eProsima RPC over REST

User Manual
Version 0.3.0

S eProsima

The Middleware Experts
eProsima © 2014

eProsima
Proyectos y Sistemas de Mantenimiento SL
6 . Ronda del poniente 2 — 12G
Q e ro S I I I I a 28760 Tres Cantos Madrid
Tel: + 34 91 804 34 48
info@eProsima.com — www.eProsima.com

Trademarks

eProsima is a trademark of Proyectos y Sistemas de Mantenimiento SL. All other
trademarks used in this document are the property of their respective owners.

License

eProsima RPC over REST is licensed under the terms described in the RPCREST_LICENSE
file included in this distribution.

Technical Support
e Phone: +34 91 804 34 48

e Email: support@eProsima.com

mailto:info@eProsima.com
mailto:support@eProsima.com
http://www.eProsima.com/

Contents

L INErOAUCTION. ..ot rre e e s 5
O N [0 T Q=T L ¥ o L= USRS 5
1.2 M@iN FRATUIES ... i s e e 6

2 BUIlding @n @PPliCatioN......ueeeeiieiiiiiirieeee e e e e e e e 7
2.1 Defining a set of remote ProCeAUIES.........cuviviiieiiiiiiie e 7
2.2 WADL syntax and mapping to IDL and CH+.......uvveeeeiieieeiiiieeeee e e eeeeeeeaaens 11

2.2.1 Simple Parameter tYPES. ..o eieieeeeee e 11
2.2.2 Parameter definition. ..o 11
2.2.3 Representation definition........ccccueeiiiiiii e 13
2.2.4 Method definition........cooieiieiieeee e 15
2.2.5 Resource definition........ccoceeiieriieiie e 16
2.2.6 Resources definition..........cccuieieerieiieene e e 16
2.2.7 Application definitioN.......c.ceiiiiiiie i 16
2.2, 8 EXAMIPIC i iiiiee ettt e e e st e e e st e e s e ta e e e e e e e e e nnnannnane 17
2.3 Generating specific remote procedure call support code......cccceeeeeeiiiiiiiiniiinnennne, 17
2.3.1 RPCRESTGEN command SYNTaX......cccuuieereeeiieiciiiiiieee e e e eeeccieerveeeee e e e e 17
2.3.2 SEIVEI SIUC...ciiuiiiiiiieete e 18
2.3.3 ClENt SIA...ciiuiiiiiteeetee et 18
2.4 Server impPlementation. ... e e e e e e e e e e e e e e e eeeeraaae 18
2L L APl et e e e e e e nreeeea 19
D A 3 - 4 Y o1 LT P UPPPTPPPRN 19
2.5 Client iMpPlementation.........ueii i a e e e e e e 20
2.5 L AP e e h et b et et e sttt e e ab e e e e nareeeennneeeea 20
I A o 11 1] o] [T 20

R Yo \VZ- [aTol<To [N olo o[l =T o1 43R 22

I I V= Yo T G =T] o Yo U 22
0 0 A o I o 1 = 1 o o 22
3.2 Threading SErVEr Strat@ZIeS....uuuuiiiiiiiiciirrreeeieeeeeiecrree e e e e e eeerrrre e e e e e e e s narraeeeeeeeeas 23
3.2.1Single thread StrategY.....cccuviiiiriiiie e 23
3.2.2 Thread POOI StrategY......cceiiiuiiieiiiieee ettt e et e e e e e e e e e e e s s snnnnnes 24
3.2.3 Thread per reqUESst StrateY......uuuieieiiicciiiiieie e e e e e e 24

4 Hello World @XamPle...... ettt e e e et e e e e e e e e ee e e e e e b een s 26

4.1 Writing the WADL file.....uueeie ettt 26

4.2 Generating SPeCIfiC COUB... i 26

4.3 Client implementation. ... 27
4.4 Server iMplementation. ... 28
4.5 BUIld @Nd EXECULE......eeiiiieiiieeeeieee ettt st e e e e e e s sabae e e s s s aaes 28

1 Introduction

eProsima RPC over REST is a high performance remote procedure call (RPC) framework.
It combines a software stack with a code generation engine to build services that will
efficiently work in several platforms and programming languages.

REST (Representational State Transfer) is an architectural style consisting of a
coordinated set of constraints applied to components, connectors, and data elements,
within a distributed hypermedia system. One can characterise RESTful applications by
conforming them with the REST principals and constraints.

eProsima RPC over REST supports RESTful as the communication engine to transmit the
remote procedure call requests and replies.

