7:6>are always
; read as ’0’.

TMR0 Clock Input

Note 1: I/O pin has protection diodes to VSS only.

PIC16F87X

70

TABLE 3-1: PORTA FUNCTIONS

Name Bit# Buffer Function
RA0/AN0 bit0 TTL Input/output or analog input.
RA1/AN1 bit1 TTL Input/output or analog input.
RA2/AN2 bit2 TTL Input/output or analog input.
RA3/AN3/VREF bit3 TTL Input/output or analog input or VREF.
RA4/T0CKI bit4 ST Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4 bit5 TTL Input/output or slave select input for synchronous serial port or analog input.
Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address

Name

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Value on:
POR,
BOR

Value on all
other

RESETS
05h PORTA — — RA5 RA4 RA3 RA2 RA1 RA0 --0x 0000 --0u 0000
85h TRISA — — PORTA Data Direction Register --11 1111 --11 1111
9Fh ADCON1 ADFM — — — PCFG3 PCFG2 PCFG1 PCFG0 --0- 0000 --0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.
Shaded cells are not used by PORTA.

Note: When using the SSP module in SPI Slave mode and SS enabled, the A/D converter must be set to one of
the following modes, where PCFG3:PCFG0 = 0100,0101, 011x, 1101, 1110, 1111.

PIC16F87X

71

P

3.2 PORTB and the TRISB Register

PORTB is an 8-bit wide, bi-directional port. The corre-
sponding data direction register is TRISB. Setting a
TRISB bit (= 1) will make the corresponding PORTB pin
an input (i.e., put the corresponding output driver in a
Hi-Impedance mode). Clearing a TRISB bit (= 0) will
make the corresponding PORTB pin an output (i.e., put
the contents of the output latch on the selected pin).

Three pins of PORTB are multiplexed with the Low
Voltage Programming function: RB3/PGM, RB6/PGC
and RB7/PGD. The alternate functions of these pins
are described in the Special Features Section.
Each of the PORTB pins has a weak internal pull-up. A
single control bit can turn on all the pull-ups. This is per-
formed by clearing bit RBPU (OPTION_REG<7>). The
weak pull-up is automatically turned off when the port
pin is configured as an output. The pull-ups are dis-
abled on a Power-on Reset.

FIGURE 3-3: BLOCK DIAGRAM OF

RB3:RB0 PINS
VDD

This interrupt can wake the device from SLEEP. The
user, in the Interrupt Service Routine, can clear the
interrupt in the following manner:
a) Any read or write of PORTB. This will end the

mismatch condition.
b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF.
Reading PORTB will end the mismatch condition and
allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for
wake-up on key depression operation and operations
where PORTB is only used for the interrupt-on-change
feature. Polling of PORTB is not recommended while
using the interrupt-on-change feature.
This interrupt-on-mismatch feature, together with soft-
ware configureable pull-ups on these four pins, allow
easy interface to a keypad and make it possible for
wake-up on key depression. Refer to the Embedded
Control Handbook, “Implementing Wake-up on Key
Strokes” (AN552).

RB0/INT is an external interrupt input pin and is config-
ured using the INTEDG bit (OPTION_REG<6>).

RBPU(2)

Data Latch

Weak
P Pull-up RB0/INT is discussed in detail in Section 12.10.1.

Data Bus
D Q

WR Port CK

I/O
pin(1)

FIGURE 3-4: BLOCK DIAGRAM OF
RB7:RB4 PINS

VDD

TRIS Latch RBPU(2)
D Q

WR TRIS CK

TTL
Input
Buffer

Data Bus

Data Latch

Weak
Pull-up

RD TRIS

D Q

WR Port CK

I/O
pin(1)

TRIS Latch

Q D
RD Port

D Q

WR TRIS

TTL

RB0/INT
RB3/PGM

EN

Schmitt Trigger

RD Port

RD TRIS

CK

Latch

Input
Buffer

ST

Buffer

Buffer

Note 1: I/O pins have diode protection to VDD and VSS.
2: To enable weak pull-ups, set the appropriate TRIS

bit(s) and clear the RBPU bit (OPTION_REG<7>).

Four of the PORTB pins, RB7:RB4, have an interrupt-
on-change feature. Only pins configured as inputs can
cause this interrupt to occur (i.e., any RB7:RB4 pin
configured as an output is excluded from the interrupt-
on-change comparison). The input pins (of RB7:RB4)

Q D
RD Port

EN
Set RBIF

Q D
From other
RB7:RB4 pins EN

RB7:RB6
In Serial Programming Mode

Q1

RD Port

Q3

are compared with the old value latched on the last
read of PORTB. The “mismatch” outputs of RB7:RB4
are OR’ed together to generate the RB Port Change
Interrupt with flag bit RBIF (INTCON<0>).

