Chandler/May, Inc.

CMI

125 West Park Loop
Huntsville, AL 36806
Phone 256.722.0175
Fax 256.722.0144

VxWorks Device Driver

User's Manual

VXWorks Device Driver Software for the

General Sandards PMC-6DI

hosted on Power PC and 80x86 Processors

Document number: 9005005 Revision: 10 Date: 8/11/99
Engineering Approval: Date:

Quality Representative Date:
Approval:

PMC-6SDI VxWorks Device Driver User’'s Manual

Adnomedgments

Copyright & 1999, Chandler/May, Inc. (CMI)

ALL RIGHTSRESERVED. The Purchasea of the GSC PMC-6SDI device driver may use or modify in source
form the subject software, but not to re-market it or distribute it to outside agencies or separate internal
company divisions. The software, however, may be embedded in their own distributed software. Inthe
event the Purchaser's customers require GSC PMC-6SDI device driver source code, then they would have
to purchase their own copy of the GSC PMC-6SDI device driver. CMI makes no warranty, either expressed
or implied, including, but not limited to, any implied warranties of merchantability or fitness for a particular
purpose regarding this software and makes such software available solely on an "as-is" basis. CMI
reserves the right to make changes in the GSC PMC-6SDI device driver design without reservation and
without notification to its users. This document may be copied for the Purchaser's own internal use but not
tore-market it or distribute it to outside agencies or separate internal company divisions. |If this document
isto be copied, all copies must be of the entire document and all copyright and trademark notifications
must remain intact. The material in this document isfor information only and is subject to change without
notice. While reasonable efforts have been made in the preparation of this document to assureits
accuracy, CMI assumes no liability resulting from errors or omissionsin this document, or from the use of
the information contained herein.

CMI, Chandler/May, Inc. logo are trademarks of CMI.

Forceisaregistered trademark of Force Computers. Inc.

GSC and PMC-6SDI are trademarks of General Standards Corporation
Motorola and the Motorola symbol are registered trademark of Motorola, Inc.
PLX and PLX Technology are trademarks of PLX Technology, Inc.

PowerPC is atrademark of IBM Corporation.

VxWorks and Wind River Systems are registered trademarks of Wind River Systems, Inc.

CMI

August 11, 1999 1

PMC-6SDI VxWorks Device Driver User's Manual

L SCOPE....o R R bR 3
2 HARDWARE OVERVIEW ... s 3
3 REFERENCED DOCUMENTS......co i s st 4
4 MAKING THE DEVICE DRIVERcsiiiniriiniiiiii s st ssssens 4

5.1

5.2

53

5.4

55

56
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8
5.6.9
5.6.10 CALIBRATION MODE.......ooosoceeeooessecceeesssssceeeesesssceeesssssseseessseseseessssssesssssssseeeeessssseesesssssseeeeen
3o R TNy ==t =0 = o =Y/ = N SO
5.6.12 INPUT_DATA FORMAT
5.6.13 BOARD_ROLE....
5.6.14 SYNCH_CHANNELSooooooooeceeeeseseceeesssseceeesssssceeesssssseeeesssssoeeeen
5.6.15 ENABLE_PCI_INTERRUPTS......oooosooceeosssssceessesssceeesssssseesessssssseeesssssessessssseseesssssesesssssseeeeen
5.6.16 DISABLE_PCI_INTERRUPTS.....oooosooceeeesssscceeesesssceeesssssseesesssssseseeesssssesssssssseeeesssssesesssssseeeeen
= A TN =T e 1) SO
5.6.18 VOLTAGE_RANGE......
5.6.19 AUTO PASS............
5.6.20 CHECK_CHANNELS
5.6.21 BUFFER STATUS FLAG...oooiooooooosooceeessssoeeesssssseeesssssseessessseseseessssssessssssssseeeesssssesesssssseeeeen
5.6.22 ASSIGN_RATES 1
5.6.23 ASSIGN_RATES 2
5.6.24 SET_CHANO_DIVISOR
5.6.25 SET_CHANL DIVISOR
5.6.26 SET_CHAN2 DIVISOR
5.6.27 SET_CHAN3 DIVISOR
5.6.28 SET_CHAN4 DIVISOR
5.6.29 SET_CHAN5 DIVISOR
5.6.30 SET_RATE_GEN_A
5.6.31 SET _RATE GEN B
5.6.32 DISABLE BUFFER INPUT ...cooooooooeceeeeesssecceensssssceeesssssseeeessssseeeen

o I = V= W == 18] = = = = N =0 o
SR R o I =\ 0 = 0 = = = =
5.6.35 SET_THRESHOLD ..ooooooeeeeeeeeeeeessseceeenessesceeesssssseeesssssseeeessssseeeee
5.6.36 CLEAR INT_REQUEST ...ooossioceeeesssecceeeessssceessssssceeesssssseeeeessssseeeen

»

CM August 11, 1999 2

PMC-6SDI VxWorks Device Driver User's Manual

1 Scope

The purpose of this document is to describe how to interface with the PMC-6SDI VxWorks
Device Driver developed by Chandler/May, Incorporated (CMI). This software provides the
interface between "Application Software" and the 6SDI Board. The interface to this board is at
the I/O system levd. It requires no knowledge of the actual board addressing of control/data
register locations. It does, however, require some knowledge of the individua bit
representations for most control/data registers on the device.

The 6SDI Driver Software executes under control of the VxWorks operating syssiem. The
63Dl isimplemented as a standard VxXW orks device driver writtenin the ‘C’ programming
language. The 6SDI Driver Software is designed to operate on CPU boards containing
MPC603, MPC604, and MPC750 processors aswell as VME CPU boards containing
80x86 processors with the same bus interface hardware as PowerPC boards. Examples are
the Force PPC/PowerCore-6604 CPU board, the Motorola MVME1600, MV M E2300,
MVME2400, MV ME2600, and MVMEZ2700 series boards, and the SCI JTT 686 CPU
board.

2 Hardware Overview

The Genera Standards Corporation (GSC) 6SDI board is a sngle-width andog input interface
that fitsinto a PCl Mezzanine Card dot. This board provides 6 16-hit andog input channds.
These channels can be customized as sSngle-ended or differentia input channels via software
configuration. Each channel can be controlled by separate clock rates or can be synchronized
to perform at the samerate. Because the board is capable of clock synchronization, it is
possible to connect multiple boards daisy-chained together. 1t dso provides for minimum off-
line maintenance by providing calibration and sef-testing functions.

The 6SDI board includes two rate generators and aDMA controller. Each rate controller is
provided to control the rates at which input channels are scanned. The DMA transfers are
supported when the board is acting as the bus madter.

The configuration of the interrupting capability of the 6SDI board is described in the hardware
manua for the board. The 6SDI Device Driver must be used correctly in accordance with the
hardware configuration in order to provide congstent results.

CMI

August 11, 1999 3

PMC-6SDI VxWorks Device Driver User's Manual

3 Referenced Documents

The following documents provided reference materia used in the development of this design:

PMC-6SDI 16-Bit, 6-Channd Sigma-Delta Andog Input PMC Board User’s Manua
— Revison 3, Generd Standards Corporation.

PLX Technology, Inc. PCI 9080 PCI Bus Master Interface Chip data sheet.
Motorola MV ME1603/1604 Single Board Computer Programmer’ s Reference Guide.

Motorola MV ME2300-Series VME Processor Module Programmer’ s Reference
Guide.

Motorola MVME2600/2700 Single Board Computer Programmer’ s Reference Guide.

Force PPC/PowerCore-6603/4 Technicd Reference Manud.

4 Making the Device Driver

In order to use the 6SDI Device Driver for aparticular target CPU platform, the driver object
filesmust be built by “making” or compiling the software modules. The object modules are
those that are loaded by the VxWorks target processor and contain functions that can then be
executed. The Wind River Tornado environment makes this process easy with one smple
command: make. make uses afile, caled a makefile, which tells the devel opment system
which source modules are to be compiled, the parameters and options to use when compiling,
and any other miscellaneous file operations a user may need to build a particular system of
object modules. The makefile included contains several Board Support Package dependent
switches that must be defined correctly for successful compilation and use. The user isonly
required to set the BSP variable in the makefile. Once BSP is set correctly, the user can then
begin compiling by executing make.

