USARSIM
V3.1.3

A Game-based Simulation of
mobile robots

Prepared by Jijun Wang
Edited by Stephen Balakirsky

USARSImM

Contents
USARSIIM Lttt bbbttt bbbttt b ettt b ii
1 Please Tell Us ADOUL YOUI PrOJECT.......cocuiiieiieiiiie et 1
P [011 (T [F T {[o] o USROS P PP PR 1
2.1 BACKGIOUNGot ettt ae e 1
2.2 What IS USARSIM ..ottt bbbt 1
3 SYSIEM OVEIVIBW ...ttt sttt st r et et sme e nae et nneenbe et 3
3.1 SYSteM arChitECIUIEccveiecie et nreas 3
311 UNFEAL BNGINE ...ttt 4
3.1.2 GAIMEDOTS ..ottt bbbttt 4
3.1.3 (O00] 01170] | [=] co TSRS 4
3.2 SIMUIAtOr COMPONENTScveieieiieeiie et sre e 5
3.21 Environment SIMUIALION..........coo i 5
3.2.2 Sensor and effecter SIMUIALION ..., 9
3.2.3 RODOE SIMUIALION ...t 10
3.24 Communications SIMUIALION............cccoiiiiiiii e 10
3.25 IMAGE SEIVE ...ttt 13
3.2.6 MUITVIBW ... 14
A INSTAHALION.eiiieie et nae e 20
N T [T =] 01T] USSR 20
4.2 INSTAIl UT2004 ...ttt 20
4.2.1 WINAOWS ..ot bbbttt 20
4.3 INSTAIl USARSIM ..o et 22
LLINIUX 1ttt bbbt bbbt 23
4.4 INStall the CONLIOIIETc.veeiee 23
44.1 IMOAST ..ttt ettt e sae s tesreenaen e e e enne e 24
4.4.2 P 0 e 25
443 PIAYET <. e 26
5 RUN e SIMUIALOTccviiieiee e 28
51 The steps to run the SIMUIALONcccoviiiiiiiiiei s 28
5.2 EXAMPIES ..o e 29
521 The testing control INtErfacecccooeiiiiiiiiiie 29
522 IMIOAST .ttt bbb b eene e 30
523 PYIO e 31
524 [2T SRS 32
525 SIMPIEUL ..o 33
5.3 Getting Starting P0Ses FIOmM MapSccccovveiieiieeiie e 36
531 INEFOTUCTION ...t 36
5.3.2 Adding starting poses t0 the Map..........cccevevieeiiiie v 36
5.3.3 Retrieving Starting POSES........cueierierierieriesisie et 43
534 Start EIBVALION......cc.oiiiiiicieeeee e 44
535 Standard Z starting ValUeccooeiiiiiiiincece e 44
5.3.6 Z TADIE .o s 45

6 Coordinates, Units and SCalecooooeeeeeeeeeeeee 45

G TS A O To] o T ==L USSR 46
6.2 UNItS aNd SCAIEveeiiicec e 47
A V11T o] N o= Tod < Vo SRS 48
ST o i = Tod (=] £SO PTSPPSPP 49
9 Communication & Control (Messages and commands)cccceevvvvereereseeseenenn 50
9.1 TCP/IP SOCKELveeitie ettt ettt ee et e re e e s 50
I 1 1= o] o) o Yoo | USSR 50
9.3 IMIESSAGES -ttt ettt 51
0.4 COMMANGS ...oeeiieiieiiiecie ettt e e e e steesteasaessa e teeneesreesaeeneessaeneens 67
10 TS 1150 £ PRSP 78
0.1 SHALE SENSOIeiiiiiieiiiie ettt b e sbb et b e be e e s be e e snees 78
10.1.1 HOW the SENSON WOIKS....ccvieiiieiieeciie et ctie ettt et srae e 78
10.1.2 HOW 0 CONFIQUIE Ttoeiveeiieic e 78
10.2 REANGE SENSOviiiiiiiieiee ettt ettt e e e be e st e e sbeesseeesbeesseeesbeesseeanbeesnnens 78
10.2.1 HOW the SENSON WOIKS........ocieiiieieiie e 78
10.2.2 HOW t0 CONFIQUIE Ttoiiiiieiiiieieee e 79
10.3 RANQGE SCANNET SENSOL.......etiiiiiiiiiee ittt 80
10.3.1 HOW the SENSON WOIKS.....c.vviiiieiieesiic et ciie ettt 80
10.3.2 HOW 0 CONFIQUIE Itoeiiieiieic e 80
10.4 OUOMELIY SENSOKooveiiieiiieiiieieeiee ettt ettt be e beesaeaneesre e 81
10.4.1 HOW the SENSON WOIKS.........ociiiiieieiie e 81
10.4.2 HOW t0 CONFIQUIE Ttoieieiiiiiciieteee e 82
L0.5 GPS SENSON ...t 82
10.5.1 HOW the SENSON WOIKS....cc.veiiiieiiiesiie et ciee ettt sree e 82
10.5.2 HOW t0 CoNfiQUIE ilccveeiieicieceee e 83
L10.6 INS SEBNSOK ..ttt bbb a e e e res 86
10.7 ENCOAEI SENSOKecvviiiiectie ettt sttt te st s e e sba e s e e sbeesaeesreesrreesreeaneens 88
10.7.1 HOW the SENSON WOTKS......c..ciiiiiieiiiic et 88
10.7.2 HOW t0 CONFIQUIE TT...c.viiiiiiiieieee e 88
10.8 TOUCKH SENSOK ...ttt e sre e anes 89
10.8.1 HOW the SENSON WOIKS.......vveivieiieeciee it ctee e et e e e sttt esveennee s 89
10.8.2 HOW L0 CONFIQUIE Itciieiieic e 89
10.9 RFID SBNSOI.....eiiitiieiciiee ittt e et e et e et e e e st e e e snaeeesnaaeanreaeanes 90
10.9.1 HOW the SENSON WOTKS......c..ciiiiiieiicic it 90
10.9.2 HOW t0 CONFIQUIE TT...cviiiiiieiieieec s 90
10.9.3 Choosing the right SensingMode...........cccccceiiviiiiiiiicce e 91
10.9.4 Detecting RFID TagScciiueieieieiieiesie e 92
10.9.5 Reading RFID Tags MEMOIY.......cccccciieiiiieiiesie et 93
10.9.6 Writing RFID Tags MEMOIYcccooiiiiieieieienie e 93
10.9.7 Erasing RFID Tags MEMOIY........ccccceiieieeiieiieie et 93
10.10 Victim and False POSItIVE SENSOccoueiieieiieieeir e nie e sie e 94
10.10.1 HOW the SENSOr WOIKS.........coveiiiiieiieeie e 94
10.10.2 HOW t0 CONFIQUIE ... 94
000 R 1o U o ST LYo OSSR 95
10.11.1 HOW the SENSOr WOIKS.........coivieiieecie e 95

10.11.2 HOW t0 CONFIQUIE Tt ..o 95

10.12 HUMAN-MOLION SENSOTeiiiviieiriee ettt erre e erre e ebae e s beeeans 96
10.12.1 HOW the SENSON WOIKS.......eviiiiiiiiic i 96
10.12.2 HOW t0 CONFIQUIE Ttveeiecic e 96

10.13 L] SR LT 1T] SO 96
10.13.1 HOW the SENSOr WOTKS......ccicviiiiiiee ittt 96

10.14 (0] 10 A OF: 11 4 [=T - TR 97
10.14.1 HOW the SENSOr WOTKS.......cicviiiiiiic it 97
10.14.2 HOW t0 CONFIQUIE Tt ... 98

10.15 OMNIdIreCtional CaAMETA.......ccuvviiriee e 98
10.15.1 HOW the SENSON WOIKS......ceviiiiiiiiie it 99
10.15.2 HOW £0 MOUNT It ...t 99
10.15.3 HOW t0 CONFIQUIE Ttviieiiie e 100

11 e 1 {01 (=T £SO 100

0 1] o = PRSPPSO 100
11.1.1 HOW the effeCter WOIKS........ooivvieiiiii et 100
11.1.2 HOW 0 CONFIQUIE Tt .. .ot e 101

11.2 RFID REIBASEN ... ueiiitiie it ettt ettt ebae e st e e s eba e e sbae e eabeeeenes 101
11.2.1 HOW the effeCter WOIKSccvviiei ittt 101
11,22 HOW 0 CONFIQUIE Itooiieiccieecie e 102

R T = L0 1 =T I o] [T 102
11.3.1 HOW the effeCter WOIKS........ooovviiiiiii et 102
11.3.2 HOW t0 CONFIQUIE Ttooiiiiiiiiieiieie e e 102

I TR 103

115 HeAdIIGNT. .o s 103

12 0] 010 <3S 103

2 R = N 103
200 T A [011 (o Yo (Ut o o R 103
12.1.2 CONFIQUIE Tt .eiiiiiice e 104

S (] (=10 = A N 106
2 R [1o o [o3 ([(O 106
12.2.2 CONFIQUIE ..ot 106

2 T =] B) G 106
I T A [011 (o Yo (Ut o] o R 106
I A o 01 1 o] £ | S SRS 107

I NN I A AN | TR 107
I R [01 (o o [o3 { [107
12,42 CONFIQUIE ..o 108

125 HMMWY (HUMME) .ottt sae e ene s 108
I 0 A [011 (o Yo (Ut o o 108
1252 CONFIQUIE Tt ..iiuiiiiee e 109

TS 4T 1YLV] (] 2 109
2700 R 01 (o o [ox ([(T 109
12.6.2 CONFIQUIE ..o 110

I A V- T F- o TR 110
I O [011 (o Yo (Ut o o R 110

12.7.2 CONFIQUIR T .eiiiiieieiee e e 111

I S B O0 o] o] PP PRSP POPRRPPPRN 111
I T A [011 (o To (1Tt o] 111
R A o 01 1 o 1] £ | S USSR 112

12.9 SUDMAIINE .t e s b e e e s s b b e e e s s sabb e e e s sabbeeeeeaans 112
2 ISt R [0110 o [o3 1 [(SO 112
12.9.2 CONFIQUIR T .eiiiiiieieiiee et 113

12.10 TArANTUIA ..o 113
12.10.1 LT 0o [N Te1 o] 1RO 113
12.10.2 (@00) T [V T L1 o] [USSR 114

12.11 WA o T TR PPR PP 114
12.11.1 L1 (o To 803 1[0] o 1SR 114
12.11.2 CONFIGUIALTION ... e 115

12.12 LI 1 (o] 2 PSP 115
12.12.1 L1 (0o [UTe1 o] 1R 115
12.12.2 (000) T [0 L= | S R 115

12.13 (O] =] O TP 116
12.13.1 [a1 (o To 803 1[0] o 1SR 116
12.13.2 CONTIGUIE T e e 116

12.14 B RS e 116
12.14.1 LT (0o [UTe1 1o] o 1RO 116
12.14.2 (00T) T [V L= | USSR 117

12.15 ES10] YU RSSO PRRR 117
12.15.1 [0l 003 1[0] 1SRRI 117
12.15.2 CONTIGUIE T e e 118

12.16 [0 [724 O UTUPR 118
12.16.1 [a1 (o To 003 (o] o 1T 118
12.16.2 CONTIGUIE T ... 119

12.17 [0 2T TR 119
12.17.1 LT A0 To [N o1 (o] o 1R 119
12.17.2 (000) T [V L= | RS USS 120

12.18 11T TR 120
12.18.1 [a1 (o To 003 (o] o 1S 120
12.18.2 CONTIGUIE T ... 121

12.19 I (=11 SRR 121
12.19.1 LT A0 To [N w1 (o] o 1R 121
12.19.2 (000) T [V L= USRS 123

12.20 YA 1 0] 00 123
12.20.1 [a1 (o To 003 (o] o 1S 123
12.20.2 CONTIGUIE T ... 124

12.21 o R IoY: 1 (0] F- N O 124
12.21.1 LT 0o [N w1 (o] o 1R 124
12.21.2 CONFIQUIE TL...eiiiiiiiie et 125
12.21.3 Extended USARSIim command for Passarola robot................... 125

12,22 RUGDOT. ... 126

12.23 [T | URRURRR 127

12.23.1 INErOAUCTION ... 127

12.23.2 (000) T [V L= | SR 128

13 LO00] 01170] | =] SO TSP 129
131 MOAST bbbttt bbbt 129
132 PO e r et e e be e ne e ree e 132
13.2.1 Simulator and WOrld............cooiiiiiiiee e, 132
13.2.2 RODOTS ... 133
13.2.3 SEBIVICES .oeiiiieiite sttt bbbttt bbb 134
T = T - 1] R URRTROPR PSP 135
13.3 PIAYEE e re e e nne s 135
13.3.1 Simulation and device configurationccccooeeveereninnieenc e 136
13.3.2 DEVICE DIIVEIS ...ttt 138

14 AGVANCEA USEI ...ttt sttt nae e 142
141 BUIld YOUF reNQa.......ccveiiiiieieeie et ae e nneas 142
1411 GeomMEtriC MOEL.......coiiiiiiiieiee e 143
14.1.2 Special ffECTSccviie e 144
14.1.3 Obstacles and VICHMS........cccoiiiiiiieiiiiesieree e e 144

142 BUIld YOUF SENSOToveeiiiiie ettt sreeae e nnees 146
1421 OVEIVIBW ...ttt sttt sttt beenbeaneenre s 147
14.2.2 SENSOE ClASSviuiiieiiiiiisieeiee ettt 147
14.2.3 WIItING YOUI OWN SENSONviiteeieariesiiesieeseesieesieeiessessteessesseessesssesseessens 148

14.3 BUild yOUr fECIENc.eeiieeceec e 149
14.3.1 Overview of the Effecter.uc Class........cccoviiiiiiiiiniiie e 149
14.3.2 Writing your OWN effeCLer.........ccviieiiee e 150

144 BUIld YOUF FODOT.......oiiiiiie e 151
14.4.1 Stepl: Build geometric modelccccevveiiiiiniieii e 151
14.4.2 Step2: Construct the robOtccceevvviiiiicece e 152
14.4.3 Step3: Customize the robot (Optional)ccccooviiiiiiiiiiiis 156
145 Build your CONrOHIET........ceeieeeceee e 158
1451 Embedding Unreal CHENnt ... 158
14.5.2 Capturing Unreal CHIent...........ccooeoiiiiiiieieceseee e 159
14.5.3 USING the IMage SEIVEN ..o 160

15 INFOrmMation fOr GAMENSccoveiiiiiice e 161
16 BUG FEPOIT ... 161
17 (070] 011 1] 11} (o] £SO URR 161
18 ACKNOWIEAGEMENTS ...t 163

Vi

1 Please Tell Us About Your Project

We are constantly trying to improve USARSIm. Part of this effort requires us to
understand how this package is being used. We would greatly appreciate it if you
could please fill out a brief survey that may be found at
http://usarsim.sourceforge.net/pages/volunteer/Survey.html. This survey will be used
to aid us in getting further support for the development of this package. It tells us who
you are, what you are using the package for, and any suggested improvements.
Thanks!

2 Introduction

This manual is written for version 3.1.2 of USARSIm. The files may be found at the
file release section of the USARSIm web site
(http://sourceforge.net/projects/usarsim). To install the base release, please check the
code out of cvs (explained later in this document) or download the USARSiIm full
archive. Maps and tools are also available on the website.

2.1 Background

Large-scale coordination tasks in hazardous, uncertain, and time stressed
environments are becoming increasingly important for fire, rescue, and military
operations. Substituting robots for people in the most dangerous activities could
greatly reduce the risk to human life. Because such emergencies are relatively rare
and demand full focus on the immediate problems there is little opportunity to insert
and experiment with robots.

2.2 What is USARSIm

USARSIm was designed as a high fidelity simulation of urban search and rescue
(USAR) robots and environments intended as a research tool for the study of human-
robot interaction (HRI) and multirobot coordination. Since its initial release, it has
been expanded to support many diverse environments including highway robots, the
DARPA urban challenge, robotic soccer, submarines, humanoids, and helicopters.
USARSIm is designed as a simulation companion to the National Institute of
Standards’ (NIST) Reference Test Facility for Autonomous Mobile Robots for Urban
Search and Rescue (Jacoff, et al. 2001). The NIST USAR Test Facility is a
standardized disaster environment consisting of three scenarios: Yellow, Orange, and
Red physical arenas of progressing difficulty. The USAR task focuses on robot
behaviors, and physical interaction with standardized but disorderly rubble filled
environments. USARSIm supports HRI by accurately rendering user interface
elements (particularly camera video), accurately representing robot automation and
behavior, and accurately representing the remote environment that links the
operator’s awareness with the robot’s behaviors.

High fidelity at low cost is made possible by building the simulation on top of a
game engine. By offloading the most difficult aspects of simulation to a high volume
commercial platform which provides superior visual rendering and physical
modeling, our full effort can be devoted to the robotics-specific tasks of modeling

http://usarsim.sourceforge.net/pages/volunteer/Survey.html
http://sourceforge.net/projects/usarsim

platforms, control systems, sensors, interface tools and environments. These tasks are
in turn, accelerated by the advanced editing and development tools integrated with the
game engine leading to a virtuous spiral in which a widening range of platforms can
be modeled with greater fidelity in less time.

The current release of the simulation consists of: various environmental models
(levels), models of commercial and experimental robots, and sensor models. As a
simulation user, you are expected to supply the user interfaces, automation, and
coordination logic you wish to test. For debugging and development “Unreal
spectators” can be used to provide egocentric (attached to the robot) or exocentric
(third person) views of the simulation. A test control interface is provided for
controlling robots manually. Robot control programs can be written using the
GameBot interface, MOAST System (http://moast.sourceforge.net/), Player interface,
or Pyro middleware (please note that the pyro interface is out of date and not
supported)..

http://moast.sourceforge.net/

3 System Overview

3.1 System architecture

! I ! Controller |
| |

i High Level ! I High Level !
: Control ! i Control !
| |

i ' ; i v :
|

: Middle Level L I Middle Level !
| Control ! : Control !
| ¥ : i 1 i
: : ! :
! Control : ! Control !
! Interface I ! Interface :
| |

Video Feedbackn

Video Feedback

Unreal Client
(Attached spectator)

Unreal Client
(Attached spectator)

-

B et

——zzz—————--==%=
em=====Z il ==

Gamebots

v

Unreal Engine

=P Unreal Data

<€ Control Data

)

Map

1

Models (Robots model, Sensor
model, victim model etc.)

Figure 1: System Architecture

The system architecture is shown in Figure 1. Below the dashed boxes is the
simulator that provides the interactive virtual environment for the users. The dashed
box is the user side where you can use the simulator to aid in your research. The

system uses a client/server architecture. Above the network icon in Figure 1, is the
client side. It includes the Unreal client and the controller or the user side
applications. The Unreal client renders the simulated environment. In the Unreal
client, through changing the viewpoint, we can get the view of the robot in the
environment. All the clients exchange data with the server through the network. The
server side is called the Unreal server. It includes the Unreal engine, Gamebots, the
map, and the models (such as robot models, victim models, etc.). The Unreal server
maintains the states of all the objects in the simulator, responds to the data from the
clients by changing the objects’ states and sends back data to both Unreal clients and
the user side controllers.

In summary, the three main components that construct the system are 1) the
Unreal engine that makes the role of server, 2) the Gamebots that communicates
between the server and the client and 3) the Control client that controls the robots on
the simulator.

3.1.1 Unreal engine

The Unreal engine used in the simulator is released by Epic Games
(http://www.epicgames.com/) with Unreal Tournament 2004. Please note that a full
license for the Unreal Tournament 2004 game is required (cost of about $40 at most
software retailers) (http://www.unrealtournament.com/ut2004/). The demonstration
version will not work with USARSIm. It’s a multiplayer combat-oriented first-person
shooter for the Windows, Linux and Macintosh platforms. In addition to the amazing
3D graphics provided by the engine, the physics engine, which is known as the
Karma engine, is also included in Unreal to obtain high quality reality. Unreal engine
also provides a script language, Unreal Script, to the game developers to develop their
own games. With the scripts, developers can create their objects (we call them actors)
in the game and control these actors’ behaviors. Unreal Editor is the 3D authoring
tool that comes with the Unreal engine to help developers build their own maps,
geometric meshes, terrain etc. For more information about Unreal engine, please visit
the Unreal Technology page:
http://www.unrealtechnology.com/html/technology/ue2.shtml.

3.1.2 Gamebots

The communication protocol used by Unreal engine is proprietary. This makes
accessing Unreal Tournament from other applications difficult. Therefore, Gamebots
(http://www.planetunreal.com/gamebots/), a modification to Unreal Tournament, is
built by researchers to bridge Unreal engine with outside applications. It opens a
TCP/IP socket in Unreal engine and exchanges data with the outside. USARSIm
enables Gamebots to communicate with the controllers. To support our own control
commands and messages, some modifications are applied to Gamebots.

3.1.3 Controller

Controller is the user side application that is used for your research, such as
robotics study, team cooperation study, human robot interaction study etc. Usually,
the controller works in this way. It first connects with the Unreal server. Then it sends
command to USARSIm to spawn a robot. After the robot is created on the simulator,

http://www.epicgames.com/
http://www.unrealtournament.com/ut2004/
http://www.unrealtechnology.com/html/technology/ue2.shtml
http://www.planetunreal.com/gamebots/

the controller listens to the sensor data and sends commands to control the robot. The
client/server architecture of Unreal makes it possible to add multiple robots into the
simulator. However, since every robot uses a socket to communicate, for every robot,
the controller must create a connection for it.

The Mobility Open Architecture Simulation and Tools (MOAST) framework is
designed to allow researchers to concentrate their efforts in their area of expertise. To
accomplish this, the framework provides a hierarchical, modular set of controllers,
interfaces, and tools. The controllers conform to the hierarchical 4-D/RCS Reference
Model Architecture (Albus, 2000) and provide behavior generation, world modeling,
and sensor processing. The hierarchy supports control ranging from low-level servo
control to high-level robot team control. To utilize this framework, experimental code
connects to one or more of the standardized interfaces to obtain data from the robot(s)
and exert control. MOAST is developed to fully integrate with the USARSIm
simulation system. More information about MOAST is located at
http://moast.sourceforge.net/. A detailed explanation of the MOAST interfaces may
be found in section 13.1.

Besides MOAST, USARSIm also supports two other popular robot controllers,
Pyro (out of date) and Player. The Pyro plug-in included in USARSiIm allows the use
of Pyro to control the robot in the simulator. Pyro (http://pyrorobotics.org/) is a
Python library, environment, GUI, and low-level drivers used to explore Al and
robotics. The details of the Pyro plug-in are described in section 13.2.

The USARSIm Player drivers are the device drivers that allow the control of
robots and sensors in the simulator through Player as if they were real physical
devices. Player is a robot device server that gives users simple and complete control
over the sensors and actuators on the robot. For more information please visit Player
website: http://playerstage.sourceforge.net/. A detailed explanation of the USARSIm
Player drivers can be found in section 13.3.

3.2 Simulator components

The core of the USARSIm is the simulation of the interactive environment, the
robots, and their sensors and effecters. We introduce the three core components
separately in the following sections.

3.2.1 Environment simulation

Environment plays a very important role in simulations. It provides the context
for the simulation and only with it, can the simulation make sense. Several
specialized environments that are distributed for use with USARSiIm are described
below. Users and developers are free to create additional usage areas for the
simulation.

3.2.1.1 USAR Environment

USARSIm was originally based upon simulated disaster environments in the
Urban Search and Rescue (USAR) domain. The environments are simulations of the
National Institute of Standards and Technology (NIST) Reference Test Facility for
Autonomous Mobile Robots (http://www.isd.mel.nist.gov/projects/fUSAR/). NIST
built three test arenas to help researchers evaluate their robot’s performance.

http://moast.sourceforge.net/
http://pyrorobotics.org/
http://playerstage.sourceforge.net/
http://www.isd.mel.nist.gov/projects/USAR/

These arenas are built from the AutoCAD models of the real arenas. To achieve
high fidelity simulation, the textures used in the simulation are taken from the real
environment. For all of the arenas, the simulated environments include:

Geometric models: the model imported from the AutoCAD model of the
arenas. They are the static geometric objects that are immutable and
unmovable, such as the floor, wall, stairs, ramp etc.

Obstacles simulation: that simulates the objects that can move and change
their states. In addition, these objects can also impact the state of a robot. For
example, they can change a robot’s attitude. These objects include bricks,
pipes, rubble etc.

Light simulation: that simulates the light environment in the arena.

Special effects simulation: that simulates the special items such as glass,
mirrors, grid fenders etc.

Victim simulation: is the simulation of victims that can have actions such as
waving hands, groaning, and other distress actions.

All the virtual arenas are built with Unreal Editor. With it, users can build their
own environment. For details please read section 14.1. In addition to the USAR
arenas, outdoor areas and simulated collapsed buildings have been modeled. All of
these arenas are available for download at http://sourceforge.net/projects/usarsim in
the files area.

The real USAR arenas and simulated arenas are listed below:

The yellow arena: the simplest of the arenas. It is composed of a large flat floor
with perpendicular walls and moderately difficult obstacles.

Figure 2: Yellow arena

http://sourceforge.net/projects/usarsim

Figure 3: Simulated yellow arena

The orange arena: a bi-level arena with more challenging physical obstacles
such as stairs and a ramp. The floor is covered with debris including paper, pipes, and
cinder blocks.

Figure 4: Orange arena

Figure 5: Simulated orange arena

The red arena: presents fewer perceptual difficulties but places maximal
demand on locomotion. There are rubble piles, cement blocks, slabs and debris on the
floor.

Figure 6: Red Arena

Figure 7: Simulated red arena

3.2.1.2 Road Environment

In addition to urban search and rescue, the simulator has been applied to the DARPA
Urban Challenge (http://www.darpa.mil/grandchallenge). This is supported by the
ARDA map, ARDA_RNDF.txt, and ARDA_MDFx.txt files. Formats for the Route
Network Definition Files (RNDF) and Mission Description Files (MDF) are
described on the DARPA web site. Manual control of a robot does not require a
RNDF or MDF. Autonomous control or game scoring by DARPA rules will require
those files. The robot SnowStorm is equipped with sensors to drive autonomously in
this environment.

3.2.2 Sensor and effecter simulation

Sensors are important to robot control. Through checking the object’s state or
some calculation in the Unreal engine, three kinds of sensor are simulated in
USARSIm.

e Proprioceptive sensors
These include battery state and headlight state.
e Position estimation sensors
These include location, rotation, and velocity sensors.
e Perception sensors
These include sonar, laser, pan-tilt-zoom (ptz) camera, touch sensor, and
RFID tag reader.

All of the sensors in USARSIm are configurable. A sensor can be easily
mounted on the robot by adding a line into the robot’s configuration file. When a

http://www.darpa.mil/grandchallenge

sensor is mounted, its name, type, position where it’s mounted, and the direction it
will face can be specified. For every kind of sensor, specific properties can be
specified. Examples of these include the maximum range of the sonar, the resolution
of the laser and FOV (field of view) of the camera. For more information about
configuring a sensor please see section 10. For details of mounting a sensor on the
robot please see section 12.

Effecters are very similar to sensors. They can be configured and mounted on
the robot. However, instead of sending sensor data to the user, the main function of an
effecter is to accept a command and execute the corresponding function in the virtual
world. Currently, only headlights and RFIDReleaser effecters exist. The details of
effecter can be found in section 0. How to equip an effecter is explained in section 12,

3.2.3 Robot simulation

Using the Karma rigid-body physics engine, which is embedded in Unreal
Tournament 2004, we built a robot model to simulate the mechanical robot. The robot
model includes chassis, parts (tires, linkage, camera frame etc.), and other auxiliary
items such as cameras, headlights, etc. All the chassis and parts are connected through
simulated joints that are driven by torques. Three kinds of joint control are supported
in the robot model. The zero-order control makes the joint rotate by a specified angle.
The first-order control lets the joint rotate under the specified rotational speed. The
second-order control applies the specified torque on the joint. To help better organize
and control these parts and joints, we introduced a mission package concept. A
mission package represents a container of parts and joints. Sensors and effecters are
connected to the robot platform through the mission packages. For instance, the
camera pan-tilt frame is a kind of mission package that connects a camera to the
robot. By controlling the pan-tilt frame, we can adjust the camera’s pose. The robot
receives the control command and sends out data through Gamebots.

With this robot model, users can build a new robot with little or no Unreal
Script programming. For the steps of building your own robot, please read section
14.3.

In USARSIm, a total of eight ground robots are provided for you: P2AT, P2DX,
ATRV-Jr, Zerg, Tarantula, Talon, Telemax, and Soryu. In addition, USARSIm
includes four Ackerman-steered vehicles for outdoor scenes as well as testing driving
algorithms: Hummer, Sedan, SnowStorm, and Cooper. Two legged robots, the QRIO
and ERS, are also part of the simulation as well as a nautical vehicle (Submarine) and
an aerial vehicle (Helicopter). Information about these robots can be found in section
12.

3.2.4 Communications Simulation

The purpose of the Wireless Communications Server is to act as a middle man
for messages passed between the robots, dropping messages and connections between
robots when not realistically feasible using wireless communication. It has been
implemented in UnrealScript, and is automatically started when starting a
BotDeathMatch (and hence a UsarDeathMatch).

10

The server listens on a port for connections from robots sending command
messages for registering, listening and opening connections. Once connections
between robots are set up, these are handled on different sockets (TcpLinks), allowing
the server to listen for more commands, and allowing multiple connections to be
handled.

The opening of a connection or the closing of a connection while sending a
message is decided using the path loss estimated using the Wall Attenuation Factor
Model.

: : d
P(d)[dBm] = P(dg)[dBm] — 10nlog(—) —

a nW s« WAF nW < (C
ﬂrﬂ'

C+WAF oW =C

The default values for P(do) is -49.67 dBm, dop is 2 m, n is 1.09, C is 5 and
WAF is 6.625, based on measurements taken in Research 1, at International
University Bremen®. When the path loss reaches below -93 dBm the connections are
closed/the attempt at opening a connection fails.

3.2.4.1 Communication Base Station:

A communication base station is provided with USARSIm and should be used as a
relay point for your robots. The communication base station is added into a world by
issuing the following command: INIT {ClassName USARBot.ComStation}
{Location x,y,z}. If you are unfamiliar with the INIT command, please read section
1.4,

3.2.4.2 Configuration:
Several options can be changed using the USARComServer.ini file.

For the USARBotAPI.ComServer class:
ListenPort: the port the server listens on
bDebug: Boolean flag indicating the printing of log messages

For the USARBotAPIl.ComConnection class:

! Jacobs University Bremen as of Spring 2007

11

bDebug: Boolean flag indicating the printing of log messages

ePdo: The signal strength at a reference distance dp, in dBm

eDo: The reference distance dg

eN: The log factor n

eCutoff: The cutoff signal strength, in dBm

eMaxObs: The maximum number of obstacles (C in the formula above)
eAttenFac: The signal attenuation for each obstacle (WAF in the formula above)

For the USARBotAPI.ComLink class:
bDebug: Boolean flag indicating the printing of log messages

3.2.4.3 Message formats:

Registering:

REGISTER RobotName IPAddress;
The RobotName should be the same as the one the robot was created with in the
simulation. The IPAddress is the IP Address of the computer on which the robot
controller is running. The REGISTER word is not case sensitive.

Listening:

LISTEN RobotName Port;
The RobotName should be the one with which the robot was registered, and Port the
port at which the program is listening. The LISTEN word is not case sensitive.

Opening a connection:

OPEN RobotName Port HostRobot HostPort;
RobotName is the robot that you want to connect to, and is listening for connections
at Port. HostRobot is the robot that wants to setup the connection, and it should be
listening at HostPort before sending this command to the server, in order for the
connection to be successfully opened (if the signal strength is suitable). The OPEN
word is not case sensitive.

Sending a message:

SEND MessageLength Message;
Once a connection has been established, this is used to send Message (with
MessageLength characters) to the other endpoint of the connection. This supports
binary message strings. The SEND word is case sensitive.

Closing a connection:
CLOSE:;
This is used to close a connection. The CLOSE word is case sensitive.

Getting the path loss between two robots:
GETSS Robotl Robot?;

12

This can be sent to the WSS over the control connection to get the path loss between
Robotl and Robot2. The GETSS word is not case sensitive.

Responses:
All except the GETSS, SEND and CLOSE command get one of two responses from
the server.
If the command is successfully carried out, the response is
OK;
If the command could not be carried out, the response is
Fail: ErrorMessage;
where ErrorMessage is a message describing why the command could not be carried
out.
When GETSS is successfully carried out, the response is
OK:PathLoss;
Where PathLoss is the path loss between the robots in dBm. If it fails the response is
a fail message as described above.

3.2.4.4 Sample Programs

Very simple sample programs using the server can be found in the USARSIm CVS
repository (http://sourceforge.net/cvs/?group_id=145394), under the folder
Tools/WSS.

#= Image Server
T Startup

&+ |UT Client Mode
" T Server Mode |

T Server address [IP]:

T Map:
Start ‘ |Ma|:| name withaout ' ez ﬂ

Image Settings Connected Clients

Format: |JF'|3 [Good) j Port: (5003 | |

Resolution: [3204240) Clients:

|
/
160x120 450x360

. 1
Frame Fate: |10 =

Figure 8: Image server control interface.

3.2.5 Image Server

The image server is a windows application that allows one to capture images from
any of the cameras that are being used inside of the game engine. It may be run with
UT running in either “client” or “server” mode. The control display from the image
server may be seen in Figure 8.

13

http://sourceforge.net/cvs/?group_id=145394

3.2.5.1 Installation

The image server may be obtained from CVS or from the downloads page under the
Tools area on Sourceforge as an install package.

3.2.5.2 Running the Image Server with USARSIm in Server Mode
If you want to use the image server in the usual way do the following:

1. Start the UT server.

2. Start the image server.

3. In the image server select UT Server Mode, type in UT Server address
IP, enter a map name and chose the format, resolution and fps of the
images.

4. Click on Start.

Remember: you must run image server on the same machine where UT server is
running.

3.2.5.3 Running the Image Server with USARSIm in Client Mode
If you plan to use USARSIm in client mode, then do the following:
1. Start the image server.
2. Inthe image server select UT Client Mode, enter a map name and chose
the format, resolution and fps of the images.
3. Click on Start.
3.2.6 MultiView
The USARSIm client allows one to only see from the camera(s) of one robot at a
time. To overcome this limitation, a special extension called MultiView was
developed.
3.2.6.1 Enabling a map for MultiView
In order to enable the MultiView you have to add a special object into the map. You

must use the Unreal Editor to do that. Open your map in the Unreal Editor (As shown
in Figure 9, we will use the Soccer map as an example):

14

Figure 9: Soccer map in the unreal editor

Click on the pawn button as illustrated in Figure 10. It will open the Actor Classes
window:

AT Unreal Level Editor - Build UT2004_Build_[2005-11-23_16.22] - [F: Games' UT2004" Maps',Div-... M=l E3
File Edit ‘“iew Brush Build Tools Help

Testurss Actor Classes | Meshes | Animations | Sta_4 I 4

= =l b/l

W Use ‘Actor' as Parent?