1.1 A quick example
You write a .WADL file like this:

<application xmlns="http://wadl.dev.java.net/2009/02">
<resources base="http://example.com/"/>
<resource path="Example">
<method name="GET" id="exampleMethod" />
</resource>
</resources>
</application>

Then you process the file with the rpcrestgen compiler to generate C++ code.
Afterwards, you use that code to invoke RESTful resources with the client proxy:

ProxyTransport *transport = new HttpProxyTransport(“http://example.com”);
ExampleProtocol *protocol = new ExampleProtocol();
ExampleResourceProxy *proxy = new ExampleResourceProxy(*transport, *protocol);

proxy->exampleMethod();

or to implement a server using the generated skeleton:

HttpServerTransport *transport = new
HttpServerTransport(“http://example.com”);
ExampleProtocol *protocol = new ExampleProtocol();
SingleThreadStrategy *single = new SingleThreadStrategy();
ExampleResourceServerImpl servant;
ExampleResourceServer *server =
new ExampleResourceserver(*single, *transport, *protocol, servant);

server->serve();

See section 4 (HelloWorld example) for a complete step by step example.

http://example.com/api
http://wadl.dev.java.net/2009/02

1.2 Main features

eProsima RPC over REST provides the developers with a high performance and reliable
communication engine (RESTful) to invoke remote procedures. It exposes these
features:

* Synchronous invocation: The synchronous invocation is the mostly common
used approach. It blocks the client’s thread until the reply is received from the
server.

» Different threading strategies for the server: These strategies define how the
server acts when a new request is received. The currently supported strategies
are:

o Single-thread strategy: Uses only one thread for every incoming request.

o Thread-pool strategy: Uses a fixed amount of threads to process the
incoming requests.

o Thread-per-request strategy: Creates a new thread for processing each new
incoming request.

* Complete RESTful Frameworks: Developers can use RPC over REST code within
their applications.

2 Building an application

eProsima RPC over REST allows the developer to easily implement a distributed
application using remote procedure invocations. In client/server paradigm, a server
offers a set of remote procedures that the client can remotely call. How the client calls
these procedures should be transparent.

For the developer, a proxy object represents the remote server, and this object offers
the remote procedures implemented by the server. In the same way, how the server
obtains a request from the network and how it sends the reply should also be
transparent. Hence, the developer just writes the behaviour of the remote procedures.

eProsima RPC over REST offers this transparency and facilitates the development.
The general steps to build an application are:
* Define a set of remote procedures using Interface Definition Language.

* Generate specific code for the remote procedures: a Client Proxy and a Server
Skeleton.

* Implement the server: filling the server skeleton with the behaviour of the
procedures.

* Implement the client: using the client proxy to invoke the remote procedures.

This section describes the basic concepts of these four steps that the developer has to
follow to implement a distributed application. The advanced concepts are described in
section 3 (Advanced concepts).

2.1 Defining a set of remote procedures

Web Application Description Language (WADL) is used by eProsima RPC over REST to
define the remote procedures that the RESTful server will offer to its clients. WADL is a
machine-readable XML" description of HTTP?-based web applications (typically REST
web services). The WADL complete specification can be consulted by following this link:
http://www.w3.org/Submission/wadl/

eProsima RPC over REST includes a Java application named rpcrestgen. This application
parses the WADL file and transforms it into an IDL (Interface Definition Language) file,
generating C++ code afterwards for the specific set of remote procedures that the
developer has defined. The rpcrestgen application will be described in section 2.3
(Generating specific remote procedure call support code).

WADL is designed to provide a description of every available resource, method, request
and response for a RESTful distributed system. RESTful is based on HTTP and uses it as
a transport, so the WADL members are HTTP components. We are now going to
describe the WADL features that are supported by eProsima RPC over REST.

1. Extensible Markup Language (XML) is a language that defines a set of rules for encoding documents in
a format that is both human and machine readable. It is based in the XML 1.0 Specification, produced by
the W3C (World Wide Web Consortium).

2. HyperText Markup Language (HTML) is the main markup language used for creating web pages and
other information that can be displayed in a web browser using hypertext (structured and linked text
documents).

http://www.w3.org/Submission/wadl/

Let's see an empty example:

<application xmlns="http://wadl.dev.java.net/2009/02">
<resources base="http://example.com/resources"/>

</application>

Every WADL file has an application tag with all the information regarding the remote
procedures, and then a tag named resources with a base API address. All the resource

names are relative to this address.

Let's add a simple resource:

<application xmlns="http://wadl.dev.java.net/2009/02">
<resources base="http://example.com/resources"/>
<resource path="customers">
<method name="GET" id="getCustomers" />
<method name="POST" id="postCustomer"/>
</resource>
</resources>
</application>

In the previous image, the resource http://example.com/resources/customers and two
HTTP methods (GET and POST) have been defined. We could have PUT and DELETE
HTTP methods as well. Note that id attributes are optional identifiers for the example.

WADL also supports embedded parameters inside paths, like it is shown in the
following example:

<application xmlns="http://wadl.dev.java.net/2009/02">
<resources base="http://example.com/resources"/>
<resource path="customers">
<method name="GET" id="getCustomers" />
<method name="POST" id="postCustomer"/>
<resource path="{customerId}">
<param required="true" type="xsd:int" style="template"
name="customerId"/>
<method name="GET" id="getCustomer" />
</resource>
</resource>
</resources>
</application>

In this case, we have a new resource http://example.com/resources/customers/
{customerld}, where customerld is an embedded parameter defined in the following
template param tag. As the customerld type is int, a valid URL for this resource would
be http://example.com/resources/customers/7. Note that we have another HTTP GET

method for this new resource.

