
RTC-Tools

Software Tools for Modeling Real-Time Control

Reference Manual

Dirk Schwanenberg, Bernhard Becker

Version: 1.2.000000
Revision: 386

22 July 2014

RTC-Tools, Reference Manual

Published and printed by:
Deltares
Boussinesqweg 1
2629 HV Delft
P.O. Box 177
2600 MH Delft
The Netherlands

telephone: +31 88 335 82 73
fax: +31 88 335 85 82
e-mail: info@deltares.nl
www: http://www.deltares.nl

Contact:
Bernhard Becker
telephone: +31 88 335 8507
fax: +31 88 335 8582

e-mail: rtc-tools@deltares.nl
www: http://oss.deltares.nl/web/rtc-tools

Dirk Schwanenberg
telephone: +31 88 335 8447
fax: +31 88 335 8582

Copyright © 2014 Deltares
All rights reserved. No part of this document may be reproduced in any form by print, photo
print, photo copy, microfilm or any other means, without written permission from the publisher:
Deltares.

Contents

Contents

1 Introduction 1
1.1 Management of water systems . 1
1.2 Control methods . 1

1.2.1 Feedback and feedforward . 1
1.2.2 Model Predictive Control . 2

1.3 Fields of application . 3
1.4 History . 5
1.5 Architecture and supported interfaces . 6
1.6 Content of this document . 6

2 Simulation components 7
2.1 Overview . 7
2.2 General purpose components . 8

2.2.1 accumulation . 8
2.2.2 expression . 8
2.2.3 gradient . 9
2.2.4 lookupTable . 9
2.2.5 lookup2DTable . 9
2.2.6 mergerSplitter . 9
2.2.7 unitDelay . 9

2.3 Modeling components . 9
2.3.1 arma . 9
2.3.2 hbv . 10
2.3.3 hydraulicModel . 10

2.3.3.1 Introduction . 10
2.3.3.2 Diffusive wave model . 10
2.3.3.3 Kinematic versus diffusive wave routing 12
2.3.3.4 Model set-up . 12

2.3.4 hydrologicalModel . 13
2.3.5 lorentGrevers . 13
2.3.6 neuralNetwork . 13
2.3.7 reservoir . 14

2.3.7.1 Mathematical model . 14
2.3.7.2 Numerical schematization 14

2.3.8 reservoirCompact . 15
2.3.9 unitHydrograph . 17

2.4 Operating rules and controllers . 17
2.4.1 constant . 17
2.4.2 dateLookupTable . 17
2.4.3 deadBandValue . 17
2.4.4 guideBand . 18
2.4.5 interval . 18
2.4.6 limiter . 19
2.4.7 pid . 19
2.4.8 timeAbsolute . 20
2.4.9 timeRelative . 20

2.5 Triggers . 20
2.5.1 deadBandTrigger . 20
2.5.2 deadBandTime . 21

Deltares iii

RTC-Tools, Reference Manual

2.5.3 polygonLookup . 21
2.5.4 set . 21
2.5.5 spreadsheet . 21
2.5.6 Standard . 22
2.5.7 Expression . 22

3 Optimization components 25
3.1 Introduction and deterministic optimization setup 25
3.2 Multi-stage stochastic optimization setup . 26
3.3 Set-up of the optimization problem . 27

3.3.1 Control variables . 27
3.3.2 Constraints . 28
3.3.3 Cost function terms . 29

3.4 Adjoint models . 29

4 References 33

A Configuration 35
A.1 Model setup in XML . 35
A.2 Initial conditions (state handling), boundary conditions 35
A.3 Command line options . 36
A.4 RTC-Tools in Delft-FEWS . 36
A.5 RTC-Tools in OpenMI . 36

A.5.1 Introduction . 37
A.5.2 The OMI-file . 37
A.5.3 OpenMI exchange items . 37

B Errors and unexpected results 41
B.1 Time series from expression components used in triggers give unexpected

results . 41
B.2 Values from an import time series do not appear in the result file 41
B.3 Index not found in time series model . 42
B.4 Instance document parsing failed . 43

C Programming in RTC-Tools (draft version) 45
C.1 Preface . 45
C.2 Implementing a new feature to RTC-Tools 45

iv Deltares

1 Introduction

1.1 Management of water systems

Water management means to operate a water system in such a way that it meets one or
multiple objectives, for example

� drinking water supply,
� navigation,
� irrigation water supply,
� environmental flow,
� hydroelectricity production,
� flood protection.

Stakeholders implement the management by taking control of hydraulic structures such as
weirs, pumps, hydro turbines or water intakes. In this context, real-time control (RTC) refers to
the automation of hydraulic structures in water systems whereas decision support suggests a
control and leaves it over to the operating staff to implement it or not.

RTC-Tools (Real-Time Control Tools) is an open source, modular toolbox dedicated to the
simulation of real-time control and decision support of hydraulic structures. It can be used

� standalone or in combination with hydraulic models for general modelling studies,
� as decision support component in operational forecasting and decision-support systems

for example for drought management, water allocation, flood mitigation or the dispatch of
hydro power assets,

� as a real-time control component in SCADA systems (supervisory control and data ac-
quisition systems) in which RTC-Tools implements feedback control and advanced Model
Predictive Control (MPC) for implementing state-of-the-art control strategies aiming at a
safe, energy and cost aware, integral management of water resources systems.

1.2 Control methods

1.2.1 Feedback and feedforward

Feedback is a control principle where the control error (i. e. the difference between target
value and actual value) is measured and used to determine control actions. Feedforward
uses observed disturbances from somewhere else in the system to determine control actions
(Schuurmans, 1997).

Figure 1.1 shows an example of these techniques. In both cases, the operator aims to main-
tain the water level at target by adjusting the downstream gate position. In Figure 1.1b the
operator controls the water level using information on the offtake-structure flow. The offtake-
structure flow cannot be controlled by the operator and can therefore be considered a distur-
bance. When measurements of disturbances are used to form control decisions the control
method is called feedforward. In Figure 1.1a the operator checks the deviation of the wa-
ter level from the target level. The water level is the controlled parameter. This operation
technique is called feedback control (Schuurmans, 1997).

Deltares 1

RTC-Tools, Reference Manual

(a) feedback control (b) feedforward control

Figure 1.1: Feedback control and feedforward control (Schuurmans, 1997)

1.2.2 Model Predictive Control

While feedback control means to operate a water system based on the current state of the
system, model predictive control (MPC) predicts future state trajectories, e.g. for anticipating
on approaching flood events within current control actions. This requires internal modelling of
the controlled water system for assessing and optimizing the impact of control actions on the
system and its control performance.

While in Figure 1.1 the operaters base their decision on the current system state, the operator
in Figure 1.2 takes also the future behaviour of the water system into account.

Figure 1.2: Model predictive control (Schuurmans, 1997)

2 Deltares

Introduction

1.3 Fields of application

The RTC-Tools package aims at the simulation of various real-time control and decision sup-
port techniques in application to water resources systems. It includes feedback control strate-
gies with triggers, operating rules and controllers as well as advanced Model Predictive Con-
trol (MPC) setups based on a combination of forecasting and optimization.

The MPC-based predictive control strategies require internal modeling of the controlled water
system in the optimization procedure. Therefore, the package includes a number of simple
hydrological and hydraulic models as well as various other simulation components for setting
up water resources models. The model implementation reflects the requirements of the opti-
mization procedure by supplying both a simulation mode and an adjoint mode for computing
first-order model derivatives. Having in mind its application in operational forecasting systems,
the software pays special attention to state handling. This includes by definition the system
states of all existing components such as triggers, controllers, operating rules and modeling
components.

RTC-Tools is designed for stand alone use or serves as a building block in a larger system
architecture. We pay special attention to various interfaces for integration it into frameworks
such as Delft-FEWS, Matlab or OpenDA. Furthermore, the OpenMI interface enables its on-
line coupling to a wide range of hydraulic modeling packages.

The following examples present three typical applications of RTC-Tools:

� Stand-alone use as a forecasting model in Delft-FEWS:
Assume we require a forecasting model for a medium-sized river basin including an HBV-
style conceptual rainfall runoff model, a simple hydraulic routing components and the in-
tegration of several controlled flood detention polders. Although many other models sup-
ply the required features, the application of RTC-Tools can be advantageous, because
it enables the complete representation of the system in a single model (Figure 1.3) and
integrates seamless into Delft-FEWS with a minimum configuration effort and a maximum
of interaction.

� Integrated application with sophisticated hydraulic model via OpenMI (Gregersen et al.,
2007):
Typical hydraulic models such as SOBEK, Mike11 or HEC-RAS have on-board features for
modeling the real-time control of hydraulic structures. If more advanced features beyond
the available ones are required, APIs may enable the user to link external code (Fig-
ure 1.4). A main advantage of RTC-Tools against a dedicated user-programming is the
availability of a wide range of already existing and tested features, the option for extending
or modifying them easily, and the overall framework with file io and interfaces.

� Predictive control of hydraulic structures:
In particular in forecasting system, MPC provides an advanced option for supervisory
control and decision-making for example for scheduling pump actions in polder systems
or the release of reservoirs. The set-up consisting of an optimization of the hydraulic
structure by MPC included the embedded representation of the water resources system
(Figure 1.5).