The modules in the make file should begin compiling and the display should reflect a successful
compilation of al modules.

The output files from the build procedure should be:
6sdi_drv.o Rel ocatabl e/l oadable module for the device driver.

6sdi_menu.o Relocatabl e/l oadable module for the sample menu tool.

CMI

August 11, 1999 4

PMC-6SDI VxWorks Device Driver User's Manual

5 Driver Interface

The 6SDI Driver conforms to the device driver standards required by the VxWorks Operating
System and contains the following standard driver entry points.

6SDIDrvingdl() - Ingalsthe device driver for use with multiple 6SDI Cards
6SDIDrvRemove() - Removes the device driver from use

open() - opens adriver interface to one 6SDI Card

closy() - closesadriver interface to one 6SDI Card

read() - reads data received from a 6SDI Card

ioctl() - performs various control and setup functions on the 6SDI Card

The 6SDI Device Driver provides a sandard input system interface to the GSC PMC-6SDI
card for VxWorks applications that run on the VxWorks target processor. The device driver is
ingtaled and devices created through the use of standard VxWorks 1/0 system functions. The
functions of the driver can then be used to access the board.

Included in the device driver software package is a menu driven board testing program and
source code. This program is delivered undocumented and unsupported but may be used to
exercise the 6SDI card and device driver. It can aso be used to bresk the learning curve
somewhat for programming the 6SDI device.

If the user wishes to use the 6SDI Device Driver with the interrupting capability of the board
then a user supplied Interrupt Service Routine (ISR) must be written. The driver will cal this
ISR when an interrupt is received from the board. There are limitations on the functiondity of a
VxWorks ISR. These are documented in the VxWorks Programmer’ s Guide and must be
grictly followed in writing the ISR.

The Device Driver initidizes the board to disable dl types of 6SDI interrupts through software
control except for PCI interrupts controlled through the Shared Runtime - Interrupt
Control/Status register. 6SDI Interrupts must be enabled through the use of theioctl function in
order to take advantage of the interrupting capability of the board. Theioctl function must aso
be used to specify the user supplied ISR which will be invoked when an interrupt is received
from the board. If interrupting is enabled and the user supplied ISR has not been specified then
nothing will happen in the driver when an interrupt is received from the board.

The 6SDI Device Driver dlows for multiple boards on a single PCI bus. Each board will be
addressed as a separate VXWorks /0O system device. This device will be created when the
driver isingaled and is then available for al driver operations (open, close, eic.).

CMI

August 11, 1999 5

PMC-6SDI VxWorks Device Driver User's Manual

It isimportant to note that the 6SDI device driver is target processor dependent and thus BSP
dependent. System cdls are made within the driver, which are only available through certain
board support packages. Thisis due to the fact that PCI memory and 1/0 space could be
mapped differently for each target processor board. Also, it may be possible that the PMC dot
interrupt level may be mapped differently for each target processor board.

CMI

August 11, 1999 6

PMC-6SDI VxWorks Device Driver User's Manual

5.1 6SDIDrvinstall()

The 6SDIDrvingal () function ingtals the device driver into the VxWorks operating system.
Thisfunction must be cdled prior to using any of the other driver functions. This function
should not be cdled again without firg calling the 6SDIDrvRemove() function.

The 6SDIDrvingdl () function performs the following operations.
Ingtdls the device driver into the VXWorks operating system
Performs the following for each PMC Sot on the processor board
Determinesiif this dot contains a PCl card by examining the CPU board’ sregisters

Determinesiif the dot contains a 6SDI board by examining the PCI Configuration
Device Type and Vendor ID Registers

Programs the PCI Configuration Base Address and Configuration Address
Regigters with predefined addresses

Enables the 6SDI Card to respond over the PCl Bus
Connects the driver interrupt handler for the interrupt number
Ingtalls adevice for the PMC Slot

Enables the PCI Interrupt for the PMC Sot

PROTOTYPE:

extern int 6SDIDrvingal(BOOL bDebug);
Where:

bDebug - A boolean that is sent to the driver to enable debugging. If enabled the driver will
display error and status messages on the console during driver access. Note this
should not be enabled during time sensitive processes.

Returns OK on success and ERROR on fallure

CMI

August 11, 1999 7

PMC-6SDI VxWorks Device Driver User's Manual

EXAMPLE:
STATUS i St at us;

/* Install the 6SDI VxWorks Device Driver. */
i Status = 6SDI Drvilnstal | (TRUE);

CMlﬂ August 11, 1999

PMC-6SDI VxWorks Device Driver User's Manual

5.2 6SDIDrvRemove()

The 6SDIDrvRemove() function is used to remove the 6SDI Device Driver from the VxWorks
operating system. This function should only be called after acdl to the 6SDIDrvingal()
function. The 6SDIDrvRemove() function closes dl the open devices for eech PMC dot and
removes the device driver from the operating system.

PROTOTYPE:

extern int 6SDIDrvRemove(void);

Returns OK on success and ERROR on failure

EXAMPLE:
STATUS i St at us;

/* Renove the 6SDI Driver */
i Status = 6SDI DrvRenove();

CM August 11, 1999 9

PMC-6SDI VxWorks Device Driver User's Manual

5.3 open()

The open() function isthe standard VxWorks entry point to open a connection to a 6SDI Card
inone PMC Sot. Thisfunction may only be called after acdl to the 6SDIDrvingdl() function
ismade,

PROTOTYPE:

extern int open(const char *cName, int iFlags, int iMode)
Where:

cName- name of the device being opened

iHags- accessflag for cName (not used).

iMode- permissons of cName (not used).

Returns OK on success and ERROR on fallure

EXAMPLE:

i nt Fi |l eDesc[2];
LOCAL char *devNane;

int 6SDI Sl ot = 1;

/* open the 6SDI device for slot 1 */
Fi |l eDesc[6SDI Sl ot] = open(devNane[6SDI Sl ot], O RDWR, 0644);

if (FileDesc[6SDI Slot] == ERROR)
{
| ogMsg(" Cannot Open Device Error %s\n\n",
(int) devNane[6SDI Slot], 0, 0, 0, 0, 0);
}

CM August 11, 1999 10

PMC-6SDI VxWorks Device Driver User's Manual

5.4 close()

The close() function is the stlandard VxWorks entry point to close a connection to a 6SDI
Cadinone PMC Sot. Thisfunction should only be called after the open function has been
successfully called for adot where a6SDI Card resides. The close function closes the
interface to a6SDI device.

PROTOTYPE:

extern STATUS closg(int iFd);
Where:
iIFd- File Descriptor returned from acal to the open function.

Returns OK if successful or ERROR if unsuccessful.