Note 1: I/O pins have diode protection to VDD and VSS.

2: To enable weak pull-ups, set the appropriate TRIS
bit(s) and clear the RBPU bit (OPTION_REG<7>).

PIC16F87X

72

TABLE 3-3: PORTB FUNCTIONS

Name Bit# Buffer Function
RB0/INT bit0 TTL/ST(1) Input/output pin or external interrupt input. Internal software

programmable weak pull-up.
RB1 bit1 TTL Input/output pin. Internal software programmable weak pull-up.
RB2 bit2 TTL Input/output pin. Internal software programmable weak pull-up.
RB3/PGM(3) bit3 TTL Input/output pin or programming pin in LVP mode. Internal software

programmable weak pull-up.
RB4 bit4 TTL Input/output pin (with interrupt-on-change). Internal software programmable

weak pull-up.
RB5 bit5 TTL Input/output pin (with interrupt-on-change). Internal software programmable

weak pull-up.
RB6/PGC bit6 TTL/ST(2) Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin.

Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD bit7 TTL/ST(2) Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin.

Internal software programmable weak pull-up. Serial programming data.
Legend: TTL = TTL input, ST = Schmitt Trigger input
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: Low Voltage ICSP Programming (LVP) is enabled by default, which disables the RB3 I/O function. LVP

must be disabled to enable RB3 as an I/O pin and allow maximum compatibility to the other 28-pin and
40-pin mid-range devices.

TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address

Name

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Value on:
POR,
BOR

Value on
all other
RESETS

06h, 106h PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx xxxx uuuu uuuu
86h, 186h TRISB PORTB Data Direction Register 1111 1111 1111 1111
81h, 181h OPTION_REG RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111
Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

PIC16F87X

73

3.3 PORTC and the TRISC Register

PORTC is an 8-bit wide, bi-directional port. The corre-
sponding data direction register is TRISC. Setting a
TRISC bit (= 1) will make the corresponding PORTC
pin an input (i.e., put the corresponding output driver in
a Hi-Impedance mode). Clearing a TRISC bit (= 0) will
make the corresponding PORTC pin an output (i.e., put

FIGURE 3-6: PORTC BLOCK DIAGRAM
(PERIPHERAL OUTPUT
OVERRIDE) RC<4:3>

Port/Peripheral Select(2)

Peripheral Data Out

0 VDD
Data Bus

the contents of the output latch on the selected pin). WR
D Q P I/O

(1)

PORTC is multiplexed with several peripheral functions
(Table 3-5). PORTC pins have Schmitt Trigger input
buffers.

Port CK Q 1

Data Latch

pin

When the I2C module is enabled, the PORTC<4:3> WR D Q

pins can be configured with normal I2C levels, or with
SMBus levels by using the CKE bit (SSPSTAT<6>).
When enabling peripheral functions, care should be
taken in defining TRIS bits for each PORTC pin. Some
peripherals override the TRIS bit to make a pin an out-
put, while other peripherals override the TRIS bit to
make a pin an input. Since the TRIS bit override is in
effect while the peripheral is enabled, read-modify-
write instructions (BSF, BCF, XORWF) with TRISC as
destination, should be avoided. The user should refer
to the corresponding peripheral section for the correct
TRIS bit settings.

TRIS

RD
TRIS

Peripheral
OE(3)

RD
Port
SSPl Input

CK Q

TRIS Latch

Q D

EN

CKE

N

Vss

Schmitt
Trigger

0

1

Schmitt
Trigger
with
SMBus
levels

FIGURE 3-5: PORTC BLOCK DIAGRAM
(PERIPHERAL OUTPUT
OVERRIDE) RC<2:0>,
RC<7:5>

Port/Peripheral Select(2)

SSPSTAT<6>

Note 1: I/O pins have diode protection to VDD and VSS.

2: Port/Peripheral select signal selects between port data
and peripheral output.

3: Peripheral OE (output enable) is only activated if
peripheral select is active.

