
T OY
A Multiparadigm Declarative Language

Version 2.3

Rafael Caballero, Jaime Sánchez (Eds.)

Document Version 1.0

Purificación Arenas Sánchez Antonio J. Fernández Leiva Ana Gil Luezas
Francisco J. López Fraguas Mario Rodŕıguez Artalejo Fernando Sáenz Pérez

Universidad Complutense de Madrid

December 2006

Contents

Preface 6

1 Getting Started 8
1.1 Supported Platforms and System Requirements 8
1.2 Downloading and Running T OY . 8
1.3 First Steps in T OY . 9
1.4 Compiling and Loading Programs . 10
1.5 Commands . 12

1.5.1 Syntax . 12
1.5.2 Interaction with the Operating System . 13
1.5.3 Compiling and Loading Programs . 13
1.5.4 Information about Programs . 14
1.5.5 Commands for Constraint Solvers . 15
1.5.6 Miscellanea . 16
1.5.7 Defining New Commands . 17

2 The Language 18
2.1 Expressions . 18
2.2 Types . 19
2.3 Datatype Definitions . 21
2.4 Predefined Types . 23
2.5 Type Synonyms . 24
2.6 Function Definitions . 26
2.7 Operators and Sections . 30
2.8 Primitive and Predefined Functions . 31
2.9 Including Programs . 34
2.10 Layout Rule . 35
2.11 Predicate Definitions . 35
2.12 Non-Deterministic Functions . 38
2.13 Goals and Computed Answers . 42
2.14 Higher-Order Programming . 46
2.15 Finite Failure . 51
2.16 Constraints . 54

1

2.16.1 Syntactical Equality and Disequality Constraints 56
2.16.2 Arithmetical Constraints over Real Numbers 60

3 Constraints over Finite Domains 66
3.1 Introduction . 66

3.1.1 Efficiency . 67
3.1.2 Modes and Bidirectionality . 67
3.1.3 Loading the FD Constraint Library . 67

3.2 FD Constraints and Functions . 68
3.2.1 Predefined Data Types . 68
3.2.2 Membership Constraints . 68
3.2.3 Enumeration Functions . 74
3.2.4 Relational Constraints . 77
3.2.5 Arithmetic Constraint Operators . 78
3.2.6 Arithmetic Constraints . 79
3.2.7 Combinatorial Constraints . 81
3.2.8 Propositional Constraints . 86
3.2.9 Reflection Functions . 87
3.2.10 FD Set Functions . 92
3.2.11 Statistics Functions . 101

3.3 Introductory Programs . 103
3.3.1 The Length of a List (haslength.toy) . 103
3.3.2 Send + More = Money (smm.toy) . 104
3.3.3 N-Queens (queens.toy) . 105
3.3.4 A Cryptoarithmetic Problem (alpha.toy) 106
3.3.5 Magic Series (magicser.toy) . 107

4 Cooperation of Solvers 109
4.1 Introduction . 109

4.1.1 Efficiency . 109
4.1.2 Libraries necessaries for Cooperation . 110

4.2 The Constraint Cooperation Bridge . 110
4.3 Binding . 110
4.4 Propagation . 111

4.4.1 Propagation from FD to R . 111
4.4.2 Propagation from R to FD . 115

4.5 Introductory Programs . 118
4.5.1 Intersection of a discrete grid and a continuous region (bothIn.toy) . . . 118
4.5.2 Distribution of raw material between suppliers and consumers

(distribution.toy) . 121

2

5 Input/Output 125
5.1 Standard Input/Output Functions . 126
5.2 Sequencing Input/Output Functions . 126
5.3 Do Notation . 128
5.4 Files . 129

5.4.1 The io file System Module . 130
5.5 Graphic Input/Output . 131

5.5.1 Mutable Variables . 137
5.6 List Comprehensions . 138

6 Debugging Tools 142
6.1 Introduction . 142
6.2 Declarative Debugging . 142
6.3 An Example . 143

6.3.1 Starting DDT . 143
6.3.2 Looking for buggy nodes . 144
6.3.3 Strategies . 145

6.4 Limitations . 147
6.5 How Does it Work? . 148

A Programming Examples 153
A.1 Logic Programming . 153

A.1.1 Peano Numbers (peano.toy) . 153
A.1.2 Paths in a Graph (paths.toy) . 154

A.2 Functional Programming . 155
A.2.1 Arithmetic for Peano Numbers (arithmetic.toy) 155
A.2.2 Infinite Lists (inflists.toy) . 156
A.2.3 Prime Numbers (primes.toy) . 157
A.2.4 Hamming Codes (hamming.toy) . 158
A.2.5 Process Network: Client-Server Interaction (clientserver.toy) 159

A.3 Functional Logic Programming . 161
A.3.1 Inserting an Element in a List (insert.toy) 161
A.3.2 The Choice Operator (choice.toy) . 161
A.3.3 The Inverse Function (inverse.toy) . 162

A.4 Programming with Failure . 162
A.4.1 Default Rules (automata.toy) . 162
A.4.2 A Propositional Tautology Generator (tautology.toy) 165

A.5 Programming with Equality and Disequality Constraints 167
A.5.1 The Cardinal of a List (cardinal.toy) 167

A.6 Programming with Real Constraints . 168
A.6.1 Defining Regions of the Plane (regions.toy) 169

A.7 Programming with Finite Domain Constraints 172
A.7.1 A Colouring Problem (colour.toy) . 172
A.7.2 Linear Equations (eq10.toy and eq20.toy) 173

3

A.7.3 DNA Sequencing (dna.toy) . 176
A.7.4 A Scheduling Problem (scheduling.toy) 178
A.7.5 A Hardware Design Problem . 181
A.7.6 Golomb Rulers: An Optimization Problem (golomb.toy) 187
A.7.7 Lazy Constraint Programs . 189
A.7.8 Programmable Search (search.toy) . 194

B A Miscellanea of Functions 196
B.1 misc.toy . 196
B.2 misc.toy . 204

C Sample Modules 206

D Syntax 216
D.1 Lexicon . 216
D.2 Grammar . 219

E Type Inference 227
E.1 Dependency Analysis . 227
E.2 Type Inference Algorithm . 228

F Declarative Semantics 234
F.1 Motivation . 234
F.2 A Constructor-Based Rewriting Logic . 236
F.3 Correctness of Computed Answers . 237
F.4 Models . 238
F.5 Extensions . 239

G Operational Semantics 240
G.1 First-Order Translation of T OY Programs . 240

G.1.1 Enhancing the Signature . 241
G.1.2 First-Order Translation of Program Rules and Rules for @ 241

G.2 Introduction of Suspensions . 242
G.3 Prolog Code Generation . 242

G.3.1 Clauses for Goal Solving (Solve) . 243
G.3.2 Clauses for Computing Head Normal Forms (HnfΣ) 245
G.3.3 Clauses for Function Definitions (PrologFS) 246

H Release Notes History 249
H.1 Version 2.3. Launched on December, 2006 . 249
H.2 Version 2.2.3. Launched on July, 2006 . 250
H.3 Version 2.2.2. Launched on March, 2006 . 252
H.4 Version 2.2.1. Launched on November, 2005 . 255
H.5 Version 2.2.0. Launched on August, 2005 . 255
H.6 Version 2.1.0. Launched on May, 2005 . 256

4

H.7 Version 2.0. Launched on February, 2002 . 256

I Known Bugs 257

5

Preface

T OY is a multiparadigm programming language and system, designed to support the main
declarative programming styles and their combination.
Programs in T OY can include definitions of lazy functions in Haskell style, as well as definitions
of predicates in Prolog style. Both functions and predicates must be well-typed with respect to a
polymorphic type system. Moreover, T OY programs can use constraints in CLP style within the
definitions of both predicates and functions. The constraints supported by the system include
symbolic equations and disequations, linear arithmetic constraints over the real numbers and
finite domain constraints.
Computations in T OY solve goals by means of a demand driven lazy narrowing strategy, first
proposed in [22] and closely related to the needed narrowing strategy independently introduced
in [1]. This computation model subsumes both lazy evaluation and SLD resolution as particular
cases. For T OY programs using constraints, demand driven lazy narrowing is combined with
constraint solving, and constraints in solved form can occur within computed answers.
T OY provides some additional features which are not found in traditional functional or logic lan-
guages. Non-deterministic functions, combined with lazy evaluation, help to improve efficiency
in search problems. Higher-order patterns enable an intensional representation of functions,
useful both for functional and logic computations, and they do not introduce undecidable uni-
fication problems. These and other features of the language, including a declarative semantics
in the spirit of logic programming, have a firm mathematical foundation.
This report is intended both as a manual for T OY users and as an informal (but hopefully
precise) description of the language and system. Here is a brief description of the overall purpose
of each chapter:

• Chapter 1: Explains how to download and install the T OY system. This chapter also
gives a first overview of the system’s features and tools, sufficient to start writing and
running program.

• Chapter 2: Introduces a detailed description of T OY programs covering syntax, informal
semantics, and pragmatics.

• Chapter 3: Presents the finite domain solver and their applications.

• Chapter ??: Presents the cooperation between finite domain and real solvers and their
applications.

• Chapter 5: Explains how to include input/output interactions in T OY.

• Chapter 6: Introduces the declarative tool for debugging T OY programs.

6

In addition, a series of appendices include programming examples, predefined functions and
library modules, and some technical specifications concerning the syntax and semantics of the
language.

T OY has been designed by the Declarative Programming Group at the Universidad Complutense
de Madrid, following previous experiences with the design of declarative languages. The finite
domain library has been developed in cooperation with Antonio Fernández Leiva from the Uni-
versity of Málaga. In addition to the authors of the report, many people have contributed to the
development of the system. We would like to acknowledge the work of: Mercedes Abengózar
Carneros, Juan Carlos González Moreno, Javier Leach Albert, Narciso Mart́ı Oliet, Juan M.
Molina Bravo, Ernesto Pimentel Sánchez, Maŕıa del Mar Roldán Garćıa, and José J. Ruz Ortiz.

7

Chapter 1

Getting Started

1.1 Supported Platforms and System Requirements

The current version T OY works on most operating systems, which are the ones supported
by SICStus Prolog [36]. This Prolog system (version 3.8.4 or higher) is required whenever you
want to use T OY from a Prolog interpreter as will be described in the next section. Any-
way, you can also use the binary distributions which do not require any installed Prolog sys-
tem. In this case, T OY has been tested to work on the following operating systems: Windows
98/NT/ME/2000/XP/2003, Linux and Solaris.
In addition, some features of Toy need additional software:

Feature Requirements
Graphical I/O Tcl/Tk
Declarative Debugger Java Runtime Environment 1.3 or higher

Notice that these extra requirements are not needed for installing and running T OY, but only
for using the corresponding features. Tcl/Tk come pre-installed on most *nix systems, as well as
on Mac OS X; nevertheless, it can be downloaded from http://www.tcl.tk/software/tcltk/.
The Java Runtime Environment is part of most of the modern OS distributions. It can be
otherwise downloaded form http://java.com.

1.2 Downloading and Running T OY
The latest version of the system can be downloaded from http://toy.sourceforge.net. The
same distribution file is valid for all the platforms. After downloading the file and unzipping it,
the system is ready; no further installation steps are needed. T OY can be alternatively started
as follows:

• From the binary distribution: Move to the folder toy and, depending on the OS:

– Windows. Execute toywin

– Linux. Execute toylinux

8

– Solaris. Execute toy

• From the source distribution (regardless of the OS):

1. Move to the toy folder

2. Start SICStus Prolog

3. Type | ?- [toy]. (where | ?- is the SICStus prompt).

1.3 First Steps in T OY
After starting the system, the following prompt is shown:

Toy>

At this point, the system is ready to work. For example, using the addition (predefined function
+) and the equality (predefined constraint ==), we can submit the goal:

Toy> X == 3+5

The system solves the goal producing the following computed answer:

Toy> X == 3+5
{ X -> 8 }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?

meaning that the replacement of the variable X by 8 in the goal expression satisfies the goal.
At this stage, T OY informs that it has found a solution and asks whether the user does (y)
or does not (n) require the next solution, asks for a debugging session (d) or requires all the
pending solutions (a). y is the default request, so that typing Intro is equivalent to request the
next solution.
Notice that the symbol == is used instead of = in order to distinguish the syntactical strict
equality from the function definition operator, respectively.
Goals and computed answers are discussed in Section 2.13 (pg. 42), but at the moment we can
introduce some initial concepts:

• X is a logical variable, represented in T OY by identifiers starting with an uppercase letter.

• The symbol == stands for the predefined strict equality constraint.

• In order to solve a goal e1 == e2, the system will look for values of the variables occurring
in the expressions e1, e2 such that both can be reduced to the same pattern. The notions
of expressions and patterns are introduced more formally in Section 2.1 (pg. 18).

Now type n (standing for no) to indicate that we do not need more solutions for the goal. In fact
there are no more solutions, so typing y (yes) will have the same effect. The answer d (debug)
is used to indicate that the user detects that the answer is incorrect (which obviously is not the

9

case) and we want to start the debugger. The debugger is discussed in detail in Chapter 6 (pg.
142) .
It is also possible to directly evaluate (narrow [22]) an expression by preceding the expression
by the symbol >. For example, the evaluation of the following goal:

Toy> > 3+5

displays the result:

8

To quit T OY at any moment, simply type:

Toy> /q

1.4 Compiling and Loading Programs

T OY programs can be written with any text editor. The default extension of source program
files in T OY is .toy and the system will associate this extension to every file name if there is
not another explicit extension. Nevertheless, any explicit extension is allowed.
Let us try to compile and run a simple program:

1. Create a new text file with any text editor. Let us assume that the file is saved with name
insert.toy in the folder examples which you can find in the T OY distribution (of course,
any other name and place is also allowed).

2. Using the text editor write the following short program:

insert:: A -> [A] -> [A]
insert X [] = [X]
insert X [Y | Ys] = [X, Y | Ys]
insert X [Y | Ys] = [Y | insert X Ys]

The code of the program consists of a single function insert. The first line is the type
declaration of the function (which is not compulsory), and the three next lines are the rules
defining the function. Types and functions are explained in Sections 2.2 (pg. 19) and 2.6
(pg. 26), respectively.

3. After saving the file insert.toy we are ready to compile the program. But first we must
move to the directory where the file has been stored. For this, type:

Toy> /cd(examples)

in order to change to the folder examples.

4. Compile the program by typing:

10

Toy> /compile(insert)

If there is some error, the compilation will stop with a (hopefully) informative error mes-
sage. If so, fix the error and repeat the command /compile(insert) until no error is
found.

5. Load the compiled file with:

Toy> /load(insert)

The program is ready to be used.

6. Now we can submit a goal as:

Toy> insert 0 [1,2,3] == R

and T OY will yield a first computed answer:

{ R -> [0, 1, 2, 3] }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?

If we type y, the system will provide another computed answer. In this way we can check
that the goal has 4 computed answers, which correspond to the 4 possible forms of inserting
0 in the list [1,2,3]. This an example of an non-deterministic computation.

7. Type /q when you want to leave the system.

Some remarks about this session:

• T OY uses Prolog as target code; so, in the process of compilation, the user programs are
translated into Prolog code. The compilation of a source file <filename>.toy produces
the file <filename>.pl that contains the code corresponding to the translation of the
functions and predicates in <filename>.toy, together with other information.

• As we have seen, in order to compute a goal from a program, it is needed to 1) compile
the program, and 2) to load the target code. These processes are performed by means of
three commands:

– /compile(<filename>) compiles the file <filename> (<filename>.toy if there is not
an explicit extension in the name) and produces the file <filename>.pl as a result.
This target file is not loaded; so, it is not possible to evaluate goals from this program
yet. The compilation of a program implies several kinds of analysis of the source code.
The system checks the syntax, the functional dependencies and the types. During
these phases, the system delivers messages about the evolution of the process and
detected errors. If there is not any error, the target code is produced.

11

– /load(<filename>) loads the target code of the program <filename>.toy (previ-
ously compiled with /compile). Then, goals can be evaluated from this program.

– /run(<filename>) compiles and loads the program. This is the most frequently used
command for processing programs. Therefore, in the example above, we could have
tried simply:

Toy> /run(insert)

Note about Loaded Code Each time a code (a compiled code from either a user program
or a system library – CFLP(R), CFLP(FD), IO File or IO Graphic) is loaded, the definitions
previously loaded for user programs are removed. This means the following. First, if you want to
load two different programs, you have to include one inside the other (via the include statement
– see Section 2.9 – or pasting the contents of one file to the other). And, second, if you load any
system library, the user program definitions are lost, so you have to reload the user program.

If you are interested in trying more examples of T OY programs, look in the directory examples
and read Appendix A (pg. 153). Chapter 2 (pg. 18) explains in detail all the components that
can occur in a T OY program.
From the previous discussion it is easy to notice that at the T OY prompt you can type not only
goals but also commands line /q, /compile, etc., which always start with a symbol /. Next
section explains T OY commands.

1.5 Commands

1.5.1 Syntax

T OY provides an easy command interpreter for manipulating (editing, compiling, loading, etc.)
programs at the system prompt. Commands in T OY must be preceded by the special symbol
/. Type /h for an on-line reference of the available commands.
Arguments of commands, when used, must be enclosed between parentheses (both ‘(’ and ‘)’)
and there can not be any blank between the name of the command and the symbol (. As an
example, the following commands are recognized by the system:

/compile(my_program)
/ compile(my_program)
/load(one_of_my_programs)
/system(cd ..)
/cd(..)
/cd(/home/local/bin)
/q
/help

but the following are not valid commands:

12

/compile (my_program)
/cd
/cd ../..

Next sections describe the available commands.

1.5.2 Interaction with the Operating System

There are three special commands for interacting with the underlying operating system:

• /q, /quit, /e or /exit end the T OY session

• /cd(<dir>) sets the directory <dir> as the current directory

• /cd changes the current working directory to the distribution root where the system was
installed

• /pwd Displays the current working directory

• /ls Displays the contents of the working directory

• /ls(<dir>) Displays the contents of the given directory <dir>

• /system(<comm>) submits the command <comm> to the operating system (to the cor-
responding shell). For example, for copying a file:

/system(cp prog.toy /home/users/axterix/.)

This command allows to interact with the operating system ant it accepts any valid input
at the OS command prompt. In particular, the command /cd(<dir>). can be seen as a
shorthand for /system(’cd <dir>’).;

There is a shorthand for executing operating system commands: Simply type /comm,
wherever comm is not recognized as a T OY command.

1.5.3 Compiling and Loading Programs

The following commands are used for compiling and loading programs:

• /compile(<file>) Compiles the file <file>.toy

• /load(<file>) Loads the file <file>.pl provided that <file>.toy was compiled

• /run(<file>) Compiles and loads the file <file>.toy

• /cut Enables compilation with dynamic cut optimization

• /nocut Disables compilation with dynamic cut optimization

13

1.5.4 Information about Programs

T OY provides two commands for obtaining information about functions and predicates defined
in a program. The first one displays the type of an expression without evaluating it:

• /type(<expr>) Shows the type of the expression <expr> according to the definitions of
the current session. Consider the following examples:

Toy> /type(div)
div::int -> int -> int

Elapsed time: 0 ms.

Toy> /type(1)
$int(1)::real

Elapsed time: 0 ms.

Toy> /type(1+2)
$int(1)+$int(2)::real

Elapsed time: 0 ms.

Toy> /type(1+2==3)
$int(1)+$int(2)==$int(3)::bool

Elapsed time: 0 ms.

Toy> /type(+)

Line 1. Error 11: Error in expresion. Unexpected operator +.
Toy> /type((+))
+::real -> real -> real

Elapsed time: 0 ms.

Note that because associativity, we have to type parentheses enclosing operators in order
to determine their types, as illustrated in the last example above.

• /tot Enables totality constraints as part of the system answers

• /notot Disables totality constraints as part of the system answers

• /tree(<filename>,<fun>) This command is useful only for experienced users with knowl-
edge about the evaluation strategy used by T OY, and it shows the definitional tree [22]
of the function <fun> in the file <filename>, that must have been previously compiled,
where <filename> will be the desired name of the dumped state.

14

1.5.5 Commands for Constraint Solvers

• /cflpr Enables arithmetical constraints over real numbers.

The effect of this command is the loading of the library for constraint solving over real
numbers. Once executed, the system prompt changes to Toy(R)>, and equations as the
following can be solved:

Toy(R)> X + 3 == 5
{ X -> 2 }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

or more complex equation systems as:

Toy(R)> 2*X - 3*Y - Z == 3, X + 6*Y == 2*Z, Z - 2*Y == X
{ X -> -2,
Y -> -1,
Z -> -4 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

For a detailed explanation of this kind of constrains see Section 2.16.

• /nocflpr Disables arithmetical constraints over real numbers

• /cflpfd Enables constraints over finite domains.

The effect of this command is the loading of the library for constraint solving over finite
domains. Once executed, the system prompt changes to Toy(FD)>, and T OY can solve
goals as:

Toy(FD)> domain [X,Y] 1 10, X #> Y, Y #< 3

This goal asks for integral values of X, Y belonging to the interval [1, 10], and that X −
3 > Y (the symbols #- and #> are used in finite domain constraints instead of - and >,
respectively). The answer provided by the system is:

{ Y #< X,
X in 2..10,
Y in 1..2 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

15

An exhaustive description of the finite domain solver is carried out in Chapter 3 (page 66).

• /nocflpfd Disables finite domain constraints

Constraint solvers should only be activated when needed; otherwise, the system performance
would be slightly degraded.
The solver for syntactical constraints (equality and disequality) over constructed terms are
always enabled.

1.5.6 Miscellanea

This section collects the commands which do not fit into former sections.

• /io_file loads the library IO File, which provides functions to handle text files

• /noio_file unloads this library

• /io_graphic loads the library IO Graphic, which provides functions for graphical user
interfaces

• /noio_graphic unloads this system module.

• /prop enables propagation.

• /noprop disables propagation.

• /statistics(< level >) Sets the level < level > of statistics:

– 0: no statistics

– 1: runtime

– 2: runtime and hnf counter

– 3: full statistics

• /statistics Displays the current level of statistics

• /prolog(<goal>) Executes the Prolog goal <goal>

• /status Informs about the loaded libraries, as follows:

Toy> /status
Libraries
=========
CFLPR : not loaded
CFLPFD : not loaded
IO File : not loaded
IO Graphic : not loaded

• /version displays the T OY system version number, as follows:

16

Toy> /version
% :: B Sonia
2.3
% :: E Sonia

• /help, /h Shows the system help about the command interpreter, including evaluation
and debugging

1.5.7 Defining New Commands

In the previous sections, we have described the collection of commands provided by T OY. This
repertory is small, simple and enough for accessing the capabilities of the system. Nevertheless,
there are some other commands that are not essential but can allow a more friendly use of T OY.
The user can define commands for accessing the operating system from the T OY prompt. The
file ’toy.ini’ included with the distribution contains such definitions in the form of Prolog
facts. The user can edit and modify this file. For example, for defining a new command /dir
that shows every file in the current directory, the file toy.ini includes the following Prolog fact:

command(dir,0,[],["ls -l"]).

The first argument is the name of the command (dir), the second is the number of arguments
(0, in this case), the third is the list of arguments represented as Prolog variables (starting with
capital letters) that will be used by the command, and the last one is the list of strings that
must be appended for building the command (only one in this case). With this definition, the
command /dir will work in the next T OY session.
Another useful command may be for accessing a text editor. For example, if the user wants to
use the editor emacs, the following line must be included in the file toy.ini:

command(edit,1,[File],["emacs ",File,".toy &"]).

In this case, the name of the command is edit, it uses one argument (File) and the effect will
be to edit the corresponding file with extension .toy.

17

Chapter 2

The Language

A T OY program is a collection of definitions of various entities, including types, functions,
predicates, and operators. Once a program has been successfully compiled, users can interact
with the T OY system by proposing goals. T OY computations solve goals and display computed
answers, which can include the result of a functional reduction and/or a constraint. In particular,
answer constraints can represent bindings for logic variables, as in answers computed by a Prolog
system. The different sections of this chapter explain the features available in T OY for writing
programs and solving goals.

2.1 Expressions

As every programming language, T OY uses expressions built from operation symbols and vari-
ables. Following Prolog conventions, variables in T OY are represented by identifiers starting
with an uppercase letter. Following the conventions adopted by Haskell and other functional
languages, operation symbols are classified into two disjoint sets: data constructors, correspond-
ing to so-called functors in Prolog, and defined functions. T OY uses identifiers starting with
a lowercase letter (as well as some special symbols) both for data constructors and for defined
functions. Data constructors are easily recognized, because they are either predefined or intro-
duced in some datatype declaration (see Section 2.3). Defined predicates in T OY are viewed as a
particular case of defined functions, whose result is boolean. As in functional languages, expres-
sions which include defined functions can be evaluated in T OY to compute a result, while those
expressions which are built only from data constructors can be seen as symbolic representations
of computed results.
In the rest of this document we often use capital letters X, Y , Z, . . . (possibly with subscripts)
as variables. Moreover, we use the notation c ∈ DCn to indicate that c is a data constructor
which expects n arguments, and the notation f ∈ FSn to indicate that f is a defined function
symbol whose definition expects n formal parameters. The number n is called the arity of c resp.
f . Constant values belonging to primitive datatypes can be viewed as nullary data constructors
in DC0. Under these conventions, the abstract syntax for T OY expressions is as follows:

e ::= X | c | f | (e e1) | (e1, · · · , en)
Expressions (e1, · · · , en) (n ≥ 0) represent tuples, while (e e1) represents the application of the

18

function denoted by e to the argument denoted by e1. Following usual conventions, application
associates to the left, and outermost parentheses can be omitted. Therefore, ((f X) ((g Y) Z))
can be written more simply as f X (g Y Z). In programming examples, we will use meaning-
ful identifiers rather than these abstract notations. The concrete syntax of T OY expressions
(described in Appendix D) supports some additional features, including numerals, if - then
- else conditional expressions, and infix operators (see Section 2.7). However, λ-abstractions
are not supported. Otherwise, T OY syntax is quite similar to Haskell [16] syntax, although
some predefined symbols and conventions are different. Most notably, Haskell reserves identi-
fiers starting with an uppercase letter for types and data constructors, while variable identifiers
must start with a lowercase letter. In T OY, identifiers starting with an uppercase letter are
reserved for variables, as said before; while identifiers for types and data constructors must start
with a lowercase letter.
Two important subclasses of expressions are data terms, defined as

t ::= X | (t1, · · · , tn) | c t1 · · · tn (c ∈ DCn)
and patterns, defined as

t ::= X | (t1, · · · , tn) | c t1 · · · tm (c ∈ DCn, 0 ≤ m ≤ n) |
f t1 · · · tm (f ∈ FSn, 0 ≤ m < n)

Data terms in T OY correspond to the notion of pattern in typical functional languages such
as Haskell. Patterns in T OY are more general. For instance, assume a program with functions
times, twice ∈ FS2, defined as follows:

times X Y = X * Y

twice F X = F (F X)

Then we can build the pattern twice (times 2), which is not a data term (neither a pattern in
a Haskell-like language). More generally, patterns of the form f t1 · · · tm (f ∈ FSn, 0 ≤ m < n)
are not data terms; they are called functional patterns or also higher-order patterns, because they
represent functions. When comparing patterns, T OY relies on syntactic equality. For instance,
the two patterns twice (times 2) and times 4 are regarded as different, although they behave
in the same way as functions. Therefore, the representation of functional values as patterns in
T OY is intensional rather than extensional. As a consequence, pattern unification has the same
behaviour and complexity as syntactic unification of terms in Prolog.

