
AN014705-0208
Abstract
This Application Note describes the implementation
of a software-emulated universal asynchronous
receiver/transmitter (UART) for Zilog’s Z8 Encore!
XP® 8-bit microcontrollers. Software UART imple-
mentation is useful for applications in which an extra
UART is required in addition to the hardware
UART(s) available with Z8 Encore! XP devices. The
hardware UARTs operate in full-duplex mode, where
as the software UART implementation is half-duplex.
The software UART is also an event-driven and sup-
ports an 8-N-1 protocol using an RS-232 interface.

Data transfer is achievable at baud rates from 300 to
57600. The software features APIs for basic opera-
tions such as an initialization, and data reception/
transmission. Source code for the software UART
implementation is provided in Assembly and C lan-
guages, with an exception of Z8F642x support, for
which code is provided only in C.

The following source codes associ-
ated with this Application Note are
a v a i l a b le f o r d o w n l o a d a t
www.zilog.com.

• AN0147-SC01 Assembly code for the 8 KB
Z8 Encore! XP MCU (Z8F082x).

• AN0147-SC02 C code for the 8 KB Z8
Encore! XP MCU (Z8F082x).

• AN0147-SC03 Assembly code for the 64 KB
Z8 Encore! XP MCU (Z8F640x).

• AN0147-SC04 C code for the 64 KB Z8
Encore! XP MCU (Z8F640x).

• AN0147-SC05 C code for the 64 KB Z8
Encore! XP MCU (Z8F642x).

Z8 Encore! XP Flash
Microcontrollers
Zilog’s Z8 Encore! XP products are based on the new
eZ8 CPU and introduce Flash memory to Zilog’s
extensive line of 8-bit microcontrollers. Flash mem-
ory in-circuit programming capability allows for
faster development time and program changes in the
field. The high-performance register-to-register
based architecture of the eZ8 core maintains back-
ward compatibility with Z8® MCU.

Z8 Encore! XP microcontrollers combine a 20 MHz
core with Flash memory, linear-register SRAM, and
an extensive array of on-chip peripherals. These
peripherals make the Z8 Encore! XP suitable for a
variety of applications including motor control, secu-
rity systems, home appliances, personal electronic
devices, and sensors.

Discussion
The UART protocol is based on the EIA RS-232C
standard, published in the year 1969. The standard
was popular with the introduction of personal com-
puters and it is one of the most commonly used serial
interfaces.

Originally defined as a 25-pin interface with several
modem handshake and control signals, the basic
UART interface requires only three lines: Receiver
(RX), Transmitter (TX) and Ground (GND). The
handshake is executed in software by transmitting
special XON and XOFF characters. In most of the
MCU applications, half-duplex communication is
sufficient, that is each side is either a receiver or a
transmitter at any given time.

Note:
Application Note
Software UART for the Z8 Encore! XP®
MCU
Copyright ©2008 by Zilog®, Inc. All rights reserved.
www.zilog.com

http://www.adobe.com
http://www.ZiLOG.com

Software UART for the Z8 Encore! XP® MCU
In an asynchronous serial data communication, data
is transmitted sequentially, one bit at a time. The TX
idle state of the UART is High. A High-to-Low tran-
sition of the Start bit initiates the transmission. Eight
data bits follow before the Stop bit pulls High again.

Figure 1. Basic 8-bit UART Protocol

In an asynchronous operation, the clock is not trans-
mitted. The receiver must operate with the same baud
rate as the transmitter, and the data rate is usually
derived from a local oscillator. The receiver must
also synchronize the baud rate to the falling edge of
the Start bit, and sample the incoming data in middle
of a bit.

Developing a Software UART for
the Z8 Encore! XP® MCU
The Z8 Encore! XP software UART supports the
basic 8-N-1 format, which is 8 data bits, no parity,
and 1 stop bit. It communicates in half-duplex mode.
In RX mode, the program waits to receive a character,
then stores it in the RX Data buffer. In TX mode, the
program sends the character that is stored in the TX
Data buffer.

