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1. Introduction 

Indirect Inference provides a classical statistical inferential framework for testing a model. The aim is 
to compare the performance of the auxiliary model estimated on the simulated data derived from the 
model, with the performance of the auxiliary model when estimated from the actual data. In practice 
we use a VAR as the auxiliary model, but you could also use IRFs and moments. If the structural 
model is correct then its predictions about the time series properties of the data should match those 
based on actual data. We choose a VAR as the auxiliary model because the solution to a log-
linearised DSGE model can be represented as a restricted VARMA model, and this can be closely 
represented by a VAR. A level VAR can be used if the shocks are stationary. In what follows we do 
not assume that the data is stationary; however if you wish only to use stationary data then you may 
ignore the remarks below about trends and tests of non stationarity of the error processes. 

2. Model Evaluation by Indirect Inference 

The method of evaluating a model by Indirect Inference is carefully explained for users in Le et al. 
(2015) which should be cited when using any of these programmes. The method was introduced and 
refined in a series of papers referred to there. The criterion we use when evaluating the model is the 
Wald test of the differences between the vector of relevant VAR coefficients from simulated and 
actual data. If the DSGE model is correct then it should produce simulated data that is similar to the 
actual data, and therefore the VAR estimates on the simulated data will not be significantly different 

from the VAR estimates on the actual data. From the actual data we get the VAR parameters  β
a , 

and from the simulations we get N sets of VAR parameters  β
i （for i = 1::N), from which we perform 

the relevant calculations. The Wald statistic that we calculate is: 

  W = (β a − β )'Ω−1(β a − β )  (1) 

where 
  
β = E(β i ) = 1

N
β i

i=1

N

∑ and 
  
Ω = cov(β i − β ) = 1

N
(β i − β )(β i − β )

i=1

N

∑ ' . 

In essence we are measuring the distance the actual VAR parameters are from the average of the 
simulated VAR parameters.  

 Implementation of the Wald test by bootstrapping  2.1

Suppose the DSGE model is  

0 1 1t t t tA E y A y z+ = +  (2) 

  zt = D3zt−1 + E2ε t   

                                                        
1 xuy16@cf.ac.uk;  Cardiff Business School, Cardiff University, Aberconway Building, Colum Drive, 
Cardiff, CF10 3EU, UK 



The DSGE model is solved by Dynare (Juillard, 2001). The solved reduced form is  

  1t t tx Ax Bε−= +  (3) 

where ( ), , 't t t tx y z a= , ta  are the auxiliary variables. The coefficients A and B are derived from (2) 2.  

 

The following steps summarise how to implement the Wald test by bootstrapping: 

Step 1: Calculate the residuals and innovations of the economic model conditional on the data and 
parameters.  

Step 2: Derive the simulated data by bootstrapping 

Step 3: Compute the Wald statistic. 

 

Step 1: Calculating the model residuals ( zt )  and innovations ( ε t ).  
The number of independent structural residuals is taken to be less than or equal to the number of 
endogenous variables. Using the data and the parameters we can calculate the structural errors. If 
the equation does not have any expectations then the residuals are simply backed out from the 
equation and the data. If the equation has expectations in it we need to estimate the expected values. 
To do this we use the robust instrumental variables methods of McCallum (1976) and Wickens (1982), 
with the lagged endogenous data as instruments. In practice we estimate a VAR of all the expected 
variables and use this to calculate the expectations. In some DSGE models many of the structural 
residuals are assumed to be generated by autoregressive processes. If they are, then we need to 
estimate them. After re-estimation of AR coefficients, we can calculate model innovations. We call this 
method ‘LIML’. This procedure is implemented by the Get_Res_LIML() function. 
 
[residual,inno,rho_est] = GetRes_Exact(fname,act_data,[]); 

Or if we obtained the AR coefficients from calibration or estimation (as e.g.  in SW(2007) model), we 
can get the model innovations directly from the solved reduced form. We call this method the ‘exact 
method’. This procedure is implemented by Get_Res_Exact() function. 
 

 [residual,inno,rho_est] = GetRes_LIML(fname,act_data,inx_expect,inx_eqs); 

The details of two methods are explained in the next section. 