Deltares 3

RTC-Tools, Reference Manual

Figure 1.3: RTC-Tools configuration in typical simulation set-up: triggers, reactive oper-
ating rules and controllers, network components

Figure 1.4: RTC-Tools configuration in typical simulation set-up: triggers, reactive oper-
ating rules and controllers linked with a hydraulic model via OpenMI

4 Deltares

Introduction

Figure 1.5: RTC-Tools configuration in typical Model Predictive Control set-up: optimizer,
optimization problem definition and network components

1.4 History

The RTC-Tools software package originates from the integration of several project-specific
reservoir simulation modules in flood forecasting systems for river basins in Austria, Germany
and Pakistan. Its original design in Java in 2007, also referred to as the Delft-FEWS Reser-
voir Module, aims at the simulation of pool routing in reservoirs including related feedback
controllers and operating rules.

Features for supporting a sequential, nonlinear version of Model Predictive Control (MPC)
were introduced in 2008 and extended in 2009 and beyond. This includes the implementa-
tion of simplified hydraulic models such as the kinematic wave or diffusive wave models as
additional internal model for the predictive controller as well as the introduction of adjoint sys-
tems for selected modeling components. The latter resulted in significant speed-ups of these
controllers.

In 2010, the concept of triggers for switching on and off controllers and operating rules was
introduced for enabling the simulation of more sophisticated heuristic control schemes. The
software was redesign in C++ and enhanced by a C# OpenMI / DeltaShell wrapper for inte-
gration into modeling packages such as SOBEK or Delft3D. Furthermore, the new formats
for saving states and externalize parameters were introduced for compliant with OpenDA for
implementing automatic calibration and data assimilation applications.

In 2011, the software has been integrated further into Delta Shell for replacing existing RTC
functionality in SOBEK in the context of Deltares’ Next Generation Hydrosoftware develop-
ment. The decision to release RTC-Tools within an open source project has been made in
2012.

Deltares 5

RTC-Tools, Reference Manual

OpenDA / DATools
data assimilation for
achieving optimum

system states

RTC Tools
real-time control on
hydraulic structures

PI-interface

OpenMI interface

Delft-FEWS
integration

any OpenMI
compliant modelling
package such as:

SOBEK
Delft3D

feedback control:
- operating rules
- controllers
- triggers

model predictive control:
- nonlinear optimizers
- optimization problem

definition

various internal models

this block can be defined
in RTC Tools directly or
externally in Matlab

Figure 1.6: Architecture and interfaces of RTC-Tools

1.5 Architecture and supported interfaces

The software does not aim at a detailed and complete simulation of large water resources
systems. Therefore, it does not include any GUI or case management support. However,
it is intended to solve specific RTC-related problems which we may want to integrate into
larger models or forecasting systems. To support this feature, the software provides interfaces
to the forecasting system Delft-FEWS (PI-XML interface) and modeling packages such as
SOBEK and Delft3D via OpenMI. The latter enables a user to combine the operating rules
and controllers of RTC-Tools with more detailed hydraulic modeling components founds in the
hydraulic modeling packages mentioned above (see Figure 1.6).

The modeling components of RTC-Tools includes another important interface to OpenDA for
applying data assimilation techniques in order to improve the system state of the modeling
components. This feature may be used in the context of forecasting and predictive control
application for improving the system state at forecast time and therefore also the lead time
accuracy of the forecast itself.

The set-up of MPC can be done in RTC-Tools directly by using one of the integrated optimiz-
ers. Alternatively, a user may choose to externalize this part and use his preferred optimizer
and optimization problem definition in Matlab or GAMS.

1.6 Content of this document

Section 2.3 provides background on the modeling components, governing equations and its
numerical schematization. Section 2.4 and 2.5 covers the hierarchy of triggers and controllers
/ operating rules for setting up reactive control of a water system. In chapter 3, we present the
concept of Model Predictive Control (MPC).

Details on the configuration of RTC-Tools in xml are discussed in Appendix A.

6 Deltares

2 Simulation components

2.1 Overview

Modelling components in RTC-Tools represent water resources systems and cover the sim-
ulation of rainfall runoff and routing based on physically-based, conceptual or data-driven
approaches. Hydraulic structures in these components can be controlled by (i) operating
rules and controllers in combination with triggers or (ii) by predictive control techniques. The
first option is based on simulation as well, so that the triggers, operating rules and controllers
become part of an overall simulation model. The configuration of RTC-Tools distinguishes
three layers for (1) triggers, (2) operating rules and controllers and (3) modeling components
(Table 2.1). This chapter covers all three layers of simulation components (1)–(3) as well as
general purpose simulation components such as the lookup table which are used in more than
one layer.

According to our definition, a trigger implements conditions for

� defining when an operating rule, controller or another trigger is applied
� returning true or false, e. g. if a threshold is crossed or not.

Operating rules and controllers

� define how a structure operates,
� return a value for a control parameter, e.g. a gate opening or turbine release, which is

picked up in one of the modeling components.

The combination of triggers with operating rules and controllers may form binary decision
trees such as given in Figure 2.1 for representing hierarchical conditions leading to unique
control actions.

From a mathematical point of view, all features in this chapter compute their outputs from
available data either from the previous time step k−1 or from output of previous components of
the same time step k. Note that triggers always are evaluated first, before rules and modeling
components.

Table 2.1: Layers of triggers, operating rules / controllers, modeling components and gen-
eral purpose components available in more than one of the layers mentioned
before

Triggers Rules / Controllers Modeling Components General

deadBand constant arma accumulation
deadBandTime dateLookupTable hbv expression
polygonLookup deadBandValue hydraulicModel gradient
set guideBand hydrologicalModel lookupTable
spreadsheet interval lorentGevers lookup2DTable
standard limiter neuralNetwork mergerSplitter

pid reservoir unitDelay
timeAbsolute reservoirCompact
timeRelative unitHydrograph

Deltares 7

RTC-Tools, Reference Manual

Figure 2.1: Example flow chart with feedback control

2.2 General purpose components

2.2.1 accumulation

The component accumulates an input x to the state y. The equation of the "accumulation"
components reads

yk = yk−1 + xk (2.1)

2.2.2 expression

The expression consists of a mathematical equation of the form

yk = xk−1∨k
1 + xk−1∨k

2 (2.2)

The following operators are supported:

+ (summation)
− (subtraction)
∗ (multiplication)
/ (division)
min (minimum)
max (maximum).

The recursive use of expressions (another expression as one of the two terms or for both)
enables the implementation of more complex mathematical expressions (check the example
in the configuration section).

8 Deltares

Simulation components

2.2.3 gradient

The governing equation of the gradient reads:

yk =
xk − xk−1

∆t
(2.3)

2.2.4 lookupTable

The rule supplies a piecewise linear 1D lookup table according to

yk = f(xk−1∨k) (2.4)

This rule is a simpler version of the dateLookupTable (section 2.4.2).

2.2.5 lookup2DTable

The rule supplies a piecewise linear 2D lookup table according to

yk = f(xk−1∨k
1 , xk−1∨k

2) (2.5)

2.2.6 mergerSplitter

The merger rule provide a simple data hierarchy by choosing the output y equal to the first
of several input values x1, x2, ..., xn which is non-missing. Furthermore, additional output
includes the sum of all input values.

2.2.7 unitDelay

The unit delay operator is an auxiliary tool for making data from time steps prior to the previous
time step available in the simulation. By using this operator, we can refer to a historical
release, for example in an operating rule, without abandoning the restarting features of the
model based on the system state of a single time step. It reads

yk+1 = xk (2.6)

2.3 Modeling components

2.3.1 arma

The arma model (just an ar(1)-model at the moment) reads

ek =

{
xksim − xkobs
care

k−1
if xkobs is available

otherwise

yk = xksim + ek
(2.7)

where xobs is an (external) observation, xsim a simulation, e is the difference between obser-
vation and simulation, car is the auto regression coefficient.

Deltares 9

RTC-Tools, Reference Manual

2.3.2 hbv

This model is currently under development.

2.3.3 hydraulicModel

2.3.3.1 Introduction

Hydraulic routing, compared to the hydrological routing techniques presented above, is a more
accurate approach and may include the simulation of hysteresis and backwater effects. On
the other hand, hydraulic routing has more demands with respect to the numerical solution,
computational effort, and may become unstable if not properly implemented and set-up.

RTC-Tools includes a hydraulic routing method based on a mixed kinematic and diffusive
wave approach. The most relevant decisions to make are the choice of an appropriate routing
(kinematic / diffusive), spatial schematization (central / upwind) and time stepping scheme
(explicit / implicit). The following section provides some hints on choosing the proper model
and how to set it up.

2.3.3.2 Diffusive wave model

The flow in one dimension is described by the De Saint-Venant equations consisting of mass
(continuity) and momentum conservation. The continuity equation reads:

∂A(h)

∂t
+
∂Q

∂x
= qlat (2.8)

while the non-conservative form of the momentum equation is defined by:

∂v

∂t
+ v

∂v

∂x
+ g

∂h

∂x
= −cf

v |v|
m

, cf =
g

C2
(2.9)

with

A wetted area [m2]
Q discharge [m3/s]
qlat lateral discharge per unit length [(m3/s)/m]
h water level [m above reference level]
v flow velocity [m/s]
g acceleration due to gravity [m/s2]
m hydraulic radius [m] (may be approximated to water depth for large rivers)
C Chézy coefficient [m1/2/s]
cf dimensionless bottom friction coefficient [-].