Options
Several options at assembly time can be selected to
adapt the program to the appropriate operation.

Table 1contains a list of these options.

Hardware Architecture
The Figure 2 displays the hardware setup of Z8
Encore! XP® MCU connected by a MAX-232A line
driver to a PC, running a HyperTerminal program
with a setting of no handshake. Only RX and TX lines
are used.

Figure 2. Block Diagram of Z8 Encore! XP
Connected to PC

Both the communicating UARTs (in this case, the PC
and the Z8 Encore! XP® MCU) must be programmed
with the same baud rate—one as transmitter and one
as receiver; the RX and TX lines are crossed. Pin PA0
is used for TX and pin PA1 is used for RX.

Table 1. Options at Assembly Time

Variable
Name Description
BAUD Baud rate: 300 to 57600. When

BAUD is specified, the program
selects all the appropriate tim-
ings.
Default is 9600.

RAM_TOP Top of RAM; default is EFF.
ROM_TOP Top of Flash; default is FFFF.
MODE RX or TX.

TM

PC with
RS-232 C Port

M
A
X
2
3
2
A

Z8 Encore! XP®

Tx

Rx

Tx

Rx

Port A0

Port A7

Z8ENCORE000ZC0 (Z8F6403) Development Kit

P1-2

P1-3
AN014705-0208 Page 2 of 12

Software UART for the Z8 Encore! XP® MCU
Software Implementation
The software UART implementation comprises of
three basic operations: initialization, receiving data,
and transmitting data. The implementation of these
operations is common for the software UART, which
is coded in Assembly and C languages.

Initialization
In this implementation, PA0 is the TX pin and PA1 is
the RX pin. The following operations are performed
sequentially during initialization:

1. Pin PA0 is set to OUTPUT mode and a High is
output at PA0.

2. PA1 is set to INPUT mode and initialized to
generate interrupts at the falling edge of the
signal.

3. The timer, which is used as a counter and is set
in the CONTINUOUS mode of operation to
generate interrupts upon reaching a set counter
value. To sample the received data at the center
of the bit, the start value of the timer register is
set to half the value of the reload register.

4. The timer is enabled during the TX mode, and
disabled otherwise. Port A interrupts are
enabled during RX mode and disabled other-
wise.

Figure 7 on page 9 displays the flowchart of the
Main Software UART Routine.

Receiving Data
To receive data, the Start bit must be detected. The
Start bit is detected by the falling edge of the signal at
pin PA1 when a port interrupt is generated. This
interrupt is handled by the Port ISR (see Figure 8 on
page 9), wherein the timer is enabled, and the port
interrupts are disabled to receive the remainder of the
data bits.The timer reload value is set to generate
interrupts at one-bit intervals. The start value of the
RX Sampling when Receiving Data timer register is
set to half the reload value to ensure that the first
interrupt generated, after enabling the timer, is at the
middle of the Start bit. See Figure 3.

Figure 3. RX Sampling when Receiving Data

If the middle of the first bit is a zero, it indicates that
the received bit is a valid Start bit and not a glitch.

The serial_in function performs the following
tasks:

1. To receive transmission, the serial_in
function ensures that the received bit is not a
glitch, sets the valid_data flag to TRUE,
and sets the receive bit counter, Rx_COUNT, to
0.

2. The data is sampled in the middle of the next
bit.

3. The data bit is stored in the appropriate bit
position in the RX Data register, and
Rx_COUNT is incremented.When Rx_COUNT
= 8, then Rx_COUNT is reset, and the timer is
disabled.

4. The timer start value is reloaded. The
valid_data flag is set to FALSE and the
Port A interrupts are enabled.

Figure 11 on page 11 displays the flowchart for the
Data Reception Routine.

Transmitting Data
To transmit data, the start value of the timer register
is set to zero and the timer reload value is set to gen-
erate interrupts at one-bit intervals. See Figure 4 on
page 4.

