
My daughter recently celebrated her 10th birthday. 
We’ve always had her birthday parties at our house, 
but this year was different for two reasons. First, now 
that Megan has reached “double-digits,” we let her 
have a sleepover party, which meant there were six 
nine- and ten-year-old girls sleeping in our basement 
that night. Second, since Megan’s birthday is right 

around Halloween, she decided to make that the theme of the party. My wife had a great time 
getting all the decorations and games together for the party, and on the big night our guests 
were treated to everything from light-up ghosts 
to tombstones on the front lawn, cobwebs on the 
ceilings and even a giant spider hanging from the 
kitchen ceiling. But the biggest surprise of all was 
Megan’s costume.

Having spent most of the previous Halloweens 
as a princess of some sort or other, Megan decided 
that this year would be different. She wanted to 
be a vampire! My wife used her theatrical makeup 
experience to good use, painting Megan’s face white 
and including some “blood” dripping from her mouth. 
With her beautiful auburn hair hidden under a black 
wig, Megan didn’t look like my little girl at all. But, of 
course, it was still her underneath.

I’m sure by now you’re wondering what this has to do with Verification Horizons. Megan’s 
party reinforced the idea that, when you step outside your comfort zone, sometimes you can 
achieve better results than you might have imagined. But there are still some important things 
to remember. We were able to build on past experience to take typical party games and add a 
spooky flair to them so that they would both fit the theme of the party and also be great fun for 
the girls, and we even thought up a couple of new games, too. Big brother David helped keep 
everything on schedule so we could fit everything in (including presents and cake!) and we 
even managed to get the girls to bed at a reasonable time (for a girls’ sleepover, anyway). And 
lastly, we were able to adapt as the night wore on so that, even though we didn’t do everything 
we had originally planned, we got the important things done and everyone had fun.

Let’s see…planning, building on experience, adding new features, tracking progress, 
managing schedules, achieving results. My daughter’s party was an engineering project!  
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In this issue, we’re going to show you how all of these ideas fit into 
adopting a new verification methodology, or improving your current 
methodology.

Our first article, from our good friend and colleague Harry Foster, 
“The Survey Says,” introduces our newest Verification Academy 
module, Verification Planning. It also shares the first round of results 
from a poll conducted through our Verification Academy program. This 
article sets the stage for the discussions to follow by letting you see 
how you compare to your colleagues who have visited the academy.

Our feature article, “Firmware Verification Using SystemVerilog 
OVM,” comes from our friends at Infineon in Singapore, who 
worked closely with some of my Mentor Graphics colleagues to 
implement a layered OVM-based methodology to verify a power 
train microcontroller. Interestingly, they chose to implement their new 
OVM environment from scratch to replace their previous e-based 
environment. As you’ll see, they were able to take advantage of OVM’s 
ability to provide structure to the environment, as well as flexibility in 
reusing the structure for a variety of tests. This will now form the basis 
for additional projects moving forward.

Our next article was written by our friends at Applied Micro, who 
share their thoughts on reusability in “SystemVerilog Configurable 
Coverage Model in an OVM Setup.” This shows a clever bit of 
coding in which the covergroups are written in terms of configurable 
parameters that can be controlled using the OVM set/get_config 
mechanism to let you modify the covergroups on a per-test basis. 
It even shows how to use a similar approach to configure cover 
properties as well. I’ve heard many SystemVerilog users complain to 
various degrees about the lack of flexibility in covergroups, and this 
article shows how to handle it quite well.

In “Advanced Techniques for AXI Bus Fabric Verification,” the 
authors introduce the concept of a virtual fabric that helps you 
tackle the challenges of complexity and schedule pressure. Using 
a combination of a virtual model of the fabric along with Mentor’s 
unique algorithmic stimulus generation techniques, you’ll be able to 
implement and debug most of your environment while the RTL is still 
being designed. The article discusses how these techniques were 
applied to an actual project, so you’ll see the issues and benefits they 
encountered.

We realize that many of you are still testing the waters a bit 
when it comes to Object-Oriented Programming and adopting new 
methodologies like OVM. In the spirit of “walk before you run,” we next 
present an article from one of my colleagues in India, which discusses 
“Converting Module-Based Verification Environments to Class-Based 
Using SystemVerilog OOP.” Rather than abandoning what may be  
 
 

a substantial amount of module-based Verilog or SystemVerilog  
code, this article will show you how to wrap your existing code with 
a class-based layer to begin to take advantage of the reusability and 
modularity of OOP code while maintaining backward compatibility with 
your existing environment. From there, it’s a straightforward step to 
fully adopt something like OVM.

In our Partners’ Corner this issue, we present “Verifying a CoFluent 
SystemC IP Model from a SystemVerilog UVM Testbench in Mentor 
Graphics Questa” from our friends at CoFluent Design. This article 
shows you how to use an OVM testbench to verify SystemC IP. 
Cofluent Studio provides a graphical modeling and simulation 
environment that lets you generate SystemC TLM code automatically. 
As you’ll see, it can also generate the Questa DPI code and custom 
C++ code needed to seamlessly integrate that TLM code into your 
OVM environment, which can itself be partially reused as the design is 
refined to RTL.

And last but not least, we have an article from my formal verification 
colleagues, Ping Yeung and Erich Marschner, on “What You Need to 
Know About Dead-Code and X-Semantic Checks.” In this article, you’ll 
be introduced to some ways of adopting formal verification without 
having to write properties or assertions. Dead-Code and X-Semantic 
checks are two of the areas where our new automatic formal checking 
can be used to augment dynamic simulation. I think you’ll see 
that being able to add this new technology on top of your existing 
methodology will prove extremely useful.

As you can see, we spend a lot of time here at Mentor trying 
to make it easier for you to adopt all this cool technology we’re 
developing. It all comes down to building on the familiar while pushing 
the boundaries a bit and stepping a little outside your comfort zone. 
Don’t be afraid. What may look like a giant spider at first may turn 
out to be just a balloon. I hope you enjoy this issue of Verification 
Horizons.

Getting back to Megan’s party, I’m sure you parents out there can 
sympathize with my difficulty in understanding how it could be that 
we’re celebrating her tenth birthday when she was just born not too 
long ago. I guess time really does fly when you’re having fun.

 
 
Respectfully submitted, 
Tom Fitzpatrick 
Editor, Verification Horizons
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As the saying goes: Those who fail to plan, plan to fail. With that 
said, I am excited to announce a new module focused on Verification 
Planning, which has been one of the Verification Academy’s most-
requested subjects for new content. The new Verification Planning 
module is delivered by our subject matter expert, who literally wrote 
the book on the subject, Peet James. The goal of verification planning 
and management is to architect an overall verification approach, and 
then to document that approach in a family of useful, easily extracted, 
maintainable verification documents that will strategically guide the 
overall verification effort so that the most amount of verification is 
accomplished in the allotted time. The aim of this module is to define 
terms, logically divide up the verification effort, and lay the foundation 
for actual verification planning and management on a real project. I 
think you will really enjoy and be enlightened by Peet’s treatment of the 
subject, and hopefully, you can apply many of the techniques that he 
presents to your own projects.

Speaking of applying Verification Academy techniques—we 
just conducted a large survey about the academy and found some 
interesting results that I would like to share with you. First, Figure 1 
shows who is viewing the Verification Academy content by job title. 

Figure 1: Verification Academy viewers by job title

It’s not too surprising that a majority of the viewers are verification 
engineers, with a ratio of about 3.5 verification engineers for every 2 
designers. 

In addition to who is viewing the Verification Academy, we 
were interested in learning the viewer’s type of targeted design 
implementation to get a better understanding of our viewers’ needs.  
Figure 2 shows who is viewing the Verification Academy by their type 
of targeted design implementation.

 

Figure 2: Verification Academy  
viewers by targeted design implementation

We are obviously seeing a growing number of FPGA engineers 
interested in advanced functional verification. Today’s complex SoC-
base FPGA designs are not your mom and pop variety of FPGA 
designs. More advanced verification skills are required to ultimately 
meet both quality and schedule goals.

Another question we wanted to answer through our survey is 
whether the Verification Academy has been useful. One way to answer 
this is to see how many viewers had actually applied or plan to apply 
the knowledge they learned in the Verification Academy on their own 
projects. The survey results are shown in Figure 3.

Figure 3: Verification Academy viewers  
who have applied knowledge on projects

We also wanted to determine through the survey if the content 
presented in the Verification Academy was at an appropriate level  
of detail. The survey results are shown in Figure 4.

Survey Says: Verification Planning  
by Harry Foster, Chief Verification Scientist Design Verification Technology, Mentor Graphics Corporation 
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Figure 4: Verification Academy  
content level of detail

Finally, we wanted to determine through the survey which additional 
topic in advanced functional verification should be covered in the 
Verification Academy. Figure 5 presents the results.

Your feedback is important to us, and we are very excited that our 
new Verification Planning module was one of the top requests from the 
Verification Academy survey participants.

I would like to encourage you to check out all our new and 
existing content at the Verification Academy by visiting www.
verificationacademy.com.

Figure 5: Verification Academy new subject content request
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INTRODUCTION
Semiconductor design is changing rapidly, which in turn forces 

continual evolution of verification methodologies and languages. This 
change is happening across the board, affecting not only expensive 
chips bound for big-iron servers but also more modestly priced 
processors built for specific applications. 

Consider the case of embedded microcontrollers. These integrated 
blocks of processing capability, memory and programmable 
peripherals are found in a range of products, from power tools to 
toys. Their reach is in part due to their plunging cost. Today, 8-bit 
microcontrollers, which account for the majority of all CPUs sold in the 
world, sell for as little as $0.25 each. Consider that in the early 1970s, 
Intel’s 8008, the world’s first 8-bit processor, sold for $120, an amount 
roughly equal to $520 today.  

Microcontrollers of course are niche devices, usually built for a small 
handful of tasks. An engine microcontroller, for example, might take 
input from various sensors and adjust fuel mix and spark plug timing. 
However, the specificity of these chips does not equate to simplicity 
in their design. High-end 32-bit Infineon microcontrollers bound for 
various automotive applications have as many as 70 distinct IP blocks 
that must be integrated and verified. And as it turns out, the hardware 
challenges are only the half of it. 

Like all microcontrollers, those designed by Infineon rely heavily 
on firmware. The firmware is critical, and not just the higher-level 
code that is closest to the application itself and that usually resides in 
flash memory. The lower level boot read only memory (ROM) code 
executes an increasing number of background processing tasks, 
including bootstrap loading, memory checking and so on. As is true of 
the hardware, the firmware itself is increasingly complex. Just a few 
years back the firmware for Infineon’s automotive chips – the Munich, 
Germany-based company is the No. 1 chip supplier to the automotive 
industry – amounted to just a few hundred lines of code. Today the 
firmware file is 16 kilobytes, and growing larger with each release.

For those writing the firmware, the challenge is a bit like building a 
plane while flying it. Namely, they are writing software for early-stage 
hardware that is nowhere near stable. How do you verify something 
when everything – the individual IP blocks, the overall design, even  
the firmware code itself – is still a work-in-progress? That was the  
 

challenge in a recent pilot project to design and verify a power train 
microcontroller at Infineon in Singapore.  

The solution was a layered methodology. The first layer is  
a standard Open Verification Methdology (OVM) testbench used  
to drive input interfaces via constrained-random pattern generation, 
observe outputs, measure functional coverage and compare the 
results against expected values, a process known as scoreboarding. 
(OVM is a joint development initiative between Mentor Graphics and 
Cadence Design Systems to provide the first open, interoperable, 
SystemVerilog verification methodology in the industry.) A second 
layer implements a well-defined structure for observing (using the 
SystemVerilog bind construct) and driving internal nodes in the VHDL 
design (using SignalSpy™, a technology within the Mentor Graphics 
Questa® Solution). We believe this combined approach will be more 
widely used in the future.   

 

FIRMWARE VERIFICATION METHODOLOGY
When building our new testbenches with OVM, our goal was to 

use the same firmware verification methodology we used in e, a 
verification language developed by Cadence and approved in IEEE 
Standard 1647. We chose to start from scratch rather than migrate 
portions of the e testbench to SystemVerilog because we did not have 
an e Reuse Methodology (eRM)-compliant testbench. Additionally, it 
would not be easy to migrate from e to OVM because of fundamental 
language differences. This also gave us the opportunity to make all of 
the OVM verification components (OVC) more structured, a contrast to 
our former e environment.

Building an OVM testbench from scratch certainly takes a bit of 
effort. For example, we needed to make our firmware verification 
methodology fit the OVM technology and guidelines. Then, of course, 
we had to build it. As the project progressed we definitely became 
convinced that the OVM methodology and technology were quite 
impressive and worth the initial effort to ramp up. 

This effort to learn OVM took place against a backdrop of increasing 
time and resources required to verify firmware in general. Five years 
ago, verification of automotive Infineon microcontrollers took no more 
than four man-months. Today we spend twice as long, largely due to 
mounting complexity. 

Firmware Verification Using SystemVerilog OVM 
by Ranga Kadambi, Eric Eu, and Sudheer Arey, Infineon Singapore 

Mark Glasser and Christoph Suehnel, Mentor Graphics
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Even seemingly simple tasks can be confounding. Take, as a 
hypothetical case, firmware written to toggle a particular port. It should 
be straightforward enough to verify the code and check the ports that 
are toggled. But what happens when there are additional conditions, 
as is inevitably the case? Perhaps the firmware reads the counter 
value from another address and is coded to toggle every set number 
of cycles. And maybe there’s input from another pin that tells the code 
whether the counter should be reset or just stopped with each toggle. 
Verifying all this functionality at the design stage is flat out difficult, 
especially with unverified underlying hardware.  

 

DESIGN DESCRIPTION
The design under test (DUT) is mainly coded in VHDL with some IP 

blocks coded in Verilog. The DUT is instantiated by a VHDL top-level 
testbench used for SoC verification (see Figure 1). The SystemVerilog/
OVM top-level is instantiated under this VHDL top-level.

 Figure 1. VHDL top-level testbench.

 

OVM TEST ENVIRONMENT
The first layer test environment (see Code 

Sample 1 and Figure 2) consists of an interface 
layer for observing and driving signals into the DUT. 
Firmware verification differs from the conventional 
bus functional model (BFM) because we are mostly 
interested in whitebox testing. Instead of a BFM 
model, we used a signal map. The signal map is 
a collection of internal signals that are relevant to 
our verification goals. The signal map implements 
methods for observing and driving internal signals. 

In this project, we used the SystemVerilog bind construct to observe 
the internal VHDL signals and the Mentor Graphics Questa SignalSpy 
technology for driving them.

 

// testbench top 
module top_tb_top;

     top_tb_connect tb_ic();
     top_tb_virtual tb_vif =  new(“tb_vif”);

     initial begin
          // connect interfaces
          tb_ic.connect_vif(tb_vif);
          set_config_object(“ovm_test_top.*”, “ifc”, tb_vif, 0);
          run_test();
     end

endmodule

 
Code Sample 1

The second layer consists of the OVCs (see Code Sample 2). We 
are using a proprietary OVC template and guidelines to develop these 
verification components. The OVCs are configurable using parameters 
and/or macros. TLM analysis ports and TLM analysis fifos are used 
for the OVC interconnections. TLM analysis ports provide simple and 
powerful transaction-based communication because of their ease of 
implementation, support of multiple connections, and execution in the 
delta cycle. 