2.2 Types

T OY is a typed programming language, based essentially on the Damas-Milner polymorphic
type system [7]. Programs are tested for well-typedness at compile time by means of a type
inference algorithm (see Appendix E). In particular, each occurrence of an expression in a T OY
program has a type that can be determined at compile time. Syntactically, types are built from
type variables and type constructors. Any identifier starting with an uppercase letter can be
used as a type variable, while identifiers for type constructors must start with a lowercase letter.
Type constructors are introduced in datatype declarations, along with data constructors (see
Section 2.3). Primitive types (such as bool and int, see Section 2.4) can be viewed as type

19

constructors of arity 0. Assuming the abstract notation A, B . . . for type variables and δ ∈ TCn

for type constructors of arity n, the syntax of T OY types can be defined as follows:
τ ::= A | δ τ1 · · · τn (δ ∈ TCn) | (τ1, · · · , τn) | (τ1 -> τ)

Here, (τ1, · · · , τn) stands for the cartesian product of the types (τ1, · · · , τn), while a functional
type of the form (τ1 -> τ) stands for the type of all functions which can be applied to arguments
of type τ1 and return results of type τ . Syntactically, -> behaves as a predefined, binary type
constructor, written in infix notation. Following common practice, we assume that -> associates
to the right and omit parentheses accordingly. For instance, the type

((int -> bool) -> ((int -> int) -> (int -> int)))
can be abbreviated as

(int -> bool) -> (int -> int) -> int -> int.
The notation e :: τ is used to indicate that expression e has type τ . For instance, some typing
rules have the following form:

IF ei :: τi for all 1 ≤ i ≤ n THEN (e1, · · · , en) :: (τ1, · · · , τn)
IF e :: τ1 -> τ and e1 :: τ1 THEN e e1 :: τ

Using these and other rules, the type inference algorithm described in Appendix E can decide
whether a given expression e is well-typed. In the positive case, the algorithm computes the
most general type τ of e (also called principal type) along with a set TA of type assumptions
X :: τX for the variables X occurring in e, such that e :: τ follows from the assumptions in
TA and the type inference rules. For instance, given the expression

X /\ not Y

(involving two boolean operations), the type inference algorithm computes

X /\ not Y :: bool

under the assumptions X :: bool, Y :: bool.
The type inference algorithm also checks whether the function definitions given in the text of a
T OY program are well-typed. In the positive case, the algorithm infers a principal type of the
form

f :: τ1 -> · · · -> τn -> τ
for each n-ary function symbol f ∈ FSn occurring in the program. Boolean functions with type

p :: τ1 -> · · · -> τn -> bool
are called also predicates in T OY.
Note that two functions

f :: τ1 -> τ2 -> τ and g :: (τ1, τ2) -> τ
have related, but different types. Function f can be applied to an argument of type τ1 and
returns a function that expects another argument of type τ2, returning in turn a result of type
τ . On the other hand, g expects a pair of product type (τ1, τ2) as argument, and returns a result
of type τ . Assumming that the final result is always the same, i.e.

f X Y = g (X, Y) for all X :: τ1, Y :: τ2,
one says that function f is the curried version of function g. The word curried comes from
Haskell Curry, one of the first mathematicians who discovered this idea.
The principal type of a function can include type variables. In this case the function, as well as
its type, is called polymorphic. A polymorphic function has an implicit universal quantification

20

over the type variables occurring in its principal type. Different substitutions of types for those
type variables give rise to different instances of the function. For example, from the definition
of twice shown in Section 2.1, the T OY system infers the principal type

twice :: (A -> A) -> A -> A.
As an instance of this polymorphic type, we get also

twice :: ((A -> A) -> A -> A) -> (A -> A) -> A -> A.
From the two previous facts, it follows that twice twice is also a well-typed expression, with
principal type

twice twice :: (A -> A) -> A -> A.
More generally, different uses of a polymorphic function within one and the same expression
can correspond to different instances of its principal type. In this way, polymorphism promotes
more generic and thus reusable programs.
Finally, the following fact is interesting. A function f with principal type f :: τ1 -> · · · -> τn

-> τ can be used to build well-typed expressions e ≡ f e1 · · · em with different choices for the
number m of arguments:

• In the case m = n, e :: τ ′, provided that there is some instance f :: τ ′1 -> · · · -> τ ′n
-> τ ′ of f ’s principal type, such that ei :: τ ′i for all 1 ≤ i ≤ n. For example, twice not
true :: bool.

• In the case m < n, e is called a partial application of f . Moreover, e :: τ ′m+1 -> · · · ->
τ ′n -> τ ′, provided that there is some instance f :: τ ′1 -> · · · -> τ ′n -> τ ′ of f ’s principal
type, such that ei :: τ ′i for all 1 ≤ i ≤ m. For example, twice not :: bool -> bool.

• In the case m > n, e is called an application of f with additional arguments. Moreover,
e :: τ ′, provided that there is some instance f :: τ ′1 -> · · · -> τ ′m -> τ ′ of f ’s principal
type, such that ei :: τ ′i for all 1 ≤ i ≤ m. This may be possible if τ is a type variable or
a functional type. For example, using the instance obtained from twice’s principal type
by the substitution

A 7→ (bool -> bool) -> bool -> bool

one obtains twice twice not true :: bool.

2.3 Datatype Definitions

Datatypes, also called constructed types, are defined along with data constructors for their val-
ues. Datatype definitions in T OY are introduced by the keyword data and have the following
schematic syntax:

data δ A = c0 τ0 | · · · | cm−1 τm−1

where δ is the type constructor; A is a shorthand for A1 · · ·An (n ≥ 0), a sequence of different
type variables acting as formal type parameters; ci (0 ≤ i < m) are the data constructors for
values of type δ A; and τ i is a shorthand for τi,1 · · · τi,ni , a series of types corresponding to the
arguments of ci. The types τi,j must be built from the type variables A, predefined types and
user-defined type constructors, according to the syntax of types explained in Section 2.2.

21

Different datatype definitions must declare disjoint sets of data constructors. The principal type
of any data constructor c occurring in a program is determined by the datatype definition where
c has been declared. In terms of the general scheme above:

ci :: τi,1 -> · · · -> τi,ni -> δ A (for all 0 ≤ i < m)
A datatype is called polymorphic (or also generic) iff the number n of formal type parameters in
its definition is greater than zero, and monomorphic otherwise. Moreover, a datatype δ is called
recursive whenever δ itself is involved in the type of the arguments of at least one of the data
constructors declared in δ’s definition.
To illustrate the possibilities of datatype definitions, we present a series of typical examples.
The simplest datatypes are enumerated types, whose definition declares finitely many constant
constructors. For instance, the datatype of boolean values is predefined as

data bool = false | true

and the following enumerated type represents the days of the week:

data weekDay = monday | tuesday | wednesday | thursday |
friday | saturday | sunday

Next, we show a polymorphic datatype with one parameter and a single data constructor, whose
values bear the same information as pairs of type (A,A). Nevertheless, T OY treats the two types
as different.

data pairOf A = pair A A

The next example is a datatype with two data constructors, which represents the disjoint union
of the types given as parameters:

data either A B = left A | right B

Another useful datatype is maybe A, which behaves as the disjoint union of the type A given
as parameter with a special value nothing which can be used as an error indication. It can be
defined as follows:

data maybe A = nothing | just A

Finally, we show some examples of recursive datatype definitions. Type nat represents Peano
natural numbers built from a constant zero and a unary constructor suc.

data nat = zero | suc nat

Different kinds of trees can be represented by means of suitable recursive datatypes. For instance,
binary trees storing information of type A at their leaves can be defined as follows:

data leafTree A = leaf A | node (leafTree A) (leafTree A)

22

Mutually recursive datatype definitions are also possible. They can be presented in any textual
order. The mutually recursive types even and odd defined below correspond to even and odd
natural numbers:

data even = evenZero | evenSuc odd
data odd = oddSuc even

Note that

oddSuc evenZero :: odd suc zero :: nat 1 :: int

are treated as different values belonging to different types in T OY. More generally, different
datatypes are always disjoint and different from predefined types.

2.4 Predefined Types

Predefined types in T OY include

• bool, defined as data bool = true | false.

• int, the type of single-precision integers.

• real, the type of single-precision floating-point numbers.

• char, the type of characters, which must be written by enclosing them in single quotes,
like e.g. ’a’, ’@’, ’9’ or ’-’. Some values of this type are control characters rather than
visible signs. These are written in a special way, as follows:

Toy character meaning
’\\’ backslash
’\’ ’ quote
’\"’ double quote
’\n’ new line
’\r’ carriage return
’\t’ horizontal tabulator
’\v’ vertical tabulator
’\f’ form feed
’\a’ alarm
’\b’ backspace
’\d’ delete
’\e’ escape

• [A], the recursive datatype of lists with elements of type A. It behaves as if it were defined
by

data [A] = [] | A : [A]

23

with the constant constructor [] for the empty list and the infix (right associative) data
constructor : to build a non-empty list (X:Xs) with head X :: A and tail Xs :: [A]. The
Prolog notation [X|Xs] is also supported as an alias of (X:Xs). As in Prolog and Haskell,
the list notation [elem0, elem1, · · · , elemn−1] is allowed as a shorthand for the reiterated
application of the list constructor. For instance, [1,2,3] is viewed as shorthand for
1:2:3:[].

• Product types and tuples are supported by T OY, as explained in Section 2.2.

Of course, predefined types, products, functional types, and user-defined types can be freely
combined to build more complex types, following the type syntax explained in Section 2.2. For
example:

• [leafTree (char,int)] is the type of lists of binary trees storing pairs of type (char,int)
at their leaves.

• [int] -> int is the type of functions which accept a list of integers as an argument and
return an integer result.

• [int -> int] is the type of the lists whose elements are functions of type int -> int.

• (A -> B) -> leafTree A -> leafTree B is the type of polymorphic functions which
expect two parameters (a function of type A -> B and a tree of type leafTree A) and
return as result another tree of type leafTree B.

The last two items above illustrate the use of functions as first-class values that can be stored
in data structures, passed as parameters to other functions, and also returned as results.

2.5 Type Synonyms

Type synonyms, also called type alias, allow to declare a new identifier as shorthand for a more
complex type. This facility helps to write more concise and readable programs. Definitions of
type synonyms are introduced by the keyword type and have the following schematic syntax:

type ν A = τ

where ν is the identifier chosen as alias; A is a sequence of different type variables acting as
formal type parameters; and τ is a type built from the type variables A, built-in types, and
user-defined type constructors.
The effect of a type definition like this is to declare ν A as an alias of τ . In fact, type syn-
onyms work like parametric user-defined macros, that are eliminated at compile time. Therefore,
definitions of type synonyms cannot be recursive. As long as this restriction is respected, the
definition of a type synonym may depend on other type synonyms.
As a simple example, we can define a type alias for representing coordinates as numbers, and
points of the plane as pairs of coordinates:

24

type x-coordinate = real
type y-coordinate = real

type point = (x-coordinate, y-coordinate)

Another example, involving a type parameter, is the definition

type myPairOf A = (A,A)

In contrast to the datatype pairOf A shown in Section 2.3, this definition does not introduce
data constructors. Values of types pairOf A and myPairOf A are treated as different, although
they bear equivalent information.
A very useful example of synonym is the type for character strings, defined as follows:

type string = [char]

The previous definition is currently not predefined in T OY. It is left to the user’s choice to
include it in any program, if desired. In any case, T OY supports a special syntax for lists of
characters, which can be written as a text enclosed in double quotation marks. For instance,
the following are three different representations of the same string:

"Hello, World!"
[’H’,’e’,’l’,’l’,’o’,’ ’,’W’,’o’,’r’,’l’,’d’,’!’]
’H’:’e’:’l’:’l’:’o’:’ ’:’W’:’o’:’r’:’l’:’d’:’!’:[]

In particular, the empty string can be written either as [] or as ’’ ’’. Unitary strings consisting
of a single character must not be confused with that character. For instance, ’’a’’ :: string
is not the same as ’a’ :: char.
As a last example, we define a type synonym person along with three auxiliary types:

type person = (name, address, age)

type name = string

type address = string

type age = int

Note that persons with negative age will not give rise to a type error, because person is treated
as a shorthand for (string, string, int).

25

2.6 Function Definitions

A function definition in T OY consists of an optional type declaration and one or more defining
rules, which are possibly conditional rewrite rules with optional local definitions. The schematic
form of such a defining rule is:

f :: τ1 -> · · · τn -> τ
· · ·

f t1 · · · tn = r <== C1, · · ·, Cm where D1, · · ·, Dp

· · ·
Such a definition is understood to introduce a defined function f ∈ FSn of arity n. For each
defining rule, the left-hand side f t1 · · · tn must be linear, i.e., it cannot include repeated
variables. The formal parameters ti must be patterns1. The right-hand side r can be any
expression built from variables, built-in operations, data constructors, and functions occurring
in the program. Ci are conditions, and Di are local definitions; more details about them will be
explained below. Often a defining rule needs no conditions, in which case the symbol <== can
be omitted. Similarly, the reserved word where can be omitted if there are no local definitions.
For the moment, we assume that each condition must have the form e1 ♦ e2 for some ♦ ∈
{==, /=, <, >, <=, >= }, e1 and e2 being expressions2. Conditions of the form b == true
can be abbreviated as b. Strict equality conditions e1 == e2 are solved by evaluating the two
expressions e1 and e2 to a common finite value, represented by a pattern; while disequality
conditions e1 / = e2 are solved by evaluating e1 and e2 to conflicting values. In the case of
expressions ei whose evaluation yields an infinite value (e.g., an infinite list), a strict equality
never holds, and the attempt to solve it can lead to a non-terminating computation. On the other
hand, lazy evaluation (explained below) allows to solve disequality conditions without demanding
complete evaluation of the expressions ei. A more formal explanation of strict equality and
disequality can be found in Section 2.16 and Appendix F. Inequality conditions e1 ♦ e2 with
♦ ∈ {<, >, <=, >= } work for numbers of type int and real, with the obvious arithmetic
meaning. In addition to their rôle in conditions, the symbols ♦ ∈ {==, /=, <, >, <=, >= }
can be freely used as boolean functions (in infix notation).
Each local definition Di must have the form si = di, where di is an arbitrary expression and si

is a linear flat pattern having either the form X (variable) or (cX1 · · · , Xl) (c being an l-ary
data constructor). Moreover, the sequence D1, · · ·, Dp of local definitions must be such that the
following three properties are satisfied:

1. For all 1 ≤ i ≤ p: si and (f t1 · · · tn) share no variables.

2. For all 1 ≤ i < j ≤ m: si and sj share no variables.

3. For all 1 ≤ i ≤ m, 1 ≤ j ≤ i: si and dj share no variables.

Intuitively, a local condition si = di has the effect of matching the pattern si to the value
obtained by evaluating the expression di, and binding the variables occurring in si accordingly.
Therefore, local definitions can be said to define values for the variables occurring in the patterns

1Actually, transparent patterns. See Section 2.14 for an explanation of this technical notion.
2More general conditions will be introduced in Section 2.16.

26

si. Items 1. and 2. above require that the locally defined variables must be different from each
other and away from the variables occurring in the rule’s left-hand side, that act as formal
parameters. Moreover, item 3. ensures that the variables defined in local definition number
i can be used in local definition number j only if j > i. In particular, this means that local
definitions cannot be recursive.
The intended meaning of a defining rule f t1 · · · tn = r <== C1, · · · Cm where D1, · · ·, Dp

is the same as in functional programming languages, namely: an expression of the form f e1

· · · en can be reduced by reducing the actual parameters ei until they match the patterns ti,
checking that the conditions are satisfied, and then reducing the right hand side r (affected by
the pattern matching substitution); all this by using the local definitions to obtain the values of
locally defined variables. In particular, this means that the equality symbol ‘=’ in defining rules
is implicitely oriented from left to right. The T OY system can apply the left-to-right oriented
defining rules in order to compute the value of expressions, using lazy evaluation. This means
that subexpressions occurring as actual parameters in function calls are not evaluated eagerly,
but delayed until their values are eventually needed. The computations which obtain the values
of locally defined variables are also delayed, until they are needed.
In addition to purely functional computations, T OY has also the ability to solve goals; see
Section 2.13. Goal solving requires to combine lazy evaluation and the computation of bindings
and constraints for logic variables. A more precise explanation of T OY’s semantics is given in
Appendices F and G.
Next, we show some definitions of simple functions, related to list processing. Note that the
symbol ‘%’ is used in T OY to start a comment, which is assumed to fill the rest of the current
line. To write longer comments, it is also possible to enclose the commented text between the
symbols ‘/*’ (open comment) and ‘*/’ (close comment). Nested comments are allowed.

% List recognizer.

null :: [A] -> bool
null [] = true
null (X:Xs) = false

% List selectors.

head :: [A] -> A
head (X:Xs) = X

tail :: [A] -> [A]
tail (X:Xs) = Xs

% Accessing the Nth element of a list.

infixl 90 !!

(!!) :: [A] -> int -> A

27

(X:Xs) !! N = if N == 0 then X else Xs !! (N-1)

% List concatenation.

infixr 50 ++

(++) :: [A] -> [A] -> [A]
[] ++ Ys = Ys
(X:Xs) ++ Ys = X:(Xs ++ Ys)

% Flattenning a list of lists into a single list.

concat :: [[A]] -> [A]
concat [] = []
concat (Xs:Xss) = Xs ++ concat Xss

% Splitting a list in two parts.

take :: int -> [A] -> [A]
take N Xs = if N == 0 then [] else take’ N Xs

take’ N [] = []
take’ N (X:Xs) = X : take (N-1) Xs

drop :: int -> [A] -> [A]
drop N Xs = if N == 0 then Xs else drop’ N Xs

drop’ N [] = []
drop’ N (X:Xs) = drop (N-1) Xs

% Building an infinite list of consecutive integers.

from :: int -> [int]
from N = N : from (N+1)

In these examples we have used the infix operators (++), (!!) and (+) and (-) as function
symbols. See Section 2.7 for more information about infix operators. The definitions of (!!),
take, and drop also use the if - then - else notation. Conditional expressions of the form if
b then e1 else e2 are syntactic sugar for if-then-else b e1 e2, where the if-then-else
function is predefined as follows:

if-then-else :: bool -> A -> A -> A
if-then-else true X Y = X
if-then-else false X Y = Y

28

The use of local definitions is illustrated by the following function roots, intended to compute
the real roots of a quadratic equation Ax2 + Bx + C = 0 with real coefficients. The definition
of roots uses some predefined functions, explained in Section 2.8.

type coeff = real

type root = real

roots :: coeff -> coeff -> coeff -> (root,root)
roots A B C = ((-B-D)/E,(-B+D)/E) <== E > 0

where D = sqrt (B*B-4*A*C)
E = 2*A

As explained in Section 2.2, T OY uses a type inference algorithm at compile time to infer most
general types for functions, on the basis of the function and the datatype definitions occurring in
the program (see Appendix E). For the purposes of type inference, T OY assumes the following
types for the operators involved in conditions:

(==), (/=) :: A -> A -> bool

(<), (>), (<=), (>=) :: real -> real -> bool

In fact, T OY supports an implicit conversion of values of type int to type real. Therefore, in
absence of user-given type declarations, the type inference algorithm always assumes the type
real for the arguments and results of numeric functions. As an exception to this general rule,
some of the built-in arithmetic operations require some arguments of type int; see Section 2.8
for details.
In case that some function definition is ill-typed, the T OY system raises type error messages
and compilation is aborted. Otherwise, T OY compares the types inferred for defined functions
with those declared in the program. For each defined function f there are three possible cases:

• There is no declared type for f , or the declared type is equivalent to the inferred type (up
to a renaming of type variables). Then the inferred type is used.

• There is a declared type which is strictly less general than the inferred type. Then a
warning to the user is emitted, but the declared type is assumed. This may prevent a suc-
cesful type inference for some other defined function. For example, the following program
fragment would cause a type error, because the declared type of length requires lists of
integers, which is not general enough to render the definition of sameLength well-typed.
On the contrary, the inferred type of length is general enough to well-type sameLength.

length :: [int] -> int
length [] = 0
length (X:Xs) = 1 + length Xs

sameLength :: [A] -> [B] -> bool
sameLength xs ys = length Xs == length Ys

29

• There is a declared type which is not unifiable with the inferred type. In this case the
declared type is wrong. The system emits an error message, and compilation is aborted.
For example, the following function definition would be rejected as ill-typed, because the
declared type of length is incompatible with the inferred type.

length :: [A] -> bool
length [] = 0
length (X:Xs) = 1 + length Xs

2.7 Operators and Sections

As in Haskell and many other programming languages, those function symbols used in infix
notation are called operators in T OY. For instance, the simple expression X * 3 uses the
primitive multiplication operator. In addition to the predefined operators (see Section 2.8), T OY
users can introduce new operators by means of operator declarations. These start with one of
the three keywords infixr, infixl or infix (intended for right-associative, left-associative and
non-associative, respectively), followed by the operator’s precedence and name. For instance, in
order to declare right-associative operators for boolean conjunction and disjunction, one could
write

infixr 40 /\

infixr 30 \/

These declarations inform the parser that /\ must be given higher priority than \/. More
generally, precedences are positive numbers, with bigger values standing for higher priorities.
Moreover, the implicit operation which applies a function to its argument has always greater
priority than any infix operator. For instance, the expression f x + 3 is parsed as (f x) + 3
rather than f (x + 3).
Operators may also be used for data constructors. In such cases, the operator’s name must start
with the character ’:’. For instance, a datatype for complex numbers can be defined as follows:

infix 40 :+

data complex = real :+ real

T OY has two syntactic conventions used to relate the use of operators and ordinary functions:

• An operator symbol, enclosed between brackets, becomes a function identifier to be used
in prefix notation. For instance, the two expressions (+) 2 3 and 2 + 3 are equivalent.

• An ordinary function identifier, enclosed betwenn backward quotes, becomes an infix op-
erator. For instance, the two expressions mod X 2 and X ‘mod‘ 2 are equivalent.

30

T OY also supports the useful notion of section, borrowed from languages of the Haskell family.
For any binary operator (⊕) :: τ1 -> τ2 -> τ , sections are obtained by supplying one of the two
missing arguments. More precisely, assuming given expressions a1 :: τ1, a2 :: τ2, one can build
the sections (a1⊕) :: τ2 -> τ and (⊕a2) :: τ1 -> τ , which stand for the functions waiting for
the missing argument. For instance, (2*) is a section of the multiplication operator; it behaves
as a function which doubles its argument. Since T OY does not support λ-abstractions, sections
and partial applications (see Section 2.2) are the two main tools available for expressing the
computation of functional values.

2.8 Primitive and Predefined Functions

T OY has a number of primitive functions which are not defined by means of defining rules.
Their definitions are included in a special system file called basic.toy. Currently, the primitive
functions supported by the system are:

(+), (-), (*), min, max :: real -> real -> real

(^) :: real -> int -> real

(/), (**), log :: real -> real -> real

div, mod, gcd :: int -> int -> int

round, trunc, floor, ceiling :: real -> int

toReal :: int -> real

uminus, abs, sqrt, ln,
exp, sin, cos, tan, cot,
asin, acos, atan, acot,
sinh, cosh, tanh, coth,
asinh, acosh, atanh, acoth :: real -> real

(<), (<=), (>), (>=) :: real -> real -> bool
(==), (/=) :: A -> A -> bool

Tables 2.1 and 2.2 show the intended meaning for each one of the primitive functions.
As we have remarked already in Section 2.6, the symbols ==, /=, >, <, >=, <= have a double
rôle: they can be used to build conditions in defining rules, and also as operators denoting
functions which return a boolean result. Both rôles can be distinguished by the context. As we
will see in Section 2.16, they are conceptually different and not to be confused. A natural relation
between the two rôles of strict equality and disequality is shown by the following definitions:

X == Y = true <== X == Y

31

+ XY X + Y

- XY X − Y

/ XY X/Y (real division)
* XY X ∗ Y (real multiplication)
** XY X raised to the power of Y

^ XY X raised to the (positive integer) power of Y , i.e., XY

< XY X < Y

<= XY X ≤ Y

> XY X > Y

>= XY X ≥ Y

== XY X = Y

/= XY X 6= Y

abs X Absolute value of X

acos X Arc cosine of X

acosh X Hyperbolic arc cosine of X

acot X Arc cotangent of X

acoth X Hyperbolic arc cotangent of X

asin X Arc sine of X

asinh X Hyperbolic arc sine of X

atan X Arc tangent of X

atanh X Hyperbolic arc tangent of X

ceiling X The least integer greater or equal to X, i.e., dXe

Table 2.1: Primitive Functions 1/2

32

cos X Cosine of X

cosh X Hyperbolic cosine of X

cot X Cotangent of X

coth X Hyperbolic cotangent of X

div XY Integer quotient of X and Y

exp X Natural exponent of X, i.e., eX

floor X The greatest integer less or equal to X, i.e., bXc
gcd XY Geatest common divisor of X and Y

ln X Neperian logarithm of X

log XY Logarithm of Y in base X

max XY Greater value of X and Y

min XY Lesser value of X and Y

mod XY Integer remainder after dividing X by Y

round X Closest integer to X. If X is exactly half-way between
two integers, it is rounded up to
the least integer greater than X

sin X Sine of X

sinh X Hyperbolic sine of X

sqrt X Square root of X

tan X Tangent of X

tanh X Hyperbolic tangent of X

toReal X The real number equal to the integer X

trunc X The integer part of X

uminus X −X

Table 2.2: Primitive Functions 2/2

33

X == Y = false <== X /= Y

X /= Y = false <== X == Y
X /= Y = true <== X /= Y

Similar defining rules could be also written for the behaviour of >, <, >=, and <= as boolean
functions. Actually, the T OY system runs optimized versions of these definitions.
The system file basic.toy includes also definitions for some other predefined functions, given
by T OY defining rules of the kind described in Section 2.6. Currently, the predefined functions
are:

if_then_else :: bool -> A -> A -> A
if_then_else true X Y = X
if_then_else false X Y = Y

if_then :: bool -> A -> A
if_then true X = X

flip :: (A -> B -> C) -> B -> A -> C
flip F X Y = F Y X

Instead of writing if_then_else b e e’ and if_then b e in prefix notation, T OY allows
to use the standard syntax if b then e else e’ and if b then e. Nevertheless, the prefix
versions are useful for enabling partial applications.
The function flip has been predefined for technical reasons, since it is used internally by the
T OY system in order to express operator sections as partial applications. The coexistence of
both primitive and predefined function definitions in the system file basic.toy also obeys to
technical reasons.
Many other (usual and useful, but not strictly needed) functions can be found in the file misc.toy
(see Appendix B), which reproduces in T OY syntax a subset of Haskell’s prelude.

2.9 Including Programs

In many cases you will want to split a program into smaller pieces, or simply use some frequent
functions which have been previously collected into a given file (this is, for instance, the case
of misc.toy). For this purpose, when writing a program in a file < File1 >, you can use the
directive include "< File2 >" whose effect, while compiling < File1 >, is the same as if the
content of < File2 > were literally included into < File1 >. For example, you can add (at any
point) a line with the text:

include "misc.toy"

to any program you write, being careful not to redefine functions already defined in misc.toy.

34

2.10 Layout Rule

In the examples above we have used some implicit rules about indentation. Now we are going
to define precisely the layout rule, which is borrowed from Haskell. The use of the layout rule
becomes really useful when dealing with nested local definitions. Currently, T OY does not
support nested local definitions; but nevertheless, the parser is prepared to take adventage of
the layout rule, whose knowledge is also helpful for understanding some common error messages.
The basic unit of T OY source code is the section. A section begins with an open bracket ‘{’
followed by a sentence and ends with a closed bracket ‘}’. Each sentence can be either an
include, a datatype definition, a type synonym definition, an operator definition, a function type
declaration, or a function defining rule. For instance, the following is a valid program text in
T OY:

{
include "misc.toy"

}
{

(+.) :: [real] -> [real] -> [real]
}

{
X +. Y = zipWith (+) X Y <== length X == length Y

}

Different sentences belonging to the same level must be separated by semicolons ‘;’. The
layout rule allows to omit the symbols ‘{’, ‘}, and ‘;’, replacing them by certain natural layout
conventions. Briefly, the layout rule specifies:

• Before reading the first character of each section an open bracket is inserted automatically.

• The end of the section is reached when the only open bracket is the one described in the
previous item, and the first character of the current line is found at some column position
less or equal than the column position occupied by the section’s first character.

• If the first character of the current line is at the same column position as the first character
of the innermost level of opened brackets, and this level is strictly greater than one, a
semicolon ‘;’ is inserted before.

• A closed bracket will also be inserted wherever an unknown token is found.

• Empty lines, as well as lines containing only blank spaces, tabulators, and comments, are
ignored by the layout rule. That is, they are handled just like blank spaces.

2.11 Predicate Definitions

Predicates in T OY are viewed as a particular kind of functions, with type τ1 -> · · · -> τn ->
bool. As a syntactic facility, T OY allows to use clauses as a shorthand for defining rules whose

35

right-hand side is true. This allows to write Prolog-like predicate definitions, according to the
following scheme:

p :: τ1 -> · · · -> τn -> bool
· · ·

p t1 · · · tn : − C1, · · ·, Cm where D1, · · ·, Dp

· · ·
Here, each clause abbreviates a defining rule of the form

p t1 · · · tn = true <== C1, · · ·, Cm where D1, · · ·, Dp

When using clausal notation, the conditions correspond to the body of a clause. A clause body
cannot be empty in T OY, but it can be simply true. The following is a simple example of
Prolog-like programming in T OY:

% Type alias for persons:

type person = string

% fatherOf predicate.
% fatherOf(X,Y) holds if Y is father of X.

fatherOf :: (person,person) -> bool
fatherOf("peter","john") :- true
fatherOf("paul","john") :- true
fatherOf("sally","john") :- true
fatherOf("bob","peter") :- true
fatherOf("lisa","peter") :- true
fatherOf("alan","paul") :- true
fatherOf("dolly","paul") :- true
fatherOf("jim","tom") :- true
fatherOf("alice","tom") :- true

% motherOf predicate.
% motherOf(X,Y) holds if Y is mother of X.

motherOf :: (person,person) -> bool
motherOf("peter","mary") :- true
motherOf("paul","mary") :- true
motherOf("sally","mary") :- true
motherOf("bob","molly") :- true
motherOf("lisa","molly") :- true
motherOf("alan","rose") :- true
motherOf("dolly","rose") :- true
motherOf("jim","sally") :- true
motherOf("alice","sally") :- true

36

% parentOf predicate.
% parentOf(X,Y) holds if Y is parent of X.

parentOf :: (person,person) -> bool
parentOf(X,Y) :- fatherOf(X,Y)
parentOf(X,Y) :- motherOf(X,Y)

% ancestorOf predicate.
% ancestorOf(X,Y) holds if Y is ancestor of X.

ancestorOf :: (person,person) -> bool
ancestorOf(X,Y) :- parentOf(X,Y)
ancestorOf(X,Y) :- parentOf(X,Z), ancestorOf(Z,Y)

As another syntactic facility, T OY allows defining rules whose left-hand sides are not linear.
Such rules are understood as a shorthand for the result of transforming them as follows: repeated
occurrences of a variable X (say) in the left-hand side are replaced by fresh variables Xi, and
new conditions X == Xi are added. This facility is very helpful for writing predicate definitions
in clausal notation. For instance, a Prolog-like definition of the well-known permutation sort
algorithm could include the following clauses:

permutationSort :: [real] -> [real] -> bool
permutationSort Xs Ys :- permutation Xs Ys, sorted Ys

permutation :: [A] -> [A] -> bool
permutation [] [] :- true
permutation [X|Xs] Zs :- permutation Xs Ys,

insertion X Ys Zs

insertion :: A -> [A] -> [A] -> bool
insertion X [] [X] :- true
insertion X [Y|Ys] [X,Y|Ys] :- true
insertion X [Y|Ys] [Y|Zs] :- insertion X Ys Zs

The second defining clause for insertion abbreviates the defining rule

insertion X [Y|Ys] [X’,Y’|Ys’] = true <== X == X’, Y == Y’, Ys == Ys’

The permutationSort example also illustrates the use of curried predicates. Uncurried pred-
icates, like those in the ancestorOf example, are also allowed. More generally, programmers
are free to choose either curried or uncurried style for each particular function or predicate def-
inition. Curried style is often favoured, because partial applications of curried functions can be
used to express functional values; see Sections 2.1 and 2.14.