1
0

Stop

0x51

Start 0 1 2 3 4 5 6 7

Rx Sampling
AN014705-0208 Page 3 of 12

Software UART for the Z8 Encore! XP® MCU
Figure 4. TX Sampling when Transmitting Data

The function serial_out performs the following
tasks:

1. To start transmission, the transmit bit counter,
Tx_COUNT, is set to 0 and the TX line (PA0) is
pulled Low to send the Start bit. Tx_COUNT is
incremented.

2. The Tx_DATA register contains the valid data
to be transmitted. It is read, loaded into an
intermediate buffer, and shifted out to Port A0,
one bit at a time, from bit 0 to bit 7.
Tx_COUNT is incremented after each bit is
transmitted (see Figure 4).

3. To stop transmission, the TX line (PA0) is
pulled High to signal the end of transmission;
the timer is disabled.

Figure 10 on page 10 displays the flowchart for the
data transmission routine.

Features Specific to C implementation of
Software UART
Two additional features are provided with the soft-
ware UART implemented in C language. They are
described below.

Flow Control
Two functions/APIs are provided to control the flow
of data while receiving and transmitting data. These
APIs are:

1. Z_Start_Commu()

2. Z_Stop_Commu()

Calling the Z_Start_Commu() API resumes
communication. Calling Z_Stop_Commu() stops
the communication between the communicating
devices.

Overrun Error
A data overrun error occurs when the RX Data buffer
receives data before previously-received data is read
and emptied. An Over_Run flag is set when an
overrun occurs, and it is reset when the data in the RX
Data buffer is read and emptied.

Setting the Port and Pin for Software
UART TX/RX
The software UART implementation, by default, uses
Port A, Pin 0 and Pin 1 as the TX and RX data pins
respectively. However, the pins and the port can be
changed as require. This is achieved by modifying
the code in the sio.h file provided in the source
code zip file.

It can be modified the TX pin/port, RX pin/ port, and
the baud rate for software UART by changing the
definitions provided in the sio.h file, as detailed
below.

• To modify the crystal frequency and baud rate,
the following settings are modified:

//*Set the crystal frequency and BAUD
rate*//
#define XTAL 20000000ul

// Crystal frequency
#define BAUD 9600ul

// Baud rate
//(300,600,1200,
// 2400,4800,9600,19200,
// 38400,57600)

• The following settings are modified to alter the
RX pin and port:

Use only those ports and pins on
which interrupts can be set as the RX
data line.

1
0

Stop

0x51

Start 0 1 2 3 4 5 6 7

Tx Sampling

Note:
AN014705-0208 Page 4 of 12

Software UART for the Z8 Encore! XP® MCU
//**Select the port/pin for RX bit**/
#define SW_UART_RX_PORTPAADDR

// select port
#define SW_UART_RX_PORT_CTLPACTL

// select port control
#define SW_UART_RX_PORT_INPAIN

// select port data input
// register

#define SW_UART_RX_PORT_OUTPAOUT
//select port data output
// register

#define SW_UART_RX_PIN_POS1
// set pin position
// (no 0-7) for RX bit

#define SW_UART_RX_DATA_BITBIT1
//set bit (Bit 0-7) for RX
// data

• To set the interrupt functionality for the RX bit,
the following configuration settings are modi-
fied:

/** Set interrupt functionality for RX
bit **/

#define SW_UART_RX_PORT_INTP1AD
//set vector for
//ISR(only for Port
//A/D(4-lower 4 bit
//only for port C))

#define SW_UART_RX_CLR_INTIRQ1
//clear interrupt IRQ1
//for port A/D and IRQ2
//for Port C

#define SW_UART_RX_SET_INTIRQ1ENH
// set priority interrupt
// IRQ1ENH for port A/D
//and IRQ2ENH for Port C