When using HTTP you can annex parameters right after the URL, for example:
http://example.com/resources/customers?name=John&surname=Doe. In this case,
name and surname are known as query parameters.

http://example.com/resources/customer/7
http://example.com/resources/customer/7
http://example.com/resources/customer/7
http://example.com/resources/customer/7
http://example.com/resources/customer/7
http://example.com/resources/customer/7
http://example.com/resources/customer/7
http://example.com/resources/customer/7
http://example.com/resources/customer/7
http://example.com/resources/customer/7
http://example.com/resources/customers
http://example.com/resources/customer/
http://example.com/resources/customer/
http://example.com/resources/customer/
http://example.com/resources/customer/
http://example.com/api
http://wadl.dev.java.net/2009/02
http://example.com/resources/customers
http://example.com/api
http://wadl.dev.java.net/2009/02
http://example.com/api
http://wadl.dev.java.net/2009/02

This kind of parameters are defined this way:

<application xmlns="http://wadl.dev.java.net/2009/02">
<resources base="http://example.com/resources"/>
<resource path="customers">
<method name="GET" id="getCustomers">
<request>
<param name="name" type="xsd:string" style="query"/>
<param name="surname" type="xsd:string" style="query"/>
</request>
</method>
<method name="POST" id="postCustomer"/>
<resource path="{customerId}">
<param required="true" type="xsd:int" style="template"
name="customerId"/>
<method name="GET" id="getCustomer" />
</resource>
</resource>
</resources>
</application>

In this version, eProsima RPC over REST does not accept optional query parameters.

We have seen two types of parameters so far, but there is still another one to explain.
HTTP is usually used to send information inside its body (for example HTML
documents), so the RESTful methods support HTTP body parameters via the
representation tag. Each representation has an element attribute. This attribute refers
to the element describing the representation format.

For example, if our representation is in XML format, the element attribute should be an
element description inside an XSD? file. WADL can also include these files using the
grammars tag:

<application xmlns="http://wadl.dev.java.net/2009/02">
<grammars>
<include href="CustomerEntry.xsd"/>
</grammars>
<resources base="http://example.com/resources"/>
<resource path="customers">

<method name="POST" id="postCustomer">
<request>
<representation id="customerEntry"
mediaType="application/xml" element="ce:CustomerEntry"/>
</request>
</method>

</resource>
</resources>
</application>

We still need to describe the RESTful responses, which are very similar to body
parameters, as they both are in the HTTP body. Let's see them with another example:

3. XML Schema Definition (XSD), published as a W3C recommendation, is one of several XML schema
languages. It can be used to express a set of rules to which an XML document must conform in order to
be considered valid.

http://example.com/api
http://wadl.dev.java.net/2009/02
http://example.com/api
http://wadl.dev.java.net/2009/02

<application xmlns="http://wadl.dev.java.net/2009/02">
<grammars>
<include href="CustomerEntry.xsd"/>
<include href="Responses.xsd"/>
</grammars>
<resources base="http://example.com/resources"/>
<resource path="customers">

<method name="POST" id="postCustomer">
<request>
<representation id="customerEntry"
mediaType="application/xml" element="ce:CustomerEntry"/>
</request>
<response status="200">
<representation id="resultSet"
mediaType="application/xml" element="rs:ResultSet"/>
</response>
<response status="400">
<representation id="error"
mediaType="application/xml" element="rs:Error"/>
</response>
</method>

</resource>
</resources>
</application>

In this HTTP POST method, we have two possible responses: one with a ResultSet
element and another with an Error element. Both in XML format.

The current version of eProsima RPC over REST supports both XML and JSON* formats
for body parameters and responses, but dealing with them as strings. Parsing these
strings is the user's responsibility, so RPC over REST will ignore the include tags.

One more feature that WADL supports is to declare specific tags as references to the
global ones. We do not have to declare several times the same method, representation
or param that we use in multiple resources.

For this purpose we can use the href attribute as it is used in this example.

<application xmlns="http://wadl.dev.java.net/2009/02">

<resources base="http://example.com/resources"/>
<resource path="customers">

<method href="#postCustomer" />

</resource>
</resources>

<method name="POST" id="postCustomer">
<request>
<representation href="#customerEntry" />

</request>

</method>

4. JSON or JavaScript Object Notation is an open source standard format that uses human-readable text
to transmit data objects consisting of attribute-value pairs.

10

http://example.com/api
http://wadl.dev.java.net/2009/02
http://example.com/api
http://wadl.dev.java.net/2009/02

<representation id="customerEntry" mediaType="application/xml"
element="ce:CustomerEntry"/>
</application>

2.2 WADL syntax and mapping to IDL and C++

Embedded URL (Uniform Resource Locator) parameters and query parameters must
not be complex types, since they are part of the URL, and they must have an exact
representation as a string.

Body parameters and requests can be complex types, but we are going to treat them as
their string representation, so RPC over REST does not support any kind of complex
type in the current version.

2.2.1 Simple parameter types

eProsima RPC over REST supports a variety of simple types that the developer can use
in the method query and embedded parameters. The following table shows the
supported simple types, how they are translated into IDL and what the rpcrestgen
application generates in C++ language.