EXAMPLE:

int FileDesc[2];
int 6SDI Slot = 1;

/* close the device on slot 2 */

if (close(FileDesc[6SDlSlot]) == ERROR
{
| ogMsg("Cl ose Error for Slot #%\n\n", 6SDI Slot, 0, 0, 0, 0, 0);
}
Fi | eDesc[6SDI Sl ot] = ERROR;

CM August 11, 1999 11

PMC-6SDI VxWorks Device Driver User's Manual

55 read()
The read() function isthe standard VxWorks entry point to receive channel data from a 6SDI
Cad FIFO inone PMC Sot. Thisfunction should only be called after the open function has
been successfully caled for adot where a6SDI Card resides
The 6SDI has two data configurations in which the input channels can be read, sngle-ended
and differentia. Depending on the read mode of the driver which can be set using the ioctl()
function, the FIFO data will ether be transferred to the user buffer using the PLX 9080 DMA
cgpability or will be accessed directly. Regardless of configuration, the read() function will read
the data from these channels as the buffer receives them. This condition is caused by the
independence of the channel sample rates. Because each channd is cgpable of having its own
clock rate, channd dataisread as a 32-hit block. Thefirst 16 bits are the channel data value,
followed by three hits identifying the channd number.
PROTOTYPE:
extern int read(int iFd, char *cBuffer, size t iMaxbytes);
Where:
iIFd - File Descriptor returned from a cdl to the open function.
CBuffer - pointer to character array to store read bytes.
iMaxbytes- maximum number of bytes to read.
Returns Number of bytes read if successful or ERROR if unsuccesstul.
EXAMPLE:
#def i ne MAXSAMPLES 32
i nt Fi |l eDesc[2];
i nt i NunByt esRead,;
i nt 6SDI Sl ot = 1;
char pul Buf f er[MAXSAMPLES * 2];
[* Configure driver read() node */
if(ioctl(FileDesc[6SDISlot], READ MODE CONFI G, DMA_MODE) == ERROR)
{
| ogMsg("ioctl READ MODE CONFI G Failed for Slot #%\n\n",
CMlﬂ August 11, 1999 12

PMC-6SDI VxWorks Device Driver User's Manual

6SDISlot, 0, 0, 0, 0, 0);
}

/* Configure |nput Channel Mode */
if(ioctl(FileDesc[6SDISlot], |INPUT_FUNCTION, SINGLE _ENDED) == ERROR)

{
| ogMsg("ioctl | NPUT_FUNCTION Failed for Slot #%\n\n",
6SDl Slot, 0, 0, 0, 0, 0);
}

/* Read fromthe 6SDI device */

i NunByt esRead = read(Fil eDesc[6SDI Sl ot],
pul Buf fer,
si zeof (pul Buffer));

if (iNunBytesRead == 0)
{

}

| ogMsg("Read failed for Slot #%\n", 6SDI Slot, 0, 0, 0, 0, 0);

CM August 11, 1999 13

5.6

ioctl()

PMC-6SDI VxWorks Device Driver User's Manual

Theioctl() function isthe sandard VxWorks entry point to perform control and setup
operations on a6SDI Card in one PMC Slot. This function should only be called after the
open function has been successfully called for adot where a 6SDI Card resides. Theioctl()
function will perform different functions based upon the function parameter. These functions
will be described in the following subparagraphs.

PROTOTYPE:

externintioctl(int iFd, int iFunction, int iArg);

Where:

iFd - File Descriptor returned from a cdl to the open function.

iFunction- Theioctl function to perform which is one of the following:

NO_COMMAND - Empty command, performs nothing.
INIT_BOARD - Initidizesthe 6SDI board.
READ_REGISTER - Reads a specified 6SDI register.
WRITE_REGISTER - Writesto aspecified 6SDI register.
START_DMA - Statsa DMA read from the 6SDI board

REG_FOR_INT_NOTIFY - Regigersthe gpplication code to be notified when an
interrupt occurs.

GET_DEVICE_ERROR - Returnsthe error that occurred during the last accessto the
6SDI driver.

READ_MODE_CONFIG - Configures the 6SDI read() mode (FIFO scan reads or
DMA enabled FIFO reads).

INPUT_FUNCTION - Configures the 6SDI input channds (Sngle-ended or differentia
mode).

CALIBRATION_M ODE — Sets and runs cdibration operation.
INTERRUPT_EVENT — Setsinterrupt condition.

INPUT_DATA_FORMAT — Sets Binary Offset or Two's Compliment format for data.

CMI

August 11, 1999 14

PMC-6SDI VxWorks Device Driver User's Manual

BOARD_ROLE — Sdlects boards mode of operation (target or initiator).
SYNCH_CHANNEL S — Synchronizes converters.

ENABLE_PCI_INTERRUPTS — Enables PCI interrupts in order for the 6SDI to
produce aloca interrupt request.

DISABLE_PCI_INTERRUPTS - Disables PCI Interrupts.
INPUT_TEST — Performs a sdlf-test for 6SDI board vaidation.
VOLTAGE_RANGE — Setsthe voltage range for dl channels.
AUTO_PASS — Retrieves the status of autocaibration.

CHECK_CHANNEL S— Retrieves the status of channdl readiness according to present
board activities.

BUFFER_STATUS FLAG — Retrieves the input buffer status flag information.
ASSIGN_RATES 1 — Assign channel group O to arate generator or external clock.
ASSIGN_RATES 2 — Assign channel group 1 to arate generator or external clock.
SET_CHANO DIVISOR — Setsrate divisor for channd 0.

SET_CHAN1 DIVISOR — Setsrate divisor for channd 1.

SET_CHAN2 DIVISOR — Setsrate divisor for channd 2.

SET_CHAN3 DIVISOR — Setsrate divisor for channd 3.

SET_CHAN4 DIVISOR — Setsrate divisor for channel 4.

SET_CHANS5 DIVISOR — Setsrate divisor for channd 5.

SET_RATE_GEN_A — Setsvaueto control rate frequency generator A.

SET _RATE_GEN_B — Setsvaueto control rate frequency generator B.
DISABLE_BUFFER_INPUT — Disables any input to data buffer.
ENABLE_BUFFER_INPUT — Enables any input to data buffer.
CLEAR_BUFFER - Clearsinput buffer.

SET THRESHOL D — Sets buffer threshold vaue.

CM August 11, 1999 15

PMC-6SDI VxWorks Device Driver User's Manual

CLEAR_INT_REQUEST — Clearsthe Interrupt Request flag.

iArg - The parameters to the specific ioctl() function. See the following subsectionsfor a
description of the parameters for each function.

Returns OK if successful or ERROR if unsuccessul.

CMI

August 11, 1999 16

PMC-6SDI VxWorks Device Driver User's Manual

5.6.1 NO_COMMAND

Thisisan empty driver entry point. This command may be given to vdidate that the driver
is correctly instaled and that the 6SDI board device has been successfully opened.

arg PARAMETER:

Not used.

EXAMPLE:

int FileDesc[2];
int 161 ACSl ot = 1;

if (ioctl(FileDesc[6SDISlot], NO COMAND, 0) == ERROR)
{
| ogMsg("ioctl NO COMAND Failed for Slot #%\n\n", 6SDI Sl ot,
0, 0, 0, 0, 0);
}

CMI

August 11, 1999 17

PMC-6SDI VxWorks Device Driver User's Manual

5.6.2 INIT_BOARD
The INIT_BOARD function initidizes the board and sets dl defaullts.
arg PARAMETER:
Not used.
EXAMPLE:
int FileDesc[2];
int 6SDISlot = 1;
if (ioctl(FileDesc[6SDISlot], INIT_BOARD, 0) == ERROR)
{
| ogMsg("Board Initialization Failed for Slot #%\n\n", 6SDI Sl ot,
0, 0, 0, 0, 0);
}
CMlﬂ August 11, 1999 18

PMC-6SDI VxWorks Device Driver User's Manual

5.6.3 READ_REGISTER

The READ_REGISTER function reads and returns the contents of one of the 161AO
registers.

arg PARAMETER:

REG PARAM *
where REG_PARAM isdefined to be

typedef struct RegParam
{

int e6SDIRegidter;
ULONG *pulVdue

} REG_PARAM;
and,

int e6SDIRegister - One of the following registersto read. Refer to the 6SDI hardware
documentation for a description of each register.