¥ Flaceable classes Only?

[+ *KActar
K MactorF actorny
- =K. eppaint
- *Light
- *MeshEffect
- MavigationPoint
- "Metwork T rigger
b ote
-~ "OMS TeleportPad

Redeemensfathead

“wfordController
“Pickup

Figure 10: Click on the "pawn" button.

15

In the tree view search for MultiView and select it. The path to it is
Actor/Pawn/MultiView. Now right click somewhere in the map (in the perspective
view) and select "Add MultiView Here". This is shown in Figure 11.

Af 'Unreal Level Editor - Build UT2004_Build_[2005-11-23_16.22] - [F:* Games', UT2004' Maps',DM-... =] E
File Edit “iew Brush Build Tools Help

Al Actor Classes - USARBot.Multiview =] E3
File “iew Class
Textures Actor Classes | Meshesl Animationsl Staﬂ_’|

4dd Path Node Here
Add Player Start Here
Add Light here

Grid 3
Pivat 4
Level Properties

H S EUEETTETA JITTEdu
“USaRRobat
*UrrealPawn
*fehicle
“foridController
“Pickup
*ProjiectieS pawner

Figure 11: Adding the multiview pawn.

Close the Actor Classes view. The box shown in should have appeared in the map:

1'Unreal Level Editor - Build UT2004_Build_[2005-11-Z3_16.22] - [F:Games*,UT2004 Maps*,DM-... M= E3 |
File Edit View Brush Build Tools Help

Figure 12: MultiView object added to map.

16

You can place it wherever you want, for example near the ceiling so to hide it
from robot cameras. Now click on the rebuild button to rebuild the map as shown
in Figure 13 and save the map.

Af 'Unreal Level Editor - Build UT2004_Build_[2005-11-23_16.22] - [F:' Games",UT2004% Maps',DM-... [H[=] E3

File Edit “iew PBrush Build Tools Help
/
RebuildAll

Figure 13: Rebuilding the world.

3.2.6.2 Using the MultiView

As shown in Figure 14, with MultiView you can capture the camera view from
many robots at the same time.

Figure 14: Multiple robot views using MultiView.

17

Just keep left clicking in the client until you find the MultiView view. You can
write your own capturing image server, extract the images of each robot and send
them to respective clients, as illustrated in Figure 15.

Image Server

Network
USARSIm f Y O

-

; "-,Cmnera Coordinates h?i

-

—v—b Controller Robot A

~

Controller Robot B

(C)

e

Controller Robot C

A

Figure 15: Example of using MultiView with a controller.

Otherwise you can use the image server that comes with USARSim and split the
camera images at client side.

MultiView can also render stereo cameras in each subview. To do so you have
to add this function to your robot class (subclassed from KRobot):

//(Called by KRobot Tick function)
//Stereo vision when viewing from multiview robot camera
simulated function SyncMultiView() {
if(ViewManager !'= none)
{
if(isStereo)
ViewManager.UpdateView(ViewNum. myCamera.Locationa-
myCamera-Rotationa
CameraZoom. true. uuStereoSpacing);
else
ViewManager.UpdateView(ViewNum. myCamera.Locationa.
myCamera-Rotationa
CameraZoom. Talse):
}

}

where:

e isStereo : is a boolean variable you can use to enable/disable stereo
rendering. Obviously, if you plan to always use stereo camera then you can

18

P J
Pl ~
:: :' = Controller Robot D
a5

delete the if(isStereo) statement. You can declare this variable config so to
be able to set its value inside USARBot.ini file.

e uuStereoSpacing : is a vector that defines the (eye to eye)/2 spacing in
unreal units. 1m = 250 unreal units, so you can make a manual conversion.
Otherwise you can use the converter to automatically convert a stereo
spacing parameter expressed in meters to unreal units. To do so you have
to add the following function in you robot class:

simulated function ConvertParam(USARConverter converter) {
Super.ConvertParam(converter) 3
if(converter!=None)
{
uuStereoSpacing = converter.LengthVectorToUU(stereoSpacing)s
T
else
{
uuStereoSpacing = stereoSpacings
T
}
where:

o stereoSpacing : is a vector that defines the (eye to eye)/2 spacing in
meters.

You can define a vector in defaultproperties like this:

defaultproperties {

stereoSpacing=(Y=0.05) //5 cm: (eye to eye)/2 spacing in meter

}

3.2.6.3 Configuration

You can configure the MultiView in the USARBot.ini file. You will find the
[USARBot.MultiView] section that contains the following parameters:

e CameraNum : maximum number of cameras that can be drawn at the
same time.

e WideMode : if 0 the MultiView will split the screen using a box pattern.
You can see in Fig.7 the pattern used for 4 cameras. If > 0 then the
MultiView will use that number of columns before adding a raw. In Fig.6
you can see an example with WideMode=4.

19

e CameraXres : X resolution of robot camera. The final resolution of the
camera subview will be <= CameraXres. If the overall resolution of camera
subviews is larger than what can fit in the USARSIm client, they will be
scaled down to fit the screen. If for example you use 4 cameras in
WideMode=4, each 200 pixel wide, and the USARSIm client resolution is
640x480, each camera width will be scaled down to 160 pixel. But if you
set WideMode=0 a different patter is used and the full camera resolution
(200 pixel) will be used.

o CameraYres : Y resolution of robot camera. Same as above but for Y axis.
In any case the aspect ratio (CameraXres/CameraYres) will be preserved.
That means that a change in resolution will always affect both X and Y.

e IsCameralocked : Don't consider this for now and leave it to false. It can
be used with zone optimization to speed up subview rendering.

3.2.6.4 Limitations
There are two important known limitations:

1. MultiView supports only one camera (can be stereo) per robot. So, if you
have a robot that mounts more than one camera (like Talon) you will see
only from its first camera.

2. More cameras you use (same as saying: more robots you use) smaller will
be the subviews. This can, or can not be a problem. Depends on the
specific application.

4 Installation

4.1 Requirements

Operating System: Windows 2000/XP or. Linux

Software: UT2004 with the 3339 or later patch

Optional requirements: For the controller, we recommend MOAST, which is fully
integrated with USARSIm. In addition, Pyro (out of date) or Player may be used. The
Pyro plug-in requires Pyro 2.2.1, and the Player USARSIm drivers require Player
1.4rc2 or higher.

4.2 Install UT2004

4.2.1 Windows

Please note: if you have a previous version of USARSIm installed, it must be
uninstalled.

Users have three options to remove previous USARSIm versions. Please note that
%UT20024% refers to the Unreal Tournament main folder.

a. Use the Uninstaller (USARSIm Full version 3.00 or higher only)

1. Run the Uninstall-USARSimFull.exe file located in the %UT2004% directory

20

b. Re-Install Unreal Tournament
1. Uninstall Unreal Tournament by going to
Start->Programs->Unreal Tournament 2004->Uninstall Unreal Tournament 2004

2. Manually delete the %UT2004% folder from your computer.
3. Install Unreal Tournament.

4. Install the Official Unreal Tournament Patch V3369, which you can download
at:
http://data.unrealtournament.com/UT2004-WinPatch3369.exe

c. Manually Delete Files
1. Manually delete the following folders, if they exist:

%UT2004%\Doc\
%UT2004%\Tools\
%UT2004%\BotAPI\
%UT2004%\USARBOt\
%UT2004%\USARBOtAPI\
%UT2004%\USARMIisPkg\
%UT2004%\USARModels\
%UT2004%\USARVictims\

2. Manually delete the following files, if they exist:
%UT2004%\Animations\UDN_CharacterModels_K.ukx
%UT2004%\Sounds\SEERVoices.uax
%UT2004%)\StaticMeshes\FreiburgRescue.usx
%UT2004%)\StaticMeshes\IUB_meshes.usx
%UT2004%)\StaticMeshes\spgrMapsMeshes.usx
%UT2004%\StaticMeshes\spgrRobotMeshes.usx
%UT2004%)\StaticMeshes\TalonMeshes.usx
%UT2004%)\StaticMeshes\USAR_Robots.usx
%UT2004%)\StaticMeshes\USARSIm_Hummer.usx
%UT2004%)\StaticMeshes\USARSIm_Sedan.usx
%UT2004%\StaticMeshes\USARSIm_Submarine.usx
%UT2004%)\StaticMeshes\Sub.usx
%UT2004%)\StaticMeshes\USARSIm_Cars.usx
%UT2004%)\StaticMeshes\Hummer.usx
%UT2004%)\StaticMeshes\USARSIm_Vehicles_Meshes.usx
%UT2004%)\StaticMeshes\USARSIm_VehicleParts_Meshes.usx
%UT2004%\StaticMeshes\USARSiIm_Objects _Meshes.usx
%UT2004%\StaticMeshes\USARSIm_LeggedRobots Meshes.usx
%UT2004%\System\Hook.dlI
%UT2004%\System\make.bat

21

%UT2004%)\System\make.csh
%UT2004%\System\usar_c.bat
%UT2004%)\System\usar_s.bat
%UT2004%)\System\usar_t.bat
%UT2004%\System\USARBot.ini
%UT2004%)\System\USARBOtAPL.ini
%UT2004%\System\USARSIm.ini
%UT2004%)\System\BotAPL.ini

%UT2004%\Textures\IUB _textures.utx
%UT2004%\Textures\SEERS_girls.utx
%UT2004%\Textures\SEERS gWounded.utx
%UT2004%\Textures\SEERS Wounded.utx
%UT2004%\Textures\SEERSTextures.utx
%UT2004%\Textures\SEERSTexturesSG.utx
%UT2004%)\Textures\spgrMapsTextures.utx
%UT2004%)\Textures\spgrRobotTextures.utx
%UT2004%\Textures\TalonTexture.utx
%UT2004%\Textures\USAR.utx
%UT2004%\Textures\submarine.utx
%UT2004%\Textures\USARSIm_Cars.utx
%UT2004%\Textures\Hummer.utx
%UT2004%\Textures\USARSIm_Vehicles_Textures.utx
%UT2004%\Textures\USARSIm_VehicleParts_Textures.utx
%UT2004%\Textures\USARSIm_Objects_Textures.utx
%UT2004%\Textures\USARSIm_LeggedRobots Textures.utx
%UT2004%\ChangelLog

%UT2004%\README

4.3 Install USARSIm

For non-developers:
1) Install Unreal Tournament. You will get a folder, which we will refer to as
%UT2004% for these instructions.
2) Install the Official Unreal Tournament Patch V3369, which you can download
at: http://data.unrealtournament.com/UT2004-WinPatch3369.exe
3) Download the usarsim-2004 files in the download section of the USARSIm
project page: http://sourceforge.net/project/showfiles.php?group id=145394
4) Extract the files you just downloaded into the %UT2004% folder.
5) Compile USARSIm by running the "make.bat" script in the
%UT2004%/System folder.
For developers:
1) Install Unreal Tournament. You will get a folder, which we will refer to as
%UT2004% for these instructions.
2) Install the Official Unreal Tournament Patch V3369, which you can download
at: http://data.unrealtournament.com/UT2004-WinPatch3369.exe
3) Temporarily rename the %UT2004% folder to "usarsim". Put yourself in the
folder above "usarsim".

22

http://data.unrealtournament.com/UT2004-WinPatch3369.exe
http://sourceforge.net/project/showfiles.php?group_id=145394
http://data.unrealtournament.com/UT2004-WinPatch3369.exe

4) Check out the latest source code snapshot from SourceForge. For instructions
on doing this, go to: http://sourceforge.net/cvs/?group _id=145394

5) This will check out the USARSIm source code snapshot into your "usarsim"
folder, merging it with what's already there.

6) Change "usarsim" back to %UT2004%.

7) Download the base files in the download section of the USARSIm project
page: http://sourceforge.net/project/showfiles.php?group_id=145394

8) Extract the base files you just downloaded into the %UT2004% folder.

9) Compile USARSIm by running the "make.bat" script in the
%UT2004%/System folder.

10) From this point on, you can run periodic "cvs update” commands to get the
latest snapshot, and recompile as in (8).

Linux

6) Install UT2004
7) Install the patch
a. Download ut2004 patch at
http://www.unrealtournament.com/ut2004/downloads.php
b. Download and run the shell script
http://www.hetepsenusret.net/files/ut2k*/ut2k4-patch to install the
patch. For more details about usage, please run
i. $ ut2k4-patch --help

NOTE: To make the code under windows, run the file make.bat that is located in the
system directory. For linux users, the file make.csh should be executed.

NOTE: In addition to the worlds, the file AAA_MapBaseFiles_VX.XX.zip located
under the BaseFiles release of the Maps package is necessary for most worlds.

There is a testing control interface written in C++. If you don’t want to install
any controller software, you can copy USAR_UI to your machine and try it.
USAR_UI may be found under the ‘Tools’ section of the Files release area on
sourceforge. USAR_UI only works on Windows. You can use it to send commands to
USARSIm and investigate all the messages received from the Unreal server.

NOTE: When you restore the zipped file, please make sure it is restored under the
correct directory. If your directory structure looks something like
...\ut2004\ut2004, you need to move all the files under ...\ut2004\ut2004 to
...\ut2004.

4.4 Install the controller

This step is optional. Install a controller only when you want to use MOAST,
Pyro (out of date) or Player to control a robot in USARSIm.

23

http://sourceforge.net/cvs/?group_id=145394
http://sourceforge.net/project/showfiles.php?group_id=145394
http://www.unrealtournament.com/ut2004/downloads.php
http://www.hetepsenusret.net/files/ut2k*/ut2k4-patch

441 MOAST

MOAST fully supports USARSIm. MOAST and all of its related packages may be
retrieved from sourceforge. Additional packages that must be downloaded include
gtki (image extensions to gtk used for graphical user interfaces), and rcslib (an
interprocess communications package). These packages may be found on the release
section of the MOAST site
(http://sourceforge.net/project/showfiles.php?group _id=148555). The rcslib archive is
available as either source or pre-compilied for cygwin.

The MOAST code may be retrieved from CVS. To retrieve the code, enter the

following commands:

$ cvs —d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/moast login
$ cvs —z3 —d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/moast co
—P devel

Information about accessing this CVS repository may be found in the
document titled, “CVS (Version Control for Source Code)”. Alternatively, the latest
snapshot may be retrieved from the release section of the MOAST site.

MOAST requires a Linux style environment. This may be obtained by running
a Linux operating system or by running cygwin under windows. More information on
installing cygwin for a MOAST windows installation may be found under the “What
else do I need” topic found at:

http://moast.sourceforge.net/Column%20With%20Contents.htm# What else_do.

In addition to the Linux style environment, a communications package known
as rcs must be installed. This is available from the files area of the MOAST
sourceforge repository in both source and pre-compiled cygwin formats. To install the
pre-compiled version, simply download from
http://www.sourceforge.net/project/showfiles.php?group _id=148555 and then
unpack.

NOTE: When unpacking the pre-compiled version, use the following commands:
$cd/
$ tar —zxvf path_to_rcslib.tgz/rcslibV0.2-cygwin.tgz

To install the source:

Install the rcs library at /usr/local directory

cd /

tar —zxvf path_to _rcslib.tgz/rcslibV0.2-src.tgz
cd Zusr/local/rcslib

./configure

make

make install prefix=/usr/local/rcslib

cd src/java

make

AP HR PR

If you want to use the MOAST supplied GUI, you need to make sure GTK
and GTKI are installed on your machine. GTK is a standard package and will be
automatically installed during the cygwin installation and is usually installed on
Linux operating systems. GTKI may be found in the file release area of the MOAST

24

http://sourceforge.net/project/showfiles.php?group_id=148555
http://sourceforge.net/docs/E04/
http://moast.sourceforge.net/Column With Contents.htm#_What_else_do
http://www.sourceforge.net/project/showfiles.php?group_id=148555

repository. It should be downloaded and installed in the /usr/local/src directory. The

following commands may be used to install GTKI:

cd Zusr/local/src

tar —zxvf path_to gtki-1.9.tgz/gtki-1.9.tgz
cd gtki-1.9.0

-/configure

make

make install

AR AABH

Then you need to set the PKG_CONFIG_PATH environment variable to tell
the system where GTKI is located.

TIP: Use the following command to set PKG_CONFIG_PATH:
$ export PKG_CONFIG_PATH = ”/path_to_gtki”

MOAST may now be installed. Download the tar file from SourceForge or
check the code out of CVS, and then execute the following commands:
$ cd /path_to_moast/
$./configure
$ make

NOTE: If checking out from CVS, you will need to issue the command $
./bootstrap before the configure command.

All of the code in the MOAST repository is built using autotools. This allows
for the ./configure to figure out your system’s individual configuration and build the
code appropriately

442 Pyro

Please note that the pyro interface is out of date and no longer supported. If someone
would like to renew support for this interface, please mail the USARSIm developer’s
mailing list.

4.4.2.1 Windows

Pyro is designed for Linux. Although Python, the development language used by
Pyro, works under any OS system, Pyro uses some features only supported by Linux,
such as Linux environment variables, shell commands. This makes Pyro only work on
Linux. We have made Pyro work under Windows. The modified code can be found
on pyro_win.zip. To install Pyro under windows:

1) Follow the Pyro Installation web page
(http://pyrorobotics.org/pyro/?page=Pyrolnstallation) to install all the
packages/software needed by Pyro. Please remember download and install
the windows version.

2) After you restore Pyro, you need not run ‘make’ to compile it. Since it uses
gcc and gmake to compile files, you will need these installed on your
machine or the makefile will not work. Furthermore, it also tries to use
XWindow, so give up compiling it under windows. Since this step only

25

http://pyrorobotics.org/pyro/?page=PyroInstallation

affects the plugged third-part robots or simulators, it has no impact on
USARSIm. After you installed Pyro, you need to download and unzip
pyro_win.zip (from the “Tools” section of the file release page on the
USARSIm repository) to overwrite the files in the Pyro directory. When the
system asks you whether you want to overwrite the file(s) or not, please
select “yes’.

NOTE: When you restore the zipped file, please make sure it is restored under correct
directory. If your directory structure looks something like ...\Pyro\Pyro, you
need to move all the files under ...\Pyro\Pyro to ...\Pyro.

4.4.2.2 Linux

1) Following the Pyro Installation web page
(http://pyrorobotics.org/pyro/?page=Pyrolnstallation) to install Pyro.

2) Download the pyro_linux.tar from the “Tools” section of the USARSIm files
release page and restore it to the Pyro directory to install the USARSIm plug-
in.

4.4.3 Player

If you are new to player and not restricted by hardware player drivers that are
only available for player-1.6, you should definitely use the latest player release
(currently player-2.0.3). Player is primarily used on Linux system and other POSIX
platforms. For Windows there is a work around to get Player 1.6.5 work with MinGW
http://sourceforge.net/mailarchive/message.php?msg_id=15368188.

For player 1.6, please follow the installation document in playerl.6.tar.gz to
install it. For other versions of Player, do NOT use the "configure™ file in
player.tar.gz or playerl.6.tar.gz. You need to generate it by using GNU Autotools.
The installation steps are:

1) Copy the .../usarsim directory in the player.tar.gz into your Player’s
server/drivers/ directory. So in your Player, you will have a directory like
server/drivers/usarsim.

2) Open the "deviceregistry.cc” in the server/ directory and add the following
lines before the definition of ‘player_interface_t interfaces[]’:

#ifdef INCLUDE_USARSIM

void UsBot_Register(DriverTable *table);

void UsPosition_Register(DriverTable *table);
void UsPosition3d_Register(DriverTable *table);
void UsSonar_Register(DriverTable *table);
void UsLaser_Register(DriverTable *table);
void UsPtz_Register(DriverTable *table);

#endif

And then add the following lines into the function ‘register_devices()’:

26

http://pyrorobotics.org/pyro/?page=PyroInstallation
http://sourceforge.net/mailarchive/message.php?msg_id=15368188

3)
4)
5)
6)

7)

8)

#ifdef INCLUDE_USARSIM
UsBot_Register(driverTable);
UsPosition_Register(driverTable);
UsPosition3d_Register(driverTable);
UsSonar_Register(driverTable);
UsLaser_Register(driverTable);
UsPtz_Register(driverTable);

#endif

Go to the server/drivers/ directory, add ‘usarsim’ to ‘SUBDIRS’ in the file
“Makefile.am”.

Under the Player directory, append the following line into ‘acinclude.m4’
right after other PLAYER_ADD_DRIVER sentences.
PLAYER_ADD_DRIVER([usarsim],[drivers/usarsim],[yes],)

Add “#undef INCLUDE_USARSIM” to ‘config.h.in’ file.

In the ‘configure.in’ file, add the following line to AC_OUTPUT.
server/drivers/usarsim/Makefile

Go back to the Player directory, use the following commands to generate the
"configure” file:

$ aclocal
$ autoconf
$ automake --add-missing

Follow the Player User Manual to compile and install Player.

To install Player 2.0.3 and our USARSIm Player drivers:

1)

2)
3)

4)

Download Player 2.0.3 from:
http://sourceforge.net/project/showfiles.php?group id=42445

Restore Player on your machine.

Restore player.tar.gz located in the “Tools” section of the USARSIm file
release area to your Player directory. Please make sure all the files are put
under the correct directory. Execute the autogen_usarsim.sh script. This
script patches some player files. It needs autoreconf installed on your
machine.
Follow the Player User Manual to compile and install Player. That is,
execute the following commands:

$./configure

$ make

$ make install

If you want to install Player in another directory rather than /usr/local, you
need to use the command:

$./configure —prefix <your directory>

27

http://sourceforge.net/project/showfiles.php?group_id=42445

5 Run the simulator

5.1 The steps to run the simulator

As of version 2.2, the preferred method of running USARSIm is to run in “client
only” mode. This may be accomplished by executing the following:

start path_to_bin_dir/ut2004
map_name?game=USARBot.USARDeathMatch?spectatoronly=1?TimeLimit=0?quic
kstart=true -ini=usarsim.ini

where map_name is the name of the map, for example DM-USAR_yellow
(the yellow arena). Additional maps are available from the files section of the
USARSiIm sourceforge repository under the “Maps” section.

TIP: The files start_usar.bat located in the UT2004\System directory can save you
time in typing command line arguments.

Start the Controller
After the Unreal server is started, you can run your own application.

When you start USARSIm in -client mode only- you can use these debug commands
in the UT console:

- showlog

This command opens a window where the log file is shown in real time. This is like
having the DOS server window. Actually it's better because in the DOS server
window you cannot see client debug output, only server related output. In client
mode, with showlog command, you can see all.

- showdebug

With this command UT will print some debug info directly on the client window. One
interesting thing is the Location of the camera. With this information you can quickly
choose new starting points (= location / 250).

- editactor class=<classname>

This is a very powerful command. You can for example go with the spectator camera
near a robot and type: editactor class=KRobot and the property window of that actor
will open. It's just like in UnrealEditor, but this time you can change any parameter in
real time, in the simulation, including physics :-) Play with it.

There are a lot of other useful commands that work only in client mode, follow this
link:

http://wiki .beyondunreal .com/wiki/Console Commands

After the Unreal client is started, you can attach the viewpoint to any robot in
the simulator. Go to the Unreal client, click left mouse button, you will get the image

28

http://wiki.beyondunreal.com/wiki/Console_Commands

viewed from the robot. To switch to next robot, click left mouse button again. To
return back to the full viewpoint, click the right mouse button. When your viewpoint
is attached to a robot, you can press key ‘C’ to get a viewpoint that looks over the
robot. Pressing ‘C’ again will bring you back to the viewpoint of the robot.

TIP: Left mouse button attaches your viewpoint to a robot. Right mouse button returns
your viewpoint to full viewpoint. Pressing “C’, let you switch viewpoint between
robot’s viewpoint and the overlook viewpoint.

Besides the step by step manual run of USARSIm, you can embed step 1 and 2
into your application. That is, let your application start the Unreal server and client
for you, and then start itself. The examples in the following section we will show you
how to run USARSiIim manually and automatically.

5.2 Examples

There are five controllers in the USARSIm package. We explain them
separately in the following sections.

5.2.1 The testing control interface

USAR_UI is a testing interface written in Visual c++ 6.0. It only works on
Windows. You can use it to send any commands to the server, and it will display all
the messages that come from the server to you. Follow steps 1 and 2 in section 5.1 to
start the Unreal server and client, and then execute usar.exe. This will pop up a
window. To use the interface:

1) Click "Connect" button to connect to the server.

2) Type the spawning robot command in the command combo box, then click
"send" to send out the command. An example spawning command looks
like: "INIT {ClassName USARBot.P2DX} {Location 4.5,1.9,1.8}", where
‘ClassName USARBot.P2DX’ is the robot type. The “P2DX” may be
replaced by Zerg, Talon, P2AT, P2DX, ATRVJr, Hummer, etc... The
‘Location’ is the initial position of the robot. Each map comes with a text
file that contains recommended start points. Sample startpoints for the
USAR arenas are given in Table 2.

3) After adding the robot to the simulator, you can try to give control
commands through the command combo box. The messages from the server
are displayed on the bottom text box. To view a message, double click it.

4) You can also use a joystick or keyboard+mouse to control the robot. To do
this, click the “Command” button in the “Mode” group. To return to the
command mode, click the right button of the mouse.

For joystick:
If you have set joystick enabled in Unreal, you need to disable it
so the system will not be confused. The ways of using joystick are:
e Pushing the joystick forward/backward will move the robot
forward/backward.

29

e Pushing the joystick to left/right side will turn the robot to

left/right.

e Pushing POV button up/down will tilt the camera

e Pushing POV button left/right will pan the camera.

For keyboard+mouse:

Since the interface and Unreal share the keyboard and mouse,
when you control the robot, you MUST let the interface be active.
Otherwise, the interface cannot get the input from the keyboard and
the mouse. To control the robot,

Up/Down Arrow key moves the robot forward/backward.
Left/right Arrow key turns the robot to left/right.

Move mouse up/down to tilt the camera.

Move mouse left/right to pan the camera.

5.2.2 MOAST

MOAST is configured for a particular simulation environment through the use
of its initialization file. Control of which MOAST modules will be run is controlled
through a run script.

5.2.2.1 Configuration

Before starting MOAST, the Unreal server must be running. The operation of
MOAST is controlled through the moast.ini file located in the dev/etc directory under
the MOAST home directory. For the novice user, there are only two entries of interest
in this file. The first is the entry HOST_NAME located under the [USARSIM_API]
section. This should be set to the host that is running the unreal server. When the
system is started, it will communicate with the Unreal Server to determine which
world is in play and will then read that world’s parameters.

These parameters (the second interesting item) are located in the section
[WorldName] (where worldName is the name of the world in play) and have the
following meaning:

UNREAL_UTM_OFFSET: This provides an offset between the location
reported by the simulation and the location reported by the robot over its navigation
channel. It is used to georeference arenas to the real world and utilizes the Universal
Transverse Mercator (UTM) coordinate system. The offset is provide as a triplet of
northing, easting, down.

UTM_LETTER: MOAST utilizes the letter ‘S’ for the southern hemisphere
and ‘N’ for the northern hemisphere.

UTM_ZONE: The UTM zone. The zone locations may be found at
http://www.dmap.co.uk/utmworld.htm.

UTM_START_POSE_COUNT: The number of start poses that are included
in this section.

UTM_START POSE_x: The starting location of the robot in offset
coordinates.

30

http://www.dmap.co.uk/utmworld.htm

NOTE: If the world being used is fictitious, then the UNREAL_UTM_OFFSET
should be set to 0, 0, 0 and the letter and zone may be set to any value.

5.2.2.2 Running MOAST

The run script for starting MOAST is located in the dev/bin directory under the
MOAST home directory. The file is named run. This file controls which levels of the
MOAST hierarchy are automatically started. For example, setting SECT, VEH, and
AM to no and PRIM to yes will allow control at the level of sending individual wheel
velocities. Setting VEH to yes will allow waypoints to be sent to the vehicle. Full
documentation on the levels of control is given on the MOAST webpage. For this
example we will examine joystick control and waypoint control.

For joystick control, set SECT, VEH, and AM to no and PRIM to yes. Then
execute:
$./run

This will bring up a prim shell that allows for various commands to be sent to
the robot and status to be received. Typing a carriage return will print the robot status
and typing a question mark (?) will show the possible commands at this level.

Try typing vel .1 0. This will cause the robot to drive in a straight line. Another
way to control at this level is to run the joystick program. To run this, open a new
window in the bin directory and run ./joytick. Move the mouse into the window that
appears and then use the keys r and f to accelerate/decelerate the left wheel and the
up/down arrows to accelerate/decelerate the right wheel.

For waypoint control, change the VEH to yes in the run file. When this file is
executed, the PRIM, AM, and VEH levels will automatically be started. The prompt
on the screen will be the vehicle shell. Once again, typing a carriage return will show
vehicle status and a question mark (?) will show the possible commands at this level.

Try typing the following:
> init

> dump

>mvli10

These commands perform the following functions:

init: This initializes the robot platform. It is necessary before any movement
commands will be accepted.

dump: This turns on a display of the robot’s internal world model at this level.

mvl: This tells the robot to move to a position in local coordinates.

More information on running MOAST may be found at the MOAST website
(http://moast.sourceforge.net).

5.2.3 Pyro

The Pyro plug-in embeds the loading of the Unreal server/client. To start Pyro,
go to the pyro/bin directory. If you are using Windows OS, execute the pyro.py. If
you are on Linux, run the shell file pyro. After the Pyro interface is launched,

31

http://moast.sourceforge.net/

1)

2)

3)

4)
5)

6)

Click the *Simulator’ button and select USARSIim.py on the
plugins\simulators directory.

Select the arena you want to load on the plugins\worlds\USARSIim.py
directory. NOTE: here USARSIm.py is a directory and not a file. Pyro will
automatically load the Unreal server and client for you. Under linux OS, the
Unreal client is launched in another console. Using Ctrl+Alt+F7 and
Ctrl+Alt+F8, you can switch between the two consoles.?

Click the ‘Robot’ button and select the robot you want to add on the
plugins\robots\USARBot directory. You will see that the robot is added in
the virtual environment.

You should now be able to control the robot using the ‘Robot” menu.

To view the sensor data or camera state, you can select the “Service...” from
the ‘Load” menu to load a service. On the plugins\services\USARBot
directory, select the sensor you want to view.

You can also try to load a ‘Brain’ to control the robot. Click the ‘Brain’
button and select a brain on the plugins\brains. For example, you can select
Slider.py or Joystick.py to control the robot. You also can select
BBWander.py to let the robot wander in the arena.

For details about Pyro, please read section 13.2.

Tips: To switch among windows, you can use Alt+Tab.
To get control from UT2004, press Esc.
To pause the simulator, switch to the Unreal client and then press Esc.

5.2.4 Player

Player is a device server. So before you use Player, you need to start USARSIm.
Please follow step 1 and 2 in section 5.1 to launch USARSIm. As mentioned above,
it’s hard to switch focus between the Unreal Client and other applications under
Linux, we recommend you launch USARSim on another machine.

After USARSIm is started,

1)

2)

3)

You need to prepare the configuration file used for Player. To learn how to
prepare the configuration file, please read the Player User Manual and
section 13.3.1. A sample configuration file usarsim.cfg is included in the
player.tar.gz file. You can simply copy this file to some place and use it to
test Player. Before going to the next step, you need to change host name in
the file to the host that is runing USARSIm.

Go to the place where you store the configuration file, execute the following
command:

$ player <config file>

Start your Player client. For example, you can run the Player visualization
tool, plyerv.

% In Linux KDE, UT2004 may not support switching focus to other applications. As a solution, we
launch UT2004 on another console to let user switch between UT2004 and other applications.

32

Note: Player uses absolute camera control. By default, all the robots in USARSIm
use relative camera control. You need to change the USARBot.ini file to let
Player work well. For details of changing camera control mode, please read
section 12.

525 SimpleUl

SimpleUl is an example user interface under Windows. It may be downloaded
from the tools section of the USARSIm file repository and should be placed in the
UT2004\Tools directory. To successfully use it, please make sure the Freelmage.dll,
Info.html and SimpleUl.exe are in the same directory. Also, the file hook.dll MUST
be in ut2004.exe’s directory. Besides directly using Unreal client as the video
feedback, this interface demonstrates how to use the video pictures on the user
interface. SimpleUl can obtain video pictures either through locally capturing the
Unreal Client or receiving them from the image server. The details about getting and
using video pictures are explained in section 10.13 and 14.5. In SimpleUl, we simply
display the video pictures without any image processing. How to run SimpleUl in
local or remote mode is introduced below.

5.2.5.1 Using SimpleUl by locally capturing pictures
The steps of running SimpleUl are :
1) Start Unreal Server (see step 1 in section 5.1).

2) Execute SimpleUl.exe which is located on ut2004/Tools/SimpleUl/Release
directory.

3) On the SimpleUl interface, set the following parameters and then click the
‘Start” button.

a. ‘Command’ group
This group specifies the server that receives the control command.
‘Host” is the IP address of the Unreal Server. ‘Port’ is the port
number of Gamebots. By default, it’s 3000.

b. ‘Robot’ group
This group defines which robot, and where the robot will be added.
‘Model’ is the robot type.
‘Position’ is the location to add the robot. Please note, in different
arenas, different position parameters are needed. The robots and
starting positions are given in a combo box. To add new ones, make
graphical or text changes to SimpleUl.rc. Text editing this file is
obscure, since the robot names are not presented as strings.

c. ‘Video’ group
Since we want to get pictures locally, we select the ‘Local’ radio
button. ‘Resolution’ sets the picture size. ‘Frame Rate’ sets the
maximum video frame rate. The actual frame rate is decided by the
current computer system’s capability.

4) The Unreal Client will be launched by SimpleUl and a message box will be
popped up to instruct you how to switch to the Unreal Client to set the
viewpoint and then to switch back to SimpleUI. After you set the viewpoint

33

and click the ‘OK” button on the message box, the Unreal Client will be
hidden and the control interface will appear.

NOTE: Only press the ‘OK” button when you have set the viewpoint correctly. If you
pressed the ‘OK” button before you set the viewpoint, you still can use the
‘Show UT’ button to launch Unreal Client and set the viewpoint.

5) On the control interface, you can monitor the camera pictures, sensor data
and control the wheels and camera of the robot. The usage of the control
interface is:

a.