TABLE 1: SPECIFYING SIMPLE TYPES IN WADL FOR C++
WADL type IDL type Sample C++ Output Generated by rpcrestgen

xsd:string string Std::string string member
/* maximum length = (255) */
xsd:byte char char char_member
xsd:unsignedByte octet uint8 t octet member
xsd:short short intl6_t short _member
xsd:unsignedShort unsigned short uintl6 t ushort member
xsd:int Long int32 t long _member
xsd:unsignedint unsigned long uint32 t ulong member
xsd:long Long long int64 t llong member
xsd:unsignedLong unsigned long long |uint64 t ullong member
xsd:float float float float_member
xsd:double double double double member
xsd:boolean boolean bool boolean member

2.2.2 Parameter definition

As we saw in section 2.1 (Defining a set of remote procedures), the supported param
tags can be children either of a resource or a request. These are the supported
attributes and values:

Attribute Meaning

id Optional. May be used to refer to this parameter elsewhere through href attribute.

name Required name of the parameter.

style Parameter style. Must be template for embedded parameters and query for query parameters.
type Parameter type. Supported types have been seen in the previous subsection.

href Used for parameter references. Refers to a global parameter id attribute.

In the IDL file, each WADL query parameter will become a function parameter, and
every template parameter will be part of a structure containing all the embedded
parameters.

This structure will finally be the first parameter of every method which is affected by
these embedded parameters mentioned before.

11

2.2.3 Representation definition

A representation may be a body parameter or a response, and it must be a child of a
request or a response tag. Its attributes are:

Attribute Meaning

id Optional. May be used to refer to this representation elsewhere through href attribute.
mediaType Media type of the representation. Supported types are application/xml and application/json
lelement Qualified name of the root element as described in the grammars tag.

href Used for representation references. Refers to another representation id attribute.

In the IDL file, representation tags are translated depending on their parents.

A request representation can have several formats. We support both XML and JSON
formats, so request representations will become the members inside an IDL union. A
union is a type that specifies which of a number of permitted types may be stored in its
instances.

The generated IDL union for a Post method will be:

union PostRequest switch(long)
{
case 1:
string xmlRepresentation;
case 2:
string jsonRepresentation;
}s

If a method has a request representation, this union will be its last parameter.

When this union is translated to C++, a class is generated. It has three members: a
discriminant named _d and all the union possibilities. The member in use is indicated
by the discriminant. It would be like it is shown in the following example:

class PostRequest {
public:
/** Constructors **/
PostRequest();

/** Discriminator **/
int32_t _d();
void _d(int32_t x);

/** Getter and Setters **/
std::string xmlRepresentation();
std::string jsonRepresentation();

private:
int32_t m__d;
std::string m_xmlRepresentation; /* maximum length = (255) */
std::string m_jsonRepresentation; /* maximum length = (255) */

1

12

A response representation will be a little bit different. We support XML and JSON
responses, but it could also be empty, and every response has an HTTP status code.

An IDL response representation for a method named post could be this set of unions
and structures:

struct EmptyPostResponse

{
long status;
}s
struct XMLPostResponse
{
long status;
string xmlRepresentation;
}s
struct JSONPostResponse
{
long status;
string jsonRepresentation;
}s
union PostResponse switch(long)
{
case 0:
EmptyPostResponse emptyPostResponse;
case 1:
XMLPostResponse xmlPostResponse;
case 1:
JSONPostResponse jsonPostResponse;
}s

When this set of unions and structures is translated to C++, a set of classes are
generated. The generated classes are shown in the following example:

class EmptyPostResponse

{
public:
/** Constructors **/
EmptyPostResponse();
/** Getters and Setters **/
int32_t status();
void status(int32_t x);
private:
int32_t m_status;
}s
class XMLPostResponse
{
public:
/** Constructors **/

XMLPostResponse();

13

/** Getters and Setters **/
int32_t status();
std::string xmlRepresentation();

private:
int32_t m_status;
std::string m_xmlRepresentation; /* maximum length = (255) */

}s
class JSONPostResponse
{
public:
/** Constructors **/
JSONPostResponse();
/** Getters and Setters **/
int32_t status();
std::string jsonRepresentation();
private:
int32_t m_status;
std::string m_jsonRepresentation; /* maximum length = (255) */
}s

class PostResponse {
public:
/** Constructors **/
PostResponse();

/** Discriminator **/
int32_t _d();
void _d(int32_t x);

/** Getter and Setters **/
EmptyPostResponse emptyPostResponse();
XMLPostResponse xmlPostResponse();
JSONPostResponse jsonPostResponse();

private:
int32_t m__d;
EmptyPostResponse m_emptyPostResponse;
XMLPostResponse m_xmlPostResponse;
JSONPostResponse m_jsonPostResponse;

}s

2.2.4 Method definition

This tag describes the input and output from an HTTP protocol method that may be
applied to a resource. Its attributes are:

14

Attribute Meaning

name HTTP method. Can be GET, POST, PUT or DELETE.
id Optional. May be used to refer to this method elsewhere through href attribute.
href Used for method references. Refers to another method id attribute.

A method tag has the following child elements:

* Arequest tag describing the input as a collection of param tags and an optional
representation.

* Zero or more response tags describing the possible method outputs.

Note that WADL methods inherit embedded URL parameters from their parent
resources.

In the IDL file, the method will become a function, and its parameters and response
types have already been explained with param and response tag examples.

2.2.5 Resource definition
A resource tag describes a set of resources, each one identified by a URI. It could have
the following attribute:

Attribute Meaning
path Provides a URI relative to its parent URI..