*** 6SDI Registers***

BOARD CTRL_REG

RATE _CTRL_A_REG

RATE CTRL_B_REG

RATE ASSIGN_REG
RATE DIV_01 REG
RATE DIV_23 REG
RATE DIV_45 REG
BUFFER_THRESHOLD_REG

DATA_BUFFER_REG

CMI

August 11, 1999

19

PMC-6SDI VxWorks Device Driver User's Manual

+ DMA Registers ***
DMA_CH_0 MODE
DMA_CH_0_PCI_ADDR
DMA_CH_0_LOCAL_ADDR
DMA_CH_0 TRANS BYTE CNT
DMA_CH_0 DESC_PTR
DMA_CH_1 MODE

DMA_CH_1 PCl_ADDR
DMA_CH_1 LOCAL_ADDR
DMA_CH_1 TRANS BYTE CNT
DMA_CH_1 DESC_PTR
DMA_CMD_STATUS
DMA_MODE_ARB_REG

DMA_THRESHOLD REG

*** PC| Configuration Registers***
DEVICE_VENDOR_ID

STATUS COMMAND

CLASS CODE_REVISION_ID
BIST HDR TYPE LAT CACHE SIZE
PCI_MEM_BASE_ADDR

PCl_IO_ BASE_ADDR
PCI_BASE_ADDR 0

PCI_BASE _ADDR 1

CMI

August 11, 1999

20

PMC-6SDI VxWorks Device Driver User's Manual

CARDBUS CIS PTR
SUBSY'S ID_VENDOR ID
PC|_BASE_ADDR_LOC_ROM

LAT_GNT_INT_PIN_LINE

*** | ocal Configuration Registers. ***
PCI_TO_LOC _ADDR 0 RNG
LOC_BASE_ADDR REMAP 0
MODE_ARBITRATION

BIG LITTLE_ENDIAN_DESC
PCI_TO LOC_ROM_RNG
LOC_BASE_ADDR_REMAP _EXP _ROM
BUS REG DESC 0 FOR PCI_LOC
DIR_MASTER TO PClI_RNG
LOC_ADDR_FOR DIR_ MASTER MEM
LOC_ADDR_FOR DIR MASTER |10
PCI_ADDR_REMAP DIR_MASTER
PCI_CFG_ADDR DIR_MASTER |0
PCI_TO LOC _ADDR 1 RNG
LOC_BASE_ADDR REMAP 1

BUS REG DESC 1 FOR PCI_LOC

*** Run Time Registers***
MAILBOX_ REGISTER 0

MAILBOX_REGISTER 1

CMI

August 11, 1999

21

PMC-6SDI VxWorks Device Driver User's Manual

MAILBOX_REGISTER 2
MAILBOX_REGISTER 3
MAILBOX_REGISTER 4
MAILBOX_REGISTER 5
MAILBOX_REGISTER 6
MAILBOX_REGISTER 7
PCI_TO_LOC_DOORBELL
LOC_TO_PCI_DOORBELL
INT_CTRL_STATUS
PROM_CTRL_CMD_CODES CTRL
DEVICE_ID_VENDOR ID
REVISION_ID
MAILBOX_REG 0

MAILBOX_REG 1

*** Messaging Queue Registers***
OUT_POST_Q INT_STATUS
OUT_POST_Q INT_MASK

IN_Q PORT

OUT_Q PORT
MSG_UNIT_CONFIG

Q BASE _ADDR
IN_FREE_HEAD_PTR

IN_FREE TAIL_PTR

IN_POST_HEAD_PTR

CM August 11, 1999 22

PMC-6SDI VxWorks Device Driver User's Manual

IN_POST_TAIL_PTR
OUT_FREE_HEAD_PTR
OUT_FREE_TAIL_PTR
OUT_POST_HEAD_PTR
OUT_POST TAIL_PTR

Q_STATUS CTRL_REG

ULONG *pulVdue - Pointer to the location where the value read is to be stored

EXAMPLE:

i nt Fi | eDesc[2];
REG_PARAM t heReg;

ULONG ul Val ue;

int 6SDI Sl ot = 1;

t heReg. pul Val ue = &ul Val ue;
t heReg. e6SDI Regi ster = BOARD _CTRL_REG

if (ioctl(FileDesc[6SDISlot], READ REGQ STER, (int) &theReg) ==

ERROR)
{
| ogMsg(" Read Regi ster Failed for Slot #%\n\n", 6SDI Sl ot,
0, 0, 0, 0, 0);
}

CM August 11, 1999

23

PMC-6SDI VxWorks Device Driver User's Manual

5.6.4 WRITE_REGISTER

The WRITE_REGISTER function writes a vaue to one of the 6SDI Regigters.

arg PARAMETER:

REG_PARAM *
where REG_PARAM isdefined to be

typedef struct RegParam
{

int e6SDIRegigter;
ULONG *pulVdue

} REG_PARAM;

and,

int e6SDIRegigter - One of the following registersto write. Refer to the 6SDI Hardware

documentation for a description of each register.
*** 6SDI Registers***
BOARD _CTRL_REG
RATE CTRL_A_REG
RATE_CTRL_B_REG
RATE_ASSIGN_REG
RATE DIV_01 REG
RATE DIV_23 REG
RATE DIV_45 REG
BUFFER_THRESHOLD_REG

DATA BUFFER REG

CMI

August 11, 1999

24

PMC-6SDI VxWorks Device Driver User's Manual

+ DMA Registers ***
DMA_CH_0_MODE
DMA_CH_0_PCI_ADDR
DMA_CH_0_LOCAL_ADDR
DMA_CH_0 TRANS BYTE CNT
DMA_CH_0 DESC_PTR
DMA_CH_1 MODE

DMA_CH_1 PCl_ADDR
DMA_CH_1 LOCAL_ADDR
DMA_CH_1 TRANS BYTE CNT
DMA_CH_1 DESC_PTR
DMA_CMD_STATUS
DMA_MODE_ARB_REG

DMA_THRESHOLD REG

*** PC| Configuration Registers***
DEVICE_VENDOR_ID

STATUS COMMAND

CLASS CODE_REVISION_ID
BIST HDR TYPE LAT CACHE SIZE
PCI_MEM_BASE_ADDR

PCl_IO_ BASE_ADDR
PCI_BASE_ADDR 0

PCI_BASE _ADDR 1

CMI

August 11, 1999

25

PMC-6SDI VxWorks Device Driver User's Manual

CARDBUS CIS PTR
SUBSY'S ID_VENDOR ID
PC|_BASE_ADDR_LOC_ROM

LAT_GNT_INT_PIN_LINE

*** |_ocal Configuration Registers. ***
PCI_TO_LOC _ADDR 0 RNG
LOC_BASE_ADDR REMAP 0
MODE_ARBITRATION

BIG LITTLE_ENDIAN_DESC
PCI_TO LOC_ROM_RNG
LOC_BASE_ADDR_REMAP _EXP _ROM
BUS REG DESC 0 FOR PCI_LOC
DIR_MASTER TO PClI_RNG
LOC_ADDR_FOR DIR_ MASTER MEM
LOC_ADDR _FOR DIR MASTER |0
PCI_ADDR_REMAP DIR_MASTER
PCI_CFG_ADDR DIR_MASTER |0
PCI_TO LOC _ADDR 1 RNG
LOC_BASE_ADDR REMAP 1

BUS REG DESC 1 FOR PCI_LOC

*** Run Time Registers***
MAILBOX_REGISTER 0

MAILBOX_REGISTER 1

CMI

August 11, 1999

26

PMC-6SDI VxWorks Device Driver User's Manual

MAILBOX_REGISTER 2
MAILBOX_REGISTER 3
MAILBOX_REGISTER 4
MAILBOX_REGISTER 5
MAILBOX_REGISTER 6
MAILBOX_REGISTER 7
PCI_TO_LOC_DOORBELL
LOC_TO_PCI_DOORBELL
INT_CTRL_STATUS
PROM_CTRL_CMD_CODES CTRL
DEVICE_ID_VENDOR ID
REVISION_ID
MAILBOX_REG 0

MAILBOX_REG 1

*** Messaging Queue Registers***
OUT_POST_Q INT_STATUS
OUT_POST_Q INT_MASK

IN_Q PORT

OUT_Q PORT
MSG_UNIT_CONFIG

Q BASE _ADDR
IN_FREE_HEAD_PTR

IN_FREE TAIL_PTR

IN_POST_HEAD_PTR

CM August 11, 1999 27

PMC-6SDI VxWorks Device Driver User's Manual

IN_POST_TAIL_PTR
OUT_FREE_HEAD_PTR
OUT_FREE_TAIL_PTR
OUT_POST_HEAD_PTR
OUT_POST TAIL_PTR

Q_STATUS CTRL_REG

ULONG *pulVadue - Pointer to the location containing the vaue to be written.