#define SW_UART_RX_PORT_ENBIT1
// Here Port pin is used /
/to enable the port
//interrupt

#define SW_UART_RX_PORT_DIS~(BIT1)
// Here Port pin is used /
/to disable the port
//interrupt

#define SW_UART_RX_PORT_SLCIRQPS
#define SW_UART_RX_PORT_AD0x00

//select 0x00 for port A
//and 0xFF for port D to
//generate the interrupt

• The following settings are modified to alter the
TX pin/port position:

/**Select the port/pin for TX bit**/
#define SW_UART_TX_PORTPAADDR

// select port
#define SW_UART_TX_PORT_CTLPACTL

// select port control
#define SW_UART_TX_PORT_INPAIN

// select port data
// input register

#define SW_UART_TX_PORT_OUTPAOUT
// select port data
// output register

#define SW_UART_TX_PIN_POS0
// set pin position
// (no. 0-7) for TX bit

#define SW_UART_TX_DATA_BIT BIT0
// set bit (Bit 0-7) for
// TX data

The TX bit and the RX bit must not be
set for the same pin.

Testing the Software UART
Application
This section describes the equipment and procedure
to test the software UART developed for the Z8
Encore! XP® MCU.

Equipment Used
The following equipments are used for testing:

• Z8 Encore! XP Development Kit
(Z8ENCORE000ZC0-D) fea tur ing the
Z8F640x MCU.

• Z8 Encore! XP Development Kit
(Z8F08200100) featuring the Z8F082x MCU.

• Z8 Encore! XP Development Kit
(Z8F64200100KIT) featuring the Z8F642x
MCU.

• ZDSII IDE for the Z8F08xx, Z8F640x, and the
Z8F642x, MCUs.

• HyperTerminal application on the PC.

Note:
AN014705-0208 Page 5 of 12

Software UART for the Z8 Encore! XP® MCU
The XTAL is 20 MHz and the default
baud rate is 9600 for RX/TX mode.

The software UART test setup for Z8 Encore! XP
software UART with the Z8ENCORE000ZC0
Development Kit (Z8F640x MCU) is displayed in
Figure 5.

Figure 5. Test Setup for the Z8 Encore! XP®
MCU Software UART

Appendix A—Schematics on page 8 displays the
test setup schematic for the Z8 Encore! XP® software
UART with the Z8F08200100 Development Kit
(Z8F082x MCU).

Procedure
Follow the steps below to test the software UART
application:

1. Connect the PA0 pin to the PA5 pin. Connect
the PA1 pin to the PA4 pin. The available serial
driver MAX 232A on the Z8 Encore! XP
Development Board, is displayed in Figure 5.

2. Connect the Z8 Encore! XP Development
Board with a 9-pin serial cable to a standard
PC running Windows NT.

3. Launch the HyperTerminal application. Go to
File → Properties, and in the Properties dia-
log box, under the Connect to tab, select the
COM2 port in the Connect using… text field.

4. Click the Configure button and in the Port
Settings dialog box, enter the following in the
text fields:

5. Click OK button to get back to the Connect to
tab. Click the Settings tab and click the ASCII
Setup button. In the ASCII Setup dialog box,
check the Echo typed characters locally
option. Click OK button until the Properties
dialog box closes.

6. Download the test application program using
ZDSII1.

7. The default mode is RX. When a character is
entered in HyperTerminal, it is echoed back to
the screen.

After a brief delay, the same character is displayed
again in the HyperTerminal window, indicating that
the character was received by the software UART’s
RX Data buffer, transferred to the TX Data buffer, and
transmitted back to HyperTerminal to be displayed
on the screen.

8. The C-coded software UART can be used to
test for data overrun conditions when an over-
run error is generated. To test overrun error
generation, disable the Set_Tx_Mode call by
commenting the call in the Test_Uart func-
tion before downloading the code once again.

9. When a character is entered in HyperTerminal,
an OVERRUN ERROR message appears, indi-
cating that a data overrun occurred.