Peripheral Data Out

0
Data Bus

D Q
WR

VDD

P

I/O

Port CK Q 1

Data Latch

pin(1)

D Q

WR
TRIS

RD
TRIS

Peripheral
OE(3)

RD
Port

CK Q

TRIS Latch

N

VSS

Schmitt
Trigger

Q D

EN

Peripheral Input

Note 1: I/O pins have diode protection to VDD and VSS.

2: Port/Peripheral select signal selects between port
data and peripheral output.

3: Peripheral OE (output enable) is only activated if
peripheral select is active.

PIC16F87X

74

TABLE 3-5: PORTC FUNCTIONS

Name Bit# Buffer Type Function
RC0/T1OSO/T1CKI bit0 ST Input/output port pin or Timer1 oscillator output/Timer1 clock input.
RC1/T1OSI/CCP2 bit1 ST Input/output port pin or Timer1 oscillator input or Capture2 input/

Compare2 output/PWM2 output.
RC2/CCP1 bit2 ST Input/output port pin or Capture1 input/Compare1 output/

PWM1 output.
RC3/SCK/SCL bit3 ST RC3 can also be the synchronous serial clock for both SPI

and I2C modes.
RC4/SDI/SDA bit4 ST RC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).
RC5/SDO bit5 ST Input/output port pin or Synchronous Serial Port data output.
RC6/TX/CK bit6 ST Input/output port pin or USART Asynchronous Transmit or

Synchronous Clock.
RC7/RX/DT bit7 ST Input/output port pin or USART Asynchronous Receive or

Synchronous Data.
Legend: ST = Schmitt Trigger input

TABLE 3-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address

Name

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Value on:
POR,
BOR

Value on all
other

RESETS
07h PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 xxxx xxxx uuuu uuuu
87h TRISC PORTC Data Direction Register 1111 1111 1111 1111
Legend: x = unknown, u = unchanged

75
757576

Web Site: www.parallax.com
Forums: forums.parallax.com
Sales: sales@parallax.com
Technical: support@parallax.com

Office: (916) 624-8333
Fax: (916) 624-8003
Sales: (888) 512-1024
Tech Support: (888) 997-8267

Parallax Say It Module (#30080)
The Parallax Say It Modules provides voice recognition functions for built-in Speaker Independent (SI)
pre-programmed commands and up to 32 user-defined Speaker Dependent (SD) keywords (triggers,
commands, or passwords).

When you speak into this module, it will match the spoken word to a set of keywords that it has been
programmed to recognize. Once the module has determined if there is a match, it will take a defined
action, either listening for the next keyword in another “wordset” or executing the commands associated
with the word that was said. You can create up to 32 user-definable keywords.

The Say It GUI software for the BASIC Stamp 2 provides an easy interface for training the module and
producing template code. Or, the simple and robust serial protocol provided can be used to access the
Say It module functions from other Parallax microcontrollers. The 10-pin SIP header makes the module
breadboard friendly, and is designed to fit in one row of the AppMod header found on the Board of
Education and Boe-Bot Robot.

Features

 23 Pre-programmed commands
 Up to 32 user-definable commands
 SIP for breadboard friendly projects (0.1” spacing)
 GUI provides training and template code for BASIC Stamp 2

modules
 On-board LED and microphone
 Voice controlled Boe-Bot examples

Key Specifications

 Power requirements: 3.3 to 5.5 VDC
 Communication: Adjustable Asynchonous Serial (9600 (default),

19200, 38700, 57600, 115200)
 Operating temperature: 32 to 158 °F (0 to 70 °C)
 Dimensions: 1.02 x 2.47 x .38 in (26 x 62.93 x 9.70 mm)

Application Ideas

 Voice-controlled entry systems
 Automated house applications
 Voice-activated robotics

Precaution

 Do not solely rely on the Say It module to recognize a command for a safety stop if your project
requires one; take all appropriate precautions when implementing this module to maintain a safe
project.

http://www.parallax.com/
mailto:sales@parallax.com
mailto:support@parallax.com

76

757576

Using the Say It GUI Software
With the Say It GUI software for your PC and your BASIC Stamp 2 development board, you can test the
Say It module and train it to recognize your custom commands. During training, the BASIC Stamp 2
handles the Say It module-to-PC communication through the provided PBASIC “bridge” program. Once
your you have defined and tested your commands, the GUI software will generate a new PBASIC
template program ready for you to add the actions to take when your voice commands are received.

Follow the steps below to connect to the Say It module via the GUI software. This example assumes you
are using a Board of Education with BASIC Stamp 2, and you have previously installed the BASIC Stamp
Editor and tested the programming connection.