37

2.12 Non-Deterministic Functions

Prolog-like predicates illustrate a typical feature of logic programming, namely the ability
to express don’t-know non-determinism. For instance, the T OY system can solve the goal
permutation [1,2] Ys, looking for values of Ys that make the goal true. The system will
compute the two expected answers, namely Ys == [1,2] and Ys == [2,1], via a backtrack-
ing mechanism. More generally, don’t-know non-determinism is useful for solving many search
problems in a simple (although not always efficient) way.
Don’t-know non-determinism in T OY can also be achieved by means of non-deterministic func-
tions. A function f is called non-deterministic iff some function call (f t1 · · · tn) with fixed,
already evaluated arguments, can return more than one result. T OY allows to define non-
deterministic functions by means of defining rules with overlapping left-hand sides. For instance,
the following T OY definitions compute ancestors by means of non-deterministic functions:

% Functions fatherOf and motherOf

fatherOf :: person -> person
fatherOf "peter" = "john"
fatherOf "paul" = "john"
fatherOf "sally" = "john"
fatherOf "bob" = "peter"
fatherOf "lisa" = "peter"
fatherOf "alan" = "paul"
fatherOf "dolly" = "paul"
fatherOf "jim" = "tom"
fatherOf "alice" = "tom"

motherOf :: person -> person
motherOf "peter" = "mary"
motherOf "paul" = "mary"
motherOf "sally" = "mary"
motherOf "bob" = "molly"
motherOf "lisa" = "molly"
motherOf "alan" = "rose"
motherOf "dolly" = "rose"
motherOf "jim" = "sally"
motherOf "alice" = "sally"

% Non-deterministic functions parentOf and ancestorOf

parentOf :: person -> person
parentOf X --> fatherOf X
parentOf X --> motherOf X

38

ancestorOf :: person -> person
ancestorOf X --> parentOf X
ancestorOf X --> ancestorOf (parentOf X)

As in this example, definitions of non-deterministic functions use the sign ‘-->’ in place of
‘=’. More precisely, programmers are expected to use ‘=’ rather than ‘-->’, to indicate that a
particular function is deterministic. Determinism is an undecidable semantic property. There are
sufficient conditions for determinism that can be decided efficiently, see [11]. The current system,
however, does not check wether the functions defined by ‘=’ rules are indeed deterministic.
A goal such as ancestorOf "alan" == P can be solved by the T OY system. The expected
answers will be computed by backtracking. They are:

P == "paul"; P == "rose"; P == "john"; P == "mary"

Maybe the most paradigmatic example of non-deterministic function is the non-deterministic
choice from two given values. This choice operator can be programmed in T OY as follows:

infixr 20 //

(//) :: A -> A -> A
X // Y --> X
X // Y --> Y

The choice operator allows a more succint presentation of other non-deterministic functions. For
instance, an alternative definition of the ancestorOf function can be written as

ancestorOf X --> parentOf X // ancestorOf (parentOf X)

or also as follows, taking advantage of a ocal definition to avoid repeated computations of parents:

ancestorOf X --> Y // ancestorOf Y
where Y = parentOf X

A well known problem solving method involving non-determinism is generate-and-test, which
works by generating candidates and testing wether they are actual solutions for the problem at
hand. Programming generate-and-test in Prolog style leads often to very expensive algorithms,
because candidates are totally computed before testing. A typical example of this situation is
the Prolog-like permutation sort algorithm shown in Section 2.11 above. T OY allows to express
a lazy generate-and-test method, where the generator is a non-deterministic function rather than
a predicate. Candidates returned by the generator are passed as arguments to the tester. Since
candidates are evaluated lazily, they can be rejected without being totally computed, and a
greater efficiency can be achieved. A lazy generate-and-test version of the permutation sort
algorithm is shown below:

39

permutationSort :: [real] -> [real]
permutationSort Xs = checkIsSorted (permutation Xs)

checkIsSorted :: [real] -> [real]
checkIsSorted Ys = Ys <== isSorted Ys

isSorted :: [real] -> bool
isSorted [] = true
isSorted [X] = true
isSorted [X,Y|Zs] = X <= Y /\ isSorted [Y|Zs]

permutation :: [A] -> [A]
permutation [] --> []
permutation [X|Xs] --> insert X (permutation Xs)

insert :: A -> [A] -> [A]
insert X [] --> [X]
insert X [Y|Ys] --> [X,Y|Ys] // [Y|insert X Ys]

Here, the non-deterministic function permutation acts as generator, while checkIsSorted is
the tester. When sorting a list Xs by means of this program, the variable Ys acting as formal
parameter in the left-hand side of the tester gets bound to the different permutations of Xs
returned by the generator. Therefore, it is essential for the correctness of the algorithm that
the two occurrences of Ys in the right-hand side and in the condition of the defining rule of
checkIsSorted share the value passed as actual parameter for Ys. More generally, the T OY
system supports sharing for the values of all variables which occur in the left-hand sides of
defining rules and have multiple occurrences in the right-hand side and/or the conditions.
As in lazy functional languages, sharing improves efficiency. Moreover, sharing in T OY is needed
for correctness, as shown by the previous example. Sharing implements so-called call-time choice
semantics of non-deterministic functions. Intuitively, this semantics means the following: given
any function call of the form f e1 · · · en, where the actual parameter expressions ei may involve
non-determinism, the evaluation proceeds by first computing some possible value vi for each ei,
and then invoking f with actual parameters vi. Note that the values vi are not computed eagerly;
rather, the evaluation of the actual parameters ei is delayed until needed, and the eventually
obtained values vi are shared.
A more formal description of call-time choice can be found in Appendix F and in [11]. From
a practical viewpoint, T OY users must be aware of call-time choice, since it affects the set of
possible solutions in the case of non-deterministic computations. For instance, given the T OY
definitions:

coin :: int
coin --> 0
coin --> 1

40

double :: int -> int
double X = X + X

the goal double coin == R has two possible solutions, namely R == 0 and R == 2. These
correspond to the two possible call-time choices of a value v for coin before invoking double v.
Sometimes, call-time choice gives rise to more subtle behaviours, as illustrated next. Consider
the T OY definitions:

coins :: [int]
coins --> [coin|coins]

repeat :: A -> [A]
repeat X = [X|repeat X]

rcoins :: [int]
rcoins --> repeat coin

Due to call-time choice semantics, coins computes an infinite list of integers, where each element
is chosen non-deterministically as 0 or 1, independently of the choice for the other elements.
There are uncountably many such lists. On the other hand, rcoins computes an infinite list
consisting of repeated occurrences of the same integer value v, which is non-deterministically
chosen as 0 or 1. This behaviour is also consistent with call-time choice semantics. Now there
are only two possibilities for the resulting list.
Strict equality conditions and disequality conditions must be properly understood w.r.t. non-
determinism. In order to solve e1 == e2 the T OY system tries to compute some common finite
value for e1 and e2. On the other hand, e1 /= e2 is solved by computing some possible values
of e1 and e2 which are in conflict to each other. For instance,

• coin == coin can be obviously solved.

• coin == double coin can be solved, due to the common value 0 of both sides.

• coin /= coin can also be solved, due to the possibility to compute the value 0 for one
side and the conflicting value 1 for the other side.

In a similar way, eventual non-determinism must be taken into account when computing with
disequality and inequality conditions.
All the examples shown in this section up to now achieve non-determinism by means of over-
lapping left-hand sides. However, T OY also supports another way of defining non-deterministic
functions, namely to use extra variables in the right-hand sides of defining rules. “Extra vari-
ables” simply means variables that do not occur in the corresponding left-hand side. T OY
allows extra variables both in the right-hand sides and in the conditions of defining rules. Extra
variables behave as logic variables in the logic programming sense: they can be introduced in
the course of a computation and become bound to different values later on, thus giving rise to
non-determinism. For instance, the following non-deterministic function computes the inverse
of another function, given as a parameter:

41

inverse :: (A -> B) -> (B -> A)
inverse F Y --> X <== F X == Y

Note that inverse F is intended to behave as the inverse of the function given as actual pa-
rameter for F. However, due to the condition F X == Y, it turns out that inverse F Y is de-
fined only if Y is a finite value returned by some computation of F. For instance, the goal
inverse length 3 == Xs has the solution Xs == [X0,X1,X2], standing for all possible lists
whose length is 3. On the other hand, the goal inverse repeat Xs == X leads to an attempt
to solve repeat X == Xs and therefore to non-termination, because the function repeat returns
an infinite list.
Functions whose definition uses extra variables in right-hand sides sometimes return results
whose types also depend on extra type variables. As an example, consider the following function:

zipWithAny :: [A] -> [(A,B)]
zipWithAny [] = []
zipWithAny [X|Xs] = [(X,Y)|zipWithAny Xs]

Note that zipWithAny admits a list Xs of any type as parameter. The returned result is a list
of pairs (X,Y) whose first components X are the elements of Xs and whose second components Y
are fresh logic variables, which could become bound later on if the call to zipWithAny was part
of a bigger computation. From the viewpoint of type discipline, it is consistent to assume the
existence of a common type for the values of the new variables Y. More precisely, for arbitrary
types A and B, and for any list Xs :: [A] given as actual parameter, zipWithAny Xs can return
results of type [(A,B)], provided that the fresh logic variables Y introduced by the computation
are bound to values of type B (or remain unbound and are assumed to have type B). Of course,
choosing arbitrary bindings for the extra variables Y could lead to an ill-typed list of pairs.
However, the T OY system never attempts to produce arbitrary variable bindings.
More generally, whenever a function f ∈ FSn with principal type f :: τ1 -> · · · -> τn -> τ is
defined by defining rules with extra variables in the right-hand side, the type can contain extra
type variables, and it must be understood in the following way: for any choice of the types to be
replaced for the type variables occurring in τ1 -> · · · -> τn -> τ , and for any actual parameters
ei :: τi (1 ≤ i ≤ n), the function call f e1 · · · en can return results of type τ , provided that
the logic variables introduced during the computation as fresh renamings of extra variables in
right-hand sides, are bound to values of the expected types. The T OY system always leaves logic
variables unbound until some bindings are demanded by the rest of the current computation.
This ensures a well-typed behaviour, except in some special cases to be discussed at the end of
Section 2.14.

2.13 Goals and Computed Answers

In the preceding section we have already met some examples of goals and answers. In general,
there are two different modes of computing in T OY: solving goals and evaluating expressions.
For the first modality, a goal is a set of conditions C1, ..., Cn where, as in function definitions,
each condition Ci must have the form e1♦e2, being ♦ ∈ {==, /=, <, >, <=, >= }, and e1, e2

42

expressions. Each condition Ci is interpreted as a constraint to solve, using the definitions of
functions and predicates included in the current program as well as the intended meanings of
{==, /=, <, >, <=, >= }, which have been explained in Section 2.6. More precisely, goal
solving in T OY involves a combination of lazy evaluation and computation of bindings for logic
variables; see Appendix G for a more formal specification. Whenever a goal is satisfiable, the
system answers yes and shows the computed answer consisting of a set of constraints in solved
form.
For example, using the list concatenation function (++) defined in Section 2.6, we can solve the
goal [1,2] ++ [3] == [1,2,3] by typing at the prompt of the system:

Toy> [1,2] ++ [3] == [1,2,3]
yes
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

The previous goal is satisfiable with an empty computed answer. After finding a solution
for a goal, the system can search for more solutions by backtracking, like in Prolog inter-
preters. In order to ask for the next solution, the user must respond to the system’s question
more solutions [y]? (default option) by typing ‘y’ (or simply < Intro >). The system will
answer no if no more solutions can be computed (as in this example), and it will display the
next solution otherwise. As an example of a goal with several solution, consider:

Toy> Xs ++ Ys == [1,2]
{ Xs -> [],
Ys -> [1, 2] }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

{ Xs -> [1],
Ys -> [2] }

Elapsed time: 0 ms.
sol.2, more solutions (y/n/d/a) [y]?

{ Xs -> [1, 2],
Ys -> [] }

Elapsed time: 0 ms.
sol.3, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

In general, computed answers can contain three kinds of constraints that will be showed by
T OY in the following order:

• First, the equality constraints in solved form that may be understood as bindings of vari-
ables to normal forms. For example,

43

Toy> [1,2] ++ [3] == L
{ L -> [1, 2, 3] }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

Another example may be:

Toy> (++) [1] == F
{ F -> ([1] ++) }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

In this case the normal form ((++) [1]) is a partial application of the function (++)
and it is shown in infix notation. See also the next example based on the former one,
which applies the pattern F (the partial application) to a list:

Toy> (++) [1] == F, F [2] == L
{ F -> ([1] ++),
L -> [1, 2] }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

• After equalities, disequalities are shown enclosed between curly brackets. The solved form
for a disequality is X /= t where t is a normal form. A computation involving disequalities
may be:

Toy> [1] ++ Xs /= [1,2]
{ [2] /= Xs }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

• If the constraint solver over the real numbers is working (see Section 1.5.5), then the
computed answer can also contain constraints of this kind that will be showed in the last
place. The solved form for them is provided by the solver of Sicstus Prolog. For example,
if the constraint solver for real numbers has been activated, one can solve goals as:

44

Toy(R)> X + Y + Z == 3, X - Y + Z == 1
{ Y -> 1 }
{ _C==1.0+X,
Z==2.0-X,
_D== -1.0+X }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

or:

Toy(R)> X^2 == 4, X>0
{ 4.0-X^2.0==0.0,
X>0.0 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

Non-linear arithmetic constraints, like X2 == 4 in this example, are suspended by the
constraint solver until they become linear because of variable instantiation. At the end of
the computation the remaining suspended constraints are shown as part of the computed
answer, although they might be unsatisfiable.

Another example using the non-deterministic function permutationSort from Section 2.12
and the constraints over reals may be the sorting of a list of numbers, one of whose elements
is unknown. In the goal, the unknown element is represented as a logic variable X:

TOY> permutationSort [3,2,X] == L

yes
L == [2, 3, X]

{ X>=3.0 }

Elapsed time: 10 ms.

more solutions [y]?

yes
L == [2, X, 3]

{ X>=2.0 }
{ X=<3.0 }

45

Elapsed time: 0 ms.

more solutions [y]?

yes
L == [X, 2, 3]

{ X=<2.0 }

Elapsed time: 0 ms.

Notice that the three computed answers constrain the position and value of X in all possible
ways.

The second way for computing in T OY is to reduce or evaluate expressions, as in functional
programming languages. In order to compute in this mode, the user must type the symbol >
followed by the expression e to be evaluated. The system will display the value resulting from
the evaluation of e; more precisely, the first possible value, in case that e includes some non-
deterministic function. If this value happens to be infinite, the evaluation will continue until
the user interrupts it by pressing the Ctrl-C key, or the available memory is exhausted. When
computing in this mode, it is expected that e includes no logic variables. Otherwise the system’s
behaviour is unpredictable, although no error message will occur.
Three simple examples of T OY computations in evaluation mode are shown below:

Toy> > 3*(6-2)
12
Elapsed time: 0 ms.

Toy> > [1,2] ++ [3,4]
[1, 2, 3, 4]

Elapsed time: 0 ms.
Toy> > 0 // 1

0
Elapsed time: 0 ms.

In the third example, the expression is non-deterministic, and the first possible value is computed.
In order to compute more possible values a user should work in gaal solving mode, with a goal
of the form 0 // 1 == R.

2.14 Higher-Order Programming

T OY supports higher-order programming in the style of Haskell and other functional languages,
except that λ-abstractions are not allowed. The syntax for function defining rules (see Section

46

2.6) does not preclude the possibility of functions being passed as arguments or returned as
results. In previous sections we have already met some higher-order functions, such as twice
in Sections 2.1 and 2.2, and inverse in Section 2.12. Some other typical examples are shown
below.

% Composition operator.

infixr 90 .

(.) :: (B -> C) -> (A -> B) -> (A -> C)
(F . G) X = F (G X)

% Combinators for currying and uncurrying.

curry :: ((A,B) -> C) -> A -> B -> C
curry F X Y = F (X,Y)

uncurry :: (A -> B -> C) -> (A,B) -> C
uncurry F (X,Y) = F X Y

% Function iteration.

iterate :: (A -> A) -> A -> [A]
iterate F X = [X|iterate F (F X)]

% Functions map and filter.

map :: (A -> B) -> [A] -> [B]
map F [] = []
map F [X|Xs] = [F X | map F Xs]

filter :: (A -> bool) -> [A] -> [A]
filter P [] = []
filter P [X|Xs] = if P X then [X | filter P Xs]

else filter P Xs

One familiar application of functional languages consists in programming generic problem-
solving schemes as higher-order functions. In T OY, this technique can be naturally combined
with non-determinism. As an example, recall the lazy generate-and-test technique used in Sec-
tion 2.12 in order to opmitize a permutation sort algorithm. In fact, all the applications of the
lazy generate-and-test method to different particular problems follow the same scheme, and it
is easy to program a single generic solution, by means of a higher-order function findSol. This
function expects three parameters: a generator Generate, a tester Test, and an input Input,
and it returns a solution Solution. The generator is applied to the input in order to produce

47

candidate solutions, and any candidate which passes the tester can be returned as solution. As
we already know, thanks to lazy evaluation, partially computed candidates can be rejected by
the tester. The T OY definitions realizing this algorithm are as follows.

findSol :: (Input -> Solution) -> (Solution -> bool) -> Input -> Solution
findSol Generate Test Input --> check Test (Generate Input)

check :: (Solution -> bool) -> Solution -> Solution
check Test Solution --> Solution <== Test Solution

An alternative definition of the function permutationSort as a particular instance of the generic
function findSol is now possible:

permutationSort :: [real] -> [real]
permutationSort = findSol permutation isSorted

where permutation and isSorted are defined as in Section 2.12.
The T OY language also supports higher-order predicates. These are just higher-order func-
tions which return a boolean result. T OY users can program higher-order predicates using the
clausal notation explained in Section 2.11. For instance, the following higher-order predicate is
a relational version of the map function:

mapRel :: (A -> B -> bool) -> [A] -> [B] -> bool
mapRel R [] [] :- true.
mapRel R (X:Xs) (Y:Ys) :- R X Y, mapRel Xs Ys

In relational logic programming languages such as λ-Prolog [28], user-defined functions are not
available. Therefore, mapRel must be used instead of map. In a multiparadigm language there
is more room for choice. Often, functions behave better than predicates if there is some need to
compute with potentially infinite structures, where lazy evaluation is helpful. For instance, map
is a better choice than mapRel in case that a potentially infinite list must be processed. More
precisely, the attempt to solve a mapRel goal involving an infinite list will not terminate, while
expressions of the form take n (map fun list) can be lazily evaluated, even if the value of
list turns out to be infinite. Recall the definition of function take from Section 2.6.
A special feature of higher-order programming in T OY is the availability of higher-order pat-
terns. This notion has already been introduced in Section 2.1, as a syntactic device to represent
functional values. Higher-order patterns behave as intensional representations of functions. They
can be compared for strict equality (==) and disequality (/=), in the same way as first-order
data terms.
In actual programs, higher-order patterns can play a useful rôle both as patterns occurring in
the left-hand sides of defining rules, and as computed results. In order to illustrate this idea,
let us consider family relationships, modelled as non-deterministic functions of type person ->
person, as we have seen in Section 2.12. It is natural to think of complex family relationships
being built as the functional composition of basic relationships, such as fatherOf and motherOf.

48

Using the composition operator (.) defined at the beginning of this section, higher-order pred-
icates which recognize both basic and composite family relationships are easy to define. The
auxiliary type alias rank is used to compute the number of compositions involved in a compos-
ite relationship.

basicFamilyRelation :: (person -> person) -> bool
basicFamilyRelation fatherOf :- true
basicFamilyRelation motherOf :- true
basicFamilyRelation sonOf :- true
basicFamilyRelation daughterOf :- true
basicFamilyRelation brotherOf :- true
basicFamilyRelation sisterOf :- true

type rank = nat

someRank :: rank
someRank --> zero // suc someRank

familyRelation :: rank -> (person -> person) -> bool
familyRelation z F :- basicFamilyRelation F
familyRelation (s N) ((.) F G) :- basicFamilyRelation F,

familyRelation N G

These definitions, along with suitable definitions for the behaviour of the basic family relations,
could be used to solve goals such as

R == someRank, familyRelation R F, F "alice" == "allan"

where the non-deterministic nullary function someRank is used to search for ranks. The goal has
the following solution (among others):

R == suc (suc zero), F == sonOf . brotherOf . motherOf

Note that the answer computed for F can be equivalently written as

(.) sonOf ((.) brotherOf motherOf)

which is a higher-order pattern, according to the syntactic characterization given in Section 2.1.
Unfortunately, some T OY computations involving higher-order patterns can break the type
discipline, as we explain in the rest of this section. A first kind of problem arises when solving
goals which include expressions of the form F e1 · · · en (n > 0), where a logic variable F is acting
as a function. Let us speak of goals with higher-order logic variables to describe this situation.
Some binding for the higher-order logic variable F must be computed in order to solve such
goals. This can happen in two ways:

49

1. Generated bindings: some previous goal-solving step binds variable F before coming to the
computation of F e1 · · · en. This was the case in the family relationships example above.

2. Guessed bindings: no previous goal-solving step has bound F . Then, in order to continue
the computation of F e1 · · · en, T OY guesses some pattern of the form h X1 · · ·Xm (with
fresh logic variables Xi) as binding for F . In fact, the system uses backtracking to try all
possible bindings of this form. In each case, the computation continues and may lead to
different solutions of the goal.

Generated bindings of higher-order logic variables are unproblematic. Guessed bindings, on the
other hand, can give rise to ill-typed solutions. For instance, solving the well-typed goal

map F [true, X] == [Y, false]

requires to guess a binding for the higher-order logic variable F. One possibility is ((++) []),
which leads to an ill-typed solution, because the principal type of ((++) []) is incompatible with
the type that must be assumed for F in order to well-type the goal. In general, guessed bindings
of higher-order variables can produce ill-typed solutions because the current T OY system does
not check type consistency of such bindings at run time. As an additional disadvantage, guessing
bindings for higher-order variables generally leads to the exploration of a huge search space, and
often even to non-termination.
A second kind of problem can arise when solving goals of the form f e1 · · · em == f e′1 · · · e′m,
where f is a defined function of arity n > m. Such a goal must be solved by decomposing it into
m new subgoals e1 == e′1, · · · , em == e′m. Assume that the principal type of f is τ1 -> · · · -> τn

-> τ , such that some type variable occurring in τi for some 1 ≤ i ≤ m does not occur in τm+1 ->
· · · -> τn -> τ . If this is the case, some of the m new subgoals ei == e′i may be ill-typed. This
problem is called opaque decomposition; the name points to the fact that the type of f e1 · · · em

does not uniquely determine the types of the argument expressions ei.
For example, using a function

snd :: A -> B -> B
snd X Y = Y

as well as other functions presented in previous examples, one can build the well-typed goal

snd (head [Xs,[true]]) == snd (head [Ys,[15]])

where both sides of the strict equality have type B -> B under the type assumptions Xs ::
[bool], Ys :: [int]. In order to solve this goal, T OY starts with an opaque decomposition
step leading to the new goal

head [Xs,[true]] == head [Ys,[1]]

which is ill-typed. In spite of this, T OY can succesfully complete a computation which returns
the ill-typed solution Xs == Ys.

50

Opaque decomposition steps can also arise when solving disequalities f e1 · · · em /= f e′1 · · · e′m,
where f is a defined function of arity n > m. This is because any solution of ei /= e′i (for any
1 ≤ i ≤ m) is a solution of the disequality. As we have seen, those solutions whose computation
involves opaque decomposition can be ill-typed. The current T OY system gives no warning in
such cases.

2.15 Finite Failure

T OY provides the primitive boolean function fails as a direct counterpart to finite failure in
Prolog. A call of the form fails e returns true if there is not any possible reduction for e and
false otherwise3. For example, using the function head introduced in page 27 we have that fails
(head []) reduces to true because the function head is not defined for the empty list, while fails
(head [1,2]) reduces to false.
The semantics of failure in functional logic programming has been widely studied in [23, 20, 24,
21, 25, 19]. For the moment T OY incorporates a restricted version of the constructive failure
investigated in such works4. The restriction is similar to that of negation as finite failure in
Prolog: in order to ensure the correctness of the answers, the expression e in a call of the form
fails e must not contain variables. Despite of this restriction in the use of this function, it
provides an interesting resource for programming in a wide range of applications.
As we have seen (Section 2.11) T OY allows predicate definition in a Prolog style. Using the
function fails, we can even write predicates with negation replacing the predicate not by the
function fails. For example, assume the following Prolog program:

member(X, [X|Xs]).
member(X, [Y |Y s]) : − member(X,Y s).

insert(X,Xs, [X|Xs]) : − not(member(X, Xs)).
insert(X,Xs,Xs) : − member(X,Xs).

The translation into a T OY program is straightforward (file member.toy in the examples di-
rectory of the distribution):

member X [X|Xs] :- true
member X [Y|Ys] :- member X Ys

insert X Xs [X|Xs] :- fails (member X Xs)
insert X Xs Xs :- member X Xs

But failure has a variety of interesting uses in the context of functional logic programming itself.
It is useful in general search problems. For example assume the following graph:

3The formal semantics, according to lazy evaluation is that fails e returns true if e can not be reduced to head
normal form (variable or constructor rooted term) and false otherwise.

4There prototype OOPS [33] available at http://babel.dacya.ucm.es/jaime/systems.html incorporates con-
structive failure in a functional logic language.

51

b

d

c

a

We can represent it in FLP and define a function path for checking if there is a path between
two nodes (file graph.toy in the examples directory of the distribution):

data node = a | b | c | d

next a = b
next a = c
next b = c
next b = d

path X X = true
path X Y = path (next X) Y <== X /= Y

Now, assume we want to define the predicate safe for nodes (as a boolean function):

safe X::= X is not connected with d (there is no path from X to d)

In order to define this function we would have to use a deterministic functional style, changing
the representation of graphs and rewriting the full program. But using failure, the definition is
direct:

safe X = fails (path X d)

According to this definition, safe c reduces to true, while for the rest of nodes it reduces to false.

Failure may also be used for programming two-person finite games in an easy and elegant way
(following the idea of [10] in logic programming). Assume such a game in which players make
a move in turn, until it is not possible to continue. At this stage, the player that cannot move
losses, so the winner is the one that makes the last movement. We assume that it is defined
the function move State that produces (in a non-deterministic way) a new state from the given
State using a legal movement.
We are interested in a function winMove State that provides a winning movement from State,
that is, a movement that eventually bring us to the victory, with independence of the movements
of the adversary. This is easy to express using failure (file nim.toy in the examples directory
of the distribution):

winMove State = State’ <== State’ == move State, fails (winMove State’)

This simple function provides a way for winning the game whenever it is possible. The idea is to
find a legal movement State’, such that the other player fails to find a winning movement form
it. This scheme can be applied for a variety of games. As an example we introduce the Nim

52

game: we have a set of rows with sticks and a movement consists in dropping one or more sticks
from an unique row. The state of the game can be represented by a list of integers, where each
one represents the number of sticks of a row. A legal movement is defined in a non-deterministic
way with the function move as follows:

pick N = N-1 <== N>0
pick N = pick (N-1) <== N>0

move [N|Ns] = [pick N|Ns]
move [N|Ns] = [N|move Ns]

Here the function pick takes one or more sticks from a row and move picks some sticks from one
row. Now we can evaluate

Toy> winMove [1,2,2] == S
{ S -> [0, 2, 2] }
Elapsed time: 16 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

That is, we must drop the stick from the first row. It is easy to check that for any possible
movement of the adversary we can assure the victory. The reader may try to program the
tic-tac-toe game by providing a representation for the panel and the function move.