Figure 2: The OVM test environment.
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// example of an OVC

class clkgen_agent extends ovm_agent;

       protected ovm_active_passive_enum is_active = OVM_ACTIVE;

       // TLM connections to other OVCs
       ovm_analysis_port #(clkgen_item) aport;    
       // TLM output to other OVCs
    ovm_analysis_export #(bootgen_item) bootgen_export;   
       // TLM input from other OVCs
 
       // signal maps
       ports_if   ports_vif;
       cpu_if  cpu_vif;
 
       // global event pool
       ovm_event_pool  eventPool;
 
       // components
       clkgen_config      cfg;
       clkgen_driver      driver;
       clkgen_sequencer   sequencer;
       clkgen_monitor     monitor;
       clkgen_coverage    coverage;

       `ovm_component_utils_begin(clkgen_agent)
 ovm_field_enum  (ovm_active_passive_enum, is_active,    
 OVM_ALL_ON)
 `ovm_field_object(cfg,                                 
 OVM_ALL_ON)
       `ovm_component_utils_end

       function new (string name, ovm_component parent);
 super.new(name, parent);
 aport = new(“aport”, this);
 bootgen_export = new(“bootgen_export”, this);
       endfunction

       function void build();
 ovm_object obj;
 super.build();

      // check if cfg has been created externally
      if (cfg == null) begin
                          // fallback if cfg is not created outside
                         `ovm_info(get_type_name(), “Configuration 
                         object not initialised from outside. Generating  
                         one internally”, OVM_LOW)
                         cfg = clkgen_config::type_id::create(“cfg”, this);
                         assert(cfg.randomize());
     end

      // get signal map
      if (get_config_object(“ports_vif”, obj, 0)) begin
  assert($cast(ports_vif, obj))
  else
        `ovm_error(get_type_name(),  
        “Wrong virtual interface type!”) 
    end
  else begin
       `ovm_error(get_type_name(),  
        “Virtual interface not available!”)
    end
  
      // get signal map
      if (get_config_object(“cpu_vif”, obj, 0)) begin
  assert($cast(cpu_vif, obj))
  else
       `ovm_error(get_type_name(),  
        “Wrong virtual interface type!”) 
    end
  else begin
         `ovm_error(get_type_name(),  
                                        “Virtual interface not available!”)
    end
  
      // get global event pool
      eventPool = ovm_event_pool::get_global_pool();
  
      monitor = clkgen_monitor::type_id::create(“monitor”, this);
      coverage = clkgen_coverage::type_id::create(“coverage”, 
      this);
      if (is_active == OVM_ACTIVE) begin
                         driver = clkgen_driver::type_id::create(“driver”,this);
                         sequencer = clkgen_sequencer::type_id:: 
                         create(“sequencer”, this);
     end
  
       endfunction

       function void connect();
 super.connect();
  
 // connect monitor resources
 monitor.cfg  = cfg;
 monitor.cpu_vif  = cpu_vif;
 monitor.eventPool  = eventPool;
  
 if (is_active == OVM_ACTIVE) begin
                         // connect driver resources
                         driver.cfg = cfg;
                         driver.ports_vif = ports_vif;
                         driver.eventPool = eventPool;
                         driver.seq_item_port.connect(sequencer. 
                         seq_item_export);
                         driver.dport.connect(coverage.analysis_export);
                         // connect driver TLM to coverage
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                         driver.dport.connect(this.aport); 
                         // connect driver TLM to agent
                         sequencer.cfg = cfg;
     end
  
       endfunction
  

endclass

 
Code Sample 2

 
OVCs are critical in helping us to deal with large numbers of IP blocks. 
We can more or less map each such block to a corresponding OVC, 
and together these OVCs interact and cross check at a high level in 
such a way as to hide the lion’s share of the complexity. If a future 
Infineon product incorporates a new or replacement block, we simply 
need to add or swap out one OVC. Given the modular nature of OVC, 
and of SystemVerilog in general, we can leave the rest of the stitched 
together design mostly as is. This is a boon to the design team and 
unusual in an era in which complexity often hides interdependence. 
Tugging on one loose thread can often cause an entire digital fabric to 
unravel.  

In general, in our firmware verification testbench we have four 
types of OVCs: PC monitor, config generator, monitor/scoreboard, 
and testbench element. 
The PC (program counter) 
monitor is the main OVC. It 
is responsible for monitoring 
the PC, decoding the PC, and 
triggering an ovm_event when 
the PC matches a label in the 
firmware code. In addition, it 
will collect PC data for code 
and branch coverage. All 
other OVCs in the testbench 
need an object handle to this 
PC monitor class. The config 
generator OVC creates the 
constrained-random stimulus 
and feeds it into the DUT that 
will influence the behavior of 
the firmware execution. The 
chief function of the monitor/
scoreboard OVC is to observe 

and compare signals in the DUT against the stimulus generated by the 
generator OVC in response to events triggered by the PC monitor (see 
Figure 3). The monitor OVC contains the required functional coverage 
points. It will be sampled by the covergroup only if all the conditions 
and checks for a coverage point are met. The testbench element OVC 
is usually a communication component that interacts with the DUT on 
the port interfaces. Examples include the JTAG module and bootstrap 
loaders. This OVC performs a specific task using the actual protocol of 
the communication component. 

The third layer is the top-level OVM environment and configuration 
layer. The top-level environment instantiates all the OVCs and 
creates the TLM connections. The top config block configures the 
sub-configs in each of the OVCs for a specific DUT. A virtual top 
sequencer controls the config generators, the OVC’s sequencer, and 
the testbench element OVC’s sequencer. The top sequencer library 
contains complex sequences involving two or more of the OVCs, such 
as pipelined sequences whereby the output of one generator OVC is 
needed by another generator OVC.

The fourth layer contains the OVM test pool. Each test specifies a 
particular scenario to run in the testbench. The test pool configures  
the environment by using the factory override methods. 

Figure 3: An example of event (PC) based  
assertions in firmware verification.
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FIRMWARE VERIFICATION RESULTS
Our verification focus in this project is the firmware, which is 

assembly ROM code in the microcontroller. The firmware code 
contains the very first instructions that will be executed by the 
microcontroller upon boot up. A proper execution of the firmware upon 
power-on must be ensured to bring the microcontroller to a functional 
state. Any bug in the firmware that causes the startup to fail will render 
the device unusable. Since the firmware code is hard-coded, a respin 
of the chip would be necessary, driving up the cost of development 
significantly. 

We found 12 firmware bugs and five hardware bugs using the OVM 
for firmware verification. Common firmware bugs were the result of 
the implementation not meeting specification (these were detected 
by assertions) or implementations that did not cover all possible 
scenarios in the firmware (detected by random stimulus generation 
and coverage). Firmware verification quite often also detects hardware 
bugs (through assertions) caused by registers that are not writable or 
readable because either their protections are not set correctly in the 
RTL or their top-level connections are incorrect. Most significantly, we 
hit verification targets related to functional coverage and code branch 
coverage. The latter is a methodology in which we execute both trunk 
and branch blocks of code, a technique that helps to deal with multiple 
revisions, a fact of life in all software development.  

 

EXPERIENCES AND LESSONS LEARNED
We were able to pursue our goal of constructive, meaningful 

innovation in the sense that this was a successful pilot project using 
OVM and SystemVerilog for firmware verification. The success during 
the pilot convinced us that for subsequent projects we could reuse 
most of our firmware test environment, especially the OVM portion.

OVM provides comprehensive guidelines for building a complete 
verification environment. OVM extends tested and proven coverage-
driven, constrained-random verification with practical resources in the 
OVM class libraries. OVM facilitates reuse and configuration by using 
the OVM factory method, and the TLM provides a standard and simple 
data transaction between verification components. Another useful 
feature was OVM Event, which helps to monitor the core program 
counter so we can know at which stage the core is actually getting the 
instruction in the firmware. Essentially we can trigger the feature at a 
particular stage of the firmware’s execution. OVM Event propagates 
to all OVCs, which do various assertions and checks on signals and 
monitors. All told these OVM features enabled a reusable and modular 
approach to design verification.

The OVM methodology and technology were quite impressive 
and worth the initial ramp up. In the past for a project of this scale, 
Infineon would generally spends perhaps six to nine man-months 
on the firmware, though for this pilot we put in 10 man-months. One 
reason is that compared to AOP, OOP does sometimes require more 
lines of code. However, the extra lines of code required by OOP 
enabled us to reach our primary goal of a more structured approach. 
Importantly, our OVM infrastructure was well structured, a contrast to 
our former e environment. Furthermore, the compile issues inherent 
to AOP required an effort greater than that required to write the extra 
lines of OOP code. On subsequent projects, the amount of effort and 
workarounds associated with the OVM should also decline. 

The main challenges we came across were in the first layer of 
the verification architecture: implementing the bind mechanism to 
connect to internal nodes of the VHDL design and feeding back these 
connections into the OVM testbench. The objective was to provide 
a complete language-based interface for observation and forcing of 
internal nodes. So far, this objective was reached only with respect to 
observation. 

We resolved the control issue by using SignalSpy, a Questa 
utility that provides access to internal design nodes to drive signals. 
However, it is not a language-based approach. The employment of the 
force functionality in SignalSpy conformed to OVM guidelines without 
generating serious issues.

To avoid changing existing force files to accommodate testbench 
development (required by the standard Infineon OVM testbench 
architecture), the top-level testbench had to be VHDL. OVM does 
not require a SystemVerilog top-level module. Therefore, this could 
be easily managed. The implementation of testbench elements for 
the design (JTAG, etc.) involved separate tasks and was performed 
following the OVM guidelines.

 

FUTURE IMPROVEMENTS
The main challenge of this project was the implementation of the 

signal map layer. The use of the SystemVerilog bind construct was 
not suitable for whitebox verification because the construct is not 
reusable if the design changes. Furthermore, SystemVerilog bind has 
its limitation with VHDL designs. 

For future improvements, we would like to explore the possibility of 
replacing the signal map with an OVM register package to access the 
internal registers of the DUT, and we are aware that a register package 
will be provided in the near future by the OVM organization. Once 
available, this will solve the controllability issue.
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SystemVerilog should be extended to improve the driving of internal 
signals in VHDL designs. VHDL users will drive this demand to 
improve the functionality of SystemVerilog for VHDL designs. This is 
not an issue for Verilog portions of a design or IP.

Based on this pilot project, we recommend the following 
enhancements to SystemVerilog:

1. Deliver improved documentation for the SystemVerilog bind 
construct to make its employment easier and more powerful.

2. Provide a language-based approach to access internal nodes in 
VHDL designs for observation and forcing.
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With the advent of a new era in verification technology based on 
an advanced HVL like SystemVerilog, the concept of random stimulus 
based verification was born, to verify today’s multi-million gate 
designs.

In concept, every verification engineer fancies the idea of random 
stimuli driven verification, but as is rightly said – “Everything comes 
with a cost” and the cost here is a big concern that haunts the life of 
every verification engineer:

• How do I close my verification?

• When can I say I am done?

To answer such questions, SystemVerilog as a language came up 
with the concept of Functional Coverage that is much more accurate of 
a measure compared to the traditional Code Coverage techniques. We 
concentrate mainly on this SV feature in our write-up, adding one more 
dimension to it - configurability.

Methodology like OVM has brought in the concept of reusability of 
Environment/Agent (mainly consisting of Driver/ Monitor/ Sequencer) 
across projects. But, on the other hand, a user tends to create a 
coverage model that is usually coupled very tightly to the specifications 
of the given project. In the process, he/she ends up writing a separate 
coverage model for every project, compromising the reusability aspect 
and violating the Methodology mantra! Keeping above limitation in 
view, we would like to present the user with one possible solution – 
Configurable and Reusable Coverage Model, sighting AMBA AXI 
protocol as the case study for discussion.

The paper is sub-divided in the following major sections:

1. Overview
     a. Why configurable coverage model???
     b. SystemVerilog coverage constructs – Key to configurability
2. Basic coverage setup
     a. Overview of the AXI setup – agents/connections/passing  

      configuration
     b. Classification of the coverage model – AXI as an example
     c. Requirements of configurable model
3. In depth analysis of the coverage model (coding practices/ 

constructs used)
     a. Transaction Coverage

     b. Error Coverage
     c. Protocol Coverage (AXI Handshake coverage) / Flow Coverage
4. Limitations faced
5. Concluding Remarks

OVERVIEW
Why configurable coverage model???
 
“To minimize wasted effort, coverage is used as a guide for directing 
verification resources by identifying tested and untested portions of the 
design.”

— IEEE Standard for SystemVerilog (IEEE Std 1800-2009) 

This quote from LRM [2], explains the intent of functional coverage. 
But the crux of this paper lies in the configurability of any given 
coverage model. Configurability is the key to re-usability for any setup.

All our current day methodologies have brought in the concept of 
reusability of the agents such as BFM’s and Monitors across projects. 
In the same project, an engineer also creates a coverage model in 
order to provide the management with a picture of the verification 
activity status. However it’s as per the given project specifications. 
Thus an engineer ends up having to write a separate coverage model 
per project while re-using the rest.

However, verification environments created from reusability 
perspective need to be meticulously designed to take care of coverage 
model reusability as well! So our main focus is on the coverage model 
that could be configured and re-used.

AMBA – AXI is one of the most commonly used protocols in industry 
for communication among the SOC peripherals. Thus we chose this 
protocol for our case study.

 
SystemVerilog Coverage constructs –  
Key to configurability

SystemVerilog provides a very fast and convenient method to 
describe the functional coverage for any given setup with the help of 
pre-defined constructs. A brief overview shall be a good starting point.

A covergroup is user-defined type like a class, which defines a 
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coverage model. Composed of a number of sub-elements including 
the following… 

• Coverpoint - Describes a particular type of coverage event, how it 
will be counted as well as one or more bins to organize the count

• Cross - Defines a new coverage event by “combining” two or more 
existing coverpoints or variables 

• Bin- A coverage event counting mechanism, automatically or user-
defined 

• Options - Certain built-in options that helps to gain better 
controllability over the collection of coverage numbers. 

Figure-1 below depicts a brief overview. The main highlight of the 
paper lies in the wise usage of the coverage/coverpoint/cross point 
“OPTIONS”, “METHODS” and “BINS” provided in the language. 
The following outlines a few important aspects.

Firstly, the important coverage options:

1. per_instance: Each instance contributes to the overall information 
for the covergroup type. When true, coverage information for this 
covergroup instance is tracked well.

2. at_least: Minimum number of hits for each bin. A bin with a hit 
count less than this number is not considered covered. 
Say for example, if we want a particular coverpoint/bin to be hit a 
minimum of 5 times before user gains a confidence on the same, 
user should specify option.at_least=5

3. weight: If set at the covergroup level, it specifies the weight of this 
covergroup for computing the overall coverage. If set at coverpoint 
(or cross) level, it specifies the weight of a coverpoint (or cross) for 
computing the coverage

4. goal: Specifies the target goal for a covergroup. If the user-
specified goal, say 50% for that given coverpoint/bin, then this 
shall account towards 100% coverage calculation.

5. auto_bin_max: Maximum number of automatically created bins 
when no bins are explicitly defined for a coverpoint.

All the options can be specified for instance-specific or type specific 
coverage calculation. But language restricts that type_option must be 
a constant parameter and does not allow variable for the same. The 
only configurations provided are goal, weight, strobe and comment.