‘Video’ group

In the image frame is the picture from the camera. Under the frame,
‘FPS’ is the actual video frame rate in frames per second. ‘Width’
and “Height’ is the size of the picture. ‘Show UT’/’Hide UT’ button
displays or hides the Unreal Client. When the Unreal Client is
displayed, you can reset the viewpoint on Unreal Client.

‘Range Sensor Data’ group

If your vehicle uses sonar, IR, range sensors or LIDAR these will be
shown graphically with a color code in this box.

‘Sensor Data’ group

The sensor data is displayed on a sensor tree. You can open or close
a branch to show or hide the detailed sensor data.

‘Wheels’ group

This group controls how the robot moves. The arrow buttons control
the robot in the corresponding direction with a fixed speed. The
‘Faster’ and ‘Slower’ buttons speed up or slow down the robot’s
moving speed. The ‘Stop’ button stops the robot. The buttons on the
top: “Turn More’, ‘Straight’ and “Turn Less’ are only effective for
Ackerman steered vehicles. Turning a skid drive vehicle with
separately powered wheels can be done by clicking the left or right
arrow. This will send opposite velocities to each wheel.

‘Camera’ group

This group controls the robot’s camera. Up and down arrow buttons
tilt the camera up and down 10 degrees. Left and right arrow buttons
pan the camera to left and right side 10 degrees. The ‘Zoom In’ and
‘Zoom Out’ buttons zoom in and zoom out the camera separately.
‘Light” group

The “Lights On’/*Lights Off’ button turns the headlights on or off.
The “Trace On’/’Trace Off’ will enable or disable leaving a green
trace of where the robot has been. The trace will persist until you
restart the server.

34

Control Interface

—ideo —Wheels
Turn 2 Turn
ore Sl Less
M
Il
{= =
Il
N
Faster Stop Slower
— Camera
it
Il
<= =
Il
N
Lights On |
Updat=:Q FPS: 214077 widthy [320 Height: [240 Hide UIT — |

@I (>
Close N - -

Time: 244,23
£l Robat State

- Rotation[Rad]: Pitch= 0.00 Roll= 0.00 vaw=-0.00
- Location(m]: #= 73.24 ¥=54.93 2= 018
o beWelociwmds) <= 0.00%Y'=0.002=0.00
-- Camera
Light; On=Falze Intensity=0
- Battery(%]}3392
- Other: NFO {Gametype BatDeathtdatch} {Level Db-AR0A_ 250} {TimeLimit 0}

E| Chassis: Ratation[Rad]: Fitch= 000 Roll= 0.00%aw= -0.00 Locationlm]: #= 73.24 ¥'=-54 98 Z= -0.18 Velocity[m/s): == 0.00%

- Hanges[Scanner'I] 20.0000,13.3345,20.0000,20.0000,20.0000,20.0000,20.0000,3.3435,3.3483,19.9912,20.0000,20.0000,13.93¢ »
<

¥

Figure 16: SimpleUl

5.2.5.2 Using SimpleUl by remotely receiving pictures

To run SimpleUl in remote mode, we need to start image server before we
launch SimpleUl. Please see section 3.2.5 for information on starting the image
server.

After the image server runs, we run SimpleUI in the following steps:

1) Execute SimpleUl.exe which is located on ut2004/Tools/SimpleUl/Release
directory.

35

2) Similar to the step 3 in the last section, we set the ‘Command’, ‘Robot’ and
‘Video’ parameters on the interface. For the ‘Video’ group, because we
want to run SimpleUl in remote mode, we need to select the ‘Remote’ radio
button and set the “‘Host” and “Port’ to the image server’s IP address and port
number.

3) Click the “Start’ button to launch the control interface. On the interface, we
will find the pictures are not the scenes viewed from the robot’s camera.
This is because when we started the image server, we had no robot in the
world. We couldn’t set the robot’s viewpoint at that time. So we need to go
back to the image server to reset the viewpoint. On the ImageSrv interface,
we click the “‘Show UT’ button to launch the Unreal Client. Go to the Unreal
Client, we attach the viewpoint to the robot we just spawned in the world.
Then we click the ‘Hide UT’ button on ImageSrv interface to hide the
Unreal Client. When we switch to the SimpleUl interface, we will get the
correct camera pictures.

4) Follow the usage introduced in the previous section to control the robot and
its camera.

5.3 Getting Starting Poses From Maps

5.3.1 Introduction

A common question when using USARSIm is: "where | spawn the robots?". Usually
you can find starting positions using the editor or directly in the UT client, with the
showdebug console command. This approach isn't difficult, but cannot be automated.
You have always to provide starting positions manually to your robot controller. If
you change the map you will need to recompile the controller or to change some
initialization file. That's why we introduced in our lab the following USARSIm
command:

GETSTARTPOSES

After connecting to USARSIm you can send this command and you'll receive a string
with all available starting positions for that map. This way starting positions are a
map property and the controller can chose automatically where to start the robots.
5.3.2 Adding starting poses to the map

You have to populate the map with starting poses. Any NavigationPoint will do,

however it's much easier to use PlayerStarts because you can see and adjust the
orientation in the editor:

36

Af Unreal Level Editor - Build UT2004_Build_[2005-11-23_16.22] - [F:'Games" UT2004", ...
File Edit “iew Brush Build Tools Help

Any map must have at least 1 PlayerStart to be a valid map. You can add as many
PlayerStarts as you want. Follow these steps to add one:

37

4l Unreal Level Editor - Build UT2004_Build_[2005-11-23_16.22] - [F:*Games',UT2004" ...

File Edit “iew Brush Build Tools Help

Al Actor Classes - Engine.Players... =] E3
= Wiew Class

Temtured Actor Claszes | Meshesl .ﬁ.nimatiunsl 1 I *I

8| 28| 0|/

v Use 'sctor’ az Parent?

v Placeable classes Only?

=] Actor
- "ASCinematic_Camera

[+ *AmbientSource
- *AntiPortaldctor
- “Decaoration

+- “Emitter
- *FPSLog

-~ FFluidSurface0 scillator
- Info

- *lonCannon

- *FAchor

2R LA ~ b D — b

In the tree view find Actor/NavigationPoint/SmallNavigationPoint/PlayerStart and

select it:

38

Al 'Unreal Level Editor - Build UT2004_Build_[2005-11-23_16.22] - [F:'Games" UT2004", ...

File Edit “iew Brush Build Tools

s
R

MOY

Help

File “iew Class

Textures Actor Claszes | Meshesl .ﬁ.nimatiunsl 1 I *I

8| 28| 0|/

v Use 'dctor az Parent?

v Placeable classes Only?

*LiftCerter

i+ LIftE ik

- *PathMods

-- ShootSpat

=- SmallM avigationPaoint
- *Ladder

*Teleporter
- *Metwork Trigger
R [a]1]
-~ *0MSTeleportPad

] m TP

Now right click in the 3D map and chose "Add PlayerStart Here":

39

4l Unreal Level Editor - Build UT2004_Build_[2005-11-23_16.22] - [F:*Games',UT2004" ...

File Edit “iew Brush Build Tools

e
[EE SR

MOV

Surface Properties (1 Selected)

Help

File “iew Class
Textures Actor Classzes | Meshesl .ﬁ.nimatiunsl 1 I *I

8| 28| 0|/

v Use 'dctor’ az Parent?

v Placeable classes Only?

*LiftCenter

- #LRE wit

i+ *PathMods

-- ShootSpat

=- SmallM avigationPaoint
- *Ladder

[+ *FlayerStart

Edit

add PlayerStart Here
Add Static Mesh: '2k4ChargerMeshes. ChargerMeshes HealthChargerMESH-DS!
Add Path Nade Here

You have just placed a PlayerStart:

Add Player Start Here

40

41 Unreal Level Editor - Build UT2004_Build_[2005-11-23_16.22] - [F:*Games',UT2004" ...
File Edit “iew Brush Build Tools Help

You can select it, move it and rotate it like any other object in the editor (ctrl + left
click + drag to move, ctrl + right click + drag to rotate). Pay attention to place it not
too high otherwise if you compile the map you'll receive a warning. | placed this
PlayerStart in the middle field:

41

4l Unreal Level Editor - Build UT2004_Build_[2005-11-23_16.22] - [F:*Games',UT2004" ...
File Edit “iew Brush Build Tools Help

Every PlayerStart defines a starting position and orientation. But, when your
controller connects to USARSIm, how can you chose between different starting
poses? You can assign an identifier to every PlayerStart using the Tag field (double
click on the PlayerStart to open the properties window):

42

Al Unreal Level Editor - Build UT2004_Build_[2005-11-23_16.22] - [F:*Games',UT2004" ...
File Edit “iew Brush Build Tools Help

—E went Haone

EExcludeT ag

—Tag bdiddleField

Fboenet &
[WevigstorPort
Fobext 0000000000000
[PaperStet
+Sowd

This way you can chose standard IDs for every starting pose that will allow you to
chose the right one. Now save the map and close the editor. It's not necessary to
compile the map because you don't need to create a weighted bot navigation graph.
5.3.3 Retrieving starting poses

Now, when you connect to USARSIm, you can send this command before spawning
any robot:

GETSTARTPOSES
You will receive a string like this one:

NFO {StartPoses 3} {BlueGoal -2.55,-0.00,-0.19 0.00,-0.03,-0.01 MiddleField 0.01,-
0.00,-0.19 0.00,0.00,0.00 YellowGoal 2.57,-0.01,-0.19 0.00,0.00,3.13}

The syntax of this string doesn't follow strictly the USARSIm standard. | decided for
it only because it's simpler to parse. If you don't like it, it can be changed easily :-)

43

StartPoses is the number of starting positions available. For every starting position
you'll receive it's tag, location and orientation:

BlueGoal -2.55,-0.00,-0.19 0.00,-0.03,-0.01

where BlueGoal is the tag, (-2.55,-0.00,-0.19) is the location and (0.00,-0.03,-0.01) is
the orientation.

If there are no starting positions defined (that's bad because a map must have at least
1 PlayerStart), you'll receive:

NFO {StartPoses 0}
5.3.4 Start Elevation

As we want to improve spawning precision (we don't want robots to jump from the
ground or fall from the sky when created), we need to have exact Z spawning values
for the robots we are using. What we have to do is:

1. Find a way to place Player Starts in the map all at the same Z value.
2. Write a table that says, for every robot, how much to add or subtract from that
Z value.

Why we need the Player Starts all at the same Z value? Because the map (the
GETSTARTPOSES command) doesn't know what kind of robot we are going to
spawn, therefore it can't adjust the Z value to match our needs. The best that it can do
is to give us some standard Z value. We can then use that value to find the correct Z
spawning value for our robot.

The GETSTARTPOSES command could also be modified to take some parameters,
like the robot type for example, but I think it's not a good solution. Robot can change
over time, can be added or deleted, we may want to use the same starting positions
with different kind of robots etc... That's why, in my opinion, it's better to use some
standard Z value.

It's also possible to modify the INIT command so that it accepts Player Starts tag
names as locations. But right now | don't have time for that :-(| hope I will return to
this solution in the future (or maybe someone else can work on it).

5.3.5 Standard Z starting value

Playing with the editor | discovered that all Player Starts are placed at a standard Z of

47 unreal units, that is 18.8cm. Also, if this value is modified by editing the Player
Start position, it is reset to 47 after a map (re)build.

44

5.3.6 Z Table

Now that we know that the Z value returned by GETSTARTPOSES is always 18.8cm
above ground (actually it may vary from 18 to 19 cm because the value is rounded to

the nearest cm), it's easy to write the following table (other robots may be added if
needed):

Robot Position above ground Delta Z
P2AT -26 cm -7cm
P2DX -20cm -l1cm
Zerg -6 cm +13 cm
Talon -13cm +6 cm
ATRVjr -39 cm -20 cm

e Position above ground is the Z spawning point for that robot assuming that
the ground is at Z=0.

e Delta Z is the value to be added to the Z returned by GETSTARTPOSES
command.

5.3.6.1 Example:

GETSTARTPOSES returns (these are the real values from the map you have seen in
the flash movie):

NFO {StartPoses 4} {Start1 -1.79,0.70,-0.19 0.00,0.00,0.00 Start2 -4.10,0.19,-1.21
0.00,0.00,0.00 Start3 -4.09,-1.79,-1.72 0.00,0.00,0.00 Start4 -0.96,-1.86,-2.24
0.00,0.11,0.51}

If I want to spawn a P2AT at the Start4 position I will use as location:
-0.96,-1.86,-2.31

because Z = (-2.24 -0.07) m. If | want to spawn a Zerg at the same location | will use:
-0.96,-1.86,-2.11

because Z = (-2.24 + 0.13) m.

6 Coordinates, Units and Scale

In USARSim, there are two kinds of coordinates and units. One is the
coordinate and unit system used in the Unreal Engine. Another is the coordinate and
unit system used by the user applications interface. If you are programming in Unreal
Engine, it’s your responsibility to convert from the application interface coordinate
and unit system to the unreal engine coordinate and unit system. When you want to

45

send data back to the application interface, you must transform these coordinates and
units back. In USARSIm, all the conversions are implemented through the coordinate
and unit converter class, USARConverter. To use your own coordinate and unit
system in the application interface, you need to built your converter class and
configure USARSIm to use it rather than the default USARConverter.

Scale is the ratio of the real object size to the corresponding size in the virtual
world. When you build a robot or world model, you must follow the scale. Otherwise,
you will get incorrectly scaled data in the application interface. Of course, you can
have your own scale. But you must change the converter class to make sure you get
the correct data.

Tip: While creating your own coordinate system and scale is possible, it is not
recommended. Instead you should use the standards outlined in section 6.2

6.1 Coordinates

Unreal Engine uses a left-hand coordinate system (Figure 17). The positive X-
axis extends in front of you and the positive Y-axis is on your right hand. The
positive Z-axis points straight up.

Z

Y

Figure 17: Left Hand Coordinate System

In the application interface, we use the right hand SAE J670 Vehicle Coordinate
System (Figure 18). The only difference from the Unreal Engine coordinate system is
that the positive Z-axis points straight down and not up.

46

PITCH
vELocnv {a)

e
v /%gy g

1H LONGITUDINAL ..‘“/

AxIS N VELOCITY (u!} ~ _, /
ROLL < NORMAL
VELOCITY (p) VELOCITY lw!
ST, vaw
| _# VELOCITY el
H
AXIS

Figure 18: SAE J670 Vehicle Coordinate System

In Unreal, a rotator is represented by the following structure. Every element is
an integer in Unreal Units.
struct Rotator

var() config int Pitch, Yaw, Roll;
However, in the application interface we use a vector to describe a rotator. The

X, Y and Z element represent the rotation angle around the corresponding axis. They
are all floating point values expressed in radians.

6.2 Units and scale

The unit used in Unreal is called an UU (Unreal Unit). Unreal Engine uses it to
represent both length and angle. The exceptions in Unreal Engine are: 1) it uses
degrees instead of UU to count FOV (Field Of View); 2) in trigonometric functions, it
uses radians. The unit conversion is summarized below:

250 UU = 1 m (Please use the function C_MeterToUU to convert from UU to
meters)
32768 UU = 3.1415 radian = 180 degree = 0.5 circle

In the application interface we use Sl units that are built upon the modern metric
system. The base Sl units along with the symbols used for abbreviations are listed in
Table 1. By default, all the data sent out from USARSIm is represented as a floating-
point-number that has 4 digits after the decimal point.

Table 1: Sl base units

. Sl base unit
Base quantity
Name Symbol
length Meter m

47

mass Kilogram kg
time Second S
electric current Ampere A
thermodynamic temperature Kelvin K
amount of substance Mole mol
Luminous intensity Candela cd

NOTE: In your application, all the data you get from USARSIm is in Sl units and all
the data you send to USARSIm should also be in SI units.

7 Mission Package

The mission package concept is used throughout this manual. Therefore we
introduce this concept before we explain any other detailed information about
USARSIm.

A mission package is a virtual parts and joints container used for organizational
and control purposes. It is constructed of connected parts that work together to fulfill
a behavior which is not related to the robot’s mobility. For example, the camera’s pan
and tilt parts work together to adjust the camera’s pose as shown in Figure 19. A part
is connected to another by attaching a mount to a joint. Every part and mount has its
own local coordinate frame. The joint control changes the relationship between the
part’s coordinate frame and the mount’s coordinate frame. In general, a mission
package is described as a part set, and every part has 0~N (N>0) mount locations. The
parts connect to each other on the mounts through joints. Figure 20 is a more general
example that depicts an arm mission package.

|
Fan (' | }

I Tilt

e — -

=T

mXx cy ora
| |/

kMount

mz

L J

Figure 19: Mission package and its coordinates

48

PartA

Sensor Mount

PartB
Arm Part
SM2
Joint
JM2
Hard Mount

Joint Mount ﬁHM ___________________________

I |

I
—
<
@D
=)
Q
@D
—
o
o
2

Figure 20: Arm mission package

When building a robot, we define a mission package as a list of part-joint pairs.
Every pair defines a part and how it connects to its parent. The order of the pairs is
always from the root (usually it’s the robot platform) to leaf (terminal). In section 12,
we will give detailed instructions to control the different parts of a mission package.
A mission package’s state is described as a series of the part’s absolute angle from its
initial mount position. We use the MISSTA message to deliver this information. This
message is explained further in the next section.

8 Effecters

Effecters are defined in the USARSIm as robotic subsystems that alter the state
of the environment through direct interaction with objects and features found in the
environment. These subsystems differ from the mobility subsystem and the mission
package subsystem in that they usually don’t require joint level control and are used
to perform specific tasks like grab or release object in the environment. Because
these devices are task-specific it is hard to formulate generalized control and status
messages for these systems. In order to enable the possibility for autonomous control
of these subsystems USARSIm has imposed a restricted vocabulary that defines
“opcodes” that are to be used by all effecters. This enables new effecters to develop
as along as they honor the interface by implementing one or more of the opcodes.

Opcodes in USARSIm are enumerated types that define different actions that an
effecter can perform. The current opcodes that are defined in USARSIm are:

Opcodes Description

Activate The activate opcode is used to turn on a process such as a wielder or a
paint gun, or place the effecter in an active state such arming a
disrupter.

Animate The animate opcode is used for moving parts such as grippers or rollers

49

on a roller table

Fire The fire opcode implies a discrete action such as firing a nail from a
nail gun or discharging a disrupter. It can also be used to initiate
multiple firing through the use of the parameters

Release The release opcode is used to drop an item into the environment or to
detach a mount item.

Reset The reset opcode is used for refreshing the effecter to its initial state or
reloading the effecter.

NOP The NOP, is a general no operation command that is send in order to

return the effecter to an idle state.

9 Communication & Control (Messages and commands)

In this section, we introduce how to communicate between USARSIm and your
application. It will help you understand how to control the robots in the USARSIim
virtual environment.

9.1 TCP/IP socket

As was mentioned before, Gamebots is the bridge between Unreal and the
controller. 1t opens a TCP/IP socket for communication purposes. The IP address of
the TCP/IP socket is the IP address of the machine that runs the Unreal server. The
default port number of the socket is 3000, and the maximum allowed number of
connections number is 16. To change these parameters, we can go to the BotAPL.ini
file in the Unreal system directory. The section [BotAPl.BotServer] of BotAPL.ini
looks like:

[BotAPI.BotServer]
ListenPort=3000
MaxConnections=16

Where, ‘ListenPort’ is the port number of the socket. ‘MaxConnections’ is the
maximum number of connections. It also decides the maximum number of robots you
can add into the virtual world. You can change or add (if you cannot find the
parameters in the INI file) the parameters to the values that you want.

9.2 The protocol

NOTE: A Name or String as referred to in this manual is defined as any consecutive
collection of non-white-space printable ASCII characters (with no delimiters
such as single or double quotes). This is ASCII characters 33 through 126.
More information may be found at
http://udn.epicgames.com/Two/UnrealScriptReference#Variables.

The communication protocol is the Gamebots protocol. All of the data
(messages and commands) follow the format:

50

http://udn.epicgames.com/Two/UnrealScriptReference#Variables

data_type {segmentl} {segment2} ...
where

data_type: specify the type of the data. It is upper case characters. Such as
INIT, STA, SEN, DRIVE etc.

segment: is a list of name/value pairs. Name and value are separated by a
space. For example, for “Location 4.5,1.9,1.8”, the name is
‘Location’, the value is ‘4.5,1.9,1.8°. For the segment “Name
Left Range 1.5, the names are ‘Name’ and ‘Range’, the values
are ‘Left’ and ‘1.5°.

A message or command is constructed by a data_type and multiple segments.
data_type and segments are separated by a space. Every message or command ends
with “\r\n” that tells Gamebots the data is finished.

NOTE: Name/value pairs are separated by a space. Spaces MUST NOT be used
elsewhere in the statement. For example one must use “Location 4.5,1.9,1.8”
and not Location 4.5, 1.9, 1.8”

NOTE: When you send out a command, don’t forget to append “\r\n” to tell
Gamebots that the data is ended.

9.3 Messages

There are currently five types of message. A State message is the message class
that reports the robot or mission package’s state. Sensor messages contain the sensor
data. Geometry messages report the robot, sensor, effecter, or mission package’s
geometry information. Configuration messages give the robot, sensor, effecter, or
mission package’s configuration information, and the response message provides a
response status to certain command.

e State and Mission Package message

Please note that the robot state message parameters depend on the type of
robot that you are driving. For example, a robot of type “GroundVehicle”
will not have the same state message as a robot of type “AerialVVehicle.”
A robot state message looks like (for a ground vehicle):

STA {Type string} {Time float} {FrontSteer float} {RearSteer
float}{LightToggle bool} {LightIntensity int} {Battery int}

Where:
{Type string} ‘string’ describes the vehicle type. It will
be one of the following values:
“GroundVehicle”, “LeggedRobot”,
“NauticVehicle”, or “AerialVehicle”.

51

{Time float} “float’ is the UT time in seconds. It starts
from the time the UT server starts
execution.

{FrontSteer float} Note: parameter only available for robots of
“GroundVehicle” type. Current front steer
angle of the robot, in radians.

{RearSteer float} Note: parameter only available for robots of
“GroundVehicle” type. Current rear steer
angle of the robot, in radians.

{SternPlaneAngle float} Note: parameter only available for robots of
“NauticVehicle” type. Current stern plane
angle of the robot, in radians,

{RudderAngle float} Note: parameter only available for robots of
“NauticVehicle” type. Current rudder angle
of the robot, in radians.
Indicate whether the headlight is turned on.
{LightToggle bool} 'bool’ is true means on. False value means
off

{LightIntensity int} Light intensity of the headlight. Right now,
it always is 100.
{Battery int} ‘int’ is the battery lifetime in second. It’s
the total time remaining for the robot to run.

Example: STA {Type GroundVehicle} {Time 62.01} {FrontSteer 0.0000}
{RearSteer 0.0000} {LightToggle False} {Lightintensity 0}
{Battery 3564}

A Mission Package state message reports the mission package links’
current properties. Every mission package state includes a Name segment and
several link segments. A mission package state message looks like:

MISSTA {Time float} {Name string} {Link int} {Value float} {Torque
float} {Link int} {Value float} {Torque float} ...

Where:

{Time float} “float’ isthe UT time in seconds. It starts
from the time the UT server starts
execution.

{Name string} *String’ is the name of the mission package.

{Link int} This parameter gives the link number that
will be described by the next two
parameters (Value and Torque).
Please note that you will have as many as
these parameters as you have links.

{Value float} This parameter has two possible meanings.

If the link being described is a prismatic
joint, float gives the distance, in meters,

52

from the original position of the link.
If the link being described is a revolute
joint,

{Torque float} The Torque parameter gives the current
torque of the link being described.

Example: MISSTA {Time 102.09} {Name CameraPanTilt} {Link 1}
{Value 0.0000} {Torque -20.0000} {Link 2} {\Value -0.1600}
{Torque -20.0000}

e Sensor message

Every sensor message starts with “SEN”. After it is an optional Time
segment, {Time float}, that reports the current time in seconds in the virtual
world. Whether the Time segment will appear or not is decided by the sensor’s
‘bWithTimeStamp’ variable. For details information, please read section 10.

0 Range Sensor

SEN {Type string} {Name string Range float} {Name string Range
float} ...

Where:

{Type string} ‘string’ is the sensor type. It can be
either “Sonar” or “IR” which means
it’s a Sonar sensor or IR sensor.

{Name string Range ‘string’ is the sensor name, ‘float’ is
float} the range value in meters.

Example: SEN {Time 45.14} {Type Sonar} {Name F1 Range
4.4690} {Name F2 Range 1.9387} {Name F3 Range
1.9159} {Name F4 Range 1.6547} {Name F5 Range
0.8889} {Name F6 Range 0.7640} {Name F7 Range
1.1075} {Name F8 Range 2.0773}

0 Laser Sensor

SEN {Type string} {Name string} {Resolution float} {FOV float}
{Range r1,r2,r3...}

Where:

{Type string} ‘string’ is the sensor type. It can be
“RangeScanner” or “IRScanner”.
{Name string} ‘string’ is the sensor name.
{Resolution float} ‘float’ is the sensor’s resolution in
radians. With FOV, we can calculate
the number of the data in the Range

segment.
{FQOV float} ‘float’ is the sensor’s field of view in
radians.
{Range r1,r2,r3...} ‘rl,r2,r3..." is a series of range values
in meters.

53

Example: SEN {Type RangeScanner} {Name Scannerl1}
{Resolution 0.0174} {FOV 3.1415} {Range
2.2109,2.2075,2.2124,2.2122,2.2156,2.2166,2.2207,2.228
3,2.2334,2.2392,2.2421,2.2533,2.2609,2.2696,2.2806,2.28
94,2.3011,2.3104,2.3243,2.3409,2.3519,2.3708,2.3834,2.4
032,2.4229,2.4429,2.4628,2.4853,2.5051,2.5282,2.5538,2.
5837,2.6126,2.6425,2.6696,2.7012,1.3823,1.3642,1.3321,
1.3025,1.2733,1.2457,1.2208,1.1951,1.1729,1.1522,1.130
5,1.1109,1.0922,1.0741,1.0568,1.0412,1.0266,1.0110,0.99
76,0.9845,0.9714,0.9592,0.9474,0.9377,0.9269,0.9170,0.9
074,0.9001,0.8906,0.8835,0.8757,0.8680,0.8622,0.8556,0.
8483,0.8440,0.8376,0.8331,0.8288,0.8248,0.8206,0.8070,
0.8155,0.9298,1.0322,1.1549,1.3122,1.5795,1.7881,1.795
2,1.7916,1.7913,1.7909,1.7891,1.7879,1.7878,1.7880,1.78
98,1.7923,1.7960,1.8005,1.8023,1.8063,1.8131,1.8189,1.8
236,1.8328,1.8395,1.8468,1.8541,1.8658,1.8740,1.8874,1.
8990,1.9084,1.9234,1.9373,1.9507,1.9686,1.9843,1.9991,
2.0188,2.0387,2.0568,2.0787,2.1020,2.1261,2.1519,2.178
2,2.2026,2.2309,2.2636,2.1613,2.2169,2.2754,2.3380,2.40
81,2.4626,2.5146,2.5325,2.5659,2.5955,2.6276,2.6645,1.5
562,1.5928,1.6312,1.6698,1.7121,1.7554,1.8054,1.8507, 1.
9076,1.9653,2.0274,2.0935,2.1908,2.2722,2.3553,2.3809,
4.5275,4.7421,4.9283,4.7977,4.6330,4.4815,4.3422,4.211
4,4.0851,3.9718,3.8664,4.7144,4.6967,4.6828,4.6715,4.65
71,4.6439,4.6354,4.6221,4.6157,4.6093,4.6163,4.6132,4.6
037,4.5944}

o0 Odometry sensor
SEN {Type Odometry} {Name string} {Pose x,y,theta}
Where:

{Name string} ‘string’ is the sensor name.
{Pose x,y,theta} ‘x,y’ is the estimated robot position
relative to the start point in meters.
‘theta’ is the head angle in radians
relative to the start orientation.

Example: SEN {Type Odometry} {Name Odometry} {Pose
0.2415,0.0029,-0.5157}

o GPS Sensor

SEN {Type GPS} {Name string} {Latitude int,float,char}
{Longitude int,float,char} {Fix int} {Satellites int}

Where:

{Name string} ‘string’ is the sensor name, as given in

54

{Latitude int,float,char}

{Longitude int,float,char}

{Fix int}

{Stallites int}

the USARBot.ini robot’s definition.
‘int’, *float’, "char’ provide the latitude
degree, minute (as a decimal), and
cardinal description (i.e. ‘N’ or ‘S’),
respectively. There are only two
possible values for the ‘char’
parameter: ‘N’ for North and ‘S’ for
South.

‘int’, ’float’, ’char’ provide the
longitude degree, minute (as a
decimal), and cardinal description (i.e.
‘E’ or ‘W), respectively. There are
only two possible values for the ‘char’
parameter: ‘E’ for East and “W’ for
West.

‘int’ indicates whether or not a
position was acquired. The fix is the
same as the GGA format. Namely, a
value of 0 means that the GPS sensor
failed to acquire a position and a value
of 1 means that a position was
acquired.

‘int” gives the number of satellites
tracked by the GPS sensor. This
number is an inexplicit source of
accuracy. The more satellites are
tracked, the higher the position
accuracy.

Example: SEN {Type GPS} {Name GPS1} {Latitude
47,40.3323,N} {Longitude 122,18.5977,W} {Fix 1}

o INS Sensor

{Satellites 8}

The Inertial Navigation Sensor is a sensor that provides
estimates of the vehicles current location and orientation, based on
measurements of angular velocity and linear acceleration relative to
the vehicles current pose.

SEN {Type INS} {Name string} {Location x,y,z} {Orientation

rpy} ...
Where:

{Name string}
{Location x,y,z}

‘string’ is the sensor name.
‘x,y,2’, are float variables for estimated

vehicle locations.

55

{Orientation r,p,y} ‘r,p,y’, are float variables for estimated
vehicle orientation in radians. All
radians are in the range [0,2P1].

Example: SEN {Type INS} {Name INS} {Location 1.23, 2.23,
0.12} {Orientation 4.57, 3.14, 1.507}

Example: SEN {Type Encoder} {Name ECLeft Tick -61} {Name
ECRight Tick -282} {Name ECTilt Tick 0} {Name
ECPan Tick 0}

o Encoder sensor

SEN {Type Encoder} {Name string Tick int} {Name string Tick
int} ...

Where:

{Name string Tick int} ‘string’ is the sensor name. “int’ is the
tick count.

Example: SEN {Type Encoder} {Name ECLeft Tick -61} {Name
ECRight Tick -282} {Name ECTilt Tick 0} {Name
ECPan Tick 0}

o Touch sensor

SEN {Type Touch} {Name string Touch bool} {Name string Touch
bool} ...

Where:

{Name string Touch ‘string’ is the sensor name. ‘bool’
bool} indicates whether the sensor is
touching something. Value ‘True’
means the sensor is touching
something.

Example: SEN {Type Touch} {Name Front Touch True} {Name
Left Touch False} {Name Right Touch False}

o RFID sensor

RFID tags are simulated by implementing the class
USARBOot.RFIDTag class in the Unreal Editor when editing a map. This
class contains an integer id and a boolean bSingleshot variable that
determines whether the tag is a single shot tag or a multi shot tag. They are
deployed by placing them in UnrealEd. If the tag’s id is set to -1 (the
default), then the tag id will be set to a unique value automatically. Other
values for the id will not be changed. If the tags are within the MaxRange

56

of the RFID sensor mounted on the robot then the server sends the
following message to the client:

SEN {Type RFIDTag} {Name string} {ID int}{Location float, float,
float} ...

Where:

{Name string} ‘string’ is the sensor name.
o Victim Sensor

SEN {Type VictSensor} {Name string} {PartName string}
{Location x,y,z} {PartName string} {Location x,y,z} ...

Where:

{Name string} ‘string’ is the sensor name.

{PartName string} ‘string’ is the name of the victim part
that was discovered by the sensor. It
can be one of 7 values: “Head”,
“Arm”, “Hand”, “Chest”, “Pelvis”,
“Leg”, and “Foot”. Please note that the
sensor does not differentiate between
real victim’s part and false alarms. It is
up to the controller to perform this
task.

{Location x,y,z} Relavite location, based on the sensor’s
position and rotation, of the victim part
where X, y, and z are in meters.

Example: SEN {Type VictSensor} {Name VictimSensor}
{PartName Leg} {Location 2.05,0.33,0.46} {PartName
Leg} {Location 2.51,0.44,0.39}

0 Human Motion Detection
SEN {Type HumanMotion} {Name string} {Prob float}
Where:

{Name string} ‘string’ is the sensor name.
{Prob float} ‘float’ is the probability of it’s human
motion.

Example: SEN {Type HumanMotion} {Name Motion} {Prob 0.81}
o Sound Sensor

SEN {Type Sound} {Name string} {Loudness float} {Duration
float}

Where:

{Name string} ‘string’ is the sensor name.

57

{Loudness float} “float’ is the loudness of the sound.
{Duration float} ‘float’ is the duration of the sound.

Example: SEN {Type Sound} {Name Sound} {Loudness 17.22}
{Duration 6.63}

e Geometry Information
For a ground vehicle, the geometry information message looks like:

GEO {Type GroundVehicle} {Name string} {Dimensions x,y,z} {COG
x,y,2} {WheelRadius float} {WheelSeparation float} {WheelBase float}

Where:

{Type GroundVehicle} The Type parameter is hard coded and will
always be “GroundVehicle” for a ground
vehicle GEO message.

{Name string} ‘string’ is the robot’s name.

{Dimensions x,y,z} ‘X’ defines the robot’s length, ‘y’ defines the
robot’s width, and ‘z’ describes the robot’s
height. Please note that these values are in
meters.

{COG x,y,z} ‘X’,‘y’, and ‘z’ identify the position of the
center of gravity, in meters, calculated from
the chassis origin.

{WheelRadius float} “float’ is the radius of the robot’s wheels, in
meters.
{WheelSeparation float} ‘float’ is the wheel separation, in meters.
The wheel separation defines the distance
between two wheels along the length (x
axis) of the robot’s chassis.

{WheelBase float} ‘float’ is the wheel base, in meters. The
wheel base defines the distance between
two wheels along the width (y axis) of the
robot’s chassis.

Example: GEO {Type GroundVehicle} {Name ATRVJr} {Dimensions
0.7744,0.6318,0.5754} {COG 0.0000,0.0000,-0.1000}
{WheelRadius 0.1922} {WheelSeparation 0.5120} {Wheelbase
0.3880}

For a legged robot, the geometry information message looks like (still to
be expanded):

GEO {Type LeggedRobot} {Name string} {Dimensions x,y,z} {COG
X,Y,2}
Where:

{Type LeggedRobot} The Type parameter is hard coded and will
always be “LeggedRobot” for a legged

58

robot GEO message.
{Name string} ‘string’ is the robot’s name.