Apart from fails T OY provides some other related primitives. In a non-deterministic language
it is interesting in some cases to have a set of solutions more than a single solution for a given
problem. The usual way for providing these solutions is to get one by one by backtracking, like
in Prolog or also in T OY. But there are situations for which it is useful to obtain the full set
of solutions together in an structure, like a list (Prolog provides several predicates for this issue
like findall).
Using failure we can obtain all the results of the evaluation of any expression, but in fact T OY
facilitates the work by providing a number of primitives for such issues. The first one is collect
e that returns the list of possible values for the expression e. For example, for the program of
graphs introduced above we can evaluate:

Toy> collect (next a) == L
{ L -> [b, c] }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

This is the list of the nodes adjacent to the node a, as expected. For the Nim’s game we can
evaluate:

53

Toy> collect (winMove [2,2,2]) == L
{ L -> [[0, 2, 2], [2, 0, 2], [2, 2, 0]] }
Elapsed time: 78 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

Toy> collect (winMove [2,2]) == L
{ L -> [] }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

The first goal provides the list of states (lists) that represent the possible winning moves from
the state [2,2,2], while the second one shows that there is no possible winning movement from
[2,2] (this means that there is not any possible movement that guaranties our victory; of course
the other player can make a wrong movement like [0,2] in such a way that we will win).
Another primitive is collectN M e that returns a list with (the first) M results for the expression
e. For example we can obtain the first two solutions for the goal winMove [2,2,2] solving the
goal:

Toy> collectN 2 (winMove [2,2,2]) == L
{ L -> [[0, 2, 2], [2, 0, 2]] }
Elapsed time: 94 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

There is another primitive once e that returns the first reduction for the expression e. For
example:

Toy> once (winMove [2,2,2]) == L
{ L -> [0, 2, 2] }
Elapsed time: 16 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

For more complex uses of these primitives see Appendix A.4.

2.16 Constraints

T OY can be described as a narrowing-based functional logic language, which means that the
the basic operational mechanism is narrowing, a combination of unification and rewriting. But
narrowing is not the only computational process, as we see now.

54

As we have explained in Section 2.6, functions in T OY programs are defined functions, which
are defined by means of conditional rules with local definitions, of the form

ft1 . . . tn = r ⇐ C1, . . . , Cm whereD1, . . . , Dp

Each condition Ci is a constraint of the form e ¦ e′, where ¦ can be == , /= ,< , <= ,> or >= 5.
Well-typedness of constraints implies that e and e′ should have the same type for the case of ==
and /=, and the same numeric type (int or float) for the case of < , <= ,> or >=. The reading
of the program rule above is that ft1 . . . tn can be reduced to r if the constraints C1, . . . , Cm

are satisfied, using the local definitions to obtain the values of locally defined variables. Thus,
the comma ’,’ in the condition part can be read as conjunction. Conjunctions of constraints are
also called constraints.
At the top level, a T OY computation consist in solving a goal 6, where goals are also constraints.
To check the satisfiability of constraints requires a process of constraint solving which is some-
how independent of narrowing, although cooperates with narrowing when constraints involve
subexpressions f(e1, . . . , en). Constraint solving may produce one of the following results:

• A failure, if the constraint was unsatisfiable. As for the case of failure during narrowing,
failure of constraint solving is silent and simply forces backtracking. Only in case of failure
of the whole computation the user is noticed of that.

• A constraint in solved form, i.e., a constraint in some kind of simplified format ensuring
its satisfiability. As a matter of fact, a single constraint can be transformed into a family a
solved forms; the original constraint would be equivalent to the disjunction of such family.
Disjuncts correspond to independent branches of the computation, to be tried in sequence
in case of bactracking. This happens, for instance, for the goal [X,0] /= [1,Y] for which
a first solution X /= 1 is obtained. If, after being asked, the user wants to see more
solutions, a second one, Y/=0 is shown.

• A suspended constraint, for which the constraint solver is not powerful enough to ensure the
satisfiability. This happens in T OY with non linear arithmetic constraints. Suspended
constraints can be re-activated if some variables are instantiated in a later step of the
computation.

During computations, solved and suspended constraints act as a constraint store. As the com-
putation proceed, new constraints can be added to the store, which must be checked again for
satisfiability. When the computation finishes, the store is a part of the answer (it is the answer,
it we see the substitution part of the answer as a solved form for equality constraints).
Currently, T OY is able to manage three kinds of constraints:

• Syntactical constraints (equality and disequality) over constructor terms. These are em-
bedded in the system, and the constraint solver is implemented from the scratch.

5More generally, Ci can be any boolean expression e, but in this case the condition e == true is assumed by
the system.

6At least when using the goal solving mode of evaluation of T OY.

55

• Arithmetical constraints over real numbers. Their use is optional, and the implementation
mostly relies on the constraint solver for linear arithmetic constraints that comes with
Sicstus Prolog.

• Constraints over finite domains. As well, their use is optional, and the implementation
mostly relies on the Sicstus Prolog finite domain constraint solver.

In this section, we introduce the first two items. The constraints over finite domains are explained
in detail in chapter 3.

2.16.1 Syntactical Equality and Disequality Constraints

Equality tests are frequently used in daily programming. As an example, consider the following
simple function definition, likely to appear in many real functional or functional logic programs.

member X [] = false
member X [Y | Ys] = if (X ‘eq’ Y) then true else member X Ys

The symbol eq expresses here some suitable notion for equality. In a language like T OY with
lazy evaluation, the sensible notion for eq is that of strict equality, which means that e eq e’
reduces to true if both e and e′ are reducible to the same pattern, and to false if e and e′ can
be reduced to some extent as to detect inconsistency, i.e., different constructor symbols at the
same position in e and e′.
Using the program above as a functional program, the expression member zero [(s loop),
zero] could be reduced to the value true ; this has involved the evaluation of zero eq (s
loop) (yielding the value false, in spite of the fact that loop is a diverging function), and zero
eq zero (yielding the value true).
Now, a functional logic language like T OY is also able to perform reductions over expressions
containing variables, which may become instantiated in the process. This reversibility property
is one of the nicest that functional logic programming shares with logic programming. But
reversibility is not easy to achieve in programs requiring equality tests, like the example above.
Consider for instance an expression containing variables, such as member X [Y]. One possible
reduction could yield the value true together with the substitution X 7→ Y, which can be also
seen as a constraint X==Y. But member X [Y] can also be reduced to false if X and Y are
given different values. An attempt of covering such values by means of substitutions results in
infinitely many answers 7. For instance, if the program contains the datatype declaration

nat = zero | suc nat

then the possible answers would include the following:

X==zero,Y==suc U; X==suc U,Y==zero; X==suc zero,Y==suc (suc U); X==suc(suc U),Y==suc
zero; ...

7At least if the set of terms corresponding to the given signature is infinite.

56

This family of answers cannot be replaced by any equivalent finite set of substitutions. The
situation changes drastically if we consider disequality constraints, since one single disequality
(namely X /= Y) collects all the information embodied in all those substitutions. T OY ex-
hibits such behavior because of its ability of explicitly handle equality (==) and disequality /=)
constraints, corresponding respectively to the positive and negative cases of strict equality, as
described above.
Using these constraints, the function eq can be defined by the rules:

X eq Y = true <== X == Y
X eq Y = false <== X /= Y

For the sake of clarity, we have used throughout this discussion the symbol eq. However, T OY
overloads the symbols == and also /=, so that they can be used both for constraints and for
functions.

Strict Equality Constraints

To understand how constraint solving proceeds, it is useful to explain two different things:

• When a constraint is satisfied (or valid), that is, it is true for all values of its variables.

• When a constraint is satisfiable, that is, there are values of its variables making it true.

The first notion fixes the ‘semantics’ of the constraint, while the second is more related to
constraint solving, which tries to check satisfiability by reducing constraints to solved form.
For the case of equality constraints, we can say that

• e == e′ is satisfied if e and e′ can be reduced to the same pattern.

• A constraint e == e′ is satisfiable if e and e′ can be reduced to unifiable patterns. Solved
forms are the results of such unifications, that it, idempotent substitutions which can be
seen (and showed) as sets of solved equations.

According to the semantics, a constraint e == e′ could be solved by reducing e and e′ to normal
forms (patterns) and then unifying them. But in practice, to interleave the reduction of e and
e′ is better from the point of view of detecting failure. For instance, the constraint suc e ==
zero is not satisfiable, whatever the expression e is. To reduce e (which can be costly or even
diverging) is needed to reach a normal form for suc e, but not to detect the failure of the
constraint. T OY solves equality constraints is such interleaved way, which also includes an
optimized occur-check (see Appendix G for details).

Disequality Constraints

A constraint e /= e′, is satisfied if e and e′ can be reduced to an extent as to have a constructor
clash, which means having different constructor symbols at the same ’external position’ (that
is, positions not insidea function application). A disequality e /= e′ can be satisfied even if e
or e′ do not have a normal form.

57

Examples With the following definitions

loop = loop % divergence
undefined = undefined <== false % failed reduction
from N = [N | from (suc N)] % infinite list

the following ground goals have in each case the indicated behaviour:

[0,0] /= [1,0] % succeeds
from zero /= from (suc zero) % succeeds
[0,undefined] /= [1,undefined] % succeeds
[undefined,0] /= [undefined,1] % succeeds
[0,loop] /= [1,loop] % succeeds
[loop,0] /= [loop,1] % succeeds
[0,0] /= [0,0] % fails
[0,undefined] /= [0,undefined] % fails
[0,loop] /= [0,loop] % diverges
from zero /= from zero % diverges

In presence of variables, the constraint solving mechanism to check satisfiability of disequal-
ity constraints tries to reduce them to solved forms of the shape X /= t1,...,X /= tn,Y /=
s1,...,Y /= sm,..., which are known to be satisfiable, if the set of ground terms is infinite
8. During a computation, the accumulation of these solved forms constitutes a disequality con-
straint store which plays a dynamic role: if at a given step of the computation a variable X is
going to be bound to a term t, it must be checked that the binding is compatible with all the
stored disequalities for X. This constraint propagation amounts to solve t /= s1,...,t /=sn, if
X /= s1,...,X /=sn was the store for X.
As an example, we show below some stepts for the solving of a goal involving equality and
disequality constraints, and how the accumulated substitution and constraint store evolve . The
symbols a,b,c,d are constructor symbols and ∗i indicates a don’t know choice.

8Otherwise, satisfiability of solved forms is not guaranteed. For instance, X /= Y, X /= Z, Y /= Z is not
satisfiable if there are only two ground terms. Since T OY is a typed system, this might happen for some types.
In particular, this does happen for the type bool, which has only the constants true and false . Since the type
bool is frequently used, there is a special treatment of disequality in this case, as to avoid unsatisfiable answers.

58

Goal Substitution Constraint store
c X /= c (c Y), d X Y /= d a a, d X X == d (c Z) (c b)
X /= c Y, d X Y /= d a a, d X X == d (c Z) (c b)
d X Y /= d a a, d X X == d (c Z) (c b) (∗1) X /= c Y
X /= a , d X X == d (c Z) (c b) X /= c Y
d X X == d (c Z) (c b) X /= c Y, X /= a
X == c Z, X == c b X /= c Y, X /= a
c Z /= c Y, c Z /= a, c Z == c b X 7→ c Z
Z /= Y, c Z /= a, c Z == c b X 7→ c Z
c Z /= a, c Z == c b X 7→ c Z Z /= Y
c Z == c b X 7→ c Z Z /= Y
Z == b X 7→ c Z Z /= Y
b /= Y X 7→ c b, Z 7→ b

X 7→ c b, Z 7→ b Y /= b

The computed answer consists of the final accumulated substitution and constraint store 9. An
alternative branch for the the computation at (∗1) is:
Goal Substitution Constraint store
d X Y /= d a a, d X X == d (c Z) (c b) (∗1) X /= c Y
d X X == d (c Z) (c b) X /= c Y
d X X == d (c Z) (c b) X /= c Y, Y /= a
X == c Z, X == c b X /= c Y, Y /= a
c Z /= c Y, c Z == c b X 7→ c Z Y /= a
Z /= Y, c Z == c b X 7→ c Z Y /= a
c Z == c b X 7→ c Z Y /= a, Z /= Y
Z == b X 7→ c Z Y /= a, Z /= Y
b /= Y X 7→ c b, Z 7→ b Y /= a

X 7→ c b, Z 7→ b Y /= a, Y /= b

Strict Equality and Disequality Functions

As we have discussed before, for practical purposes one needs not only the possibility of using
the constraints == and /= in conditions of rules, but also a two-valued equality function, for
which the system overloades the symbol ==. We also mentioned that == can be defined in the
language by means of the rules

X == Y = true <== X == Y
X == Y = false <== X /= Y

Dually, there is also a two-valued function /= which could be defined as:

X /= Y = true <== X /= Y
X /= Y = false <== X == Y

9The system cleans up the final store to eliminate irrelevant disquequalities not involving, directly or indirectly,
the goal variables.

59

These definitions of ==, /= are semantically correct but not very efficient. As an example, con-
sider the evaluation of [0,1,...,99] == [0,1,...,99,100], where == is the equality function
(this always can be known by the context). With the code above, the system tries first the
first rule, attempting then to solve the constraint [0,1,...,99] == [0,1,...,99,100]. After
100 decompositions, we reach the constraint [] == [100], which fails. Then the second rule is
tried, which requires to redo all the decompositions to reach finally the constraint [] /= [100],
which succeeds.
Things are not done in this way in the system. Instead, the evaluation of an equality proceeds as
long as possible without branching between the positive and the negative case. In the example
above, the decompositions are done until the evaluation of [] == [100] is reached. Since []
== [100] evaluates to false, this is the value of the initial equality.

Inequality Functions

Similarly to the case of == and /=, each of the constraint symbols <, <=, >, >= is overloaded
to represent also a boolean function, according to the following definitions:

X < Y = true <== X < Y
X < Y = false <== X >= Y

and similarly for the rest.

2.16.2 Arithmetical Constraints over Real Numbers

As explained in Section 1.5.5, T OY includes the possibility of activating (deactivating resp.) a
linear constraint solver by means of the command /cflpr. (/nocflpr. resp. 10).
The interest of arithmetical constraints is known in the logic programming field since the ap-
pearance of CLP(R), the first constraint logic programming language. In contrast to the very ad
hoc Prolog treatment of arithmetic, constraints give a clear logical status to real numbers. From
the point of view of programming, constraints provide many benefits like more reversibility,
reusability and independence of control.
Something similar happens in the functional logic programming setting. Consider for instance
the following boolean function to determine if a given point in the plane - represented by its two
coordinates - lies in a given straight line - represented by the three coefficients of its equation - :

type point = (real,real)
type line = (real,real,real)

inLine:: point -> line -> bool
inLine (X,Y) (A,B,C) = A*X+B*Y+C==0

10We nevertheless discourage the use of nocflpr, at least if efficiency is required, since this command inhibits the
use of constraint solver within T OY, but is not able to deactivate it for the Sicstus session running underground.
This implies a strong penalty in efficiency.

60

Even without constraints, this works fine as a functional program. We can evaluate ground
expressions like inLine (1,2) (1,-1,1) or inLine (1,0) (1,-1,1) to obtain true and false
respectively. But an attempt of solving a goal with variables results in a runtime error

Toy> inLine (2,Y) (1,-1,1)

RUNTIME ERROR: Variables are not allowed in arithmetical operations.
no
Elapsed time: 0 ms.

instead of obtaining the ‘logical’ answer Y == 3. This makes programs less reversible, abstract
and reusable. For instance, to calculate the intersection point of two lines, we cannot use the
following definition, despite its logical soundness:

intersctPoint L L’ = P <== inLine P L, inLine P L’

Notice that this definition is quite ‘declarative’ - uses the logic of the problem - and abstract -
it does not depend of the concrete represention of lines and points - but unfortunately it results
again in runtime errors.

Toy> intersctPoint (1,-1,1) (1,1,0) == P

RUNTIME ERROR: Variables are not allowed in arithmetical operations.
no
Elapsed time: 0 ms.

To overcome the problem, without the use of constraints, we must do some ‘homework’ to
calculate explicitly the coordinates of the intersection:

intersctPoint’ (A,B,C) (A’,B’,C’) = ((B*C’-B’*C)/(A*B’-A’*B),
(-C -A*X)/B)

Now

TOY> intersctPoint’ (1,-1,1) (1,1,0) == P
yes
P == (-0.5, 0.5)

With the use of constraints, arithmetic becomes reversible:

Toy> /cflpr
Toy(R)> /run(regions)
Toy(R)> inLine (2,Y) (1,-1,1)

{ Y -> 3 }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?

61

no
Elapsed time: 0 ms.

Toy(R)> intersctPoint (1,-1,1) (1,1,0) == P
{ P -> (-0.5, 0.5) }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

Furthermore, we can solve goals with several solutions, obtaining a constraint as an answer:

Toy(R)> inLine P (1,-1,1)
{ P -> (_A, _B) }
{ _B==1.0+_A }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

Linear constraints are active constraints, meaning that their satisfiability is effectively checked.
For instance, an attempt of finding the intersection of two concrete parallel lines fails:

Toy(R)> intersctPoint (1,1,1) (1,1,0) == P
no
Elapsed time: 0 ms.

However, nonlinear constraints are passive, and their satisfiability is not checked. For instance,
an attempt of finding the intersection of two generic parallel lines does not fail, but returns a
(hard to read) non linear constraint as answer, which is in fact unsatisfiable:

Toy(R)> intersctPoint (A,B,1) (A,B,0) == P
{ P -> (_C, _D) }
{ _E== -1.0-_F,
_G== -(_H),
-(_C*A)+_F==0.0,
-(_D*B)+_E==0.0,
_H-_C*A==0.0,
_G-_D*B==0.0 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

The previous examples use only == as arithmetical constraint. The system supports also
/=,<,<=,>,>=. The use of some of them is illustrated in Section A.6.1.

62

- * ** /
^ + < <=
> >= == /=
abs acos acosh acot
acoth asin asinh atan
atanh cos cosh cot
coth exp ln log
max min sin sinh
sqrt tan tanh uminus

Table 2.3: Real Constraint Operators and Functions

ceiling div floor gcd
mod round toReal trunc

Table 2.4: Real Constraint Operators and Functions unmanaged by the Solver

Table 2.3 summarizes the real constraint operators which are sent to the real solver. Other
arithmetical functions cannot be managed by this solver, as shown in Table 2.4. Recall that
nonlinear constraints are delayed until they become linear due to variable instatiation.

Optimization Functions

Optimization problems have been acknowledged as an important field of operations research,
and have been identified in real-life applications as planning, scheduling, and timetabling, to
name a few. An optimization problem is understood in the context of a set of constraints and
a cost function which needs to be maximized or minimized. A cost function may represent
profit, resources, or time, for instance. T OY provides several optimization functions for real
constraints:

• minimize :: real -> real
The application minimize X returns the minimum for X (which represents the cost func-
tion) in the context of the constraints in the real constraint store. X is demanded to be
in head normal form. The evaluation of this application raises an exception if either there
are suspended non-linear constraints or unboundedness is detected.

• maximize :: real -> real
The application maximize X is equivalent to the application minimize -X.

The following is an example of using this function:

Toy(R)> 2*X+Y <= 16, X+2*Y<=11, X+3*Y <= 15,
Z==30*X+50*Y, maximize Z == Z

{ X -> 7.00000000000001,

63

Y -> 1.9999999999999956,
Z -> 310.00000000000006 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

In this example, if minimization is used instead of maximization, an exception is raised
because of unboundedness.

Another example shows an optimization problem with infinite values for the variables
involved in the cost function:

Toy(R)> X-Y==Z, X>=0, X<=2, Y>=0, Y<=2, X==Y, minimize Z == I
{ Y -> X,
Z -> 0,
I -> 0 }

{ X=<2.0,
X>=-0.0 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

• bb_minimize :: real -> [real] -> real
The application bb minimize X Is returns the minimum for X in the context of the con-
straints in the real constraint store, assuming that the variables in the list Is can only
take integral values. This allows the evaluation of mixed integer linear problems. X is
demanded to be in head normal form, and Is in normal form. The evaluation of this
application raises an exception if unboundedness is guessed (because either the problem
is actually unbounded or boundness cannot be detected because of suspended non-linear
constraints). A value is considered integral with an error of 0.001. Strict bounds on the
decision variables are honored, but strict inequalities and disequalities are not handled.
For example:

Toy(R)> X>=Y+Z, Y>1, Z>1, bb_minimize X [Y,Z] == X
{ X -> 4,
Y -> 2,
Z -> 2 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

64

Note that this function only generates one particular solution, in contrast to both minimize
and maximize, which deliver a general solution. Consider, for instance, the same problem
presented to illustrate the function minimize, but adding integral constraints for X and Y:

Toy(R)> X-Y==Z, X>=0, X<=2, Y>=0, Y<=2, X==Y, bb_minimize Z [X,Y] == I
{ X -> 0,
Y -> 0,
Z -> 0,
I -> 0 }

Elapsed time: 16 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

That is, the answers { X -> 1, Y -> 1, Z -> 0, I -> 0} and { X -> 2, Y -> 2, Z
-> 0, I -> 0} are missing.

• bb_maximize :: real -> [real] -> real
The application bb maximize X Is is equivalent to bb minimize -X Is.

65

Chapter 3

Constraints over Finite Domains

In this chapter, we present the implementation of Constraint Functional Logic Programming over
Finite Domains (CFLP (FD)) with the lazy functional logic programming language T OY which
seamlessly embodies finite domain (FD) constraints. CFLP (FD) increases the expressiveness
and power of constraint logic programming over finite domains (CLP (FD)) by combining
functional and relational notation, curried expressions, higher-order functions, patterns, par-
tial applications, non-determinism, lazy evaluation, logical variables, types, domain variables,
constraint composition, and finite domain constraints.

3.1 Introduction

CFLP (FD) provides the main characteristics of CLP (FD), i.e., FD constraint solving, non-
determinism and relational form. Moreover, CFLP (FD) provides a sugaring syntax for LP
predicates and thus, any pure CLP (FD)-program can be straightforwardly translated into
a CFLP (FD)-program. In this sense, CLP (FD)may be considered as a strict subset of
CFLP (FD)with respect to problem formulation. As a direct consequence, our language is
able to cope with a wide range of applications (in particular, all those pure programs that can
be formulated with a CLP (FD) language).
Due to its functional component, CFLP (FD) adds further expressiveness to CLP (FD) as allows
the declaration of functions and their evaluation in the FP style.
Functions are first-class citizens, which means that a function (and thus any FD constraint) can
appear in any place where data do. As a direct consequence, an FD constraint may appear as an
argument (or even as a result) of another function or constraint. The functions managing other
functions are called higher-order (HO) functions. Also, polymorphic arguments are allowed in
CFLP (FD).
In contrast to logic languages, functional languages support lazy evaluation, where function
arguments are evaluated to the required extend (the call-by-value used in LP vs. the call-by-
need used in FP). Strictly speaking, lazy evaluation may also correspond to the notion of only
once evaluated in addition to only required extent [31]. T OY increases the power of CLP (FD) by
incorporating a novel mechanism that combines lazy evaluation and FD constraint solving, in
such a way that only the demanded constraints are sent to the solver. For example, it is possible

66

to manage infinite lists of constraints.

3.1.1 Efficiency

In [9] we showed that T OY is fairly efficient as, in general, behaves closely to SICStus. Despite
this is not surprisingly as it is implemented on top of SICStus, we think that it is important
to show that the wrapping of SICStus by T OY does not increase significantly the computation
time.
Moreover, in the same paper we showed that T OY is about two and five times faster (and even
much more in scalable problems) than another CFLP (FD) implementation [26] which is said
to be efficient in its Web page (http://redstar.cs.pdx.edu/∼pakcs/).

3.1.2 Modes and Bidirectionality

Each N-arity predefined constraint and (constraint-related-)function is listed with its correspond-
ing modes for arguments and results as:
function :=: { modes }
where modes is a comma-separated list of modes of the form:
mode0 -> mode1 -> ... modeN, where function has arity N, modei (0 ≤ i < N) is the mode
for the i-th argument, modeN is the mode for the result, and modei can be:

• A basic mode:

– in. An in mode demands a ground expression.

– inout. An inout mode accepts any expression.

• A constructed mode:

– [basic mode]. Demands a list of elements, each one of basic mode.

– (basic mode1, ..., basic modeN). Demands an N-tuple of elements, in which the
i-th element is of basic modei.

Arguments of predefined functions and constraints with finite types are not demanded and can
otherwise be produced. For example, the second argument of the arithmetic constraint sum
stands for a relational constraint operator. If it is not provided by the user, the system produces
all the possible operators. The mode for sum is listed as: sum :=: {[in] -> inout -> in}.
Some other functions can have several usage modes.

3.1.3 Loading the FD Constraint Library

T OY does not incorporate automatically FD constraints and thus it is necessary to load the
FD extension in order to perform constraint solving. This is done with the command /cflpfd.
See also Section 1.5.5 in page 15 for an introductory system session.

67

3.2 FD Constraints and Functions

In this section, T OY constraints and (constraint-related-)functions are listed and explained.
Several of them are reifiable, i.e., a reified constraint represents its entailment in the constraint
store with a Boolean variable. In general, constraints in reified form allow their fulfillment to
be reflected back in a variable. For example, B #= (X #+ Y #> Z) constrains B to true as soon
as the disequation is known to be true and to false as soon as the disequation is known to be
false. On the other hand, constraining B to true imposes the disequation, and constraining B
to false imposes its negation. Incidentally, in CLP(FD) languages, the Boolean values false
and true usually correspond to the numerical values 0 and 1, respectively.

3.2.1 Predefined Data Types

In T OY, we have defined a set of predefined datatypes that are used to define the constraints.
Table 3.1 shows the set of these datatypes.

Table 3.1: Predefined Datatypes for FD Constraints
data labelingType = ff | ffc | leftmost | mini | maxi | step | enum | bisect | up

| down | each | toMinimize int | toMaximize int | assumptions int
data reasoning = value | domains | range
data allDiffOptions = on reasoning | complete bool
data typeprecedence = d (int,int,liftedInt)
data liftedInt = superior | lift int
data serialOptions = precedences [typeprecedence] | path consistency bool

| static sets bool | edge finder bool | decomposition bool
data range = cte int int | uni range range | inter range range | compl range
data fdinterval = interval int int
type fdset = [fdinterval]
data statistics = resumptions | entailments | prunings | backtracks

| constraints

In the following, we describe all the FD constraints, functions, and operators currently supported
by T OY (see Table 3.2), as well as the set of impure FD functions (see Table 3.3), in the sense
that they depend on the program state. Despite they are useful in several applications (like
defining search strategies), the programmer should be aware of its impure functional behaviour.

3.2.2 Membership Constraints

Membership constraints restrict the values that a variable can be assigned to. There are several
such constraints:

domain/3

• Type Declaration:

68

Table 3.2: The Predefined Set of FD Constraints, Functions, and Operators

MEMBERSHIP CONSTRAINTS
domain :: [int] → int → int → bool
subset, inset, setcomplement :: int → int → bool
intersect :: int → int → int
belongs :: int → [int] → bool

ENUMERATION FUNCTIONS
labeling :: [labelType] → [int] → bool
indomain :: int → bool

RELATIONAL CONSTRAINT OPERATORS
#=, #\=, #<, #<=, #>, #>= :: int → int → bool

ARITHMETIC CONSTRAINT OPERATORS
#+, #-, #*, #/, #& :: int → int → int

ARITHMETIC CONSTRAINTS
sum :: [int] → (int → int → bool) → int → bool
scalar product :: [int] → [int] → (int → int → bool) → int → bool

COMBINATORIAL CONSTRAINTS
all different :: [int] → bool
all different’ :: [int] → [allDiffOptions] → bool
circuit :: [int] → bool
assignment, circuit’, serialized :: [int] → [int] → bool
serialized’ :: [int] → [int] → [serialOptions] → bool
count :: int → [int] → (int → int → bool) → int → bool
element, exactly :: int → [int] → int
cumulative :: [int] → [int] → [int] → int → bool
cumulative’ :: [int] → [int] → [int]→ int → [serialOptions] → bool

PROPOSITIONAL CONSTRAINTS
#<=>, #=>, #\/ :: bool → bool → bool

69

Table 3.3: The Predefined Set of Impure FD Functions

REFLECTION FUNCTIONS
fd min, fd max, fd size, fd degree :: int → int
fd set :: int → fdset
fd dom :: int → fdrange
fd neighbors :: int → [int]
fd closure :: [int] → [int]
inf, sup :: int

FD SET FUNCTIONS
is fdset, empty fdset :: fdset → bool
fdset parts :: int → int → fdset → fdset
empty interval :: int → int → bool
fdset interval :: int → int → fdset
fdset singleton :: int → fdset
fdset min, fdset max, fdset size :: fdset → int
list to fdset :: [int] → fdset
fdset to list :: fdset → [int]
range to fdset :: [int] → range
fdset to range :: range → [int]
fdset add element, fdset del element :: fdset → int → fdset
fdset intersection, fdset subtract,

fdset union :: fdset → fdset → fdset
fdset complement :: fdset → fdset
fdsets intersection, fdsets union :: fdset → fdset
fdset equal, fdset subset, fdset disjoint,

fdset intersect :: fdset → fdset → bool
fdset member :: int → fdset → bool
fdset belongs :: int → int → bool

STATISTICS FUNCTIONS
fd statistics :: bool
fd statistics’ :: statistics → int → bool

70

domain :: [int] → int → int → bool

• Modes:

domain :=: {[inout] → in → in → inout}
• Definition: domain L A B returns true if each element in the list L (with integers and/or
FD variables) belongs to the interval [A,B] and also constrains each FD variable in L to
have values in the integer interval [A,B]. It returns false if no element in L belongs to
[A,B].

• Reifiable: Yes.

• Examples:

The next goal returns true and constrains X and Y to have values in the range [1,10].

Toy(FD)> domain [X,Y] 1 10
{ X in 1..10,
Y in 1..10 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

The next goal shows a use of reification:

Toy(FD)> domain [X] 0 1 == B
{ B -> true }
{ X in 0..1 }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
{ B -> false }
{ X in(inf.. -1)\/(2..sup) }
Elapsed time: 0 ms.

sol.2, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

Observe that in the first solution (B -> true) X is constrained to have values in the closed
integer interval [0..1], whereas in the second solution (B -> false) X is constrained to
have a value different from those.