Note:

PC with
RS-232 C Port

C
O
M
1

M
A
X
2
3
2
A

Tx

Rx

Tx

Rx

PA0

PA4

PA5

PA7

Z8 Encore! XP®

Z8ENCORE000ZC0 (Z8F6403) Development Kit

P1-2

P1-3

Bits per second 9600

Data bits 8

Parity None

Stop bits 1

Flow control None

1. For the Assembly-coded software UART, no prompt
appears in the HyperTerminal window upon
downloading the code. The HyperTerminal prompt, Z8
Encore! XP, appears only when the C-coded software
UART is downloaded.
AN014705-0208 Page 6 of 12

Software UART for the Z8 Encore! XP® MCU
10. This procedure is repeated for all the baud rates indicated in Table 2. To change the baud rates, the
Constants definition, BAUD, is used (see Table 1 on page 2).

The ZDSII Debugger checks the value of the RX Data buffer. This value must be equivalent
to the hex value of the entered character.

Results
The following results are obtained:

1. In the Table 2, testing with the baud rates and clock frequency settings are indicated.

2. In RX mode, the software UART samples the data bit in the middle (50% of the bit cell) for all baud
rates mentioned in the Table 2.

3. The received data is unaffected by jitter because the test program validates the Start bit before receiv-
ing any data.

Summary
The software UART implemented in this Application Note supports the most common UART protocol, 8-N-1.
The Assembly and C language codes achieve data transfer at baud rates as high as 57600 at 20 MHz clock fre-
quency.

The size of the Assembly code is approximately 160 bytes, which is ideal for small Z8 Encore! XP® modules
such as the Z8F08xx. Conversely, the C language code is approximately 1 KB in size and is suitable for larger
Z8 Encore! XP modules, such as the Z8F64xx.

Although the software UART can operate only in the half duplex mode, it is otherwise functionally comparable
to the hardware UARTs on the Z8 Encore! XP MCU, and can provide an additional UART when required.

Reference
The documents associated with Z8 Encore! XP MCU available at www.zilog.com are provided below:

• eZ8 CPU User Manual (UM0128).

• Z8 Encore! XP 64K Series Flash Microcontrollers Product (PS0199).

• Z8 Encore! XP 8K/4K Series Development Kit User Manual (UM0150).

• Z8 Encore! XP Flash Microcontroller Development Kit User Manual (UM0146).

Table 2. Baud Rates Tested for RX and TX Modes at 20 MHz Clock Frequency

Mode

Baud Rates Tested

300 600* 1200 2400 4800 9600 19200 38400 57600
RX P — P P P P P P P
TX P — P P P P P P P
*baud rate option is not available with the HyperTerminal.

Note:
AN014705-0208 Page 7 of 12

http://www.zilog.com
http://www.zilog.com
http://www.zilog.com
http://www.zilog.com
http://www.zilog.com
http://www.zilog.com

AN014705-0208 Page 8 of 12

Software UART for the Z8 Encore! XP® MCU

Appendix A—Schematics
Figure 6 displays the software UART implementation using the Z8 Encore! XP® MCU.