Step 2: Simulating the data. Once we have the model innovations, we can simulate the data by 
bootstrapping these innovations. We bootstrap by time vector to preserve any simultaneity between 
them, and solve the resulting model using Dynare. More specifically, the bootstrapped data  xt  is 
obtained from equation (3). To obtain the N bootstrapped simulations that we need we repeat this 
process, drawing each sample independently. This procedure is implemented the Boots_data() 
function.  

Another type of bootstrap is the parametric bootstrap. That is to say if we know the error distribution 
(i.e. variance), we can also bootstrap the data from Monte Carlo simulation. There is an option type 
that you can choose to use parametric or residual bootstrap.  

 
type=2;                 %type=1, boostrap from unknown shocks 
                        %type=2, boostrap from known shocks (MC simulation) 

                                                        
2 In dynare, A=oo_.dr.ghx; B=oo_.dr.ghu; 
 



boots_data = Boots_data(fname,act_data,inno,nboot,A,B,stv,type); 

 

Step 3: Compute the Wald statistic. We estimate the auxiliary model — a VAR(1) — using both the 
actual data and the N samples of simulated data. We then calculate the Wald statistic using equation 
(1). The bootstrap distribution of the Wald statistic can be found by substituting each iβ for aβ  in 
Equation (1). 

The choice of variables and the order of the VAR is up to you. The Wald test is a strict test, so  
increasing the order of the VAR makes the test more stringent; hence in practice we use a VAR(1). 
You can use all the variables in the VAR, or a subset of variables to see what combinations of 
parameters the model can fit. 

For the model to fit the data at the 95% confidence level we want the Wald statistic for the actual data 
to be less than the 95th percentile of the Wald statistics from the simulated data. The Wald statistics 
from the simulated data come from a 2χ  distribution with degrees of freedom equal to k-1, where k is 
the number of parameters in β  .  

To make it easier to understand whether the model has not been rejected by the data we transform 
the Wald for the actual data into a t-statistic using the formula and scale it so that if the Wald was 
equal to the 95th percentile from the simulated data we would get a Transformed Wald of 1.645. 

0.95

2 2 11.648
2 2 1

aw kT
w k

⎛ ⎞− −= ⎜ ⎟⎜ ⎟− −⎝ ⎠
 (4) 

where aw  is the Wald statistic on the actual data and 0.95w  is the Wald statistic for the 95th percentile 
of the simulated data. 

This procedure is implemented by Wald_stationary()function. 
 
[pvalue, Wald, Trans_Wald] = 
Wald_stationary(act_data(var_no,:),boots_data(var_no,:,:),var_order,var_var
iance); 

Remark: IIW test when shocks are non-stationary 

After we get model residuals tz , we would like to know if the shocks are stationary. The ADF test is 
used. Empirical work on the SW model finds that most of the variables are stationary, except the 
productivity shock (Meenagh et al. (2012)). For nonstatioanry shocks, we consider the following 
autoregressive process 

1t t tz zρ ε−Δ = Δ +  (5) 

And we re-estimate this error process and get the model innovation tε for productivity shocks.3  For 
other stationary shocks, we use an AR(1) process in levels, and get the model innovation as usual.  

                                                        
3  If you find any other non-stationary shocks when you implement the test, you can use same error 
process. But you had better not rely only on ADF test. Make your own judgement and do not use too 
many nonstationary shocks. A suggestion is that you only consider nonstationarity for productivity. 
There is often ambivalence in the tests for stationarity of the shocks and in this case the deciding 
factor can be the Wald test for the overall model including the assumed status of the shocks. 
 



After that, we modify the error process in “fname.mod” file and update the AR coefficients. And then 
we run “dynare fname.mod” again to get “A” and “B” matrix and bootstrapped the data from equation 
(3). 

You could add any trend terms found in the errors to the simulated data manually. But in the Wald test, 
we are normally only interested in the dynamic properties of the data and not in the trend terms. So it 
is not necessary to add trend terms to the simulated data. The bootstrapped data from equation (3) 
maintains the dynamic properties of the model. Trend terms can be included in the VAR estimated on 
the data; then the trend coefficients are ignored in the Wald.  