• Note:

The possible values for a finite domain variable lies in the interval [inf,sup], where inf
and sup denote, respectively, the functions that return the minimum and maximum integer
values that a finite domain variable can take. See section 3.2.9 for the definition of these
functions.

71

subset/2, inset/2, setcomplement/2

• Type Declaration:

subset, inset, setcomplement :: int → int → bool

• Modes:

subset, inset, setcomplement :=: {inout → inout → inout}
• Definition: subset A B returns true if the domain of A is a subset of the domain of B.

It returns false in other case. inset A B returns true if A is an element of the FD set
of B. It returns false in other case. setcomplement A B returns true if no value of the
domain of A is in the domain of B. It returns false in other case. setcomplement is the
complement of subset.

• Reifiable: Yes.

• Examples:

Toy(FD)> domain [X] 1 4, domain [Y] 3 6, subset X Y == B
{ B -> true }
{ subset X Y,
X in 3..4,
Y in 3..6 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

{ B -> false }
{ not subset X Y,
X in 1..4,
Y in 3..6 }

Elapsed time: 0 ms.
sol.2, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

Toy(FD)> domain [X] 1 4, domain [Y] 3 6, inset X Y == B
{ B -> true }
{ X in 3..4,
Y in 3..6 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

{ B -> false }
{ X in 1..2,
Y in 3..6 }

Elapsed time: 0 ms.
sol.2, more solutions (y/n/d/a) [y]?

72

no
Elapsed time: 0 ms.

Toy(FD)> domain [X] 0 1, domain [Y] 1 4, setcomplement X Y == B
{ B -> true }
{ not subset X Y,
X in 0..1,
Y in 1..4 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

{ X -> 1,
B -> false }

{ subset 1 Y,
Y in 1..4 }

Elapsed time: 0 ms.
sol.2, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

intersect/2

• Type Declaration:

intersect :: int → int → int

• Modes:

intersect :=: {inout → inout → inout}
• Definition: intersect A B returns a variable with the intersected domains of A and B.

• Reifiable: Not applied.

• Example:

Toy(FD)> domain [X] 0 3, domain [Y] 1 4, intersect X Y == Z
{ X in 0..3,
Y in 1..4,
Z in 1..3 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

belongs/2

73

• Type Declaration:

belongs :: int → [int] → bool

• Modes:

belongs :=: {inout → [in] → inout}
• Definition: belongs A L returns true if the integer or variable domain takes a value in

the list L (with integers and/or FD variables). It returns false in other case.

• Reifiable: Yes.

• Example:

The next goal shows a use of reification:

Toy(FD)> domain [X] 0 4, belongs X [1,3] == B, labeling [] [X]
{ X -> 1,
B -> true }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]? a

{ X -> 3,
B -> true }

Elapsed time: 0 ms.
sol.2, more solutions (y/n/d/a) [y]?

{ X -> 0,
B -> false }

Elapsed time: 0 ms.
sol.3, more solutions (y/n/d/a) [y]?

{ X -> 2,
B -> false }

Elapsed time: 0 ms.
sol.4, more solutions (y/n/d/a) [y]?

{ X -> 4,
B -> false }

Elapsed time: 0 ms.
sol.5, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

Note: labeling is intended to enumerate the possible solutions when propagation alone is not
enough to deliver concrete values. This enumeration function is covered in the next section.

3.2.3 Enumeration Functions

Propagation algorithms usually found in constraint solving are incomplete due to efficiency
reasons. This means that the solving process can terminate without determining whether a

74

constraint store is entailed or not. Enumeration constraints allow to reactivate the search for
solutions when no more constraint propagation is possible. They ask to the solver for all the
solutions via backtracking by assigning values to FD variables following an enumeration strat-
egy (satisfaction problems). Also, it is possible to select, from all the solutions, the one which
optimizes some cost function (optimization problems). It does not make any sense to reify enu-
meration functions. T OY provides two enumeration constraints:

labeling/2

• Type Declaration:

labeling :: [labelType] → [int] → bool

• Modes:

labeling :=: {inout → [inout] → inout}
Note: Since the first argument is inout, the lists of valid options can be produced. How-
ever, not all of them are produced because two of them demands a variable to be optimized,
as will be explained next.

• Definition: labeling Options L is true if an assignment of the variables in L can be
found such that all of the constraints already presented in the constraint store are satisfied.
L is a list of integers or domain variables with a bounded domain. Options is a list of at
most four elements that allow to specify an enumeration strategy.

Each element in this list can have a value in one of the following groups:

1. The first group controls the order in which variables are chosen for assignment (i.e.,
variable ordering) and allows to select the leftmost variable in L (leftmost), the
variable with the smallest lower bound (mini), the variable with the greatest upper
bound (maxi) or the variable with the smallest domain (ff). The value ffc extends
the option ff by selecting the variable involved in the higher number of constraints.

2. The second group controls the value ordering, that is to say, the order in which values
are chosen for assignment. For instance, from the minimum to the maximum (enum),
by selecting the minimum or maximum (step) or by dividing the domain in two
choices by the mid point (bisect). Also the domain of a variable can be explored in
ascending order (up) or in descending order (down).

3. The third group demands to find all the solutions (all) or only one solution to
maximize (resp. minimize) the domain of a variable X in L (toMinimize X) (resp.
toMaximize X).

4. The fourth group controls the number K of assumptions (choices) made during the
search (assumptions K).

• Reifiable: Not applied.

• Example:

75

The next goal looks (via backtracking) for assignments to all variables in the list L and
follows a first fail strategy.

Toy(FD)> L == [X,Y], domain L 1 2, labeling [ff] L
{ L -> [1, 1],
X -> 1,
Y -> 1 }

Elapsed time: 16 ms.
sol.1, more solutions (y/n/d/a) [y]?

{ L -> [1, 2],
X -> 1,
Y -> 2 }

Elapsed time: 0 ms.
sol.2, more solutions (y/n/d/a) [y]?

{ L -> [2, 1],
X -> 2,
Y -> 1 }

Elapsed time: 0 ms.
sol.3, more solutions (y/n/d/a) [y]?

{ L -> [2, 2],
X -> 2,
Y -> 2 }

Elapsed time: 0 ms.
sol.4, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

indomain/1

• Type Declaration:

indomain :: int → bool

• Modes:

indomain :=: {inout → inout}
• Definition: indomain A assigns a value, from the minimum to the maximum in its do-

main, to A, which is an integer or a finite domain variable with a bounded domain. It
always returns true.

• Reifiable: Not applied.

• Example:

The evaluation of the next goal assigns to X each value in its domain via backtracking.

76

Toy(FD)> domain [X] 1 2, indomain X
{ X -> 1 }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
{ X -> 2 }
Elapsed time: 0 ms.

sol.2, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

3.2.4 Relational Constraints

Relational constraints include equality and disequality constraints in the form e¦ e′ where ¦ ∈ {
#=, #\=, #<, #<=, #>, #>= and e and e′ are either integers, or FD variables or functional expres-
sions.

#= / 2, #\= / 2, #< / 2, #<= / 2, #> / 2, #>= / 2

• Type Declaration:

#=, #\=, #<, #<=, #>, #>= :: int → int → bool

• Modes:

#=, #\=, #<, #<=, #>, #>= :=: {inout → inout → inout}
• Definition: #Op A B, also written in infix notation as A #Op B, where Op ∈ { #=, #\=, #<,
#<=, #>, #>= }, returns true if posting the relation A #Op B entails the constraint store.
It returns false in other case.

• Reifiable: Yes.

• Remarks: Infix notation allowed.

• Priorities:

infix 20 #=, #\= (infix)
infix 30 #<, #<=, #>, #>= (infix)

• Examples:

The next goal returns true and restricts X and Y to have values in the closed integer
intervals [2,10] and [1,9] respectively (as a consequence of range narrowing).

Toy(FD)> domain [X,Y] 1 10, X #> Y
{ Y #< X,
X in 2..10,
Y in 1..9 }

77

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

The next goal shows a use of reification:

Toy(FD)> domain [X,Y] 0 1, X #> Y == B
{ X -> 1,
Y -> 0,
B -> true }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

{ B -> false }
{ X #=< Y,
X in 0..1,
Y in 0..1 }

Elapsed time: 0 ms.
sol.2, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

3.2.5 Arithmetic Constraint Operators

Arithmetic constraint operators allow to build linear and nonlinear constraints involving prim-
itive arithmetic functions as addition (#+), subtraction (#-), multiplication (#*), and division
(#/). It does not make any sense to reify these operators.

#+ / 2, #- / 2, #* / 2, #/ / 2, #& / 2

• Type Declaration:

#+, #-, #*, #/, #& :: int → int → int

• Modes:

#+, #-, #*, #/, #& :=: {inout → inout → inout}
• Definition: #Op A B, also written in infix notation as A #Op B, where Op ∈ { +, -, *, /,
& }, imposes the constraint A #Op B and returns true if it is entailed.

• Reifiable: Not applied.

• Remarks: Infix notation allowed. & stands for integer modulus.

• Priorities:

78

infixr 90 #*, #/ (infix, right-associative)
infixl 50 #+, #- (infix, left-associative)
infixl 90 #& (infix, left-associative)

• Example:

The next goal returns true and constrains X, Y and Z to have values in the intervals [1,10],
[1,10] and [1,100] respectively.

Toy(FD)> domain [X,Y] 1 10, X #* Y #= Z
{ X #* Y #= Z,
X in 1..10,
Y in 1..10,
Z in 1..100 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

3.2.6 Arithmetic Constraints

The following constraints express a relation between a sum or scalar product and a value, and
use dedicated algorithms that avoid to allocate temporary variables holding intermediate values.

sum/3

• Type Declaration:

sum :: [int] → (int → int → bool) → int → bool

• Modes:

sum :=: {[inout] → inout → inout}
• Definition: sum L Op V is true if the sum of all elements in L is related with V via the

relational constraint operator Op, i.e., if Σe∈L Op V .

• Reifiable: Yes.

• Note: This constraint implements a dedicated algorithm which posts a single sum instead
of a sequence of elementary constraints.

• Example:

Toy(FD)> L == [X,Y,Z], domain L 1 3, sum L (#<) 4 == B
{ L -> [1, 1, 1],
X -> 1,
Y -> 1,

79

Z -> 1,
B -> true }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

{ L -> [X, Y, Z],
B -> false }

{ X#+Y#+Z #>= 4,
X in 1..3,
Y in 1..3,
Z in 1..3 }

Elapsed time: 0 ms.
sol.2, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

scalar product/4

• Type Declaration:

scalar product :: [int] → [int] → (int → int → bool) → int → bool

• Modes:

scalar product :=: {[inout] → [inout] → inout → inout → inout}
• Definition: scalar product L1 L2 Op V is true if the scalar product (in the sense of
FD constraint solving) of the integers in L1 and the integers or FD variables in L2 is
related with the value V via the relational constraint operator Op, i.e., if (L1 ∗s L2) Op
V is satisfied with ∗s defined as the usual scalar product of integer vectors.

• Reifiable: Yes.

• Note: This constraint implements a dedicated algorithm which posts a single scalar prod-
uct instead of a sequence of elementary constraints.

• Example:

Toy(FD)> domain [X,Y,Z] 1 10, scalar_product [1,2,3] [X,Y,Z] (#<) 10 == B
{ B -> true }
{ X#+2#*Y#+3#*Z #< 10,
X in 1..4,
Y in 1..2,
Z in 1..2 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

{ B -> false }
{ X#+2#*Y#+3#*Z #>= 10,

80

X in 1..10,
Y in 1..10,
Z in 1..10 }

Elapsed time: 16 ms.
sol.2, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

As expected, the expressions constructed from both arithmetic and relational constraints may
be non-linear.

3.2.7 Combinatorial Constraints

Combinatorial constraints include well-known global constraints that are useful to solve prob-
lems defined on discrete domains. Often, these constraints are also called symbolic constraints
[2]. These constraints implement dedicated algorithms which are more efficient than posting
elementary constraints.

all different/1
all different’/2

• Type Declaration:

all different :: [int] → bool
all different’ :: [int] → [allDiffOptions] → bool

• Modes:

all different :=: {[inout] → inout}
all different’ :=: {[inout] → inout → inout}

• Definition: all different L returns true if each finite domain variable (with bounded
domain) in L is constrained to have a value that is unique in the list L and there are no
duplicate integers in the list L, i.e., this is equivalent to say that for all X, Y ∈ L, X 6= Y .

The extended version all different’ L Options allow one more argument which is a
list of options. This list can take at most one value from the following two groups:

1. on value, on domains or on range to specify that the constraint has to be woken
up, respectively, when a variable becomes ground, when the domain associated to
a variable changes, or when a bound of the domain (in interval form) associated to
variable changes.

2. complete true or complete false to specify if the propagation algorithm to apply
is complete or incomplete.

• Reifiable: No.

• Example:

81

Toy(FD)> L == [X, Y, Z], domain L 1 3,
all_different’ L [complete true, on range]

{ L -> [X, Y, Z] }
{ all_different [X,Y,Z] [complete(true),on(range)],
X in 1..3,
Y in 1..3,
Z in 1..3 }

Elapsed time: 15 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

assignment/2

• Type Declaration:

assignment :: [int] → [int] → bool

• Modes:

assignment :=: {[inout] → [inout] → inout}
• Definition: assignment L1 L2 is a function applied over two lists of domain variables

with length n where each variable takes a value in {1, . . . , n} which is unique for that list.
Then, it returns true if for all i, j ∈ {1, . . . , n}, and Xi ∈ L1, Yj ∈ L2, then Xi = j if and
only if Yj = i.

• Reifiable: No.

• Example:

The next goal returns true and constrains X, Y and Z to be 3, 1 and 2 respectively.

Toy(FD)> domain [X,Y,Z] 1 3, assignment [X,Y,Z] [2,3,D]
{ X -> 3,
Y -> 1,
Z -> 2,
D -> 1 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

circuit/1
circuit’/2

82

• Type Declaration:

circuit :: [int] → bool
circuit’ :: [int] → [int] → bool

• Modes:

circuit :=: {[inout] → inout}
circuit’ :=: {[inout] → [inout] → inout}

• Definition: circuit L1 and circuit’ L1 L2 return true if the values in L1 form a
Hamiltonian circuit. This constraint can be thought of as constraining n nodes in a graph
to form a Hamiltonian circuit where the nodes are numbered from 1 to n and the circuit
starts in node 1, visits each node and returns to the origin. L1 and L2 are lists of FD
variables or integers of length n, where the i-th element of L1 (resp. L2) is the successor
(resp. predecessor) of i in the graph.

• Reifiable: No.

• Example:

Toy(FD)> domain [X,Y,Z] 1 3, circuit [X,Y,Z]
{ circuit [X,Y,Z],
X in 2..3,
Y in{1}\/{3},
Z in 1..2 }

Elapsed time: 16 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

count/4

• Type Declaration:

count :: int → [int] → (int → int → bool) → int → bool

• Modes:

count :=: {in → inout → inout → inout → inout}
• Definition: count V L Op Y returns true if the number of elements of L that are equal

(in the sense of FD constraint equality) to V is N and also N is related with Y via the
relational constraint operator Op (i.e., N Op Y holds).

• Reifiable: No.

• Example:

The next goal returns true and constrains X to be 1 as the number of elements in L that
are equal to 1 is imposed to be exactly 2.

83

Toy(FD)> L == [X,1,2], domain [X] 1 2, count 1 L (#=) 2
{ L -> [1, 1, 2],
X -> 1 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

element/3

• Type Declaration:

element :: int → [int] → int → bool

• Modes:

element :=: {inout → [inout] → inout → inout}
• Definition: element I L X returns true if X is the I-th element in the list L (in the sense

of FD). I, X, and the elements of L are integers or domain variables.

• Reifiable: No.

• Example:

Toy(FD)> L == [X,Y,Z], domain L 1 10, element 2 L 7
{ L -> [X, 7, Z],
Y -> 7 }

{ X in 1..10,
Z in 1..10 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

exactly/3

• Type Declaration:

exactly :: int → [int] → int → bool

• Modes:

exactly :=: {inout → inout → inout → inout}
• Definition: exactly X L N returns true if X occurs N times in the list L.

• Reifiable: No.

84

• Example:

The next goal imposes that the two elements of a list have to be equal to 2.

Toy(FD)> L == [X,Y], domain L 1 2, exactly 2 L 2
{ L -> [2, 2],
X -> 2,
Y -> 2 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

serialized/2
serialized’/3
cumulative/4
cumulative’/5

• Type Declaration:

serialized :: [int] → [int] → bool
serialized’ :: [int] → [int] → [serialOptions] → bool
cumulative :: [int] → [int] → [int] → int → bool
cumulative’ :: [int] → [int] → [int]→ int → [serialOptions] → bool

• Modes:

serialized :=: {[inout] → [inout] → inout}
serialized’ :=: {[inout] → [inout] → inout → inout}
cumulative :=: {[inout] → [inout] → [inout] → inout}
cumulative’ :=: {[inout] → [inout] → [inout] → inout → inout}

• Definition: serialized, serialized’, cumulative and cumulative’ are useful to solve
scheduling and placements problems. In general,

serialized [S1,...,Sn] [D1,...,Dn]

serialized’ [S1,...,Sn] [D1,...,Dn] Options

cumulative [S1,...,Sn] [D1,...,Dn] [R1,...,Rn] Limit

cumulative’ [S1,...,Sn] [D1,...,Dn] [R1,...,Rn] Limit Options

return true if it is possible to constrain n tasks Ti (1 ≤ i ≤ n), each with a start time Si
and duration Di so that no task overlaps.

Particularly, cumulative constraints also impose a limit to check that, given a resource
amount Ri for each task, the total resource consumption does not exceed the limit Limit
at any time. Si, Di, and Ri are integers or domain variables with finite bounds. Options
is a list of elements of type serialOptions that enables certain options, usually dependent
on the problem, in order to improve the search of the solutions. Specifically speaking:

85

– path consistency true enables a redundant path consistency algorithm to improve
the pruning;

– static sets true and edge finder true active the use of redundant algorithms to
take advantage of the precedence relations among the tasks;

– decomposition true actives attempts to decompose the constraints each time the
search is resumed;

– precedences L provides a list L of precedence constraints where each element in L
has the form (V1, V2, I), and I is the greatest value (to denote a fictitious -lifted- top
element) or lift I with I ∈ Integers. Each element imposes the constraint SV1 + I ≤
SV2 , if I is an integer; and SV2 ≤ SV1 otherwise.

• Reifiable: No.

• Examples:

Toy(FD)> cumulative [0,5,8] [1,1,2] == U, U [1,1,1] 10 == I
{ U -> (cumulative [0, 5, 8] [1, 1, 2]),
I -> true }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

Toy(FD)> serialized’ [1,3] [1,1]
[path_consistency true,
static_sets true,
edge_finder true,
decomposition true,
precedences [d(1,2,lift(2))]] == B

{ B -> true }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

3.2.8 Propositional Constraints

Relational constraint functions returning Boolean values can be arranged into propositional
(Boolean) formulae by means of propositional combinators. T OY provides the following propo-
sitional combinators:
#<=> / 2, #=> / 2, #\/ / 2

• Type Declaration:

#<=>, #=>, #\/ :: bool → bool → bool

86

• Modes:

#<=>, #=>, #\/ :=: {inout → inout → inout}
• Definition:

– P #<=> Q (equivalence) returns true if P and Q are both true or false.

– P #=> Q (implication) returns true if P is false or Q is true.

– P #\/ Q (disjunction) returns true if at least one of P and Q is true.

Note that these constraints demand Boolean expressions, which may be Boolean con-
straints or Boolean expressions in general.

• Priorities:

infix 15 #<=>, #\/, #=> (infix)

• Reifiable: No.

• Example:

Toy(FD)> (X#>0)#\/Y
{ X in 1..sup }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
{ Y -> true }
{ X in inf..0 }
Elapsed time: 0 ms.

sol.2, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

3.2.9 Reflection Functions

T OY provides a set of (impure) functions called reflection functions, that allow to both recover
information about variable domains, and to manage FD sets during goal solving. It does not
make any sense to reify reflection functions.
fd var/1

• Type Declaration:

fd var :: int → bool

• Modes:

fd var :=: {inout → inout}
• Definition: fd var V returns true if V is an unbound FD variable in the constraint store.

87

• Reifiable: Not applied.

• Example:

Toy(FD)> domain [X] 0 1, fd_var X == BX, fd_var Y == BY, fd_var 1 == B1,
X == 1, fd_var X == BX1

{ X -> 1,
BX -> true,
BY -> false,
B1 -> false,
BX1 -> false }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

Note: In particular, this example shows the impure behaviour of this reflection function,
since the meaning of fd var X depends on its location in the goal expression.

fd min/1, fd max/1

• Type Declaration:

fd min, fd max :: int → int

• Modes:

fd min, fd max :=: {inout → inout}
• Definition: fd min V and fd max V return the smallest (greatest) value in the current

domain of V.

• Reifiable: Not applied.

• Example:

Toy(FD)> domain [X] 0 10, Min == fd_min X, Max == fd_max X
{ Min -> 0,
Max -> 10 }

{ X in 0..10 }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

fd size/1

88

• Type Declaration:

fd size :: int → int

• Modes:

fd size :=: {inout → inout}
• Definition: fd size V returns the cardinality of the domain of V.

• Reifiable: Not applied.

• Example:

Toy(FD)> domain [X] 0 10, Card == fd_size X
{ Card -> 11 }
{ X in 0..10 }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

fd set/1

• Type Declaration:

fd set :: int → fdset

• Modes:

fd set :=: {inout → inout}
• Definition:

fd set V returns the FD set denoting the internal representation of the current domain
of V.

• Reifiable: Not applied.

• Examples:

Toy(FD)> domain [X] 0 10, X #\= 5, FDSet == fd_set X
{ FDSet -> [(interval 0 4), (interval 6 10)] }
{ X in (0..4)\/(6..10) }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

Toy(FD)> domain [X] 0 1, P == fd_set, P X == [(interval (1-1) X)]

89

{ X -> 1,
P -> fd_set }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

fd dom/1

• Type Declaration:

fd dom :: int → fdrange

• Modes:

fd dom :=: {inout → inout}
• Definition: fd dom V returns a constant range denoting the current domain of V.

• Reifiable: Not applied.

• Example:

Toy(FD)> domain [X] 0 10, X #\= 5, Dom == fd_dom X
{ Dom -> (uni (cte 0 4) (cte 6 10)) }
{ X in (0..4)\/(6..10) }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

fd degree/1

• Type Declaration:

fd degree :: int → int

• Modes:

fd degree :=: {inout → inout}
• Definition: fd degree V returns the number of constraints that are attached to V.

• Reifiable: Not applied.

• Example:

90

Toy(FD)> domain [X,Y] 0 10, X #> Y, Degree == fd_degree X
{ Degree -> 1 }
{ Y #< X,
X in 1..10,
Y in 0..9 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

fd neighbors/1

• Type Declaration:

fd neighbors :: int → [int]

• Modes:

fd neighbors :=: {inout → inout}
• Definition: fd neighbors V returns the set of FD variables that can be reached from V

via constraints posted so far.

• Reifiable: Not applied.

• Example:

Toy(FD)> domain [X,Y] 0 10, X #\= 5, X #< Y, Vars == fd_neighbors X
{ Vars -> [_C, X, Y] }
{ Y #> X,
X in(0..4)\/(6..9),
Y in 1..10 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

fd closure/1

• Type Declaration:

fd closure :: [int] → [int]

• Modes:

fd closure :=: {[inout] → [inout]}
• Definition: fd closure [V] returns the set of FD variables (including [V]) that can

be transitively reached via constraints posted so far. Thus, fd closure/1 returns the
transitive closure of fd neighbors/1.

91

• Reifiable: Not applied.

• Example:

Toy(FD)> domain [X,Y,Z] 0 10, X #< Y, Y #< Z, fd_closure [X] == L
{ L -> [_D, _E, X, Y, Z] }
{ Z #> Y,
Y #> X,
X in 0..8,
Y in 1..9,
Z in 2..10 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

inf, sup/0

• Type Declaration:

inf, sup :: int

• Modes:

inf, sup :=: {}
• Definition: inf and sup return, respectively, the minimum and maximum values that a

finite domain variable can be assigned to.

• Reifiable: Not applied.

• Example:

Toy(FD)> Min == inf, Max == sup
{ Min -> -33554432,
Max -> 33554431 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

3.2.10 FD Set Functions

T OY provides a set of (impure) functions for managing FD sets during goal solving. It does
not make any sense to reify FD set functions.
is fdset/1

92

• Type Declaration:

is fdset :: int → bool

• Modes:

is fdset :=: {in → inout}
• Definition: is fdset S returns true if S is a valid FD set. Otherwise, it returns false.

• Reifiable: Not applied.

• Example:

Toy(FD)> is_fdset [(interval 0 1)] == B1,
is_fdset [(interval 1 0)] == B2

{ B1 -> true,
B2 -> false }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

empty fdset/1

• Type Declaration:

empty fdset :: int → bool

• Modes:

empty fdset :=: {inout → inout}
• Definition: empty fdset S returns true if S is an empty FD set. Otherwise, it returns
false.

• Reifiable: Not applied.

• Example:

Finite Domain Constraints library loaded.
Toy(FD)> empty_fdset S == B

{ S -> [],
B -> true }

Elapsed time: 10 ms.
sol.1, more solutions (y/n/d/a) [y]?

{ B -> false }
{ [] /= S }
Elapsed time: 10 ms.

93

sol.2, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

fdset parts/3, fdset split/3

• Type Declaration:

fdset parts :: int → int → fdset → fdset
fdset split :: fdset → (int, int, fdset)

• Modes:

fdset parts :=: {in → in → in → inout}
fdset split :=: {in → (inout, inout, inout)}

• Definition: fdset parts Min Max P returns the FD set which is the union of the non-
empty interval [Min,Max] and the FD set P, and all elements of P are greater than Max+1.
Both Min and Max are integers or the functions inf and sup. fdset split S returns
the tuple of parameters (Min, Max, P) which constructs the FD set S in the same way as
fdset parts.

• Reifiable: Not applied.

• Example:

Toy(FD)> fdset_parts 0 1 [interval 3 4] == S, fdset_split S == T
{ S -> [(interval 0 1), (interval 3 4)],
T -> (0, 1, [(interval 3 4)]) }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

empty interval/2

• Type Declaration:

empty interval :: int → int → bool

• Modes:

empty interval :=: {in → in → inout}
• Definition: empty interval Min Max returns true if [Min, Max] is the empty FD set.

Otherwise, it returns false.

• Reifiable: Not applied.

94

• Example:

Toy(FD)> empty_interval 0 1 == B1, empty_interval 1 0 == B2
{ B1 -> false,
B2 -> true }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

fdset to interval/2, interval to fdset/2

• Type Declaration:

fdset to interval :: fdset → (int, int)
interval to fdset :: int → int → fdset

• Modes:

fdset to interval :=: {in → (inout, inout)}
interval to fdset :=: {in → in → inout}

• Definition: fdset to interval S returns a tuple, which is the non-empty interval [Min,
Max]. interval to fdset Min Max is the inverse operation of fdset to interval.

• Reifiable: Not applied.

• Example:

Toy(FD)> fdset_to_interval [(interval 0 1)] == (Min, Max),
interval_to_fdset 0 1 == S

{ Min -> 0,
Max -> 1,
S -> [(interval 0 1)] }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

fdset singleton/2

• Type Declaration:

fdset singleton :: fdset → int → bool

• Modes:

fdset singleton :=: {in → inout → inout, inout → in → inout}

95

• Definition: fdset singleton S E returns true if the FD set S only contains the element
E. Otherwise, it returns false.

• Reifiable: Not applied.

• Examples:

Toy(FD)> fdset_singleton S 1 == B
{ S -> [(interval 1 1)],
B -> true }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

Toy(FD)> fdset_singleton S 1 == false
no
Elapsed time: 0 ms.

Toy(FD)> fdset_singleton [(interval 0 1)] 1 == B
{ B -> false }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

fdset min/1, fdset max/1, fdset size/1

• Type Declaration:

fdset min, fdset max, fdset size :: fdset → int

• Modes:

fdset min, fdset max, fdset size :=: {in → inout}
• Definition: fdset min S and fdset max S returns the lower bound, upper bound, resp.,

of the FD set S. fdset size S returns the cardinality of the FD set S.

• Reifiable: Not applied.

• Example:

Toy(FD)> domain [X] 0 1, S == fd_set X, Min == fdset_min S,
Max == fdset_max S, Size == fdset_size S

{ S -> [(interval 0 1)],
Min -> 0,

96

Max -> 1,
Size -> 2 }

{ X in 0..1 }
Elapsed time: 10 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

list to fdset/1, fdset to list/1

• Type Declaration:

list to fdset :: [int] → fdset
fdset to list :: fdset → [int]

• Modes:

list to fdset, fdset to list :=: {in → inout}
• Definition: fdset to list S returns the list equivalent to the input FD set S. list to fdset

is the inverse function of fdset to list.

• Reifiable: Not applied.

• Example:

Toy(FD)> fdset_to_list (list_to_fdset [0,1]) == L
{ L -> [0, 1] }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

range to fdset/1, fdset to range/1

• Type Declaration:

range to fdset :: range → fdset
fdset to range :: fdset → range

• Modes:

range to fdset, fdset to range :=: {in → inout}
• Definition: fdset to range S returns the range equivalent to the input FD set. range to fdset

is the inverse function of fdset to range.

• Reifiable: Not applied.