Figure 6. Schematic for Software UART Implementation Using the Z8 Encore! XP MCU

XOUT

XIN

TXD0

RXD0

G ND

V DD

TXD0
CTS0CTS0
RXD0

V DD

CONSOLE

RESET

VCC 3.3V

VCC 3.3V

U8

C7
0.1µF

C16
18pF

C3
0.1µF

Y1

20MHz

C5

0.1µF

U10

MAX3222

EN1

C+2

C1-4

C2+5

C2-6

T1IN13

T2IN12

R1OUT15

R2OUT10

V+ 3

V- 7

T1OUT 17

T2OUT 8

R1IN 16

R2IN 9

SHDN20

V
C

C
19

G
N

D
18

NC 11

NC 14

C4
0.1µF

SW1

U4A

74LVC04/SO

1 2

14
7

C10

0.01µF

C6
0.1µF

C15
18pF

P1

DB9 Female

5
9
4
8
3
7
2
6
1

R3
10K

U1

Z8F0822

PC0/T1IN1
PA6/SCL2
PA7/SDA3
RESET4
VSS5
XIN6
XOUT7
VDD8
PC5/MISO9

PC3/SCK11 PC4/MOSI10

PC2/SS12
PA0/T0IN13
PA1/T0OUT14

PB0/ANA0 28

PA2/DE0 15PA3/CTS0 16

PA5/TXD0 18PC1/T1OUT 19DBG 20AVDD 21AVSS 22

PB4/ANA4 24PB3/ANA3 25PB2/ANA2 26PB1/ANA1 27

VREF 23

PA4/RXD0 17

R14

100K

R3
10K

Notes: 1. Connect PA1 to PA4 and PA0 to PA5 only when testing with Z8F0822 MCU.

 2. To test the software UART on Z8F64 MCUs user-defined port and pin
 connections may be used to connect to PA4 and PA5.

 3. When testing the Software UART application, enter the crystal frequency
 according to the crystal available on user development board.

PA3_CTS0

PA4_RXD0
PA5_TXD0

Software UART for the Z8 Encore! XP® MCU
Appendix B—Flowcharts
Figure 7 displays the main software UART routine.

Figure 7. Main Software UART Routine

Figure 8 displays the port interrupt service routines.

Figure 8. Port ISR Flow

Initialize Port A Bit 0 as output for Tx

Initialize Port A Bit 1 as input for Rx

Set Port A to generate interrupt at Low edge

Set Mode of operation as Rx/Tx

Initialze timer0 for continuous mode

timer start value=half reload value

Wait in a do nothing loop

Start

Start

Enable Timer

Disable Port Interrupt

IRET
AN014705-0208 Page 9 of 12

Software UART for the Z8 Encore! XP® MCU
Figure 9 displays the timer interrupt service routines.

Figure 9. Timer ISR Flow

Figure 10 displays the flow of the transmitting data (Serial Data Out).

Figure 10. Transmitting Data Flow

Start

IRET

Test

Mode

Rx/Tx?

Call serial_in

function

Call serial_out

function

Rx Tx

Test bit

counter = 00?

Test bit

counter = 08?

Yes No

Start

Send Start bit

Yes

No

Send Data bit

Send Stop bit

Return

Return

Return
AN014705-0208 Page 10 of 12

Software UART for the Z8 Encore! XP® MCU
Figure 11 displays the flow of the receiving data (Serial Data In).

Figure 11. Receiving Data Flow

Start

Return

Is
valid_data

flag = TRUE?

Is the
bit a glitch?

Is the
Rx counter=8?

No Yes

Read data bit
Increment Rx counter

YesNo

Set valid_data flag = TRUE
Set Rx counter=0
Clear Rx buffer

Disable timer
Reload timer start value
Enable port interrupt
Set valid_data flag=FALSE

Yes

No
AN014705-0208 Page 11 of 12

AN014705-0208 Page 12 of 12
12

Software UART for the Z8 Encore! XP® MCU

DO NOT USE IN LIFE SUPPORT.

LIFE SUPPORT POLICY
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer
©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this
document has been verified according to the general principles of electrical and mechanical engineering.

Z8 and Z8 Encore! XP® are registered trademark of Zilog, Inc. All other product or service names are the
property of their respective owners.

Warning:

	Software UART for the Z8 Encore! XP® MCU
	Abstract
	Z8 Encore! XP Flash Microcontrollers
	Discussion
	Developing a Software UART for the Z8 Encore! XP® MCU
	Hardware Architecture
	Software Implementation
	Setting the Port and Pin for Software UART Tx/Rx
	Testing the Software UART Application

	Summary
	Reference
	Appendix A-Schematics
	Appendix B-Flowcharts