The diffusive wave equations can be derived from the complete system (2.8), (2.9) by ne-
glecting the terms for inertia (term 1) and convection (term 2). By additional substitution of
v = Q/A equation (2.9) becomes

g
∂h

∂x
= − gQ |Q|

C2A2m
(2.10)

and can be converted to

Q = −sign

(
∂h

∂x

)
CA

√∣∣∣∣∂h∂x
∣∣∣∣m (2.11)

10 Deltares

Simulation components

s

s

s

s
QQ

Q

Figure 2.2: Spatial schematization of the kinematic wave model on a staggered grid

The continuity equation (2.8) stays unchanged. Under assumption of a representative cross
section for a river reach, both variables A and m become a geometrical function of water
level h. By equalizing water level and energy head, hydraulic structures are represented by a
simplified structure formula with the general form

Q = f(hup, hdown, dg) (2.12)

in which dg = gate or weir setting (in case of a controlled structure).

The hydraulic structures are modeled by the following formulas for a weir and an orifice with
fully opened gates

Q =


2
3ws

√
2
3g(hup−zs)

3/2, if hup−zs>
3
2(hdown−zs)

ws(hdown − zs)
√

2g(hup−hdown), otherwise
(2.13)

in which ws = width of the structure, zs = crest level. In the case of a partially or fully closed
gate (hup − zs ≥ 3

2dg), we apply

Q =

{
wsµdg

√
2g(hup − zs − µdg), if hdown< zs+dg

wsµdg
√

2g(hup − hdown), otherwise
(2.14)

in which dg = gate setting, µ = contraction coefficient.

The spatial schematization of the kinematic wave model is done on a staggered grid. Com-
putation nodes include the state variable storage s. Branches always connect two nodes and
include the auxiliary variable dischargeQ (a major difference to the full hydraulic model where
Q is another state variable).

The numerical solution of the continuity equation (2.8) is resulting in:

A(hk+1)−A(hk)

∆t
+
Qk+1
down −Q

k+1
up

∆x
= qk+1

lat (2.15)

By substituting s(h) = A(h)∆x, we may transform equation (2.15) into a water balance in
the domain of a node and get

s(hk+1) = s(hk) + ∆t(Qk+1
up −Qk+1

down +Qk+1
lat) (2.16)

Deltares 11

RTC-Tools, Reference Manual

in which s = storage at a node (state variable), Qlat is the total lateral inflow into the domain
of the node.

The discharge in a flow branch is schematized based on equation (2.11) by

Qk+1 = f(hkdown, h
k
up) = −sign

(
hkdown − hkup

∆x

)
C(h̄k)A(h̄k)

√√√√∣∣∣∣∣hkdown − hkup∆x

∣∣∣∣∣m(h̄k),

(2.17)

in which h̄k =
hkdown+hkup

2

In a branch with a hydraulic structure, the flow branch is replaced by the formula of the hy-
draulic structures modeled by an arbitrary equation in the form

Qk+1 = f(hkdown, h
k
up, dg

k+1) (2.18)

Stability of this method turns out to be reasonable as long as the Courant-Friedrichs-Lewy
(CFL) condition is fulfilled.

2.3.3.3 Kinematic versus diffusive wave routing

The fact that the diffusive wave model takes into account more terms of the full dynamic
Saint Venant model does not mean that it is always preferred over the simpler kinematic wave
approach. Simplicity and computational performance of the latter may have advantages; in
particular if results of both approaches are the same, e.g. in river reaches with steep gradients.

The following aspects may guide you to the proper approach:

� Is the slope of your river reach smaller than TODO(??): xxx?
� Is backwater a relevant effect you need to consider?
� Do you want to consider hysteresis?

If you answer one of these questions with “Yes”, consider the diffusive wave approach. Oth-
erwise, you may try the kinematic wave method first. Note that you can mix both methods by
defining the related tag in each flow branch.

2.3.3.4 Model set-up

The spatial schematization of your routing network is a trade-off between accuracy (a higher
resolution means more accuracy) and CPU time. For flow routing purposes only, already a
very course spatial schematization may achieve the required accuracy from the control point
of view. We recommend the following procedure for defining your routing network:

1 Indicate all nodes you need to include: boundary conditions, upstream and downstream
node of hydraulic structures, stream flow gauges, bifurcations and confluences, nodes
with lateral inflows or extractions (can be also lumped into neighboring nodes).

2 Place additional nodes between the existing ones, if required for accuracy.

All nodes require a level-storage relation. One way to get those is a detailed analysis of
the surrounding channel network (typically halfway to the next node) in terms of the area

12 Deltares

Simulation components

and storage at different elevations. An easier and often sufficient option is the selection of a
typical cross section at the node and its multiplication by the length of the reaches around. If
you selected the upwind schematization (see section 3.4.3), take the cross section you are
using in the flow branch.

If you routing network includes flooding and drying, take care that the lowest level of your
level-storage table or equation in your node is lower than the lowest elevation in the cross
sections around. Since the model implementation does not include any dedicated procedure
for flooding and drying, violating this condition may result in negative water depth at nodes
and problems with robustness. If you use the upwind schematization together with the level-
storage relation derived from it, this condition is already fulfilled.

Flow branches require a cross section. You may again aim at deriving an aggregated cross
section from the available data of the branch. The simpler approach is again the selection of
a typical cross section. Depending on the spatial schematization (see 3.4.3), select a typical
cross section close to the upstream node for the upwind option and one halfway along the
branch for the central option.

2.3.4 hydrologicalModel

This model is currently under development.

2.3.5 lorentGrevers

This model is currently under development.

2.3.6 neuralNetwork

We use a recurrent neural network formulation given by the following equations for the sum of
neuron µ and the (nonlinear) transfer function

ykµ =

µ−1∑
v=1

wneuron
µ,v xkv +

K∑
v=µ

wneuron
µ,v xk−1

v +
L∑
v=1

winput
µ,v ukv

xkµ = hµ

(
ykµ

) (2.19)

where

xkν is the value of neuron v at time step k.
ykµ is the weighted sum of inputs to neuron µ at time step k.
wneuron
µ,v is the weighting given to neuron v when calculating the sum for neuron µ.

winput
µ,v is the weighting given to input v, when calculating the sum for neuron µ.

ukν is the value of input v at time step k.
K is the number of neurons.
L is the number of inputs.
hµ is the activation function for neuron µ.

Note that the for µ = 1, the first summation term in (2.19) is empty and hence should be taken
as zero.

Deltares 13

RTC-Tools, Reference Manual

2.3.7 reservoir

2.3.7.1 Mathematical model

The basic equation for pool routing in a reservoir is

ds

dt
= I −Q(h)

h = f(s)
(2.20)

where

I inflow into the reservoir
Q release of the reservoir
s storage in the reservoir (state variable)
h water level in the reservoir
t time.

We assume the relation f() between storage s and water level h to be a function or a piece-
wise linear lookup table.

The release Q from the reservoir can be further subdivided into an into a controlled release
Qc and an uncontrolled release Qu according to

Q(h, dg) = Qc(h, dg) +Qu(h) (2.21)

where dg is the setting of a hydraulic structure. Whereas the controlled release is a function
of the water level h (under assumption that its maximum capacity depends on the water level
in the reservoir) and the setting of the structure dg. The uncontrolled release is only a function
of the reservoir’s water level h representing for example an uncontrolled spillway with a fixed
crest level.

2.3.7.2 Numerical schematization

The explicit schematization, also referred to as "Forward Euler", for the pool routing equation
reads

sk = sk−1 + ∆t(Ik −Qkc (hk−1, dgk)−Qku(hk−1)) (2.22)

and is conditionally stable for sufficiently small time steps. The unconditionally stable implicit
version is

sk = sk−1 + ∆t((1− θ)Ik−1 + θIk)

− (1− θ)Qk−1
c (hk−1, dgk−1)− θQkc (hk, dgk)

− (1− θ)Qk−1
u (hk−1)− θQku(hk))

(2.23)

where 0.5 ≤ θ ≤ 1.0 is the time weighting coefficient of the "Theta" scheme shifting gradually
from a more accurate second-order Crank-Nicholson method for θ = 0.5 to a more robust,
first-order "Backward Euler" scheme for θ = 1.0.

14 Deltares

Simulation components

2.3.8 reservoirCompact

This is a dedicated component for hydropower reservoirs with gated spillways. Depending on
the availability of a forebay elevation input zfb, the mass balance equation is either used to
compute the new reservoir storage sk or the reservoir’s mass balance residuum rk. In the
case of no forebay elevation input, the new storage is computed by

sk = sk−1 + ∆t(
∑
n

QkI,n −QkO)

rk = 0

(2.24)

where QI and QO are reservoir inflows and outflow, respectively, and ∆t is the time step. In
the case of an available forebay elevation, the mass balance is used to compute the mass
balance residuum by

rk =
sk(zkfb)− sk−1

∆t
−
∑
n

QkI,n +QkO (2.25)

The first mode is primarily used to simulate reservoirs or optimize them in a sequential mode
(check details in Chapter 3). The second mode serves to run the reservoir in update mode,
in case of having inflow, outflow and forebay elevation available and checking the reservoir’s
mass balance. Furthermore, it is used in the simulaneous optimization mode.

The forebay elevation zfb directly depends on the storage given by

zkfb = fls(s
k) (2.26)

where the level storage relation fls() can be configured as a piecewise linear lookup table or
a polynominal function.