There is a key difference between type and instance coverage. The 
instance coverage would give us coverage of each individual instance 
created while type coverage is a sum of all instances. Type coverage 
has many limitations which are described in later part of the paper.

Coverage methods are what we would discuss next.

1. sample(): Controls the triggering of a covergroup.
2. get_coverage(): Calculates type coverage number (0-100)
3. get_inst_coverage(): Calculates the coverage number (0-100) 

of a specific instance on which it is invoked.
Since these methods can be called procedurally at any point of 

time, gives the user an additional flexibility to control the collection 
of coverage for a defined covergroup as well as get the coverage 
numbers in any of the agents in your OVM setup say, a score-board 
etc.

Now let’s look into a little detail of bins:

[open_range_list] specification - one of the important features in 
the bin definition that enables the user to control the number of bins 
created in case the user has explicitly defined the bins, since the 

option auto_bin_max doesn’t work in 
this case.

Another point that we have utilized 
is the order of precedence that the 
language imposes on the illegal/
ignore/normal bin definition. The 
priority order is as:

1. illegal_bins: doesn’t account 
towards overall coverage, issues an 
error

 
 
Figure 1 : SystemVerilog 
Coverage Constructs - Overview
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2. ignore_bins: doesn’t account towards overall coverage

3. bins: are user-defined/automatically created collectors which 
count towards the overall coverage numbers.

“The default specification is associated with each of the above bins. 
It defines a bin that is associated with none of the defined value bins. 
The default bin catches the values of the coverage point that do not lie 
within any of the defined bins. However, the coverage calculation for 
a coverage point shall not take into account the coverage captured by 
the default bin. The default bin is also excluded from cross coverage.”

 

BASIC COVERAGE SET-UP
Overview of the AXI setup

As shown in Figure 2, we have built our coverage model in an OVM-
based setup. Utilization of OVM’s TLM communication to build the 
hierarchy run-time helps a user in the placement of the components 
as required and also provides ease-of-communication amongst the 
components. As evident, all the regular components of the VIP are 
placed inside an agent wrapper. For the visibility of the collected 
transaction we utilize analysis port-export connection to establish 
a link between the bus monitor and the score-board as well as the 
coverage collector. The main reason for this structure is that both 
these components are coded by a user as per project specific 
requirements. 

Figure 2 : Overview of the AXI setup

But later, with the introduction of the generic coverage model, we 
were able to shift this coverage collector inside the agent itself. Still 
it follows the same TLM connection along with an enable/disable 
switch attached to its connection in the connect() phase of OVM. 
This is the first level of control for the coverage model, as we 
don’t start focusing on the coverage numbers right from the start of 
the project, hence we need to keep it disabled until we gain first cut 
confidence on the design as well as the verification environment setup.

 
Classification of the coverage model –  
AXI Protocol as an example

As we rely mainly on our coverage definition for verification closure, 
so a comprehensive coverage model definition is required. Towards 
this end, a modular coverage model divided into 4 sections as shown 
below would yield great results.

But this modular coverage classification can still be considered 
generic in the sense that every protocol can be categorized under 
these same 4 sections.

• Transaction coverage: coverage definition on the user-controlled 
parameters usually defined in the transaction class & controlled 
through sequences.

• Error coverage: coverage definition on the pre-defined error 
injection scenarios

• Protocol coverage: (AXI Handshake 
coverage) this is protocol specific. In the  
case of AXI, it is mainly for coverage on  
the handshake signals i.e. READY & VALID 
on all the 5 channels.
• Flow coverage: This is again protocol 
specific and for AXI it covers various features 
like, outstanding, inter-leaving, write data 
before write address etc…

Consolidating all the above 4 models in a 
modular & easily controllable fashion was the 
next task. The figure below describes how it 
was done in an OVM setup.

Following are the basic requirements  
to model these 4 coverage models:

1. Interface
2. Transaction collected
3. Configuration class
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Let’s see how we get each one of them in detail. As depicted in 
Figure 3, for getting the transactions collected by bus monitor into 
the Main coverage class, we established a basic port-export TLM 
connection with the Main coverage class. This transaction is in turn 
passed to the Write/Read Transaction coverage model class, again via 
a TLM communication channel.

For coverage models other than transaction coverage model, an 
interface connection is required such that it is shared across the Bus 
monitor as well as the individual coverage models. This was achieved 
via connection package as shown in Figure 3. For more details refer [1]

Lastly, a very crucial input required is the configuration class, which 
in our case is specific for coverage definition only. This configuration 
class is passed and utilized via set_config_*/get_config_* configuration 
utility of OVM. The configuration is set by the user in the main 
coverage class and from there it is passed via the same utility further 
below to the respective coverage models as depicted in Figure 3.

Figure 3 : Coverage Model – OVM setup

Note: As per the SV LRM, since the covergroup(s) can be 
created only in the class constructor, we should have the 
configuration object available from the user in the class 
constructor itself, despite the fact that we use OVM set/get 
configuration methods usually in the build() phase of an 
OVM setup. We shall talk more about this in the later  
section of the paper.

function void build();
super.build();
if(cov_cfg.disable_transaction_coverage == 0) begin //{
   axi_trans_cov = axi_transaction_coverage# (ADDR_WIDTH…)
     ::type_id::create(“axi_trans_cov”, this);
end //}
if(cov_cfg.disable_error_coverage == 0) begin //{
   axi_error_cov = axi_error_coverage# (ADDR_WIDTH…)
     ::type_id::create(“axi_error_cov”, this);
end //}
if(cov_cfg.disable_axi_handshake_coverage == 0) begin //{
   axi_handshake_cov = axi_handshake_coverage# (ADDR_WIDTH…)
     ::type_id::create(“axi_handshake_cov”, this);
end //}
if(cov_cfg.disable_flow_coverage == 0) begin //{
   axi_flow_cov = axi_flow_coverage# (ADDR_WIDTH…)
     ::type_id::create(“axi_flow_cov”, this);
end //}

endfunction

Listing 1 : Code depicting coverage model classes 
controlled via user controlled configuration class

The main coverage class is a class that serves as a 
basic control point for the remaining coverage models. 
Listing 1 depicts the first level of configurability based on 
whether the user wishes to enable/disable a coverage 
model as a whole, in the build() phase of the OVM.

 
Requirements of configurable model

Let us first summarize very basic requirements 
necessary for re-usability.

• Turn ON/OFF each coverage model defined, on an 
individual basis. For example, user may not always want 
the error coverage to be ON, until he/she performs error 
testing. So, by default, we generally keep it disabled and 
enable only when required.

• Turn ON/OFF coverage for each covergroup defined. Every 
covergroup should be created only if a user wishes to do so. So 
this configuration control is used in the class constructor itself to 
restrict the creation of the covergroup altogether. Also, the same 
control needs to be applied at the sampling of a covergroup.

• User must be able to set the limits on the individual field being 
covered in the coverage model within a legal set of values. Say 
for example, transaction field like, Burst Length - user should be 
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able to guide the model on what are the limits on the field that 
one wishes to get coverage on within a legal set of values ranging 
from 1-16 as per AXI spec. So providing lower and upper limits for 
transaction parameters like burst size, burst length, address etc. 
makes it re-usable.

o option.weight can be exploited for this purpose. Thus, weight 
of only those coverpoints can be set to 1 which are legal and 
within user defined limits

• User should be able to control the number of bins to be created 
and the limits within which they should be created, for example 
in fields like address. auto_bin_max option can be exploited to 
achieve this, in case user doesn’t specify the bins explicitly. This 
can also be achieved by specifying the number of bins to be 
created as parameter to the bins construct, which works when 
there are user defined bins. So a legitimate choice needs to be 
made from above options.

• User must be able to control the number of hits for which a bin 
can be considered as covered. option.atleast can be used for this 
purpose and the input to this can be a user defined parameter

• User should also have the control to specify his coverage goal, 
i.e. when the coverage collector should show the covergroup 
“covered” even though the coverage is not 100%. This can be 
achieved by using option.goal, where goal is again a user defined 
parameter. This is useful in various applications as illustrated  
in the later part of this paper.

IN DEPTH ANALYSIS OF THE COVERAGE MODEL
Transaction Coverage

Transaction class in terms of methodology is a class that contains 
all the randomizable properties contributing towards complete testing 
of a given design. But unless all the possible values of every individual 
parameter as well as set of combinations of each one of them, is 
applied to the design, gaining confidence on our testing is difficult. 
However, even after one has created several random test cases, 
how can one be sure that the verification is complete and that he has 
covered all possible scenarios? Thus it is of utmost importance to 
building a coverage model that will let the verification engineer know 
quantitatively how much he/she has been able to achieve.

In order to get a better understanding of this coverage model, let us 
consider an example from AXI. There are several parameters in AXI 
which should be tested and checked for corner case hit. Some of them 
are mentioned in the Listing 2.

 
Burst Length, Burst  
Size, Burst Type,  
Access Type, Response  
Type, Address ……

Listing 2 : AXI Transaction parameters 

Although it is essential to check corner case hits from protocol 
specification perspective, but at the same time, it’s very important 
that exact hits relevant to one’s project specification get checked. For 
example, AXI spec does provide limits for parameter Burst Length 
from 1 to 16, but it is important to check for the values relevant to 
ones project specification and not as per AXI specification (assuming 
project specifies a subset of values supported by AXI). This is where 
configurability takes the lead. Not having a configurable coverage 
model might give us false numbers which are of no use to the specific 
project.

Also we need to ensure that duplication of code can be avoided 
while coding the same coverpoint across various covergroup(s) (i.e. 
individual covergroup for a given property and while defining it’s cross 
points). Here in the example below we have taken BurstLength from 
AXI to illustrate the same Macro for burst length and burst size has 
been shown in Listing 3 & Listing 4. 

`define CMG_BURST_ADDR_WRITE_LEN() \
   CP_BURST_ADDR_WRITE_LEN: coverpoint trans.BurstLength {\
      bins CB_BURST_ADDR_WRITE_LEN[] =
             {[cb_wr_lower_blen_limit:cb_wr_upper_blen_limit]}; \
      illegal_bins CB_BURST_ADDR_WRITE_LEN_ILLEGAL = default; \
      option.weight = wght_blen; \
      option.at_least = cb_wr_blen_min_hit_count; \

}

Listing 3 : Macro definition for covergroup – Burst length. Here 
legal bins are defined within user configured limits, rest all are 
treated as illegal. Weight i.e. enable/disable & hit-count are also 
set by the user.
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`define CMP_BURST_ADDR_WRITE_SIZE() \
    CP_BURST_ADDR_WRITE_SIZE : coverpoint trans.BurstSize { \
        bins CB_BURST_ADDR_WRITE_SIZE[] =
 {1,2,4,8,16,32,64,128,256,512,1024} ;\
        illegal_bins CB_BURST_SIZE_ILLEGAL_OUTSIDE_LIMITS =
 {[$:(cb_wr_lower_bsize_limit-1)],
        [(cb_wr_upper_bsize_limit+1):$]}; \
        illegal_bins CB_BURST_ADDR_WRITE_SIZE_ILLEGAL= default; \
        option.weight = wt_bsize; \
        option.at_least = cb_wr_bsize_min_hit_count; \
}

Listing 4 : Macro definition for covergroup – Burst Size

The SystemVerilog feature that has been exploited in Burst Size 
covergroup is that illegal bins take precedence over bins. Thus, 
the approach used was:

• Include all the legal values of Burst Size as per AXI spec in bins
• Include the values which are outside user defined limits  

in illegal_bins.
• By default, the rest of all values are treated as illegal. 

Since illegal_bins have greater precedence so the values of Burst 
Size which are common to both illegal_bins and bins are considered 
as part of illegal_bins thus giving us bins/coverage as per the user 
configuration.

We have also provided user configurable minimum hit count i.e. 
number of hits required to consider a bin/ covergroup to be hit.

While defining covergroup(s), it is essential to pass configuration 
parameters as an argument to that group. Note that the covergroup 
has to be created in class constructor where the configuration 
parameters are passed to the new() function of the covergroup and 
this covergroup is triggered using in-built sample() function in the run() 
phase of OVM. The Listing 5 illustrates the same. 

covergroup CG_BURST_ADDR_WRITE_LEN
  (int cb_wr_lower_blen_limit,…….);
    option.per_instance = 1;
    `CMG_BURST_ADDR_WRITE_LEN
endgroup : CG_BURST_ADDR_WRITE_LEN

function new(string name, ovm_component parent);
    cb_wr_lower_blen_limit = cov_cfg.wr_lower_blen_limit;
    ……..

    if(cov_cfg.cg_disable_wr_blen_cov == 0)
          CG_BURST_ADDR_WRITE_LEN =
                 new(cb_wr_lower_blen_limit,…..);
endfunction : new

task run;
    if(cov_cfg.cg_disable_wr_blen_cov == 0)
          CG_BURST_ADDR_WRITE_LEN.sample();

endtask

Listing 5 : Covergroup definition and creation of covergroup 
based on enable/disable with the configurable parameters 
passed and sample() function call in run() phase.

Coverage on parameters like address is also essential. However, for 
large address ranges, forming individual bin for each address might 
not be desirable or feasible. In such cases each bin can cover a range 
of addresses instead. Although the language has provided auto_bin_
max construct for this, but it again has its own limitations, and this 
is where configurability comes in handy. For example, what if a user 
wants to define address range within which he/she wishes to measure 
coverage? The option auto_bin_max creates specified number of bins 
only if no bins have been defined explicitly and thus is not useful in this 
case. Listing 6 shows how the scenario can be created and achieved.

 

covergroup CG_WRITE_ADDR_COV(int cb_wr_addr_num_bins…..);
    option.per_instance = 1;
    CP_WRITE_ADDR_COV : coverpoint trans.Address {
          bins CB_WRITE_ADDR_COV[cb_wr_addr_num_bins] =
   {[cb_wr_lower_addr_limit : cb_wr_upper_addr_limit]};
          option.at_least = cb_wr_addr_hit_count;
}
endgroup : CG_WRITE_ADDR_COV
 

Listing 6 : Covergroup definition with the [open_range_list]  
for the coverage of parameters like Address ranges

The number of bins that need to be created can be passed as a 
parameter to the bin. Thus now the entire address range is divided 
such that, first the number of bins configured by the user gets created, 
with each bin carrying an address range as specified by the user per 
bin. Number of hits per bin as desired by user, can also be controlled 
by using option.atleast (Listing 6).
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Cross Coverage: Once individual coverage on each parameter has 
been checked, sometimes it’s also important for a verification engineer 
to check cross coverage. In fact, there are some parameters which 
should be checked for coverage only w.r.t. other parameters. Sighting 
an AXI example to explain this, if user wants to check coverage on 
Burst Length, one cannot deduce useful coverage numbers unless it is 
measured w.r.t. to the Burst Size. This would help in giving the correct 
idea of the narrow/aligned/unaligned transfers taking place in the 
simulation. Cross coverage becomes essential in such cases.