A resource tag might have zero or more child resource tags. Each child resource inherits
its parent path and its template parameters.

On the IDL file, every resource will become an interface.

2.2.6 Resources definition
The resources tag acts as a container for the resources provided by the application. This
element has one attribute:

Attribute Meaning
base Base URI for the application.

This tag may have zero or more resource tags, which inherit the base URI.

2.2.7 Application definition

The application tag contains the whole API for the distributed system. It has a
resources child tag and zero or more global param, representation or resource tags.

2.2.8 Example

WADL syntax described in this section is shown through an example. This example is
called Bank.wadl and its content is:

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://wadl.dev.java.net/2009/02">
<resources base="http://example.com/resources/">
<resource path="account/{accountNumber}">
<param name="accountNumber" type="xsd:int" style="template" />
<method name="POST" id="getAccountDetails">
<request>
<representation href="#password" />
<param href="#user" />
</request>
<response status="200">
<representation href="#resultSet" />
</response>
<response status="400">
<representation href="#errorMessage" />
</response>
</method>
</resource>
</resources>
<param id="user" name="user" type="xsd:string" style="query" />
<representation id="password" mediaType="application/xml"
element="Password" />
<representation id="resultSet" mediaType="application/xml"
element="AccountDetails" />
<representation id="errorMessage" mediaType="application/xml"
element="ErrorMessage" />
</application>

This example will be used as a base to other examples in the following sections.

2.3 Generating specific remote procedure call support code

Once the API is defined in a WADL file, we need to generate the code for a client proxy
and a server. eProsima RPC over REST provides the rpcrestgen tool for this purpose.
This tool parses the WADL file, converting it into an IDL file and generating the
corresponding supporting C++ code.

2.3.1 RPCRESTGEN command syntax
The general syntax is:

‘rpcrestgen [options] <WADL file> <WADL file> ...

Where the options could be:

Option Description

-help Shows help information

-version Shows the current version of eProsima RPC over REST

-ppPath <directory> Location of the C/C++ preprocessor.

-ppDisable Disables the C/C++ preprocessor. Useful when macros or
includes are not used.

-example <platform> Creates a solution for a specific platform. This solution

16

will be used by the developer to compile both client and
server.

Possible values: i86Win32VS2010, x64Win64VvS2010,
i86Linux2.6gcc4.4.5, x64Linux2.6gcc4.4.5

-replace Replaces existing generated files.
-d <path> Sets an output directory for generated files
-t <temp dir> Sets a specific directory as a temporary directory

The rpcrestgen application generates several files that will be described in this section.
Their names are generated using the WADL file name. The <wApLname> tag has to be
substituted by the WADL file name.

2.3.2 Server side

rpcrestgen generates C++ source files with the definitions of the remote procedures and
C++ header files with the declaration of these remote procedures. These files are the
skeletons of the servants that implement the defined resources. The developer can use
each definition in the source files to implement the behaviour of the remote
procedures. These files are <wADLName>ServerImpl.h and <WADLName>ServerImpl.cxx.
rpcrestgen also generates a C++ source file with an example of a server application and
a server instance. This file is <wADLName>ServerExample. cxx.

2.3.3 Client side

rpcrestgen generates a C++ source file with an example of a client application and how
this client application can call a remote procedure from the server. This file is
<WADLName>ClientExample.cxx.

2.4 Server implementation

After the execution of rpcrestgen, two files named <wADLName>ServerImpl.cxx and
<WADLName>ServerImpl.h Will be generated. These files are the skeleton of the resources
offered by the server. All the remote procedures are defined in these files, and the
behaviour of each one has to be implemented by the developer. For the remote
procedure getAccountDetails seen in our example, the generated definition is:

GetAccountDetailsResponse
account_accountNumberResourceServerImplExample: :getAccountDetails(
/*in*/ const account_accountNumber& account_accountNumber,
/*in*/ const std::string& user,
/*in*/ const GetAccountDetailsRequest& GetAccountDetailsRequest)

GetAccountDetailsResponse getAccountDetails_ret;

return getAccountDetails_ret;

The code generated by rpcrestgen also contains the server classes. These classes are
implemented in the files <wADLName>Server.h and <wADLName>Server.cxx. They offer the
resources implemented by the servants. When an object of these classes defined in
<WADLName>Server.h is created, a connection can be established between the proxy and
the server.

17

2.4.1 API
Using the suggested WADL example, the API created for this class is:

class account_accountNumberResourceServer : public eprosima::rpc::server::Server

{

public:

account_accountNumberResourceServer(
eprosima::rpc::strategy::ServerStrategy &strategy,
eprosima::rpc::transport::ServerTransport &transport,
eprosima: :rpc::protocol: :BankProtocol &protocol,
account_accountNumberResourceServerImpl &servant

)
virtual ~account_accountNumberResourceServer();

private:
account_accountNumberResourceServerImpl & impl;

};

The server provides a constructor with four parameters. The strategy parameter
expects a server’s strategy that defines how the server has to manage incoming
requests. Server strategies are described in section 3.2 (Threading server strategies).