The ’reservoirCompact’ component implements several options for computing the tailwater
elevation ztw according to the equations

zktw = ftw(QkO) (2.27)

zktw = a+ bzk−1
fb,d + c(QkO)d (2.28)

zktw = zktw,ext + a(Qk −QkO,ext) (2.29)

where ftw() in Equation (2.27) is a piecewise linear table with the relation between the outflow
of the reservoir and the tailwater elevation. Note that this formulation is not taking into account
backwater effects from downstream projects. Equation (2.28) is a tailwater equation which
considers the reservoir’s outflow and the forebay elevation zfb,d of a downstream reservoir.
It includes the parameters a, b, c and d. Equation (2.29) makes use of an external tailwater
forecast ztw,ext for a given outflow trajectory QO,ext. The simulated tailwater is computed by
a linear variation of the provided, external tailwater and the products of a parameter a and
the difference between the simulated and external outflow. Furthermore, the tailwater can be
provided by an external time series or modeling component.

The head h of the turbines is computed by

hk = zkfb − zktw (2.30)

Deltares 15

RTC-Tools, Reference Manual

Environmental obligations may require spill operations. In this case, the spill is either pro-
vided as an absolute flow QS,TGT or provided by a spill rate qS,TGT which is computed as
percentage of the total outflow QO according to

QkS,TGT =
qkS,TGT

100
QkO (2.31)

The turbine flow QT at an aggregated project level is bounded by the requirement of a mini-
mum power production and the maximum turbine capacity in term of a maximum power pro-
duction or an external maximum turbine flow QTX,ext provided by

QkTM = fPQ(P kM , h
k)

QkTX = min(fPQ(P kX , h
k), QkTX,ext)

(2.32)

whereQTM andQTX are the minimum and maximum turbine flows, respectively, PM , PX are
the power production bounds and the function fPQ() provides the relations between power,
head and the turbine flow. The function fPQ() and its corresponding inverse function fQP ()
are derived from information about the turbine efficiency, which is either provided by a lookup
table as a head dependent efficiency (unit: power / discharge) or by a two-dimensional lookup
table as a dependency on head and flow (dimensionless).

The spill target and the turbine flow bounds in combination with an embedded prioritized re-
lease policy enables us to split the total outflow into spill and turbine flow. The minimum
generation requirements in effect for voltage support are the highest priority objective. Addi-
tional outflow is allocated for the spill target, then for additional power generation up to the
maximum turbine capacity, and finally directed again to the spill. This implicit outflow distribu-
tion enables us to keep the total outflow as a single optimization variable without the need for
optimizing spill and turbine flow separately together with constraints for enforcing a release
procedure. The related equations for the spill and turbine flow become

QkS =


QkO −QkTX −QkMISC if QkO > QkTX +QkST +QkMISC

QkST if QkTX +QkST > QkO > QkTM +QkST
QkO −QkTM −QkMISC if QkTM +QkST > QkO > QkTM

0 else

(2.33)

QkT =


QkTX if QkO > QkTX +QkST

QkO −QkST −QkMISC if QkTX +QkST > QkO > QkTM +QkST
QkTM if QkTM +QkST > QkO > QkTM

QkO −QkMISC else

(2.34)

Finally, the power generation of a project is computed by

P k = fQP (QkT , h
k) (2.35)

The component can handle SI as well as imperial units. The two options are summarized in
Table 2.2.

16 Deltares

Simulation components

Table 2.2: Units of inputs and outputs of the ’reservoirCompact’ component

Variable Option 1: SI Option 2: Imperial

flows m3/s kcfs (kilo cubic feet per second)
elevations m ft (feet)
storage m3 kcfs * day (kcfs over one day)
turbine efficiency (option 1) MW/(m3/s) MW/kcfs
turbine efficiency (option 2) - -
power MW MW

2.3.9 unitHydrograph

Unit hydrograph provides a rainfall-runoff modeling based on the concept of the unit hydro-
graph.

2.4 Operating rules and controllers

2.4.1 constant

This simple rule defines a user-defined constant output yk according to

yk = const. (2.36)

It is typically applied in combination with triggers (see next section) for switching between
several predefined states of a structure, e.g. fully opened or fully closed.

2.4.2 dateLookupTable

The date lookup table is a 2D lookup table with the time axis as one of its dimensions. Its
discrete form reads

yk = f(t, xk−1∨k) (2.37)

The resolution of the time axis t is in days of the year. The value axis x may have any range.
A typical application of the rule would be the definition of a minimum release of a reservoir as
a function of the day of the year and the water level of the reservoir.

2.4.3 deadBandValue

The dead band value rule is a discrete rule for suppressing the output of another rule until its
rate of change becomes higher than a certain threshold. It reads

xk =

{
xk−1 if

∣∣xk − xk−1
∣∣ < threshold

xk otherwise
(2.38)

It is often applied to limit the number of adjustments to movable elements of hydraulic struc-
tures in order to increase their life time.

Deltares 17

RTC-Tools, Reference Manual

xmin xmax

ymin

ymax

Figure 2.3: Graphical representation of guideBand rule

2.4.4 guideBand

The guide band rule provides a linear interpolation from input x to output y, if x is between
two input threshold xmin and xmax. Otherwise, the output is limited to defined minimum and
maximum output threshold ymin and ymax. The rule reads

yk =


ymin

ymin + xk−1∨k(ymax−ymin)
xmax−xmin

ymax

, if
xk−1∨k ≤ xmin

xmin < xk−1∨k < xmax

xmax ≤ xk−1∨k
(2.39)

A graphical representation of the rule is presented in Figure 2.3.

The input and output thresholds xmin, xmax, ymin, ymax can be constant, a function of time or
provided by a time series, e.g. from an external input or a result from the execution of a prior
rule.

A typical application of the rule is the enforcement of a reservoir storage s between a cer-
tain range and the use of the available storage for equalizing the release. If the storage is
approaching or down-crossing the lower storage limit smin, the release is set to the minimum
flow (zero is no minimum flow is defined). If the storage is approaching or up-crossing the
upper limit smax, the release is set to maximum capacity.

2.4.5 interval

The interval controller is a simple feedback controller according to the control law

yk =


ymax if xk−1 > spk + 1

2D
ymin if xk−1 < spk − 1

2D
yk−1 otherwise

(2.40)

where xk−1 is an input variable, spk is a setpoint, D is a dead band around the setpoint, and
yk is the controller output.

18 Deltares

Simulation components

2.4.6 limiter

In contrary to the deadBand rule defined above, the discrete limiter rule restricts the change
of a variable to a relative threshold p. It reads

yk =


(1− p)xk−1

(1 + p)xk−1

xk

if xk < (1− p)xk−1

if xk > (1 + p)xk−1

otherwise
(2.41)

where p is the maximum relative rate of change. The configuration also accounts for an
absolute rate of change according to the condition xk < ∆p xk−1 where ∆p is the absolute
rate of change.

A typical application of the rule is the limitation of release changes from a reservoir for avoiding
too steep flow gradients downstream.

2.4.7 pid

The Proportional-Integral-Derivative controller (PID controller) is a generic feedback controller
including an optional disturbance term commonly used in industrial control systems. It reads

e(t) = x(t)− sp(t)

y(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t) +Kfd(t)

(2.42)

where e(t) is the difference between a process variable x(t) and a setpoint sp(t), Kp,Ki,Kd

are the proportional, integral and derivate gains, respectively, the optional feed forward term
consists of a multiplicator Kf and an external disturbance d(t), y(t) is the controller output.

The discrete form of equation (2.42) in RTC-Tools reads

ek = xk−1 − spk−1

Ek = Ek−1 + ∆t ek

yk = Kpe
k +KiE

k +Kd
ek − ek−1

∆t
+Kfd

k

(2.43)

where E is the integral of e. The implentation includes a limitation of the maximum velocity
according to

yk =


(1−∆t∆ymax)yk−1

(1 + ∆t∆ymax)yk−1

yk

if yk < (1−∆t∆ymax)xk−1

if yk > (1 + ∆t∆ymax)xk−1

otherwise
(2.44)

Furthermore, the integral part is corrected by a wind-up correction according to

eIk ≤
ymax −Kpe

k +KiE
k −Kd

ek−ek−1

∆t −Kfd
k

Ki

eIk ≥
ymin −Kpe

k +KiE
k −Kd

ek−ek−1

∆t −Kfd
k

Ki

, (2.45)

if the minimum and maximum settings of the actuator are met.

Deltares 19

RTC-Tools, Reference Manual

Figure 2.4: Hierarchical definition of deadBand and standard triggers

2.4.8 timeAbsolute

This rule reads

yk = xk (2.46)

where x is an external time series or output of a previous model.

2.4.9 timeRelative

This rule reads

yk = xτ (2.47)

where τ is a relative time reference. When the rule is switched on, the relative time is i) put to
zero, ii) put to a value based on an existing y for which equation (2.47) is fulfilled.

2.5 Triggers

2.5.1 deadBandTrigger

The dead band trigger checks the input data for an upper or lower threshold crossing. The
trigger is active, in case of an up-crossing of the upper threshold (condition 1). It is inactive,
in case of a down crossing of the lower threshold (condition 2). In the range in-between, the
trigger keeps its former state. The rule reads

yk =


1 if xk−1∨k

1 > xk−1∨k
2

0 if xk−1∨k
3 < xk−1∨k

4

yk−1 otherwise

(2.48)

where x1, x2, x3, x4 are either constant values or time series. The following operators are
supported: >,≥,=, 6=,≤, <. Dead band triggers are used to switch on and off pumps or
turbines and the dead band ensures that the device is not switched on or off too often.