Again, although cross coverage is important, but 100% coverage 
goal might not be desirable always for same. Let us consider cross 
coverage between two AXI parameters namely, Burst Length and 
Burst Size. Here, usually the requirement is to check that for each 
value of Burst Size all values of Burst Lengths have been hit and vice 
versa. However, if user knows that not all combination scenarios are 
valid as per his project specification, then he should be able to check 
for only required combinations of this cross coverage, ignoring the 
rest. For example, say for Burst Length > 1, the project specification 
requires Burst Size to be fixed to 16, then the user knows that rest of 
the values of Burst Size will never hit. In such a case, user should have 
the power to redefine his goals, so that he/she knows when to consider 
the RTL as covered. This flexibility is achieved by providing user 
configurable goal for cross coverage. The Listing 7 shows an example 
of cross coverage between Burst Size and Burst Length.

 

covergroup CG_BURST_WRSIZE_CROSS_LEN
      (int cg_wr_size_cross_len_target_cov,…..);
    option.per_instance = 1;
    option.goal = cg_wr_size_cross_len_target_cov;
    type_option.weight = 0;
    type_option.goal = 0;

    `CMP_BURST_ADDR_WRITE_SIZE
    `CMP_BURST_ADDR_WRITE_LEN
    CP_BURST_WRSIZE_CROSS_LEN:
 cross CP_BURST_ADDR_WRITE_SIZE ,  
           CP_BURST_ADDR_WRITE_LEN{
 option.at_least = cb_wr_bsize_min_hit_count ;}
endgroup : CG_BURST_ADDR_WRITE_SIZE_CROSS_LEN 

Listing 7 : Example depicting the cross coverage between Burst 
Size & Burst length parameters (using macros in Listing 3 & 4). 
Here we have type_option.weight = 0 as we are just focusing on 
the instance coverage rather than type coverage.

The key features exploited in above coverage are as follows:

• Definition of cross coverpoints has been given in separate 
covergroup. This is useful in case user does not wish to measure 
cross coverage, then on the basis of disable, the covergroup will 
not be created thus making things simpler since the group does 
not appear in the report.

• Although the cross covergroups were defined separately, it was 
made sure that unnecessary code repetition is avoided by using 
SystemVerilog macros throughout.

• User configurable goal was also provided. This is done by using 
“option.goal”

• User configurable hit count was provided so that the user can 
decide how many hits of Burst Size are required for each Burst 
Length to consider a bin hit. This is done by providing configurable 
“option.atleast”

 
Error Coverage

Negative scenario testing is one of the stressed domains these 
days (especially for the complex protocols) to get a confidence on the 
behavior of the design. But again with this comes one big question - 
Have I done enough error testing?

So building a generic coverage model that can be used on a given 
setup to help the verification engineer know how much error testing he/
she has stressed upon as per given design specification, will help in 
closing negative testing quickly.

As is the case of AXI in our current study, we can introduce a wide-
range of error scenarios and test if the DUT responds correctly or not. 
A few possible error scenarios in AXI are listed in Listing 8 for your 
reference.

Note that each error scenario is attached to a unique message 
ID for coverage collection and report generation using OVM reporting 
mechanism. More about this is discussed below.

1. Corrupt the WLAST signal  
    (AXI_LAST_WRITE_TRANSFER_SHOULD_HAVE_LAST_BIT_SET)
2. Send a request originally for Y bytes while in the Data phase send  
    only Y+1 beats.(AXI_WLAST_ASSERTED_AFTER_COMPLETE_BEATS)
3. Drop a Write transfer in a Write transaction (Y beats) i.e. transfer  
    Y-1 beat. (AXI_WLAST_ASSERTED_BEFORE_COMPLETE_BEATS)
4. Corrupt the Write Response
 a. SLVERR –(AXI_WRITE_RESPONSE_SLVERR)
 b. DECERR- (AXI_WRITE_RESPONSE_DECERR)

5. Corrupt the Id field (AXI_WRITE_RESPONSE_ID_CORRUPTED)

Listing 8 : AXI Error Scenarios
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However, all the scenarios may not be applicable to all the modules/ 
projects, so configurability is required to enable only the required 
set of coverpoints. Described below is an approach to deal with this 
requirement.

Here, we utilized the unique Message ID as a tool. Functional 
coverpoints were written on the unique message ID representing the 
error-scenarios being covered. However, the following assumption  
was made while developing this coverage model:

 Every error scenario emits one unique message ID, although 
there may be more message ID’s getting emitted from some other 
checks simultaneously, that might get triggered owing to a given 
scenario. These error message Id’s were issued in the report 
log using immediate assertions with the help of OVM reporting 
functions like ovm_report_error, ovm_report_fatal etc…

Listing 9 explains the reporting facility of OVM used to achieve this.

ovm_report_global_server glbl_serv;
ovm_report_server srve;

function void build();
    super.build();
    srve = glbl_serv.get_server();

endfunction

Listing 9 : OVM global/report server to get a handle of server in 
the component class

As depicted, the global report server in OVM is used to get 
handle to the ovm_report_server, which in turn is used to access 
the methods of the report server class.

Using this handle, report server function get_id_count(<string>) 
is called, which takes a string i.e. the message ID as an argument and 
returns the incremented value of count variable that can be used in 
covergroup to indicate hits have happened, as depicted in Listing 10.

`define NUM_ID 10
reg [31:0][`NUM_ID:0] count;
task get_error_id();
    while(1) begin
    @(clk);
        count[0] = srve.get_id_count(“AXI_WRITE_ID_CORRUPTED”);
         ………              ……………
        count[n] = srve.get_id_count(<”Msg_Id_n”>);
    end
endtask

task run();
        fork
             get_error_id();
        join_none

endtask

Listing 10 : Collecting the count of Message ID’s in count 
variable. Task forked in the run() phase.

Now, using the get_config_*/ set_config_* utility of OVM, we get 
the object of configuration class, which basically contains the enable/
disable control for each covergroup. Using the strategy defined earlier 
in Listing 5, each covergroup is created in the class constructor on the 
basis of configuration, as set by the user.

With the code infrastructure in Listing 10, the count variable is 
passed to the covergroup for coverage definition. The overall definition 
of covergroup is depicted in Listing 11.

Note: We have used the 2-D packed array to collect the count of 
any given message ID, due to the fact that covergroup doesn’t allow 
unpacked arrays to be passed as an argument.

class axi_vip_error_coverage extends ovm_component;
    `ovm_component_utils(axi_vip_error_coverage)

axi_vip_coverage_cfg cov_cfg;

covergroup CG_WR_ID_CORRUPTION (ref reg [31:0][17:0] count)@(clk);
          option.per_instance = 1;
          CP_AXI_WRITE_ID_CORRUPTED: coverpoint count [0]
 {bins CB_AXI_WRITE_ID_CORRUPTED = {[1:$]}; }
endgroup : CG_WR_RESP_ID_CORRUPTION

function new (string name, ovm_component parent);
    ovm_object obj;
    super.new(name, parent);

    assert(get_config_object(“cov_cfg”, obj));
    $cast(cov_cfg , obj);

    if(cov_cfg.cg_disable_wr_resp_id_corrupt_cov == 0)
              CG_WR_RESP_ID_CORRUPTION = new (count);
        ………..
endfunction : new

endclass : axi_vip_error_coverage

Listing 11 : Covergroup using 2-D packed array variable for 
coverage on the individual message ID’s



22

Protocol Coverage (AXI handshake 
coverage)/ Flow Coverage

Protocol and flow coverage are mainly per-
taining to the interface signals, on which various 
combination of their respective occurrence are 
possible, all of which are legal. Although all these 
combinations achieve the same functionality, 
a user may wish to know whether all the com-
binations have been really covered or not.

The reason why protocol and flow coverage 
were separated in two categories is that we focused 
on the scenarios defined by the Standard AXI 
specs as a part of protocol coverage, whereas 
flow control describes coverage on user created scenarios. 
For coding both these aspects of coverage, a similar approach was 
used i.e. Assertion – based Functional Coverage, thus conceptually 
both will be discussed under a single head.

Again, in our AXI example, three combinations are possible with 
handshake signals (READY/VALID), on all the 5 respective channels, 
as per the AXI spec. Thus we need to ensure that we have covered 
all these combinations for all the 5 channels. There could be other 
similar combinations possible related to the interface pins that can be 
included under this type of coverage.

Assertion based coverage was used for this purpose since it fit the 
bill well for interface signals monitoring. SystemVerilog provides a 
construct called cover property for this specific requirement. A brief on 
cover property is discussed below.

SystemVerilog property helps us keep track of events occurring on 
interface signals. A property can be invoked in two ways:

• Assert property - These are statements that assert the specified 
properties for its success/failure. Each assert property statement 
sets a flag in its action block if it fails.

• Cover Property- this is used to measure assertion based 
coverage. It has analogy to bins. In a covergroup, the way every 
hit in the bin increments its count by 1, so is the case with Cover 
Property. Every time the property is true, the count increments by 
1 indicating a hit.

However, one of the major limitations of property is that it can 
be declared and called only inside an interface or a module 
container while configurability demands use of classes. Thus, it was 
very important to develop a relation between the two i.e. to pass 
configuration to the interface for it to be used by cover property. 
The schematic following depicts how we dealt with this limitation.

Figure 4 : Interface explored to write cover-property  
and class to exercise control over the properties

Figure 4 above shows a coverage class, which has a virtual 
interface. The connection of virtual interface to real interface is done 
in build() phase of this class. This class also takes all the configuration 
parameters from the main coverage class. On the other hand, we have 
interface, which has cover property. This interface also has a set_
config function (user defined), which as the name suggests, gets called 
from the class to set the configuration, as shown in Figure 4. Once set, 
these configuration parameters are used to control the behavior of the 
cover property defined in the interface as per user.

In order to avoid code repetition, a macro has been defined for 
the cover property so that it can be called for all the 5 channels in 
both master and slave interface, multiple times. Cover property has 
a disable_iff construct for conditional coverage, but even if the 
condition is true and the property is disabled, only the hits to the 
property are made 0, while it still contributes to overall coverage.

In a cover property we don’t have the concept of user-defined bins; 
Listing 12 specifies the command while Listing 13 is an example text 
report from the simulator – Mentor Graphics Questa.

 

vcover report -detail -cvg -directive -comments -file fcov.txt coverage.ucdb
where,
-directive - is used to capture assertion based coverage. 

Listing 12 : Command to view coverage in text format in Mentor 
Questa
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Listing 13 : Assertion based coverage report as depicted in 
the text format - Questa

LIMITATIONS 
• SystemVerilog does not allow use of procedural statements and 

operators within a covergroup. 
• The “iff” construct can be used for conditional dumping which 

can be used in coverpoint or bin. But this construct has limited 
functionality and only disables coverpoint/bin in cross coverage 
calculation thus providing limited functionality as explained below.

o When used with coverpoint expression, the weight of each 
coverpoint has to be set explicitly based on whether the 
condition in iff construct is true or not. This is because the 
iff construct does not disable coverpoint in total coverage 
calculation even if the condition is false.

o When used in bins, the iff construct does not disable actual 
dumping in bin. Talking about priority, illegal_bins have 
highest priority, bins have least, meaning if an element is 
common to both illegal_bins and bins, then it is dumped in 
illegal_bins. However, conditional dumping is not possible 
here i.e. even if the condition in iff construct related to 
illegal_bins is false, the element is still considered to be part 
of illegal_bins and not bins. Thus conditional dumping in 
illegal_bins is not possible. 

• auto_bin_max option can be used only if no bins have been 
defined explicitly for a coverpoint. When the bins are explicitly 
defined by a user, a configurable [open_range_list] specification is 
needed in cases where user wishes to restrict the number of bins.. 

• Covergroups do not take unpacked arrays as an argument. 
• A covergroup has to be created within the class constructor. Thus, 

the configuration to be passed to the group must be available in 
the class constructor only. So user has to get the configuration 
in class constructor only and OVM phases cannot be exploited 
much here. It should also be noted here that as per common 
coding practice, we always set and get configuration in build,  

but due to this limitation everything has to be 
done in class constructor. 
• As a matter of fact, SystemVerilog provides 2 
types of coverage numbers, namely

o Type Coverage – gives the overall 
coverage which is sum of all the 
instances

o Instance Coverage – gives the coverage 
of individual instances

Thus, if a user creates a single instance, then the above two 
coverage numbers should ideally match. However, this is not the case 
always. The following example from AXI elaborates more on this. 
Our design supported a Burst Type of INCR type while the AXI spec. 
specifies this INCR, FIXED, WRAP as the legal set of values. So Type 
coverage would say 33.33% even if we covered INCR Burst Type as 
per our specification, while the instance coverage would report 100%.

This is because of SystemVerilog limitation. type_option cannot 
have weights as a parameter, it has to be a constant. Also, there 
are many options which are available for instance coverage but not 
for type coverage viz. at_least, auto_bin_max etc. This leads to an 
unavoidable mismatch between type and instance coverage even if 
user has a single instance. 

• Assertion based coverage was used for AXI handshake coverage. 
One of the limitations faced was incorporating the concept of 
configurability. This is because cover property cannot be defined 
inside a class. Thus, when we get the configuration inside the 
class, we had to find a method to export this configuration to 
interface where cover property could be defined. 

• Also, there is no way to exclude a property from overall coverage 
calculation. Although SystemVerilog provides with “disable_iff” 
construct for conditional coverage, it still takes it into account the 
disabled property while calculating total coverage. Hence the final 
coverage number would be lower than actual 

• The user-defined configurable covergroup parameters have to be 
passed to the covergroup while creating its instance. Any class 
instantiating this covergroup, shall do so within its own constructor 
(Refer to Listing 5). Thus, all the configuration parameters should 
be ready in the instantiating class’s constructor itself. This poses a 
big limitation to develop configurable model since the configuration 
has to be made available in class constructor itself while the rest 
of the OVM test bench code is usually spread across various OVM 
phases following the new() constructor. So what if a user wants to 
decide on the configuration parameters at a later stage during the 
simulation?

DIRECTIVE COVERAGE: 

 Name Design
Unit

Design
Unit Type

Lang File (Line)  Count  Status

/top/master_conn/axi_vip_master_if_inst[0]/AP_AWREADY_BEFORE_AWVALID

       axi_vip_master_if Verilog SVA <path_to_file>(267) 18 Covered 

/top/master_conn/axi_vip_master_if_inst[0]/AP_AWVALID_BEFORE_AWREADY 

       axi_vip_master_if Verilog SVA <path_to_file>(267) 0 Zero
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o Solution: SystemVerilog 2009 provides a solution to this 
limitation by providing a method to override the built-in sample 
function. In this method, the pre-defined sample() method is 
overridden with a triggering function that accepts arguments 
and facilitates sampling of coverage data from contexts 
other than the scope enclosing the covergroup definition. For 
example, an overridden sample method can be called with 
different arguments to pass directly to a covergroup, the data 
to be sampled. These arguments can come from either an 
automatic task or function, or from a particular instance of a 
process, or from a sequence or a property of a concurrent 
assertion. Listing 14 describes how this can be achieved.

o Limitation to above solution: Although the latest version 
of SystemVerilog (2009) has provided this feature but it is still 
not supported by EDA tools and hence is not much use  
at this time.

 

covergroup p_cg with function sample(bit a,int x);
    coverpoint x;
    cross x,a;
endgroup : p_cg

p_cg cg1 = new;

property p1;
    int x;
    @(posedge clk) (a, x = b) ##1 (c, cg1.sample(a,x));
endproperty :p1

c1: cover property (p1);

function automatic void F(int j);
    bit d;
    ….
    cg1.sample(d,j);

endfunction

Listing 14 : Example usage of new sample() function. Here 
a covergroup is defined and created. Also, it depicts the 2 
methods of overriding the sample() function i.e. overriding 
sample() method from within a property and pass them as 
arguments and also overriding the parameters within  
a function and pass them as arguments.