{Dimensions x,y,z} ‘X’ defines the robot’s length, ‘y’ defines the
robot’s width, and ‘z’ describes the robot’s
height. Please note that these values are in
meters.

{COG x,y,z} ‘X’,‘y’, and ‘z’ identify the position of the
center of gravity, in meters, calculated from
the chassis origin.

Example: GEO {Type LeggedRobot} {Name ERS} {Dimensions
0.3190,0.1800,0.2780} {COG 0.0000,0.0000,0.0000}

For a nautic vehicle, the geometry information message looks like (still to
be expanded):

GEO {Type NauticVehicle} {Name string} {Dimensions x,y,z} {COG
X,Y,2}
Where:

{Type NauticVehicle} The Type parameter is hard coded and will
always be “NauticVehicle” for a nautic
vehicle GEO message.

{Name string} “string’ is the robot’s name.

{Dimensions x,y,z} ‘X’ defines the robot’s length, ‘y’ defines the
robot’s width, and “z’ describes the robot’s
height. Please note that these values are in
meters.

{COG x,y,z} *X’, ‘y’, and ‘z’ identify the position of the
center of gravity, in meters, calculated from
the chassis origin.

Example: GEO {Type NauticVehicle} {Name Submarine} {Dimensions
6.5364, 1.1428, 1.9929} {COG 0.0000,0.0000,0.0000}

For an aerial vehicle, the geometry information message looks like (still to
be expanded):
GEO {Type AerialVehicle} {Name string} {Dimensions x,y,z} {COG
X,y,Z}
Where:
{Type AerialVehicle} The Type parameter is hard coded and will
always be “AerialVehicle” for an aerial

vehicle GEO message.
{Name string} ‘string’ is the robot’s name.

59

{Dimensions x,y,z} ‘X’ defines the robot’s length, ‘y’ defines the
robot’s width, and ‘z’ describes the robot’s
height. Please note that these values are in
meters.

{COG x,y,z} ‘X’,‘y’, and ‘z’ identify the position of the
center of gravity, in meters, calculated from
the chassis origin.

Example: GEO {Type AerialVehicle} {Name AirRobot} {Dimensions
9.0082, 6.6897, 2.6128} {COG 0.0000,0.0000,0.0000}

For sensors or effecters, the geometry message looks like:

GEO {Type string} {Name string Location x,y,z Orientation x,y,z Mount
string} {Name string Location x,y,z Orientation x,y,z Mount string} ...

Where:

{Type string} “string’ is the sensor/effecter’s type name.
{Name string Location Specifies how an item is mounted on the
X,y,z Orientation x,y,z robot. The *string’ after ‘Name’ is the item’s
Mount string} name, and the ‘string’ after ‘Mount’ is the
item’s mounting base which is also another
item. The “x,y,z’ after ‘Location’ and
‘Orientation’ are the item’s relative location
and orientation to the mounting base. If more
than one sensor/effecter is the same type,
multiple ‘{Name string Location ...}’
segments will appear in the GEO message.

Example: GEO {Type Camera} {Name Camera Location
0.0820,0.0002,0.0613 Orientation 0.0000,-0.0000,0.0000 Mount
CameraTilt}

For a mission package, the geometry message is expressed in the
following format to tell us how the mission package and its elements are
‘installed’ together to the robot.

GEO {Type MisPkg} {Name string} {Link int} {ParentLink int}
{Location x,y,z} {Orientation x,y,z} {Link int} {ParentLink int} {Location
x,y,2} {Orientation x,y,z} ...

Where:

{Type MisPkg} The Type parameter is hard coded and will
always be “MisPkg” for a mission package
GEO message.
{Name string} ‘string’ is the mission package’s name.
{Link int} ’int’ is the link number of the described link.

60

{ParentLink int} “int’ is the parent link number of the
described link. If the described link is
mounted directly on the robot’s chassis, the
parent link number will be -1.

{Location x,y,z} X, Y, and z gives the x, y, and z coordinate, in
meters, of the described link relative to its
parent’s position and based on its parent’s
orientation.

{Orientation x,y,z} X, Y, and z gives the x, y, and z orientation, in
radians, of the described link relative to its
parent’s orientation. Please note that the
coordinate system is rotated using a ZY X
order.

Example: GEO {Type MisPkg} {Name CameraPanTilt} {Link 1}
{ParentLink -1} {Location 0.1239,0.0000,-0.2036} {Orientation
3.1415,0.0000,0.0000} {Link 2} {ParentLink 1} {Location
0.0000,0.0000,0.0599} {Orientation 1.5707,0.0000,0.0000}

e Configuration Information

For a ground vehicle, the configuration message looks like:

CONF {Type GroundVehicle} {Name string} {SteeringType string}
{Mass float} {MaxSpeed float} {MaxTorque float} {MaxFrontSteer

float} {MaxRearSteer float}
Where:
{Type GroundVehicle}

{Name string}
{SteeringType string}

{Mass float}
{MaxSpeed float}

{MaxTorque float}

{MaxFrontSteer float}

{MaxRearSteer float}

The Type parameter is hard coded and will
always be “GroundVehicle” for a ground
vehicle CONF message.

‘string’ is the robot’s name.

‘string’ is one of the following:
“AckermanSteered” or “SkidSteered” or
“OmniDrive”, as dictated by the steering
type of the robot.

‘float’ is a the robot’s mass, in kilograms.
‘float’ is the maximum spin speed of the
robot’s wheels, in radians per second.
‘float’ is the maximum torque of the robot,
in unreal units.

‘float’ is the maximum steering angle for
robot’s front wheels, in radians. Please note
that this value will be O for skid steered
vehicles.

‘float’ is the maximum steering angle for
robot’s rear wheels, in radians. Please note
that this value will be O for skid steered
vehicles.

61

Example: CONF {Type GroundVehicle} {Name ATRVJr} {SteeringType
SkidSteered} {Mass 50.0000} {MaxSpeed 2.0943}
{MaxTorque 60.0000} {MaxFrontSteer 0.0000}
{MaxRearSteer 0.0000}

For a legged robot, the configuration message looks like (still to be
expanded):

CONF {Type LeggedRobot} {Name string} {SteeringType string} {Mass
float}

Where:

{Type LeggedRobot} The Type parameter is hard coded and will
always be “LeggedRobot” for a leged robot
CONF message.
{Name string} ‘string’ is the robot’s name.

{SteeringType string} ‘string’ gives the number of legs of the
legged robot. As of now this value can only
be “TwoLegs” or “FourLegs”.

{Mass float} “float’ is a the robot’s mass, in kilograms.

Example: CONF {Type LeggedRobot} {Name QRIO} {SteeringType
TwolLegs} {Mass 50.0000}

For a nautic vehicle, the configuration message looks like (still to be
expanded):

CONF {Type NauticVehicle} {Name string} {SteeringType string}
{Mass float}

Where:

{Type NauticVehicle} The Type parameter is hard coded and will
always be “NauticVehicle” for a nautic
vehicle CONF message.

{Name string} ‘string’ is the robot’s name.

{SteeringType string} ‘string’ gives the steering type of the nautic
vehicle. As of now this value can only be
“VariableDepth”.

{Mass float} “float’ is a the robot’s mass, in kilograms.

Example: CONF {Type NauticVehicle} {Name Submarine}
{SteeringType Underwater}{Mass 50.0000}

For an aerial vehicle, the configuration message looks like (still to be
expanded):

CONF {Type AerialVehicle} {Name string} {SteeringType string} {Mass
float}

Where:
{Type AerialVehicle} The Type parameter is hard coded and will

62

always be “AerialVehicle” for an aerial
vehicle CONF message.
{Name string} ‘string’ is the robot’s name.
{SteeringType string} ‘string’ gives the steering type of the aerial
vehicle. As of now this value can only be
“RotaryWing”.
{Mass float} ‘float’ is a the robot’s mass, in kilograms.

Example: CONF {Type AerialVehicle} {Name AirRobot} {SteeringType
RotaryWing} {Mass 50.0000}

For a sensor or effecter, a configuration message looks like:
CONF {Type string} {Name Value} {Name Value} ...
Where:
‘{Type string}’ specifies the sensor type. ‘string’ is the type name.

‘{Name Value}’ is the name value pair that describes the feature of
this sensor type. Different sensor types have different name value
pairs. For detailed information, please refer to section 10 about how
to configure the sensor.

Example: CONF {Type Camera} {CameraDefFov 0.8727}
{CameraMinFov 0.3491} {CameraMaxFov 2.0943}
{CameraFov 0.8726}

For an effector, the configuration message looks like thisL

CONF {Type Effecter} {Name Value} {Opcode OpcodeName} {MaxVal
Value} {MinVal Value} ...

Where:

‘{Type Effecter}’ specifies that this message is a configuration
message for effecters

‘{Name Value}’ is the name value pair that indicates the ungiue
name of the effecter.

‘{Opcode OpcodeName}’ is the name of the opcode that the effecter
implements. Refer to Section 8 for a list of the opcodes.

‘{MaxVal Value}’ is the name value pair that indicates the upper
bound for the value that is accepted by the effecter.

‘{MinVal Value}’ is the name value pair that indicates the lower
bound for the value that is accepted by the effecter.

NOTE: An effecter can implement more than one opcode and the CONF message
returns the configuration information for all effecters on the robotic platform.

63

Therefore the segment with the name value pair indicates a new effecter and
the opcode name value pair indicates the opcode the effecter specified in by
name implements.

Example: CONF {Type Effecter} {Name Roller} {Opcode Animate}
{MaxVal 6}{MinVal -6}

For a mission package, the configuration information describes each link’s
properties. The message looks like:

CONF {Type MisPkg} {Name string} {Link int} {JointType string}
{MaxSpeed float} {MaxTorque float} {MinRange float} {MaxRange
float} {Link int} {JointType string} {MaxSpeed float} {MaxTorque

float} {MinRange float} {MaxRange float} ...

Where:

{Type MisPkg} The Type parameter is hard coded and will
always be “misPkg” for a mission package
CONF message.
{Name string} ‘string’ is a mission package’s name.
{Link int} ‘int’ is the mission package’s link number
that will be described.

{JointType string} “string’ can either be “Revolute” or
“Prismatic”, as determined by the type of
joint being described.

{MaxSpeed float} ‘float” describes the joint’s maximum speed,
in rad/s.

{MaxTorque float} ‘float’ describes the joint’s maximum torque.

{MinRange float} For a revolute joint, ‘float’ is the minimum
absolute angle that the joint can rotate to.
For a prismatic joint, ‘float’ is the minimum
distance that the joint can move to.

{MaxRange float} For a revolute joint, “float’ is the maximum
absolute angle that the joint can rotate to.
For a prismatic joint, ‘float’ is the maximum
distance that the joint can move to.

NOTE: For revolute joints, if the MinRange parameter is greater than the MaxRange
parameter, the joint does not have any constraints.

Example: CONF {Type MisPkg} {Name CameraPantilt} {Link 1}
{JointType Revolute} {MaxSpeed 0.17} {MaxTorque 20.00}
{MinRange 1} {MaxRange 0} {Link 2} {JointType Revolute}
{MaxSpeed 0.17} {MaxTorque 20} {MinRange -0.16}
{MaxRange 0.40}

64

Response Message

A response message is delivered to describe the status of a command that
has been sent to USARSIm. Response messages are used so that users can
tell whether or not particular commands were successfully executed. There
are three different response messages. The first response message is
issued after a SET {Type Viewports} command. The second response
messaged is issued after a SET {Type Camera} command. The third
response message is a generic message used for sensors and effecters.

After a SET {Type Viewports} command, the following response message
will be issued:

RES {Time float} {Type Viewports} {Config string} {Status string}
{Viewportl string} {Status string} {Viewport2 string} {Status string}
{Viewport3 string} {Status string} {Viewport4 string} {Status string}

Where:

{Time float} ‘float’ is the timestamp in the virtual world
when the message is sent out. It is
represented in seconds.

{Type Viewports} “Viewport” is hard coded into this
parameter.
{Config string} ‘string’ describes the current viewport
configuration. This parameter will be either
“SingleView” or “QuadView”.

{Status string} “string’ is the status of the viewport
configuration after the SET command has
been issued. The status will be “OK” when
the viewport configuration was successfully
changed. Otherwise, the status will be
“Failed”.

{Viewportl string} ‘string’ is the name of the camera currently
attached to viewportl. If viewportl has been
disabled, this parameter will be “Disabled”.
If viewportl has been attached to a non-
existent camera, this parameter will be
“None”.

{Status string} “string’ is the status of viewportl after the
SET command has been issued. The status
will be “OK” when the camera attached to
viewportl was successfully changed.
Otherwise, the status will be “Failed”.

{Viewport2 string} ‘string’ is the name of the camera currently
attached to viewport2. If viewport2 has been
disabled, this parameter will be “Disabled”.
If viewport2 has been attached to a non-
existent camera, this parameter will be

65

{Status string}

{Viewport3 string}

{Status string}

{Viewport4 string}

{Status string}

“None”.

‘string’ is the status of viewport2 after the
SET command has been issued. The status
will be “OK” when the camera attached to
viewport2 was successfully changed.
Otherwise, the status will be “Failed”.
‘string’ is the name of the camera currently
attached to viewport3. If viewport3 has been
disabled, this parameter will be “Disabled”.
If viewport3 has been attached to a non-
existent camera, this parameter will be
“None”.

‘string’ is the status of viewport3 after the
SET command has been issued. The status
will be “OK” when the camera attached to
viewport3 was successfully changed.
Otherwise, the status will be “Failed”.
‘string’ is the name of the camera currently
attached to viewport4. If viewport4 has been
disabled, this parameter will be “Disabled”.
If viewport4 has been attached to a non-
existent camera, this parameter will be
“None”.

‘string’ is the status of viewport4 after the
SET command has been issued. The status
will be “OK” when the camera attached to
viewport4 was successfully changed.
Otherwise, the status will be “Failed”.

Example: RES {Time 56.68} {Type Viewports} {Config SingleView}
{Status OK} {Viewportl Camera} {Status OK} {Viewport2 Disabled}
{Status OK} {Viewport3 Disabled} {Status OK} {Viewport4 Disabled}

{Status OK}

After a SET {Type Camera} command, the following response message

will be issued:

RES {Time float} {Type Camera} {Name string} {FOV float} {Status

string} ...
Where:
{Time float}

{Type Camera}
{Name string}

‘float’ is the timestamp in the virtual world
when the message is sent out. It is
represented in seconds.

“Camera” is hard coded into this parameter.
‘string’ is the name of the camera that will
be described by the next two parameters (i.e.
FOV and Status).

66

{FOV float} “float’ is the current field of view of the
camera being described, in radians. The
current field of view is the field of view after
a SET {Type Camera} has been issued.

{Status string} “‘string’ is the status for the camera’s field of
view after the SET command has been
issued. The status will be “OK” when the
camera’s field of view was successfully
changed. Otherwise, the status will be
“Failed”.

Example: RES {Time 426.76} {Type Camera} {Name Camera} {FOV
0.7853} {Status OK} {Name Camera2} {FOV 0.7853} {Status OK}

The generic response message, issued for other sensors and effecters,
looks like:

RES {Time float} {Type string} {Name string} {Status string}
Where:

{Time float} ‘float’ is the timestamp in the virtual world
when the message is sent out. It is
represented in seconds.

{Type string} “string’ is the sensor or effecter’s type.
{Name string} ‘string’ is the sensor or effecter’s name.
{Status string} “string’ is the status after the sensor or

effecter execute a command. Usually, it’s
“OK” means the command is successfully
executed or “Failed” means the execution is
failed. For camera’s zoom in/out command,
the status is the camera’s current FOV in
radians. The detailed information for every
sensor and effecter is listed in sections 10
and 0.

Example: RES {Time 61.20} {Type Odometry} {Name Odol} {Status
OK}

9.4 Commands

In USARSIm all the values in the commands are case insensitive. However, the
data_type and names are case sensitive and the format must be exactly followed. The
supported commands are:

e Add arobotto UT world:

INIT {ClassName robot_class} {Name robot_name} {Location x,y,z}
{Rotation r,p,y}

Where:
{ClassName robot_class} ‘robot_class’ is the class name of the

67

robot. It can be USARBot.ATRVJr,
USARBot.Zerg, USARBOt.P2AT,
USARBot.P2DX, USARBot.Hummer, and
any other robots built by the user.

{Name robot_name} ‘robot_name’ is the robot’s name. It can be

any string you want. If you omit this block,
USARSIm will give the robot a name.

{Location x,y,z} ‘X,y,z’ is the start position of the robot in

meters from the world origin. For different
arenas, we need different positions. The
recommended positions are listed on Table
2 for the USAR arenas. Recommended
start locations for worlds are given in a text
file that is included with the world
download. Worlds are available in the
“maps” file release area on sourceforge.

{Rotation r,p,y} ‘r,p,y’ is the starting roll, pitch, and yaw of

the robot in radians with North being 0
yaw.

Table 2 Recommended start position for the arenas

Arena Recommended Start Position
Yellow 451.9,1.8

Orange 12,-2.3,1.16

Red 0.76,2.3,1.8

Example: INIT {ClassName USARBot.P2DX} {Location 4.5,1.9,1.8}
{Name R1} will add a pioneer P2DX robot.

e Control the Robot:

There are seven kinds of control command. The first kind controls the left
and right side wheels of a skid steered robot. The second kind controls the front
and rear wheels of an Ackerman steered robot. The third kind controls an
underwater robot. The fourth kind controls an aerial vehicle. The fifth kind
controls the wheels of an OmniDrive robot. The sixth kind controls a specified
joint of the robot. The seventh kind controls the angle of multiple joints of a
robot, which is convenient for flipper, leg, and arm control.

0 DRIVE {Left float} {Right float} {Normalized bool} {Light bool}

{Flip bool}
Where:
{Left float}

‘float’ is spin speed for the left side wheels. If we are
using normalized values, the value range is —100 to 100
and corresponds to the robot’s minimum and maximum
spin speed. If we use absolute values, the value will be
the real spin speed in radians per second.

{Right float} Same as above except the values affect the right side

68

{Normalized
bool}

{Light bool}

{Flip bool}

wheels.

Indicates whether we are using normalized values or
not. The default value is ‘False’ which means absolute
values are used to control wheel spin speed.

‘bool’ is whether turn on or turn off the headlight. The
possible values are True/False.

If a robot rolls over or otherwise tips off of its wheels,
this will ‘right’ the robot. If *bool’ is True, this
command will flip the robot to its ‘wheels down’
position.

Example: DRIVE {Left 1.0} {Right 1.0} will drive the robot moving
forward with spin seed 1 radian per second.
DRIVE {Left -1.0} {Right 1.0} will turn the robot to left
side.
DRIVE {Light true} will turn on the headlight.
DRIVE {Flip true} will flip the robot

0 DRIVE {Speed float} {FrontSteer float} {RearSteer float}
{Normalized bool} {Light bool} {Flip bool}

Where:
{Speed float}

{FrontSteer
float}

{RearSteer
float}

{Normalized
bool}

{Light bool}

{Flip bool}

‘float’ is the spin speed for the wheels that are
powered. If we use normalized values, the value range
is =100 to 100 and corresponds to the robot’s minimum
and maximum spin speed, respectively. Otherwise, the
value is the absolute spin speed, in radians per second.
‘float’ specifies the steer angle of the robot’s front
wheels. If we use normalized values, the value range is
-100 to 100 and corresponds to the robot’s minimum
and maximum steer angle, respectively. Otherwise, the
value is the absolute steer angle, in radians.

‘float’ specifies the steer angle of the robot’s rear
wheels. If we use normalized values, the value range is
-100 to 100 and corresponds to the robot’s minimum
and maximum steer angle, respectively. Otherwise, the
value is the absolute steer angle, in radians.

Indicates whether we are using normalized values or
not. The default value is ‘False’ which means absolute
values are used.

‘bool” is whether turn on or turn off the headlight. The
possible values are True/False.

If a robot rolls over or otherwise tips off of its wheels,
this will ‘right’ the robot. If ‘bool’ is True, this
command will flip the robot to its ‘wheels down’
position.

69

Example: DRIVE {Speed -1.0} will drive the robot backward with a
spin speed of 1 rad/sec.
DRIVE {Speed 1.0} {FrontSteer 0.523599} will drive the
robot 30° forward and to the left with a spin speed of 1
rad/sec.
DRIVE {Speed 1.0} {FrontSteer -0.523599} will drive the
robot 30° forward and to the right with a spin speed of 1
rad/sec.

0 DRIVE {Propeller float} {Rudder float} {SternPlane float}
{Normalized bool} {Light bool}

Where:

{Propeller
float}

{Rudder
float}

{SternPlane
float}

{Normalized
bool}

{Light bool}

‘float’ is the spin speed for the propellers. If we use
normalized values, the value range is —100 to 100 and
corresponds to the propeller’s minimum and maximum
spin speed, respectively. Otherwise, the value is the
absolute propeller’s spin speed, in radians per second.
‘float’ specifies the angle of the robot’s rudders. If we
use normalized values, the value range is -100 to 100
and corresponds to the rudders’ minimum and
maximum steer angle, respectively. Otherwise, the
value is the absolute rudder angle, in radians.

‘float’ specifies the angle of the robot’s stern planes. If
we use normalized values, the value range is -100 to
100 and corresponds to the stern planes” minimum and
maximum angle, respectively. Otherwise, the value is
the absolute stern plane angle, in radians.

Indicates whether we are using normalized values or
not. The default value is ‘False’ which means absolute
values are used.

‘bool” is whether turn on or turn off the headlight. The
possible values are True/False.

Example: DRIVE {Propeller 1.0} will drive the robot forward with a
propeller’s spin speed of 1 rad/sec.
DRIVE {Propeller 1.0} {Rudder 0.523599} will drive the
robot 30° forward and to the right with a spin speed of 1
rad/sec.
DRIVE {Speed 1.0} {FrontSteer -0.523599} will drive the
robot 30° forward and to the left with a spin speed of 1
rad/sec.
DRIVE {Light true} will turn on the robot’s headlights.

o DRIVE {AltitudeVelocity float} {LinearVelocity float}
{LateralVelocity float} {RotationalVelocity float} {Normalized bool}

Where:

70

{AltitudeVelocity
float}

{LinearVelocity
float}

{LateralVelocity
float}

{RotationalVelocity
float}

{Normalized bool}

‘float’ is the altitude velocity (i.e up/down). If we
use normalized values, the value range is -100 to
100 and corresponds to the robot’s minimum and
maximum altitude velocity, respectively.
Otherwise, the value is the absolute altitude
velocity, in meters per second.

‘float’ is the linear velocity (i.e forward/backward).
If we use normalized values, the value range is -100
to 100 and corresponds to the robot’s minimum and
maximum linear velocity, respectively. Otherwise,
the value is the absolute linear velocity, in meters
per second.

‘float’ is the lateral velocity (i.e left/right). If we
use normalized values, the value range is -100 to
100 and corresponds to the robot’s minimum and
maximum lateral velocity, respectively. Otherwise,
the value is the absolute lateral velocity, in meters
per second.

‘float’ is the rotational velocity. If we use
normalized values, the value range is -100 to 100
and corresponds to the robot’s minimum and
maximum rotational velocity, respectively.
Otherwise, the value is the absolute rotational
velocity, in radians per second.

Indicates whether we are using normalized values
or not. The default value is ‘False” which means
absolute values are used.

Example: DRIVE {AltitudeVelocity 1} will elevate the robot at a rate
of 1 meters per second.
DRIVE {RotationalVelocity 0.1} will rotate the robot at a
rate of 0.1 radians per second.
DRIVE {LinearVelocity -3} will make the robot go
backward at a rate of 3 meters per second.

o0 DRIVE {WheelNumber int} {WheelSpeed float} {WheelSteer
float}{WheelNumber int} {WheelSpeed float} {WheelSteer float} ...

Where:

{WheelNumber ‘float’ is the number of an OmniDrive robot’s wheel
int} as defined in the USARBot.ini.
{WheelSpeed ‘float’ is the spin speed, in rad/s, of the chosen wheel.

float}

{WheelSteer ‘float’ is the steer angle ,in rad, of the chosen wheel

float}

71

Example: DRIVE {WheelNumber 0} {WheelSpeed 3.14}
{WheelSteer 0.75} {WheelNumber 1} {WheelSpeed -3.14}
{WheelSteer 0.75}

This command will turn both wheels by 0.75 rad while
giving them different velocities. If you use the LISA robot
setup, the robot rotates on place.

o0 DRIVE {Name string} {Steer int} {Order int} {Value float}
Where:

{Name string} ‘string’ is the joint name.

{Steer int} “int’ is the steer angle of the joint.

{Order int} “int’ is the control mode. It can be 0-2.
0: zero-order control. It controls rotation angle.
1: first-order control. It controls spin speed.
2: second-order control. It controls torque.

{Value float} “float’ is the control value. For zero-order control,

it’s the rotation angle in radians. For first-order
control, it’s the spin speed in radians/second. For
second-order control, it’s the torque.

Example: DRIVE {Name LeftFWheel} {Steer 1.57} will steer the left
front wheel 90 degrees.
DRIVE {Name LeftFWheel} {Order 1} {Value 0.175} will
make the left front wheel spin at 0.175 radians/second, i.e.
10 degrees/second

0 MULTIDRIVE {string float} {string float}...
Where:

{string float} The ‘string’-‘float’ pair describes a joint to move
and a position to move to. ‘string’ is the name of a
joint, as described in the USARBot.ini file. ‘float’
is the absolute angle, in radians, that the joint
should move to. Please note that any number of
‘string’-“float’ pairs can be sent using a single
MULTIDRIVE command to move multiple joints
at the same time.

Example: MULTIDRIVE {FRFlipper -1} {FLFLipper -1} will move
the two front flippers to -1 radians,
MULTIDRIVE {RRFlipper 1} {RLFLipper 1} will move
the two rear flippers to 1 radians.

e Control a joint:
This command is used to drive a joint. The command looks like:

72

SET {Type Joint}{Name string}{Opcode string} {Params p1,p2}

Where:
{Name string} ‘string’ is the joint’s name.

{Opcode string} ‘string’ is the operation code. The
available codes are:
‘Angle’ or *0’: set the extra angle in
radian the joint will move.
‘Velocity” or “1’: set the spin speed in
radian per second for the joint.
‘Torque’ or “2’: set the torque applied
on the joint.

{Params p1,p2} ‘pl’ is the value corresponds to the
Opcode. ‘p2’ only uses for the
KCarWheelJoint to set the steer angle.

Example 1: SET {Type Joint} {Name UpperArm} {Opcode Angle}
{Params 1.25}

Example 2: SET {Type Gripper} {Name Gripper} {Opcode Open}
{Params 0.8}

Control the viewports:

When USARSIm initially starts up, users can freely move around the
world using the mouse and keyboard. Pressing the left mouse button of
the mouse attaches the view to the robot’s viewport controller. The robot
viewport controller currently supports two configurations: SingleView and
QuadView. The SingleView configuration provides users with a single
view coming from a single camera. The QuadView configuration
provides user with four views, giving them the possibility of viewing up to
four cameras simultaneously (the screen is divided up into four equal
portions, each of which is used for a camera). When a robot is added to a
world, the viewport configuration is automatically set to accommodate for
the maximum number of cameras. In other words, if a robot has zero or
one camera, it will automatically start in SingleView; otherwise, it will
automatically start in QuadView. Since a robot might have more than four
cameras and users might want to cycle through all the cameras using
SingleView, USARSIm gives the possibility of configuring the viewports
as follows:

SET {Type Viewports} {Config int/string} {Viewportl string}
{Viewport2 string} {Viewport3 string} {Viewport4 string}

Where:
{Type Viewports} “Viewports” is a hard-coded parameter.
{Config int/string} This parameter defines the viewports’
configuration. It can be one of two
values:

73

“0” or “SingleView” for one viewport.
“1” or “QuadView” for four viewports.

{Viewportl string} ‘string’ is the name of the camera that
will be attached to viewport 1.
Optionally, “string” can be set to
“Disable” to disable viewport 1.
Viewport 1 is the only viewport in
“SingleView” and the Top-Left
viewport in “QuadView”.

{Viewport2 string} ‘string’ is the name of the camera that
will be attached to viewport 2.
Optionally, “string’ can be set to
“Disable” to disable viewport 2.
Viewport 2 is the Top-Right viewport in
“QuadView”.

{Viewport3 string} ‘string’ is the name of the camera that
will be attached to viewport 3.
Optionally, “string’ can be set to
“Disable” to disable viewport 3.
Viewport 3 is the Bottom-Left viewport
in “QuadView”.

{Viewport4 string} ‘string’ is the name of the camera that
will be attached to viewport 4.
Optionally, “string’ can be set to
“Disable” to disable viewport 4.
Viewport 4 is the Bottom-Right
viewport in “QuadView”.

Example: SET {Type Viewports} {Config QuadView}
SET {Type Viewports} {Config QuadView} {Viewportl
Cameral} {Viewport2 Camera2} {Viewport3 Disable}
{Viewport4 Disable}
SET {TypeViewports} {Viewportl Disable}

e Control a camera:

NOTE: There is a difference between moving and controlling a camera. Moving a
camera (i.e. pan/tilt) is achieved by controlling the mission package that the
camera is attached to (see the next subsection). Controlling a camera is used
to set its field of view.

SET {Type Camera} {Name string} {FOV float} {Name string}
{FOV float} ...
Where:
{Type Camera} “Camera” is a hard-coded parameter.
{Name string} ’string’ is the name of the camera, as
described in the USARBot.ini file, for

74

which we want to change its field of
view.

{FOV float} “float’ is the desired camera’s field of
view in radians. Smaller fields of view
give a zoom-in effect. If “float’ is zero,
the default field of view will be used. If
‘float’ is greater than the maximum field
of view, the maximum field of view will
be used. If ‘float’ is smaller than the
minimum field of view, the minimum
field of view will be used.

Example: SET {Type Camera} {Name Camera} {FOV 1} will set the
field of view of camera “Camera” to 1 radian.
SET {Type Camera} {Name Camera} {FOV 0} will set the
field of view of camera “Camera” to its default field of
view.

e Control a Mission Package:

A mission package is constructed of a series of connected elements. Of
course, we can control the joints one by one to set the mission package’s
pose. Here, we provide another command to directly set the package’s
terminal pose and let USARSIm control every element’s joint for us. If a
camera is mounted on a pan/tilt mission package, we can use this
command to control the camera’s pose. Using mission package control
commands, we can have multiple cameras and control them separately.
The command’s format is:

MISPGK {Name string} {Link int} {\Value float}{Order int}
{Link int} {Value float}{Order int} ...

Where:
{Name string} ‘string’ is the mission package’s name.
{Link int} “int’ is the link number that will be
moved using the next parameters.
{Value float} The “float” parameter is the value used
to move the link. What this parameter
describes depends on the order given. If
the order is 0, “float’ is the absolute
angle, in radians, for a revolute joint or
the distance, in meters, for a prismatic
joint. If the order is 1, “float’ is the
velocity, in m/s. If the order is 2, “float’
is the torque.

{Order int} “int’ is optional (0 by default) and
indicates the control mode. ‘0’ means
angle control, “1” means speed control,
and ‘2’ means torque control.

75

Example: MISPKG {Name CameraPanTilt} {Link 1} {Value 1.5}
{Link 2} {Value 0}

MISPKG {Name TalonArm} {Link 1} {Value 0.70} {Link
3} {Vvalue 0.1} {Order 1}

TIPS: Pan/tilt mission packages enable the use of multiple cameras with independent
control on each of them.

e Control a sensor/effecter:

This command is used to send a command to a sensor or effecter. The
command looks like:

SET {Type string}{Name string}{Opcode string} {Params value}

Where:

{Type string}
{Name string}
{Opcode string}

{Params value}

‘string’ is the sensor or effecter’s type.
‘string’ is the sensor or effecter’s name.
‘string’ is the operation code. Different
sensors or effecters. Valid opcodes are
defined in Section 8.

‘value’ are the parameters associated
with the operation command.

Example: SET {Type Odometry} {Name Odol} {Opcode RESET}

{Params 1}

e Control the Trace

USARSIm has the capability of tracing the path that a robot takes.
Colored Navigation Points are dropped into the world as the robot travels;
effectively “tracing” the robot’s path. Tracing can be used with the
following command:

Trace {On bool} {Interval float} {Color int/string}

Where:

{On bool}

{Interval float}

{Color int/string}

‘bool’ tells USARSIm to start/stop
tracing the robot’s path. Default value is
false.

‘float’ is a number that dictates how
many seconds will go by before
USARSIm drops a Navigation Point.
Please note that this number is in unreal
units and that its default value is 0.

The value for this parameter can be
entered as an int or a string. It
determines the color of the trace as
follows:

‘0’ or “‘Red’ — Red Trace [DEFAULT]
‘1’ or “Yellow” — Yellow Trace

76

‘2’ or ‘Green’ — Green Trace
‘3’ or ‘Cyan’ — Cyan Trace
‘4’ or “White’ — White Trace
‘5" or ‘Blue’ — Blue Trace

‘6’ or ‘Purple’ — Purple Trace

e Query the robot/sensor/effecter/mission package

There are two types of query command. One queries the geometry
information, and another queries the configuration information.

0 GETGEO {Type string} {Name string}

The “{Name string}” is optional. If it’s omitted, the command
queries the geometry information for all the sensors/effecters with the
specified type. Otherwise, only the sensor/effecter with the name and
type will be queried. The return message is a GEO message.

Example: GETGEO {Type Sonar}

GETGEO {Type MisPkg}

GETGEO {Type Robot}

GETGEO {Type Effecter}
0 GETCONF {Type string} {Name string}

Queries the configuration information for a type (when “{Name
string}” is omitted) or specified sensor/effecter. The return message is
a CONF message.

Example: GETCONF {Type RangeScanner}

GETCONF {Type MisPkg}
GETCONF {Type Robot}
GETCONF {Type Effecter}

e Manage viewpoint
SET {Type Camera} {Robot string} {Name string}{Client ip}

This command sets the viewpoint of the specified Unreal Client to a
robot’s camera. The unreal client is defined by ‘{Client ip}” where ‘ip’ is the
client’s IP address. Please note USARSIm doesn’t support the loopback ip
address. So don’t use “127.0.0.1” as the parameter. The robot is specified by
‘{Robot string}’ where “string’ is the robot’s name. And the camera is specified
by ‘{Name string}’ where ‘string’ is the camera’s name. Once the client’s
viewpoint is set, we can NOT manually change it until we release the viewpoint
control. To release the control, we send another SET command without “{robot
name}’. For example, we can send “SET {Type Camera} {Client 10.0.0.2}” to
release the viewpoint control on client 10.0.0.2.