EXAMPLE:

i nt Fi | eDesc[2];

REG_ PARAM t heReg;
ULONG ul Val ue = OxAAAA;
int 6SDI Sl ot = 1;

t heReg. pul Val ue = &ul Val ue;
theReg. e6SDI Regi ster = OUT_Q _PORT;

if (ioctl(FileDesc[6SDISlot], WRI TE_ REG STER, (int) &t heReg) ==

ERROR)
{
|l ogMsg("Wite Register Failed for Slot #%\n\n", 6SDI Sl ot,
0, 0, 0, 0, 0);
}

CMI

August 11, 1999

28

PMC-6SDI VxWorks Device Driver User's Manual

5.6.5 START_DMA

The START_DMA function configures the 6SDI DMA registersfor aDMA transfer from
the board, and then starts the transfer.

arg PARAMETER:

DMA_PARAM *
where DMA_PARAM is defined to be

typedef struct DMAParam
{

int DMAChannd;
ULONG ulDMAMode
ULONG ulDMALocadAddress,
ULONG ulDMABYyteCount;
ULONG ulDMADescriptorPtr;
ULONG ulDMAArbitration;
ULONG uDMAThreshold;

} DMA_PARAM;

and,

int DMAChannd - DMA channd to perform transfer on. Must be one of the following:
DMA_CHAN_O
DMA_CHAN 1

ULONG uDMAMode - Vdue to be written to the 6SDI DMA Mode Regigter.

ULONG ulIDMALocdAddress - Vaue to be written to the 6SDI DMA Local Address
Regigter. Datareturned is little endian and may need to
be byte/word swapped.

ULONG ulDMABYyteCount - Vaue to be written to the 6SDI DMA Byte Count Register.

ULONG ulDMADescriptorPtr - Vaue to be written to the 6SDI DMA Descriptor Pointer
Regider.

ULONG ulDMAArhitration - Vaue to be written to the 6SDI DMA Avrbitration Register.

CMI

August 11, 1999 29

PMC-6SDI VxWorks Device Driver User's Manual

ULONG ulDMAThreshold - Vaue to be written to the 6SDI DMA Threshold Regidter.

See the PLX-PCI PCI Bus Master Interface Data Sheet for a description of the DMA
registers.

DMA READ EXAMPLE:

#defi ne DWORD_COUNT 80

i nt i I ndex, FileDesc[2], 6SDISlot = 1;
DVA _PARAM DMAPar anet er s;

ULONG pul Buf f er [DWORD_COUNT] ;

REG_PARAM t heReg;

ULONG ul Val ue;

/* Scan input channels.

*/

if(ioctl (FileDesc[6SDISlot], SCAN_INPUTS, 0) == ERROR)
{

}

| ogMsg(" I nput Scan Failed\n\n", 0, 0, 0, 0, 0, 0);

/* Setup paranmeters to performa DVA Read fromthe 6SDI Board. */
DMAPar amet er s. DMAChannel 0;

DMAPar aret er s. ul DMAMbde 0x943;

DVAPar anet er s. ul DMALocal Addr ess (ULONG) pul Buffer;

DVAPar anet er s. ul DMAByt eCount DWORD_COUNT * 4;

DVAPar anet er s. ul DMADescri ptor Ptr OXA,;
DMAPar anet er s. ul DMAAr bi trati on 0;
DMAPar anet er s. ul DMAThr eshol d 0;

if (ioctl(FileDesc[6SDISlot], START_DVA, (int) &DMAParaneters) ==
ERROR)
{
| ogMsg("Start DVMA Failed for Slot #%\n\n", 6SDI Sl ot,
0, 0, 0, 0, 0);

}
/* Wait for the DVA to Conplete. */
t heReg. pul Val ue = &ul Val ue;
t heReg. e6SDI Regi ster = DMA_CMD_STATUS;
do
{
if (ioctl(FileDesc[6SDISlot], READ REG STER, (int) &theReg) ==
ERROR)

{
| ogMsg(" Read Regi ster Failed for Slot #%\n\n", 6SDI Sl ot,

0o, 0, 0, 0, 0);
br eak;

CMI

August 11, 1999

30

PMC-6SDI VxWorks Device Driver User's Manual

}
} while (! (ulValue & 0x10));

/* Clear the DVMA channel 0/1 conmand/ status register.
*/

ul Val ue = 0;

t heReg. pul Val ue

t heReg. e6SDI Regi st er

&ul Val ue;
DVA CMD_STATUS;

if (ioctl(FileDesc[6SDISlot], WRI TE_REG STER, (int) &t heReg) ==
ERROR)
{
| ogMsg("Wite Register Failed\n\n",
0o, 0,0 0, O, 0, 0);

CMI

August 11, 1999

31

PMC-6SDI VxWorks Device Driver User's Manual

5.6.6 REG_FOR_INT_NOTIFY

The REG_FOR_INT_NOTIFY function will register or unregister for natification that an
interrupt has occurred on the 6SDI board. If thisfunction is called with a pointer to a
subroutine, that routine will be invoked when an 6SDI interrupt occurs. If afunctionis
currently registered for interrupt notification and is called with aNULL pointer, the function
will no longer be caled when an interrupt occurs. The parameter sent to the notification
routine will be the dot number of the 6SDI Board that has interrupted and will be one of
the following:

6SDI_PMCL1
6SDI_PMC2

Note that the interna driver interrupt handler will clear interrupts after calling the user
supplied ISR.

arg PARAMETER:

int (*intHandler)(int) - Pointer to aroutine to handle the interrupt notification or aNULL
pointer if the cdler wants to unregister for interrupt notification.

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1,

int intHandl er (ULONG ul Sl ot Num)
{
REG_PARAM t heReg;
ULONG ul Val ue;
/* execute interrupt control here */

return (0);

} /* intHandl er */

/* Request notification on the user selected conditions. */
if (ioctl(FileDesc[6SDISlot], REG FOR _INT_NOTIFY, (int) intHandler)
== ERROR)

CMI

August 11, 1999 32

| ogMsg(" Request

PMC-6SDI VxWorks Device Driver User's Manual

Interrupt Notification Failed\n\n",0,0,0,0,0,0);

CMI

August 11, 1999 33

5.6.7

PMC-6SDI VxWorks Device Driver User's Manual

GET_DEVICE_ERROR

The GET_DEVICE_ERROR function will return the error that occurred on the last cdl to
one of the 6SDI Device Driver entry points. Whenever adriver functioniscdled and it
returns an error, this function may be caled to determine the cause of the error.

arg PARAMETER:

int * - Pointer to the location of where the error code isto be written. 1t will be one of the
following:

NO_ERR - No Error Occurred.
INVALID PARAMETER_ERR - An Invdid Parameter was sent to driver.

RESOURCE_ERR - Thedriver could not obtain aresource (memory or semaphore) to
perform its function.

BOARD_ACCESS ERR - Failure occurred when the 6SDIDrvingdl function fails
when probing the 6SDI card’ s Board Status Register.

DEVICE_ADD_ERROR - Failure occurred when the 6SDIDrvingd| function fails
when trying to add device to the VxWorks Operating
Sysem.

ALREADY_OPEN_ERROR - A cdl to the open driver access routine for adevice that
is aready open.

INVALID_DRV_NUM_ERR - Returned from the 6SDIDrvingdl function if aninvaid
driver number was obtained when trying to add the
device driver to the VxXWorks operating system. Also
returned from the 6SDIDrvRemove function if the
driver failed to remove the device driver from the
VxWorks operating system.

ALREADY _INSTALLED ERR - Returned from the 6SDIDrvingd| function if the
driver has dready been ingalled.

PClI_CONFIG_ERR - Returned from the 6SDIDrvingdl function if aread or write of a
PCI Configuration Regigter falls.