 

SUGGESTIONS
Some basic coding practices that a user should follow while coding 

these coverage models, which will help in ease of use as well as less 
maintenance in the long-term:

1. A covergroup name must be appended with the keyword CG_*
2. Similarly a coverpoint name with CP_* and bins as CB_*.
3. Same convention rule should also be followed in configuration, 

i.e. the disables/configuration inputs relevant to covergroup should 
be appended with cg_*, coverpoint with cp_*, and bins with cb_*. 
This provides a clear picture as to what is being configured and 
enhances readability.

 

CONCLUDING REMARKS
On a closing note, once again to remind you, the motivation to 

write this paper came from the need for defining a reusable coverage 
model, something completely missing in todays highly methodology 
driven verification world.

You must have gathered by now from the discussion above, that 
the configurable coverage model has been very much devised using 
the existing SystemVerilog language constructs available in-built for 
coverage purpose, without any other fancy stuff used. Although there 
were certain limitations faced while using some of these constructs, 
the language itself provided alternative solution to work around these 
limitations. A little extra thinking from an engineer’s perspective 
helped us overcome every hurdle we faced in making the configurable 
coverage model a success.

Wish you all “Happy coding functional coverage …..”
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OVERVIEW
AXI bus fabric verification presents many challenges. These 

arise due to the inherent complexity of the fabrics themselves, plus 
the challenges of developing a verification environment having 
the necessary verification components. The problem is further 
complicated by schedule pressures to finish the verification work 
quickly, when the actual development and debug of significant portions 
of the environment are gated by the availability of fabric RTL having 
basic functionality.

This article presents a number of techniques and strategies for 
AXI bus fabric verification to address these problems and provide a 
more comprehensive verification solution. Figure 1 shows a traditional 
approach for AXI fabric verification contrasted with an approach that 
employs a virtual AXI DUT fabric and algorithmic test generation 
techniques.

The traditional approach suffers from its reliance on having 
functional RTL before meaningful verification work can begin. It 
is further impacted by early RTL design problems which limit the 
amount of early testbench debug, requiring iterative debugging of the 
verification environment as better RTL becomes available. Stimulus is 
typically generated using constrained-random test techniques (CRT) 

Figure 1 – AXI Bus Fabric Verification Flow Options  

which while useful have an inherent architectural limitation reaching 
verification coverage goals due to test redundancy, often requiring 
significant analysis and constraint iteration. Directed tests are 
often employed to bring coverage to an acceptable level, though 
compromises in the overall verification plan are often made due to 
difficulties reaching coverage goals in the time available.

The virtual fabric approach uses a combination of a virtual 
model for the fabric, combined with algorithmic stimulus generation 
techniques. A primary benefit of this approach is time savings 
realized by implementing and debugging most of the verification 
environment while the RTL is being designed. In many companies this 
development occurs after initial RTL delivery and adds to the overall 
chip development schedule. Compromises are often made in the 
verification process when delays in RTL design or difficulties during 
verification occur. The use of the virtual fabric architecture address 
these schedule issues by enabling development of key elements of the 
verification environment in-parallel with RTL design.

Algorithmic test generation is a particularly important part of the 
solution as it can dramatically reduce the verification time to coverage 
closure by a factor of 10X or greater as compared to constrained 
random test techniques (CRT). Algorithmic techniques don’t require 
tweaking of constraints or directed test generation to augment 

coverage, typical of CRT flows. And such 
techniques support more complex test sequence 
generation to extend the range of stimulus cases 
in areas not possible by traditional CRT methods.

These techniques were applied in a recent 
customer engagement to validate the methodology 
and assess the benefits. The original motivation 
behind this work was a need for having a 
development environment where we could 
implement the OVM testbench and scoreboard 
without any access to the customer RTL.

The balance of this article examines the main 
elements of the Verification flow shown in Figure 1 
and discusses some of the problems found  
and benefits realized during its implementation.

 

Advanced Techniques for AXI Bus Fabric Verification 
by Alain Gonier and Jay O’Donnell, Mentor Graphics Corporation
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DEVELOPMENT OF THE  
OVM TEST ENVIRONMENT

The OVM test environment was developed using a step by step 
approach, and architected for high reuse to speed up development of 
subsequent fabric verification projects.

 
Step 1 Creation of the testbench topology

The first step was the creation of the OVM environment. An OVM 
environment contains all of the verification components of the TB. It 
is in charge of building and connecting all the verification components 
and once connected, starts the tests.

The OVM environment was built upon an OVM configuration to 
allow re-use across projects as opposed to rewriting an environment 
for each project. Configuration use significantly cuts development time 
of subsequent projects as the designer only has to rewrite an OVM 
configuration to create its desired TB topology. Indeed, the AXI VIP 
we used already had an OVM environment using configurations and 
the main task was to write the configuration rather then developing the 
environment. For maximizing reuse, the OVM configuration itself, as 
the OVM environment, was constructed by reading in an automatically 
generated include file. That input file was generated by parsing the 
AXI fabric high level specification. Note that the VIP had the ability to 
configure the level of abstraction of its external interfaces (in our case 
AXI). That enabled us to quickly connect our virtual fabric at the TLM 
level to pipe clean our TB. Later in the process he TLM virtual fabric 
was wrapped around an RTL interface and connected to the OVM 
environment at RTL level, an architecture that allows a quick swap in of 
the real RTL when available.

 
Step 2 Creation of the testbench agents

The second step was the creation of the OVM agents. An OVM 
agent is an active or passive component in charge of launching test 
sequences, monitoring and checking transactions as well as collecting 
coverage. Here again our AXI VIP already had off-the-shelf agent 
components that were automatically built upon the OVM environment 
configuration defined in step 1. Thus the creation of the agents was 
straight forward and didn’t require much effort beyond getting the right 
configuration in place. These included master agents responsible 
for sending transactions to the fabric master ports and slave agents 
responsible for receiving and responding to these transactions 
mimicking the peripherals behavior. The master agents support CRT, 
directed tests and algorithmic tests.

 

Step 3 Creation of the scoreboarding components

The third step was the creation of the OVM scoreboard component 
implementing the TB self-checking. This is mandatory giving the 
complexity of a 24 masters to 12 slaves interconnect which could 
barely be checked manually.

It was the most time consuming task because most of our work 
was specific to the fabric design and thus we only had some of 
the components available off-the-shelf. All the logic to do the 
specific checking (transaction routing, etc …) had to be developed 
from scratch. The scoreboard had to be carefully specified and 
implemented according to the fabric specification and features.

The availability of the virtual fabric was key in the process  
of debugging and fine tuning the scoreboards prior to running  
the TB on the real RTL.

 

DEVELOPMENT OF THE VIRTUAL AXI FABRIC
Using a virtual fabric to develop and debug the verification 

environment and components pre-RTL saves time, and based on our 
experience, yielded the following benefits pre-RTL:

• enabled early development of the top-level verification 
environment, which was OVM standards based 

• debugged and integrated the AXI master and slave verification IP 
into the environment 

• developed and debugged the fabric scoreboard and system 
address map 

• developed OVM test sequences to verify fabric operation for all 
possible AXI protocols, while referencing the system address map

Figure 2 shows the architecture of the virtual AXI fabric.

Figure 2 – Virtual AXI Fabric Architecture



27

The need for a virtual model of the DUT arose early in the project 
because: 

• RTL was not available to test the verification environment 
• Some of the development was done remotely without the ability  

to access the RTL database

AXI VIP and OVM significantly reduced the TB development effort. 
The virtual fabric was actually built using the underlying functionality 
of the AXI VIP masters and slaves used, combined with the OVM 
register package available from the OVM community. The OVM 
register package contains all the base class components to describe 
an address space and thus captures the DUT address map. The 
OVM configuration mechanism was used in the virtual fabric design, 
resulting in a self-constructed environment that could be easily 
modified as the fabric changed during the project.

The virtual fabric can be divided in three main parts:

1. Master port/address map pair 
a. Each master port (i.e. M0 to M24) is an OVM transaction port. 

It receives the transactions coming from the TB. The address 
map, created with the OVM register package, is embedded  
with the port so the address decoding can occur later on.

2. Decoder 
a. It contains the logic to route the master port transaction to  

the associated slave port. This is done by looking into the  
master port address map to locate the slave to be addressed.

3. Slave port 
a. Each slave port is connected to the decoder and passes  

the transaction to the connected slave if the request is in 
its address range. It is in charge as well of routing back the 
response to the master port.

The figures below represent a read request followed by its 
respective read response.

The first figure represents the request coming from a master 
(potentially an RTL block or a TLM master) and then routed to the 
decoder and then out to the slave port.

The second figure shows the response from the slave. The slave 
will return the contents of the read address request together with the 
master id to enable the fabric to route the response to the appropriate 
master. So the same way the decoding is done from master to slave 
using the address, the decoding is done from the slave to the master 
using the master id.

The use of the virtual fabric was very useful in the initial debugging 
of the TB development but was not intended to fully model the real 
fabric behavior. It was implemented using TLM modeling for efficiency  

Figure 3 – Master Request routing 

Figure 4 – Slave response routing

 
and performance. The development of an accurate representation 
of the RTL would have been too big an effort. Thus the virtual fabric 
came with known limitations: 

• no support of complex AXI transactions (locked access, transaction 
ordering, etc …) 

• functionally accurate but not timing accurate. (real RTL has latency 
not represented in the virtual fabric)

The first delivery of the virtual fabric was connecting to the TB 
at TLM level, implemented using an RTL wrapper around the TLM 
interfaces. Our motivation was to be able to quickly swap in and out 
the real RTL or the virtual fabric to debug the TB. Having the RTL 
wrapper would also make it easier to compare 2 simulation results,  

for instance.
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VERIFICATION IP INTEGRATION
The verification IP consisted of OVM-compliant AXI masters 

and slaves connected to the fabric (virtual or RTL). Since the VIP 
is OVM-compliant, stimulus and response were modeled using the 
standard OVM sequence construct. This construct can be used 
when implementing CRT, directed, or algorithmic tests and thus gives 
users flexibility when selecting the appropriate methodology for their 
application. Figure 5 shows the relationship of the VIP, fabric, and 
OVM sequence generation blocks.

On the master side of the fabric, a user-developed OVM sequence 
block (OVM SEQ) generates a series of “OVM sequence items” 
representing AXI burst transactions. These are passed to the AXI 
master VIP for delivery to the fabric. Each transaction “item” is built 
from a VIP-provided template that the user sequence code populates 
with values defining the particular construction of the item. Such 
values could include: 

• atomic access types (exclusive|normal|locked)
• burst type (AXI wrap|incr|fixed)
• burst length (1..16)
• burst size (0..7)
• cache and protection
• direction (read|write)
• slave address
• transaction data

Additional controls are supporting 
transaction interleaving and insertion 
of delays during different transaction 
phases are also provided.

The implementation of the OVM 
sequences driving each master port 
should consider the overall verification 
objective for testing the fabric, including 
stimulus coverage, and should also 
consider stimulus activity of the other 
OVM Sequences driving other master 
ports. The implementation can use CRT, 
algorithmic, or directed test code styles. 
Internals of the sequence design differs 
for each of these styles, though the 
overall connectivity remains the same. 
This design employed a combination  
 

of CRT (for early bring-up) and algorithmic sequences. We describe 
the specific architecture of these sequences in the next section.

Each port-specific instance of an AXI master VIP puts its 
transaction on a fabric master port, driving the fabric at the user’s 
choice of abstraction level which can be behavioral or RTL.  
The VIP manages transaction delivery details.

On the slave side of the fabric, AXI slave VIP instances or RTL 
code can be connected depending on verification requirements. If a 
VIP slave is used, it typically behaves as an addressable memory and 
responds to read or write transfers according to the type of transfer 
(AXI incr, wrap, or fixed). Users also have the option to specialize the 
function behind the slave VIP interface and add their own behavioral 
model to represent more complex peripherals. RTL blocks can also 
be connected to fabric slave ports. Slave VIP blocks connected to 
these same RTL ports can be configured as passive bus monitors that 
evaluate bus traffic and perform protocol checking using the built-in 
capability of the slave VIP. In this application most of the slaves were 
configured as active elements modeled as memories or fifos.

The VIP also provides built-in monitor, coverage, and checker 
elements that may be optionally enabled and customized by the user, 
as shown in the detail views in the figure. Each of these elements 
analyzes transactions generated by or received by the VIP.

Figure 5 – Verification IP Integration into the Environment
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Figure 6 – Algorithmic Test Sequence Elements 

On the master slide of the fabric, the following elements were 
configured:

• monitor: sends a message describing each master transaction to 
the simulation logfile 

• coverage: evaluates coverage for each transaction generated by 
the master (optional) 

• checker: tracks reads and writes issued by the master assuming 
the slave target uses a memory model (disabled). Also checks AXI 
bus protocol correctness (enabled)

On the slave side of the fabric, the following elements were 
configured: 

• monitor: sends a message describing each slave transaction 
received to the logfile 

• coverage: evaluates coverage for each transaction received by the 
slave 

• checker: tracks reads and writes received assuming the slave 
uses a memory model (enabled). Also checks AXI bus protocol 
correctness (enabled)

The VIP-provided coverage 
blocks on the slave side of 
the fabric provide the overall 
framework for modeling 
coverage during fabric 
verification and are described 
in the Coverage Architecture 
section below.

 
VERIFICATION  
TEST SEQUENCES

Two broad classes of  
OVM stimulus sequences  
were developed to exercise  
the AXI fabric:

• sequences generating all 
possible AXI transactions to 
verify correct fabric operation 
for all possible AXI bus 
protocols 
• sequences generating  
specific AXI bus traffic

Two sequence architectures were used: 

• CRT 
• algorithmic

We used VIP-provided CRT sequences during pre-RTL testbench 
development where the focus was on generating rudimentary bus 
traffic to debug the environment. These CRT sequences use a 
traditional CRT architecture where the various AXT transaction fields 
are randomly generated subject to constraints expressing the legal 
values for each field.

Once the environment was stable we added algorithmic to 
evaluate pre-RTL coverage and more exhaustively verify the overall 
environment. Figure 6 shows the main elements of the algorithmic 
sequence architecture.

The process used to develop an algorithmic test sequence  
starts with textual rule creation. All rules contain various declara- 
tions of the rule primitives, which include actions, meta_actions,  
and symbols. Rule actions and meta_actions typically assign test  
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variables used when constructing transactions, packets, or frames, 
etc. Users migrating an existing CRT application typically declare 
CRT rand fields as actions. Actions may also describe various states 
in a protocol branch, important points in testbench execution where 
handshaking occurs, or can be used as delimiters to mark important 
regions in a protocol that might include stimulus coverage regions. All 
rule actions map to SystemVerilog tasks in the OVM sequence. Action 
tasks typically assign OVM sequence item fields, though any legal 
SystemVerilog code may be specified.

Rules may also include symbol declarations, which are useful 
for grouping rule segments corresponding to important branches of 
protocols. Symbols may also be used to group related variables or 
testbench operations, and facilitate hierarchical rule composition.