We can use this command at anytime and anyplace. This command can be
sent either from a robot’s controller or from other applications such as the
ImageServer.

NOTE: USARSIm doesn’t support the loopback ip address. Please don’t use

#127.0.0.1” as the parameter.

77

10 Sensors

In USARSIm, every sensor is an instance of a sensor class (a sensor type). All
of the objects of a sensor class have the same sensor capability. You can configure the
capability of a sensor class to satisfy your needs or you can create a new sensor from
an existing sensor class and change its properties to get a new type of sensor.

In USARSIm, all of the sensors can add noise and apply distortion to their data
except for the state sensor and robot camera. This noise is applied to the output values
reported by the sensor and not to the control values. For example, the angle between
range scans for a scanning laser is always correct, and a sensor will always point to
the location that is commanded. The distortion curve is a function such that
output_data = distortion(input_data), and the function itself is defined by a series of
(x,y) points connected by straight line segments. If the input_data is outside of the
defined range, zero will be returned. For the sensor output, changing parameters will
give different quality sensor data. Every sensor has a “Weight” attribute associated to
it*. Besides this, it’s also possible to associate a timestamp to the sensor data. To do
this, we can configure the sensor with the variable ‘bWithTimeStamp’ set to true in
the configuration file.

In this section, we will explain how the sensors work and how to configure
them. To learn how to build your own sensor, please read section 14.2.

10.1 State Sensor

10.1.1 How the sensor works

The State sensor reports the robot’s state. Basically, it just checks the robot’s
state in the Unreal engine and then sends it out. Please go to section 7.3 for a detailed
look at the state message.

10.1.2 How to configure it
None. We do not need to configure it.

10.2 Range Sensor

10.2.1 How the sensor works

The range sensor is used to detect distance. There are two types of range sensor
in USARSIm: sonar and IR. Basically, the range sensor is simulated by emitting a line
from the sensor position along the direction of the sensor in the Unreal world. The
first point met by the line is the hit point. And the distance between the hit point and
the sensor is the returned range value. If the range is beyond the sensor’s detection
range, the sensor will return the maximum detection range. Before the data is sent
back, a random number is added to simulate random noise. Then a distortion curve is
used to interpolate the range data to simulate the real range sensor.

For the sonar sensor, instead of emitting one line from the sensor, it tries to emit
several lines within its beam cone. The shortest distance detected by the lines is the

% Currently, this attribute is only used to calculate the robot’s payload. It will not affect the sensor’s
dynamic characteristic. The real physical variable used in Unreal Engine is the “Mass” variable.

78

value returned by the sonar sensor. For IR sensor, only one line is used. However the
line can cross through transparent materials (glass).

10.2.2 How to configure it

We configure the range sensor in the USARBot.ini file. The sonar and IR
sensor’s configuration looks like:

[USARBot.SonarSensor]

HiddenSensor=true

bWithTimeStamp=true

Weight=0.4

MaxRange=5.0

BeamAngle=0.3491

Noise=0.05
OutputCurve=(Points=((In\Val=0.000000,0utVal=0.000000),(InVal=5.000000,
OutVal=5.000000)))

[USARBot.IRSensor]

HiddenSensor=true

bWithTimeStamp=true

MaxRange=5.0

Noise=0.05
OutputCurve=(Points=((In\Val=0.000000,0utVal=0.000000),(InVal=5.000000,
OutVal=5.000000)))

Where

HiddenSensor Boolean value is used to indicate whether the sensor will
be visually shown in the simulator. Setting it to true will
hide the sensor. We recommend setting it to true if it is not
necessary to show the sensor. When you want to confirm if
the sensor is placed in the correct position and has the
correct direction, you can temporarily set it to false.

bWithTimeStamp Indicates whether the timestamp in the Unreal Engine will
be associated with the sensor data.
Weight The weight of the sensor in kg.
MaxRange The maximum distance that can be detected in meters.
BeamAngle The sensor’s detection cone in radians.

Noise The relative random noise amplitude. With the noise, the
data will be data = data + random(noise)*data where
random(noise) returns a value between —noise and +noise.

OutputCurve The distortion curve. It is constructed by a series of points
that describe the curve.

79

10.3 Range Scanner Sensor

10.3.1 How the sensor works

The range scanner sensor is very similar to the range sensor. In USARSIm, we
treat the range scanner sensor as a series of range sensors. The data is obtained by
rotating the range sensor from the start direction to the end direction in a fixed step.
The step interval is calculated from the resolution. The sensor can work in two
modes. In the automatic mode, it automatically scans data in specified time intervals.
In manual mode, it only works when it gets a scan command; and for every scan
command, it only scans once.

There are two Kkinds range scanners, RangeScanner and IRScanner. The
RangeScanner sensor uses the range sensor (only emits one detection line) to scan the
environment. While the IR scanner uses the IR sensor (the detection line can cross
transparent materials) to scan the environment. Both sensors use the SET command to
control the scan behavior. We list the Opcode, Params and returned response Status
below:

Table 3 Range scanner control command

Opcode | Params | Status

SCAN | None “OK”: successfully scanned
“Failed”: didn’t scan. It may be caused by an invalid command.

10.3.2 How to configure it

The RangeScanner and IRScanner sensor share the same configuration format.
We only list RangeScanner’s configuration below. For IRScanner, the only difference
is that the section name should be USARBot.IRScanner.

[USARBot.RangeScanner]
HiddenSensor=False
bWithTimeStamp=False
Weight=0.4
MaxRange=1000.000000
Scanlnterval=0.5
Resolution=800
ScanFov=32768
bPitch=false

bYaw=true

Noise=0.0
OutputCurve=(Points=((In\Val=0.000000,0utVal=0.000000),(In\Val=1000.0000
00,0utVal=1000.000000)))

Where
HiddenSensor Boolean value is used to indicate whether the sensor will
be visually shown in the simulator. Setting it to true will
hide the sensor. We recommend setting it to true if it’s not
necessary to show the sensor. When you want to confirm if

80

the sensor is placed in the correct position and has the
correct direction, you can temporarily set it to false.
bWithTimeStamp Indicates whether the timestamp in the Unreal Engine will
be associated with the sensor data.
Weight The weight of the sensor in kg.

MaxRange The maximum distance that can be detected.

Scanlinterval It is the time interval between scanning used in automatic
mode.

Resolution The scan resolution, the step length of rotating from start
direction to the end direction. The unit is integer. 65535
means 360 degrees.

ScanFov The scan field of view as an integer. 65535 means 360
degrees.
bPitch Boolean value that indicates the scan plane. True means
scanning in the tilt plane (x-z plane).

bYaw Boolean value that indicates the scan plane. True means
scanning in the pan plane (x-y plane).

Noise The relative random noise amplitude. With the noise, the
data will be data = data + random(noise)*data where
random(noise) returns a value between —noise and +noise.

OutputCurve The distortion curve. It is constructed by a series of points
that describe the curve.

Note: Too much sensor data will impact the system. Do not set the resolution or scan
frequency too high.

10.4 Odometry Sensor

10.4.1 How the sensor works

The simulated odometry sensor uses the robot’s left and right wheel encoders to
estimate the robot’s pose. It describes a pose as X, y position and (head’s) theta angle
relative to the start location and robot’s head direction. The positive x-axis and y-axis
are the robot’s head direction and right hand direction in the start location. The sensor
applies a very simple algorithm to calculate the pose by using the wheel’s diameter,
left and right wheel’s separation and the wheels’ spin angle. The sensor’s errors come
from the diameter and wheel separation measurement error, the encoder’s resolution
and the error introduced by the simple algorithm.

When we use the sensor we need to specify which wheels are the left and right
wheels used in pose estimation. If we don’t specify the wheels, the sensor will try to
find and use the left-most wheel and right-most wheel to calculate the pose. While
using the sensor, we can reset the sensor to use the current location and head direction
as the pose estimation’s reference point. The command we used to reset the sensor is
SET. And the Opcode, Params and returned response Status are listed below:

Table 4 Odometry sensor control command

| Opcode | Params | Status

81

RESET | None “OK”: successfully reset

“Failed

7. didn’t reset the sensor. It may be caused by an invalid

command.

10.4.2 How to configure it

We configure the odometry sensor in the USARBot.ini file. The configuration

looks like:

[USARBot.OdometrySensor]

HiddenSensor=true
bWithTimeStamp=Fal
Weight=0.4
Scanlnterval=0.2

Se

EncoderResolution=0.01

LeftTire=LeftF\Wheel

RightTire=RightFWheel

Where
HiddenSensor

bWithTimeStamp
Weight
Scaninterval
EncoderResolution
LeftTire

RightTire

10.5 GPS Sensor

Boolean value is used to indicate whether the sensor will
be visually shown in the simulator. Setting it to true will
hide the sensor. We recommend setting it to true if it’s
not necessary to show the sensor. When you want to
confirm if the sensor is placed in the correct position and
has the correct direction, you can temporarily set it to
false.

Indicates whether the timestamp in the Unreal Engine
will be associated with the sensor data.

The weight of the sensor in kg.

The time interval in seconds between pose estimates.
The minimum wheel spin angle the sensor can recognize
in radians.

The left wheel that will be used in pose estimating. If it is
a null string, the left-most wheel will be used.

The right wheel that will be used in pose estimating. If it
is a null string, the right-most wheel will be used.

10.5.1 How the sensor works

The GPS sensor finds

the current robot position in meters and converts it to

latitude and longitude. The GPS sensor follows a modified version of the NMEA 183
GGA GPS format; modified to keep the structure of the USARSIm communication
interface. Please see the “Messages” section (Section 8.3) of this manual for the

specific SEN message empl

oyed by the GPS sensor. The error model is based on a

line-of-sight signal model that dictates how many satellites can be used by the
receiver. The number of satellites seen is, in turn, used to dictate the how much error

82

is injected into the readings. The sensor assumes a flat earth where all X-axis motion
is converted to latitude and all Y-axis motion is converted to longitude. While, in
most cases, the global X-axis points to the North, it is worthwhile noting that this is
not always the case due to singularities that may occur. Indeed, the sensor handles
singularities that occur at the earth’s pole (at 90 degree North and 90 degree South)
and on the longitude (at 180 degree West and 180 degree East). In other words, and as
an example, driving along the X-axis at 89 degrees and 59.9 minutes will increase the
latitude component of the GPS until 90 degree North is reached. At that point, the
latitude component will decrease (meaning that the global X-Axis now points to the
south). See Figure 1 for an example of the flat world representation at different
quadrants of the earth. These singularities exist and are taken into account due to the
flat assumption of the virtual worlds and the spherical shape of the earth.

=g o

205

Figure 21 - Singularity Representation

10.5.2 How to Configure it

The common bHiddenSensor and bWithTimeStamp variables are included in
the [USARBot.GPSSensor] section of the USARBot.ini file that, when set to true,
hide the sensor and add time information to the GPS message, respectively. In
addition, the amount of noise injected into the sensor is adjusted with the maxNoise
and minNoise variables. The maxNoise variable dictates the maximum amount of
noise injected in the sensor when the receiver can only use four satellites. The
minNoise variable dictates the maximum amount of noise injected in the sensor when
the receiver sees the maximum number of satellites: twelve.

Please note that the outdoor worlds have to follow the typical skybox
procedure of using the wm_texture.sky texture all around the world (this texture will
then be replaced by the world’s skybox). Failure to comply with this standard will
result in a non-working GPS sensor.

The main problem with using a GPS sensor in a virtual environment is the
mapping of a virtual location to a real one. Since USARSim worlds do not inherently
have a GPS coordinate associated with them, the GPS sensor provides three ways to
allocate a GPS coordinate to a virtual world: 1) adding a special object in the virtual
world (a ReferenceGPSCoordinate object), 2) using the USARBot.ini file, or 3)
modifying the actual GPSSensor class. A GPS reference point is acquired in this
order: if a ReferenceGPSCoordinate object is found inside the map, it is used as the
reference point. Otherwise the ZeroZeroLocation inside the GPSSensor section of
USARBDot.ini is used. If there is no ZeroZeroLocation inside the USARBot.ini file, a

83

default ZeroZeroL ocation is used. The next paragraphs describe how to assign a GPS
coordinate to a virtual map, using one of these three techniques.

e Reference GPS Coordinate

A ReferenceGPSCoordinate object has been created so that world creators
can add a GPS coordinate to a particular point in a map.

1) Make sure that

USRASIm is compiled

2) Open the desired map in UnrealEd
3) Open the “Actor Class” browser and click on the “Open Package” icon

4) Enter or Choos

A¥' Actor Classes
File Yiew Class

Tewtures Actor Classes lMeshes] Animationsl Static Meshes] Prelabs] Groups]

(=] D7z
W Usq Open Packsgelt?

[Placeable classes Only?

= Actor
"85 Cinematic_Camera
“AntiPortald.ctor
+- “Decaration
+- "Emitter
“FluidSurfacelscilator

e the file USARBot.u and Click “Open”

Look in: [) System = e BB~
N [Cgjeditarres [FiskaariPack reu [Evehicles.u
H6) AssaultBP.u [Hystreamlinerxu [Bixadminu
MyRecent |5 BonusPack.u (B unrealed.u B rfects.u
Documents e e Game.u
@ =Y Editar.u A5 UISARBaE.U [ERyGame_re.u
[Enaine.u PR SARGe T [Enterface.u
Deskiop Fire.u [Fyusarmisrkg.u [Expickups.u
[camePlay.u [FusarMadels.u B pickups_re.u
’j EGWdKarma.u %USARW:tlms‘u %xvmng.u
GUIZKA.u UT2ktAssaul XWeapans.u
My Documents ot e [FhurakansssubFuly - [Exweapons_reu
. [onslaught.u [EyUTClassic.u [webidminu
:_yl\g [Fonslaughtsp.u [EjuTv2noac.u
My Computer [Fonslaughtrully [juTv2004s.u
|5 skaariPack.u = uwebu
<« —
My Netwark — File name [usaRBotu =1
Places
Files of type: 5 Packages) - Cancel

5) Navigate to Actor->NavigationPoint->PathNode and Select
ReferenceGPSCoordinate

84

A1 Actor, Classes - USARBot. ReferenceGPSCoordinate

Fle View Class

Teuures Aclor Classes | Meshes | Animations | Static Meshes | Frefabs | Groups | Seunds | Music |

= =(d| 0l /e

[V Use'Actor' as Parent?

v Placeable classes Only?
—

{E3

“FPSLog

+ SmallNavigationPoint
kTrigger

v

6) Right-Click the location that you want to give a GPS coordinate in the
3D view of the UnrealEd and select “Add ReferenceGPSCoordinate
Here”

B NIOF 1
surface Properties {1 Selected)

£5.Chargerheshes, HealthChargerMESH-DS'
Add Path Nods Hers
Add Player Start Here
Add Light Here:
Select Surfaces
Select Al Surfaces Shift+5
Select None Shift+2

Extrude
EBevel...

Apply Texture
Reset
Alignment

7) A new icon shows up in the world. Place it to your desired location
and double-click on it to bring up the properties. Change the
ReferenceGPScoordinate properties to desired values. Please note that
a South direction is achieved by giving negative values to the degree
and minutes of the latitude component and that a West direction is
achieved by giving negative values to the degree and minutes of the
longitude component.

85

e USARBot.ini File

Open the USARBot.ini file and find the [USARBot.GPSSensor] section.

Under that section add or modify the line:
ZeroZeroLocation=(LatitudeDegree=39,LatitudeMinute=8.0273,Lon
gitudeDegree=-359,LongitudeMinute=59.9996)

Please note that a South direction is achieved by giving negative values to
the degree and minutes of the latitude component and that a West direction is
achieved by giving negative values to the degree and minutes of the longitude
component. The latitude and longitude components given in that section will
provide the GPS coordinate referring to the (0,0) location of the map.

e GPSSensor.uc File

If no reference location is found in the map and in the USARBot.ini file, a
default GPS coordinate will be used for the (0,0) map location. That GPS
coordinate is defined in the defaultproperties section of the GPSSensor.uc file.

10.6 INS Sensor

How the sensor works

The INS Sensor implemented in USARSIm uses the Gaussian random number generator
found in USARUtils.uc to add noise to the ground truth reading of angular velocities and
distance traveled per time step. These values are then used to estimate the robot’s current
location and orientation. Depending on the configuration, errors may cumulate and
therefore diverge slowly from the ground truth.

General description of how algorithm works

1. Calculates angular velocity from ground truth

2. Uses Gaussian random number generator to add noise to each of the angular velocities
components

3. Uses these angular velocity components to update the vehicle’s estimation of the
current orientation

4. Calculates the total distance traveled in one time step.

5. Adds Gaussian noise to distance

6. Decomposes the distance traveled in that time step into distance vectors using polar
coordinates transforms on the current estimation of the vehicle’s orientation.

7. Add these estimates to the estimates of the vehicle’s location.

86

*NOTE: All noise is proportional to rate of change, more change causes more error.
The INS sensor uses USARSIm ground truth for location and orientation as the initial
estimate of the robot’s location and orientation. This sensor contains a ‘SET’ command
that allows the user to set the current INS estimation of the position and orientation.
*NOTE: This will not set the sensor estimation back to ground truth. Also, if the Drifting
mode is active, this command will reset the drifting to 0.

Opcode Params Status
POSE X,Y,Z,r,p,y “OK”: successfully set the robot’s estimation of
pose

“Failed”: didn’t set the robot’s estimate of pose. It
may be caused by an invalid command or the
absence of commas between arguments.

9.5.2 How to configure it

The Gaussian random number generator uses the Box-Muller method and is based on a
mean and sigma. This function is included in a class called USARULtils.uc. This function
requires persistent variables, and therefore needs to be implemented as an object and not
as static functions. The sensor works in two ways. In its simplest form it does not drift
over time and its accuracy is determined by the sigma parameter only. It is however also
possible to set the sensor so that it drifts over time, thus resembling error dynamics due to
double integration observed in real sensors. When drifting is enabled, the Precision
parameter characterizes the drift rate. Please note that when drifting, components drift in
possibly different directions and at different rates. The initialization of the USARUtils
object is in sensor.uc so that all sensors can utilize this function. Therefore, all sensors
can use a “Sigma” in the USARBot.ini file to adjust the distribution of noise.

[USARBOt.INS]
HiddenSensor=true
bWithTimeStamp=False
Weight=0.1
Scanlinterval=0.2
Drifting=false
Precision=1000
Sigma=0.1

Where
HiddenSensor

bWithTimeStamp

Weight

Boolean value is used to indicate whether the sensor will
be visually shown in the simulator. Setting it to true will
hide the sensor. We recommend setting it to true if it’s
not necessary to show the sensor. When you want to
confirm if the sensor is placed in the correct position and
has the correct direction, you can temporarily set it to
false.

Indicates whether the timestamp in the Unreal Engine
will be associated with the sensor data.

The weight of the sensor in kg.

87

Scanlnterval The time interval in seconds between pose estimates.

Mean Sets the mean used by the Gaussian random number
generator used to produce noise in the sensor.

Sigma Sets the standard deviation used by the Gaussian random
number generator used to produce noise in the sensor.

RightTire The right wheel that will be used in pose estimating. If it
is a null string, the right-most wheel will be used.

Drifting Boolean value. If true the sensor drifts, if false it does not
(default is false)

Precision Numeric value indicating the rate of drifting. The higher

the value, the less the drifting (default is 1000). This
parameter has effect only when Drifting is true.

10.7 Encoder Sensor

10.7.1 How the sensor works

The sensor measures a part’s spin angle around the sensor’s axis. The returned
value is a tick count which is the real angle divided by the sensor’s resolution. How
we mount the sensor will decide what axis’s spin angle will be measured. The sign of
the count is also decided by the direction we mount the sensor. For example,
mounting the sensor on the front or back side of a wheel will give us a different count
sign. Similar to the INU sensor, we can use the SET command to reset the tick count.
The Opcode, Params and returned response Status are listed below:

Table 5 Encoder sensor control command

Opcode | Params | Status

RESET | None “OK?”: successfully reset
“Failed”: didn’t reset the sensor. It may be caused by an invalid
command.

10.7.2 How to configure it
We configure the sensor in the USARBot.ini file. The configuration looks like:

[USARBot.EncoderSensor]
HiddenSensor=true
bWithTimeStamp=False
Weight=0.4
Resolution=0.01745
Noise=0.005

Where
HiddenSensor Boolean value is used to indicate whether the sensor will
be visually shown in the simulator. Setting it to true will
hide the sensor. We recommend setting it to true if it’s
not necessary to show the sensor. When you want to

88

confirm if the sensor is placed in the correct position and
has the correct direction, you can temporarily set it to
false.

bWithTimeStamp Indicates whether the timestamp in the Unreal Engine
will be associated with the sensor data.

Weight The weight of the sensor in kg.
Resolution The minimum spin angle the sensor can recognize in

radians.

Noise The relative random noise amplitude. With the noise, the
data will be data = data + random(noise)*data where
random(noise) returns a value between —noise and
+noise.

NOTE: Mounting the sensor on the front or back side of a wheel will give us a
different count sign.

10.8 Touch Sensor

10.8.1 How the sensor works

We use the same method used by the range sensor to simulate the touch sensor.
Every touch sensor is treated as a button. We emit several lines from the button’s
surface to detect the objects in front of the sensor. When one object is close enough to
the sensor (less than 4.7mm), the sensor will send out a touch signal.

10.8.2 How to configure it
We configure the sensor in the USARBot.ini file. The configuration looks like:

[USARBot.TouchSensor]
HiddenSensor=true
bWithTimeStamp=False
Weight=0.4
Diameter=0.01

Where
HiddenSensor Boolean value is used to indicate whether the sensor will

be visually shown in the simulator. Setting it to true will
hide the sensor. We recommend setting it to true if it’s
not necessary to show the sensor. When you want to
confirm if the sensor is placed in the correct position and
has the correct direction, you can temporarily set it to
false.

bWithTimeStamp Indicates whether the timestamp in the Unreal Engine
will be associated with the sensor data.

Weight The weight of the sensor in kg.
Diameter The diameter of the sensor button in meter.

89

10.9 RFID Sensor

10.9.1 How the sensor works

The RFIDSensor simulates a RFID reader and is used to detect RFID tags that are in
sensor range. It also allows one to read and write their memory. RFID tags can be
added in the virtual world either from UnrealEd or they can be dynamically released
by the RFIDReleaser effecter.

Refer to http://en.wikipedia.org/wiki/RFID for further information on RFID
technology.

10.9.2 How to configure it

Like any other USARSIm class, the sensor can be configured from the USARBot.ini
file. In the [USARBot.RFIDSensor] section you can set these parameters:

e SensingMode [default: Attenuation]: it can be Radius, Obstacle,
Attenuation. It specifies what signal propagation model to use.

Radius and Obstacle mode parameters:

o MaxRange [default: 3] (m): sensor range. It's only used by Radius and Obstacle
sensing modes.

o MaxSingleShotRange [default: 6] (m): same as MaxRange but for single shot
tags.

Attenuation mode parameters:

e dBmTXPower [default: 36] (dBm): sensor TX power in dBm.
o dBmRXSensibility [default: -88] (dBm): sensor RX sensibility in dBm.
e dBObstacleAttenuation [default: 3.5] (dB): attenuation due to an obstacle.

Other parameters:

e bTraceRFIDs:[default: false] : if set to true then USARSIm will draw 3D lines
from sensor to rfid tag (slow, use it only for debugging).

e bAlwaysReadRFIDmem [default: false]: if you want to read tag memory every
time you detect it. That means that if you sense 10 times per second, you will
read the memory content of all tags that are in range 10 times per second.

e HiddenSensor [default: true]: show/hide the sensor in the simulator. We
recommend setting it to true if it’s not necessary to show the sensor. When you
want to confirm if the sensor is placed in the correct position and has the correct
direction, you can temporarily set it to false.

e bWithTimeStamp [default: true]: indicates whether include the timestamp in
the the sensor data message.

90

http://en.wikipedia.org/wiki/RFID

e Weight [default: 0.4] (kg): The weight of the sensor in kg.

10.9.3 Choosing the right SensingMode

10.9.3.1 Radius

Radius mode (Figure 22) only takes into account the sensor range (MaxRange). The
sensor can read any tag in this range ignoring obstacles.

Traced lines (if bTraceRFIDs is true): all the lines are green.

Figure 22: Radius mode Figure 23: Obstacle mode

10.9.3.2 Obstacle

Obstacle mode (Figure 23) is the same as Radius, but it also takes into account
obstacles. Tags that are in sensor range but lie behind an obstacle are invisible to the
sensor.

Traced lines (if bTraceRFIDs is true): green lines for reachable tags, red lines for
hidden tags.

10.9.3.3 Attenuation

Attenuation mode (Figure 25) uses a signal attenuation model. It considers both
distance and obstacles. The signal strength is function of the transmitter power
(dBmTXPower) and distance:

P, = dB mTHPower — 2-[10-(5.25+ 2 -log 1 ()] 4

* MaxStram Application Note: “Indoor Path Loss”

91

note: the factor 2 means that we are considering forward and backward propagation
(considering the passive tag as the source of the reflected signal).

If the received signal is lower than the sensor sensibility (dBmRXSensibility) then
the tag is out of range. If there is an obstacle we attenuate the signal by a fixed
amount (dBObstacleAttenuation). In this simplified model we consider only one
obstacle. This is an acceptable approximation because of the very short range of the
passive RFID tags.

] 0
Distance [m)

Figure 24: Signal strength over distance with dBmTXPower = 36 Figure 25: Attenuation mode

Traced lines (if bTraceRFIDs is true): line color represents the signal strength
(from green to red). If the signal is too low the line is black (tag is unreachable).

10.9.4 Detecting RFID Tags
When you are near one or more RFIDTags you will receive the following string:
SEN {Type RFID} {Name RFID} {ID 1} {Mem 0}
if you detect one RFID, or:
SEN {Type RFID} {Name RFID} {ID 1} {Mem 0} {ID 2} {Mem 0} ...
if you detect more then one at the same time.
o ID:is the unique RFIDTag identifier.

e Mem: Is the RFIDTag memory content, "0" if empty. This field can be
deactivated by setting to false bAlwaysReadRFIDmem.

92

10.9.5 Reading RFID Tags Memory
To read the memory of the RFIDTag you can use the following command:

SET {Type RFID} {Name RFID} {Opcode Read} {Params
RFIDTagID}

Where RFIDTagID is the ID of the RFIDTag you want to read.

RES {Time ...} {Type RFID} {Name RFID} {Status OK} {ID
RFIDTagID} {Mem MemoryContent}

Failure: RES {Time ...} {Type RFID} {Name RFID} {Status Failed}

Success:

For example, failure can happen when the RFID tag is out of the sensor range.
10.9.6 Writing RFID Tags Memory

Using the same RFIDSensor you can write the RFIDTag memory using this
command:

SET {Type RFID} {Name RFID} {Opcode Write} {Params
RFIDTaglD MemoryContent}

Where RFIDTagID is the ID that identifies the RFIDTag you want to write,
MemoryContent is the string you want to write in the RFIDTag.

Success: RES {Time ...} {Type RFID} {Name RFID} {Status OK}
Failure: RES {Time ...} {Type RFID} {Name RFID} {Status Failed}

10.9.7 Erasing RFID Tags Memory
To erase the RFIDTag memory you can both write a 0" string or, more easily:

SET {Type RFID} {Name RFID} {Opcode Write} {Params
RFIDTagID}

Where RFIDTagID is the ID that identifies the RFIDTag you want to erase.

Success: RES {Time ...} {Type RFID} {Name RFID} {Status OK}
Failure: RES {Time ...} {Type RFID} {Name RFID} {Status Failed}

93

10.10 Victim and False Positive Sensor

10.10.1How the sensor works

The Victim and False Positive Sensor simulates a victim location sensor. The
sensor’s operation is very similar to that of the Range Scanner. Indeed, the victim
sensor sends out a number of traces (as defined by its configuration section) and looks
to see if they hit one of the following: a victim part (e.g. leg, arm, head, etc...) or a
false alarm (e.g. leg, arm, head, etc...). The sensor returns all the victim’s parts that
have been hit (including possible false alarms) and it is up to the controller/user to
determine whether the responses indicate a victim or a false alarm.

Please note that, for proper operation, the victim sensor should always be
mounted on a camera.

10.10.2How to configure it

The Victim and False Positive Sensor configuration in the USARBot.ini file
looks like:

[USARBot.VictSensor]
HiddenSensor=true
Distance=6
HorizontalFOV=0.6981317
Horizontal Step=0.0698131
VerticalFOV=0.6981317
VerticalStep=0.0698131
bWithTimeStamp=true
bShowResults=false
Mean=0.0

Sigma=0.01

Where
HiddenSensor Boolean value is used to indicate whether the sensor will
be visually shown in the simulator. Setting it to true will
hide the sensor. We recommend setting it to true if it’s
not necessary to show the sensor. When you want to
confirm if the sensor is placed in the correct position and
has the correct direction, you can temporarily set it to
false.
Distance The maximum detection range, in meters. The traces will
be sent ‘Distance’ meters.
HorizontalFOV The field of view in the horizontal direction (x-y plane),
in radians.
HorizontalStep The amount of radians between two traces in the
horizontal direction (x-y plane).
VerticalFOV The field of view in the vertical direction (x-z plane), in
radians.
VerticalStep The amount of radians between two traces in the vertical

94

bWithTimeStamp

bShowResults

Mean

Sigma

10.11 Sound sensor

direction (x-z plane).

Indicates whether the timestamp in the Unreal Engine
will be associated with the sensor data.

Indicates whether the graphical interface sgould be
displayed. Useful for testing purposes but will be set to
‘false’ in most cases.

Sets the mean used by the Gaussian random number
generator used to produce noise in the sensor.

Sets the standard deviation used by the Gaussian random
number generator used to produce noise in the sensor.

10.11.1How the sensor works
The Sound sensor detects sound sources in USARSIm. The sound sensor finds

all the sound sources and

calculates the source that is the loudest at the robot’s

location. The loudness decreases with the square of the distance. Currently, the only
available sound sources are victims. Please refer to section 14.1.3 about how to
associate a sound source to a victim.

10.11.2How to configure it
The sound sensor configuration in the USARBot.ini file looks like:

[USARBot.SoundSensor]

HiddenSensor=True
Weight=0.4
Noise=0.05

OutputCurve=(Points=((In\Val=0.000000,0utVal=0.000000),(In\Val=1000.0000
00,0utVal=1000.000000)))

Where
HiddenSensor

Weight
Noise

OutputCurve

Boolean value is used to indicate whether the sensor
will be visually shown in the simulator. Setting it to
true will hide the sensor. We recommend setting it to
true if it’s not necessary to show the sensor. When you
want to confirm if the sensor is placed in the correct
position and has the correct direction, you can
temporarily set it to false.

The weight of the sensor in kg.

The relative random noise amplitude. With the noise,
the data will be data = data + random(noise)*data
where random(noise) returns a value between —noise
and +noise.

The distortion curve. It is constructed by a series of
points that describe the curve.

95

10.12 Human-motion sensor

10.12.1How the sensor works

The Human motion sensor simulates a pyroelectric sensor. It’s simulated by
finding all the victims that are in the FOV of the sensor within the testing range. The
closest moving victim will be checked. Its distance from the robot and its motion
speed and amplitude are used to calculate the probability of whether it is a human
motion.

10.12.2How to configure it
The human-motion sensor configuration in the USARBot.ini file looks like:

[USARBot.HumanMotionSensor]

HiddenSensor=True

Weight=0.4

MaxRange=1000

FOV=60

Noise=0.1
OutputCurve=(Points=((In\Val=0.000000,0utVal=0.000000),(In\Val=1000.0000
00,0utVal=1000.000000)))

Where

HiddenSensor Boolean value is used to indicate whether the sensor
will be visually shown in the simulator. Setting it to
true will hide the sensor. We recommend setting it to
true if it’s not necessary to show the sensor. When you
want to confirm if the sensor is placed in the correct
position and has the correct direction, you can
temporarily set it to false.

Weight The weight of the sensor in kg.
MaxRange The maximum detecting range in meters.
FOV The field of view of the sensor in integer. 65535 means

360 degrees.

Noise The relative random noise amplitude. With the noise,
the data will be data = data + random(noise)*data
where random(noise) returns a value between —noise
and +noise.

OutputCurve The distortion curve. It is constructed by a series of
points that describe the curve.

10.13 GPS Sensor

10.13.1How the sensor works

The GPS sensor finds the position in meters and then converts it to latitude and
longitude. It assumes a flat earth and assumes that the Y axis points due north.
All Y axis motion is converted to latitude. All X-axis motion is longitude. The

96

sensor does not check for an open sky and may thus report GPS when it would

not be available.
Any robot can navigate from relative GPS. Relating the absolute GPS to the map
requires an RNDF. For RNDF specifications, see
http://www.darpa.mil/grandchallenge/docs/RNDF_MDF_Formats_120606.pdf.
DARPA’s Dec 1, 2006 revision specifies that latitude and longitude are fixed point
numbers in the ITRFOO reference frame. The current RNDF uses the previous
specification, which gives latitude and longitude as floating point numbers in the
WGS84 frame.

Typical output is

SEN {Type GPS} {Name GPS1} {Latitude 47, 40, 5899} {Longitude -122, 18,
9360}

This example represents 47°N 40.5899°, 122°W 18.9360°

The map on which GPS is used should have exactly one GPSStart object. This gives
the latitude and longitude of the origin of the map. It also has scale factors that
specify how many meters correspond to one degree of latitude or longitude at this
position. The scale factors may be negative to point the axes the opposite way.

10.14 Robot Camera

10.14.1How the sensor works

The Camera is a special sensor in USARSIm. The scenes viewed from the
camera are captured by attaching the viewpoint to the camera in the Unreal engine.
USARSIm currently supports any amount of cameras. We can use the SET {Type
Camera} command to control a camera’s field of view and the MISPKG command to
control a camera’s pan-tilt frame. Information about the camera commands and
response messages can be found in the preceding sections of this manual. Every
camera has a default, maximum and minimum field of view. If the field of view in the
SET command is out of the camera’s FOV range, it will adjust it to the minimum or
maximum FOV range.

We provide two ways to simulate camera feedback.
1) Directly using the Unreal Client as video feedback.

This is the easiest way. However, it can’t simulate the frame rate of the real
robot. There are two ways to directly use the Unreal Client. One is using the
Unreal Client as a separate sensor panel. The other is embedding the Unreal
Client into the user interface. For details about embedding the Unreal Client
into user’s application please see section 14.5.1.

2) Capturing the scenes in Unreal Client and using these pictures as video
feedback.