CMI

August 11, 1999 34

PMC-6SDI VxWorks Device Driver User's Manual

INVALID_BOARD_STATUS ERR - Returned from the 6SDIDrvingdl function if an
invalid board status is read from the 6SDI
Board.

FIFO_BUFFER_ERR - If during aread() transaction the FIFO buffer isindicated to be
empty by the status of the buffer status flags or more datais
requested than what is available, the driver will return the
number of bytes that could be written along with throwing this
error condition.

EXAMPLE:

int FileDesc[?2];
int 6SDlI Slot = 1;
int Status;

/* Send the Get Device Error Code Command for this channel * [
if (ioctl(FileDesc[6SDISlot], GET_DEVICE ERROR, (int) &Status) ==
ERROR)
{
|l ogMsg(" Get Device Error Code Failed for Slot #%\n\n",
6SDI Slot, O, 0, 0, 0, 0);

CMI

August 11, 1999 35

PMC-6SDI VxWorks Device Driver User's Manual

5.6.8 READ_MODE_CONFIG

The READ_MODE_CONFIG function will configure the driver for the type of read() from
the input FIFO to be performed. There are two types of reads. Thefirst being referred to
as SCAN_MODE where each sample is read out of the input FIFO one at atime and put
into the user buffer given. The other type of read isreferred to as DMA_MODE where the
DMA capability of the board is taken advantage.

arg PARAMETER:

int* - Pointer to one of the following vaues:
SCAN_MODE

DMA_MODE

EXAMPLE:

int FileDesc[2];
int 6SDI Slot = 1;
i nt i Mode;

i Mode = DMA_MODE;

if (ioctl(FileDesc[6SDISlot], READ MODE CONFI G (int) & Mde) ==
ERROR)
{

| ogMsg(" Read Mode Configuration Failed for Slot #%l\n\n",

6sbl Slot, 0, 0, 0, 0, 0);

CMI

August 11, 1999 36

PMC-6SDI VxWorks Device Driver User's Manual

5.6.9 INPUT_FUNCTION

The INPUT_FUNCTION function will arrange input channds into Sngle-ended or
differentid mode.

arg PARAMETER:

int * - Pointer to one of the following values
SINGLE_ENDED
DIFFERENTIAL

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1;
int iMde;

i Mode = DI FFERENTI AL;

if (ioctl(FileDesc[6SDISIot], INPUT_FUNCTION, (int) & Mde) ==
ERROR)
{
| ogMsg(" I nput Configuration Failed for Slot #%\n\n", 6SDI Sl ot,
0, 0, 0, 0, 0);

CM August 11, 1999 37

PMC-6SDI VxWorks Device Driver User's Manual

5.6.10 CALIBRATION_MODE

The CALIBRATION_MODE function performs the calibration operation. Refer to the
PMC-6SDI User's Manua for more information on this operation.

arg PARAMETER:

Not used.

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1,

if (ioctl(FileDesc[6SDISlot], CALIBRATION_MODE, 0) ==
ERROR)
{
| ogMsg(" Calibration Failed for Slot #%\n\n", 6SDI Sl ot,
0, 0, 0, 0, 0);
}

LOOP_TEST_CHANNEL

CMI

August 11, 1999 38

PMC-6SDI VxWorks Device Driver User's Manual

5.6.11 INTERRUPT_EVENT

The INTERRUPT_EVENT function will set the interrupt condition for asingle loca
interrupt request.

arg PARAMETER:

int * - Pointer to one of the following values
INIT_COMPLETE
AUTOCAL_COMPLETE
CHANNELS READY
FLAG TO HIGH (Buffer threshold flag hashad aLOW_TO_HIGH trangtion)
FLAG TO_LOW (Buffer threshold flag hashad aHIGH_TO_LOW trangition)
BUFFER_ALMOST_FULL

BUFFER_ALMOST_EMPTY

EXAMPLE:

i nt Fi |l eDesc[2];
int 6SDI Sl ot = 1;
int Sour ce;

Sour ce = CHANNELS_READY;

if (ioctl(FileDesc[6SDISlot], |INTERRUPT_EVENT, (int) &Source) ==
ERROR)
{

| ogMsg("Interrupt Selection Failed for Slot #%d\n\n", 6SDI Sl ot,

0, 0, 0, 0, 0);

CMI

August 11, 1999

39

PMC-6SDI VxWorks Device Driver User's Manual

5.6.12 INPUT_DATA_FORMAT

The INPUT_DATA_FORMAT function sets the convention for the data to either binary offset
or two's complement.

arg PARAMETER:

int * - Pointer to one of the following values
BINARY_OFFSET

TWOS COMP

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1,

if (ioctl(FileDesc[6SDISlot], |NPUT_DATA FORMAT, BI NARY_OFFSET) ==
ERROR)
{
| ogMsg("Sel ect Data Format Failed for Slot #%\n\n",
6sSDI Slot, 0, 0, 0, 0, 0);

CM August 11, 1999 40

PMC-6SDI VxWorks Device Driver User's Manual

5.6.13 BOARD_ROLE

The BOARD_ROLE function will set the mode of operation for a particular board in a

multiple board setup. A board is either the initiator or the target. Theinitiator of the
sampling clock and synchronization command. All other boards are designated as targets.

arg PARAMETER:

int* - Pointer to one of the following values:
INITIATOR

TARGET

EXAMPLE:

i nt Fi | eDesc[2];
int 6SDI Sl ot = 1;
int Rol e;

Source = I NI TI ATOR;

if (ioctl(FileDesc[6SDISlot], BOARD ROLE,

{

(int) &Role)

| ogMsg(" Sel ect Board Role Failed for Slot #%\n\n",

0, 0, 0, 0, 0);

== ERROR)

6SDI S| ot ,

CMI

August 11, 1999

41

PMC-6SDI VxWorks Device Driver User's Manual

5.6.14 SYNCH_CHANNELS
The SYNCH_CHANNELS function synchronizes the channel converters. This makes it

possible to have smultaneous data conversions to a common clock rate.

arg PARAMETER:

Not Used.

EXAMPLE:

i nt Fi |l eDesc[2];
i nt 6SDl Sl ot = 1;

if (ioctl(FileDesc[6SDISIot], SYNCH CHANNELS, 0) == ERROR)
{
| ogMsg(" Synchroni ze Channels Failed for Slot #%\n\n",
6sSDl Slot, 0, 0, 0, 0, 0);

CMlﬂ August 11, 1999 42

PMC-6SDI VxWorks Device Driver User's Manual

5.6.15 ENABLE_PCI_INTERRUPTS

The ENABLE _PCI_INTERRUPTS function enables the PCI interruptsin order to have a
locdl interrupt request be generated.

arg PARAMETER:

Not Used.

EXAMPLE:

i nt Fi | eDesc[2];
i nt 6SDI Sl ot = 1;

if (ioctl(FileDesc[6SDISlot], ENABLE_PCl _| NTERRUPTS, 0) == ERROR)
{
| ogMsg("PCl Interrupt Enable Failed for Slot #%\n\n",
6SDI Slot, 0, 0, 0, 0, 0);

CM August 11, 1999 43

5.6.16 DISABLE_PCI_INTERRUPTS

PMC-6SDI VxWorks Device Driver User's Manual

The DISABLE_PCI_INTERRUPTS function disables the PCI interrupts.

arg PARAMETER:

Not Used.