1. With the power to your board turned off (switch position 0) Plug the Say It module into the

AppMod header of the Board of Education (as seen in Figure 12); be careful to insert the module
in the left row of the header and in the correct orientation (Vss at top, Vdd at bottom, RX to P0,
TX to P2 and LED to P4).

Figure 1

2. Download and install the Say It GUI software from the 30080 product page at www.parallax.com.
Use the default installation path. For Windows Vista users, install as administrator.

3. Start the Say It GUI software, and then connect the Board of Education to your PC and turn the

power switch on (position 1).

4. Select the serial port that the Board of Education/Say It module is connected from the toolbar
(Figure 1) or File from the menu, then Connect. See Figure 2.

BASIC Stamp Editor Debug Terminal must be closed before selecting “Connect” in
Say It GUI

http://www.parallax.com/

77

757576

Serial port to use

Connect Icon

Figure 2

5. Once connected, the Say It software prompts you to download the PBASIC “bridge” program to
the controller board, and switches to the programming mode (Figure 3). Choose Yes when
prompted.

Figure 3

A PBASIC “bridge” program will automatically be downloaded to the BASIC Stamp 2. This bridge program
allows the user to work with the set of SI commands the Say It module provides, as well as defining new
commands.

78

757576

6. Verify that the bridge download has been completed by the green status bar in the top right of
the GUI; it should remain full.

Once you have successfully connected to the module you can insert, add, remove, rename, train, erase,
test, reset all the commands, set the language used, or disconnect from the GUI. First, let’s cover testing
the pre-existing commands.

Testing Commands

Let’s begin by testing the words that are already programmed in the Say It module. These are grouped
under Trigger and three Wordsets (Figure 4).

Built-in Speaker Independent Commands

Trigger (0)

0 robot

Wordset 1

0 action
1 move
2 turn
3 run
4 look
5 attack
6 stop
7 hello

Wordset 2

0 left
1 right
2 up
3 down
4 forward
5 backward

Wordset 3

0 zero
1 one
2 two
3 three
4 four
5 five
6 six
7 seven
8 eight
9 nine
10 ten

Figure 4

1. Select a Trigger or Wordset to test by highlighting the option in the left window pane (Figure 5)
and then click “Test Group” from the tool bar. This example, I chose “Trigger” to test.

79

757576

Test Group

Figure 5

2. When the red LED indicator light on the module and the software window prompt you to speak,
speak clearly and directly at the microphone on the module. If the module understands, you will
see the command highlighted in green.

You can continue this with all the words that need to be tested. If the module does not understand the
word or there is nothing said, an information window will pop up indicating an error of a timeout. Later
you will want to use the same process to test any new commands that you train it to recognize.

Adding or Deleting Commands

When you want to create your own command, you can do so by using the Say It GUI. There are 4 types
of commands in the GUI:

• Trigger – Trigger words are used to start the voice recognition process; all spoken command

phrases will begin with a trigger word. “Robot” is the SI trigger word, and you may train one
additional trigger word.

• Group – Groups of user-definable SD commands. You may add up to 32 commands total (31 if
you also define a trigger word).

• Password – A special group for “vocal passwords,” up to 5 may be defined.
• Wordset – Built-in groups of Speaker Independent (SI) commands (Figure 3)

80

757576

The user can define groups of SD commands or passwords and generate a PBASIC code template to
handle them. The recognition function of Say It modules works on a single group at a time, so that users
need to group together all the commands that they want to be able to use at the same time.

When Say It GUI connects to the module, it reads back all the user-defined commands and groups, which
are stored into the Say It module’s non-volatile memory for later review and editing.

When training SI commands, simulate the environmental background noise in
which you want to use this module for the best results for recognition.

Adding a SD command can be completed by doing the following while the Say It “bridge” program is
running.

1. Select a group that you would like to add the word(s) to (Figure 6).

Figure 6

81

757576

2. Click “Add Command” from the tool bar or menu (Figure 7), and provide a label. In this example,
the label “CREATE_LABEL_HERE” has been created; however it is suggested that you use a label
that you can later review and know what the word is.

Add
Command

Figure 7

82

757576

3. Select the label that in the right window pane, and click “Train” from the tool bar or menu
(Figure 8).

Train
Command

Figure 8

4. Once you have selected Train Command; you will be prompted to say the phrase twice (figure 8)
to complete the training of a specific word; keep the words simplistic for optimal recognition. If
you are unhappy with the training, select erase training, and start the training process over from
step 3 until satisfied.