The choice of auxiliary equation follows Davidson et.al.(2010) and Meenagh et.al.(2012). 

To use these methods on non-stationary data we need to reduce them to stationarity. This we do by 
assuming that the variables are cointegrated with a set of exogenous non-stationary variables, so that 
the residuals are stationary. We then difference the data and write the relationships as a Vector Error 
Correction Mechanism, as we now explain. 

We suppose that in the class of structural models in which we are interested as potential candidates 
for the true model the endogenous variable vector ty can be written in linearised form as a function of 

lagged y, a vector of exogenous variables tx , tz ,  and of errors tε . 

1( , , , )t t t t ty f y x z ε−=  (6) 

Now we assume that tx are non-stationary, I(1), variables with drift trends (which may be zero); that 

tz  are I(0) with deterministic trends (that may be zero) and that tε  are exogenous variables defined 
as before. Thus there are cointegrating relationships in the model that define the ‘trend’ values of y as 
linear functions of the ‘trends’ in these exogenous variables or t t tAy Bx Cz= + where for example if 

1 1t t tx x dρ ε−Δ = Δ + +  then 
1t t tx x x dtρ

ρ
= + Δ +

−
; we note also that 2( )t tz c et b L ε= + + . Hence

1( )t t ty A Bx Cz ft−= + + . We now define the VECM as: 

1 2 1 1( )t t t t t ty C D Ev y yε ε − −Δ = + + −Γ −  (7) 

We can rewrite this as a VAR in the levels of ty , augmented by the arguments of ty : 

[ ]
1 1

1
1 1

1 1

( )

( ) ( )
t t t t

t t t

t t t

y I y y
I y A Bx C c et ft
Fy Gx ht cons

η
η

η

− −

−
− −

− −

= −Γ +Γ +

= −Γ +Γ + + + +
= + + + +

 (8) 

where 1
1 2[ ]t t t tA C D Evη ε ε−= + + .It should be noted that ‘cons’ includes dummy constants for 

outliers in the errors – we interpret these as effects of one-off events such as strikes. This is our 
auxiliary equation in the indirect inference testing procedure. We estimate it both on the data and on 
the data simulated from the model bootstraps. It allows us to test whether the model can capture the 
relationships in the data; we focus on the matrices F in practice. 4 
This IIW test procedure is implemented by the following function: 
 

                                                        
4 A necessary condition for the stationarity of the VECM arguments is that ty  is cointegrated with the 

elements of ty both in the data and in the bootstrap simulations; we check for this and report if it is 
not satisfied, as this would invalidate the tests. 



[pvalue, Wald, Trans_Wald ] = 
Wald_nonstationary(act_data(var_no,:),boots_data(var_no,:,:),act_nonstatRes
id,boots_nonstatResid,rho_nonstat,var_order,var_variance); 
 
 

3. Details of how to get model residuals and innovations 

To get model errors t̂ε , there are two ways, the exact and the LIML method. 

 Exact method – when shock AR coefficients are known 3.1

In the exact method, we know the structure of shock process. Suppose we know it follows an AR(X) 
process and know the AR coefficients. We can obtain the model errors from the observed data and 
model parameters exactly,   

For example, suppose the DSGE model is  

0 1 1t t t tA E y A y z+ = +  (9) 

3 1 2t t tz D z E ε−= +   

The reduced form is  

1t t tx Ax Bε−= +  (10) 

where ( ), , 't t t tx y z a= , ta  are the auxiliary variables. The coefficient matrices A and B are derived 
from (9)  

Re-writing it in declaration order5 : 

1t t tx Dx Eε−= +  (11) 
Or 

1 2 1 1

3 1 20
t t

t
t t

y D D y E
z D z E

ε−

−
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= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 (12) 

We find that  

1 1 2 1 1
1 1

1 2 2 1 2 1 2
1

1 2

( )

( )
t t t t

t t

t

y D y D z E
E E E E D z E
E E z
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−

− = +

= +
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since 1
2 1 2 3E E D D− = . So 

                                                        
5 where E=B(oo_.dr.inv_order_var,:); 
D=[zeros(M_.endo_nbr,M_.nstatic) 
A(:,1:M_.nspred)zeros(M_.endo_nbr,M_.nfwrd)]; 
D=D(oo_.dr.inv_order_var,oo_.dr.inv_order_var); 
 



1 1
1 2 1 1( ) ( )t t tz E E y D y− −

−= −  (14) 

If the number of independent structural residuals is equal to the number of endogenous variables, 1E
is a squared matrix, so the residuals are obtained through the above equation. If the number of 
independent structural residuals is less than the number of endogenous variables, we make use of 
part of the endogenous variables and part of 1E , which makes 1E a squared matrix, and obtain the 
residuals through the above equation.  