EXAMPLE:

i nt Fi |l eDesc[2];
int 6SDI Sl ot = 1;

Dl SABLE_PCI _| NTERRUPTS, 0) == ERROR)

| ogMsg("PCl Interrupts Disable Failed for Slot #%\n\n",

if (ioctl(FileDesc[6SDISlot],
{

6SDISlot, 0, 0, 0, 0, 0);
}

CMI

August 11, 1999 44

PMC-6SDI VxWorks Device Driver User's Manual

5.6.17 INPUT_TEST

The INPUT_TEST function will perform a sysem level validation of operation precision.
There are two tests, positive reference test and zero input test. During the positive reference
test, an interna voltage reference is connected to any or dl input channels. The zero input test
conssts of any or dl input channels being connected to the interna ground.

arg PARAMETER:

int * - Pointer to one of the following values
POSITIVE_REF

ZERO

EXAMPLE:

int FileDesc[2];

int 6SDI Slot = 1;

int Test;

Test = ZERO

if (ioctl(FileDesc[6SDISlot], INPUT_TEST, (int) &Test) == ERROR)

{

| ogMsg(" I nput Test Failed for Slot #%\n\n", 6SDI Sl ot,
0, 0, 0, 0, 0);
}

CMI

August 11, 1999 45

PMC-6SDI VxWorks Device Driver User's Manual

5.6.18 VOLTAGE_RANGE

The VOLTAGE_RANGE function sdlects the voltage range at which the channds are to
operate. There are four ranges in the selection.

arg PARAMETER:

int * - Pointer to one of the following values
PLUS MIN_1 25
PLUS MIN_ 2 5
PLUS MIN_5

PLUS_MIN_10

EXAMPLE

int FileDesc[2];

int 6SDISlot = 1;

i nt Range;

Test = ZERQ,

if (ioctl(FileDesc[6SDISlot], VOLTAGE RANGE, (int) &Range) == ERROR)

{

| ogMsg(" Vol t age Range Sel ection Failed for Slot #%\n\n", 6SDI Sl ot,
0, 0, 0, 0, 0);
}

CM August 11, 1999 46

PMC-6SDI VxWorks Device Driver User's Manual

5.6.19 AUTO_PASS

The AUTO_PASS function will return the autocdibration status.

arg PARAMETER:

int * - Pointer to the location of where the status codeisto be written. It will be one of the
following:

AUTOCAL_FAILED

AUTOCAL_PASSED

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1;
int Status;

if (ioctl(FileDesc[6SDISlot], AUTO PASS, (int) &Status) == ERROR)
{
| ogMsg(" Get Autocalibration Status Failed for Slot #%\n\n",
6SDI Slot, 0, 0, 0, 0, 0);

CMI

August 11, 1999 47

PMC-6SDI VxWorks Device Driver User's Manual

5.6.20 CHECK_CHANNELS

The CHECK_CHANNELS function gets the satus of the channels. Channdswill either be
ready or not ready. The status depends on whether or not a procedure is complete and/or
successful.

arg PARAMETER:

int * - Pointer to the location of where the satus code is to be written. 1t will be one of the
falowing:

CHANS _READY

CHANS _NOT_READY

EXAMPLE:

int FileDesc[2];
int 6SDI Slot = 1;

i nt Status;
if (ioctl(FileDesc[6SDISlot], CHECK CHANNEL, (int) &Status) == ERROR)
{
| ogMsg(" Get Channel Status Failed for Slot #%\n\n",
6sDl Slot, 0, 0, 0, 0, 0);
}

CMI

August 11, 1999 48

PMC-6SDI VxWorks Device Driver User's Manual

5.6.21 BUFFER_STATUS_FLAG

The BUFFER_STATUS FLAG function gets the status of the buffer space. Theflag isset
when the buffer threshold value is exceeded. The threshold value is discussed in alater section.

arg PARAMETER:

int * - Pointer to the location of where the status code is to be written. 1t will be one of the
fallowing:

BUFFER_FULL

BUFFER_EMPTY

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1;
int Status;

if (ioctl(FileDesc[6SDISlot], BUFFER STATUS FLAG, (int) &Status) ==
ERROR)
{
| ogMsg(" Get Buffer Status Failed for Slot #%\n\n",
6sbDl Slot, 0, O, 0, 0, 0);

CMI

August 11, 1999 49

PMC-6SDI VxWorks Device Driver User's Manual

5.6.22 ASSIGN_RATES_1

The ASSIGN_RATES 1 function assgns arate generator or external clock to channel group
0. Thisfunction can aso disable datainput from channelsin group 0. Group O is defined as
channels 0, 1, and 2.

arg PARAMETER:

int* - Pointer to one of the fallowing:
GENERATOR_A
GENERATOR B
EXTERNAL_CLOCK

DISABLED

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1;

int Rate;
if (ioctl(FileDesc[6SDISlot], ASSIGN RATES 1, (int) &Rate) == ERROR)
{
| ogMsg(" Group0 Rate Assignnent Failed for Slot #%\n\n",
6SDI Slot, 0, 0, 0, 0, 0);
}

CM August 11, 1999 50

PMC-6SDI VxWorks Device Driver User's Manual

5.6.23 ASSIGN_RATES 2

The ASSIGN_RATES 2 function assigns arate generator or externd clock to channel group
1. Thisfunction can dso disable datainput from channelsin group 1. Group 1 is defined as
channels 3, 4, and 5.

arg PARAMETER:

int* - Pointer to one of the fallowing:
GENERATOR_A
GENERATOR B
EXTERNAL_CLOCK

DISABLED

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1;

int Rate;
if (ioctl(FileDesc[6SDISlot], ASSIGN RATES 2, (int) &Rate) == ERROR)
{
| ogMsg(" Groupl Rate Assignnent Failed for Slot #%\n\n",
6SDI Slot, 0, 0, 0, 0, 0);
}

CM August 11, 1999 51

PMC-6SDI VxWorks Device Driver User's Manual

5.6.24 SET_CHANO_DIVISOR

The SET_CHANO_DIVISOR function sets the rate divisor for channel 0. The rate generator

frequency is cdculated by using the rate divisor, iNdiv, and the sampling frequency for the
channd as

Fgen (kHz) = 64 * Fsamp *iNdiv,

where Fsamp isin kilohertz. Thevalid range for the divisor isfrom 1 to 32.

arg PARAMETER:

int* - Pointer to the integer used in caculation.

EXAMPLE:
int FileDesc[2];
int 6SDISlot = 1;
int i Ndiv;
i Ndi v = 0x0020;

/* Set Rate Divisor for Channel 0. */

if (ioctl(FileDesc[6SDISlot], SET_CHANO_ DI VI SOR, i Ndiv) == ERROR)
{
| ogMsg("Set Rate Divisor for Channel 0 Failed\n\n", 0, 0, O,
0, 0, 0);
}

CMI

August 11, 1999

52

PMC-6SDI VxWorks Device Driver User's Manual

5.6.25 SET_CHAN1_DIVISOR

The SET_CHAN1 DIVISOR function sets the rate divisor for channd 1. The rate generator

frequency is calculated by using the rate divisor, iNdiv, and the sampling frequency for the
channd as

Fgen (kHz) = 64 * Fsamp *iNdiv,

where Fsamp in kilohertz. The vdid range for the divisor isfrom 1 to 32.

arg PARAMETER:

int* - Pointer to the integer used in caculation.

EXAMPLE:
int FileDesc[2];
int 6SDISlot = 1;
int i Ndiv;
i Ndi v = 0x0020;

/* Set Rate Divisor for Channel 1. */

if (ioctl(FileDesc[6SDISlot], SET_CHANL DI VI SOR, i Ndiv) == ERROR)
{
| ogMsg("Set Rate Divisor for Channel 1 Failed\n\n", 0, 0, O,
0, 0, 0);
}

CMI

August 11, 1999

53

PMC-6SDI VxWorks Device Driver User's Manual

5.6.26 SET_CHAN2_DIVISOR

The SET_CHAN2_DIVISOR function sets the rate divisor for channd 2. The rate generator

frequency is cdculated by using the rate divisor, iNdiv, and the sampling frequency for the
channd as

Fgen (kHz) = 64 * Fsamp *iNdiv,

where Fsamp isin kilohertz. The valid range for the divisor isfrom 1 to 32.

arg PARAMETER:

int* - Pointer to the integer used in caculation.