83

757576

Figure 9

5. Once you have successfully created a phrase, you can test to confirm that it will recognize it, it is
suggested that you test each group after you are finished to ensure successful training. Once
finished you will see a number next to the group you trained; indicating how many words belong
to that group (Figure 9).

Figure 10

84

757576

If you want to remove a command, you can use the “remove command” from the tool bar or menu and it
will remove the selected command; once this is done it can not be undone so be sure you want to
remove a command prior to clicking this action.

Each of the Group, Password, and Trigger words are created and edited in the same manner that these
steps cover. Note: The Passwords (group 16) are much more sensitive to background environment noises
and distance from the microphone; but sure to train the password in conditions similar to where it will be
used.

Generating Code

Once you have created and trained all your desired commands, you can generate the PBASIC code to
then edit and assign actions to each of the words created. You can do that be completing the following:

1. Select the “Generate Code…” icon on the toolbar or from the menu (Figure 11)

Generate
Code

Figure 11

2. You will be prompted to save the file to then edit within the BASIC Stamp Editor (Figure 12).

85

757576

Figure 12

3. Click “Disconnect” in the GUI and open the file with the BASIC Stamp Editor.

4. Once the program is opened in the BASIC Stamp Editor, there will be portions of the code that
will indicate where you will place the commands that will be used with the trained words. You will
see a PAUSE 1 with “'-- write your code here” comments.

5. Save your program, and then download to the BASIC Stamp 2 module and enjoy playing with

your new voice recognition module.

Sample Application for the Boe-Bot® Robot

Here is the sample applications that uses the Say It module to control a Boe-Bot robot with a BASIC
Stamp 2 on a Board of Education platform. The sample code for this application is available for download
on the Say It Module product page at www.parallax.com.

1. Plug the Say It module into the AppMod header of the Board of Education (as seen in Figure 1 on

page 2); be careful to insert the module in the left row of the header and in the correct
orientation (Vss at top, Vdd at bottom, RX to P0, TX to P2 and LED to P4).

2. Open the sample code labeled “SayIt_Demo.BS2” in the BASIC Stamp Editor.

http://www.parallax.com/

86

757576

3. Install any batteries as needed, plug in the battery pack, and move the Board of Education power
switch to position 1

4. Download the program to the BASIC Stamp 2 module by clicking Run from the menu, and click

Run from the dropdown (ctrl + r)

5. Move the power switch to position 0, and unplug the communication cable; then move the power
switch to position 2.

6. Using the command list above (Figure 3); Say the trigger word (robot), and select then select a

word from Wordset 1, 2 and then 3 if needed. You can verify the word has been correctly
recognized by the red LED indicator on the Say It module.

When you say “robot”, the red LED will turn on for a short moment; once the LED is on, you can say the
next word. Once the Say It module has received the last Wordset command, it will execute the proper
routine associated with that command. Here are some samples that could be used and the descriptions of
the actions.

Try saying the following examples:

Robot -> Move -> Forward (This will move the robot forward)
Robot -> Hello (Module will say hello on the debug screen, if one is open)
Robot -> Action -> Three (Module will display 3 on debug screen, if one is open)
Robot -> Turn -> Right (This will turn the robot right)
Robot -> Run -> Backwards (This will move the robot backwards)
Robot -> Stop (stops all movement)
(-> = small pause)

After disconnecting from the Say It GUI, you can still verify that the Say It Module is detecting the right
word by using the Debug Terminal. By leaving the Board of Education connected to the computer, each
recognized verbal command will be printed to the Debug Terminal.

Note that not all commands will use a word from all 3 Wordsets to be a valid command. For example,
“Hello” uses a Trigger word (Robot) and Hello from Wordset 1, which will end the command to then
execute; that debugs “Hello” on the BASIC Stamp Debug Terminal.

Troubleshooting

From time to time there may be some snags that can cause what would seem like malfunctions in the
module. If you experience any of the symptoms listed below, here are some quick fixes to try.

Q1. Keep getting a time-out error
A1. Make sure the power has not been cycled since the last time the GUI was connected.

Q2. Can’t connect to my Say It Module
A2.1 Be sure to close all terminal windows including the debug screen before connecting the GUI
software.
A2.2 Check power and make sure it has ample voltage and current to turn on modules

Q3. Will not power up
A3. Check to make sure that all the connections are correct; if using an AppMod header be sure the
orientation is correct.