The dead band trigger as well as the standard trigger (see section 2.5.6) may include other
triggers which are evaluated in case of an active or inactive trigger state. This feature enables
a user to build complex decision trees for selecting unique rules for controlling a structure
(Figure 2.4).

Rules which are referenced in a trigger and are associated with an inactive path will be deac-
tivated. This procedure supports that a hydraulic structure is controlled by a unique controller
or rule.

20 Deltares

Simulation components

2.5.2 deadBandTime

The dead band time trigger checks a time series for a number of subsequent up-crossings
nup or down-crossing ndown from its current value. If the crossing is observed for at least the
user-defined number of time steps, the new value is used. The trigger reads

xk =


xk if {xk−nup+1, ..., xk} > xk−nup

xk if {xk−ndown+1, ..., xk} < xk−ndown

xk−1 otherwise
(2.49)

An application for this trigger is the activation or deactivation of alarm levels. The increase
of alarm level may happen immediately (nup = 0), whereas the decrease of an alarm level
could be done only after a number of n time steps have passed (ndown = n) without further
threshold crossings.

2.5.3 polygonLookup

The polygon lookup trigger checks, if a point is inside of a set of polygons. If this is the case,
it returns the user-defined value of the specific polygon. The point is defined by the values of
two time series, referred to as the x1 and x2 coordinate of the point. The rule reads

yk =


y1
...
yn

ydefault

if (xk−1∨k
1 , xk−1∨k

2) ∈ P1
...

if (xk−1∨k
1 , xk−1∨k

2) ∈ Pn
otherwise

(2.50)

where y is the result of the rule and {P1, ..., Pn} is a set of polygons.

Figure 2.5 presents an example for the application of the trigger to the definition of warning
level for controlling a lake release in Canton Bern, Switzerland.

2.5.4 set

The trigger enables a logical combination of other triggers, combined by a logical operator. It
reads

yk = xk−1∨k
1 ∧ xk−1∨k

2 (2.51)

The following operators are supported: ∧ (AND), ∨ (OR), XOR.

If more than two terms needs to be combined, the set can be used recursively by defining
another set as one of the two terms. Therefore, the expression yk = xk1 ∧ (xk2 ∨ xk3) is
represented by a hierarchy of two sets (check the example in the configuration chapter).

2.5.5 spreadsheet

The spreadsheet trigger enables the definition of a new trigger state based on its old state and
a maximum number of three additional inputs. Besides off (0), on (1) states, all other positive
integer values larger than 1 can be processed.

Figure 2.6 shows an application of the trigger to the combination of alarm levels for Lake Thun,
Canton Bern, Switzerland.

Deltares 21

RTC-Tools, Reference Manual

Figure 2.5: Example for the application of the polygon trigger to the definition of warning
levels for controlling a lake release at Lake Thun, Canton Bern, Switzerland

2.5.6 Standard

The standard trigger compares two input values and returns true (1) or false (0):

yk =

{
1 if xk−1∨k

1 > xk−1∨k
2

0 otherwise
(2.52)

Beside the > operator that is used in Equation 2.52 the following operators are supported:
>,≥,=, 6=,≤, <.

2.5.7 Expression

The expression trigger works like the expression component in section 2.2.2. But since trig-
gers are evaluated before components within the time step simulation, it can make sense to
use the expression trigger instead of an expression component in order to prepare data of the
current time step.

22 Deltares

Simulation components

Figure 2.6: Spreadsheet for combining alarm levels, Lake Thun, Canton Bern, Switzer-
land

Deltares 23

RTC-Tools, Reference Manual

24 Deltares

3 Optimization components

3.1 Introduction and deterministic optimization setup

We consider a discrete time dynamic system according to

xk = f(xk−1, xk, uk, dk)

yk = g(xk, uk, dk)
(3.1)

where x, y, u, d are respectively the state, dependent variable, control and disturbance vec-
tors, and f(), g() are functions representing an arbitrary linear or nonlinear water resources
model. If being applied in Model Predictive Control (MPC), (3.1) is used for predicting future
trajectories of the state x and dependent variable y over a finite time horizon represented by
k = 1, ..., N time instants, in order to determine the optimal set of controlled variables u by
an optimization algorithm. Under the hypothesis of knowing the realization of the disturbance
d over the time-horizon, i.e. the trajectory {dk}N1 , a Sequential MPC approach, also referred
to as Single Shooting, can be formulated as follows

min
u∈{0..T}

N∑
k=1

J(x̃k(u, d), ỹk, uk) + E(x̃N (u, d), ỹN , uN)

subject to h(x̃k(u, d), ỹk, uk, dk) ≤ 0, k = 1, ..., N

(3.2)

where x̃k(u, d), ỹk are the simulation results, J() is a cost function associated with each state
transition, E() is an additional cost function associated to the final state condition, and h()
are hard constraints. In the corresponding simultaneous or collocated optimization approach,
the states x become additional variables of the optimization problem, and the process model
(3.1), gets an equality constraint of the optimization problem according to

min
u,x,y∈{0..T}

N∑
k=1

J(xk, yk, uk) + E(xN , yN , uN)

subject to h(xk, yk, uk, dk) ≤ 0, k = 1, ..., N

xk − f(xk−1, xk, uk, dk) = 0

yk − g(xk, uk, dk) = 0

(3.3)

Both methods lead to identical solutions, but have pros and cons for specific optimization
problems in terms of runtime performance. The sequential approach (3.2) is more efficient,
if hard constraints are defined on the control variables u only and gets inefficient for hard
constraints on states x. Because of the state dependency on all prior control variables u, the
constraint Jacobian becomes dense in the lower trianglar matrix. In this case, the simultane-
ous approach (3.3) shows better efficiency, since states become an input of the optimizer and
the constraint Jacobian gets sparse.

RTC-Tools does not strictly distinguish between one and the other approach. In fact, opti-
mization problems can be set up either in a sequential or simultaneous way. Furthermore,
both methods can be mixed leading to the so-called multiple-shooting approach. The choice
depends on the setup of the specific modelling components. For example, the pool routing
in a reservoir can be configured in such a way that the control variable is the release only,
and the reservoir level is a result of a simulation. Alternatively, the optimizer may provide
both release and reservoir level for computing the mass balance residuum which becomes an

Deltares 25

RTC-Tools, Reference Manual

Table 3.1: Model predictive control features implemented in RTC-Tools

Optimizer MPC problem definition

IPOPT (embedded) constraints
MINOS (Matlab/TOMLAB) min/max bounds and rate of change limits
SNOPT (Matlab/TOMLAB) for optimization variables, system states, outputs

cost function terms
rate of change with variable exponent
absolute with variable exponent
several performance indicators

equality constraint of the optimization problem. It is obvious that the first setup corresponds
to the sequential (3.2), the second one to the simultaneous approach (3.3).

3.2 Multi-stage stochastic optimization setup

The extension of the deterministic to a stochastic optimization is achieved by replacing the
single-trace forecast by a forecast ensemble and computing the objective function values
J and E as the probability-weighted sum of the objective function terms of the individual
ensemble branches or scenarios. This lead to a reformulation of Sequential MPC approach
of Equation (3.2) as

min
u∈{0..T}

M∑
j=1

pj

[
N∑
k=1

J(xj,k(u), yj,k(x, u), uj,k) + E(xj,N (u), yj,N (x, u), uj,N)

]
(3.4)

where pj is the probability of the scenario j = 1, . . . ,M and M is the total number of scenar-
ios. Whereas the disturbance d as well as the model states x and outputs y are treated inde-
pendently in each scenario, the control variable u is the key to the properties of the stochastic
optimization approach. The most general formulation is achieved by the use of scenario trees.
One way for its definition is the scenario tree nodal partition matrix P (j, k) with the dimen-
sions m× n. The matrix assigns the control at time step k of scenario j to the control vector
u. This enables us to define a common control trajectory for all scenarios at the beginning of
the forecast horizon when future system states are still uncertain.

When uncertainty gets resolved over the forecast horizon, for example when a forecasted
precipitation is finally observed, we introduce branching points to receive an independent
control in each scenario at the end of the forecast horizon. Equation (3.5) presents an example
of a nodal partition matrix for a simple tree with two scenarios and a branching point at the
second time step.

P =

[
1 2 3 4
1 2 5 6

]
(3.5)

The introduction of multiple branching points at several time steps leads to a multi-stage
stochastic optimization. From a technical perspective, the solution of the multi-stage stochas-
tic optimization (Equation (3.4)) is very similar to the solution of the deterministic setup of
Equation (3.2). The main difference is the number of dimensions of the optimization prob-
lem. According to our experience, it is typically increasing by a factor of 5-20, if we derive the
scenario tree from a meteorological ensemble forecast.

26 Deltares

Optimization components

The extension of the Simultaneous MPC approach to a multi-stage stochastic optimization is
idetical to the one of the sequential approach presented above. An addition is the handling of
hard constraints on system states and outputs. These are executed independently on every
branch of the tree.