The second parameter expects the network transport that will be used to establish the
connections with the proxies. For RESTful applications, it will be an
HTTPServerTransport. The third parameter is the protocol. It's generated by rpcrestgen
and it's the class that deserializes received data and gives it to the user
implementation. Finally, the fourth parameter is the server skeleton implemented by
the user, for example by filling the empty example given.

2.4.2 Example

Using the suggested WADL example, the developer can create a server in the following
way:

unsigned int threadPoolSize = 5;

ThreadPoolStrategy *pool = NULL;

BankProtocol *protocol = NULL;

HTTPServerTransport *transport = NULL;

account_accountNumberResourceServer *server = NULL;
account_accountNumberResourceServerImplExample servant;

try
{
pool = new ThreadPoolStrategy(threadPoolSize);
protocol = new BankProtocol();
transport = new HTTPServerTransport("192.168.1.14:8080");
server = new account_accountNumberResourceServer(*pool, *transport,
*protocol, servant);
server->serve();

}

catch(InitializeException &ex)

{
std::cout << ex.what() << std::endl;
return -1;

}

18

2.5 Client implementation

The code generated by rpcrestgen contains classes that act like proxies of the remote
servers. These classes are implemented in the files <wADLName>Proxy.h and
<WADLName>Proxy.cxx. The proxies offer the server resources and the developer can
directly invoke its remote procedure.

2.5.1 API
Using the suggested WADL example, the API of this class is:

class account_accountNumberResourceProxy : public eprosima::rpc::proxy::Proxy

{
public:

account_accountNumberResourceProxy (
eprosima::rpc::transport::ProxyTransport &transport,
eprosima: :rpc::protocol: :BankProtocol &protocol);

virtual ~account_accountNumberResourceProxy();

GetAccountDetailsResponse getAccountDetails(
/*in*/ const account_accountNumber& account_accountNumber,
/*in*/ const std::string& user,
/*in*/ const GetAccountDetailsRequest& GetAccountDetailsRequest);

}s

The proxy provides a constructor. It expects the network transport that will be used to
establish the connection with the server as a parameter. It must be an instance of
HTTPProxyTransport. The second parameter is the protocol. Again, it is generated by
rpcrestgen and its duty is to serialize and deserialize protocol data.

The proxy provides the remote procedures to the developer. Using the suggested
WADL, our proxy will provide the remote procedure getAccountDetails.

2.5.2 Example

By using the suggested WADL example, the developer can invoke getAccountDetails
procedure in the following way:

BankProtocol *protocol = NULL;
ProxyTransport *transport = NULL;
account_accountNumberResourceProxy *proxy = NULL;

// Creation of the proxy for interface "account_accountNumberResource".
try

{
protocol = new BankProtocol();
transport = new HTTPProxyTransport("127.0.0.1:8080");
proxy = new account_accountNumberResourceProxy(*transport, *protocol);
}
catch(InitializeException &ex)
{
std::cout << ex.what() << std::endl;
return -1;
}

// Create and initialize parameters.
account_accountNumber account_accountNumber;

19

std::string user;
GetAccountDetailsRequest GetAccountDetailsRequest;

// Create and initialize return value.
GetAccountDetailsResponse getAccountDetails_ret;

// Call to remote procedure "getAccountDetails".

try
{

getAccountDetails_ret =

proxy->getAccountDetails(account_accountNumber,
user, GetAccountDetailsRequest);

}
catch(SystemException &ex)
{

std::cout << ex.what() << std::endl;
}

20

3 Advanced concepts

3.1 Network transports

eProsima RPC over REST provides several network transports, but RESTful needs HTTP
to run.

3.1.1 HTTP Transport

The purpose of this transport is to create a keep-alive TCP connection between a proxy
and a server that will communicate through HTTP. This transport is implemented by
two classes. One is used by server proxies and the other one is used by servers.

HttpProxyTransport:

HttpProxyTransport class implements an HTTP transport that must be used by proxy
servers.

class HttpProxyTransport : public ProxyTransport
{

public:
HttpProxyTransport(const std::string &serverAddress);
virtual ~HttpProxyTransport();

private:
TCPProxyTransport m_tcptransport;

s

This class has a constructor with a parameter that receives the server URL to connect
to.

Using our suggested WADL example, the developer can create a proxy that connects to
a specific server:

BankProtocol *protocol = NULL;
ProxyTransport *transport = NULL;
account_accountNumberResourceProxy *proxy = NULL;

// Creation of the proxy for interface "account_accountNumberResource".
try

{
protocol = new BankProtocol();
transport = new HttpProxyTransport("“192.168.1.14:8080");
proxy = new account_accountNumberResourceProxy(*transport,
*protocol);
}
catch(InitializeException &ex)
{
std::cout << ex.what() << std::endl;
return -1;
}

21

HttpServerTransport:

HttpServerTransport class implements an HTTP transport that must be used by servers.

class HttpServerTransport : public ServerTransport
{
public:
HttpServerTransport(const std::string &to_connect);
virtual ~HttpServerTransport();

private:
TCPServerTransport m_tcptransport;

1

This class has a constructor which receives a parameter representing the IP address
and port that the server will be using to read incoming requests.