97

• Example:

Toy(FD)> fdset_to_range [(interval 0 1), (interval 2 3)] == R,
range_to_fdset R == S

{ R -> (uni (cte 0 1) (cte 2 3)),
S -> [(interval 0 3)] }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

fdset add element/2, fdset del element/2

• Type Declaration:

fdset add element, fdset del element :: fdset → int → fdset

• Modes:

fdset add element, fdset del element :=: {in → in → inout}
• Definition: fdset add element S E and fdset del element S E return the FD set

which is the result of adding (resp., deleting) the element E to (resp., from) S.

• Reifiable: Not applied.

• Example:

Toy(FD)> domain [X] 0 1, S == fd_set X, SA == fdset_add_element S 2,
SD == fdset_del_element SA 0

{ S -> [(interval 0 1)],
SA -> [(interval 0 2)],
SD -> [(interval 1 2)] }

{ X in 0..1 }
Elapsed time: 10 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

fdset intersection/2, fdset subtract/2, fdset union/2, fdset complement/1

• Type Declaration:

fdset intersection, fdset subtract, fdset union :: fdset → fdset → fdset
fdset complement :: fdset → fdset

98

• Modes:

fdset intersection, fdset subtract, fdset union :=: {in → in → inout}
fdset complement :=: {in → inout}

• Definition: fdset intersection S1 S2, fdset subtract S1 S2, and fdset union S1
S2 return the FD set which is the result of S1 ∩ S2 (resp., S1 − S2, and S1 ∪ S2). Finally,
fdset complement S is the complement (wrt. inf..sup) of the set S.

• Reifiable: Not applied.

• Examples:

Toy(FD)> S1 == [(interval 0 4)], S2 ==[(interval 3 7)],
fdset_union (fdset_intersection S1 S2) (fdset_subtract S1 S2) == S1

{ S1 -> [(interval 0 4)],
S2 -> [(interval 3 7)] }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

Toy(FD)> fdset_complement [interval 0 1] == S
{ S -> [(interval inf -1), (interval 2 sup)] }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

fdsets intersection/1, fdsets union/1

• Type Declaration:

fdsets intersection, fdsets union :: [fdset] → fdset

• Modes:

fdsets intersection, fdset union :=: {in → inout}
• Definition: fdsets intersection SL and fdsets union SL return the FD set which is

the result of the intersection (resp., union) of each FD set in the list SL.

• Reifiable: Not applied.

• Example:

Toy(FD)> SL == [[(interval 0 4)], [(interval 3 7)]],
US == fdsets_union SL, IS == fdsets_intersection SL

99

{ SL -> [[(interval 0 4)], [(interval 3 7)]],
US -> [(interval 0 7)],
IS -> [(interval 3 4)] }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

fdset equal/2, fdset subset/2, fdset disjoint/2, fdset intersect/2

• Type Declaration:

fdset equal, fdset subset, fdset disjoint, fdset intersect :: fdset → fdset
→ bool

• Modes:

fdset equal, fdset subset, fdset disjoint, fdset intersect :=: {in → in →
inout}

• Definition: fdset equal S1 S2 return true if both S1 and S2 represent the same FD
set. fdset subset S1 S2 return true if S1 is a subset of the FD set S2. fdset disjoint
S1 S2 return true if S1 and S2 have no elements in common. fdset intersect S1 S2
return true if S1 and S2 have at least one element in common. If the conditions do not
hold, the functions return otherwise false.

• Reifiable: Not applied.

• Example:

Toy(FD)> fdset_intersect [interval 0 3] [interval 3 4] == B
{ B -> true }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

fdset member/2, fdset belongs/2

• Type Declaration:

fdset member :: int → fdset → bool
fdset belongs :: int → int → bool

• Modes:

fdset member, fdset belongs :=: {inout → in → inout}

100

• Definition: fdset member X S return true if X is a member of the FD set S. fdset belongs
X Y return true if the domain of X is in the domain of Y. Otherwise, they return false.

• Reifiable: Not applied.

• Example:

Toy(FD)> domain [X] (-4) 4, domain [Y] 0 1, fdset_belongs X Y == B
{ X -> 0,
B -> true }

{ Y in 0..1 }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
{ X -> 1,
B -> true }

{ Y in 0..1 }
Elapsed time: 0 ms.

sol.2, more solutions (y/n/d/a) [y]?
{ B -> false }
{ X in-4..4,
Y in 0..1 }

Elapsed time: 0 ms.
sol.3, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

3.2.11 Statistics Functions

T OY provides a set of (impure) functions that allow to to display execution statistics about
constrained FD variables and their associated domains during goal solving.

fd statistics’/1

• Type Declaration:

fd statistics’ :: statistics → int

• Modes:

fd statistics’ :=: {inout → inout}
• Definition: fd statistics’ Key returns a value V if either

– V unifies with the number of constraints created for Key == constraints or

– V unifies with the number of times that:

∗ a constraint is resumed and Key == resumptions,

101

∗ a (dis) entailment was detected by a constraint and Key == entailments,
∗ a domain was pruned and Key == prunings,
∗ a backtracking was executed because a domain becomes empty and Key ==
backtracks.

Each value for Key stands for a counter which is zeroed whenever it is accessed by
fd statistics’.

• Reifiable: Not applied.

• Example:

Toy(FD)> domain [X,Y,Z] 0 10, X #< Y, Y #< Z, fd_statistics’ prunings == V
{ V -> 12 }
{ Z #> Y,
Y #> X,
X in 0..8,
Y in 1..9,
Z in 2..10 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

fd statistics/0

• Type Declaration:

fd statistics :: bool

• Modes:

fd statistics :=: {inout}
• Definition: fd statistics always returns true and displays a summary of the statistics

computed by fd statistics/1. All counters are zeroed.

• Reifiable: Not applied.

• Example:

Toy(FD)> L== [X,Y,Z], domain L 1 4, all_different’ L [complete true],
labeling [] L, fd_statistics

Resumptions: 9
Entailments: 1
Prunings: 9
Backtracks: 0

102

Constraints created: 3
{ L -> [1, 2, 3],
X -> 1,
Y -> 2,
Z -> 3 }

Elapsed time: 10 ms.
sol.1, more solutions (y/n/d/a) [y]? n

3.3 Introductory Programs

The distribution provides the directory examples/cflpfd that contains a number of examples
of T OY programs that make use of FD constraints. Each one of the programs listed in this
section, as well as those listed in Section A.7 (page 30) are included in that directory. The
program title is annotated with the corresponding file name (with extension .toy).

3.3.1 The Length of a List (haslength.toy)

Recall the definition of the length of a list in Section 2.6:

length :: [int] -> int
length [] = 0
length [X|Xs] = 1 + length Xs

If we pose a goal as the following:

Toy(FD)> length L == 2
{ L -> [_A, _B] }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?

and, then, we request a second answer, we get no termination. This behaviour is due to the fact
that there is a pending alternative for the second rule in the definition of length, which is a
rule that can always be applied provided that its first argument is unbound. Observe that the
length of the list is not limited to be positive on the right hand side of this rule. Finite domain
constraints can be applied to impose such a limit. Note that this cannot be done without the
use of constraints since the function length should allow different modes of usage. Then, a new
definition using constraints is as follows:

include "cflpfd.toy"

hasLength :: [A] -> int -> bool
hasLength [] 0 :- true
hasLength [X|Xs] N :- N #> 0, hasLength Xs (N #- 1)

Now, we can submit the following goal and request all the solutions:

103

Toy(FD)> hasLength L 2
{ L -> [_A, _B] }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

This definition for hasLength accepts all modes of usage.

3.3.2 Send + More = Money (smm.toy)

Below, a T OY program for solving the classical arithmetic puzzle “send more money” is shown.
Observe that T OY allows to use infix constraint operators such as #> to build the expression X
#> Y, which is understood as #> X Y. The intended meaning of the functions should be clear
from their names, definitions, Tables 3.1 and 3.2, and explanations given in Section 3.2.

include "cflpfd.toy"

smm :: [int] -> [labelingType] -> bool
smm [S,E,N,D,M,O,R,Y] Label = true <== domain [S,E,N,D,M,O,R,Y] 0 9,

S #> 0,
M #> 0,
all_different [S,E,N,D,M,O,R,Y],
sum [S,E,N,D,M,O,R,Y],
labeling Label [S,E,N,D,M,O,R,Y]

sum :: [int] -> bool
sum [S,E,N,D,M,O,R,Y] = true <==

1000 #* S #+ 100 #* E #+ 10 #* N #+ D
#+ 1000 #* M #+ 100 #* O #+ 10 #* R #+ E
#=

10000 #* M #+ 1000 #* O #+ 100 #* N #+ 10 #* E #+ Y

This code is included in the file smm.toy provided with the distribution. After compiling and
loading it (see Section 1.4), we can solve goals as:

Toy(FD)> smm L [ff]
{ L -> [9, 5, 6, 7, 1, 0, 8, 2] }
Elapsed time: 20 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

104

3.3.3 N-Queens (queens.toy)

Here we present a T OY solution for the classical problem of the N-Queens problem: place N
queens in a chessboard in such a way that no queen attacks each other. Observe the use of the
directive include to make use of the function hasLength/2. Note also that it is not needed to
include the FD library since haslength.toy loads it already.

include "cflpfd.toy"
include "miscfd.toy"

queens :: int -> [int] -> [labelingType] -> bool
queens N L Label = true <==

length L == N,
domain L 1 N,
constrain_all L,
labeling Label L

constrain_all :: [int] -> bool
constrain_all [] = true
constrain_all [X|Xs] = true <==

constrain_between X Xs 1,
constrain_all Xs

constrain_between :: int -> [int] -> int -> bool
constrain_between X [] N = true
constrain_between X [Y|Ys] N = true <==

no_threat X Y N,
N1 == N+1,
constrain_between X Ys N1

no_threat:: int -> int -> int -> bool
no_threat X Y I = true <==

X #\= Y,
X #+ I #\= Y,
X #- I #\= Y

Again, if we compile and load this program, we can solve goals as:

Toy(FD)> queens 4 L [ff]
{ L -> [2, 4, 1, 3] }
Elapsed time: 20 ms.

sol.1, more solutions (y/n/d/a) [y]?
{ L -> [3, 1, 4, 2] }
Elapsed time: 10 ms.

sol.2, more solutions (y/n/d/a) [y]?

105

no
Elapsed time: 0 ms.

3.3.4 A Cryptoarithmetic Problem (alpha.toy)

Alpha is a cryptoarithmetic problem where the numbers 1 - 26 are randomly assigned to the
letters of the alphabet. The numbers beside each word are the total of the values assigned to
the letters in the word. e.g for LYRE L,Y,R,E might equal 5,9,20 and 13 respectively or any
other combination that add up to 47. The problem consists of finding the value of each letter
under the following equations:

BALLET = 45,
GLEE = 66,
POLKA = 59,
SONG = 61,
CELLO = 43,
JAZZ = 58,
QUARTET = 50,
SOPRANO = 82,
CONCERT = 74
LYRE = 47,
SAXOPHONE = 134,
THEME = 72,
FLUTE = 30,
OBOE = 53,
SCALE = 51,
VIOLIN = 100,
FUGUE = 50,
OPERA = 65,
SOLO = 37,
WALTZ = 34

A T OY solution, included in the distribution in the directory Examples in the file alpha.toy,
is shown below:

include "cflpfd.toy"

alpha :: [labelingType] -> [int] -> bool
alpha Label LD = true <==
LD == [A,B,C,_D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z],
domain LD 1 26,
all_different LD,
B #+ A #+ L #+ L #+ E #+ T #= 45,
C #+ E #+ L #+ L #+ O #= 43,
C #+ O #+ N #+ C #+ E #+ R #+ T #= 74,

106

F #+ L #+ U #+ T #+ E #= 30,
F #+ U #+ G #+ U #+ E #= 50,
G #+ L #+ E #+ E #= 66,
J #+ A #+ Z #+ Z #= 58,
L #+ Y #+ R #+ E #= 47,
O #+ B #+ O #+ E #= 53,
O #+ P #+ E #+ R #+ A #= 65,
P #+ O #+ L #+ K #+ A #= 59,
Q #+ U #+ A #+ R #+ T #+ E #+ T #= 50,
S #+ A #+ X #+ O #+ P #+ H #+ O #+ N #+ E #= 134,
S #+ C #+ A #+ L #+ E #= 51,
S #+ O #+ L #+ O #= 37,
S #+ O #+ N #+ G #= 61,
S #+ O #+ P #+ R #+ A #+ N #+ O #= 82,
T #+ H #+ E #+ M #+ E #= 72,
V #+ I #+ O #+ L #+ I #+ N #= 100,
W #+ A #+ L #+ T #+ Z #= 34,
labeling Label LD

Solving at the command prompt is shown below:

Toy(FD)> alpha [ff] L
{ L -> [5, 13, 9, 16, 20, 4, 24, 21, 25, 17, 23, 2, 8, 12,

10, 19, 7, 11, 15, 3, 1, 26, 6, 22, 14, 18] }
Elapsed time: 9735 ms.

3.3.5 Magic Series (magicser.toy)

We present another simple (and well-known) example, the magic series problem [37]. Let S =
(s0, s1, . . . , sN−1) be a non-empty finite serial of non-negative integers. As convention, we number
its elements from 0. The serial S is said N-Magic if and only if there are si occurrences of i in
S, for all i in {1, . . . , N − 1}.
Below we show a possible T OY solution, included in the distribution in the directory Examples
in the file magicseq.toy, to this problem.

include "cflpfd.toy"
include "miscfd.toy"

magic :: int -> [int] -> [labelingType] -> bool
magic N L Label = true <==

hasLength L N,
domain L 0 (N-1),
constrain L L 0 Cs,
sum L (#=) N, % redundant #1
scalar_product Cs L (#=) N, % redundant #2

107

labeling Label L

constrain :: [int] -> [int] -> int -> [int] -> bool
constrain [] A B [] = true
constrain [X|Xs] L I [I|S2] = true <==

count I L (#=) X,
constrain Xs L (I+1) S2

Below, we show an example goal:

Toy(FD)> magic 10 L []
{ L -> [6, 2, 1, 0, 0, 0, 1, 0, 0, 0] }
Elapsed time: 31 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

108

Chapter 4

Cooperation of Solvers

In this chapter, we present the cooperation of solvers. Cooperation is based on the commu-
nication between the FD and R solvers by means of special communication constraint called
bridge. Bridges are used for two purposes, namely binding and propagation. Solver cooperation
is allowed with binding alone or both binding and propagation.

4.1 Introduction

CFLP goal solving takes care of evaluating calls to program defined functions by means of lazy
narrowing, and decomposing hybrid constraints by introducing new local variables. Eventually,
pure FD and R constraints arise, which must be submitted to the respective solvers.
Cooperation of solvers is based on the communication between the FD and R solvers by means
of special communication constraints called bridges. A bridge u #== v constrains u::int and
v::real to take the same integer value. Bridges are used for two purposes: Binding and
propagation. Binding simply instantiates a variable occurring at one end of a bridge whenever the
other end of the bridge becomes a numeric value. Propagation is a more complex operation which
takes place whenever a pure constraint is submitted to the FD or R solver. At that moment,
propagation rules relying on the available bridges are used for building a mate constraint which
is submitted to the mate solver (think of R as the mate of FD and viceversa). Propagation
enables each of the two solvers to take advantage of the computations performed by the other.
In order to maximize the opportunities for propagation, the CFLP goal solving procedure has
been enhanced with operations to create bridges whenever possible, according to certain rules.

4.1.1 Efficiency

Example 4.5.1 compares the timing results for executing the same goals with only binding and
binding and propagation, shown that the propagation of mate constraints dramatically cuts the
search space, thus leading to significant speedups in execution time, as it is shown in Table 4.3.

109

4.1.2 Libraries necessaries for Cooperation

In order to use cooperation is necessary to activate finite domain and real solvers, it is done
by means of the commands /cflpfd and /cflpr as explained in Section 1.5.5. With both
solvers activated is possible compile programs that use the communication constraint bridge,
this allows only binding. Additionally, constraints can be propagate to other solver, a FD
constraint can be propagate to R solver and viceversa. Propagation is enabled by means of the
command /prop and disabled with /noprop.

4.2 The Constraint Cooperation Bridge

Bridge is a constraint of the form u #== v where u and v are variables with integer and real
types respectively. Furthermore u and v are constrained to take the same integer value.

#== / 2

• Type Declaration:

#== :: int → float → bool

• Modes

#== :: inout → inout → inout

• Reifiable: Yes

• Examples:

Toy(R+FD)> X #== RX, domain [X] 2 4, RX < 3.4
{ X #== RX,
RX<3.4,
X in 2..4 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

4.3 Binding

As cooperation mechanism, binding instantiates a variable occurring at one end of a bridge
whenever the other end of the bridge becomes a numeric value. For example, next goals unify
RX with the real value 2 (first goal) and X with the integer value 2 (second goal).

Toy(R+FD)> X #== RX, X == 2
{ X -> 2,
RX -> 2 }

110

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

Toy(R+FD)> X #== RX, RX == 2
{ X -> 2,
RX -> 2 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

4.4 Propagation

Propagation takes place whenever a constraint is submitted to the FD or R solver. At that mo-
ment, propagation rules relying on the available bridges are used for building a mate constraints
which are submitted to the mate solver (think of R as the mate of FD and viceversa). Propa-
gation enables each of the two solvers to take advantage of the computations performed by the
other. In order to maximize the opportunities for propagation, the goal solving procedure has
been enhanced with operations to create bridges whenever possible, according to certain rules
listed in Tables 4.1 and 4.2. These tables use the notation t1 #+ t2 →! t3 in order to illustrate
the process flattering of goal solving procedure. For example, the goal RX# + 2# < 3 is
flattered to constraints RX#+2 →!Z and Z# < 3 where Z is a new variable. When constraints
are totaly flatted then they are submitted to solver, and in this moment take place propagation,
it is explained in [8].

4.4.1 Propagation from FD to R
In order to propagate a constraint from FD to R we follow two steps. First, is checked if each
variable has its corresponding bridge, if the variable has not bridge then a bridge is created
using a new real variable. From FD to R always is possible to create bridges since all integer
value is a real value. Afterwards new real constraints are building and submitted to real solver.
Constraints that support propagation from FD to R are listed in Table 4.1 and explained below.

domain [X1, . . . , Xn] a b

• Creation of Bridges: If Xi has no bridge then Xi#== RXi (1≤i≤n) is created with
RXi new.

• Propagation Constraint: Afterwards the constraints a ≤ RXi, RXi ≤ b (1≤i≤n) are
built as mate constraints and submitted to the real solver.

• Example: In next goal a new bridge is created for variable Y.

111

Constraint Bridges Created Constraints Created

domain [X1, . . . , Xn] a b {Xi#== RXi | 1≤i≤n, Xi has no

bridge, RXi new}
{a ≤ RXi, RXi ≤ b | 1≤i≤n }

belongs X [a1, . . . , an] { X#== RX | X has no bridge, RX

new}
{min(a1, . . . , an)≤RX,

RX≤max(a1, . . . , an) }
t1#<t2 (analogously

#<=,#>,#=>,#=)

either ti is an integer constant, or else
is a variable Xi.

{Xi#== RXi | 1≤i≤2, if ti is a vari-

able Xi with no bridge, RXi new}

{tR1 < tR2 | For 1≤i≤2: Either ti is an

integer constant n and tRi is n, or else ti

is a variable Xi, and tRi is RXi}

t1#+t2 →!t3 (analo-

gously #−, #∗)
{Xi#== RXi |1≤i≤3, ti is a variable

Xi with no bridge, RXi new}
{tR1 + tR2 →! tR3 | For 1≤i≤3: tRi is

determined as in the previous case}

Table 4.1: Propagations from FD to R

Toy(R+FD)> X #== RX, domain [3,X,Y] 2 5
{ X #== RX,
Y #== _D,
RX=<5.0,
_D=<5.0,
RX>=2.0,
_D>=2.0,
X in 2..5,
Y in 2..5 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

The same goal without propagation is

Toy(R+FD)> X #== RX, domain [3,X,Y] 2 5
{ X #== RX,
X in 2..5,
Y in 2..5 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

belongs X [a1, . . . , an]

• Creation of Bridges: If X has no bridge then X#== RX is created with RX new.

112

• Propagation Constraint: Afterwards the constraints min(a1, ..an)≤RX, RX≤max(a1, ..an)
are buildt as mate constraints and submitted to the real solver.

• Example:

Toy(R+FD)> belongs X [1,5,3]
{ X #== _B,
_B=<5.0,
_B>=1.0,
X in{1}\/{3}\/{5} }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

The same goal without propagation is

Toy(R+FD)> belongs X [1,5,3]
{ X in{1}\/{3}\/{5} }
Elapsed time: 0 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

t1 #< t2 (analogously #<=,#>,#>=)

t1 and t2 can be either integer constants or else a integer variables.

• Creation of Bridges: If t1 and/or t2 are variables X and/or Y and they have no bridges
then X#== RX and/or Y #== RY are created with RX and/or RY new.

• Propagation Constraint: Afterwards the constraint tR1 # < tR2 is buildt as mate con-
straint and submitted to the real solver where tR1 and/or tR2 are either the same constant
that t1 and/or t2, or else they are the variables RX and/or RY .

• Example:

Toy(R+FD)> X #==RX, X #< 5
{ X #== RX,
RX<5.0,
X in inf..4 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

113

no
Elapsed time: 0 ms.

Toy(R+FD)> X #==RX, 5 #< X
{ X #== RX,
RX>5.0,
X in 6..sup }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

Toy(R+FD)> X #==RX, X #< Y
{ X #== RX,
Y #== _D,
RX-_D<-0.0,
Y #> X }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

In the last goal, a new bridge is created for the variable Y .

t1 #+ t2 →! t3 (analogously #-,#*)

t1 #+ t2 →! t3 was explained in section 4.4. t1 and t2 can be either integer constants or else a
integer variables, but one of this must be a variable so that the propagation is possible.

• Creation of Bridges: If t1 and/or t2 are variables X and Y , and they have no bridges
then X#== RX and/or Y #== RY are created with RX and/or RX new. If t1 or t2 are
variables then t3 is a new variable Z and a bridge Z# == RZ is buildt for Z with RZ
also new.

• Propagation Constraint: Afterwards the constraint RX +RY →!RZ is buildt as mate
constraint.

• Example:

Toy(R+FD)> X #==RX, Y #==RY, X #+ Y #< 2
{ X #== RX,
Y #== RY,
_E #== _F,
_F<2.0,
RY== -(RX)+_F,

114

X #+ Y #= _E,
_E in inf..1 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

Toy(R+FD)> X #==RX, 5 #+ X #< 10
{ X #== RX,
_C #== _D,
RX<5.0,
_D==5.0+RX,
5 #+ X #= _C,
X in inf..4,
_C in inf..9 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

In the first goal, new variable E links with result of X #+ Y. New bridge E #== F is created
with the new real variable F, therefore a real constraint is buildt (F == RX + RY), afterwards
the constraint F < 2.0 is buildt and submitted to the real solver. Second goal is similar.

4.4.2 Propagation from R to FD
In order to propagate a constraint from R to FD is necessary that each variable has its corre-
sponding bridge, if there is a variable without bridge then it not possible to propagate. Now
we can not created bridges because a real value is not a integer value. Despite, sum of two real
variables with bridges is a new variable for the flattering process explained previously, a new
bridge will be created for this new variable.
Constraints that support propagation from R to FD are listed in Table 4.2 and explained below.

RX < RY (analogously RX <= RY , RX > RY , RX >= RY)

• Checking Bridges: X#== RX and Y #== RY

• Propagation Constraint: If checking bridges is successful then the constraint X# < Y
is buildt as mate constraint and submitted to the finite domain solver.

• Example:

Toy(R+FD)> X #==RX, Y #==RY, RX < RY
{ X #== RX,

115

Constraint Bridges Tested Constraint Created

RX<RY X#==RX and Y #==RY X#<Y

RX<a X# == RX X#<dae with a∈R
a<RY Y # == RY bac# < Y with a∈R
RX<= RY X#==RX and Y #==RY X# <= Y

RX<=a X#==RX X#<=bacwith a∈R
a <= RY Y # == RY dae#<=Y with a∈R
RX>RY X#==RX and Y #==RY X#>Y

RX>a X# == RX X#>bac with a∈R
a>RY Y # == RY dae# > Y with a∈R
RX>= RY X#==RX and Y #==RY X# >= Y

RX>=a X#==RX X#>=daewith a∈R
a >= RY Y # == RY bac#>=Y with a∈R
t1+t2→!t3 (analo-

gously for −, ∗)
t3 is a new variable RX3 with

no bridge, X3#== RX3 is cre-

ated with X3 new. For 1≤i≤2 ti

is either an integer constant or a

variable RXi with bridge Xi#==

RXi

tFD1 # + tFD2 →! tFD3 .For 1≤i≤2 either

ti is an integer constant n and tFDi is n,

or else ti is a variable RXi where Xi# ==

RXi, and tFDi is Xi

t1 / t2 →! t3 as previous case {tFD2 # ∗ tFD3 →! tFD1 | For 1≤i≤3 is

determined as in the previous case}

Table 4.2: Propagations from R to FD

Y #== RY,
RX-RY<-0.0,
Y #> X }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

Goal below not propagates the constraint RX < RY since there is not bride for the real
variable RX.

Toy(R+FD)> X #==RX, RX < RY
{ X #== RX,
RY-RX>0.0 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no

116

Elapsed time: 0 ms.

RX < a (analogously w.r.t. Table 4.2 RX <= a, RX > a, RX >= a)

• Checking Bridges: X#== RX.

• Propagation Constraint: Afterwards the constraints X < dae is buildt as mate con-
straints and submitted to the finite domain solver.

• Example:

Toy(R+FD)> X #==RX, RX < 2.3
{ X #== RX,
RX<2.3,
X in inf..2 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

In the previous example the constraint X < d2.3e is submitted to the finite domain solver and
therefore the value of X is between inf and 2 (X in inf..2).

a < RX (analogously w.r.t. Table 4.2 a <= RX, a > RX, a >= RX)

• Checking Bridges: X#== RX.

• Propagation Constraint: Afterwards the constraints bac < X is buildt as mate con-
straints and submitted to the finite domain solver.

• Example:

Toy(R+FD)> X #==RX, 2.3 < RX
{ X #== RX,
RX>2.3,
X in 3..sup }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

117

In the previous example the constraint b2.3c < X is submitted to the finite domain solver and
therefore the value of X is between 3 and sup (X in 3..sup).

t1 + t2 →!t3 (analogously #-,#*)

t1 + t2 →! t3 was explained in section 4.4. t1 and t2 can be either constants or else variables,
but one of this must be a variable so that the propagation is possible.

• Checking Bridges: If t1 and/or t2 are variables RX and RY , they must have bridges in
order to propagate, therefore X# == RX and/or RX# == RY are checked.

• Creation of Bridges: If checking is successful then t3 is a new variable RZ and a bridge
Z# == RZ is building for RZ with Z new.

• Propagation Constraint: Afterwards the constraint X# + Y →!Z is buildt as mate
constraint.

• Example:

Toy(R+FD)> X #==Xr, Y#==Yr, Xr + Yr < 7
{ X #== Xr,
Y #== Yr,
_E #== _F,
_F<7.0,
Yr==_F-Xr,
X #+ Y #= _E,
_E in inf..7 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

Previous goal matches F with RZ and E with Z.

4.5 Introductory Programs

The directory examples/cooperation provides by distribution contains examples of T OY pro-
grams that make use of FD and R constraints, bridges constraints and cooperation between
solvers. The program title is annotated with the corresponding file name.

4.5.1 Intersection of a discrete grid and a continuous region (bothIn.toy)

We consider a generic program written in T OY which solves the problem of searching for a 2D
point lying in the intersection of a discrete grid and a continuous region.

118

 . . .

.

.

.

 .
.
.

 . . .

(0,0)

(N,N)

(RX0,RY0)

H

H (RX0-H,RY0-H)

(RX0+H,RY0-H)

Figure 4.1: Discrete grid and a continuous region

Figure 4.2: Possible intersections

Sizes of square grid and triangular region is parametric.
Both grids and regions are represented as Boolean functions. They can be passed as parameters
because our programming framework supports higher-order programming features.

type dPoint = (int, int)
type cPoint = (real, real)

type setOf A = (A -> bool)
isIn :: (setOf A) -> A -> bool
isIn Set Element = Set Element

type grid = setOf dPoint

square:: int -> grid square N (X, Y) :- domain [X, Y] 0 N

type region = setOf cPoint

triangle :: cPoint -> real -> region
triangle (RX0, RY0) H (RX, RY):- RY>=RY0-H, RY-RX<=RY0-RX0, RY+RX<=RY0+RX0

bothIn:: region -> grid -> dPoint -> bool
bothIn Region Grid (X, Y) :- X#==RX, Y#==RY, isIn Region (RX,RY),

isIn Grid (X,Y), labeling [] [X,Y]

We build an isosceles triangles from a given upper vertex (RX0, RY0) and a given height H.
The three vertices are (RX0, RY0), (RX0 −H, RY0 −H), (RX0 + H, RY0 −H), and the region
inside the triangle is enclosed by the lines RY = RY0 − H, RY − RX = RY0 − RX0 and
RY + RX = RY0 + RX0 and characterized by the conjuntion of the three linear inequalities:

119

RY ≥ RY0 −H, RY −RX ≤ RY0 −RX0 and RY + RX ≤ RY0 + RX0. This explains the real
arithmetic constraints in the triangle predicate.
As an example of goal solving for this program, we consider three goals computing the intersec-
tion of this fixed square grid with three different triangular regions:

• Toy(R+FD)> bothIn (triangle (2.5,3) 0.5) (square 4) (X,Y)
no
Elapsed time: 0 ms.