87

757576

Q4. I am running Windows Vista, and the Say It GUI will not install properly.
A4. Right Click on installer exe, and select “run as administrator”

Device Information

Specifications

Symbol Quantity Minimum Typical Maximum Units
Vdd Supply Voltage 3.3 5.0 5.5 V

Pin Definitions

Pin Label Function
1 Vss Ground
2 Rx Receive I/O Pin (TTL & CMOS compatible)
3 Tx Transmit I/O Pin (TTL & CMOS compatible)
4 Led Red LED indicator
5 - No Connection
6 - No Connection
7 - No Connection
8 - No Connection
9 - No Connection
10 Vdd 5 V regulated DC

Connection Diagrams

This is the back view of the module, the connection pins are indicated on the silkscreen.

5 VDC (Pin 10)

no connect x
no connect x
no connect x
no connect x
no connect x

Indicator LED
Transmit pin
Receive pin

Ground (Pin 1)

88

757576

Module Dimensions

13.20 mm

Communication Protocol

26.21 mm

63.22 mm

Communication with the Say It module uses a standard UART interface compatible with 3.3V to 5V TTL
logical levels. The initial configuration at power-on is 9600 baud, 8 bit data, No parity, 1 bit stop. The
baud rate can be changed later to operate in the range 9600 - 115200 baud.

The communication protocol only uses printable ASCII characters, which can be divided in two main
groups:
 Command and status characters, respectively on the TX and RX lines, chosen among lower-case

letters
 Command arguments or status details, again on the TX and RX lines, spanning the

range of capital letters

Each command sent on the TX line, with zero or more additional argument bytes, receives an answer on
the RX line in the form of a status byte followed by zero or more arguments.

There is a minimum delay before each byte sent out from the Say It module to the RX line, that is initially
set to 20 ms and can be selected later in the ranges 0 - 9 ms, 10 - 90 ms, 100 ms - 1 s.

The communication is host-driven and each byte of the reply to a command has to be acknowledged by
the host to receive additional status data, using the space character. The reply is aborted if any other
character is received and so there is no need to read all the bytes of a reply.

Invalid combinations of commands or arguments are signaled by a specific status byte, that the host
should be prepared to receive if the communication fails. Also a reasonable timeout should be used to
recover from unexpected failures.

89

757576

The module automatically goes to lowest power sleep mode after power on. To initiate communication,
send any character to wake-up the module.

Command Details

CMD_BREAK
“b” Abort recognition in progress if any or do nothing
Expected replies: STS_SUCCESS, STS_INTERR
CMD_SLEEP
“s” Go to the specified power-down mode
[1] Sleep mode (0-8)
Expected replies: STS_SUCCESS
CMD_KNOB
“k” Set Speaker Independent (pre-programmed commands) knob to specific level
[1] Knob level (0-4)
Expected replies: STS_SUCCESS
CMD_LEVEL
“v” Sets Speaker Dependent (custom programmed commands) to specific level
[1] Threshold (1-5)
Expected replies: STS_SUCCESS
CMD_LANGUAGE
“l” Set Speaker Independent (pre-programmed commands) language
[1] Language (0 = English, 1 = Italian, 2 = Japanese, 3 = German
Expected replies: STS_SUCCESS
CMD_TIMEOUT
“o” Set Speaker Independent (pre-programmed commands) language
[1] Timeout (-1 = default, 0 = infinite, 1-30 = seconds
Expected replies: STS_SUCCESS
CMD_RECOG_SI

“i” Activate Speaker Independent (pre-programmed commands) recognition from specified
wordset

[1] Wordset Index (0-3)
Expected replies: STS_SUCCESS, STS_TIMEOUT, STS_ERROR
CMD_TRAIN_SD

“t” Train specified Speaker Dependent (custom programmed commands) or Password
command

[1] Group index (0 = trigger, 1-15 generic, 16 = password
[2] Command position (0-31)
Expected replies: STS_SUCCESS, STS_RESULT, STS_SIMILAR, STS_TIMEOUT, STS_ERROR
CMD_GROUP_SD
“g” Insert new Speaker Dependent (custom programmed commands) or Password command
[1] Group index (0 = trigger, 1-15 generic, 16 = password
[2] Command position (0-31)
Expected replies: STS_SUCCESS, STS_OUT_OF_MEM