EXAMPLE:
int FileDesc[2];
int 6SDISlot = 1;
int i Ndiv;
i Ndi v = 0x0020;

/* Set Rate Divisor for Channel 2. */

if (ioctl(FileDesc[6SDISlot], SET_CHAN2 DI VI SOR, i Ndiv) == ERROR)
{
| ogMsg("Set Rate Divisor for Channel 2 Failed\n\n", 0, 0, O,
0, 0, 0);
}

CMI

August 11, 1999

54

PMC-6SDI VxWorks Device Driver User's Manual

5.6.27 SET_CHAN3_DIVISOR

The SET_CHAN3 DIVISOR function sets the rate divisor for channd 3. The rate generator

frequency is calculated by using the rate divisor, iNdiv, and the sampling frequency for the
channd as

Fgen (kHz) = 64 * Fsamp *iNdiv,

where Fsamp isin kilohertz. The vdid range for the divisor isfrom 1 to 32.

arg PARAMETER:

int* - Pointer to the integer used in caculation.

EXAMPLE:
int FileDesc[2];
int 6SDISlot = 1;
int i Ndiv;
i Ndi v = 0x0020;

/* Set Rate Divisor for Channel 3. */

if (ioctl(FileDesc[6SDISlot], SET_CHAN3 DI VI SOR, i Ndiv) == ERROR)
{
| ogMsg("Set Rate Divisor for Channel 3 Failed\n\n", 0, 0, O,
0, 0, 0);
}

CMI

August 11, 1999

55

PMC-6SDI VxWorks Device Driver User's Manual

5.6.28 SET_CHAN4_DIVISOR

The SET_CHAN4 DIVISOR function sets the rate divisor for channd 4. The rate generator

frequency is cdculated by using the rate divisor, iNdiv, and the sampling frequency for the
channd as

Fgen (kHz) = 64 * Fsamp *iNdiv,

where Fsamp in kilohertz. The vaid range for the divisor isfrom 1 to 32.

arg PARAMETER:

int* - Pointer to the integer used in caculation.

EXAMPLE:
int FileDesc[2];
int 6SDISlot = 1;
int i Ndiv;
i Ndi v = 0x0020;

/* Set Rate Divisor for Channel 4. */

if (ioctl(FileDesc[6SDISlot], SET_CHANA_ DI VI SOR, i Ndiv) == ERROR)
{
| ogMsg("Set Rate Divisor for Channel 4 Failed\n\n", 0, 0, O,
0, 0, 0);
}

CMI

August 11, 1999

56

PMC-6SDI VxWorks Device Driver User's Manual

5.6.29 SET_CHANS5_DIVISOR

The SET_CHANS5 DIVISOR function sets the rate divisor for channel 5. The rate generator

frequency is cdculated by using the rate divisor, iNdiv, and the sampling frequency for the
channd as

Fgen (kHz) = 64 * Fsamp *iNdiv,

where Fsamp isin kilohertz. The vdid range for the divisor isfrom 1 to 32.

arg PARAMETER:

int* - Pointer to the integer used in calculation.

EXAMPLE:
int FileDesc[2];
int 6SDISlot = 1;
int i Ndiv;
i Ndi v = 0x0020;

/* Set Rate Divisor for Channel 5. */

if (ioctl(FileDesc[6SDISlot], SET_CHAN5 DI VI SOR, i Ndiv) == ERROR)
{
| ogMsg("Set Rate Divisor for Channel 5 Failed\n\n", 0, 0, O,
0, 0, 0);
}

CMI

August 11, 1999

57

PMC-6SDI VxWorks Device Driver User's Manual

5.6.30 SET_RATE_GEN_A

The SET_RATE_GEN_A function sets the rate control value, iNrate, associated with a
particular group of channels. The rate generator frequency is caculated as

iNrate = (0.063875 * Fgen) - 511

The vdid range for the rate control vaueisfrom 0to 511. This vaue must use the highest
sample rate in the channe group.

arg PARAMETER:

int* - Pointer to the integer used in caculation.

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1;
int iNrate;

i Nrate = 0x0100;

/* Program Rate Generator A */

if (ioctl(FileDesc[6SDISlot], SET_RATE_GEN_A, iNrate) == ERROR)
{
| ogMsg("Set Rate Generator A Failed\n\n", 0, 0, O,
0, 0, 0);
}

CMI

August 11, 1999 58

PMC-6SDI VxWorks Device Driver User's Manual

5.6.31 SET_RATE_GEN_B

The SET_RATE_GEN_B function setsthe rate control vaue, iNrate, associated with a
particular group of channels. The rate generator frequency is caculated as

iNrate = (0.063875 * Fgen) - 511

The vdid range for the rate control vaueisfrom 0to 511. Thisvaue must use the highest
sample ratein the chamne group.

arg PARAMETER:

int* - Pointer to the integer used in caculation.

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1;
int iNrate;

i Nrate = 0x0100;

/* Program Rate Generator B. */

if (ioctl(FileDesc[6SDISlot], SET_RATE_GEN B, iNrate) == ERROR)
{
| ogMsg("Set Rate Generator B Failed\n\n", 0, 0, O,
0, 0, 0);
}

CMI

August 11, 1999 59

PMC-6SDI VxWorks Device Driver User's Manual

5.6.32 DISABLE_BUFFER_INPUT

The DISABLE BUFFER _INPUT function disablesinput to the buffer from the channels.

arg PARAMETER:

Not Used.

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1;

if (ioctl(FileDesc[6SDISlot], DI SABLE_BUFFER |NPUT, 0) == ERROR)

{

| ogMsg(" Di sabl e Buffer Input Failed for Slot #%\n\n", 6SDI Sl ot,
0, 0, 0, 0, 0);
}

CMlﬂ August 11, 1999 60

PMC-6SDI VxWorks Device Driver User's Manual

5.6.33 ENABLE_BUFFER_INPUT

The ENABLE_BUFFER _INPUT function enables input to the buffer from the channels.

arg PARAMETER:

Not Used.

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1;

if (ioctl(FileDesc[6SDISlot], ENABLE BUFFER | NPUT, 0) == ERROR)

{

| ogMsg(" Enabl e Buffer Input Failed for Slot #%\n\n", 6SDI Sl ot,
0, 0, 0, 0, 0);
}

CMlﬂ August 11, 1999 61

PMC-6SDI VxWorks Device Driver User's Manual

5.6.34 CLEAR_BUFFER

The CLEAR_BUFFER function clears the buffer, dthough it does not stop input from
channds.

arg PARAMETER:

Not Used.

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1;

if (ioctl(FileDesc[6SDISlot], CLEAR BUFFER, 0) == ERROR)
{
| ogMsg("Cl ear Buffer Failed for Slot #%\n\n", 6SDI Slot, 0, O,
0, 0, 0);
}

CM August 11, 1999 62

PMC-6SDI VxWorks Device Driver User's Manual

5.6.35 SET_THRESHOLD

The SET_THRESHOLD function sets the buffer threshold value. This value may be used,
along with the buffer threshold flag, to observe the amount of detaiin the buffer. Oncethe
threshold vaue is s, the user may watch the flag for trangtion. If the flag is s, the threshold
value has been exceeded.

arg PARAMETER:

Not Used.

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1;

if (ioctl(FileDesc[6SDISlot], SET_THRESHOLD, 0) == ERROR)
{
| ogMsg("Set Threshold Val ue Failed for Slot #%l\n\n",
6SDI Slot, 0, 0, 0, 0, 0);

CMI

August 11, 1999 63

PMC-6SDI VxWorks Device Driver User's Manual

5.6.36 CLEAR_INT_REQUEST

The CLEAR_INT_REQUEST function clears the interrupt request flag after an interrupt has
occurred.

arg PARAMETER:

Not Used.

EXAMPLE:

int FileDesc[2];
int 6SDISlot = 1;

if (ioctl(FileDesc[6SDISlot], CLEAR | NT_REQUEST, 0) == ERROR)
{
| ogMsg("Clear Interrupt Request Flag Failed for Slot #%\n\n",
6SDI Slot, 0, 0, 0, 0, 0);

CM August 11, 1999 64