Then, the model innovations are  

1
2 3 1( )

t t tE z D zε −
−= −  (15) 

We can also estimate rhos through the exact method. The exact method is conducted through 
iteration. We start with a set of rhos, most easily derived from LIML. Get a new set of residuals and 
rhos from  the equations below; repeat until convergence 

1
ˆ ˆ

tt tz Rz ε−= +  (16) 
 
This procedure is implemented by Get_Res_Exact() function. 
 
[residual,inno,rho_est] = GetRes_Exact(fname,act_data,[]); 

 LIML – unknown shocks 3.2

Under the LIML method, we only need to know the structural parameters 0A  and 1A . We do not 
require to know the shock process and error distribution. We then get the model residuals from LIML. 
Suppose the model is    

0 1 1t t t tA E y A y z+ = +  (17) 

1? ?t t tz z ε−= +  (18)  

where 1ty +  are endogenous variables and tz are model residuals which may be represented by the 

VAR, 1tε +  are shock innovations, and are exogenous variables.  

  Then we get model shocks from  

0 1 1t t t tz A E y A y+= −  (19) 

where 1t tE y +  is estimated from LIML. If the equation has expectations in it we need to estimate the 
expected values. To do this we use the robust instrumental variables methods of McCallum (1976) 
and Wickens (1982), with the lagged endogenous data as instruments. In practice we estimate a VAR 
of all the expected variables and use this to calculate the expectations. 

In implement the method, we make use dynare function “fname_dynamic.m” . When we run “dynare 
fname.mod”, Dynare also produces a “fname_dynamic.m” file. This is a function that generates “lhs-
rhs” of equation (17) and (18). To get model residuals tz , we input 0A , 1A , 1t tE y + , ty  and let  tz  to 
be zero. Then the “lhs-rhs” in equation (17) are the model residuals.  

After we get the model residuals tz , we may need to determine the stationarity of the residuals and 
the structure of the shock process.  The default process is AR(1). We then re-estimate the AR(1) 



process, get AR coefficients and model innovation tε .  Note that you may want specify your own error 

process (e.g. ARMA), re-estimate it and get the model innovation tε .  To do so, you need to amend 
this function manually.    

 
This procedure is implemented by GetRes_LIML() function. 

[residual,inno,rho_est] = GetRes_LIML(fname,act_data,inx_expect,inx_eqs); 

Please note that LIML estimates of AR coefficients are sometimes very biased.  A better way is to 
start from LIML estimates of the AR coefficients, get a new set of AR coefficients from exact method; 
repeat until convergence. 

After re-estimation, you need to update the error process in dynare and run “dynare fname.mod” to 
get A and B matrices. 

4. Examples 

Two examples,  Smets-Wonters (2007) NK model and NK 3-equation model (used by Le et al,2011; 
Liu and Minford, 2014).  

Smets-Wonters model:   sw_st.mod  

NK 3-equation NK model: NK3eq_st.mod 

 

Step1: Calculate the model residuals and innovations.  

dynare sw_st.mod;             

 

LIML method 

[residual,inno,rho_est,nst_inx] = GetRes_LIML(fname,act_data,inx_expect,inx_eqs)  

Input:  

• fname:  fname= M_.fname;.  
• act_data: k*T matrix  
• ind_lead=[1:7,13:14];             % The variables you used to generate E_t[y_(t+1)] by LIML 
• ind_eq=[5 2 1 3 10 13 14];     % Select Equations that contains model residuals, 

Output: 

• Residual: is the structure residuals;  k*T matrix 
• Innovation: model innovations, exogenous variables ;  k*T matrix 
• rho_hat: estimated AR coefficients for structure residuals; 
• nst_inx: index of nonstationary shocks if there are. 