All rules contain a grammar section describing the relationships 
of the various actions and the overall procedural flow of the test 
sequence. The rule language is similar to a BNF (Backus–Naur Form) 
description, and includes a number of built-in operators used for rule 
composition that include “repeat” and alternative-set “|” operators. 
Complex rule grammars can be composed using combinations of 
these operators and user-declared rule symbols and actions. Rule 
grammars replace the function of constraints in traditional CRT 
architectures.

The complete rule grammar for an AXI 
protocol verification sequence is shown  
in figure 6. Fifteen lines of rule grammar 
describe a stimulus space having 3,379,200 
unique variable combinations, also known  
as rule paths.

Rules can be visualized using a built-in 
graph viewer, which supports inspecting the 
size of the graph state space. This gives 
users better insight into the complexity of their 
application and helps in the development of 
a verification strategy. Symbols are shown 
in brown, and can be selectively expanded 
or collapsed, and symbol sizes optionally 
displayed. Users of CRT lack any similar 
capability, and must rely entirely on externally 
instrumented coverage to measure the size of 
their stimulus state space during simulation.

Stimulus coverage regions can be annotated on the rule graph, and 
are used by the algorithmic rule traversal routines during simulation 
to select important variable combinations to generate. Two stimulus 
coverage regions are shown in figure 6, one having a state space of  

211,200 paths, and another having 16 paths. During simulation these 
two stimulus coverage regions will be targeted by the algorithms, with 
graph choices external to these regions randomly selected. When the 
stimulus coverage is obtained, the user has the option to terminate 
simulation or instruct the tool to revert to a random traversal strategy.

Users typically add stimulus coverage regions that correspond 
to existing SystemVerilog covergroups and crosses in an external 
coverage block. This use model assures that testbench covergroups 
are targeted during stimulus generation. Some additional stimulus 
coverage capabilities supported by algorithmic stimulus generation 
include: 

• ability to manage multiple stimulus coverages concurrently 
• sharing stimulus coverage across multiple  

test component instances
• distribution of stimulus coverage across machines  

in a server farm
 

SCOREBOARD DEVELOPMENT
The scoreboard architecture was defined as depicted in figure 7.

 

Figure 7 – Scoreboard Architecture

Each scoreboard is connected to a single master port and all slave 
ports. So we have as many scoreboards as master ports. In total 
for our matrix of 24 masters X 13 slaves we will have 24 scoreboard 
components and 312 (24x13) connections. This is where we take 
advantage of the automatic build of the environment connection.
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The task of the scoreboading component is two fold: 

• check the correct routing of transactions from master to slave,  
as well as the response from slave to master. 

• check data integrity by making sure expected data match  
current data

To check the routing, each scoreboard can get 
access to its connected master address map. Thus 
it can figure out the expected slave the master 
was targeting. In addition, since there are multiple 
masters and the possibility exists that two masters 
will initiate the same transaction concurrently, it 
makes use of the transaction master id to know 
which master the transaction is coming from. The 
scoreboard will raise a routing error in two cases: 

• the master request ends up in an unexpected 
slave port 

• the slave response ends up in an unexpected 
master port

Note that in case of a master transaction to an 
unmapped address, the transaction is discarded 
and treated as a don’t care. If the transaction 
is routed to a slave port despite the fact it is 
unmapped then an error is raised indicating the 
master request ends up in an unexpected slave port.

To check data integrity, each scoreboard stores into a shadow 
memory all the expected values following a write request. So next time 
there is a read transaction to the same location data values can be 
compared. This is a typical task of scoreboard monitoring master/slave 
access.

The complexity of the scoreboard resides in making sure that 
we can retrieve the appropriate transaction to be compared to the 
response. Indeed AXI allows outstanding transactions which are not 
sequential and can happen at any time. Furthermore we had to deal 
with updating the shadow memory in the case of multiple masters 
writing to the same location before the value is read back. Thus it is 
important to make sure that each scoreboard contains the latest valid 
value which was written to the address location.

 

COVERAGE ARCHITECTURE
Figure 8 shows the coverage architecture used in the AXI fabric 

verification environment. It relies on the built-in capability of the AXI 

slave VIP to monitor traffic at slave ports. These ports can connect to 
either active VIP slave components, or RTL shadowed by passive VIP 
slave monitors that watch traffic crossing the interface.

Figure 8 – Coverage Architecture for Fabric Verification

 

The coverage blocks are implemented as SystemVerilog 
covergroups. Slave ports connected to VIP use the (VIP) pre-
configured covergroups which evaluate protocol coverage 
performance. Slave ports connected to RTL components, such as the 
one on the right which could be an AXI to AHB or AXI to APB bridge, 
may require customized covergroups for such interfaces. Users have 
the option to modify or replace the covergroups for any VIP instance to 
suit their needs.

Coverage blocks on the master side of the fabric may also be 
specified, though in this application they were not needed because the 
verification plan was designed to evaluate protocol coverage at each 
slave port, which included tracking of the master ID responsible for 
each transfer.

The coverage architecture needed to be aligned to support the 
overall verification plan, which had the following coverage goals: 
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• routing - each master can:
   - access each mapped slave port
   - not access unmapped slave ports
   - for all supported AXI:
         – burst types, protection types, transfer size
         – aligned and un-aligned burst variants 
• stress test
   - all masters accessing simultaneously 
• DMA priority
   - must always get access // how to assure? Function of  

  axi_master or SB? 
• wrapped bursts work on DDR AXI interface 
• protection
   - set up protection randomly
   - check valid/invalid accesses to protected areas 
• AXI ID
   - check that slaves return correct Master port ID // who checks?
• performance test cases
   - bandwidth evaluation 

At the time of this writing the RTL verification was underway and a 
number of these tests and coverage goals were being worked on. A 
combination of capabilities supported by the scoreboard, coverage, 
and algorithmic sequence generation are being used to meet these 
goals.

 

BRING-UP OF THE VERIFICATION  
ENVIRONMENT PRE-RTL

The Virtual Fabric architecture enabled early debug of the 
verification environment pre-RTL. During this phase we were able to 
verify and debug:

• OVM Environment 
• CRT and algorithmic OVM test sequences 
• Issues with the AXI master and slave verification IP 
• Issues with the fabric scoreboard 
• Coverage

Most of this debug work would have normally required RTL. We 
shortened the overall verification schedule by approximately two or 
three months by developing these elements in-parallel with the RTL 
design work. Most of the debugging was typical of what would be done 
in an RTL environment.

Test sequence development revealed a number of issues using a 
CRT approach for generating AXI transactions. Such issues mostly 
stemmed from complexities of the protocol involving AXI locked and 
exclusive accesses, which presented challenges when implementing 
constraints and related procedural code in the CRT sequence 
generation block. The AXI master VIP contained example CRT test 
sequences capable of generating more basic AXI transactions, but 
a more complex generation scheme was needed to handle the more 
complex cases. Rather than invest the time in extending the CRT 
test sequence code, we focused our efforts on implementing these 
cases using an algorithmic approach. The non-random structure of 
the algorithmic test sequence simplified the specification of series of 
locked or exclusive accesses and eliminated the need to write complex 
constraints or procedural logic.

Test debugging was assisted using a transaction-level debugging 
feature of the VIP, which enabled inspection of AXI transaction phases 
at various levels of abstraction. Figure 9 shows the transaction debug 
interface.

The process used for coverage debugging was different than that 
used for a traditional CRT environment. This was because we wanted 
to evaluate coverage efficiency comparing algorithmic test sequences 
against CRT sequences to verify if the claimed 10X benefit in coverage 
closure acceleration was realized in this environment. Figure 10 
shows the results comparing the methodologies when measuring 
AXI protocol coverage for a single master targeting a single slave 
using a common covergroup that crosses all of the burst parameters. 
We observed the typical linear characteristic for the algorithmic 
stimulus which can be compared against the asymptotic relationship 
for CRT. Only 48% coverage was achieved for the CRT case due 
to the complexity of implementing procedural code for generating 
sequential locked accesses, combined with some difficulty generating 
combinations involving burst parameters. When locked transactions 
were removed, the CRT coverage results improved but hit a coverage 
plateau of 72%. With additional effort the CRT sequence could 
probably be enhanced though the time was better spent elsewhere.

The Algorithmic stimulus reached 100% coverage and followed a 
generally linear characteristic. Since the CRT cases never achieved 
100%, the typical algorithmic 10x benefit cannot be directly measured. 
The data did suggest the no-lock CRT characteristic eventually 
flatlines after 30656 AXI transactions and reaches 72% coverage, 
which compares to the Algorithmic no-lock data which reached 100% 
coverage after 3036 transactions, or at least 10X faster and probably 
much greater.
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Figure 9 – Transaction Waveform View for Debugging

 
Figure 10 – Coverage Closure Rates Algorithmic vs CRT

 

BRING-UP OF THE VERIFICATION ENVIRONMENT 
WITH RTL

When RTL became available, we swapped-in the RTL by replacing 
a single component instantiation. The environment was otherwise 
structurally unchanged. During RTL bring-up we configured the test 
sequences incrementally so as to test basic functionality first, adding 
complexity as basic functions were proven and design issues resolved.

Once the more basic RTL issues were 
resolved, more complex test sequences 
were enabled and coverage assessment 
began. This work is currently underway. 
 

CONCLUSION
The Virtual AXI fabric architecture 

enabled early-development of most of 
the verification infrastructure, pre-RTL, 
resulting in significant overall savings in the 
chip development process. The decision to 
implement the verification environment using 
OVM, initially considered to be a significant 
undertaking, proved to be a good decision 

as it enabled usage of standardized OVM verification IP components 
and OVM test sequences to further reduce the development effort. 
With these elements in-place, the design-specific RTL verification 

work could begin.

Stimulus generation based on CRT techniques, while 
initially useful for environment bring-up, proved to be 
cumbersome when generating more sophisticated series 
of AXI transactions involving locked or exclusive accesses. 
Redundancy in CRT stimulus also made it difficult to achieve 
coverage goals.

The use of algorithmic test generation simplified the 
generation of the more sophisticated AXI transactions and 
also addressed the CRT stimulus redundancy problem. It 
also enabled systematic generation of combinations of traffic 
by multiple masters to verify more interesting traffic patterns 
and assure correct fabric operation in a much larger stimulus 
state space. Initially the development of SystemVerilog 
coverage models describing important multi-master traffic 

patterns was felt to be too difficult, so measurement of coverage for 
this class of test was felt to be unattainable. The built-in capability of 
the algorithmic tool to track stimulus coverage across multiple master 
ports in-combination solved this problem and enabled generation of 
complex traffic patterns, increasing confidence in the RTL design and 
verification suite. 
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The technology industry keeps on changing the approach of 
verification to save verification cycles and to make it more flexible  
for the user. However this kind of change is infrequent and requires  
a significant amount of time before it is adopted by the majority  
of users. Even so, it is always difficult for the verification engineer,  
who must adopt a new verification approach and change code that 
is invested with a massive amount of work. This becomes an urgent 
requirement when its user demands the same with the new approach. 
There are two options: 1) Recode everything with the new approach or 
2) Wrap the existing code with another layer which uses the exist- 
ing code inside but provides the user with a new environment that 
follows the new verification approach.  This paper provides a model 
(using option 2) where a module based test environment can be 
transformed into a class based environment by the use of an object 
orientated concept of SystemVerilog. This paper discusses a very 
efficient approach where a layer of class is built around modules 
and everything which is visible to the outside world is a class. The 
advantage of a class based environment is that the user can build 
their own environment over the existing one using an object orientated 
concept of SystemVerilog, and can make use of other features as well 
like randomization, coverage, queues, semaphores, etc. Moreover it 
opens the door of reuse in the existing environment with the concept  
of OOPS and methodology.

 

IMPLEMENTATION:
Consider an example of verification IP written using Verilog. 

Verification IP facilitates the user to write transaction level test cases 
for verifying a bus protocol based design. At the transaction level it 
becomes easier for a user to provide stimulus as it does not involve 
cycle accurate timing. Verification IP must provide convenient tasks/
functions APIs to initiate the stimulus at the transaction level and 
get back the status of the transaction received. In a module based 
environment, test cases are written by interacting with those APIs 
through hierarchical reference. And a complex test scenario can be 
created with the use of those APIs. A simple test of initiating write from 
master and getting status at slave looks like: 

top.master.initiate_write(addr, data).
top.slave.get_status(RX, addr, data); 

These test environments lack random testing somewhere and can 
not make full use of the random methodology that SystemVerilog 
provides. With the randomization concept of SystemVerilog one can 
easily control the randomness of a whole transaction without writing 
a lot of complex logic. Constraint is another useful concept linked 
with randomization where the user is not allowed to initiate an illegal 
stimulus. But, at the same time if the user wants an error scenario on 
the bus then those constraints can dynamically be made on and off. 
Transforming this module based environment to class based becomes 
a must requirement when SystemVerilog is used for verification. 
Recoding everything is not a good option here. Also creating a 
temporary wrapper, which may not fit well in the SystemVerilog 
environment, may create issues in the future. So it is better to go 
with a well defined structure which provides modularity and can fit in 
anywhere within the SystemVerilog based environment. 

SystemVerilog Assertion is one of the methodologies of this kind. 
A checker in Verilog may require a complex state machine, accurate 
timing windows, and lots of testing effort. SystemVerilog Assertion 
simplifies all these efforts. So a module based checker can also be 
ported to a class based assertion checker with this approach.

Another important aspect is coverage. Verilog doesn’t provide 
an inbuilt feature to measure the coverage. With this approach a 
transaction from module based BFM (Bus Function Model) can be 
made visible in the SystemVerilog environment where coverage of  
this transaction can be captured and measured.

Let’s look at an example of a master module which provides 
different APIs for user interaction.

Converting Module-Based Verification Environments  
to Class-Based Using SystemVerilog OOP 
by Amit Tanwar, Mentor Graphics Corporation
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module master
(
Clock,
Reset,
Command,
Address,
Write_data,
Byte enable,
Burst_type,
Burst_length,
Read_data,
Response
);

// Parameters and ports for master
parameter ADDR_WIDTH = 32;
parameter DATA_WIDTH = 32;

input Clock,
input Reset,
input [1:0] Command,
input [ADDR_WIDTH-1:0] Address,
input [DATA_WIDTH-1:0] Write_data,
input [DATA_WIDTH/8-1:0] Byte enable,
input [2:0] Burst_type,
input [4:0] Burst_length,
output [DATA_WIDTH-1:0] Read_data,
output [1:0] Response

// User APIs

task initiate_command
(
input [1:0] command, 
input [ADDR_WIDTH-1:0] address,
input [9:0] length,
input [2:0] burst_type
);
------------------
------------------
endtask

The module above gets instantiated in the top module and test 
cases are written by using the APIs inside this module. This is a small 
example to illustrate the use of APIs, but in a complex protocol there 
will be many APIs for the user’s convenience in writing test cases.  
As a result, there can be so many modules in the environment  
that a defined approach is required to make them available to 
SystemVerilog test-bench.

task set_data
(
input [9:0] index,
input [DATA_WIDTH-1:0] data
);

------------------
------------------

------------------

endtask

task set_byte_enable
(
input [9:0] index,
input [DATA_WIDTH/8-1:0] be
);

------------------
------------------
------------------

endtask

task get_response
(
output [1:0] response
);

------------------
------------------
------------------

endtask

task get_data
(
output [9:0] index,
output [DATA_WIDTH-1:0] data
);

------------------
------------------
------------------

endtask

// User variables

 bit m_user_erroneous_tr;
event m_cmd_completed;

// State machine

------------------
------------------
------------------

endmodule
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The first requirement to move towards a class based environment 
is a class which provides the same APIs. Here the same APIs have 
a different meaning. Instead of the logic of the APIs, the declaration 
name with all input output information is used.