3.3 Set-up of the optimization problem

3.3.1 Control variables

The setup of the optimization problem starts with the definition of the input variables of the op-
timizer, i.e. the control u in the sequential setup as well as the optional state x and dependent
variable y in the simultaneous setup. Each variable can be of the types

� CONTINUOUS, representing a continuous variable
� INTEGER, representing an integer variable (Note that there is still no RTC-Tools-internal

solver supporting Mixed Integer Nonlinear Programming (MINLP), therefore, this options
depends on interfacing a suitable solver via the Matlab or GAMS interfaces)

� TIMEINSTANT for the setup of a Time-Instant Optimization MPC (TIO-MPC) (experimental
version!)

The optimization variable may includes optional bounds for the according to umin ≤ u ≤
umax. In case of the TIMEINSTANT of the TIO-MPC, the minimum and maximum bounds
are compulsary and represent the two states of the control variable. At each time instant, the
state is switches from one value to the other.

Each optimization variable can include a scaling factor. It is good practice to scale all variables
in such a way that they are in the same order of magnitude. For example, if variables cover
both reservoir levels and releases, the scaling factor of the level should be defined in such as
way that its range, i.e. the difference between maximum and minimum operating levels of the
reservoirs, multiplied by the scaling factor is in the range of the releases. User-defined scaling
usually outperformed automatic, built-in scaling options of the optimizers.

The time step of the control variable u and the simulation can be different. This enables
a courser discretization in the optimization compared to the simulation, for example in case
of using an explicit model with severe time step restrictions. At this moment, the following
aggregation options are supported:

� BLOCK, keeping the the recent value persistent until a new value is specified
� LINEAR, conducting a linear interpolation of the control variable between two instants at

which it is defined by the optimization algorithm

Deltares 27

RTC-Tools, Reference Manual

3.3.2 Constraints

RTC-Tools takes into account constraints in two ways: i) as a soft constraint in the objective
function or ii) as a hard constraint. This section covers the definition of hard constraint either
as an inequality constraint or equality constraint of the optimization problem. The next section
provides more details on the definition of soft constraints and the objective function in general.

Hard constraints are available for control variables, states or dependent variables. In all cases,
the entity may have bounds and a maximum rate of change according to

umin ≤ uk ≤ umax

∆umin ≤ uk − uk−n ≤ ∆umax n = k −N, ..., k − 1
(3.6)

where N is the number of time steps of the rate of change constraint looking back in time.

The definition of constraints on control variables is straightforward both in the sequential and
simultaneous optimization setup and requires no additional information. Constraints on states
and dependent variables is only efficient in the simultaneous setup and require information
on how these are traced back to optimization variables. This includes the definition of the
related optimization variables, the modeling components involved and the number of time
steps looking back in time.

Example 1:

Consider a reservoir represented by the mass balance equation below in simultaneous opti-
mization mode, represented by

rk = sk − sk−1 −∆t(Qkin −Qkout) (3.7)

where r is the residuum of the mass balance, s and Qout are the two optimization variables
for reservoir storage and release, respectively. For defining an equality constraint on the
residuum r, we consider a bound constraints with rmin = rmax = 0 and define a state
constraint referring to the two optimization variables s and Qout, the modeling component
above and N = 2 time steps (note that the storage at sk−1 and sk contributes to the mass
balance equation).

Example 2:

Let’s add a tailwater curve to the reservoir given by

twk = f(Qkout) (3.8)

and define two constraints for i) keeping a minimum tailwater level and ii) limiting the maximum
tailwater rate of change

i) twk ≤ twmin

ii) ∆twmin ≤ twk − twk−1 ≤ ∆twmax

(3.9)

The implementation of the first constraint considers the variable Qout, refers to the modeling
components (3.8) and requires N = 1. The second constraint works in the same way except
for the need for looking back an additional time step in time leading to N = 2.

Note that the Matlab interface provides a platform for defining more general constraints via a
user programming.

28 Deltares

Optimization components

3.3.3 Cost function terms

RTC-Tools supports the following cost function terms:

absolute (difference related to a set point)

J = w
T∑
k=1

∣∣∣uk − usp∣∣∣a (3.10)

where w is a weighting coefficient, usp is a constant or time-dependent set point. The abso-
lute term can be applied either on a control, state or dependent variable. The configuration
supports the neglection of the upper branch (u > usp) or lower branch (u < usp) of the value
range primarily for implementing a soft constraint on a variable up-crossing or down-crossing
a threshold.

rate of change (difference of two subsequent values)

J = w
T∑
k=1

∣∣∣uk − uk−1 − usp
∣∣∣a (3.11)

where u is either a control, state or dependent variable, w is a weighting coefficient, and usp
is an optional set point for the rate of change. The latter is again primarily used within soft
constraints in combination with the neglection of the upper branch (uk−uk−1 > usp) or lower
branch (uk − uk−1 < usp) of the value range.

Furthermore, additional objective function terms of arbitrary types can be defined in Matlab.

3.4 Adjoint models

Gradient-based solvers of the Sequential Quadratic Programming (SQP) or Interior Point (IP)
types require the gradient vector of the cost function dJ(x, u)/du and the constraint Jacobian
dh(x, u)/du for performing efficiently. The computation of these first-order derivatives by
numerical differentiation is a straighforward approach, but requires at least n+nnz+1 model
execution for an optimization problem of n control variables and nnz non-zero entries in the
constraint Jacobian. It becomes computationally inefficient for several hundreds or thousands
of dimensions, and disqualifies the approach from being applied in an operational setting.

A significantly more efficient method for computing the derivatives at computational costs in
the order of a single model execution is the set-up of an adjoint model for each modeling
component. The RTC-Tools framework takes care for integrating these models both in the
simulation mode as well as the reverse adjoint mode.

The set-up of an adjoint model is outlined for the explicit version of the diffusive wave model
presented in section 3.2.1. Consider the mass balance equation given by

sk = sk−1 + ∆t
∑
i

f(sk−1, sk−1
i , dgki) (3.12)

where s represent the storage at the node of interest and si is the storage at a connected node
i and the function f() denotes the flow contribution of a flow branch or hydraulic structure.

A straightforward way for the derivation of an adjoint model of an explicit calculation workflow
is the application of algorithmic differentiation in reverse mode. It is basically a consequent

Deltares 29

RTC-Tools, Reference Manual

application of the chain rule leading to

ŝk−1 = ŝk

[
1 + ∆t

∑
i

∂f(sk−1, sk−1
i , dgki)

∂sk−1

]

ŝk−1
i = ŝk

[
1 + ∆t

∂f(sk−1, sk−1
i , dgki)

∂sk−1
i

]

d̂g
k

= ŝk

[
∆t

∂f(sk−1, sk−1
i , dgki)

∂dgki

] (3.13)

where û is the adjoint variable of u.

We compute the cost function gradient according to the following procedure:

1 Model simulation, (3.12), for computing all states and dependent variables
2 Initialization of the adjoint variables by the partial derivatives of the objective function,
ûk = ∂J(uk, xk, yk)/∂uk, with respect to control variables, states and dependent vari-
ables.

3 Model execution in adjoint mode, (3.13), in reverse order (with respect to the time loop
and the execution of subsequent modeling components)

After conducting the steps above, the resulting adjoint variables represent the total derivatives
of the cost function dJ(uk, xk, yk)/duk, i.e. the cost function gradient.

The computation of the constraint Jacobian is similar. The following procedure holds for a
single constraint at a specific time step k:

1 ditto (once for all constraints)
2 Initialization of the adjoint variables by the partial derivatives of the constraint,
ûk = ∂h(uk, xk, yk, dk)/∂uk, with respect to control variables, states and dependent
variables.

3 Model execution in adjoint mode, (3.13), over N time steps which contribute to the non-
zero Jacobian entries of the specific constraint.

Adjoint systems are still not implemented for all available components in RTC Tool. An
overview about the status of implementation is given in Table 3.2

30 Deltares

Optimization components

Table 3.2: Implementation status of adjoint models

Adjoint available Comments

Modeling components

accumulation yes -
arma yes -
expression yes -
gradient yes -
hydraulicModel yes implementation is only available for the ex-

plicit scheme, implicit scheme will become
available soon

hydrologicalModel no -
merger yes -
neuralNetwork yes -
reservoir yes -
reservoirBPA yes -
unitDelay yes -
unitHydrograph yes -

Rules

all no the adjoint of smooth rules such as the PID
controller may become implemeneted in the
future for modeling mixed systems with MPC
and feedback control

Triggers

all no triggers switching on external input will be
supported in the future

Deltares 31

RTC-Tools, Reference Manual

32 Deltares

4 References

Becker, B., 2013. Inzet RTC-Tools voor het boezemmodel “Wetterskip Fryslân”. Report
1205773-000, Deltares, Delft. In Dutch. 37

Becker, B. P. J., D. Schwanenberg, T. Schruff and M. Hatz, 2012. “Conjunctive real-time
control and hydrodynamic modelling in application to Rhine River.” In Proceedings of 10th
International Conference on Hydroinformatics. TuTech Verlag TuTech Innovation GmbH,
Hamburg, Germany. 37

Gregersen, J., P. Gijsbers and S. Westen, 2007. “OpenMI: Open modelling Interface.” Journal
of Hydroinformatics 9 (3): 175–191. 3

Schuurmans, J., 1997. Control of Water Levels in Open-Channels. Ph.D. thesis, Technische
Universiteit Delft. 1, 2

Schwanenberg, D., B. Becker and T. Schruff, 2011. SOBEK-Grobmodell des staugeregelten
Oberrheins. Report no. 1201242-000-ZWS-0014, Deltares. In German. 37

Deltares 33

RTC-Tools, Reference Manual

34 Deltares

A Configuration

A.1 Model setup in XML

The RTC-Tools schematization is specified in a set of XML files according to Table A.1.