This approach is very close to how the real camera works, but it’s
technically difficult. The camera feedback can be either directly or remotely
received

97

http://www.darpa.mil/grandchallenge/docs/RNDF_MDF_Formats_120606.pdf

a. Directly capture Unreal Client

The idea is to capture the pictures in the Unreal Client and use them
on the interface. There are many capturing technologies. We use
Detours (http://www.research.microsoft.com/sn/detours/) to access
the back buffer of DirectX and get the scene pictures. The advantage
of this approach is that even if the Unreal Client is hidden (is
covered by other windows or out of the desktop) we can still get the
scene image. Hook.dll (available from the tools area of the file
release downloads) is the library provided by USARSIm that
captures the Unreal Client picture into a block of shared memory. It
must be in the \UT2004\system directory. Details about using
Hook.dll can be found in section 14.5.2.

Using the image server to get camera pictures

The Image server is an extra server that runs with the Unreal Client.
It uses the method introduced in the previous paragraph to capture
pictures and send them out through the network. The pictures can be
sent out in raw format or jpeg format. After sending out a picture, the
server waits for an acknowledgement from the client and then sends
out the next picture at the specified frame rate speed. The steps to
start the image server are listed in section 3.2.5. How to
communicate with the server and use the pictures are explained in
section 14.5.3.

10.14.2How to configure it
The robot camera’s configuration in the USARBot.ini file looks like:

[USARBot.RobotCamera]
Weight=0.4
CameraDefFov=0.7854
CameraMinFov=0.3491
CameraMaxFov=2.0944

Where

Weight The weight of the sensor in kg.

CameraDefFov The camera’s default FOV in radians.
CameraMinFov The minimum FOV in radians.
CameraMaxFov The maximum FOV in radians. If the CameraMaxFov

is equal to the CameraMinFov, the camera is a fixed
FOV camera that can’t zoom in or out.

10.15 Omnidirectional Camera

98

http://www.research.microsoft.com/sn/detours/

10.15.1 How the sensor works

The omnidirectional Camera is a normal UsarSim camera, looking upwards towards a
parabolic convex mirror. The camera seems to capture the reflection in the mirror,
depicting the complete 360° surroundings with the perspective distortion that is
typical for this type of omnidirectional cameras.

The creation of a parabolic convex mirror in UsarSim is not possible in a direct way,
because the underlying Unreal engine only supports planar reflecting surfaces. The
'security camera trick' is used to simulate a non-planar mirroring surface 0. The
camera looks at a parabolic shaped texture, which is a monitor connected to a security
camera hidden behind the texture. The security camera is located at the center of
projection of the parabolic texture, and looks through the texture in front of it. The
UsarSim camera looks at the other site of the texture, and captures the image
displayed on the texture as if it is a reflection. Care has been taken that the image of
the security camera correctly distorted on the parabolic texture to get the perspective
of an omnidirectional mirror.

10.15.2 How to mount it

To mount an omnidirectional camera you need three elements:

MisPkgs=(PkgName="OmniCamera",Location=(Y=0.0,X=0.0,Z2=0.0), ...

... PkgClass=Class'USARMisPkg.OmniCamera)
Cameras=(ItemClass=class'USARBot.RobotCamera’,ItemName="Camera", ...

... Parent="OmniCamera_Link1",Position=(Y=0.0,X=0.0,2=0.09), ...

... Direction=(Y=1.5707964,2=-3.1415927,X=0.0))
CamTexActors=(ItemClass=class'USARBot.USAREmitter',ItemName="OmniCamEmitt

er",

... Parent="OmniCamera_Link1",Position=(Y=0.0,X=0.0,2=0.0), ...

99

... Direction=(Y=0.0,2=0.0,X=0.0))

The UsarEmitter class is used for the security camera. The OmniCamera Mission
Package consists of the OmniCamBase and the OmniCamMirror models (fixed to
each other).

The camera can be mounted on a pillar to give it more height. Use the following
configuration to mount the camera on a pillar:

MisPkgs=(PkgName="OmniCampPillar",Location=(Y=0.0,X=0.0,2=0.0), ...
... PkgClass=Class'USARMisPkg.OmniCamPillar’)
Cameras=(ItemClass=class'USARBot.RobotCamera',ItemName="Camera", ...
... Parent="OmniCamPillar_Link4" Position=(Y=0.0,X=0.0,Z2=0.09), ...
... Direction=(Y=1.5707964,2=-3.1415927,X=0.0))
CamTexActors=(ItemClass=class' USARBot.USAREmitter',ItemName="0OmniCamEmitt
er",
... Parent="OmniCampPillar_Link4",Position=(Y=0.0,X=0.0,Z2=0.0), ...
... Direction=(Y=0.0,Z2=0.0,X=0.0))

The pillar consist of a bottom link, multiple center links and a top link. To adjust
pillar height, center links can be added or removed in the USARMisPkg.ini file.

10.15.3 How to configure it
The configuration of a standard robot camera in the USARBot.ini is used:

[USARBot.RobotCamera]
CameraDefFov=0.7854
CameraMinFov=0.3491
CameraMaxFov=2.0944

T. Schmits and A. Visser (2008). An Omnidirectional Camera Simulation for the
USARSIm World. Proceedings CD of the 12th RoboCup International Symposium.
Suzhou, China. To be published in the Lecture Notes in Artificial Intelligence,
Springer-Verlag, Berlin / Heidelberg, Germany.

11 Effecters
11.1 Gripper

11.1.1 How the effecter works

A gripper constructed by a gripper base, a left finger and a right finger. The
gripper base is the part where the effect is mounted. The left and right finger can be
explicitly defined by the user or automatically found by USARSIim through iterating
all the parts connected to the gripper base. This effecter controls the left and right
finger’s joints to open or close the gripper to pick up or drop an object. It currently
only manipulates the KNActors, the modified KActors that support network. Gripper

100

uses the SET command to open or close itself. The Opcode, Params and returned
response Status are listed below.

Table 6 Gripper control command

Opcode Params Status
Open The angle between left and | “OK”: successfully opened the gripper
right fingers in radians. “Failed”: can’t open the gripper. It
may be caused by an invalid
command.

11.1.2 How to configure it

The Gripper’s configuration in the USARBot.ini file looks like:
[USARBot.Gripper]

MaxAngle=1.57

MinAngle=0.0

LeftFinger=LeftFinger

RightFinger=RightFinger

Where

MaxAngle The maximum angle between left and right fingers in
radians.

MinAngle The minimum angle between left and right fingers in
radians.

LeftFinger The left finger’s name. If we leave this parameter
undefined, USARSiIm will iterate all the parts
connected to the gripper base. The last found left part
will be used as the left finger.

RightFinger The right finger’s name. If we leave this parameter
undefined, USARSiIm will iterate all the parts
connected to the gripper base. The last found right part
will be used as the right finger.

An effecter is very similar to a sensor. We can mount it on the robot and use the
SET command to control it. An effecter is more like a dumb sensor that can’t send
any data out. We introduce all the effecters in this section.

11.2 RFID Releaser

11.2.1 How the effecter works

The RFID releaser drops a RFID tag in the virtual world. The tag’s ID is
automatically assigned by the releaser in the range of 0-1000 to make sure that all of
the IDs are unique. The IDs greater than 1000 are reserved by the system. You can
use these reserved IDs for special purposes (preplaced in world maps). The releaser
uses the SET command to drop a RFID tag. The Opcode, Params and returned
response Status are listed below:

101

Table 7 RFID releaser control command

Opcode Params Status

Release None “OK”: successfully dropped a tag
“Failed”: can’t drop tags. It may be
caused by an invalid command or
lack of tags.

TagsRemaining | None “int”: number of tags left to dispense.

11.2.2 How to configure it

The RFID releaser’s configuration in the USARBot.ini file looks like:
[USARBot.RFIDReleaser]

Weight=0,4

NumTags=10

Where
NumTags The number of tags that the releaser carries.
Weight The weight of the effecter in kg.

11.3 Roller Table

11.3.1 How the effecter works

A roller table is an effecter that is constructed of a roller table base with a series
of controllable roller mounted on the surface of the table. This effecter enables items
to be moved back and forth on the table, and is commonly used in manufacturing
applications to load and unload packages on and off the table. The speeds of the
rollers are synchronously controlled by the effecter, which enables the user to adjust
the speed of the rollers to move an item along the surface of the table. The directions
of the rollers are determined by the sign of the parameter; i.e. a positive value will
spin the rollers the positive direction (along the positive X-axis) and a negative value
will cause the rollers to spin in the opposite direction

Table 8 Roller Table opcodes

Opcodes Parameters Status

Animate Float that defines the speed | “OK™: successful
and direction that the “Failed”: to set the speed of rollers.
rollers will move in radians | Error may be caused by improper
per second. arguments.

11.3.2 How to configure it

The Roller Table can be configured in the USARBot.ini file. The Roller Table
section of this initialization file looks like:

[USARBot.RollerTable]

MaxSpeed=6.0

102

Where
MaxSpeed Determines the maximum angular velocity that the
rollers can spin in either direction.

11.4

11.5 Headlight

The headlight should also be an effecter. Right now, it’s NOT an effecter
because we simulate it by extending it from an Unreal class, DynamicProjector. In the
future, we should try to fix this problem.

12 Robots

All robots in USARSIm have a chassis, multiple wheels, sensors and effecters.
The robots are configurable. You can specify which sensors/effecters are used and
where they are mounted. You also can configure the properties of the robots, such as
the battery life and the frequency of data transmission etc. The robots are based on the
real robots and they have different capabilities. This section will introduce the robots
one by one and explain how to configure them.

We control the robot mobility with one of the many DRIVE commands. For
details about the different DRIVE commands, please go back to section 9.4.

12.1 P2AT

12.1.1 Introduction

The P2AT is a 4-wheel drive all-terrain pioneer robot from ActivMedia
Robotics, LLC. For more information, visit the ActivMedia’s website:
http://www.activrobots.com.

In USARSIm, we use classname USARBOt.P2AT to represent the P2AT.

N OM-U54AR _yel T ErmEEm

a) Real P2AT b) Simulated P2AT
Figure 26: P2AT robot

In summary, the P2AT has:
e Four wheels

103

http://www.activrobots.com/

e Skid-steer

In our simulation, it is equipped with:
PTZ camera

Front sonar ring

Rear sonar ring

Sick Laser Scanner LMS200

INS

Odometry sensor

RFID sensor

The P2DX specification is as follows:

Dimensions: Length x Width x Height = 50 cm x 49 cm x 26 cm
Wheel: Diameter x Width =22 cm x 7.5 cm

Weight: 14 kg

Payload: 40 kg

Maximum Translate Speed: 700 mm/s

Maximum Rotating Speed: 140 deg/s

Sonars' positions are:

{ X(mm), Y(mm), Theta(deg) } = { 145, -130, -90},
{ 185, -115, -50},
{ 220, -80, -30},
{ 240, -25, -10},
{ 240, 25, 10},
{ 220, 80, 30},
{ 185, 115, 50},
{ 145, 130, 90},
{-145, 130, 90}
{-185, 115, 130},
{-220, 80, 150},
{-240, 25, 170},
{-240, -25, -170},
{-220, -80, -150 },
{-185, -115, -130},
{-145, -130, -90},

12.1.2 Configure it

The whole P2AT robot configuration can be found in the section
[USARBOot.P2AT] of USARBot.ini file. The following lists the parameters you may
want to change. For other parameters please refer section 14.4.2.

[USARBOt.P2AT]
msgTimer=0.200000
bAbsoluteCamera=true
bMountByUU=True

104

Weight=14
Payload=40
batteryLife=3600
Sensors=(ItemClass=class'USARBot.SonarSensor',ItemName="F1",Position=(
X=7.6125,Y=-6.825,Z=0),Direction=(Y=0,Z=-16384,X=0))

Sensors=(ltemClass=class'USARBot.SonarSensor',ItemName="F8",Position=(
X=7.6125,Y=6.825,2=0),Direction=(Y=0,2=16384,X=0))
Cameras=(ItemClass=class’'USARBot.RobotCamera',ItemName="Camera",Pare
nt="CameraTilt",Position=(Y=0,X=4.2,Z7=-3.36),Direction=(Y=0,Z=0,X=0))

Where

msgTimer
bAbsoluteCamera

bMountByUU

Weight
Payload

batteryL.ife
Sensors

Cameras

The time interval between sending two consecutive
messages.
Indicates whether the camera control command uses
an absolute value or not.
Indicates whether we use unreal units in mounting
sensors. If it’s true, all the sensor/effecter position
and direction parameters are in Unreal Unit.
The weight of the chassis in kg. Similar to sensor’s
weight, it’s just an attribute for description purposes.
The robot’s payload capability in kg.
The life of the battery in seconds.
The sensors mounted on the robot. The structure of
sensor mounting is:
ItemClass The sensor class or the type of the
Sensor.
ItemName The name assigned to the sensor
Parent The part the sensor will mount on.
Position The mounting position relative to
parent’s geometric center.
Direction The direction the sensor is facing
relative to its parent.
The cameras mounted on the robot. It uses the same
structure of the sensor. The first camera is the main
camera. And you use The CAMERA command to
control it. For other cameras, please use SET and
MISPKG command to control its FOV and direction.

Note: When you control the camera, make sure bAbsoluteCamera is set to the correct
value.

105

12.2 StereoP2AT

12.2.1 Introduction

The StereoP2AT is a modification of the P2AT. The specifications are the same
as that of the P2AT except that the StereoP2AT adds stereo vision.

In USARSIm, we use classname USARBot.StereoP2AT to represent this robot.

12.2.2 Configure it
It’s the same as P2AT.

12.3 P2DX

12.3.1 Introduction

The P2DX is the 2-wheel drive pioneer robot from ActivMedia Robotics, LLC.
For more information please visit ActivMedia’s website: http://www.activrobots.com.

In USARSIm, we use classname USARBot.P2DX to represent the P2DX.

a) Real P2DX b) Simulated P2DX

Figure 27: P2DX robot

In summary, the P2DX has:
e Two wheels
e Differential steering

In our simulation, it is equipped with:
PTZ camera

Front sonar ring

Sick Laser Scanner LMS200
IMU sensor

Odometry sensor

Encoders

106

http://www.activrobots.com/

The P2DX specification is as follows:

Dimension: Length x Width x Height = 44 cm x 38 cm x 22 cm
Wheel: Diameter x Width = 16.5 cm x 3.7 cm

Weight: 9kg

Payload: 20 kg

Maximum translate speed: 1800 mm/s

Maximum rotating speed: 300 deg/s

Sonars' positions are:

{ X(mm), Y(mm), Theta(deg) } = { 155, -115, -50},
{155, -115, -50},
{190, -80, -30},
{210, -25, -10},
{210, 25, 10},
{190, 80, 30},
{155, 115, 50},
{115, 130, 90}

12.3.2 Configure it
It’s the same as P2AT.
12.4 ATRVJr

12.4.1 Introduction

The ATRV-Jr is a 4-wheel drive outdoor all terrain robot vehicle developed by
iRobot.

In USARSIm, we use classname USARBot. ATRVJr to represent the ATRV-Jr.

B

a) Real ATRVJr b) Simulated ATRVJr
Figure 28: ATRV-Jr robot

In summary, the ATRV-Jr has:

107

e Four wheels
e Differential steering

In our simulation, it is equipped with
e PTZ camera

e 17 Sonars (5 front, 10 side, 2 rear)
e Sick Laser Scanner LMS200

The ATRV-Jr specification is as follows:

Dimension: Length x Width x Height = 77.5 cm x 62.2 cm x 55 cm
Wheel: Diameter x Width = 33 cm x 10 cm (guessed data)

Weight: 50 kg

Payload: 25 kg

Maximum translate speed: 1000 mm/s

Maximum rotating Speed: 120 deg/s

Sonars' position are:

{ X(mm), Y(mm), Theta(deg) } = { 334.95, -104.39, -30 },
{ 340.41, -49.91, -15 },
{ 347.06, 0, 0 }
{ 340.41, 49.91, 15
{ 334.95, 104.39, 30
{ 230.23, 175, 45
{ 172.49, 178.6, 60
{ 117.2, 181.1, 75
{ 7226, 181.1, 90 },
{-295.17, 181.1, 90 }, (guessed data)
{-347.06, 150.36, 180 }, (guessed data)
{-347.06, -150.36, 180 }, (guessed data)
{-295.17, -181.1, -90 }, (guessed data)
{ 7226, -181.1, -90 },
{ 117.2, -181.1, -75 },
{ 172.49, -178.6, -60 },
{ 230.23, -175, -45 }

S o o e o

12.4.2 Configure it
It’s the same as P2AT.

125 HMMWYV (Hummer)

12.5.1 Introduction

The HMMWYV is a High Mobility Multipurpose Wheeled Vehicle built by the
National Institute of Standards and Technology. The HMMWYV is a test bed vehicle
used to test, evaluate, and demonstrate advanced mobility technology at test facilities
and on real roads while performing transportation specific operations.

In USARSIm, we use classname USARBot.Hummer to represent the HMMWYV.

108

a) Real HMMWV b) Simulated HMMWV
Figure 29: HMMWYV Vehicle
In summary, the HMMWYV has:

e Four drive wheels.
e Single Ackerman steering (front two wheels are Ackerman steered).

In our simulation, it is equipped with:
e A pan-tilt camera that can take a 360 degree panorama
e A Sick Laser Scanner LMS200

The HMMWYV specification is as follows:

e Dimension: Length x Width x Height = 3.686m x 1.799m x 2.059m
e Wheel Radius = 0.3727m

e Maximum translate speed: 134.172 kph, 83.37mp

e Maximum wheel spin speed: 100 rad/s

12.5.2 Configure it
It’s the same as P2AT.

12.6 SnowStorm

12.6.1 Introduction

SnowsStorm is the vehicle used by the University of British Columbia
(http://www.ubcthunderbird.com) for the DARPA Grand Challenge. It is a 1991 Jeep
Cherokee Laredo modified for autonomous control.

In USARSIm, we use classname USARBot.Snowstorm to represent this vehicle.

109

http://www.ubcthunderbird.com/

a) Real SnowStorm b) Simulated SnowStorm
Figure 30: SnowStorm

In summary, SnowSorm has:

e Two wheel or four wheel drive.

Single Ackerman steering (front two wheels are Ackerman steered).
GPS

Bumblebee stereo camera

A 3D Sick Laser Scanner

The SnowStorm specification is as follows:
e Dimension: Length x Width x Height = 4.239m x 1.720m x 1.621m

12.6.2 Configure it
It’s the same as P2AT or Hummer.

12.7 Sedan

12.7.1 Introduction

The Sedan is an Ackerman steered vehicle based on the Nissan Primera/ Infinity
G20. It was added to USARSiIm as an additional vehicle for outdoor scenes.

In USARSIm, we use classname USARBot.Sedan to represent this vehicle.

110

a) Real Sedan b) Simulated Sedan
Figure 31: Sedan Vehicle
In summary, the Sedan has:

e Four wheels. The two front wheels are powered.
e Single Ackerman steering (front two wheels are Ackerman steered).

The Sedan specification is as follows:

e Dimension: Length x Width x Height = 4.2779m x 1.7883m x 1.3238m
e Wheel: Radius = 0.2820

e Maximum translate speed: 134.172 kph, 83.37mph

e Maximum wheel spin speed: 100 rad/s

12.7.2 Configure it
It’s the same as P2AT.
12.8 Cooper

12.8.1 Introduction

The Cooper is an Ackerman steered vehicle based on the Mini Cooper. It was
added to USARSIm as an additional vehicle for outdoor scenes.

In USARSIm, we use classname USARBot.Cooper to represent this vehicle.

~—

a) Real Cooper b) Simulated Cooper
Figure 32: Cooper Vehicle

In summary, the Cooper has:

111

e Four wheels. The two front wheels are powered.
e Single Ackerman steering (front two wheels are Ackerman steered).

The Cooper specification is as follows:
e Maximum translate speed: 134.172 kph, 83.37mph
e Maximum wheel spin speed: 100 rad/s

12.8.2 Configure it
It’s the same as P2AT.

12.9 Submarine

12.9.1 Introduction

The submarine is an underwater robot. It is a standard submarine, which was not
based on any particular real models.

Figure 33: Submarine in Simulation

In summary, the submarine has:
e A propeller, a rudder, and a stern plane

In our simulation, the submarine has:
e A pan-tilt camera that can take a 360 degree panorama
e A sonar sensor, located on the belly of the submarine, pointing down

The submarine specification is as follows:

Dimension: Length x Width x Height = 6.5364m x 1.1428m x 1.9929m
Rudder Area: 0.3378m?

Maximum Rudder Angle: 0.4363 radians

Stern Plane Area: 0.2152m?

Maximum Stern Plane Angle: 0.4363 radians

Propeller’s Pitch: 0.3048m

Maximum Propeller Spin Speed: 6.28 rad/s

112

12.9.2 Configure it
It’s the same as P2AT.

12.10 Tarantula

12.10.1Introduction

The Tarantula is a toy-based robot which was first turned into a robot platform
named "Lurker" by the team “Rescue Robots Freiburg”. They used the modified
version in the Rescue Robot League during the RoboCup 2005 competition. The
Tarantula model, which is now part of the USARSiIm package, was originally
developed at the University of Freiburg and has been further improved and merged
into USARSIm by the University of Pittsburgh.

In USARSIm, we use classname USARBot. Tarantula to represent this robot.
- \t‘ T W

a) Real Tarantula b) Simulated Tarantula
Figure 34 : Tarantula Model in USARSIim

In summary, the tarantula has:
e Four flippers, each of which can be controlled independently

The tarantula specification is as follows:
e Dimension: Length x Width x Height = 0.6778m x 0.444m x 0.1406m
e Maximum wheel spin speed: 3.1416 rad/sec

The most significant difference of the Tarantula as compared to conventional
robot platforms is the flippers, which endow the robot with considerable mobility.
The flippers' control commands are

e Front flipper: MULTIDRIVE {FRFlipper float} {FLflipper float}

e Rear flipper: MULTIDRIVE {RRFlipper float} {RLFlipper float}

For example, “MULTIDRIVE {FRFlipper 1.57} {FLFlipper 1.57}” will flip the front

flippers towards 90 degree.
Sensors, cameras, and effectors can be attached to the Tarantula model in the

same way as to any other robot, as for example a P2AT.

113

12.10.2Configuration

In addition to standard configuration settings, one can define the accuracy of
the track-simulation of the Tarantula model. The tracks of the Tarantula model are
simulated by a series of tires, which is computationally complex on the Unreal
engine. When the number of tires is large, the simulation might become unstable due
to the computational complexity. Hence, the model enables one to adjust the number
of tires utilized for the simulation of one track according to your specific needs. Note
that with increasing number of tires, the quality of the simulation increases, however,
the computational complexity increases as well. The adjustment can be done in the
USARBot.ini file, in the sections USARBot.TarantulaFrontTrack and
USARBot.TarantulaRearTrack, respectively.

12.11 Zerg

12.11.1 Introduction

The Zerg robot is a 4WD (4-wheeled robot), which has been developed and
deployed by the team “Rescue Robots Freiburg” during RobotCup05. The simulation
model was developed at University of Freiburg and has been further improved and
merged into USARSiIm by the University of Pittsburgh. The character of this model is
“simple”.

In USARSIm, we use classname USARBot.Zerg to represent this robot.

a) Real Zerg b) Simulated Zerg
Figure 35: Zerg model

In summary, the Zerg has:
e Four wheels
e Differential steering

In our simulation, it is equipped with
e PTZ camera

The Zerg specification is as follows:
e Dimension: Length x Width x Height = 31.12cm x 41.54cm x 12.11cm
e Wheel radius = 6.06cm

114

e Maximum wheel spin speed: 6.2832 rad/sec
12.11.2 Configuration

See P2AT.
12.12 Talon

12.12.1 Introduction

The Talon is a lightweight tracked vehicle built by Foster-Miller (www.foster-
miller.com) for missions ranging from reconnaissance and weapons delivery to
rescue.

In USARSIm, we use classname USARBot.Talon to represent this robot.

a) Real Talon b) Simulated Talon
Figure 31: Talon Robot

In summary, a Talon has:
e Two tracks
e One arm with two joints
e Weight: 34 kg
e Payload: 45 kg
In USARSIm, the Talon is equipped with
e 4 fixed color cameras
One gripper with two fingers

[]
e One odometry sensor
e One INU sensor

The Talon specification is as follows:

e Dimension: Length x Width x Height = 91.17cm x 59.03cm x 36.54cm
e Wheel radius = 0.28cm

e Maximum wheel spin speed: 6.43 rad/sec

12.12.2 Configure it
It’s the same as P2AT.

115

http://www.foster-miller.com/
http://www.foster-miller.com/

12.13 QRIO
12.13.1 Introduction

The QRIO is an artificially intelligent humanoid designed and manufactured by
Sony. Although the QRIO was to be marketed and sold by Sony as an
“entertainement robot”, development stopped in January 2006.

In USARSIm, we use classname USARBOot.QRIO to represent this robot.

'

a) Real QRIO b) Simulated QRIO
Figure 36: QRIO Robot

In summary, the QRIO has:

e Two Legs, each of which has 6 joints

Two Arms, each of which has 3 joints

Head made of 2 Joints (Pan and Tilt)

Rotation Body made of two joints (Pan and Tilt)
Head Camera

12.13.2 Configure it
It’s the same as the P2AT.

12.14 ERS
12.14.1 Introduction

The ERS (also known as AIBO) is an artificially intelligent robotic pet designed
and manufactured by Sony. The ERS is able to walk, see its environment via camera,
and recognize spoken commands. ERS robots are used in the Four-Legged League of
RoboCup soccer.

In USARSIm, we use classname USARBOt.ERS to represent this robot.

116

a) Real ERS b) Simulated ERS
Figure 37: ERS Robot

In summary, the ERS has:

Four legs, each of which has three joints
Paw sensors in each Leg

Head made of three joints

Head Camera

IR Distance Sensors (Near and Far)
Weight: 1.6 kg

The ERS specification is as follows:
e Dimensions: 31.9cm x 18.0 cm x 27.8 cm

12.14.2 Configure it
It’s the same as the P2AT.

12.15 Soryu
12.15.1 Introduction

The IRS Soryu is a serpentine robot used for search and rescue developed by
Tokyo Institute of technology and International Rescue System Institute. It has the
ability to easily intrude narrow spaces as well as traverse rough terrain.

In USARSIm, we use classname USARBot.Soryu to represent this vehicle.

117

a) Real Soryu b) Simulated Soryu
Figure 38: Soryu Robot

In summary, the Soryu has:

Three cars, each of which has two tracks
Two joints between each car (pan and tilt)
CCD and IR cameras

Ability to recover from lying on its side
Weight: 10 kg

The ERS specification is as follows:

e Dimensions: 121 cm x 12.2 cm x 14.5 cm
e Maximum translate speed: 370 mm/s

e Maximum step height: 483 mm

12.15.2 Configure it
It’s the same as the P2AT.

12.16 Kurt2D

12.16.1 Introduction
The Kurt2D is a high speed indoor robot.

In USARSIm, we use classname USARBot.Kurt2D to represent this robot.

118

a) Real Kurt2D b) Simulated Kurt2D
Figure 395: Kurt2D Robot.

In summary, the Kurt2D has:
e Six Wheels

e Differential steering

e Weight: 35 kg

In USARSIm, the Kurt2D is equipped with
One fixed color camera

One 2D SICK laser scanner

Two encoder sensors

One sonar sensor

Seven IR sensors

The Kurt2D specification is as follows:
e Dimensions: 45cm x 29cm x 35¢cm
e Maximum translate speed: 4 m/s

12.16.2 Configure it
It’s the same as the P2AT.
12.17 Kurt3D

12.17.1 Introduction

KURTS3D is a mobile robot of type KURT2D that is equipped with a 3D laser
scanner. Given the right control and sensor data processing software, it is generally
able to build 3D models (data point clouds) of its working environment
autonomously.

In USARSIm, we use classname USARBot.Kurt3D to represent this robot.

119

a) Real Kurt3D b) Simulated Kurt3D
Figure 406: Kurt3D Robot.

In USARSIm, the Kurt2D is equipped with
e Two color cameras

One 2D SICK laser scanner

Two encoder sensors

One sonar sensor

Seven IR sensors

12.17.2 Configure it

It’s the same as the P2AT.

To perform a 3D scan you have to manually set a rotation command to the
‘ScannerSides’.

DRIVE {Name ScannerSides} {Value ROTATION_ VALUE}

If you send this command often enough to GameBots (depends on the resolution

of your 3D scan) you get a 3D scan of the environment. This is not as easy as the
USARSIm RangeScanner3D, but using this procedure we can treat the simulated
scanner like the real scanner.

12.18 Lisa

12.18.1 Introduction

The LISA robot is developed in a BMBF funded project during the next 2 years.

It is an assistance system in a life science environment. The physical robot is not built
yet. We use USARSIm to explore the Omni drive behaviour of the robot. The robot
has two big Omni drive steered wheels on two opposite corners and two small passive
wheels on the other corners. It is equipped with encoder sensors on the steered
wheels.

In USARSiIm, we use classname USARBot.Lisa to represent this robot.

120

a) Real LISA robot b) Simulated LISA robot
Figure 417: Lisa Robot.

12.18.2 Configure it

It’s the same as the P2AT.

The LISA script file looks like this. Using the Omni drive DRIVE command we
are able to drive wheel 0 and 1 in every direction with every speed (taking the
MaxSteerAngle and MaxSpeed limits into account).
Wheels(0)=(Number=0,PowerType=Holo_Powered,SteerType=Holo_Steered,MaxSt
eerAngle=3.14);
Wheels(1)=(Number=1,PowerType=Holo_Powered,SteerType=Holo_Steered,MaxSt
eerAngle=3.14);

Wheels(2)=(Number=2,PowerType=Not_Powered);
Wheels(3)=(Number=3,PowerType=Not_Powered);

12.19 TeleMax

12.19.1 Introduction

The TeleMax is an EOD (explosive ordnance disposal) robot built by
Rheinmetall Defence (http://www.rheinmetall-defence.com) that intends to work in
narrow spaces.

In USARSiIm, we use classname USARBot. TeleMax to represent this robot.

121

http://www.rheinmetall-defence.com/

a) Real TeleMax b) Simulated Telemax

Figure 428: Telemax Robot

In summary, a TeleMax has:
e Four tracks
e One 7-axis manipulator with turret and linear axis

The TeleMax specification is as follows:

Wheel: Diameter x Width =38.1 cm x 9.5 cm

Size: Length x Width x Height = 80 cm x 40 cm x 75 cm (Stowed Position)
Vertical reach: 235 cm

Horizontal reach front: 120 cm

Maximum Speed: 1.3 m/s

Operation Time: 2 hours

In our simulation, it is equipped with
Fore fixed color camera

e One gripper with two fingers

e One Odometry sensor

e One INU sensor

To control the arm in USARSIm, we use the following commands:
Arm control:

MISPKG {Name TeleMaxArm} {Link 1} {Value x} {Link 2} {Value y} {Link
3} {value z} {Link 4} {value r} {Link s} {value t} {Link 6} {Value
u} {Link 7} {value v}

122

where x,y, z, 1, S, t, u, v are either the rotation angles in radians (for revolute joints) or
translation distance in meters (for prismatic joints). From the turret to the arm
terminal (the gripper), Link 1-7 correspond to the turret pan axis, upper arm tilt axis,
telescope, lower arm tilt axis, lower arm turn axis, gripper tilt axis, and gripper turn
axis, respectively. For example, to set the arm in initial pose, we use:

MISPKG {Name TeleMaxArm} {Link 1} {Value 0} {Link 2} {Value 2} {Link 3}
{Value 0} {Link 4} {Value -2} {Link 5} {Value 0} {Link 6} {\Value 0} {Link 7}
{Value 0}

Flipper control:
MULTIDRIVE {FRFlipper x} {FLFlipper y} {RRFlipper z} {RLFlipper r}

where X, y, z, r are the flipper angles in radians. The four parameters control the front
left, front right, rear left and rear right track separately. For example, to stow the
tracks to lift or lower the chassis, we use

MULTIDRIVE {FRFlipper -1.5} {FLFlipper -1.5} {RRFlipper 1.5} {RLFlipper 1.5}
or.

MULTIDRIVE {FRFlipper 1.5} {FLFlipper 1.5} {RRFlipper -1.5} {RLFlipper -1.5}

Gripper control:
SET {Type Gripper} {Name Gripper} {Opcode Open} {Params X}

where x is the desired open angle in radians. For example to open and close the
gripper, we use

SET {Type Gripper} {Name Gripper} {Opcode Open} {Params 1}

and

SET {Type Gripper} {Name Gripper} {Opcode Open} {Params 0}

12.19.2 Configure it
It’s the same as P2AT.

12.20 AirRobot
12.20.1 Introduction

The AirRobot is a four-rotor electrical helicopter with flight stabilization control
produced by AirRobot Co. (http://www.airrobot.com/englisch/index.php). The
AirRobot serves many purposes including, but not limited to, exploration,
observation, documentation, and measurement.

In USARSIm, we use classname USARBot.AirRobot to represent this robot.

123

http://www.airrobot.com/englisch/index.php

a) Real AirRobot b) Simulated AirRobot
Figure 439: AirRobot

In summary, an AirRobot has:

e Four propellers

e One color camera that can tilt
e Weight: 1 kg

e Payload: 200 g

In USARSIm, the AirRobot is equipped with
e One “tilt-only” color camera

The AirRobot specification is as follows:

e Dimension: Length x Width x Height = 0.999m x 0.999m x 0.194m
Maximum altitude velocity: 5 m/s

Maximum linear velocity: 5 m/s

Maximum lateral velocity: 5 m/s

Maximum rotational velocity: 1.5708 rad/s

12.20.2 Configure it
It’s the same as P2AT.

12.21 Passarola

12.21.1 Introduction

Passarola (the aerial blimp/zeppelin robot), Autonomous blimp for rescue missions
(http://rescue.isr.ist.utl.pt/), from IST - Instituto Superior Técnico (Higher Technical Institute) —
Portugal

124

a) Real Passarola b) Simulated Passarola

In USARSIm, we use classname USARBot.Passarola to represent this robot.

In summary, Passarola has:

* Three propellers (two for the linear movement, vectoring 180 degrees (-90° to 90°), and one
on the tail for angular movements)

* One color camera that can tilt

» Weight: 3 kg

* Payload: 2 Kg

In USARSIm, the Passarola is equipped with
* One “tilt-only” color camera

The Passarola specification is as follows:

» Dimension: Length x Width x Height = 4.0m x 2.0m x 2.0m
* Maximum altitude velocity: 2 m/s

» Maximum linear velocity: 2 m/s

» Maximum rotational velocity: 1 rad/s

12.21.2 Configure it
It's the same as P2AT.

12.21.3 Extended USARSim command for Passarola robot
DRIVE {XZAngle float{ThrustPropeller float }{TailPropeller float }

Where:

{ XZAngle float}

‘float’ is the rotation angle of the support thrust motors bars, that make possible change the
altitude of the robot (i.e up/down). If we use normalized values, the value range is -100 to 100
and corresponds to the bar’s minimum and maximum rotation angle, respectively. Otherwise,
the value is the absolute rotation angle, in radians per second.