Let’s declare a virtual class with all APIs having a different name, 
where every task is prefixed with do_ like you see below. All these 
methods (APIs) are pure virtual and require only the declaration part.

virtual class master_api 
#( 
int ADDR_WIDTH = 32,
int DATA_WIDTH = 32
) ;

// User APIs declaration

pure virtual task do_initiate_command
(
input [1:0] command, 
input [ADDR_WIDTH-1:0] address,
input [9:0] length,
input [2:0] burst_type
);

pure virtual task do_set_data
(
input [9:0] index,
input [DATA_WIDTH-1:0] data
);

pure virtual task do_set_byte_enable
(
input [9:0] index,
input [DATA_WIDTH/8-1:0] be
);

pure virtual task do_get_response
(
output [1:0] response
);

pure virtual task set_user_erroneous_tr
(
input user_erroneous_tr
) ;

pure virtual function bit get_user_erroneous_tr();

pure virtual task get_cmd_completed();

endclass

.

This class bridges the gap between a module and a class based 
environment. This class should be put in a global package to make it 
visible globally. This class is virtual, so it acts as a template for all the  
APIs. This also helps in data hiding from the user, who will only see the 

definition of the entire task from the use model perspective, but would 
not be able to see its actual implementation. Its handle can be passed 
everywhere in the test bench. This kind of class needs to be created 
for all modules which contain APIs to be used in the test bench.

Next comes the linking of this class with the module. For this we 
need another class which is inherited from <master_api class> and 
contains the definition of all pure virtual methods. The definition 
includes linking of the APIs present in <master_api class> with the 
APIs of the master module. This is actual a link between a module 
based environment one that is class based. So it is very important 
to map the APIs correctly. Since the name of the APIs, cannot be 
the same within the scope of the module, class APIs are named with 
a prefix of do_ to differentiate them from the original APIs’ name.  
All functions and task methods can be easily ported, but a bit of 
intelligence is required where the porting of variables and events are 
necessary.

 
class master_api_if
#( 
int ADDR_WIDTH = 32,
int DATA_WIDTH = 32
) extends master_api 
#(ADDR_WIDTH, DATA_WIDTH);

// User APIs

task do_initiate_command
(
input [1:0] command, 
input [ADDR_WIDTH-1:0] address,
input [9:0] length,
input [2:0] burst_type
);
initiate_command
(command, address, length, burst_type);
endtask

task do_set_data
(
input [9:0] index,
input [DATA_WIDTH-1:0] data
);
set_data(index, data);
endtask

task do_set_byte_enable
(
input [9:0] index,
input [DATA_WIDTH/8-1:0] be
);
set_byte_enable(index, be);
endtask
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task do_get_response
(
output [1:0] response
);
get_response(response);
endtask

task do_get_data
(
output [9:0] index,
output [DATA_WIDTH-1:0] data
);
get_data(index, data);
endtask

task set_user_erroneous_tr
(
input user_erroneous_tr
) ;
m_user_erroneous_tr = user_erroneous_tr;
endtask

function bit get_user_erroneous_tr();
return m_user_erroneous_tr;
endfunction

task get_cmd_completed();
@m_cmd_completed;
Endtask

endclass

This class must be present inside the module to access the APIs 
directly. Definition of master_api_if and its construction in the side 
module can be made as shown below.

module master
(
Clock,
Reset,
------
------

`include « master_api_if.svh« 

typedef master_api_if  #(ADDR_WIDTH, DATA_WIDTH) master_api_if_t ;

master_api_if  #(ADDR_WIDTH, DATA_WIDTH) m_api_if = new() ;

function master_api_if_t   get_master_api_if() ;
return m_api_if ;
endfunction

endmodule

This way master_api_if can access all the APIs of the master 
module. This class encapsulates all of the APIs of the master module 

which can be used everywhere in a class based testbench whether 
it’s a stimulus, coverage, assertion, slave, or etc. Moreover, any 
methodology can be easily mixed in the environment to give the user  
a flexible environment.

The top level module will look like the code below. Once the handle 
of the APIs is visible then it can be used everywhere in the testbench.

module top ();

master #(32, 64) master_inst
(
// Port connection
------
------
) ;

Initial
begin
master_api m_api = master_inst.get_master_api_if() ;

// Passing the handle of APIs to test.
test_t test = new(m_api) ;

-------
-------
end
endmodule 

 

CONCLUSION
Assembling and linking with the module can be done in a number 

of different ways per one’s requirements. But to maintain backward 
compatibility, a simple and defined approach based on layering adds 
value. This approach provides a simple and systematic way of linking 
class and module with minimum change to existing code. And once it 
is done, it then opens the class based world for Verilog users.
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The number of advanced features supported by multimedia devices 
is constantly growing. In order to support these functionalities, 
these devices require integrating numerous hardware Intellectual 
Property (IP) components, which drastically increase the global 
system complexity. Electronic System Level (ESL) methodology 
aims at raising the level of abstraction of the system description 
in order to address this outstanding complexity.  Within the ESL 
ecosystem, early architecture exploration mainly relies on SystemC 
Transaction-Level Modeling (TLM) whereas SystemVerilog and Open/
Universal Verification Methodologies (OVM/UVM) are widely adopted 

by verification teams. In this paper, we present a methodology that 
enables taking the best of both worlds, SystemC and SystemVerilog, 
by using OVM testbenches to verify SystemC IPs generated from 
functional models captured in a graphical language.

 CoFluent Studio offers an automated alternative to manual 
coding while developing functional models of SystemC TLM IPs. Its 
graphical modeling and simulation environment facilitates innovation 
and increases productivity as it offers superior capabilities for data and 
control flows modeling as well as functional validation, and generates 
TLM SystemC code automatically. In this paper, a hardware IP as well 

as the corresponding SystemC testbench are modeled  
in order to verify the transaction-level behavior of the IP 
within CoFluent Studio.

Once captured, validated and generated, the SystemC  
TLM IP can be exported and verified using OVM. The IP is 
integrated in a SystemVerilog-based environment supported by 
the Mentor Graphics Questa verification platform. As illustrated  
in Figure 1, (1) the SystemC IP is seen as a black box within 
Questa environment and communicates with the testbench  
 

 
 
Figure 1 - Iterative subcontracting  
HW IP verification flow

Verifying a CoFluent SystemC IP Model from a SystemVerilog  
UVM Testbench in Mentor Graphics Questa 
by  Laurent Isenegger, Jérôme Lemaitre and Wander Oliveira Cesário, CoFluent Design
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Figure 2 - CoFluent model
 
 
through custom IP API (application programming interface) using 
direct programming interfaces (DPI). Then, (2) verification team can 
use the SystemVerilog advanced verification features such as random 
constrained stimuli generation to stimulate the SystemC TLM IP. 
Finally, (3) the verification team sends verification results and CoFluent 
execution trace files back to the design team. The design team will use 
them to update the HW IP and produce a newer version if needed. 

Next in the design flow, a RTL version of the IP can be obtained 
either by manual design, or specific SystemC code can be generated 
from the initial CoFluent model for High-Level Synthesis (HLS). At 
this point, the OVM testbench developed for the SystemC TLM IP 
verification can be partially re-used for RTL verification. The generated 
TLM IP may also serve as a golden reference model and be executed 
within the verification testbench in parallel with the RTL version.

In the remainder of this paper, first we illustrate how to design a 
CoFluent SystemC black box IP with a set of custom API methods. 
Then, we explain how to write a dedicated interface to reuse, 
synchronize and stimulate the IP from an OVM SystemVerilog 
testbench. 

 

 

COFLUENT IP MODEL DESIGN
In order to demonstrate the principles of 

the methodology, we use the very simple 
CoFluent HW IP model that is shown in 
Figure 2.

 DUT is the block that is exported as an 
IP.  It is composed of three main sub-blocks: 
Interface, Start_Detection and S_To_P. The 
two blocks Start_Detection and S_To_P 
represent the tasks of start-bit detection 
and serial-to-parallel conversion that are 
necessary in a UART controller. Interface is 
a block that is used to exchange data with 
the two blocks that belong to the testbench, 
Send_Input and GetOutput. There is no 
direct data link between testbench blocks and 
the Interface block because the objective is 
to test and use an API that can be integrated 

to a SystemVerilog testbench. 

The following API methods are defined for this model: 
SendStartToCoFIP, SendDataToCoFIP, SendStopToCoFIP, 
GetDataFromCoFIP, GetReadyFromCoFIP and GetErrorFromCoFIP. 
These API methods can be used to read or write data and control the 
IP behavior, from code located outside of the IP. Their implementation 
is shown in Figure 3. These IP methods use the CoFluent SystemC- 
and TLM-based API associated to the captured graphical model. 

01   void SendStartToCoFIP()    
02   {
03    Interface.Ev_Start.Signal();
04   } 
05   
06   void SendDataToCoFIP(int &Data)    
07   {
08    Interface.Mess_SerialData.Send(&Data);
09   } 
10   
11   void SendStopToCoFIP()    
12   {
13    Interface.Ev_Stop.Signal();
14   } 
15   
16   void GetDataFromCoFIP(int &Data)   
17   {
18    Interface.Var_dOut.Read(&Data);
29   }
20
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21   void GetReadyFromCoFIP()   
22   {
23 Interface.Ev_dReady.Wait();
24   }
25   
26   void GetErrorFromCoFIP()   
27   {
28 Interface.Ev_dError.Wait();
29   }

Figure 3 - User-defined IP custom C++ API

After compiling and exporting DUT as a black-
box IP (compiled object code), the implementation 
of the API and the functional communications 
encapsulated in the DUT are not visible from out-
side the black-box IP. Only the declarations of the 
IP API methods (.h C++ header file) are visible.

The Send_Input and GetOutput graphical blocks illustrate how 
to stimulate the IP using the API methods within CoFluent Studio’s 
SystemC-based simulation. Those two graphical blocks allow 
validating the IP API methods in CoFluent Studio before sending it to 
a subcontractor, who will use it inside a more detailed SystemVerilog-
based testbench. Send_Input simply sends data as well as the start 
and stop signals to the IP, and GetOutput receives data from the IP 
and detects when data is ready or if there was an error. API methods 
are called through a pointer to an object (CoFDUTWithAPI_Ptr) 
containing the DUT block and its API as shown in Figure 4.

 
01   //// Send_Input
02
03   ((C_DUT*) CoFDUTWithAPI_Ptr)->SendStartToCoFIP();
04   ((C_DUT*) CoFDUTWithAPI_Ptr)->SendDataToCoFIP(SerialData);
05   ((C_DUT*) CoFDUTWithAPI_Ptr)->SendStopToCoFIP();
06
07   //// Get Output
08 
09  ((C_DUT*) CoFDUTWithAPI_Ptr)->GetReadyFromCoFIP();
10   ((C_DUT*) CoFDUTWithAPI_Ptr)->GetDataFromCoFIP 
              (SerialDataReceived);

 
Figure 4 - IP API calls in CoFluent testbench code

 
 

 
Figure 5 - SystemC/SystemVerilog synchronization  
interface using DPI

 

SYSTEMC/SYSTEMVERILOG  
INTERFACE DEVELOPMENT

The read/write synchronization mechanisms used to send and 
receive data between SystemC and SystemVerilog are illustrated 
in Figure 5 above. The same mechanism is used to send the start 
and stop events as well as detecting the ready and error signals. 
The interfacing is based on the SystemVerilog Direct Programming 
Interface (DPI). DPI is a procedural interface, which consists of 
thread and function calls passing data as arguments. The interface 
between the testbench and the IP is implemented as a SystemC 
module. This module includes six DPI functions that can be called 
from the SystemVerilog testbench. Six threads are also executed 
in this interface. These threads provide the execution context and 
synchronization events required to interact with the SystemC IP.

Calls to SendDataToCoFIP in the threads are blocking: SCSV_
SendDataToIP_thread is blocked until data can be put in SerialData 
inside the IP. Thus, potential delays are added by the IP depending on 
its internal state. Using events between DPI methods and threads, the 
interface module allows synchronizing the SystemVerilog testbench 
with the SystemC IP under test.



41

The interface code that was used to synchronize the SystemC IP 
with a SystemVerilog testbench in Questa is shown in Figure 6. This 
interface is called IP_sc_sv_wrapper in this example. 

 
01  class IP_sc_sv_wrapper : public cofluent::FunctionClass
02  {
03        public :
04 SC_HAS_PROCESS( IP_sc_sv_wrapper );
05 IP_sc_sv_wrapper( sc_module_name name ) : FunctionClass(name)
06 {
07       FunctionInit (“SC_SV_COFS_FU”, 9999);
08       CoFDUTWithAPI_Ptr = 
             (FunctionClass*)&(o_app_mod->CoFDUT.ObjectIP);
09       SC_THREAD( SCSVW_SendStartToCoFIP_thread );
10       SC_THREAD( SCSVW_SendDataToCoFIP_thread );
11       SC_THREAD( SCSVW_SendStopToCoFIP_thread );
12       SC_THREAD( SCSVW_GetDataFromCoFIP_thread );
13       SC_THREAD( SCSVW_GetReadyFromCoFIP_thread );
14       SC_THREAD( SCSVW_GetErrorFromCoFIP_thread );
15   
16       SC_DPI_REGISTER_CPP_MEMBER_FUNCTION 
             (“SCSVW_SendStartToCoFIP”,   
             &IP_sc_sv_wrapper::SCSVW_SendStartToCoFIP);
17       SC_DPI_REGISTER_CPP_MEMBER_FUNCTION 
             (“SCSVW_SendDataToCoFIP”,  
             &IP_sc_sv_wrapper::SCSVW_SendDataToCoFIP);
18       SC_DPI_REGISTER_CPP_MEMBER_FUNCTION 
             (“SCSVW_SendStopToCoFIP”,  
            &IP_sc_sv_wrapper::SCSVW_SendStopToCoFIP);
19       SC_DPI_REGISTER_CPP_MEMBER_FUNCTION 
             (“SCSVW_GetDataFromCoFIP”,   
             &IP_sc_sv_wrapper::SCSVW_GetDataFromCoFIP);
20       SC_DPI_REGISTER_CPP_MEMBER_FUNCTION 
             (“SCSVW_GetReadyFromCoFIP”, 
             &IP_sc_sv_wrapper::SCSVW_GetReadyFromCoFIP);
21       SC_DPI_REGISTER_CPP_MEMBER_FUNCTION
             (“SCSVW_GetErrorFromCoFIP”, 
             &IP_sc_sv_wrapper::SCSVW_GetErrorFromCoFIP);
22  }
2 3   / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
24 sc_event ev_SCSVW_SendStartToCoFIP;
25
26 void SCSVW_SendStartToCoFIP()
27 {
28       ev_SCSVW_SendStartToCoFIP.notify();
29 }
30 
31 void SCSVW_SendStartToCoFIP_thread()
32 {
33         while(1) {
34              wait( ev_SCSVW_SendStartToCoFIP );
35              ((IP_DUT*)CoFDUTWithAPI_Ptr)->SendStartToCoFIP();
36         }
37 }

3 8   / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
3 9   / / / /  Same mechanisms for SendData, SendStop, GetData, 
              GetReady, GetError
4 0   / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
41   };
42   // End of class definition
4 3  
4 4   // Export interface as a module
4 5   SC_MODULE_EXPORT(IP_sc_sv_wrapper);
 

Figure 6 - SystemC/SystemVerilog interface code

In this definition, the class FunctionClass and the function 
FunctionInit are used to facilitate CoFluent traces replay mentioned in 
the next section. The DPI functions declared between line 16 and line 
21 can be called from the SystemVerilog testbench to send/receive 
data to/from the IP. The figure 7 shows an example of a these DPI 
functions being called from a SystemVerilog testbench.