0,5

Figure 4.3: No solutions

This goal fails.

• Toy(R+FD)> bothIn (triangle (2,2.5) 1) (square 4) (X,Y)
{ X -> 2,
Y -> 2 }

Elapsed time: 15 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

1

Figure 4.4: One solution

This goal computes one solution for (X,Y), corresponding to the point (2, 2).

• Toy(R+FD)> bothIn (triangle (2,2.5) 2) (square 4) (X,Y)
{ X -> 1,
Y -> 1 }

Elapsed time: 16 ms.
sol.1, more solutions (y/n/d/a) [y]?

{ X -> 2,
Y -> 1 }

Elapsed time: 0 ms.

120

sol.2, more solutions (y/n/d/a) [y]?
{ X -> 2,
Y -> 2 }

Elapsed time: 0 ms.
sol.3, more solutions (y/n/d/a) [y]?

{ X -> 3,
Y -> 1 }

Elapsed time: 0 ms.
sol.4, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

2

Figure 4.5: Four solution

This goal computes four solutions for (X,Y), corresponding to the points (2, 2), (1, 1),
(2, 1) and (3, 1).

Table 4.3 compares the timing results for executing below goals. The first column indicates the
height of triangle, second indicate the vertice (RX0,RY0), third indicate the size of the square
grid. The next columns show running times (in milliseconds) in the form (tB/tBP), where tB
stands for the system using bridges for binding alone and tBP for the system using bridges also
for propagation. These last columns are headed with a number i which refers to the i-th solution
found, and the last column with numbers stands for the time needed to determine that there
are no more solutions. In this simple example we see that the finite domain search space has
been hugely cut by the propagations from R to FD. Finite domain solvers are not powerful
enough to cut the search space in such an efficient way as simplex methods do for linear real
constraints.
The cooperation of a FD solver and a R solver via communication bridges can lead to great
reductions of the FD search space, manifesting as significant speedups of the execution time.

4.5.2 Distribution of raw material between suppliers and consumers
(distribution.toy)

A company has six suppliers of raw material, three of them supply integer quantities (discreet
suppliers) and the other ones three supply real quantities (continuous suppliers). The problem
is to satisfy the demand of raw material minimizing the cost with the following data:

121

H (RX0, RY0) N 1 2 3 4 5
0.5 (20000.5,20001) 40000 1828/0 - - - -

(2000000.5,2000001) 4000000 179000/0 - - - -
1 (20000,20000.5) 40000 1125/0 2172/0 - - -

(2000000,2000000.5) 4000000 111201/0 215156/0 - - -
2 (20000,20000.5) 40000 1125/0 1485/0 0/0 1500/0 2203/0

(2000000,2000000.5) 4000000 111329/0 147406/0 0/0 147453/0 216156/0

Table 4.3: Performance Results

• D1, D2, and D3 are the quantities of raw material provided by the discreet suppliers. They
can provide until a maximum of 100.

• R1, R2, and R3 are the quantities of raw material provided by the continuous suppliers.
They can provide until a maximum of 100.

• The cost of the raw material is 3 plus its quantity (CD1 #= 3 #+ D1), 2 plus its quantity
(CD2 #= 2 #+ D2) and 2 multiply its quantity (CD3 #= 2 #* D3) for the discreet
suppliers and (CR1 == 2 * R1), (CR2 == 2 + 1.5 * R2), and (CR3 == 3 + 1.2 * R3)
for the continuous suppliers.

• The demand to satisfy is of X units of weight.

Below, a T OY program that solve problem is shown.

include "cflpfd.toy"

distribution :: int->int->int->int->int->int->int->
real->real->real->real->real->real->real->real->real

distribution D1 D2 D3 CD1 CD2 CD3 CD R1 R2 R3 CR1 CR2 CR3 CR X = C <==

% new bridges are created for discreet quantities of raw material.
D1 #== D1r, D2 #== D2r, D3 #== D3r,

% quantities integer of raw material.
domain [D1,D2,D3] 0 100,

% quantities real of raw material.
R1 >= 0.0, R2 >= 0.0, R3 >= 0.0, R1 <=100, R2 <=100, R3 <=100,

% Cost of the raw material provided by the discreet suppliers.
CD1 == 3 #+ D1, CD2 == 2#+ D2, CD3 == 2#* D3,
CD #== CDr, CD == CD1 #+ CD2 #+ CD3,

% Cost of the raw material provided by the continuous suppliers.

122

CR1 == 2 * R1, CR2 == 2 + 1.5 * R2, CR3 == 3 + 1.2 * R3,
CR == CR1 + CR2 + CR3,

% E is necessary to avoid rounding errors.
-1 <= E, E <= 1, C == CDr + CR + E,

% X is units of weight to satisfy.
X == D1r + D2r + D3r + R1 + R2 + R3,

minimize C == C, labeling [mini] [D1, D2,D3]

If we compile and load this program, we can submit a goal which the demand to satisfy is of 9
units of weight. As the propagation has not been activated this goal is solved using only binding.

Toy(R+FD)> distribution D1 D2 D3 CD1 CD2 CD3 CD R1 R2 R3 CR1 CR2 CR3 CR 9 == C
SYSTEM ERROR: system_error(Non-linear constraints or unbounded problem.)

The system shows us that is not able to solve it. However if we enable propagation with the
command /prop then is possible to obtain a solution. This goal returns ten answers, only two
are shown.

Toy(R+FD)> distribution D1 D2 D3 CD1 CD2 CD3 CD R1 R2 R3 CR1 CR2 CR3
CR 9 == C

{ D1 -> 0,
D2 -> 9,
D3 -> 0,
CD1 -> 3,
CD2 -> 11,
CD3 -> 0,
CD -> 14,
R1 -> 0,
R2 -> 0,
R3 -> 0,
CR1 -> 0,
CR2 -> 2,
CR3 -> 3,
CR -> 5,
C -> 17.999999999999996 }

Elapsed time: 16 ms.
sol.1, more solutions (y/n/d/a) [y]?

{ D1 -> 9,
D2 -> 0,
D3 -> 0,
CD1 -> 12,

123

CD2 -> 2,
CD3 -> 0,
CD -> 14,
R1 -> 0,
R2 -> 0,
R3 -> 0,
CR1 -> 0,
CR2 -> 2,
CR3 -> 3,
CR -> 5,
C -> 17.999999999999996 }

Elapsed time: 0 ms.
sol.2, more solutions (y/n/d/a) [y]?n

124

Chapter 5

Input/Output

T OY provides a monadic I/O approach similar to that used in the purely functional language
Haskell [16, 3]. To this end, I/O operations can only be used in deterministic computations1.
I/O actions are expected to transform the outside world and to yield a value of some type A
upon termination. Therefore, they are represented as values of the special type io A, which in
fact can be understood as a type synonym:

data io A = world -> (A,world)

The type world is as an abstract dataype whose representation is implementation-dependent.
Therefore, the outer world is not accessible directly, and only I/O operations can modify it. The
monadic style ensures that in any step of a computation there is a unique version of the world.
Output operations have type io unit, because they yield an uninteresting value of type unit
(a predefined type which contains one single value). Input operations which yield a value of
some interesting type τ 6= unit have type io τ . The two monadic binding functions used to
sequence input/output operations are >> and >>= which will be carefully described in Section
5.2. As an alternative to writing combinations of >>=, T OY offers the possibility of using the
do notation, whose description can be found in Section 5.3.
In addition to the standard input/output, T OY provides also text files (see Section 5.4) and
a declarative Graphical User Interface (GUI), which has been developed following the ideas
presented in [15]. More concretely, the graphic input/output has been implemented by means
of a GUI system module, based on Tcl/Tk [30] (see Section 5.5).
Finally, in Section 5.6 we describe list comprehensions, a powerful notation to write expres-
sions of type list which is available also in Haskell and some other functional (logic) languages.
List comprehensions are a useful device for computing several solutions while avoiding non-
deterministic search, in a context where monadic I/O is needed. For this reason, they have been
added to T OY during the development of the monadic I/O facilities, although they are also
useful for other purposes.

1In fact, they can be used in any part of a program, but a correct behaviour only is ensured when there is no
non-deterministic search.

125

5.1 Standard Input/Output Functions

Standard output functions write to the standard output device, which is usually the user’s
terminal. The standard output functions provided by T OY are the following:

• putChar :: char -> io unit
which prints a character.

• done :: io unit
which does nothing.

• putStr :: string -> io unit
which prints a string.

• putStrLn :: string -> io unit
which is similar to putStr, except that it prints a newline character after printing the
string.

Standard input functions read input from the standard input device, which is usually the user’s
keyboard. The standard input functions provided by T OY are the following:

• getChar :: io char
which returns the first character read from the standard input.

• return :: A -> io A
which is a generalization of done, and does not change the world, returning a value of type
io A.

• getLine :: io string
which reads a line of text from the standard input.

5.2 Sequencing Input/Output Functions

As in Haskell [16] or Curry [14], the way of combining sequences of input/output operations is
done by means of the following two binding functions:

(>>) :: io A -> io B -> io B
(>>=) :: io A -> (A -> io B) -> io B

Supposing that p and q are input/output operations, then p >> q is a new operation that,
when performed, first does p (ignoring the value returned) and then does q. For instance, the
built-in function putStr in Section 5.1, could be defined as follows:

putStr :: string -> io unit
putStr [] = done
putStr [C|Cs] = putChar C >> putStr Cs

126

Similarly, the built-in function putStrLn in Section 5.1 can be defined using (>>) and the
function putStr; it prints a newline character after printing the string.

putStrLn :: string -> io unit
putStrLn Cs = putStr Cs >> putChar ’\n’

Note that the use of the operator (>>) is only useful when the value returned by the first
argument is not needed in the computation (more precisely, it is not needed by the second
argument). If the value of the first action should be taken into account by the second action, it
is necessary to use the more general operator (>>=). The combination p >>= q is an action
that, when performed, first does p, returning a value x of type A; after this, the action q x is
executed, returning a final value y of type B. In fact, (>>) can be easily defined in terms of
(>>=):

(>>) :: io A -> io B -> io B
P >> Q = P >>= constant Q

constant :: B -> A -> B
constant Y X = Y

As a more practical example, the built-in function getLine in Section 5.1 can be implemented
as follows:

getLine :: io string
getLine = getChar >>= follows_1

follows_1 :: char -> io string
follows_1 C = if C==’\n’ then return [] else getLine >>= follows_2 C

follows_2 :: char -> string -> io string
follows_2 C Cs = return [C|Cs]

As a second practical example, here we have a function which reads three characters from the
keyboard and prints them on the screen.

read_3_chars :: io unit
read_3_chars = getChar >>= continue_1

continue_1 :: char -> io unit
continue_1 C1 = getChar >>= continue_2 C1

continue_2 :: char -> char -> io unit
continue_2 C1 C2 = getChar >>= continue_3 C1 C2

continue_3 :: char -> char -> char -> io unit
continue_3 C1 C2 C3 = (putChar C1 >> putChar C2) >> putChar C3

127

Note that the definition of the “very simple” function read_3_chars requires three auxiliary
functions. In order to facilitate the use of input/output, we have incorporated the do notation,
described in next section. This facility is available also in Haskell and Curry.

5.3 Do Notation

Do notation provides a more comfortable syntax for using input/output in T OY, avoiding the
need of auxiliary functions. Using the construction do instead of sequences of the operator
(>>=) leads to a programming style which achieves a declarative specification of I/O actions,
while rendering their intended imperative effects intuitively clear. For example, the do notation
allows to write more intuitive definitions for the functions getLine and read 3 chars in the
previous section:

getLine :: io string
getLine = do {C <- getChar ;

if C == ’\n’ then return []
else do {Cs <- getLine ;

return [C|Cs]}}

read_3_chars :: io unit
read_3_chars = do {C1 <- getChar ;

C2 <- getChar ;
C3 <- getChar ;
(putChar C1 >> putChar C2) >> putChar C3}

In general, a do construction has the form:

do { C1 <- p1 ;
C2 <- p2 ;
...
Ck <- pk ;
r }

where Ci, 1 ≤ i ≤ k, are pairwise distinct variables and pi are expressions of type io τi, for some
types τi. Each Ci only can be used after its definition, i.e., Ci can appear in pj only if j > i. If
pi is an expression of type io τi, then the type of Ci is τi. In the particular case τi = unit, Ci

does not need to be used by any other pj , and Ci <- pi can be abbreviated to pi. Finally, r is
an expression of type io τ , which is also the type of the entire do expression.
The above do construction has also a declarative meaning, because it is equivalent to the fol-
lowing combinations of the operator (>>=):

128

p1 >>= cont1

cont1 C1 = p2 >>= cont2 C1

cont2 C1 C2 = p3 >>= cont3 C1 C2
...
contk−1 C1 C2 ...Ck−1 = pk >>= contk C1 C2 ...Ck−1

contk C1 C2 ...Ck = r

5.4 Files

File names are values of type path, where:

type path = string

There are two standard functions which operate on text files. These functions are:

readFile :: path -> io string
writeFile :: path -> string -> io unit

Function readFile reads a file (named by a string) and returns the contents of the file as a
string. The file is read lazily on demand; that is, the effect of the action readFile FileName
only opens the file named FileName. A character in the file only is read if it is needed in following
computations. As an example, consider the function:

only_one_char :: io unit
only_one_char = do {putStr "Name of the file: " ;

Name <- getLine ;
Cs <- readFile Name ;
putStrLn (head Cs)}

The execution of the expression only_one_char has the following effect: The text file named
Name is opened when the action readFile Name is executed. After this, the action putStrLn
(head Cs) demands the head of Cs. Then, the first character of the file is read. Since the
computation finishes, the rest of the file is not read and the file is closed by the system.
The function writeFile writes the string (its second argument) to the file (its first argument).
Writing to a file is an “eager” action, in the sense that the second argument must be totally
evaluated before writing it to the file. Once the process terminates the file is closed by the
system.
The action copyFile below shows how to copy the contents of a file into another:

copyFile :: io unit
copyFile = do {putStr ‘‘First File: " ;

File1 <- getLine ;
putStr "Second File: " ;

129

File2 <- getLine ;
Cs <- readFile File1;
writeFile File2 Cs}

It is important to point out that the evaluation of the action readFile (respectively, writeFile)
opens a file, and that such a file remains opened as far as the end of the evaluation of the
expression in which it is involved.
On the other hand, T OY forbids to open a file previously opened (independently of the mode).
This is the reason why the system closes a file as soon as it detects that a readFile or writeFile
operation has finished. This remark must be taken into account in the rest of this section.

5.4.1 The io file System Module

By loading the system module io_file (using the command /io_file), T OY provides new
functions to handle text files. This system module can be unloaded by executing the command
/noio_file.
The system module io_file defines operations to read from and write to files, represented by
values of a new datatype handle (which is implementation-dependent). More precisely, io_file
provides a dataype ioMode and a collection of I/O operations, as shown below:

data ioMode = readMode | writeMode | appendMode

openFile :: path -> ioMode -> io handle
closeFile :: handle -> io unit
end_of_file :: handle -> io bool
getCharFile :: handle -> io char
putCharFile :: handle -> char -> io unit
putStrFile :: handle -> string -> io unit
putStrLnFile :: handle -> string -> io unit
getLineFile :: handle -> io string

The execution of the action openFile Name Mode opens the file named Name in the mode estab-
lished by Mode, and yields a handle to manage the file in subsequent computations. If Mode is
readMode, then the file is opened for input. This implies that the file Name must exist. Otherwise,
a runtime error will appear. If Mode is writeMode then the file is opened for output. Here there
are two possibilities. If the file Name already exists, then its content is removed and replaced
by the following writings. Otherwise, the file Name is created. Finally, if Mode is appendMode
then the file Name is opened for output, and the current I/O position indicating where the next
output operation will occur, is positioned at the end of the file. As for writeMode, the file Name
may exist or not, and the behaviour is similar.
The execution of the action closeFile Handle closes the text file referenced by Handle, whereas
the execution of end of file Handle returns true if no further input can be taken from the
file referenced by Handle. Otherwise, it returns false.

130

getCharFile Handle reads the character situated in the current I/O position of the file refer-
enced by Handle. putCharFile Handle C has a similar behaviour, but it writes the character
C. In both cases, the current I/O position advances one character.
Finally, putStrFile Handle Cs writes the string Cs from the beginning of the current I/O
position, putting this at the end of the string. putStrLnFile Handle Cs does the same but
it prints a newline character after printing the string. getLineFile Handle reads the rest of
the line from the current I/O position and puts the new I/O position at the beginning of the
following line.
As an example, let us redefine the function copyFile using the operations contained in the
system module io file.

copyFile :: io unit
copyFile = do {putStr ‘‘First File: ’’ ;

File1 <- getLine ;
putStr ‘‘Second File: ’’ ;
File2 <- getLine ;
H1 <- openFile File1 readMode ;
H2 <- openFile File2 writeMode ;
copy_content H1 H2}

copy_content :: handle -> handle -> io unit
copy_content H1 H2 = do {B <- end_of_file H1 ;

if B then closeFile H1 >> closeFile H2
else do {C <- getCharFile H1 ;

putCharFile H2 C ;
copy_content H1 H2}}

5.5 Graphic Input/Output

T OY provides a graphical user interface for application programs similar to that existing in
the lazy functional logic language Curry [15]. To this end, T OY incorporates a system module,
based on Tcl/Tk, which provides different functions to create friendly interfaces. In order to use
the graphic functions, it is needed to load the system module io_graphic using the command
/io_graphic. The system module can be unloaded by executing the command /noio_graphic.
The system module io_graphic defines operations allowing the communication between T OY
and Tcl/Tk, by means of a new datatype channel (which is implementation-dependent). The
basic functions provided by the system module /noio_graphic are the following:

openWish :: string -> io channel
readWish :: channel -> io string
writeWish :: channel -> string -> io unit
closeWish :: channel -> io unit

The execution of the expression openWish Title opens a Tcl/Tk window with title Title and
returns a bidirectional communication channel. After executing this command, the operations

131

readWish and writeWish allow communication with the new window by means of the returned
channel.
The action writeWish Channel Str writes the string Str (which must be a well-formed Tcl/Tk
command) in the channel Channel, whereas readWish Channel returns the string read from the
channel Channel. The communication between the Tcl/Tk window and T OY may be closed by
executing the command closeWish Channel.
As a first simple example, consider the following “Hello World” program:

hello_world :: io unit

hello_world = do {Ch <- openWish "Hello World" ;

writeWish Ch "button .butExit -text \"Exit\" -command {puts \"e\" }";

writeWish Ch "pack .butExit" ;

Str <- readWish Ch ;

closeWish Ch}

The execution of the expression > hello world opens the window below, in such a way that a
click on the button closes the window.

As a second example, here we have an extension of the program above. In this version, one more
button has been added, whose associated command has as effect to write Hello World in the
standard output. The T OY code of the program is:

hello_world2 :: io unit
hello_world2 =

do {Ch <- openWish "Hello World" ;
writeWish Ch "button .butHello -text \"Hello World\"

-command {puts \"h\"}" ;
writeWish Ch "button .butExit -text \"Exit\"

-command {puts \"e\"}" ;
writeWish Ch "pack .butHello .butExit -side left" ;
runHelloWorld Ch}

runHelloWorld :: channel -> io unit
runHelloWorld Ch = do {Str <- readWish Ch ;

if Str == "e" then do {putStrLn "Goodbye" ;
closeWish Ch}

else do {putStrLn "Hello World" ;
runHelloWorld Ch}}

Note that the buttons have associated the Tcl/Tk command puts String. The execution of this
command writes in the communication channel the string String. This string is used to detect

132

which button has been clicked on. The auxiliary recursive function runHelloWorld executes
the corresponding action in each case, depending on the read string. Thus, when clicking the
button Exit, the message Goodbye is written in the standard output of T OY and the window
is closed, and when clicking on the other button writes Hello World and the execution of the
program continues in the same way. Finally, the form of the window generated by the program
is the following:

It is important to point out that the four basic operations previously presented allow to program
with graphic I/O by using purely Tcl/Tk commands. However, the system module io graphic
incorporates also new datatypes and functions avoiding the writing of Tcl/Tk commands, and
facilitating the programming. As in the functional logic language Curry2 [14], graphic I/O is
specified by means of the datatype tkwidget A, whose definition is the following:

data tkWidget A =
tkButton (channel -> A) [tkConfItem A] % A simple press button

| tkCanvas [tkConfItem A] % For drawing lines, circles, etc.
| tkCheckButton [tkConfItem A] % A botton that holds a state of either

% on or of
| tkEntry [tkConfItem A] % A text entry field
| tkLabel [tkConfItem A] % A simple label
| tkListBox [tkConfItem A] % A box containing a list of options
| tkMessage [tkConfItem A] % A multi-line text widget
| tkMenuButton [tkConfItem A] % A button which when pressed

% offers a selection of choices
| tkScale int int [tkConfItem A] % Resizes the widget when moving

% the slider
| tkScrollV tkRefType [tkConfItem A] % Adds vertical scrollbars to

% windows or canvases
| tkScrollH tkRefType [tkConfItem A] % Adds horizontal scrollbars to

% windows or canvases
| tkTextEdit [tkConfItem A] % A sophisticated multi-line text widget

% that can also display other widgets
% such as buttons

| tkRow [tkConfCollection] [tkWidget A] % A row of widgets
| tkCol [tkConfCollection] [tkWidget A] % A column of widgets

In fact, the polymorphic type tkWidget A is only used for the instance io unit. However, we
have preferred to use a polymorphic type in sight to future improvements.

2In fact, the rest of definitions referring to Tcl/Tk are an adaptation of an existing graphic I/O Curry library
to T OY syntax.

133

A GUI can be either a simple widget or a collection (tkRow, tkCol) of widgets whose first
argument [tkConfCollection] specifies the geometric alignment. The argument [tkConfItem
A] of simple widgets allows to define the configuration options. For a tkButton widget, it is
compulsory to associate a command to the “press” event of the button.
The possible configurations of a simple widget are the following:

data tkConfItem A =
tkActive bool % Active state of buttons, entries,..

| tkAnchor string % Alignment of information in a widget
% (argument must be: n, ne, e, se,
% s, sw, w, nw, center)

| tkBackground string % Background color
| tkCmd (channel -> A) % An associated command
| tkHeight int % The height of a widget (chars for text,

% pixels for graphics)
| tkInit string % Initial value for checkbuttons
| tkItems [tkCanvasItem] % List of items in a canvas
| tkList [string] % Value list in a list box
| tkMenu [tkMenuItem A] % The items of a menu button
| tkRef tkRefType % A reference to the widget
| tkText string % An initial text contents
| tkWidth int % the width of widget (chars for text,

% pixels for graphics)
| tkTcl string % Further options in tcl syntax

data tkMenuItem A =
tkMButton (channel -> A) string % A button with an associated

% command an a label
| tkMSeparator % A separator between entries
| tkMMenuButton string [tkMenuItem A] % A submenu

data tkCanvasItem = tkLine [(int,int)] string
| tkPolygon [(int,int)] string
| tkRectangle (int,int) (int,int) string
| tkOval (int,int) (int,int) string

% The last arguments are further options in tcl syntax

The type tkRefType allows to reference widgets. This datatype is built-in and the references
are built automatically. Thus, the data constructor tkRef must always be used with a variable
as an argument. Such a variable will be able to be used by the programmer whenever he wants
to reference the widget in order to access or to change its configuration. We will show the use
of the constructor tkRef in following examples.
The datatype defining the options for geometric alignment of widgets is:

data tkConfCollection =
tkCenter % Centered alignment

| tkLeft % Left alignment
| tkRight % Right alignment

134

| tkTop % Top alignment
| tkBottom % Bottom alignment
| tkExpand % Expands subwidgets if extra space is avalaible
| tkExpandX % Expands subwidgets horizontally if extra space is avalaible
| tkExpandY % Expands subwidgets vertically if extra space is avalaible

As an example, consider the function hello_world2 defined previously. The associated layout
of the GUI can be defined now by using the new datatypes. The resulting code would be:

win_hello :: tkWidget (io unit)
win_hello = tkRow [] [tkButton eventHello [tkText "Hello World"],

tkButton eventExit [tkText "Exit"]]

eventExit :: channel -> io unit
eventExit Ch = do {putStrLn "Goodbye";

tkExit Ch}

eventHello :: channel -> io unit
eventHello Ch = putStrLn "Hello World"

The execution loop defined in the function runHelloWorld is automated by the built-in function
runWidget :: string -> tkWidget (io unit) -> io unit

Thus, the evaluation of the expression:

> runWidget "Hello World" win_hello

has the same effect as the evaluation of > hello world2.
runWidget Title Widget runs the widget Widget in a new window with title Title. The
evaluation of such expression generates an event-oriented loop which terminates when closing
the window. In our example at hand, there are two possible events: the “exit” button is pressed
or the “ hello world” button is pressed, whose associated handlers are the defined functions
eventExit and eventHello respectively. Note that the function eventExit invokes the built-in
function tkExit :: channel -> io unit which closes the window. The function eventHello
is not recursive because the execution loop is done by the function runWidget. In general, to
program with function runWidget requires to define the layout of the GUI (in our example at
hand, function win_hello) and the functions defining the event handlers (in our example at
hand, functions eventExit, eventHello).
The built-in functions which facilitate the programming of the event handlers are the following:

• tkVoid :: channel -> io unit
the void event handler.

• tkExit :: channel -> io unit
the event handler for closing a window.

• tkGetValue :: tkRefType -> channel -> io string
gets the value (a string) of the text variable of the widget referenced by the first argument.

135

• tkSetValue :: tkRefType -> string -> channel -> io unit
sets the value (a string) of the text variable of the widget referenced by the first argument.

• tkUpdate :: (string -> string) -> tkRefType -> channel -> io unit
updates the value of the text variable of the widget referenced by the second argument
with respect to the update function given by the first argument.

• tkConfig :: tkRefType -> tkConfItem A -> channel -> io unit
changes the configuration (except for commands) of the widget;

• tkFocus :: tkRefType -> channel -> io unit
sets the input focus of the GUI (given by the second argument) to the widget referenced
by the first argument.

• tkAddCanvas :: tkRefType -> [tkCanvasItem] -> channel -> io unit
adds a list of canvas items to the canvas referenced by the first argument.

In the following example, we illustrate the use of some of the functions above.

counter :: tkWidget (io unit)
counter =

tkCol []
[tkEntry [tkRef Val, tkText "0"],
tkRow [] [tkButton (tkUpdate incrText Val) [tkText "Increment"],
tkButton (tkSetValue Val "0") [tkText "Reset"],
tkButton tkExit [tkText "Stop"]]]

incrText :: string -> string
incrText Cs = intTostr ((strToint Cs) + 1)

The evaluation of the expression > runWidget "Counter Demo" counter generates the follow-
ing window, in which the button “Increment” has been pressed seven times.

In order to increment the counter we have used a reference (tkRef Val), which allows to modify
the display by using Val. The function tkUpdate has been used to increment the display. On
the other hand, the action associated to button “Reset” puts “0” in the display, by using the
built-in function tkSetValue.
Note that the event handler of the button “Increment” (function incrText) does not require
extra information, because all that it needs is contained in the proper GUI; but in general, the
event handlers are more complicated and it is usually useful to use mutable variables [16, 38] in
order to store states.

136

5.5.1 Mutable Variables

T OY incorporates the possibility of using mutable variables. The system module io_graphic
defines operations to manipulate the State Reader monad by means of a new datatype varmut
(which is implementation dependent). The built-in functions associated to mutable variables
are the following:

• newVar :: A -> io (varmut A)
newVar V creates a mutable variable with an initial value V.

• readVar :: (varmut A) -> io A
readVar Mut returns the value of the mutable variable Mut.

• writeVar :: A -> (varmut A) -> io unit
writeVar V Mut writes a new value V in the mutable variable Mut.