{ ThrustPropeller float}

‘float’ is the module of the velocity vector to be applied by the front thrusters, to move the
robot in the X0Z plane (i.e forward/backward and up/down as the value of XZAngle). If we
use normalized values, the value range is -100 to 100 and corresponds to the robot’s
minimum and maximum velocity, respectively. Otherwise, the value is the absolute linear
velocity, in meters per second.

{ TailPropeller float}

‘float’ is the rotational velocity (i.e left/right). If we use normalized values, the value range is -
100 to 100 and corresponds to the robot’s minimum and maximum rotational velocity,
respectively. Otherwise, the value is the absolute rotational velocity, in meters per second.

125

{Normalized bool}
Indicates whether we are using normalized values or not. The default value is ‘False’ which
means absolute values are used.

Example: DRIVE { XZAngle 0.5} will rotate the support motor bars 0.5 radians
DRIVE { ThrustPropeller 1} will thrust the robot at a rate of 1 meters per second.
DRIVE { TailPropeller -0.3} will rotate the robot to the right at a rate of 0.3 radians per
second.

12.22 Rugbot

The Rugbot Robot is a compact, lightweight, rugged vehicle developed at Jacobs
University Bremen. It is ideal for both autonomous and teleoperated mode of
operation.

In USARSIm, we use classname USARBot.Rugbot to represent this robot.

a) Real Rugbot b) Simulated Rugbot
Figure : Rugbot Robot
In summary, a Rugbot has:
» Two tracks
» Weight: 34 kg

126

« Payload: 45 kg

In USARSIm, the Rugbot is equipped with

* One Panasonic Pan/Tilt camera

* One SICK LMS sensor

 One odometry sensor

* One INU sensor

The Rugbot specification is as follows:

 Dimension: Length x Width x Height = 38.5cm x 25.5cm x 27.0cm
» Wheel radius = 0.125cm

» Maximum wheel spin speed: 6.0 rad/sec

Configure it
It’s the same as P2AT

12.23 Kenaf

12.23.1 Introduction

The Kenaf is a 6-track mobile robot platform which is designed for drastic
performance gain of uneven terrain mobility. In fact, the Kenaf wins championship in
RoboCup Rescue 2007 Mobility Challenge. Each track of the robot grasps the
environment firmly and makes the robot to be grounded to the environment, and the
robot gets over the unknown rough terrains. This robot will be commercially
available.

In USARSIm, we use classname, "USARBot.kenaf," to represent this robot.

In summary, the Kenaf has:

. Two full body tracks to avoid stacking on a pole in step field
. Four flippers, each of which can be controlled independently
. Powered by 6 x 50W brush-less DC motors

The Kenaf's specification is as follows:
. Dimensions :
Minimum Length = 575 [mm]
Maximum Length = 937 [mm] (include flipper length)
Width = 429 [mm]
Height = 259 [mm] (without sensors and cameras)
. Weight approx. 20 [kg]

In our simulation, it is equipped with
. One PTZ camera

. One Bird's-eye view camera

. One 2D Hokuyo laser scanner

. Six encoder sensors

127

Sensors and effectors can be attached to the Kenaf model in the same way as to any
other robot, as for example a P2AT.

To control the arm in USARSIm, we use the following commands:

Flipper control:

MULTIDRIVE {FRFlipper x} {FLFlipper y} {RRFlipper z} {RLFlipper r}

where X, v, z, r are the flipper angles in radians. The four parameters control the front
left, front right, rear left and rear right track separately. For example, to stow the
tracks to lift or lower the chassis, we use

MULTIDRIVE {FRFlipper -1.5} {FLFlipper -1.5} {RRFlipper 1.5} {RLFlipper 1.5}
or.

MULTIDRIVE {FRFlipper 1.5} {FLFlipper 1.5} {RRFlipper -1.5} {RLFlipper -1.5}

Camera control:

MULTIDRIVE {kenafCameraPan x}{kenafCameraTilt y}

where X, y are the pan, tilt angles in radians. For example, to pan the camera to left or
right side 1.0 radians.

MULTIDRIVE {kenafCameraPan -1.0}{kenafCameraTilt 0.0}

or.

MULTIDRIVE {kenafCameraPan 1.0}{kenafCameraTilt 0.0}

Figure 44: Real and simulated Kenaf

12.23.2 Configure it
It’s the same as the P2AT.

128

13 Controller

13.1 MOAST

A description of the low-level connection (the architectural servo and prim
levels) from MOAST to USARSIim is provided here. For a more complete description
of the MOAST system, please refer to the MOAST manual
(http://moast.sourceforge.net/).

A description of how to install and bring a robot into the environment is
presented in Section 5.2.2. It is assumed that you have successfully installed MOAST,
started the Unreal Server, and have run the “run” script (located in the bin directory)
with SECT, VEH, and AM set to ‘no’ and PRIM and USARSIM set to ‘yes’.

NOTE: You must set the HOST_NAME in the file moast.ini to point to the machine
that is running the Unreal Server.

You should now see the specified robot type at the specified start location in
your Unreal Client window (if you are running the client!). The type and location are
specified under the block in the moast.ini file that pertains to the arena currently
under play by the Unreal Server that was connected to.

Under the MOAST framework, all of the sensor data and robot commands are
delivered over Neutral Messaging Language (NML) buffers. There are three general
techniques for a user or program to interface to these buffers. The first is to directly
connect to the appropriate NML buffer (please see the NML tutorial located at
http://www.isd.mel.nist.gov/projects/rcslib/), the second is to utilize one of the
provided shells, and the third is through the RCS Diagnostics tool.

An example of directly connecting to NML buffers is provided by the nmlPrint
program located in the moastBaseDir/devel/src/tools directory. This program prints
out the content of a selected buffer to the screen. By piping its output to other
programs (such as gnuplot), sensor displays and graphs are possible. Figure shows
the result of running the command spPlot | gnuplot where spplot is a shell script
located in MOAST’s bin directory that runs nmlPrint on the buffer
servoSPLinescanl. This buffer contains the data received from the Sick LMS sensor
on robot 1 and (like all NML buffers) is available to any computer that has a network
connection to the system running the MOAST/USARSIm middle ware. The actual
location of the buffer is invisible to the application that is connecting to the buffer.

129

http://www.isd.mel.nist.gov/projects/rcslib/

- Gnuplot EEE

20 T T el

Figure 40: Image from the unreal Client and resulting graphical display of Sick LMS readings provided by
nmlPrint and gnuplot. The building and trees are clearly visible in the plot.

The second technique is to utilize the command shell that is started by the run
script. A command shell exists for each level of the hierarchy, and the run script
automatically starts the highest level command shell that is appropriate. In our case,
the prim shell will be started and the window where the run script was started should
now be displaying a ‘>’ prompt that lets you know you are in the prim shell. Other
command shells may be opened by hand in additional windows. Pressing a carriage
return (<CR>) will print the robot’s current status. Entering ?<CR> will provide a list
of available commands. The information provided by the status message is as
follows:

command_type: The name of the executing command.

echo_serial_number: The serial number of the executing command.

status: The system status.

state: Most RCS controllers run state machines. This is the id
of the current state.

line: The line in the source code of the state table that is
being executed.

source_line: The location of the beginning of the current state in the
source file.

source_file: The name of the source code file.

heartbeat: A constantly increasing number that allows you to
know the system is functioning.

pathindex: If the system is following a path, this indicates which
point in the path is being servoed to.

tranAbs: The X, y, z location in meters of the vehicle in absolute
coordinates

rpyAbs: The roll, pitch, and yaw in radians of the vehicle in
absolute coordinates

tranRel: The X, y, z location in meters of the vehicle in vehicle
relative coordinates.

rpyRel: The roll, pitch, and yaw in radians of the vehicle in

relative coordinates.

130

The available commands for the robot at this level of control are:

init: Initialize the system.

halt: Provide an orderly, safe, and recoverable halt of all
systems.

abort: Provide an immediate and safe halt of all systems.
Some systems may need to be reset to recover from an
abort.

shutdown: Turn off (power down) the systems.

arc <file>: Drive the arcs given in the file <file>.

wp <file>: Drive straight line segments between points given in the
file <file>.

rotate <theta>: Rotate the robot to angle theta.

vel <v> <w>: Drive the vehicle at velocity v with rotational velocity
w.

ct <secs>: Set the system cycle time to <secs>

pars <5, vmax...>: Configure the vmax, amax, wmax, alphamax, and cut
parameters that are used for path following.

debug: Set the debug output level of the software at this level.

More information on the commands available at this level of the hierarchy as
well as the other levels may be found at the MOAST website. It should be noted that
the shell programs are provided to demonstrate how to connect to the robot at various
levels of control and to provide some simple user debugging.

One of the features of MOAST is that all of the control interfaces are brought
out over standardized interfaces with NML. Complete documentation on the available
buffers is available on the MOAST website. Programs running on Windows
(compiled with Microsoft Visual C++), under cygwin (compiled with GNU tools),
and under Linux may all connect simultaneously to these buffers. The contents of all
of these buffers may be examined by running the RCS-Diagnostics tool (the third
technique). This may be run from the moast_base_dir/devel/src/nml directory as
either ./moastDiag.csh or ./moastDiag.cygwin.csh depending on your operating
system.

131

£ RCS-Diagnostics(2005.June) -- moast.diag

Current Command: FrimMobJACmdInit

int serial _number=l

a7

i
EE

long command_type=7001

Hierarchy URL: [moass.aiag [r— ‘ LoaD |
Zozd: 568 / We Ezzer. Befresh Time = 0.5 sscomds] p [rom
|v/ CONMECTED 82 out of 32 : 22 tried ‘Lﬂ-ﬂma sts msgs for primMob . . . [1 out of Il Jtop all Flotting ‘ Jave Jtate | load 3tate |
e : = N &eE
Modul Commands Available Cmd To Send: PrimMokJACmdMoveArsSegment=7005 Sens
servosk | PrimMohJACudInic=7001 “| int zerial number=2 =
servollis PrinMobJiCmdHalt=7003
servoMob PrinMobJaCudibort=7002 double arclist[0].center.x=0
primsP PrimMobhTaCudShurdomms="7004 double arclist[0].center.y=0
prinfis double arclList[0].center.z=0
_ PrimMoblACudMovelaypoint=7006 double arclizc[0].end.x=0
amSP PrimMobhTaCudRotate=7007 double arclisc[0].end.y=0
amMis PrinMobTaCmdVel=7008 double arclist[0].end.z=0
anMob PrimMobJACEfgCyeleTine=7201 double arclist[0].normal.x=0
vehMoh PrinMobJaCEgiove=7202 double arclist[0].normal.y=0
PrinMobdACEgDebug=7203 double arclList[0].normal.z=0
double arclist[0].theta=0
dowble arclist[0].annular_tol=0
double arclList[0].speed=0
int arcList[0].isdrc=0
-
1 [»
- - -
inc arclizs lemgth
4 [» 4 | »
[connecce Hosz Cmdre CondBu£fe cunk, Ssasfere SzacBufferfumber
1/ |1u==1hun. 20288 ‘s | 020. ‘JD]

int echo_serial number=l

enum RCS_STATUS status=RCS_DONE

int state=l

int line=283

int source_line=263

char source_file[64]=../src/prin/prinMobMain. cc

int heartbeat=127513

int pathIndex=0

4

[~ Plot this Stastus Variable
I 2lot thiz azzay.

7 Use this Status Vazi

able as

Figure 45: MOAST Diag display

Figure 45 displays the details page of the diagnostic tool. This tool allows you
to see the details of the currently executing command for any module and the

module’s status. In addition, any command may be sent to any module from this
interface. This allows for complete unit testing of control code. Once again, much

more information is available on the MOAST website.

13.2 Pyro

A complete description of Pyro can be found on the Pyro website:
http://pyrorobotics.org/pyro/?page=PyroModulesContents. In this section we only

explain the elements that are involved in USARSIm.

13.2.1 Simulator and world

The USARSIm simulator loader is put into the pyro\plugins\simulators
directory. The loader USARSIim.py is a Python program that can load the Unreal
server and client for the user. It reads the world file to figure out which arena (map)
you want. Then, it will start the Unreal server using the appropriate arena (map) in the

132

Unreal world. After a wait of 5 seconds to load the server, it will launch the Unreal

client.

The world files for USARSIm are stored in the plugins\worlds\USARSIm.py
directory (NOTE: here USARSIm.py is not a file. It’s a directory.). The file follows
the INI file format. A world file looks like:

[Server]
Path=c:\ut2004
App=ut2004.exe
LoadServer=true
IP=127.0.0.1
Port=3000

Map=DM-USAR_yellow
Location=4.5,1.9,1.8

Where:
Path

App

LoadServer

IP
Port

Map

Location

13.2.2 Robots

The install path to UT2004.

The application used to load Unreal Client. For UT2004, it’s
UT2004.exe.

A Boolean variable indicating whether the loader needs to start
the Unreal server. If you already started Unreal server or you
want to run the Unreal server on another machine, you need to
set LoadServer to false. Default value is true.

The IP address of the Unreal server. Default value is 127.0.0.1
The port number of the Gamebots. Default value is 3000. The
port number should be the same as the “ListenPort” in the
BotAPL.ini file in the Unreal system directory (more details see
section 9.1).

The Unreal map you want to load. For yellow, orange and red
arenas, they are DM-USAR_yellow, DM-USAR_orange and
DM-USAR_red.

The initial position where the robot will be spawned. Please
refer Table 2 or the map location files that are bundled with the
maps to decide the values you want.

USARSIm robot drivers are written for Pyro. In summary, there are three levels
of control provided by the drivers.

The lowest level driver is robots\driver\utbot.py. It communicates with the
Unreal server through a TCP/IP socket. The main functions in the driver are

1) Creating a connection with the Unreal server

2) Sending commands to the Unreal sever.

3) Listening and parsing messages from the Unreal server.

133

In the robots\USARBot directory are the low level drivers. __init__.py is the
basic driver that provides the Pyro interface. It lets the Pyro commands and data be
understood by USARSIm. The P2AT.py, P2DX.py. PER.py etc are the drivers
extended from the basic driver. These drivers configure the basic driver according to
the individual robot. For example, it configures which sensor is mounted on the robot.

At last, you will find several files in the plugins\robots\USARBot directory.
These files are the wrapper to the robot drive. You can directly load these files from
the Pyro GUI to add a robot into the USARSIm virtual environment.

13.2.3 Services

To help the user to understand the data being reported by the sensors, some
services are added to visualize the sensor data. These sensor visualizations are

modified from the visualization module of PyPlayer
(http://robotics.usc.edu/~boyoon/pyplayer/). To load the services, from the ‘Load’
menu select ‘Services ...”. Then go to plugins\services\USARBot directory you can

found all the services. The real code for these services is in the
robots\USARBot\ _init__.py file. The supported sensors are:
e Sonar

Sonar ¥iewer

LN

Figure 46: Sonar visualization

134

e Laser

=10l x|

Figure 473: Laser visualization

e PTZ Camera

PTZ Viewer/Cont =10] x|
q0.0
FOw:50
4510 Zoom |n
Zoom Ot
oo -05 j
450
90,0
R3]

900 450 00 45.0 900

Figure 484: PTZ Camera viewer and controller

13.2.4 Brains

Pyro refers to control programs as “Brains”. Since the USARSIim API follows
the Pyro interface, the brains of Pyro will work for USAR robots. The tested working
brains include Slider.py, Joystick.py, and BBWander.py.

13.3 Player

Player provides a client-server based hardware abstraction layer. Every sensor
supports one or multiple sensor interfaces. Therefore it’s not important, if used for
example a SICK or a Hokuyo or a simulated laser scanner. This provides the
possibility to create high level abstract drivers like localization or path planning

135

drivers. The following figure shows the UT2004 window and the standard player
GUIs playerv and playernav for path planning and sensor data visualisation.

e View Devces

I e —eeee——————————
Fi

Figure 495: playerv sensor data visualization tool (top), playernav player navigation and path planning

tool,(left), the simulated robot in USARSIm (right).

In this section, we introduce how to control USARSIm robots through Player.
At first, we explain how to plug USARSiIm into Player. And then we explain all the
Player drivers added into USARSIm. For additional information about Player, please

read the Player Wiki: http://playerstage.sourceforge.net/wiki/Main_Page.

13.3.1 Simulation and device configuration

In Player, all the USARSIm actuators and sensors are treated the same as the
physical devices. The only difference between our USARSIm device driver and the
physical device driver is that our driver exchanges data with the Unreal server while
physical device drivers exchange data with physical devices. Like all the other Player
devices, to use USARSIm, we need to define the Player configuration file. In the

Player configuration file, we need to:
1) Define the USARSIm robot

Before we can control a robot in USARSIm, we need to spawn it in the
virtual world. The USARSIm robot definition defines how the robot is added
into USARSIm. In detail, we define where the Unreal server is, which type of
robot is added to the simulation, and where it is spawned. The complete
configuration options can be found in section 13.3.2.1.

136

2) Define USARSIm devices

In the definitions, we define the parameters that help Player figure out
where and how the devices are connected. The definition is very similar to that
of the physical devices. The only exception is that instead of defining the
device’s connection port, we define the USARSIm robot where the device is
located. The details about how to configure the USARSIm devices is explained
in section 13.3.2.2 to section 13.3.2.7.

The following is an example player configuration file:

driver
(
name "'us_bot"
provides ["simulation:0"]
port 3000
host "127.0.0.1"
pos [-5 27 0.5]
rot [0 O O]
bot "USARBot.P2AT"
botname *‘robotl™

)

driver
name "'us_laser"
provides ["laser:0"]
requires [“simulation:0"]
laser_name "'Scannerl"

)

driver

(.
name '‘us_position”
provides ["odometry:::position2d:0"]
requires [“"simulation:0"]

)

driver

(
name '‘us_sonar"
provides ["sonar:0"]
requires ["simulation:0"]
sonar_name "'F'

)

driver

(

name '‘us_sonar"

provides ["sonar:1"]
requires ["simulation:0"]
sonar_name "'R"

The USARSIm robot is defined in ‘simulation:0’. It’s a P2AT robot. The
‘odometry:::position:0” and ‘laser:0’ are USARSIm devices. The ‘requires

137

[simulation:0]” specifies that the devices are located on ‘simulation:0’ that is the
P2AT robot.

If you want to control multiple robots with player, you can insert multiple
simulation devices into the configuration file (provides [“simulation:0],..., provides
[“simulation:1”],..., provides [“simulation:2”],...) and connect the sensor to a
simulation device using requires [“simulation:0”] or requires [“simulation:1”] .

But it is easier to start a player server for each simulated robot. (If you want to use the
player GUIs playerv and playernav you have to do this.)

If you want to start player you have to do the following steps:
1. start the USARSIm server

2. adjust the host and port in your player configuration file to
the USARSIm server.

execute the player server: player p2at.cfg
4. execute playerv to see your sensor data.

13.3.2 Device Drivers

In this section, we explain how the USARSIm devices work and how to
configure them.

13.3.2.1 us_bot
Synopsis:
The us_bot driver is the bridge between Gamebots and the USARSIm
devices. It takes care the following tasks:
1) Connect to the Unreal server specified by ‘host” and “port’.
2) Spawn a robot of type “bot’ at location “pos’.
3) Collect and parse the robot’s data from Gamebots.
4) Provide the collected data to other USARSIm devices and transfer
these devices’ commands to Gamebots.

Interfaces:

Supported interfaces:
e simulation
Required devices:

e None.

Configuration file options:

Name Type Default Meaning

host string 127.0.0.1 The Unreal server name
port int 3000 The Gamebots port number
pos int,int,int | 0,0,0 The initial spawn position

138

rot int,int,int | 0,0,0 The initial spawn orientation
bot string P2AT The robot type
botname | string - The robot name

13.3.2.2 us_position
Synopsis:

The us_position driver is used to control the robot’s movement. It gets the
robot’s steering type from USARSIm and interprets the player driving
commands according to this steering type.

Interfaces:

Supported interfaces:

e position2d

Required devices:

e simulation

Configuration file options:
Name Type | Default Meaning
simulation | int -1 The simulation id that specifies the
USARSIm robot where this device
is located.
Odo_name | String | Odometry | The name of the USARSIm
odometry sensor.

13.3.2.3 us_position3d
Synopsis:

The us_position3d driver is the same as us_position except that it uses the
position3d interface.

Interfaces:

Supported interfaces:

e position3d

Required devices:

e simulation

Configuration file options:
Name Type | Default | Meaning
simulation int -1 The simulation id that specifies the

USARSIm robot where this device is
located.

13.3.2.4 us_sonar
Synopsis:

139

The us_sonar driver is used to access the robot’s sonar arrays.

Interfaces:

Supported interfaces:

e sonar
Required devices:
e simulation.

Configuration file options:

Name Type | Default Meaning

simulation int -1 The simulation id that
specifies the USARSIm robot
where this device is located.

sonar_name string | - The name of your sonar array

if you have a sonar array
named “F1” — “F8” your
sonar name must be “F”

13.3.2.5 us_laser
Synopsis:

The us_laser driver is used to access the robot’s laser sensor. It only
accesses the laser whose name is the same as the ‘name’ specified in the

configuration file.
Interfaces:

Supported interfaces:

o laser
Required devices:
e simulation.

Configuration file options:

Name Type | Default Meaning

simulation int -1 The simulation id that specifies
the USARSIm robot where this
device is located.

Laser _name string | - The name of the laser.

13.3.2.6 us_fakelocalize
Synopsis:

The us_fakelocalize driver is used to provide a ground truth localization in
player using the USARSIm STA message.

Interfaces:

Supported interfaces:

e position2d

140

Required devices:
e simulation.

Configuration file options:

Name Type Default Meaning

simulation int -1 The simulation id that specifies
the USARSIm robot where this
device is located.

origin int,int,int | 0,0,0 This value is added to the

USARSIm position to adjust the
USARSIm coordinate system to
the player coordinate system.
Only x and y are used.

13.3.2.7 us_ptz
Synopsis:

The us_ptz driver is used to control the robot’s ptz camera. But you can’t
get the current orientation and camera velocity yet. The camera should use

absolute pose control.
Interfaces:

Supported interfaces:
e [tz

Required devices:

e simulation.

Configuration file options:

Name Type

Default

Meaning

Simulation int

-1

The simulation id that specifies
the USARSIm robot where this
device is located.

NOTE: The camera should use absolute pose control.

13.3.2.8 Known bugs

1. There is frequently the “Read Timeout while trying to read from server* error
in us_bot.cc. But it seems like this doesn’t affect anything.

2. Sometimes the us_position device is not able to get the robot configuration
from USARSIm. If that’s the fact you can’t control the robot from player or
you even get a “can’t subscribe to position2d device” error and player shuts

down.

3. If you subscribe to a laser or a sonar device and the robot is not in 0,0,0
orientation the sensors point in the wrong direction. This is because

141

USARSim GEO message supports the sensor orientation in a global
coordinate system and not in a robot centered coordinate system.

14 Advanced User

This section is for advanced users who want to build their own additions to the
simulator. We assume the user already has programming experience or 3D modeling
experience and robot background.

Before we start this section, we need to change the ut2004.ini file found in the
Unreal system directory. Adding the following lines to the corresponding sections in
ut2004.ini will let the Unreal engine recognize our own model. With this
modification, we can compile and use our models in Unreal Editor.

[Engine.GameEngine]
ServerPackages=USARBot
ServerPackages=USARBotAPI
ServerPackages=USARMisPkg
ServerPackages=USARModels
ServerPackages=USARVictims

[Editor_EditorEngine]
EditPackages=USARBot
EditPackages=USARBOtAPI
EditPackages=USARMisPkg
EditPackages=USARModels
EditPackages=USARVictims

[UnrealEd.UnrealEdEngine]
; Use this section only if you want USARSIm packages to
; automatically
; load up when you start UnrealEd.
EditPackages=USARBot
EditPackages=USARBOtAPI
EditPackages=USARMisPkg
EditPackages=USARModels
EditPackages=USARVictims

NOTE: You need to modify ut2004.ini before you build your own models.

14.1 Build your arena

An arena is an Unreal map. It includes geometric models and objects in the
environment. The objects can be obstacles such as bricks or victims that can move
their bodies. Before building your arena, we must keep in mind that all the meshes
must be static meshes. Karma objects only works well with static meshes. In addition,
static meshes can accelerate 3D graphic rendering.

NOTE: All the meshes must be static mesh. The Karma engine only works well with
static meshes.

142

When you build a new arena, there are three things you may need to do: 1) build
the geometric model, 2) simulate some special effects, and 3) add objects such as
obstacles and victims into the arena. The three things are explained in the following
sections.

14.1.1 Geometric model

We have two options for building a geometric model. One is to import an
existing model into Unreal. The other is to build the model by hand in Unreal. After
building the model, we need to transfer it into a static mesh.

To facilitate users building their own arenas, we modeled all the parts used for
building the NIST arenas. The model packages are located in the file
ut2004\StaticMeshes\NIST.usx and ut2004\StaticMeshes\USAR_Meshes.usx.

- -nnr:.u_'r:u]

fid :.'_-'.-r.'r.!rj-u'r,r .
= _HHH-!'H’H-!I{-'

"‘:‘

Figure 50: Some NIST facilities

14.1.1.1 Import an existing model

The basic idea of importing a model is to convert your model into a format that

Unreal Editor can read in. The file formats that are supported by the Unreal engine
are:

e ASC: A 3D graphics file created from 3D Studio Max.
e ASE: Short for ASCII Scene Exporter.

o DXEF: 3D graphic image file originally created by AutoDesk which stores
3D scenes and models.

e LWO: Is from LightWave model program.
e T3D: Is atext file that holds a text list of Unreal map objects.
Details about how to import a 3D model are described in the document:

143

UDN: Converting CAD data into Unreal
(http://udn.epicgames.com/Two/CADtoUnreal).

14.1.1.2 Build it with Unreal Editor

Unreal Editor is a nice 3D authoring tool. There are two websites you may need
to visit if you want to learn how to build a map with Unreal Editor.

UDN (Unreal Developer Network): http://udn.epicgames.com

Unreal Wiki: http://wiki.beyondunreal.com/wiki/

The “Basics’ category in UDN contains documents with all of the details of
modeling with the Unreal Editor. And the ‘Topics On Mapping’ under Unreal Wiki
(http://wiki.beyondunreal.com/wiki/Topics_On_Mapping) lists all the topics involved
in mapping.

14.1.2 Special effects

Most of the special effects are obtained by applying special materials. Please
read the UDN: Material Tutorial (http://udn.epicgames.com/Two/MaterialTutorial) to
have a sense of what an Unreal material is.

The mask effect (parts of material are either opaque or transparent) is achieved
by using textures with an alpha-channel. The gray level in the alpha-channel indicates
how transparent the corresponding pixel will be. Alpha-channel with grid bitmap will
bring us the grid fender effect.

The glass effect is simulated by semi-transparent material. A texture with a gray
alpha-channel will give us a semi-transparent effect. Using shaded material, we can
get higher fidelity effects.

The mirror effect is obtained by using scripted texture. The basic idea is to put a
camera in the place you want to put the mirror and then render the picture from the
camera, into the place where the mirror is. The idea comes from Angel Mapper’s
reflection tutorial (http://angelmapper.com/tutorials/reflections.htm). The details
about how to add a mirror can be found at the Security Camera Tutorial that is located
at http://angelmapper.com/tutorials/securitycamera.htm. According to the author, this
approach doesn’t work online. To fix this shortcoming, a customized
CameraTextureClient named myCameraTextureClient is created in USARSIm.
Replacing all the CameraTextureClient by myCameraTextureClient in the tutorial,
will give us a mirror effect that works online. To add myCameraTextureClient, go to
the ‘Actor Classes’ browser in Unreal Editor, select myCameraTextureClient from
the path:

Actor\Info\CameraTextureClient\imyCameraTextureClient

14.1.3 Obstacles and Victims

To get a high fidelity simulation, we recommend using Karma objects as the
obstacles. An example of adding Karma objects in a map can be found at UDN:
Karma Colosseum (http://udn.epicgames.com/Two/ExampleMapsKarmaColosseum).

144

http://udn.epicgames.com/Two/ExampleMapsKarmaColosseum

There is a known bug in UT2004 that the KActor doesn’t support networks well. The
KNActor included in USARSIm is the substitute that fixes this bug.

Victims are another type of objects we may need to put into the map. Victims
are special objects that can implement some actions. The victim model built in
USARSIm can be loaded from the Unreal Editor. To load it, please open the ‘Actor
Classes’” browser and select the USARVictim from the following path:

Actor\Pawn\UnrealPawn\xIntroPawn\USARVictim
After you put it on the map, you can
1) Set the mesh

The default mesh is “Intro_gorgefan.Intro_gorgefan’. To change the mesh,
double click the victim to pop up the ‘USARVictim Properties’. Then, open the
‘Display’ category. Changing the ‘Mesh’ item in this category will set the
victim’s mesh.

2) Specify the actions

In the ‘USARVictim Properties’, under the “Victim’ category are the
parameters that specify the victim’s actions. These parameters are:

AnimTimer Sets how quickly the victim moves. Low value means a
slow action.

HelpSound Sets the sound the victim can play

Segments Specifies how the body segment moves. You can set at

most 8 segments. For every segment, you can define an
action. The segment will move from the initial pose to the
final pose with the specified move rate. The action
definition parameters are:

InitRotation The initial rotation (pitch, yaw, and roll
in integer. 65535 means 360 degrees)
of the segment.

FinalRotation The final rotation (pitch, yaw and roll
in integer. 65535 means 360 degrees)
of the segment.

PitchRate The move amount from current pitch
angle to the next pitch angle. Large
PitchRate means tilt quickly.
YawRate It’s the same as PitchRate except that it
defines the yaw angle.
RollRate It’s the same as PitchRate except that it
defines the roll angle.

Scale The scale of this segment. *0” will hide
this segment. Since there is hierarchical
relationship in the skeletal system, this
scale value will affect other segments

145

under it. For example, hips will affect
thigh, shine and foot.

SegName The name of the segment. Different
skeletal meshes may have different
names. You can use the ‘Animations’
browser to view the bone name. An
example in showed in Figure 51.

[REFPOSE] , Seqg o,

E_Aand E_Foreerm,

Figure 517: Skeletal bones name
For more details about skeletal mesh, please visit:

UDN: AnimBrowserReference
(http://udn.epicgames.com/Two/AnimBrowserReference)

UDN: UWSkelAnim2 (http://udn.epicgames.com/Two/SkelAnim2)

After you set the actions, the victim will not move immediately. In Unreal
Editor, everything is static. To let them to be active, you need to play the map.

As we know, there is a bug in the Unreal engine. Some meshes may play their
default animations when your viewpoint is far away from the victim.

NOTE: There is hierarchical relationship in the skeletal system. Changing one scale
value may affect other segments under it. For example, hips will affect thighs,
shins and feet.

14.2 Build your sensor

Before you build your sensors, you need to understand Unreal Script and the
client/server architecture of the Unreal engine. The following resources may be
helpful to you:

146

UDN: UnrealScriptReference
(http://udn.epicgames.com/Two/UnrealScriptReference)

UnrealWiki: UnrealScript Topics
(http://wiki.beyondunreal.com/wiki/UnrealScript)

Unreal Networking Architecture (http://unreal.epicgames.com/Network.htm)

14.2.1 Overview

In USARSIm, all sensors are inherited from the Sensor class. The Sensor class
defines the interfaces that the robot model can interact with. We use a hierarchical
architecture to build the sensors. The hierarchy chart is shown below.

Sensor _
Odometry — HumanMotion
Sensor Sensor
INU Sensor Sound Sensor
Encoder
Sensor Touch Sensor Range Sensor RFID Sensor Robot Camera
v RangeScanner
Sonar Sensor IR Sensor Sensor
v SICK
IR Camera IR Scanner PB911rs LMS200

Figure 528: Sensor Hierarchy Chart

14.2.2 Sensor Class

The Sensor class is the ancestor of all the sensor classes. It extends from the
Item class which is the base class for all the items that can be mounted on the robot.
The Item class takes care of creating the item, mounting itself on the robot, providing
a command response interface, and preparing some information that will be helpful to
the user. The sensor class provides the basic interaction interface to send out data.
The details about Item classes are explained below:

Attributes:
var string ItemName; // the item’s name
var string ItemType; // the item’s type
var string ItemMount; // the mount base
var vector myPosition; // the mounting position

147

var rotator myDirection; // the mounting direction

var USARConverter converter; // the converter object used by USARSImM
to do unit and cooridniate conversion

var KVehicle Platform; // the item’s robot platform

Methods:

function SetName(String iName) // set the item’s name

function Init(String SName, Actor parent, vector position, rotator
direction, KVehicle veh, name mount) // mount the item

function ConvertParam(USARConverter converter) // transfer the item’s
parameters’ units and coordinates to Unreal units and coordinates.

function string Set(String opcode, String args) // the interface of the SET
command

function bool isType(String type) // return whether the item’s type
matches the specified type

function bool isName(String name) // return whether the item’s name
matches the specified name

The new variables and functions introduced in the Sensor class are:

Attributes:
var config bool HiddenSensor; // variable that indicates whether to show
the
// sensor in Unreal
var config InterpCurve OutputCurve; // the distortion curve
var config float Noise; // the random noise amount

Methods:

function String GetHead() // the interface that sends sensor data HEAD to
the robot. It’s usually something like “SEN {Type xxx}”

function String GetData() // the interface that sends sensor data to the
robot. For example, it can be “{Name xxx} {Pose x,y,theta}”

function String GetGeoHead() // the interface that sends the sensor’s
geometric information HEAD to the robot

function String GetGeoData() // the interface that sends the sensor’s
geometric data to the robot

function String GetConfHead() // the interface that sends the sensor’s
configuration information HEAD to the robot

function String GetConfData() // the interface that sends the sensor’s
configuration data to the robot

14.2.3 Writing your own sensor

Your sensor should extend from the Sensor class. You may add your own

sensor parameters, and these parameters should be in the API interface’s units and
coordinates. In the function ConvertParam, you transfer them to Unreal’s units and
coordinates. Then you may override the Getxxxx methods to return your own data in
a string. When you generate this data string, you need to convert the units and
coordinates back to the API interface’s units and coordinates.