By using our suggested WADL example, the developer can create a server that will wait
for proxy requests this way:

unsigned int threadPoolSize = 5;
ThreadPoolStrategy *pool = NULL;
BankProtocol *protocol = NULL;
HttpServerTransport *transport = NULL;
account_accountNumberResourceServer *server = NULL;
account_accountNumberResourceServerImplExample servant;
try
{
pool = new ThreadPoolStrategy(threadPoolSize);
protocol = new BankProtocol();
transport = new HttpServerTransport("192.168.1.14:8080");
server = new account_accountNumberResourceServer(*pool, *transport,
*protocol, servant);
server->serve();
}
catch(InitializeException &ex)
{
std::cout << ex.what() << std::endl;
return -1;
}

3.2 Threading server strategies

RPC over REST library offers several strategies that the server may use when a request
arrives. This subsection describes these strategies.

3.2.1 Single thread strategy

This is the simplest strategy, in which the server only uses one thread for doing the
request management. In this case the server only executes one request at the same
time. The thread used by the server to handle the request is the REST reception thread.
To use Single Thread Strategy, create the server providing the constructor with a
SingleThreadStrategy object.

22

SingleThreadStrategy * single = NULL;

BankProtocol *protocol = NULL;

HTTPServerTransport *transport = NULL;
account_accountNumberResourceServer *server = NULL;
account_accountNumberResourceServerImplExample servant;

try
{
single = new SingleThreadStrategy();
protocol = new BankProtocol();
transport = new HTTPServerTransport("“192.168.1.14:8080");
server = new account_accountNumberResourceServer(*single, *transport,
*protocol, servant);
server->serve();

}

catch(InitializeException &ex)

{
std::cout << ex.what() << std::endl;
return -1;

}

3.2.2 Thread Pool strategy

In this case, the server manages a thread pool that will be used to process the
incoming requests. Every time a request arrives, the server assigns it to a free thread
located in the thread pool.

To use Thread Pool Strategy, create the server providing the constructor with a
ThreadPoolStrategy object.

unsigned int threadPoolSize = 5;

ThreadPoolStrategy *pool = NULL;

BankProtocol *protocol = NULL;

HTTPServerTransport *transport = NULL;
account_accountNumberResourceServer *server = NULL;
account_accountNumberResourceServerImplExample servant;

try
{
pool = new ThreadPoolStrategy(threadPoolSize);
protocol = new BankProtocol();
transport = new HTTPServerTransport("192.168.1.14:8080");
server = new account_accountNumberResourceServer(*pool, *transport,
*protocol, servant);
server->serve();

}

catch(InitializeException &ex)

{
std::cout << ex.what() << std::endl;
return -1;

}

3.2.3 Thread per request strategy
In this case, the server will create a new thread for each new incoming request.

To use the Thread per request Strategy, create the server providing it with a
ThreadPerRequestStrategy object in the constructor method.

23

ThreadPerRequestStrategy * perRequest = NULL;
BankProtocol *protocol = NULL;

HTTPServerTransport *transport = NULL;
account_accountNumberResourceServer *server = NULL;
account_accountNumberResourceServerImplExample servant;

try
{
perRequest = new ThreadPerRequestStrategy();
protocol = new BankProtocol();
transport = new HTTPServerTransport("192.168.1.14:8080");
server = new account_accountNumberResourceServer(*perRequest,
*transport,
*protocol, servant);
server->serve();
}
catch(InitializeException &ex)
{
std::cout << ex.what() << std::endl;
return -1;
}

24

4 Hello World example

In this section an example on how to use this library is explained step by step. In this
example, only one remote procedure is defined. A client can invoke this remote
procedure by passing a string with a name as a parameter. The server returns a new
string that appends the name to a greeting sentence.

4.1 Writing the WADL file

Define a simple resource named Helloworld with a method named hello. Store this
WADL definition in a file named Helloworld.wadl:

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://wadl.dev.java.net/2009/02">
<resources base="http://example.com/resources/">
<resource path="HelloWorld">
<method name="GET" id="hello">
<request>
<param name="name" type="xsd:string" style="query"/>
</request>
<response status="200">
<representation id="helloWorldResponse"
mediaType="application/xml" element="Response" />
</response>
</method>
</resource>
</resources>
</application>

4.2 Generating specific code

Open a command prompt and go to the directory containing Helloworld.wadl file. If you
are running this example in Windows, type in and execute the following line:

‘rpcrestgen -example x64Win64VS2010 HelloWorld.wadl

If you are running it in Linux, execute this one:

‘rpcrestgen -example x64Linux2.6gcc4.4.5 HelloWorld.wadl ‘

Note that if you are running this example in a 32-bit operating system you have to use
-example i86Win32V52010 (i86Linux2.6gcc4.4.5 in Linux) instead.

This command translates the WADL file into an IDL file. It also generates the client stub
and the server skeletons, as well as some project files designed to build your
HelloWorld example.

In Windows, a Visual Studio 2010 solution will be generated, named rpcsolution-
<target>.sln, being <target> the chosen example platform. This solution is composed
by five projects:

- HelloWorld, with the common classes of the client and the server, like the
defined types and the specific communication protocol

25

- HelloWorldServer, with the server code

- HelloWorldClient, with the client code.

- HelloWorldServerExample, with a usage example of the server, and the

implementation skeleton of the RPCs.