Table A.1: RTC-Tools configuration files

File Content Use

rtcDataConfig.xml time series definitions, interface definitions for file
io, in-memory data exchange etc.

required

rtcObjectiveConfig.xml definition of the optimization problem including the
control variables, constraints and cost function
terms

optional

rtcParameterConfig.xml set of externalized parameters for modification in
external applications such as Delft-FEWS or Mat-
lab

optional

rtcRuntimeConfig.xml definition of runtime relevant info: time step size,
simulation time, file names if deviating from stan-
dard naming convention, run mode (simulation,
optimization etc.), logging information etc.

required

rtcScenarioTreeConfig.xml definition of a scenario for the Tree-Based MPC
option

optional

rtcToolsConfig.xml RTC-Tools schematization including the modeling
components, rules and controllers as well as trig-
gers of the model

required

All configuration files are expected in the same working directory. We highly recommend to
validate all XML files against the corresponding XSD schema definitions during the model
setup. We suggest using validating XML editors such as XMLSpy (http://www.altova.
com/xml-editor/), XML Notepad (http://xmlnotepad.codeplex.com/) or oXygen (http:
//www.oxygenxml.com/).

The most efficient way to explore configuration options is to check the XSD schemas in an
editor such as XMLSpy. Alternatively, the configuration options are documented in rtf/pdf
format in the separate configuration manual.

A.2 Initial conditions (state handling), boundary conditions

The primary file input and output formats of RTC-Tools for time series and model states are
the Delft-FEWS PI XML formats (pi_timeseries.xsd, pi_state.xsd) and the OpenDA
treeVector.xsd format.

The user is responsible to supply the initial condition of a model run in the file state_import.xml
according to the OpenDA treeVector.xsd format. Note that no further meta data about
date and time of the state is required, since the run period of the model is already defined
in the runtime settings (check above). The state_export.xml is generated by RTC-Tools
and includes the state of the last time step again in the OpenDA treeVector.xsd format
and meta information for Delft-FEWS for picking it up in the statePI.xml file (described in
pi_state.xsd).

Deltares 35

http://www.altova.com/xml-editor/
http://www.altova.com/xml-editor/
http://xmlnotepad.codeplex.com/
http://www.oxygenxml.com/
http://www.oxygenxml.com/

RTC-Tools, Reference Manual

Import and export time series comply with the PI-XML format pi_timeseries.xsd. Both
version of the format are supported: i) pure XML, ii) a combination of XML and binary files
(more efficient, but less readable). The time series of the PI-XML XML file are linked to the
time series in the RTC-Tools (see file rtcDataConfig.xml) by the unique combination of
locationId, parameterId and ensembleIndex.

A.3 Command line options

RTC-Tools expects the XSD schemas in the directory of the binaries. Furthermore, it assumes
its working directory in the folder from where it is executed. Both assumption can be overruled
by the following command line options:

� -schemaDir=<path to schema directory>

� -workDir=<path to work directory>

A.4 RTC-Tools in Delft-FEWS

We recommend the following setup of the file system for implementing RTC-Tools under Delft-
FEWS:

<Delft-FEWS regional home>
<Modules>

<RTCTools>
<bin> (including the executables and XSD schemas)
rtcDataConfig.xml (configuration of time series and file io)
rtcRuntimeConfig.xml (configuration of runtime settings)
rtcToolsConfig.xml (configuration of the modeling components)
run.bat (batch file for executing a model run)
state_import.xml

timeseries_import.xml

Note that the files above represent the minimum set of a RTC-Tools model.

The following hints summaries our recommended "best practice" for implementing RTC-Tools
model in Delft-FEWS:

� Use a consistent naming convention between Delft-FEWS and RTC-Tools. We recom-
mend to define the RTC-Tools Id by <locationId>_<parameterId>, where the location
and parameter ids are the ones in Delft-FEWS.

� Try to avoid an additional the mapping in Delft-FEWS and use the one in the rtcDataConfig.xml.
� Make sure that you use the same units in Delft-FEWS and RTC-Tools. There will be no

unit conversion.
� Put the configuration files rtcXXXConfig.xml into a module dataset.
� Start with a time series exchange by pure XML, then switch it to the XML/bin option later

for efficiency.

A.5 RTC-Tools in OpenMI

36 Deltares

Configuration

A.5.1 Introduction

For conjunctive modelling of real-time control with hydraulic processes RTC-Tools is equipped
with an interface according to the OpenMI standard. Applications of such conjunctive mod-
elling have been described by Becker et al. (2012), Schwanenberg et al. (2011) and Becker
(2013). Detailed technical information for an OpenMI composition consisting of RTC-Tools
and SOBEK is given by Schwanenberg et al. (2011) and Becker (2013)

A.5.2 The OMI-file

Below an example of an *.omi-file is given. The keyword Assembly refers to the location of
the dynamic link library with the RTC-Tools computational core. This DLL must provide the
OpenMI interface definition. LinkableComponent refers to
Deltares.RtcToolsWrapper.RtcToolsLinkableComponent,
this is hard-coded in the OpenMI interface definition. Table A.2 explains the meaning of the
argument keys.

<?xml version="1.0"?>

<LinkableComponent Type="Deltares.RtcToolsWrapper.RtcToolsLinkableComponent"

Assembly="..\..\ RTCToolsOpenMI\bin\Deltares.RtcToolsWrapper.dll"

xmlns="http: //www.openmi.org/LinkableComponent.xsd">

<Arguments >

<Argument Key="modelDirectory" ReadOnly="true" Value=".\ RtcTools" />

<Argument Key="MissingValue" ReadOnly="true" Value="0" />

<Argument Key="OpenMiTimeStepSkip" ReadOnly="true" Value="144" />

<Argument Key="SchemaLocation" ReadOnly="true"

Value="..\..\..\ RTCTools\xsd\" />

</Arguments >

</LinkableComponent >

Table A.2: OpenMI argument keys for RTC-Tools models

argument key description

modelDirectory Relative or absolute path from the location of the *.omi-file to the
directory of RTC-Tools input file

MissingValue If this value is provided to RTC-Tools via the GetValues method,
RTC-Tools will treat it as not existent

OpenMiTimeStepSkip 1 means data exchange at every RTC-Tools time step, 2 means
data exchange every second time step, and so on. The default
value is 1.

SchemaLocation The relative path from the location of the RTC-Tools model di-
rectory to the directory with xsd-schema definition files. If this
argument key is not given, RTC-Tools looks for the xsd files in
the RTC-Tools work directory, where the xml files are located.

A.5.3 OpenMI exchange items

OpenMI exchange items are interpreted as an alternative to pre-defined time series, e. g.
a Delft-FEWS-PI-time series in timeseries_import.xml. Consequently, OpenMI input ex-
change items and OpenMI output exchange items are defined in the file rtcDataConfig.xml.

In the example below the following exchange items are defined:

Deltares 37

RTC-Tools, Reference Manual

� input exchange items (import time series)

� water level at Leeuwe_P498
� water level at Bergum_P499

� output exchange item (export time series)

� gemiddeldeBoezempeil

This RTC-Tools model runs connected with a SOBEK model, so the corresponding node in
the SOBEK model schematisation has been added to the elementId of the input exchange
items. In this example the RTC-Tools model gets time series data via OpenMI or from a
Delft-FEWS-PI-time series from the file timeseries_import.xml. If RTC-Tools runs under
OpenMI, priority is given to OpenMI, this means that data from OpenMI overwrites data from
the Delft-FEWS-PI-time series file. If the model does not run under OpenMI, the data from the
Delft-FEWS-PI-time series file is taken. So this RTC-Tools model can also run standalone,
this is useful to identify bugs in the RTC-Tools-model.

Output data is both provided as OpenMI exchange item and written in the standard *.csv-
output file.

<?xml version="1.0" encoding="UTF -8"?>

<!-- edited with XMLSpy v2012 rel. 2 sp1 (http: //www.altova.com)

by zws 2 (Stichting Deltares) -->

<rtcDataConfig xmlns:xsi=

"http: //www.w3.org /2001/ XMLSchema -instance"

xmlns:rtc="http: //www.wldelft.nl/fews"

xmlns="http: //www.wldelft.nl/fews"

xsi:schemaLocation=

"http: //www.wldelft.nl/fews ..\..\..\ xsd\rtcDataConfig.xsd">

<importSeries >

<PITimeSeriesFile >

<timeSeriesFile >timeseries_import.xml</timeSeriesFile >

<useBinFile >false</useBinFile >

</PITimeSeriesFile >

<timeSeries id="Leeuwe_P498.H">

<PITimeSeries >

<locationId >Leeuwe_P498 </locationId >

<parameterId >H</parameterId >

<interpolationOption >BLOCK </interpolationOption >

</PITimeSeries >

<OpenMIExchangeItem >

<elementId >Leeuwe_P498 </elementId >

<quantityId >water level</quantityId >

<unit>m</unit>

</OpenMIExchangeItem >

</timeSeries >

<timeSeries id="Bergum_P499.H">

<PITimeSeries >

<locationId >Bergum_P499 </locationId >

<parameterId >H</parameterId >

<interpolationOption >BLOCK </interpolationOption >

</PITimeSeries >

<OpenMIExchangeItem >

<elementId >Bergum_P499 </elementId >

<quantityId >water level</quantityId >

38 Deltares

Configuration

<unit>m</unit>

</OpenMIExchangeItem >

</timeSeries >

</importSeries >

<exportSeries >

<CSVTimeSeriesFile/>

<timeSeries id="gemiddeldeBoezempeil.out">

<OpenMIExchangeItem >

<elementId >gemiddeldeBoezempeil </elementId >

<quantityId >water level </quantityId >

<unit>m</unit>

</OpenMIExchangeItem >

</timeSeries >

</exportSeries >

</rtcDataConfig >

Deltares 39

RTC-Tools, Reference Manual

40 Deltares

B Errors and unexpected results

B.1 Time series from expression components used in triggers give unexpected results

Error description

A standard trigger condition evaluates a time series provided by an expression model compo-
nent (section 2.2.2). The trigger reacts unexpected.