148

The robot model will call the isType and isName functions to find out whether
the sensor is the current sensor it needs to process. By default, these two functions do
simple string matching. You can override them to do some advance things like
considering super type and sub type. Although there are Noise and OutputCurve
parameters in Sensor class, it does nothing about the noise data simulation and data
distortion simulation. It’s your responsibility to simulate them in the GetData method.

NOTE: You MUST use the “converter” object to do all the unit and coordinate
conversion for flexibility and consistency reasons. Always use isType and
isName function in your code to do the type and name matching.

14.3 Build your effecter

This section of the manual will provide you an overview of how to implement a
new effecter in USARSIm. In the first subsection, an overview of the functions and
structures in the Effecter base class will be presented. The second subsection will
show how to implement on opcode in a new effecter class.

14.3.1 Overview of the Effecter.uc class

In USARSIm, all effecters are inherited from the Effecter class. The Effecter
base class defines the valid opcodes and the means to query/format information from
the various extensions of effecters. As mention in Section 8, effecters in USARSIm
contain a restricted vocabulary of operational codes. These opcodes are defined at the
top of the Effecter.uc file, as shown below

enum EFFECTOR_OPCODE_TYPE

{

EFFECTOR_OPCODE_ACTIVATE_TYPE,
EFFECTOR_OPCODE_ANIMATE_TYPE,
EFFECTOR_OPCODE_FIRE_TYPE,
EFFECTOR_OPCODE_RELEASE_TYPE,
EFFECTOR_OPCODE_RESET_TYPE,
EFFECTOR_OPCODE_NOP_TYPE

)3

The base effecter class implements several virtual functions that will enable the base
class to query and send commands to its children. There are two basic categories of
virtual functions that are implemented in the effecter class; the “Do<Opcode Name>"
functions and the “Get<Opcode Name>Conf” functions. Therefore, the developer
must implement both functions for each opcode in order to properly implement the
opcode. These functions will overwrite the virtual functions, letting the effecter base
class know that these are valid opcodes that can be used for a given effecter.

The virtual “Do<Opcode Name>" functions defined in Effecter.uc. These function
are used to perform opcodes in the effecter. The value specifies the value that is
associated with the opcode and the returns a Boolean to indicate whether the
command was successfully implemented or not.

149

function Bool DoActivate(float val)

function Bool DoAnimate(float val)

function Bool DoFire(float val)

function Bool DoRelease(float val)

function Bool DoReset(float val)

function Bool DoNOP(float val)
The virtual “Get<Opcode Name>Conf” functions defined in Effecter.uc. This
function enables the base class to retrieve configuration information from a
referenced argument, EffecterOpcodeConfig structure. It returns a Boolean to
indicate whether the opcode is implemented or not.

function Bool GetActivateConf(out EffectorOpcodeConfig opcodeConf)

function Bool GetAnimateConf(out EffectorOpcodeConfig opcodeConf)

function Bool GetFireConf(out EffectorOpcodeConfig opcodeConf)

function Bool GetReleaseConf(out EffectorOpcodeConfig opcodeConf)

function Bool GetResetConf(out EffectorOpcodeConfig opcodeConf)

function Bool GetNOPConf(out EffectorOpcodeConfig opcodeConf)

The Effector Opcode Configuration Structure is a structure is used by the
FormatOpcodeConf to produce the appropriate CONF message for a given opcode.
Therefore, this structure should be used by derived classes to hold configuration
information and will enable derived classes to maintain appropriate information for
each opcode.
function String FormatOpcodeConf(EffectorOpcodeConfig opcodeConf)
struct EffectorOpcodeConfig
{
var () EFFECTOR_OPCODE_TYPE opcode;
var () float maxVal,
var () float minVal,

%

The effecter class also defines some utility functions. There are two lookup
functions that convert the name of the opcode to the opcode and vice versa.

function EFFECTOR_OPCODE_TYPE GetOpcodeType(string opStr)

function String GetOpcodeName(EFFECTOR_OPCODE_TYPE eType)

14.3.2 Writing your own effecter

Same as section 14.2.3
Here is an example of how to implement the “Animate” operational code in a new
effecter class.

NOTE: You do not have to implement the “Get<Opcode Name>Conf” and the
“Do<Opcode Name>" for every opcode. You only need to implement the
appropriate functions for the opcode you are attempting to implement.

150

First, overwrite the ‘GetAnimateConf’ function in the new effecter class.
function Bool getAnimateConf(out EffectorOpcodeConfig opcodeConf) {
opcodeConf.opcode =EFFECTOR_OPCODE_ANIMATE_TYPE
opcodeConf.maxVal=1.57;
opcodeConf.maxVal=0;
return true; //indicates that this is a valid opcode.

¥

Next, overwrite the “DoAnimate” function in the new effecter class.

function Bool DoAnimate(float s) {
... code for doing the opcode ...
if(code was successful)
return true;
else
return false;

}
14.4 Build your robot

Usually, building a robot involves a lot of programming, deeply understanding
Unreal network architecture, and the background knowledge of mathematics and
mechanics. It takes a lot of time in programming and debugging. To facilitate the
robot building, we built a general robot model to help users build their own robot. In
the robot model, every robot is constructed of:

e Chassis: the chassis of the robot.

e Parts: the mechanical parts, such as tires, linkages, camera frame etc., that
are used to construct the robot.

e Joints: the constraints that connect two parts together. In the robot model,
we use Car Wheel Joint.

e Attached Items: the auxiliary items, such as sensors, effecters etc.,
attached to the robot.

A chassis can connect to multiple parts through joints. However, each part can
only have one joint. The attached items can be attached to either the chassis or a part.
The chassis or part can have multiple attached items.

The working flow of building a robot is to first build a geometric model for all
the objects used to construct the robot. Then create part/wheel classes for all the robot
parts/wheels that extend from KDPart/USARTIre, and a new robot class that extends
from KRobot. In the robot class you set the physical attributes of the robot. And you
also need to configure how the chassis, parts/wheels and auxiliary items are
connected to each other. Lastly, if you want to add some new features not included in
the robot model, you will do some programming work.

14.4.1 Stepl: Build geometric model

Essentially, this step is the same as building your own arena. Please refer to
section 14.1.1 to learn how to build a static mesh. One thing we want to emphasize

151

here is that the orientation of the geometric model is very important. You must let the
X-axis of the model point to the head, and the Y-axis point to the right. An incorrect
axis will bring you incorrect pitch, yaw and roll angles.

NOTE: Make sure the geometric model has the correct x-axis and y-axis. This will
affect the attitude data.

14.4.2 Step2: Construct the robot

14.4.2.1 Create the part/wheel class

Here we create a wrapper class for our part or wheel geometry model. The part
class looks like:

class part_class_name extends KDPart;

defaultproperties

{

Ilproperties

}

where part_class_name is the name of your part class. In defaultproperties, we
point the StaticMesh to your part’s geometry model; set the part’s Weight, Mass and
the Kparams (Karma parameters). For details, please refer the next section. For the
wheel class, the only difference is that the class extends from USARTiIre not KDPart.

14.4.2.2 Create the robot class

First, you need to create a robot class that extends the KRobot. The class should
look like:

class robot_class_name extends KRobot config(USAR);
defaultproperties
{

Ilproperties

}

where robot_class_name is the name of your class.

14.4.2.3 Prepare the attributes and objects used for your robot

In the defaultproperties block of the class, you can set the attributes of the robot.
The attributes are:

MotorTorque The default motor torque in Karma Units. Default value is

20.

MaxTorque The maximum motor torque. Default value is 60. The
control torque will be cut to this value if it’s larger than
MaxTorque.

MotorSpeed The default motor speed. Default value is 0.1745
radians/second.

Weight The weight of the chassis in kg. Please note, the value is

152

ChassisMass
StaticMesh
DrawScale

DrawScale3D
KParams

ConverterClass

used only for description purpose. The real value that
affects the physical characteristic is ChassisMass.
The mass of the chassis in Karma Units. Default value is

1.0.

The static mesh for the chassis. The format looks like:

StaticMesh'your_mesh_name'

The scale of the static mesh. Default is 0.3

The scale in X, Y and Z axes.

The Karma physical parameters of the chassis. It’s a
KarmaParams object. For details please read the UDN:

KarmaReference

(http://udn.epicgames.com/Two/KarmaReference).

The class used by the robot for units and coordinates
conversion. By default, it’s "USARBot.USARConverter".

Besides these properties, you also can set the joints and tire parameters for the
robot. These parameters will affect all the joints and tires. Usually you needn’t
change them. In case you want to change them, we list all the parameters below.

Name
HingePropGap
SteerPropGap

SteerTorque
SteerSpeed
SuspStiffness
SuspDamping
SuspHighLimit

SuspLowLimit

TireRollFriction
TireLateralFriction
TireRollISlip

TireLateralSlip

TireMinSlip
TireSlipRate
TireSoftness
TireAdhesion
TireRestitution

Description

The proportional gap used by a hinge
joint.

The proportional gap used for steering
speed control.

The torque applied to the steering.

The steering speed.

Stiffness of suspension springs.
Damping of suspension.

The highest offset from the suspension
center in Karma scale, which is 1/50th of
Unreal scale.

The lowest offset from the suspension
center in Karma scale, which is 1/50th of
Unreal scale.

Roll friction of the tire.

Lateral friction of the tire.

Maximum first-order (force ~ velocity)
slip in tire direction.

Maximum first-order (force ~ velocity)
slip in sideway direction.

The minimum slip in both directions.
The amount of slip per unit of velocity.
The softness of the tire.

The stickyness of the tire.

The bouncyness of the tire.

Default
value
364.0

1000.0

1000.0
15000.0
150.0
15.0

1.0

-1.0

15.0
15.0
0.06

0.06

0.001
0.0005
0.0

0.0

0.0

153

TIPS: Low TireSlipRate and high friction give the tire high climbing capability.

14.4.2.4 Connect the parts/wheels

After we set up all the attributes and classes, we can use the part-joint pairs to
connect the chassis and parts. In the part-joint pair we define the part and how it is
connected to another part through a joint. Currently, we support two kinds of joints,
the car-wheel joint that is used to connect a wheel to the robot, and the hinge joint
that is used to link any parts together.

A car-wheel joint connects two parts by two axes. One is the spin axis (hinge
axis in Figure 53) that the part can spin around. Another is the steering and
suspension axis (Steering Axis in Figure 53) that the part can steer around and travel
along. A hinge joint connects two parts by one axis.

_ Steering (can be locked)
Chassis body

Suspénsion travel

Steeringlxis

. Rolling
Wheel body . Ly
‘-"'h. -".-'?':_-':r_‘.

- e :
— '!'-"-h‘

Figure 539: Car wheel joint
The part-joint pair is a structure defined below:

struct JointPart {

I/ Part

var() name PartName;

var() class<KActor> PartClass;

var() vector DrawScale3D;

/1 Joint

var() class<KConstraint> JointClass;

var() bool bSteeringLocked,
var() bool bSuspensionLocked;
var() float BrakeTorque;
var() name Parent;

var() vector ParentPos;

var() vector ParentAxis;

var() vector ParentAxis2;
var() vector SelfPos;

var() vector SelfAxis;

var() vector SelfAxis2;

154

where

PartName The name of the part.
PartClass The part’s class name. It can be
Class'USARBot.KDPart' or the tire’s class name.
DrawScale3D The scale along X, Y and Z axes of the static mesh.
Please note, this only changes how the part looks
look. In unreal engine, it still uses the original
mesh for collision detection. Please use it
carefully.
JointClass The joint’s class name. It should be:
class'KCarWheelJoint' or class'KDHinge'.
bSteeringLocked Indicates whether steering is locked if we are using
a car-wheel joint.
bSuspensionLocked Indicates whether suspension is locked if we are
using a car-wheel joint.
BrakeTorque The brake torque applied for braking the joint if we
are using a car-wheel joint.
Parent The part or chassis the part is connecting to.
NOTE: the part must have already been defined.
ParentPos The position where the joint connects to the parent.
ParentAxis For a car-wheel joint, it’s the steering axis relative
to the parent. For a hinge joint, it’s the spin axis.
ParentAxis2 For a car-wheel joint, it’s the spin axis relative to
the parent.
SelfPos The position where the joint connects the part.
SelfAxis For a car-wheel joint, it’s the steering axis relative
to the part. For a hinge joint, it’s the spin axis.
SelfAxis2 For a car-wheel joint, it’s the spin axis relative to
the part

The order in which you define the part-joint pairs is important. Since the parent
in the part-joint pair must already be defined, you need to define the parent before the
part. You also can define these part-joint pairs in the USARBot.ini file (you may need
to create the robot section by yourself). By using the USARBot.ini file, you needn’t
compile your class after you change something.

You may find that it’s not easy to know the joint position relative to the parent
and the part. One way to help you figure out these values is using the Unreal Editor.
At first, you put all the chassis and parts in the map in the draw scale you want. Then
you assemble them together in the map. Using some simple geometric objects to
represent the joints, you can put them on the connection position you want. You also
may need to assign a name to every object to help you distinguish them. After that,
you can export the map as a t3d file. In the t3d file, you will find every object’s
position. By subtracting the parent or part’s position from the joint position, you will
get the accurate relative position.

155

TIP: Assembling the robot in Unreal Editor can help you calculate the relative
position.

Like the real mechanical world, improper mechanical structure can cause the
robot to be unstable. When you create the robot, make sure your geometric model is
correct. You especially need to check if the model has the correct mass distribution.
In some cases, you may need to specify the mass center offset in the KarmaParams.
When your robot is unstable, try to add the parts one by one. This can help you figure
out which part causes the problem.

TIP: Specifying the mass center offset in the KarmaParams can help you simulate the
mass distribution.

14.4.2.5 Mount the auxiliary items

After you created the robot, you can mount other items on it. To mount an item,
please use the following data structure:

struct sltem {

var class<Actor> ItemClass;
var name Parent;

var string ItemName;
var vector Position;
var vector Direction;
var rotator uuDirection;
¥

where

ItemClass The class used to create the item.
Parent The object on which the item will mount.
ItemName The name assigned to this item.
Position The mounting position relative to its parent.
Direction The mounting direction relative to its parent.
uuDirection The reserved variable that stores the direction parameter in
unreal units.
In the robot class, “Sensors” is used for all the sensors. “Effecters” is used for
all the effecters. And the “Cameras” stores all the cameras.

14.4.3 Step3: Customize the robot (Optional)

After finishing the previous two steps, your robot should work. You should be
able to use the DRIVE command to control every joint and you can also get the
sensor data from the robot. To go further beyond this, you can do three things:

1) Write your own control mode

156

The general robot mode only supports controlling every joint separately
and two types of mission package control, pan-tilt and flipper. However, you
can define some control pattern or even control model in your class.

USARSIm uses the ‘DRIVE {Left xxx} {Right xxx}’ command to
interact with Pyro. The Left and Right means left side and right side wheels
separately. This is an example of a control pattern. In the robot class, you can
transfer the left, right parameters into a series of joint control parameters to
control the wheels. This can be reached by overriding the “ProcessCarlnput()”
function of the KRobot class. In your own ProcessCarlnput(), you need to call
the ProcessCarlnput() function in KRobot to let your robot interpret the joint
control command. Once you added the left, right parameters interpretation, your
robot should be able to be controlled by Pyro. As an example, you can open the
source code of P2AT to learn how it supports the ‘DRIVE {Left xxx} {Right
xxx}’ command. The ‘CAMERA’ command is another command used to
interact with Pyro. You also can learn how to interpret it in the P2AT.uc file.

2) Add your own commands

Besides supporting the commands used by USARSiIm, you also can add
your own command. As we mentioned before, the commands come from
Gamebots. A robot connects with Gamebots through its controller whose class
is USARRemotebot. Every USARRemotebot is associated with a
USARBotConnection that listens to a TCP/IP socket and parses the incoming
commands. Once a new command is received, USARBotConnection realizes it
and gets the value in the command. Then it sets the corresponding variable in
USARRemotebot to the new value. In your robot class, you only need to check
the USARRemotebot’s variable to get the command data.

In summary, to add a new command:
1) Add a new variable in USARRemotebot to store the command’s data.

2) In USARBotConnection, add your code into the ProcessAction
function to interpret your command and store it in the
USARRemotebots’s variable.

3) In your robot class, check the USARRemoteBot’s variable to get the
command and do something you want.

3) Maintain the robot’s state by yourself

Some robots may have special states to maintain, for example, the
following wheel of the P2DX robot, the chassis of PER. The state of the
following wheel of P2DX is totally decided by the other two wheels. This is not
included in the general robot model. So you need to maintain its state by
yourself. It’s the same as the chassis of the PER. PER’s chassis is controlled by
a differential that force the chassis’s pitch angle to always be the average of the
left and right wheel rocker angles.

To maintain the robot’s state, you need to override the Tick() function. In
every Unreal tick, you update the robot’s state and you also need to explicitly or

157

implicitly call the Karma update state function KUpdateState(). You can use the
code of P2DX as example to learn how to maintain your own state.

Lastly, besides the three aspects mentioned above, obviously, you can do just
about anything you want in your robot class.

14.5 Build your controller

The client/server architecture makes it easy to build your own control client.
You only need to follow the communication protocol. Since the protocol is line
based, you need to use the ‘\r\n’ to determine when a message ends. When you send
out a command, you need to add ‘\r\n’ to inform USARSIm that the command is
finished. In unreal engine, a tick is the minimum time used for checking and updating
states. If you send commands at a higher frequency than the time interval between
two ticks, then the engine will only process the last command. So please don’t send
your commands at very high frequency.

NOTE: Don’t send your command at a frequency higher than the engine’s state
update frequency.

If you want to do some image processing or include the video feedback on your
own interface, there are some technical details you may need to know. As discussed
in section 10.13, there are four ways to get/use video feedback. Except directly using
Unreal Client as a separated window, the other three approaches are discussed below:

14.5.1 Embedding Unreal Client

The idea is to attach the Unreal Client into your application. Basically, under
windows, this can be reached in 4 steps:

1) Get the window handle of Unreal Client.

For example, in C++, we can use:
CWnd * m_AppWnd = FindWindow(NULL, “Unreal Tournament 2004”);

2) Move and scale the Unreal Client to your desired region.

In C++, it may looks like:
m_AppWnd->SetWindowPos(this, 60, 40, 400, 300, NULL);
where “this’ is the pointer of your application.
3) Modify the Unreal Client’s window style to let it look like a part of your
application.

For example, we use the following C++ code to remove the title bar and
change the border to thick frame.
m_AppWnd->ModifyStyle(WS_CAPTION, NULL, SWP_DRAWFRAME);
m_AppWnd->ModifyStyle(WS_THICKFRAME, NULL,
SWP_DRAWFRAME);

4) Set your application to be Unreal Client’s parent window.
In C++, we use:
m_AppWnd->SetParent(this); // where ‘this’ is the pointer of your application

158

14.5.2 Capturing Unreal Client

In USARSiIm, Hook.dll provides help to get the scenes from the Unreal Client.
This DLL uses Detours technology (http://www.research.microsoft.com/sn/detours/)
to capture the back buffer of DirectX 8.x and store it as a raw picture in a block of
shared memory. To use this DLL, we need to:

1)

2)

Attach the DLL to the Unreal Client

We can use the detours function, DetourCreateProcessWithDII(), to combine
Hook.dll to the Unreal Client. For more details about this function, please
read the withdll example that comes with Detours. You can also find the
example code in the SimpleUl source files. The LoadUT() function of
CControlDlg class is the exact function that attaches Hook.dll to the Unreal
Client and then launches it. Because the Hook.dll needs to catch the
Direct3DCreate8() function, the DLL must be attached to the Unreal Client
before the Unreal Client runs. This is the reason why we use the Detours
function DetourCreateProcessWithDII().

Get the address of the shared memory

getFrameData() is the function provided by Hook.dll that tells you the
address of the shared memory. To get the memory address, we need to:
i. Get the module handle of Hook.dll by using LoadLibrary().
ii. Get the function address of getFrameData() by using
GetProcAddress().

iii. Call the function getFrameData() to get the memory address.
The example code can be found at GetpfFrameData() function of
CControlDlg class in the SimpleUI source files.

The format of the data in the memory is defined below:

#define FRAME_PENDING 0
#define FRAME_OK 1
#define FRAME_ERROR 2
typedef struct FrameData_t {

BYTE state;

BYTE sequence;

USHORT width;

USHORT height;

UINT size;

BYTE data[640*480*3+1];
} FrameData;

where

state The state of the memory. It can be:
FRAME_PENDING The memory is in use by the DLL
FRAME_OK The memory is ready for reading
FRAME_ERROR Something is wrong with the data
sequence The sequence of the data. The DLL only captures a new

159

picture when it gets a new sequence number. You can use it
to control when the DLL captures a picture.
width The width of the captured picture. The maximum width is
640. If the Unreal Client’s window width is larger than 640,
the DLL will not capture any pictures.
height The height of the captured picture. The maximum height is
480. If the Unreal Client’s window height is larger than
480, the DLL will not capture any pictures.
size The actual data length in the *data’ array. When the picture
width is not in DWORD boundary, ‘0’ is padded to reach
the DWORD boundary. In this case, the size isn’t
width*height*3.
data The array stores the picture data. The picture is stored from
left to right, from top to bottom. A pixel is represented as
Red + Green + Blue. Each color occupies one byte.

14.5.3 Using the Image Server

The Image Server simulates a web camera. How to run it is described in section
5.2.5.2. Its workflow is:

1) Send out a picture when the client connects with it.

2) Wait for the acknowledgement from the client.

3) If the current time is the sending time triggered in the specified frame rate,

then send out the next picture.
4) Go to step 2).
The server supports both raw pictures and jpeg pictures. The image data format

ImageType (1 byte) + ImageSize (4 bytes) + ImageData (n bytes)

Where:

ImageType The format of the image. It can be:

raw data

jpeg in super quality

jpeg in good quality

jpeg in normal quality

jpeg in averagequality

jpeg in bad quality

ImageSize The total length of ImageData in bytes.

ImageData The actual data of the image. For raw data, the ImageData
is: width (2 bytes) + height (2 bytes) + RGB (1 byte + 1
byte + 1 byte) data from left to right, from top to bottom.
For jpeg, the ImageData is the real jpeg data which can be
decompressed by any jpeg decoders.

O~ wdNDPEFO

The image transfer protocol is very simple. When the client gets the image, it
sends back an acknowledgement meesage 'OK' (in plain text) to the image server.

160

To use the image server, you only need to follow this simple protocol and the
image format. As an example of how to use the image server, the source code of
SimpleUl is included in the USARSIm package. The SimpleUl uses the Freelmage
(http://sourceforge.net/projects/freeimage) DLL to decode jpeg pictures.

15 Information for Gamers

Some public UT2004 game servers running the AntiTCC anti-cheat service may be
set up to automatically ban users who have Hook.dll installed, as it (or at least files
like it) can be used for aimbots (programs used by cheats to improve aim). USARSIm
uses this file to hook into UT2004's framebuffer to get images for the simulated
camera and it can be found in the <UT2004directory>\System directory (alongside
UT2004.exe).

The best way around this is to temporarily move hook.dll to somewhere outside the
UT2004 directory whilst playing on public servers.

Saving the following 3 lines to something like "playUT .bat", putting it in
<UT2004directory>\System and making a play link that points to it is one way
around this problem.

move hook.dll ..\..\
UT2004 .exe
move ..\..\hook.dll .

16 Bug report

Please use the sourceforge message forums to report bugs in USARSIm. This
forum may be found at
http://sourceforge.net/tracker/?group _id=145394&atid=761824.

17 Contributors
The primary software author:

e Jijun Wang at University of Pittsburgh, USA
e Major rewrites and contributions by Ben Balaguer of NIST, USA

The primary manual authors:
e Jijun Wang at University of Pittsburgh, USA
e Stephen Balakirsky of NIST, USA

Management and Coordination:

e Stephen Balakirsky at National Institute of Standards, USA
e Michael Lewis at University of Pittsburgh, USA
e Stefano Carpin at University of California, Merced

USARSIm drivers for Player:

161

Version 1.6 from Erik Winter at Uppsala University, Sweden
Modified Version 1.6 from Stefan Markov & Ravi Rathnam at
International University Bremen, Germany

Version 2.0 from Stefan Stiene at University of Osnabriick

System architecture

Mission package concept from Stephen Balakirsky and Chris Scrapper at
National Institute of Standards, USA

Unit and coordinate conversion idea from Chris Scrapper at National
Institute of Standards, USA

Effecter concept from Chris Scrapper at National Institute of Standards,
USA

The KDHinge from Marco Zaratti at University of Rome "La Sapienza”,
Italy

Hummer by Ben Balaguer of NIST

Stereo P2AT from Giuliano Polverari at University of Rome "La
Sapienza", Italy

Lisa, Kurt2D, Kurt3D from Stefan Stiene at University of Osnabriick
Passarola from Ricardo Alcécer (ricardoalcacer@gmail.com) IST —
Instituto Superior Técnico Department of ISR - Institute for Systems and
Robotics Portugal

Rugbot from Todor Stoyanov, Jacobs University, Breman, Germany.
Kenaf from Kensuke Kurose of Tadokoro Laboratory, Tohoku
University, Japan.

Sensors

INU sensor from Stefan Markov and Ivan Delchev at International
University Bremen, Germany

IR and Sonar sensor from Erik Winter at Uppsala University, Sweden
The first draft Encoder sensor was written by Andreas Nichter at
University of Osnabriick, Germany

IR scanner from Giuliano Polverari at University of Rome "La
Sapienza", Italy

The first version of RFID tag and sensor from Alexander Kleiner at
University of Freiburg, Germany

The current version RFID tag and sensors from Mentar Mahmudi at
International University Bremen, Germany

Version 1 of the Victim sensor and tags from Stephen Balakirsky at
National Institute of Standards of Technology, USA.

Version 2 of the Victim sensor by Ben Balaguer

GPS sensor from Tyler Folsom, University of British Columbia, Canada
Modified GPS from Ben Balaguer, University of California, Merced.

162

Radio Model
e Yashodhan Nevatia from International University Bremen, Germany

Tools
e ImageServer from Jijun Wang at University of Pittsburgh, USA.
Modifications to allow client only operation by Marco Zaratti.
e MultiView from Marco Zaratti.
e Omni-view camera from T. Schmits of the University of Amsterdam

18 Acknowledgements

This simulator was developed under grant NSF-1TR-0205526, Katia Sycara and
Illah Nourkbaksh of Carnegie Mellon University and Michael Lewis of the University
of Pittsburgh Co-Pls. Elena Messina and Brian Weiss of NIST provided extensive
assistance. Joe Manojlovich, Jeff Gennari, and Sona Narayanan contributed to the
development of the simulator. Eric Garcia and Stephen Balakirsky edited this
document.

163

	1 Please Tell Us About Your Project
	2 Introduction
	2.1 Background
	2.2 What is USARSim

	3 System Overview
	3.1 System architecture
	3.1.1 Unreal engine
	3.1.2 Gamebots
	3.1.3 Controller

	3.2 Simulator components
	3.2.1 Environment simulation
	3.2.1.1 USAR Environment
	3.2.1.2 Road Environment

	3.2.2 Sensor and effecter simulation
	3.2.3 Robot simulation
	3.2.4 Communications Simulation
	3.2.4.1 Communication Base Station:
	3.2.4.2 Configuration:
	3.2.4.3 Message formats:
	3.2.4.4 Sample Programs

	3.2.5 Image Server
	3.2.5.1 Installation
	3.2.5.2 Running the Image Server with USARSim in Server Mode
	3.2.5.3 Running the Image Server with USARSim in Client Mode

	3.2.6 MultiView
	3.2.6.1 Enabling a map for MultiView
	3.2.6.2 Using the MultiView
	3.2.6.3 Configuration

	4 Installation
	4.1 Requirements
	4.2 Install UT2004
	4.2.1 Windows

	4.3 Install USARSim
	Linux

	4.4 Install the controller
	4.4.1 MOAST
	4.4.2 Pyro
	4.4.2.1 Windows
	4.4.2.2 Linux

	4.4.3 Player

	5 Run the simulator
	5.1 The steps to run the simulator
	5.2 Examples
	5.2.1 The testing control interface
	5.2.2 MOAST
	5.2.2.1 Configuration
	5.2.2.2 Running MOAST

	5.2.3 Pyro
	5.2.4 Player
	5.2.5 SimpleUI
	5.2.5.1 Using SimpleUI by locally capturing pictures
	5.2.5.2 Using SimpleUI by remotely receiving pictures

	5.3 Getting Starting Poses From Maps
	5.3.1 Introduction
	5.3.2 Adding starting poses to the map
	5.3.3 Retrieving starting poses
	5.3.4 Start Elevation
	5.3.5 Standard Z starting value
	5.3.6 Z Table
	5.3.6.1 Example:

	6 Coordinates, Units and Scale
	6.1 Coordinates
	6.2 Units and scale

	7 Mission Package
	8 Effecters
	9 Communication & Control (Messages and commands)
	9.1 TCP/IP socket
	9.2 The protocol
	9.3 Messages
	9.4 Commands

	10 Sensors
	10.1 State Sensor
	10.1.1 How the sensor works
	10.1.2 How to configure it

	10.2 Range Sensor
	10.2.1 How the sensor works
	10.2.2 How to configure it

	10.3 Range Scanner Sensor
	10.3.1 How the sensor works
	10.3.2 How to configure it

	10.4 Odometry Sensor
	10.4.1 How the sensor works
	10.4.2 How to configure it

	10.5 GPS Sensor
	10.5.1 How the sensor works
	10.5.2 How to Configure it

	10.6 INS Sensor
	10.7 Encoder Sensor
	10.7.1 How the sensor works
	10.7.2 How to configure it

	10.8 Touch Sensor
	10.8.1 How the sensor works
	10.8.2 How to configure it

	10.9 RFID Sensor
	10.9.1 How the sensor works
	10.9.2 How to configure it
	10.9.3 Choosing the right SensingMode
	10.9.3.1 Radius
	10.9.3.2 Obstacle
	10.9.3.3 Attenuation

	10.9.4 Detecting RFID Tags
	10.9.6 Writing RFID Tags Memory
	10.9.7 Erasing RFID Tags Memory

	10.10 Victim and False Positive Sensor
	10.10.1 How the sensor works
	10.10.2 How to configure it

	10.11 Sound sensor
	10.11.1 How the sensor works
	10.11.2 How to configure it

	10.12 Human-motion sensor
	10.12.1 How the sensor works
	10.12.2 How to configure it

	10.13 GPS Sensor
	10.13.1 How the sensor works

	10.14 Robot Camera
	10.14.1 How the sensor works
	10.14.2 How to configure it

	10.15 Omnidirectional Camera
	10.15.1 How the sensor works
	10.15.2 How to mount it
	10.15.3 How to configure it

	11 Effecters
	11.1 Gripper
	11.1.1 How the effecter works
	11.1.2 How to configure it

	11.2 RFID Releaser
	11.2.1 How the effecter works
	11.2.2 How to configure it

	11.3 Roller Table
	11.3.1 How the effecter works
	11.3.2 How to configure it

	11.5 Headlight

	12 Robots
	12.1 P2AT
	12.1.1 Introduction
	12.1.2 Configure it

	12.2 StereoP2AT
	12.2.1 Introduction
	12.2.2 Configure it

	12.3 P2DX
	12.3.1 Introduction
	12.3.2 Configure it

	12.4 ATRVJr
	12.4.1 Introduction
	12.4.2 Configure it

	12.5 HMMWV (Hummer)
	12.5.1 Introduction
	12.5.2 Configure it

	12.6 SnowStorm
	12.6.1 Introduction
	12.6.2 Configure it

	12.7 Sedan
	12.7.1 Introduction
	12.7.2 Configure it

	12.8 Cooper
	12.8.1 Introduction
	12.8.2 Configure it

	12.9 Submarine
	12.9.1 Introduction
	12.9.2 Configure it

	12.10 Tarantula
	12.10.1 Introduction
	12.10.2 Configuration

	12.11 Zerg
	12.11.1 Introduction
	12.11.2 Configuration

	12.12 Talon
	12.12.1 Introduction
	12.12.2 Configure it

	12.13 QRIO
	12.13.1 Introduction
	12.13.2 Configure it

	12.14 ERS
	12.14.1 Introduction
	12.14.2 Configure it

	12.15 Soryu
	12.15.1 Introduction
	12.15.2 Configure it

	12.16 Kurt2D
	12.16.1 Introduction
	12.16.2 Configure it

	12.17 Kurt3D
	12.17.1 Introduction
	12.17.2 Configure it

	12.18 Lisa
	12.18.1 Introduction
	12.18.2 Configure it

	12.19 TeleMax
	12.19.1 Introduction
	12.19.2 Configure it

	12.20 AirRobot
	12.20.1 Introduction
	12.20.2 Configure it

	12.21 Passarola
	12.21.1 Introduction
	12.21.2 Configure it
	12.21.3 Extended USARSim command for Passarola robot

	12.22 Rugbot
	12.23 Kenaf
	12.23.1 Introduction
	12.23.2 Configure it

	13 Controller
	13.1 MOAST
	13.2 Pyro
	13.2.1 Simulator and world
	13.2.2 Robots
	13.2.3 Services
	13.2.4 Brains

	13.3 Player
	13.3.1 Simulation and device configuration
	13.3.2 Device Drivers
	13.3.2.1 us_bot
	13.3.2.2 us_position
	13.3.2.3 us_position3d
	13.3.2.4 us_sonar
	13.3.2.5 us_laser
	13.3.2.6 us_fakelocalize
	13.3.2.7 us_ptz
	13.3.2.8 Known bugs

	14 Advanced User
	14.1 Build your arena
	14.1.1 Geometric model
	14.1.1.1 Import an existing model
	14.1.1.2 Build it with Unreal Editor

	14.1.2 Special effects
	14.1.3 Obstacles and Victims

	14.2 Build your sensor
	14.2.1 Overview
	14.2.2 Sensor Class
	14.2.3 Writing your own sensor

	14.3 Build your effecter
	14.3.1 Overview of the Effecter.uc class
	14.3.2 Writing your own effecter

	14.4 Build your robot
	14.4.1 Step1: Build geometric model
	14.4.2 Step2: Construct the robot
	14.4.2.1 Create the part/wheel class
	14.4.2.2 Create the robot class
	14.4.2.3 Prepare the attributes and objects used for your robot
	14.4.2.4 Connect the parts/wheels
	14.4.2.5 Mount the auxiliary items

	14.4.3 Step3: Customize the robot (Optional)

	14.5 Build your controller
	14.5.1 Embedding Unreal Client
	14.5.2 Capturing Unreal Client
	14.5.3 Using the Image Server

	15 Information for Gamers
	16 Bug report
	17 Contributors
	18 Acknowledgements