90

757576

CMD_UNGROUP_SD
“u” Remove Speaker Dependent (custom programmed commands) or Password command
[1] Group index (0 = trigger, 1-15 generic, 16 = password
[2] Command position (0-31)
Expected replies: STS_SUCCESS
CMD_RECOG_SD
“d” Activate Speaker Dependent (custom command) or Password recognition
[1] Group index (0 = trigger, 1-15 = generic, 16 = password
Expected replies: STS_SUCCESS, STS_RESULT, STS_SIMILAR, STS_TIMEOUT, STS_ERROR
CMD_ERASE_SD
“e” Remove Speaker Dependent (custom command) or Password recognition
[1] Command position (0-31)
Expected replies: STS_SUCCESS
CMD_NAME_SD

“n” Give a label for a Speaker Dependent (custom programmed commands) or Password
command

[1] Group index (0 = trigger, 1-15 = generic, 16 = password
[2] Command position (0-31)
[3] Length of label (0-31)
[4-n] Text for label (ASCII characters from “A” to “`”
Expected replies: STS_SUCCESS
CMD_COUNT_SD

“c” Request count of Speaker Dependent (custom programmed commands) or Password
commands in a specified group

[1] Group index (0 = trigger, 1-15 = generic, 16 = password)
Expected replies: STS_COUNT
CMD_DUMP_SD

“p” Read Speaker Dependent (custom programmed commands) or Password command label
(label and training)

[1] Group index (0 = trigger, 1-15 = generic, 16 = password)
[2] Command position (0-31)
Expected replies: STS_DATA
CMD_MASK_SD
“m” Request a bit-mask of non-empty groups
Expected replies: STS_MASK
CMD_RESETALL
“r” Reset all commands and groups
“R” Confirmation character
Expected replies: STS_SUCCESS
CMD_ID
“x” Request firmware ID

91

757576

Expected replies: STS_ID

CMD_DELAY
“y” Set Transmit delay
[1] Time (0-10 = 0 – 10ms, 11-19 = 20-100ms, 28-28 = 200 to 1000ms)
Expected replies: STS_SUCCESS
CMD_BAUDRATE
“a” Set communication baud-rate
[1] Speed mode (1 = 115200, 2 = 57600, 3 = 38400, 6 = 19200, 12 = 9600
Expected replies: STS_SUCCESS

Status Details

STS_MASK
“k” Mask of non-empty groups
[1-8] 4-bit value that form a 32-bit mask, LSB first
In replay to: CMD_MASK_SD
STS_COUNT
“c” Count of commands
[1] Integer (0-31)
In replay to: CMD_COUNT_SD
STS_AWAKEN
“w” Wake-up (back from power-down mode)
In replay to: Any character after power on or sleep mode
STS_DATA
“d” Provide command data
[1] Training information (0-7 = training count, +8 = SD/Password conflicts, +16 = SI conflict
[2] Conflicting command position (0-31)
[3] Length of label (0-31)
[4-n] Text for label (ASCII characters from “A” to “`”
In replay to: CMD_DUMP_SD
STS_ERROR
“e” Signal recognition error

[1-2] Two 4-bit values that form 8-bit error code (80h = NOTA, otherwise see FluentChip error
codes)

In replay to: CMD_RECOG_SI, CMD_RECOG_SD, CMD_TRAIN_SD
STS_INVALID
“v” Invalid command or argument
In replay to: Any invalid command or argument
STS_TIMEOUT
“t” Timeout expired
In replay to: CMD_RECOG_SI, CMD_RECOG_SD, CMD_TRAIN_SD
STS_INTERR

92

757576

“i” Interrupted recognition
In replay to: CMD_BREAK while in training or recognition

STS_SUCCESS
“o” OK or no error status
In replay to: CMD_BREAK, CMD_DELAY, CMD_BAUDRATE, CMD_TIMEOUT, CMD_KNOB,
CMD_LEVEL, CMD_LANGUAGE, CMD_SLEEP, CMD_GROUP_SD, CMD_UNGROUP_SD,
CMD_ERASE, CMD_NAME_SD, CMD_RESETALL
STS_RESULT

“r” Recognized Speaker Dependent (custom commands), Password or training similar to
Speaker Dependent (custom commands) and Password commands

[1] Command position (0-31)
In replay to: CMD_RECOG_SD, CMD_TRAIN_SD
STS_SIMILAR

“s” Recognized Speaker Independent (pre-programmed commands) work or training a similar
Speaker Independent (pre-programmed commands) command