Reason

Triggers are always evaluated first in the RTC-Tools programme procedure. The result of the
expression component time series is not available for the trigger.

Possible solutions
� Use a trigger of type expression (section 2.5.7).
� Define the input time series explicitely: <x1Series ref="EXPLICIT">. The trigger will

use the expression result from the previous time step.

B.2 Values from an import time series do not appear in the result file

Error description

Values of a time series from the timeseries_import.xml do not appear in the result file
timeseries_0000.csv. The column header is present, but the column is empty.

Possible reasons
� The time series is not referenced to in the file rtcDataConfig.xml under <importSeries>
� The begin and end time properties <startDate> and <endDate> in the time series

header (<header>) do not match the simulation time properties given in rtcRuntimeConfig.xml.
� No extrapolation and interpolation options are given in rtcDataConfig.xml.
� A combination of <locationId> and <parameterId> is used twice in rtcDataConfig.xml.
� The simulation runs under OpenMI and the attribute TimeSeries xsi:schemaLocation

directs to a location that is not valid, for example ..\..\..\badFolder\pi_timeseries.xsd.

Solution
� Check the list above and adjust the configuration accordingly.
� When using OpenMI, change the schema location path (attribute TimeSeries xsi:schemaLocation)

in such a way that it points towards a valid location, by preference to the location of the
binaries ..\..\..\bin\pi_timeseries.xsd.

Deltares 41

RTC-Tools, Reference Manual

Error description

Some output variables are missing in the result file timeseries_0000.csv, although they
are listed in the file rtcDataConfig.xml under <exportSeries>.

Possible reasons
� The export time series is defined twice, as import and as export time series.

Possible solutions

The limited memory option is switched on in rtcRuntimeConfig.xml. Set it to false:

<mode>

<simulation >

<limitedMemory >false </limitedMemory >

</simulation >

</mode>

B.3 Index not found in time series model

Error message

The file diag.xml says:

"int main(int argc, char *argv[]) - error -

int timeSeriesBasics::getScalarIndex(string s) -

index not found in time series model: "

No name is given for the time series RTC-Tools can not find.

Reason

RTC-Tools looks for a time series with an empty name which it cannot find in rtcDataConfig.xml.

Possible solution

Look for incomplete items where RTC-Tools writes output for in the file rtcToolsConfig.xml

and specify an output time series. Make sure that the time series names appear in the file
rtcDataConfig.xml under <importSeries>. Do not specify a time series without name in
rtcDataConfig.xml.

Examples for incomplete items are given below:

Example 1: the time series where the status of a standard trigger is to be written is empty:

<output >

<status ></status >

</output >

42 Deltares

Errors and unexpected results

Example 2: the target time series of an expression is not specified:

<y></y>

Example 3: an input time series is not specified:

<x1Series ref="IMPLICIT"/>

B.4 Instance document parsing failed

Error message

The file diag.xml says:

error - instance document parsing failed"

level="1"

Reason

A file is missing.

Possible solution

Check if all files are available. Most likely the file state_import.xml is missing.

Deltares 43

RTC-Tools, Reference Manual

44 Deltares

C Programming in RTC-Tools (draft version)

C.1 Preface

Contributions to RTC-Tools are welcome. The source code is available in an Apache Sub-
version repository (SVN repository) https://svn.oss.deltares.nl/repos/rtc-tools/.
We recommend to use a subversion client, for example Tortoise SVN, to checkout the source
code from the repository. To request read/write access contact the RTC-Tools product man-
agement1. We use Microsoft Visual Studio to compile RTC-Tools code. Microsoft Visual
Studio projects are provided within the source code package.

We ask developers for the following:

� To make sure that the new feature fit fits well into the RTC-Tools architecture, we encour-
age developers to contact the principal developer2 or RTC-Tools product management to
discuss the ideas.

� Prepare a small test model that illustrates the new feature and add it to the examples in
the svn-repository.

� RTC-Tools is provided in a dual license model:

� as open source under the GNU public license version 2 (GPL2)
� under a proprietary license.

The dual license model is necessary to be able to provide features like commercial solvers
or built-in interfaces to commercial software, which is conflictual to GPL2. Developers must
transfer their intellectual property rights for the added code to Deltares, Deltares in return
guarantees to provide RTC-Tools under GPL2 license.

C.2 Implementing a new feature to RTC-Tools

Below the main working steps to implement new features to RTC-Tools are given.

� Modify the XML schema definition (XSD) file *.xsd. If you want to add a new hydrological
model component newModel in rtcToolsConfig.xml, go to rtcToolsConfig.xsd.

� Define the elements and attributes you need. In most cases they will be of Complex-
Type or SimpleType.

� Specify the minimum and maximum number of occurrences (minOccurs, maxOccurs),
where minOccurs = 0 means optional.

� Maintain alphabetical order.
� Add the newly defined elements to a feasible place in the main tree. Our hydrological

model newModel should be added to the components group.
� Validate the xsd file.

� Run the script update_XSD.bat. This script translates the XSD into C++ class files.
� Open the source code and go to the files that have been changed by the script update_XSD.bat.
� Create a .h-file newModel.h for the new class declaration. Add the variables that are

needed to the class declaration.
� The class variables need to be fed with values from the file, in our case rtcToolsConfig.xml.

� Open the schematization.cpp.

1rtc-tools@deltares.nl
2Dirk Schwanenberg (dirk.schwanenberg@deltares.nl)

Deltares 45

https://svn.oss.deltares.nl/repos/rtc-tools/

RTC-Tools, Reference Manual

� Add the file newModel.h to the list of include files. Maintain alphabetical order.
� Add code to read the data and assign it to the variables

� Create a file newModel.cpp and add the logic of the new feature.

46 Deltares

	1 Introduction
	1.1 Management of water systems
	1.2 Control methods
	1.2.1 Feedback and feedforward
	1.2.2 Model Predictive Control

	1.3 Fields of application
	1.4 History
	1.5 Architecture and supported interfaces
	1.6 Content of this document

	2 Simulation components
	2.1 Overview
	2.2 General purpose components
	2.2.1 accumulation
	2.2.2 expression
	2.2.3 gradient
	2.2.4 lookupTable
	2.2.5 lookup2DTable
	2.2.6 mergerSplitter
	2.2.7 unitDelay

	2.3 Modeling components
	2.3.1 arma
	2.3.2 hbv
	2.3.3 hydraulicModel
	2.3.3.1 Introduction
	2.3.3.2 Diffusive wave model
	2.3.3.3 Kinematic versus diffusive wave routing
	2.3.3.4 Model set-up

	2.3.4 hydrologicalModel
	2.3.5 lorentGrevers
	2.3.6 neuralNetwork
	2.3.7 reservoir
	2.3.7.1 Mathematical model
	2.3.7.2 Numerical schematization

	2.3.8 reservoirCompact
	2.3.9 unitHydrograph

	2.4 Operating rules and controllers
	2.4.1 constant
	2.4.2 dateLookupTable
	2.4.3 deadBandValue
	2.4.4 guideBand
	2.4.5 interval
	2.4.6 limiter
	2.4.7 pid
	2.4.8 timeAbsolute
	2.4.9 timeRelative

	2.5 Triggers
	2.5.1 deadBandTrigger
	2.5.2 deadBandTime
	2.5.3 polygonLookup
	2.5.4 set
	2.5.5 spreadsheet
	2.5.6 Standard
	2.5.7 Expression

	3 Optimization components
	3.1 Introduction and deterministic optimization setup
	3.2 Multi-stage stochastic optimization setup
	3.3 Set-up of the optimization problem
	3.3.1 Control variables
	3.3.2 Constraints
	3.3.3 Cost function terms

	3.4 Adjoint models

	4 References
	A Configuration
	A.1 Model setup in XML
	A.2 Initial conditions (state handling), boundary conditions
	A.3 Command line options
	A.4 RTC-Tools in Delft-FEWS
	A.5 RTC-Tools in OpenMI
	A.5.1 Introduction
	A.5.2 The OMI-file
	A.5.3 OpenMI exchange items

	B Errors and unexpected results
	B.1 Time series from expression components used in triggers give unexpected results
	B.2 Values from an import time series do not appear in the result file
	B.3 Index not found in time series model
	B.4 Instance document parsing failed

	C Programming in RTC-Tools (draft version)
	C.1 Preface
	C.2 Implementing a new feature to RTC-Tools