 

01  task drive_item (input simple_item item);
02      begin
03          SCSVW_SendStartToCoFIP( );
04          SCSVW_SendDataToCoFIP(item.data);
05          SCSVW_SendStopToCoFIP( );
06          #50ns;
07      end
08  endtask : drive_item

 
Figure 7 – DPI function calls in SystemVerilog Testbench

 

SYSTEMVERILOG TESTBENCH DEVELOPMENT
The structure of the SystemVerilog testbench is described  

in Figure 8.

As shown in the figure on the next page, an OVM testbench has 
been created to stimulate the SystemC IP. The OVM environment 
includes an agent and a monitor. Inside the agent, the sequencer and 
driver are exchanging data items. The same OVM environment is used 
to test both the RTL IP and the generated TLM SystemC IP (DUT  
block and its custom API). Depending on whether the verification team 
is testing the RTL IP or the TLM SystemC IP, an OVM configuration 
object is sent to the driver and the monitor in order to select the proper 
interface to the testbench. This way, exactly the same sequences  
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Figure 8: OVM Verification Environment  
 
 
generated by the sequencer can be used to stimulate the two IPs. 
This approach enables easily comparing the functionality of the RTL 
implementation against the reference obtained with the TLM SystemC 
IP. Additionally, the hierarchical structure of this test eases its reuse in 
other projects.

 
01  virtual protected task collect_transactions();
02     int data_dout;
03     if ( Test_type == 1 )
04         forever begin
05             SCSVW_GetReadyFromCoFIP();
06             SCSVW_GetDataFromCoFIP(s_item_monitor.data);
07             -> cov_event;
08        end
09      else
10      forever begin
11              @(posedge m_dut_if_monitor.dReady);
12             s_item_monitor.data = m_dut_if_monitor.dOut;
13             -> cov_event;
14        end
15  endtask : collect_transactions

 
Figure 9: OVM monitor task example

The figure 9 shows an example of a virtual task implemented in the 
monitor. Test_Type is a variable set by higher-level OVM components 
that indicate whether the testbench stimulates the RTL IP or the  
 

SystemC IP. Depending on the value of this 
variable, the monitor will call DPI functions of the 
SystemC IP or monitor the signals of the RTL 
IP interface. When data is available, the monitor 
sends an event in order to enable functional 
coverage.

 

VERIFICATION
 During the simulation, debug messages 

may be displayed every time a DPI method is 
called so that verification teams can monitor 
when the IP is being called. In the figure 10, 
these messages are displayed in the lower left 
corner. The external testbench indicates that it 
initiates first a start transaction, followed by data, 

stop, getready and finally data. On the right side, Questa verification 
environment displays the covergroups inserted in the SystemVerilog 
testbench. This way, the verification team can easily monitor what 
percentage of the tests has been covered.

Additionally, transactions and timing information are saved in a trace 
file during the execution of the CoFluent black-box IP. The design 
team can playback this trace file in CoFluent Studio to analyze the 
internal behavior of the IP without having to actually run the simulation. 
Figure 11 shows the verification of the behavior of the IP using a trace 
file created during the verification in Questa. The evolution of time 
is represented horizontally. Start_Detection and S_To_P are active 
(processing data) when their state is represented with a plain red line, 
and inactive (waiting for data) when they are represented with a yellow 
dotted line. Vertical arrows represent write and read actions.

  

CONCLUSION
Design teams can benefit from productivity gains offered by the 

CoFluent Studio graphical modeling environment to create a reference 
TLM SystemC IP functional model and its verification API.

In this paper, we presented a methodology to subcontract the 
verification of a black-box SystemC TLM IP model – automatically 
generated and instrumented from CoFluent Studio – to an OVM 
SystemVerilog testbench run in the Questa verification platform. The 
approach relies on a set of custom C++ API methods that are added 
to the IP and used by the verification team to communicate with and 
control the black-box IP from a SystemVerilog testbench.
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 SystemC/SystemVerilog communication and synchronization 
is achieved by using a simple interface module that uses DPI 
functions. This allows verification teams to take full advantage of all 
the advanced features available in SystemVerilog and OVM in order 
to validate the RTL implementation of an IP against its reference 
SystemC TLM model.

During the verification of the SystemC IP in Questa, a trace file is 
generated and it can be played back later in CoFluent Studio by the 
design team to analyze the internal behavior of the IP. On the design 
team’s side, this approach allows subcontracting the verification 
task confidently without disclosing the internal structure of the IP. On 
the verification team’s side, it allows creating testbenches used for 
simulation of both high-level SystemC models and their corresponding 
RTL implementation.

 

Figure 10: Questa simulation traces

 

Figure 11 - Trace file analysis in CoFluent Studio  
after verification in Questa
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INTRODUCTION
Dynamic simulation is essential for verifying the functionality of a 

design. In order for us to understand the progress of verification in a 
project, coverage is used as a measure of verification completeness. 
The coverage space for today’s designs is a multi-dimensional, 
orthogonal set of metrics [1]. This set includes both white-box 
metrics measuring the coverage inside the design and black-box 
metrics measuring the end-to-end behavior. White-box metrics are 
typically implementation-based, whereas black-box metrics are 
typically implementation-independent.  For example, statement and 
condition coverage are examples of implicit white-box metric that 
can automatically be derived from the RTL model. In contrast, a 
scoreboard is an example of a higher-level explicit black-box metric 
that ignores the implementation detail of the design. A black-box metric 
can be used even when the design is represented at different levels of 
abstraction.

Formal verification is a systematic process of ensuring, through 
exhaustive algorithmic techniques, that a design implementation 
satisfies the requirements of its specification [2]. Instead of stimulating 
the design to observe its behavior, formal verification mathematically 
analyzes all possible executions of the design for all legal input 
sequences. Formal verification has been applied successfully in 
conjunction with assertion-based verification [3]. Once the required 
behavior is captured with a property language such as PSL or SVA, 
formal verification can be used to check exhaustively that actual 
design behavior conforms to the required behavior. 

Assertion-based formal verification requires assertions that specify 
required behavior.  However, such assertions are not always available.  
An alternative approach, automatic formal checking, uses formal 
verification technology to automatically search for occurrences of 
typical design errors.  This approach is 
useful for legacy designs that do not 
have assertions. It also makes formal 
verification accessible to designers 
who are not yet ready to write 
properties. 

Leveraging a set of pre-defined 
assertion rules, automatic formal 
checking analyzes the RTL structure 

of the design and characterizes its internal states. Then it identifies 
and checks for typical undesired behaviors in the design. In this 
article, we are going to focus on two areas in which automatic formal 
checking can be used to supplement dynamic simulation. They are 
Dead-Code Identification (DCI), and X-Semantic Check (XSC). These 
automatic checks enable designers to improve RTL code early in the 
design phase of the project and allow verification engineers to identify 
potential problems in regression testing.

 

DEAD-CODE IDENTIFICATION
Today, when constrained random simulation fails to achieve the 

targeted coverage goal, engineers have to fine tune the environment 
or add new tests. These efforts, often attempted relatively late in the 
verification cycle, can consume vast amounts of time and resources 
while still failing to reach parts of the design. Most designs have dead 
code, unreachable blocks, and redundant logic. This is especially 
true for IP or reused blocks, which often have extra functionality 
unnecessary for the current design. If implicit white-box coverage 
metrics, such as statement and condition coverage are part of the 
closure criteria, unused functionality will have a negative impact on 
the coverage grade.  Formal verification can be used to identify such 
unreachable code early in the verification cycle so these targets can 
be eliminated from the coverage model. As a result, the coverage 
measurement will more accurately reflect the quality of the stimuli from 
the constrained random tests with respect to the subset of features 
actually used in a given design.

For each of implicit white-box coverage metric [4], there are 
scenarios where coverage is not possible:

Figure 1: Unreachable code deal due to input conditions

What you need to know about dead-code and x-semantic checks 
by Ping Yeung and Erich Marschner, Mentor Graphics Corporation

Statement coverage Unreachable statements

Branch coverage Unreachable branches, duplicated branches, 

and unreachable default branches

Finite State Machine coverage Unreachable states, and unreachable transitions

Condition coverage Unused logic, undriven values, implicit constant values

Expression coverage Unused logic, undriven values, implicit constant values

Toggle coverage Stuck-at values, and unreachable toggles
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By analyzing controllability, observability[1], and the FSMs, 
automatic formal checking is more powerful in finding unreachable 
code in the design. 

 
begin
     case ({brake_pedal, gas_pedal})
           2’b00: accelerate = no;
           2’b01: accelerate = yes;
           2’b10: accelerate = no;
           2’b11: accelerate = error;
           default: accelerate = dont_care;
     endcase

end  

 
Figure 2: Unreachable code due to input conditions

There are two types of deadcode. One type is based on the 
semantics of the design language; the other is based on the 
functionality of the design. Lint tools are good at detecting the first 
type of deadcode. For instance, in the example below, the default 
dont_care assignment to the accelerate signal is unreachable based 
on synthesis semantics. It will be reported during the linting process. 
On the other hand, if the brake_pedal and the gas_pedal signals 
are mutual exclusive, the error assignment to the accelerate signal 
will be functionally unreachable too. This will not be detected by lint, 
but will be identified by automatic formal checking. By analyzing the 
functional implementation of the design, the tool can derive these 
signal relationships automatically from the output ports of the previous 
module. 

An IP block implements a lot of usage scenarios and functions, 
not all of which will be used. This In addition, the inputs to the IP are 
usually constrained to a sub-set of scenarios by the previous modules. 
As a result, there is often redundant and unreachable logic in the 
IP block. This is a common situation when design teams integrate 
multiple IPs together. Users can specify assumptions and constraints 
in terms of signal relationships at the input ports of a design. 
Leveraging this functional information, automatic formal checking can 
identify unused logic, unreachable code, implicit constants and stuck-
at values in the design. 

 

X-SEMANTIC CHECKS 
Dynamic simulation also falls short in the areas of design 

initialization and X-semantics, generally summarized as X-semantic 

checks. In silicon, sampling an unknown or uninitialized state register 
necessarily produces an unpredictable value. If a design cannot be 
initialized reliably, it will not function correctly. An obvious prerequisite, 
then, to chips that work is making sure all the registers are initialized 
correctly.  

Unfortunately, hardware description languages do not model the 
unpredictable values of uninitialized registers in a way that would 
allow simulation to accurately reflect silicon behavior.  In silicon, an 
uninitialized register will have either the value 1 or the value 0.  But in 
HDL code we represent such uninitialized values with a third value: X.  
HDL simulation semantics have been defined to ensure that X values 
propagate, representing the downstream impact of uncertain values 
upstream, but the way in which X values are handled in RTL can result 
in either optimism or pessimism in the logic, depending upon how the 
code is written.  As a result, simulation-based initialization verification 
is often inaccurate with respect to the silicon behavior it is intended to 
model.

Formal technology interprets an X as meaning either 0 or 1 at any 
given point, rather than as a single, third value. Formal verification 
algorithms explore both possibilities in parallel, rather than biasing 
the computation based on how the model was expressed. This allows 
formal verification to accurately model the behavior of uninitialized 
registers and the impact of such uninitialized values on downstream 
computations.  In particular,  automatic formal checking can look for 
issues related to register initialization, X-assignments, X-propagation, 
and X-termination, and do so in a way that accurately reflects the 
behavior of the eventual silicon implementation.

always_ff @(posedge clk or posedge rst)
     if (rst) gas_pedal <= 1’b0;
     else     gas_pedal <= gas_pedal_status;

always_ff @(posedge clk)
     case ({brake_pedal, gas_pedal})
              2’b00: accelerate = 1’b0;
              2’b01: accelerate = 1’b1;
              2’b10: accelerate = 1’b0;
              2’b11: accelerate = 1’bx;
              default: accelerate = 1’bx;
     endcase

always_ff @(posedge clk or posedge rst)
     if (rst) speedup_engine <= 1’b0;
     else if (in_gear) speedup_engine <= accelerate;

 
Figure 3: Unreachable code deal to input conditions
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Let’s consider these potential x-semantic issues in the context of 
the example in figure 3. Connecting a global reset to all the registers 
is ideal. However, due to power, area and routing constraints, this 
may not be always possible. In the example, the register gas_pedal 
is reset explicitly. On the other hand, the register accelerate is not 
reset. In simulation, if the signal brake_pedal is X, the case statement 
will pick the default branch and the accelerate register will become X 
pessimistically. However, in reality, if the register, gas_pedal is reset, 
the accelerate register will also be 0 a cycle later. It does not need 
to be reset explicitly; it is reset implicitly by its fan-in cone of logic. 
Automatic formal checking can be used to identify registers that will 
be reset implicitly, and the ones that won’t. Finally, the registers that 
are not reset (explicitly or implicitly) must be initialized before they 
are used. Here, simulation can again miss something important. 
Depending on the tool, some simulators may pick up the default value 
of the data type. In that case, the problem may not be uncovered until 
it is too late.

There are two X-assignments in figure 3. As mentioned, the default 
branch of the case statement is semantically unreachable. Hence, the 
default X-assignment is not a problem. Automatic formal check will 
report the other X-assignment as a potential problem if the selection 
signals brake_pedal and gas_pedal are not mutually exclusive. 

By identifying all the reachable X-assignments, users can prevent 
X values from being generated unintentionally. On the other hand, 
an X-assignment may not be a problem if the X value is never used. 
Distinguishing between used/unused X-assignments is critical, 
especially when there are many such assignments in the design. This 
requires tracking the generation, propagation, and consumption of all 
X values. 

X-propagation examines the fan-out cone of the X-assignment 
until it terminates in one or more storage elements. It is difficult to 
know whether an X value will be used eventually or not. In figure 3, 
if the signals brake_pedal and gas_pedal are not mutually exclusive, 
the accelerate result may be assigned the value X. However, if 
the guarding signal in_gear is not true, the X value will not get 
into the output register speedup_engine. Hence, X-termination is 
being handled and the downstream logic is being protected from X 
contamination.

 

SUMMARY
Traditionally, simulation-based dynamic verification techniques 

— such as directed tests, constrained-random simulation, and 
hardware acceleration — have been the work horse of functional 
verification. As modern day SoC designs become more integrated, 
the only way to advance significantly beyond dynamic verification is 
to increase the adoption of static verification. Leading-edge design 
teams have been using static verification such as automatic formal 
checking successfully. Static verification has been used strategically 
by designers to improve design quality and to complement dynamic 
verification on and coverage closure. Besides helping identify dead-
code and X-semantic issues explained in this article, static verification 
also accelerates the discovery and diagnosis of design flaws during 
functional verification, reduces the time required to verify a design, and 
simplifies the overall development cycle for complex SoC designs. 
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