Exact method 

[residual,inno,rho_est] = GetRes_Exact(fname,act_data,[]); 

 

Step 2: Derive the simulated data by bootstrapping 

boots_data = Boots_data(fname,act_data,inno,nboot,A,B,stv,type); 



   Input:  

• nboot:  number of bootstraps.  
• A:  oo_.dr.ghx  
• B:  oo_.dr.ghx 
• inno: model innovation 
• type: Type=1: residual bootstrap; type =2 parametric simulation 

Output: 

• boots_data: simulated data   k*T*nboot matrix 

 

Step 3: Compute the Wald statistic. 

[ pvalue, Wald, Trans_Wald] = 
Wald(act_data(var_no,:),Boots_data(var_no,:,:),var_order,var_variance); 

Input:  

• var_no=[1 2 3];        %  Choice of variables in the Wald calculation 
• var_order=1;            %  Order of Var in the Wald caculation            
• var_variance=1;       %  var_variance=1 ;including the volatility of shocks 

Output: 

• Wald: Wald statistics 
• Trans_Wald: Transformed Wald 

 

Step3:  Nonstatioanry case 
 
[Wald, Trans_Mdis_norm ] = 
Wald_nonstationary(act_data(var_no,:),boots_data(var_no,:,:),act_nonstatRes
id,boots_nonstatResid,rho_nonstat,var_order,var_variance); 
 

Input:  

• var_no=[1 2 3];        %  Choice of variables in the Wald calculation 
• var_order=1;            %  Order of Var in the Wald caculation            
• var_variance=1;       %  var_variance=1 ;including the volatility of shocks 
• act_nonstatResid:    % tx for actual data; 

• boots_nonstatResid  % tx for bootstrap data; 
• rho_nonstat              % rhos 

Output: 

• Wald: Wald statistics 
• Trans_Mdis_norm: Transformed Wald 

 

 

 

 



5. The power of the II Wald test  

The power of the IIW test is studied by Le et.al (2015). 

We examine the power of the Wald test by positing a variety of false models, increasing in their order 
of falseness. We generate the falseness by introducing a rising degree of numerical mis-specification 
for the model parameters. Thus we construct a False DSGE model whose parameters were moved x% 
away from their true values in both directions in an alternating manner (even-numbered parameters 
positive, odd ones negative); similarly, we alter the higher moments of the error processes (standard 
deviation) by the same +/ − x%. We may think of this False Model as having been proposed as 
potentially ‘true’ following previous calibration or estimation of the original model. 

The transformed Wald is calculated each time. The power of the test is the probability of rejecting a 
false model by the data (or the probability that Transformed Wald is bigger than 1.645).  

 s=1:1000 
[pvalue(s), Wald(s), Trans_Wald(s)] = 
Wald_stationary(act_data(var_no,:),boots_data(var_no,:,:),var_order,var_var
iance); 
 
power=mean(Trans_Wald>1.645); 

 

6. Model Estimation by II 

As mentioned earlier, the Wald statistic measures the distance between the data and the model. 
Therefore to estimate the model parameters we can use any minimising algorithm to minimise the 
Wald for the actual data. The function to minimise takes the coefficients as an input and then does 
Steps 1–3above, giving the Wald as the output. 
 
 
[ Trans_Wald ] = CalcWald(act_data,fname, coef ) 
 
The function CalcWald includes the three functions that calculate Wald statistics as stated in section 
2(GetRes_Exact(),Boots_data(),Wald_stationary()). The input is actual data and 
starting coefficients and output is the transformed Wald.   
 
The fminsearchbnd algorithm supplied in Matlab is suggested, as it has been found to find global 
minima. In practice it is better to minimise the Transformed Wald because it is easier to see if we 
have found a set of parameters where the model is not rejected, as we are just looking to see if we 
found a Transformed Wald less than 1.645. 
 
 
II_coef=fminsearchbnd(@(II_coef) CalcWald(act_data,fname, 
II_coef),coef,lb,ub,options); 
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