[1] Wordset indext (0-31)
In replay to: CMD_RECOG_SD, CMD_TRAIN_SD,CMD_RECOG_SI
STS_OUT_OF_MEM
“m” Memory Full Error
In replay to: CMD_GROUP_SD
STS_ID
“x” Provide firmware ID
[1] Version ID (0)
In replay to: CMD_ID

Argument Mapping

ARG_MIN
“@” Minimum argument value (-1)
ARG_MAX
“ ‘ “ Maximum argument value (-1)
ARG_ZERO
“A” Zero argument value

	Lloyd Edwinson S. Arellano
	Francis Mark Adriane G. Luna
	Aljon C. Santillan
	Bachelor of Science in Computer Engineering
	Mapúa Institute of Technology
	TABLE OF CONTENTS
	Abstract 12
	Introduction 12
	Methodology 13
	CHAPTER 4: CONCLUSION 31
	LIST OF TABLES
	LIST OF FIGURES
	Abstract
	PIC16F87X
	Devices Included in this Data Sheet:
	Pin Diagram
	Microcontroller Core Features:
	Up to 256 x 8 bytes of EEPROM Data Memory
	Oscillator Start-up Timer (OST)
	Peripheral Features:
	Pin Diagrams
	PDIP, SOIC
	PLCC
	RB3/PGM RB2
	RB1
	RB0/INT
	QFP
	RB2
	RB3/PGM
	7
	TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION
	TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION (CONTINUED)
	Some pins for these I/O ports are multiplexed with an
	WR Port
	VDD
	P
	3.1 PORTA and the TRISA Register
	TRIS Latch
	N
	WR TRIS
	VSS
	RD TRIS
	RD Port
	TTL Input Buffer
	Note 1: I/O pins have protection diodes to VDD and VSS.
	WR Port
	EXAMPLE 3-1: INITIALIZING PORTA
	WR TRIS
	RD TRIS
	RD Port
	VSS
	Schmitt Trigger Input Buffer
	TABLE 3-1: PORTA FUNCTIONS
	TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA
	VDD
	RBPU(2)
	Data Latch
	P Pull-up
	Data Bus
	I/O
	FIGURE 3-4: BLOCK DIAGRAM OF RB7:RB4 PINS
	VDD
	RBPU(2)
	TTL Input Buffer
	Data Bus
	Data Latch
	RD TRIS
	I/O
	WR TRIS
	TTL
	EN
	Schmitt Trigger
	RD Port
	RD TRIS
	CK
	Latch
	Buffer
	RD Port
	RB7:RB6
	In Serial Programming Mode
	Q1
	RD Port
	Q3
	TABLE 3-3: PORTB FUNCTIONS
	TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
	3.3 PORTC and the TRISC Register
	Port/Peripheral Select(2)
	TRIS
	RD TRIS
	Peripheral
	OE(3)
	RD Port
	CKE
	N
	Vss
	Schmitt
	Schmitt Trigger with SMBus levels
	FIGURE 3-5: PORTC BLOCK DIAGRAM
	SSPSTAT<6>
	Peripheral Data Out
	Data Bus
	WR
	VDD
	P
	I/O
	Port
	WR
	TRIS
	Peripheral
	OE(3)
	TRIS Latch
	N
	TABLE 3-5: PORTC FUNCTIONS
	TABLE 3-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC
	Parallax Say It Module (#30080)
	Features
	Key Specifications
	Application Ideas
	Precaution
	Using the Say It GUI Software
	Figure 1
	BASIC Stamp Editor Debug Terminal must be closed before selecting “Connect” in
	Say It GUI
	Serial port to use
	Connect Icon
	Figure 2
	Figure 3
	Testing Commands
	Built-in Speaker Independent Commands
	Trigger (0)
	Wordset 1
	Wordset 2
	Wordset 3
	Figure 4
	Test Group
	Figure 5
	Adding or Deleting Commands
	Figure 6
	Add
	Figure 7
	Train
	Figure 8
	Figure 9
	Figure 10
	Generating Code
	Generate
	Figure 11
	Figure 12
	Sample Application for the Boe-Bot® Robot
	Troubleshooting
	Q1. Keep getting a time-out error
	Q2. Can’t connect to my Say It Module
	Q3. Will not power up
	Device Information
	Specifications
	Pin Definitions
	Connection Diagrams
	This is the back view of the module, the connection pins are indicated on the silkscreen.
	5 VDC (Pin 10)
	Module Dimensions
	Communication Protocol
	Command Details
	Expected replies: STS_ID
	Status Details
	In replay to: CMD_BREAK while in training or recognition
	Argument Mapping