- HelloWorldClientExample, with a usage example of the client

In Linux, on the other hand, it generates a makefile with all the required information to
compile the solution.

4.3 Client implementation

Edit the file named HelloworldClientExample.cxx. In this file, the code for invoking the
hello RPC using the generated proxy will be generated. You have to add two more
statements: one to set a value to the remote procedure parameter and another to
print the returned value. This is shown in the following example:

int main(int argc, char **argv)

{

HelloWorldProtocol *protocol = NULL;
ProxyTransport *transport = NULL;
HelloWorldResourceProxy *proxy = NULL;

// Creation of the proxy for interface "HelloWorldResource".
try
{

protocol = new HelloWorldProtocol();

transport = new HTTPProxyTransport("127.0.0.1:8080");

proxy = new HelloWorldResourceProxy(*transport, *protocol);

}

catch(InitializeException &ex)

{
std::cout << ex.what() << std::endl;
return -1;

}

// Create and initialize parameters.
std::string name = "Richard"; // Set the remote procedure parameter

// Create and initialize return value.
HelloResponse hello_ret;

// Call to remote procedure "hello".
try
{

hello_ret = proxy->hello(name);

if(hello_ret._d() == 1) {
std::cout << "HTTP Status: " <«
hello_ret.xmlHelloResponse().status() << std::endl;
std::cout << "HTTP Response: " <<
hello_ret.xmlHelloResponse().xmlRepresentation() << std

}
}
catch(SystemException &ex)
{
std::cout << ex.what() << std::endl;
}

::endl;

26

delete(proxy);
delete(transport);
delete(protocol);

return 0;

4.4 Server implementation
rpcrestgen creates the server skeleton in the file HelloworldServerImplExample.cxx. The
remote procedure is defined in this file and it has to be implemented.

In this example, the procedure returns a new string appended to a greeting sentence.
Open the file and copy this code for implementing such behaviour:

#include "HelloWorldServerImplExample.h"

HelloResponse HelloWorldResourceServerImplExample::hello(/*in*/ std::string &
name)

{

HelloResponse hello_ret;

hello_ret._d() = 1; // 1 -> XML representation

hello_ret.xmlHelloResponse().status(200); // 200 -> HTTP OK

hello_ret.xmlHelloResponse().xmlRepresentation("<Response>Hello “ + name +
“l</Response>");

return hello_ret;

It's important for the developer to know how to fill the <Method>Response union, being
<Method> the name of out method. We support empty responses, XML responses and
JSON responses. First, we have to fill the discriminator, _d. We will use 0 for empty
responses, 1 for XML and 2 for JSON. Then, depending on our discriminator, we will fill
one of the following members:

® <Method>Response.empty<Method>Response
® <Method>Response.xml<Method>Response

® <Method>Response.json<Method>Response

All of them are structures, and they have a numeric status member, where the
developer must write the HTTP status code. xml<Method>Response also has a std::string
data type called xmlRepresentation, while in json<Method>Response we can find a
std::string named jsonRepresentation.

4.5 Build and execute

To build your code using Visual Studio 2010, make sure you are in the Debug (or
Release) profile, and then build it (F7). Now go to <example dir>\bin\x64Win64VS2016
directory and execute HelloworldServerExample.exe. You will get the message:

‘INFO<eprosima::rpc::server::Server::server>: Server 1is running

27

Then launch HelloworldClientExample.exe. You will see the result of the remote
procedure call:

HTTP Status: 200
HTTP Response: <Response>Hello Richard!</Response>

This example was created statically. To create a set of DLLs containing the protocol and
the structures, select the Debug DLL (or Release DLL) profile and build it (F7). Now, to
get your DLL and LIB files, go to <example dir>\objs\x64Win64vs2016 directory. You can
now run the same application dynamically using the .exe files generated in
<example dir>\bin\x64Win64vs2010, but first you have to make sure your .dll location
directory is appended to the PATH environment variable.

To build your code in Linux use this command:

make -f makefile_x64Linux2.6gcc4.4.5

No go to <example dir>\bin\x64Linux2.6gcc4.4.5 directory and execute the binaries as it
has been described for Windows.

28

	1 Introduction
	1.1 A quick example
	1.2 Main features

	2 Building an application
	2.1 Defining a set of remote procedures
	2.2 WADL syntax and mapping to IDL and C++
	2.2.1 Simple parameter types
	2.2.2 Parameter definition
	2.2.3 Representation definition
	2.2.4 Method definition
	2.2.5 Resource definition
	2.2.6 Resources definition
	2.2.7 Application definition
	2.2.8 Example

	2.3 Generating specific remote procedure call support code
	2.3.1 RPCRESTGEN command syntax
	2.3.2 Server side
	2.3.3 Client side

	2.4 Server implementation
	2.4.1 API
	2.4.2 Example

	2.5 Client implementation
	2.5.1 API
	2.5.2 Example

	3 Advanced concepts
	3.1 Network transports
	3.1.1 HTTP Transport

	3.2 Threading server strategies
	3.2.1 Single thread strategy
	3.2.2 Thread Pool strategy
	3.2.3 Thread per request strategy

	4 Hello World example
	4.1 Writing the WADL file
	4.2 Generating specific code
	4.3 Client implementation
	4.4 Server implementation
	4.5 Build and execute