As an example, here we have a T OY program which implements a calculator. In the associated
code we have used a mutable variable consisting of a pair, where the first component is used
to store the accumulated value (an integer), and the second component stores the arithmetic
operations pending to be executed. When the button “=” is clicked on, the function stored in
the second component will be applied to the first component in order to get the result.
The T OY code for the calculator is the following:

type calcState = varmut (int, int -> int)

calculator :: io unit

calculator = do {St <- newVar (0,id) ;

runWidget "calculator" (calc_GUI St)}

calc_GUI :: calcState -> tkWidget (io unit)

calc_GUI St = tkCol []

[tkEntry [tkRef Display, tkText "0"],

tkRow [] (map (cbutton St Display) ["1","2","3","+"]),

tkRow [] (map (cbutton St Display) ["4","5","6","-"]),

tkRow [] (map (cbutton St Display) ["7","8","9","*"]),

tkRow [] (map (cbutton St Display) ["C","0","=","/"])]

cbutton :: calcState -> tkRefType -> string -> tkWidget (io unit)

cbutton St Display C =

tkButton (button_pressed St Display C) [tkText C]

button_pressed :: calcState -> tkRefType -> string -> channel -> io unit

button_pressed St Display C Ch =

if (digit C)

then do {Acu <- readVar St ;

FC <- return ((10*(fst Acu)) + (strToint C));

writeVar (FC, snd Acu) St ;

tkSetValue Display (intTostr FC) Ch}

else if (C=="=")

then do {Acu <- readVar St ;

F <- return ((snd Acu) (fst Acu)) ;

137

writeVar (F,id) St ;

tkSetValue Display (intTostr F) Ch}

else if (C=="C")

then do {writeVar (0,id) St;

tkSetValue Display "0" Ch}

else do {Acu <- readVar St ;

writeVar (0,(op ((snd Acu) (fst Acu)) C)) St}

op :: int -> string -> (int -> int)

op N "+" = (N +)

op N "-" = (N -)

op N "*" = (N *)

op N "/" = (N ‘div‘)

Note that the mutable variable is created in the function calculator with an initial value
(0,id), where id is the identity function. This variable is passed as argument to be used by
those functions which require to manipulate the state. On the other hand, we have also used a
reference to the display (tkRef Display), which is also passed as argument in order to allow to
modify it. The third argument of function button_pressed is the label of the pressed button.
Finally, the execution of the expression > calculator generates the following window, whose
behaviour is the expected one:

5.6 List Comprehensions

T OY, in common with some other functional (logic) languages like Haskell and Curry , provides
a powerfull list notation called list comprehensions. This notation allows to define lists in a
compact way, describing the properties which must satisfy the elements of a list, instead of
enumerating its elements. Here is an example:

[X*X || X <- [1,2,3,4,5,6,7,8,9,10], odd X]

138

The evaluation of the above comprehension list returns the list [1,9,25,49,81] as result, i.e., it
returns the list of squares of odd3 numbers in the range 1 to 10. Formally, a list comprehension
takes the form:

[e || q1, q2, . . . , qn]

where e is any T OY expression whose type is the type of the elements of the comprehension
list, and qi, 1 ≤ i ≤ n, is a qualifier, that is either

• a generator of the form X <- xs, where X is a fresh variable of type τ , for some type τ ,
and xs is an expression of type [τ], or

• a condiition given as a boolean expression b, or

• a condition given as a goal G. In this case, G is treated as a boolean expression, i.e.,

– if the evaluation of G==true succeeds then G returns true;

– if the evaluation of G==false succeeds then G returns false;

– otherwise, the evaluation of the comprenhension list fails.

As an example, given the two partial functions:

f 1 = 1 g 3 = 1
f 2 = 2 g 4 = 2

the comprehension list [X || X <- [1,2], Y <- [3,4], f X == g Y] can be evaluated
to the list [1,2]. Note that, if we would change the generator X <- [1,2] by the new
one X <- [1,2,3], then the evaluation of the comprehension list would fail. In fact,
for any element y of [3,4], neither (f 3 == g y) == true nor (f 3 == g y) == false
succeeds (because f 3 is not defined).

As in functional languages, generators must occur before those boolean conditions using the
generated variable, and as near as possible to them, in order to increase the efficiency.
Comprehension lists are understood as a shorthand for computations involving conditional ex-
pressions and the functions map and concat (defined in Sections 2.14 and 2.6). More concretely,
the precise meaning of a comprehension list is given by the following translation rules:

[e ||] = [e]
[e || b, q] = if b then [e || q] else []

(where b is a boolean expression or a goal)
[e || X <- L, q] = concat (map f x Xs)wheref x X = [e || q]

As an example, consider again the comprehesion list:
3We are assuming that the file misc.toy, containing the function odd, has been previously included.

139

[X*X || X <- [1,2,3,4,5,6,7,8,9,10], odd X]

The translation of this comprehension list by applying the translation rules is the following:

[X*X || X <- [1,2,3,4,5,6,7,8,9,10], odd X] =
concat (map f x [1,2,3,4,5,6,7,8,9,10])

where

f x X = [X*X || odd X]

Since

f x i = [i*i || odd i], 1 ≤ i ≤ 10

then:

f x i = [i*i], if odd i
f x i = [], otherwise

Hence:

[X*X || X <- [1,2,3,4,5,6,7,8,9,10], odd X] =
concat [[1*1],[],[3*3],[],[5*5],[],[7*7],[],[9*9],[]] =
[1,9,25,49,81]

Differently to functional programming, the conditions occurring in a comprehension list (named
guards in Haskell), may contain variables not generated previously. Similarly, in a comprehension
list [e || Q], e may contain variables not occurring in Q. In both cases, the non-generated
variables aree treated as logic variables; depending on the computational context, they can
become bound to some pattern or stay free.
For instance, for generating a list containing 5 pairwise distinct variables, we can execute the
following allowed goal:

[Y || X <- [1,2,3,4,5]] == L

and the computed answer is:

L == [_C, _D, _E, _F, _G]

As a second example, suppose the following function definition:

p :: int -> bool
p 1 = true
p 2 = true
p 3 = false

Then, the allowed goal [X || p X] == L has the following three solutions:

140

X == 1 X == 2 X == 3
L == [1] L == [2] L == []

However, note that the goal

[X || X <- [1,2,3], p X] == L

has as unique solution L=[1,2]. This is because we have generated previously the domain of
the function p, using the comprehension list as a picker of solutions for p.
To conclude with this section, we remark that comprehension lists provide a solution to the
problem of programming monadic I/O in the context of a search for multiple solutions. Since
the monadic I/O operations are not guaranteed to work correctly within non-deterministic com-
putations, the idea is to use a comprehension list to obtain all the desired solutions within one
single deterministic computation. As a concrte example, we show a function that computes all
the permutations of a character string, writing each one of them in a different line.

include "misc.toy"

show_perms :: string -> io unit
show_perms L = putListStr (perms L)

putListStr :: [string] -> io unit
putListStr [] = "\n"
putListStr [S|Ss] = putStrLn S >> putListStr Ss

perms :: [A] -> [[A]]
perms [] = [[]]
perms L = [[Y|Ys] || Y <- L, Ys <- perms (remove Y L)]

remove :: A -> [A] -> [A]
remove Y [X|Xs] = if Y == X then Xs else [X | remove Y Xs]

The execution of the expression

> show_perms "abc"

will show on the screen:

abc
acb
bac
bca
cab
cba

141

Chapter 6

Debugging Tools

6.1 Introduction

In this chapter we describe the debugging tool DDT , which is part of the T OY system. As
explained in Section 1.1 (pg. 8), the debugger needs the Java Runtime Environment, which
is usually part of most operating system distributions, and can otherwise be downloaded from
http://java.com.
Section 6.2 introduces briefly declarative debugging, the theoretical basis of our debugger. Section
6.3 presents a simple example. The limitations of the debugger are discussed in section 6.4.
Finally, section 6.5 gives some hints about the internals of the tool. Some examples of buggy
programs are included in the examples/debug directory of the distribution.

6.2 Declarative Debugging

The impact of declarative languages on practical applications is inhibited by many known factors,
including lack of debugging tools, whose construction is recognized as difficult for lazy functional
languages. As argued in [39], such debuggers are needed, and much of interest can be still
learned from their construction and use. Debugging tools for lazy functional logic languages are
even harder to construct.
A promising approach is declarative debugging, which starts from a computation considered
incorrect by the user (error symptom) and locates a program fragment responsible for the error.
In the case of (constraint) logic programs, error symptoms can be either wrong or missing
computed answers. The overall idea behind declarative debugging is to build a computation
tree [29] as logical representation of the computation. Each node in such a tree represents the
result of a computation step, which must follow from the results of its children nodes by some
logical inference. Diagnosis proceeds by traversing the computation tree, asking questions to
an external oracle (generally the user) until a so-called buggy node [29] is found, whose result is
erroneous, but whose children have all correct results. The user does not need to understand
the computation operationally. Any buggy node represents an erroneous computation step, an
the debugger can display the program fragment responsible for it.

142

6.3 An Example

6.3.1 Starting DDT
Recall the datatype nat and the functions head, tail, and map, all defined in Chapter 2.
Consider also the functions from, plus and times, defined as follows:

from :: nat -> [nat]
from N = N : from (suc N)

plus :: nat -> nat -> nat
plus z Y = Y
plus (suc X) Y = suc (plus X Y)

times :: nat -> nat -> nat
times z Y = z
times (suc X) Y = plus X (times X Y) % Should be plus Y (times X Y)

The intended meaning of this program fragment should be clear. In particular, the functions
plus and times are expected to compute the addition and multiplication of natural numbers, in
Peano notation. However, the second rule for times is incorrect. A user might detect an error
symptom when asking for solutions of the following goal, intended to compute in Y the second
element of the infinite list N*X : N*(X+1) : N*(X+2) : ...

TOY> head (tail (map (times N) (from X))) == Y
yes
N == z
Y == z

more solutions (y/n/d) [y]? y
yes
N == (suc z)
Y == z

more solutions (y/n/d) [y]? d

The first computed answer is correct: if N is z then the second element of the list will be zero
(in fact the list will be an infinite list of zeros). But the second answer is wrong: if N is suc
z, then the second element of the list should be suc X, not z. Therefore the user answers d
to the question more solutions (y/n/d) [y]? and the debugging process starts. After some
previous work (explained briefly in Section 6.5) the debugger displays:

143

The complete tree can be examined by choosing the option Tree+Expand Tree. The root of the
tree corresponds to the initial goal and is not displayed. The children nodes correspond to the
function calls occurred at the patent. The nodes contain basic facts of the form:

f tn → t

where tn, t are patterns and i is the position of the fact in the list. A basic fact f tn → t
must be recognized as valid iff t represents a finite approximation of the result expected for
the function call f tn according to the intended model of the program; see Appendix F. For
instance, if the intended meaning of sort is a list-sorting function, then the fact sort [2.0,
1.0, 3.0] -> [3.0, 1.0] is not valid, since [3.0, 1.0] is not a valid approximation of the
expected result of sort [2.0, 1.0, 3.0].
The patterns ti, t can be partial, i.e., they can include the special symbol () representing an
unknown value. This is used in place of suspended function calls whose evaluation has not been
demanded by the main computation. In fact, () corresponds to the undefined value ⊥ used to
formalize declarative semantics in Appendix F. Thanks to this symbol, questions to the oracle
are semantically correct, but much simpler than they would be if suspended subexpressions were
displayed. Let us consider some simple examples based on the list processing functions from
Section 2.6. The fact head [1|] -> 1 is valid, because the first element of a list beginning
by 1 is indeed 1. The two from 0 -> [0 |] and from 0 -> [0,1 |] are also valid,
because [0 |] and [0,1 |] are finite approximations of the expected result of from 0
(namely, the infinite list of all non-negative integers). On the other hand, the fact from 0 ->
[0,2,4 |] is not valid.

6.3.2 Looking for buggy nodes

The user can navigate the tree providing information about the state of the nodes by using the
menu option Node:

144

Apart from valid and Non-valid there are three other possible states:

• Buggy: The user cannot indicate that a node is buggy, only the system changes a node
state to buggy after checking that it is not valid and all its children are valid. We have
proved that a buggy node has always an incorrect program rule associated, the program
rule used to compute the function call represented in the node. After finding a buggy
node, the debugger displays the number of the rule associated and the debugging session
ends.

• Unknown: The user doesn’t know if the node is valid or not. All the nodes are marked as
unknown at the beginning.

• Trusted: The function associated to the basic fact in the node can be trusted, i.e. the
node is valid and all the nodes corresponding to the same function are also valid. Hence
changing a node to this state will change all the nodes containing basic facts associated to
the same function to trusted as well.

6.3.3 Strategies

For large trees the process of finding a buggy node can be tiresome. In these cases (in fact
in almost all the cases) it is convenient to use a fixed strategy. DDT provides two of such
strategies: the top-down and the divide-and-query.
The top-down strategy behaves essentially like the textual debugger presented in the previous
section. The process starts with a computation tree whose root is considered non-valid. Then
the children of the root are examined looking for some non-valid child. If such child is found the
debugging continues examining its corresponding subtree. Otherwise all the children are valid
and the root of the tree is pointed out as buggy, finishing the debugging.
The next display shows the starting point of the a debugging session using the top-down strategy,
where the user has marked the second node as non-valid, and the last two nodes as trusted:

145

Notice that after each subsequent step the selected subtree has a smaller size and an invalid
root, until a buggy node is eventually reached.
As in the top-down strategy, the divide and query strategy starts with a computation tree whose
root is not valid. The idea is to choose a node N such that the number of nodes inside and
outside of the subtree rooted by N are the same. Although such node (called the center of the
tree) does not exist in most of the cases, the system looks for the node that better approximates
the condition. Then the user is queried about the validity of the basic fact labeling this node.
If the node is non-valid its subtree will be considered at the next step. If it is valid then its
subtree is deleted from the tree and debugging continues. The process ends when the subtree
considered has been reduced to a single non-valid node.
Is easy to observe that, as in the top-down strategy, the number of nodes in the tree T considered
is reduced after each step, and that nonvalid(root(T)) holds and that the strategy will find some
buggy node. The divide and query requires a number of questions that proportional, in average,
to the log2 n, where n is the number of nodes of the tree, and must usually preferred to the
top-down strategy. In our example, after four questions the system finds a buggy node, pointing
at the second rule of function times as invalid:

146

Since these strategies modify the structure of the tree, DDT includes options to save and load
computation trees (see the options of the menu ”File”). The files are stored in XML format.
These options can be also used to restore a previous version of the debugging session if the user
realizes after some steps that she or he made a mistake when providing information about the
validity of the nodes, a situation that often arises.
The theoretical results presented in [4, 5] ensure that if debugging starts with an erroneous
answer and the user answers the questions correctly, then the debugger eventually locates in the
program an incorrect function rule as cause of the error. Note, however, that each debugging
session locates only one program error. Other incorrect program rules can still remain, and
further debugging session can be required.

6.4 Limitations

The main limitations of our current debugging tool are:

• Missing answers. Whenever finitely many answers are computed for a certain goal (fol-
lowed by a no more answers indication), and the user expects some other answer which
is not covered by the computed ones, one speaks of missing answers. Finitely failing goals
with expected solutions are an important subcase of goals with missing answers. Declar-
ative diagnosis of missing answers should detect a function whose set of defining rules in
the given program is incomplete. Currently, our debugger can diagnose wrong answers,
but not missing answers.

• Constraints. Programs and goals in T OY can use different kinds of constraints as con-
ditions; see sections 2.6 and 2.16. Currently the debugger supports strict equality and

147

disequality constraints and constraints over real numbers, but not programs including fi-
nite domain constraints.

• Non-terminating goals. Generally, declarative debuggers work only after some completed
computation whose outcome is found incorrect by the user. This is also the case for our
debugger. Tools to prove termination of a given goal are undoubtedly useful, but they are
outside the scope of declarative debugging as such.

• Input/output. Although the T OY system supports I/O interaction in monadic style (see
Chapter 5), the current debugger can only be applied to computations that do not involve
any kind of I/O operations.

Extensions of the debugger to deal with missing answers and other constraints are currently
being investigated.

6.5 How Does it Work?

Our debugger uses a program transformation approach to obtain the computation tree associated
to a wrong computation. The process is described in [5] and can be summarized as follows:

1. The original program P is transformed into a new program P ′. Each function f :: τn → τ in
P is transformed into a function f ′ :: τ ′n → (τ, cTree) in P ′ that associates a computation
tree to each produced result. This new program is then compiled by T OY and loaded as
the current program.

2. The goal is also transformed and solved, using the new program P ′. In this way, a com-
putation tree corresponding to the wrong answer is obtained.

3. Finally the computation tree is searched, asking questions to the user as described in the
previous sections. When the debugger ends, the original program P is again loaded into
memory.

The first two points are performed automatically as soon as the user answers d to the question

more solutions (y/n/d) [y]?

and can take some time, depending on the size of the original program. The last point cor-
responds to the interaction with the user. If she is able to answer all questions correctly, an
incorrect program rule will be diagnosed. Otherwise, the debugging process will abort.

148

Bibliography

[1] Sergio Antoy, Rachid Echahed, and Michael Hanus. A Needed Narrowing Strategy. In
Conference Record of POPL ’94: 21ST ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Portland, Oregon, pages 268–279, New York, NY, 1994.

[2] N. Beldiceanu. Global constraints as graph properties on a structured network of elementary
constraints of the same type. In Rina Dechter, editor, 6th International Conference on
Principles and Practice of Constraint Programming (CP’97), number 1894 in LNCS, pages
52–66, Singapore, 2000. Springer-Verlag.

[3] R. Bird. Introduction to Functional Programming using Haskell (second edition). Prentice
Hall (Series in Computer Science), 1998.

[4] Rafael Caballero, Francisco Javier López-Fraguas, and Mario Rodríguez-
Artalejo. Theoretical foundations for the declarative debugging of lazy functional logic
programs. In FLOPS ’01: Proceedings of the 5th International Symposium on Functional
and Logic Programming, pages 170–184, London, UK, 2001. Springer-Verlag.

[5] Rafael Caballero and Mario Rodŕıguez-Artalejo. A declarative debugging system for lazy
functional logic programs. Electr. Notes Theor. Comput. Sci., 64, 2002.

[6] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms. MIT Press,
Cambridge, MA, USA, 2001.

[7] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In POPL
’82: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 207–212, New York, NY, USA, 1982. ACM Press.

[8] S. Estévez-Mart́ın, A. Fernández, T. Hortalá-González, M. Rodŕıguez-Artalejo, F. Sáenz-
Pérez, and R. del Vado-Vı́rseda. A Proposal for the Cooperation of Solvers in Constraint
Functional Logic Programming. ENTCS, 2007. In Press.

[9] A. J. Fernández, M. T. Hortalá-González, and F. Sáenz-Pérez. Solving combinatorial prob-
lems with a constraint functional logic language. In P. Wadler and V. Dahl, editors, 5th In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’2003), num-
ber 2562 in LNCS, pages 320–338, New Orleans, Louisiana, USA, 2003. Springer-Verlag.

149

[10] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Robert A. Kowalski and Kenneth Bowen, editors, Proceedings of the Fifth International
Conference on Logic Programming, pages 1070–1080, Cambridge, Massachusetts, 1988. The
MIT Press.

[11] J. C. González-Moreno, Maria Teresa Hortalá-González, Francisco Javier López-Fraguas,
and Mario Rodŕıguez-Artalejo. An approach to declarative programming based on a rewrit-
ing logic. Journal of Logic Programming, 40(1):47–87, 1999.

[12] J.C. González-Moreno. Programación Lógica de Orden Superior con Combinadores. PhD
thesis, Universidad Complutense de Madrid, July 1994. In Spanish.

[13] Juan Carlos González-Moreno, Maria Teresa Hortalá-González, and Mario Rodŕıguez-
Artalejo. Polymorphic types in functional logic programming. Journal of Functional and
Logic Programming, 2001(1), 2001.

[14] M. Hanus. Curry: An Integrated Functional Logic Language. Version 0.7.1., June 2000.
Available at http://www.informatik.uni-kiel.de/ curry/report.html.

[15] Michael Hanus. A functional logic programming approach to graphical user interfaces.
Lecture Notes in Computer Science, 1753:47–??, 2000.

[16] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph H.
Fasel, Maŕıa M. Guzmán, Kevin Hammond, John Hughes, Thomas Johnsson, Richard B.
Kieburtz, Rishiyur S. Nikhil, Will Partain, and John Peterson. Report on the programming
language haskell, a non-strict, purely functional language. SIGPLAN Notices, 27(5):R1–
R164, 1992.

[17] J. Jaffar and M. Maher. Constraint logic programming: a survey. The Journal of Logic
Programming, 19-20:503–581, 1994.

[18] T. Klove. Bounds and construction for for difference triangle sets. IEEE Transactions on
Information Theory, 35:879–886, July 1989.

[19] Francisco J. López-Fraguas and Jaime Sánchez-Hernández. A proof
theoretic approach to failure in functional logic programming. Theory Pract. Log. Program.,
4(2):41–74, 2004.

[20] Francisco Javier López-Fraguas and Jaime Sánchez Hernández. Prov-
ing failure in functional logic programs. In CL’00: Proceedings of the First International
Conference on Computational Logic, pages 179–193, London, UK, 2000. Springer-Verlag.

[21] Francisco Javier López-Fraguas and Jaime Sánchez-Hernández. Nar-
rowing failure in functional logic programming. In FLOPS ’02: Proceedings of the 6th
International Symposium on Functional and Logic Programming, pages 212–227, London,
UK, 2002. Springer-Verlag.

[22] Rita Loogen, Francisco Javier Lopez-Fraguas, and Mario Rodriguez-Artalejo. A demand
driven computation strategy for lazy narrowing. In PLILP, pages 184–200, 1993.

150

[23] F.J. López-Fraguas and J. Sánchez-Hernández. T OY: A multiparadigm declarative system.
In P. Narendran and M. Rusinowitch, editors, 10th International Conference on Rewriting
Techniques and Applications, number 1631 in LNCS, pages 244–247, Trento, Italy, 1999.
Springer-Verlag.

[24] Francisco Javier López-Fraguas and Jaime Sánchez-Hernández. Functional logic program-
ming with failure: A set-oriented view. In LPAR, pages 455–469, 2001.

[25] Francisco Javier López-Fraguas and Jaime Sánchez-Hernández. Failure and equality in
functional logic programming. Electr. Notes Theor. Comput. Sci., 86(3), 2003.

[26] M. Hanus (editor). Pakcs 1.4.0, user manual. The Portland Aachen Kiel Curry System.
Available from http : //www.informatik.uni− kiel.de/ pakcs/, 2002.

[27] K. Marriot and P. J. Stuckey. Programming with constraints. The MIT Press, Cambridge,
Massachusetts, 1998.

[28] Gopalan Nadathur and Dale Miller. An overview of lambda-prolog. In ICLP/SLP, pages
810–827, 1988.

[29] Lee Naish. A declarative debugging scheme. Journal of Functional and Logic Programming,
1997(3), 1997.

[30] John K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, 1994.

[31] S.P. Peyton-Jones. The Implementation of Functional Programming Languages. Prentice
Hall, Englewood Cliffs, N.J., 1987.

[32] J. Sánchez-Hernández. T OY: Un lenguaje lógico funcional con restricciones. Research
work, Universidad Complutense de Madrid, 1998. In Spanish.

[33] J. Sánchez-Hernández. Implementing constructive failure in functional logic programming.
In Jornadas de Programación y Lenguajes, PROLE, pages 127–136, 2005.

[34] J.B. Shearer. Some new optimum golomb rulers. IEEE Transactions on Information Theory,
36:183–184, January 1990.

[35] J.B. Shearer. Golomb ruler table. www.research.ibm.com/people/s/shearer/-
grtab.html, 2004.

[36] Sicstus manual. SICStus Prolog user’s manual, release 3#8. By the Intelligent Systems
Laboratory, Swedish Institute of Computer Science, 1999.

[37] P. Van Hentenryck. Constraint satisfaction in logic programming. The MIT Press, Cam-
bridge, MA, 1989.

[38] Ton Vullinghs, Daniel Tuinman, and Wolfram Schulte. Lightweight GUIs for functional
programming. In PLILP, pages 341–356, 1995.

151

[39] Philip Wadler. Why no one uses functional languages. SIGPLAN Not., 33(8):23–27, 1998.

[40] N-F. Zhou. Channel Routing with Constraint Logic Programming and Delay. In 9th In-
ternational Conference on Industrial Applications of Artificial Intelligence, pages 217–231.
Gordon and Breach Science Publishers, 1996.

152

Appendix A

Programming Examples

In this chapter we show some of the main feaures of T OY. First we will discuss a few examples
that are closest to the logic programming paradigm and functional programming paradigms
(sections A.1 and A.2, respectively) but enriched with some specific functional-logic flavour. We
consider the pure fragment of Prolog and Haskell as representatives of the purely logical and
lazy functional programming styles, respectively. Next, we present the use of failure. The last
three sections present programming with constraints over different domains (constructor terms,
reals, and finite domains).
The distribution provides the directory examples that contains a number of examples of T OY programs,
included the programs listed in this section. The program title is annotated with the correspond-
ing file name (with extension .toy).

A.1 Logic Programming

T OY embodies all the purely declarative features of logic programming languages such as
Prolog. Next we show two simple examples in T OY that correspond to typical logic programs.

A.1.1 Peano Numbers (peano.toy)

The next program represents in T OY a logic program that generates Peano natural numbers:

% Datatype for Peano natural numbers
data nat = z | s nat

% Generator for Peano numbers
isNat :: nat -> bool
isNat z :- true
isNat (s N) :- isNat N

The main differences with the corresponding program in Prolog come from the existence of types
in T OY. Thus, the type nat is explicitly declared by means of a data definition. In the same
way, the type of isNat can be declared. In T OY predicates are considered as functions returning

153

booleans values, and in this case the type of isNat reflects that it is a predicate with a natural
number as argument. An example of a goal solved by this program:

Toy> isNat N
{ N -> z }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ N -> (s z) }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ N -> (s (s z)) }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]? n

The goal has infinitely many solutions, although in this example the user has stopped after the
first three solutions answering n to the question more solutions [y]?. To provide these different
answers T OY performs backtracking in the same way as Prolog does.

A.1.2 Paths in a Graph (paths.toy)

The aim of the next program is to look for all the paths between two nodes in a given graph. In
logic programming this is done via a non-deterministic predicate path(X,Y), taking advantage of
Prolog search mechanism to look for all the possible paths between two nodes. The same idea is
valid in T OY; the predicate path corresponds in T OY to a non-deterministic boolean function,
indicating that X and Y are connected if either there is an arc between them, or there exists
an arc from X to a certain node Z such that Z and Y are connected. In the example the graph
considered is the following:

• c

a •

d •

• b

-

6

@
@

@
@

@I
-

?

% Paths in a Graph
data node = a | b | c | d

arc :: (node, node) -> bool
arc(a,b) :- true
arc(b,c) :- true
arc(c,a) :- true
arc(d,a) :- true
arc(d,c) :- true

154

path :: (node, node) -> bool
path(X,Y) :- arc(X,Y)
path(X,Y) :- arc(X,Z), path(Z,Y)

For instance, the following goal asks T OY for nodes accessible from node d:

Toy> path (d,X)
{ X -> a }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ X -> c }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ X -> b }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]? n

A.2 Functional Programming

In this section we show that T OY can also deal with functional computations. T OY includes
many of the features of lazy functional languages such as Haskell. In particular, T OY allows
higher-order function definitions. We next show all these characteristics by means of examples.

A.2.1 Arithmetic for Peano Numbers (arithmetic.toy)

The next example defines addition and multiplication for Peano natural numbers.

% Datatype for Peano Natural Numbers
data nat = z | s nat

% Addition and Multiplication for Peano Numbers
infixr 40 +.
(+.) :: nat -> nat -> nat
X +. z = X
X +. (s Y) = s (X +. Y)

infixr 50 *.
(*.) :: nat -> nat -> nat
X *. z = z
X *. (s Y) = s (X *. Y) +. X

This T OY program could be considered a Haskell program by ignoring the syntactic differences
of upper and lowercase identifiers for variables and constructors. We can use this program to
compute the value of expressions as in any functional language:

155

Toy> > s z +. (s (s z))

(s (s (s z)))

Elapsed time: 0 ms.

The symbol > indicates to the system that we are going to evaluate an expression. In this case
we could also have tried the same goal in the shape of a T OY goal:

Toy> s z +. (s (s z)) == R
{ R -> (s (s (s z))) }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
no.
Elapsed time: 0 ms.

More noticeable is the skill of T OY in solving goals with logic variables. For example the next
goal asks for all the decompositions of number 3 as the addition of two numbers X and Y :

Toy> X +. Y == s (s (s z))
{ X -> (s (s (s z))),
Y -> z }

Elapsed time: 0 ms.
more solutions (y/n/d) [y]?

{ X -> (s (s z)),
Y -> (s z) }

Elapsed time: 0 ms.
more solutions (y/n/d) [y]?

{ X -> (s z),
Y -> (s (s z)) }

Elapsed time: 0 ms.
more solutions (y/n/d) [y]?

{ X -> z,
Y -> (s (s (s z))) }

Elapsed time: 0 ms.
more solutions (y/n/d) [y]?

no.
Elapsed time: 0 ms.

Thus, even this purely functional program can be used in a functional logic way, by allowing
variables in the goals and returning several different answers, if they exist.

A.2.2 Infinite Lists (inflists.toy)

The following example takes advantage of lazy computations in T OY to represent infinite
structures in the same way as in Haskell:

156

% An infinite list of consecutive integers
from :: int -> [int]
from N = [N | from (N+1)]

%The first N elements in a list
take :: int -> [A] -> [A]
take N [] = []
take N [X|Xs] = if N > 0 then [X | take (N-1) Xs]

else []

An expression of the form from N represents an infinite list of consecutive numbers starting at
number N, while take N L returns the first N elements of list L. Therefore we can evaluate a
purely functional expression of shape:

Toy> > take 3 (from 0)

[0, 1, 2]

Elapsed time: 0 ms.

showing the first three elements of the infinite list on numbers starting at 0. Thus, the infinite
list is only evaluated up to the needed point.

A.2.3 Prime Numbers (primes.toy)

In T OY higher order functions are also allowed, as Haskell does. Therefore typical higher-order
functions like map, fold, filter, etc, can be defined. The next example defines the infinite list of
prime numbers using an algorithm based on the ‘sieve of Erathostenes’. It uses the higher-order
function filter in order to remove numbers that can be divided by any of previous members of
the list. Function type declarations are not mandatory in T OY and are not included here.
Observe also the alternative semantics for defining functions, e.g., --> instead of =. In addition,
lists use the constructor symbol ./2.

primes --> sieve (from 2)

sieve (X:Xs) --> X : filter (notDiv X) (sieve Xs)

notDiv X Y --> mod Y X > 0

from N --> N : from (N+1)

filter P [] --> []
filter P (X:Xs) --> if P X

then X : filter P Xs
else filter P Xs

157

take N [] --> []
take N (X:Xs) --> if N > 0

then X : take (N-1) Xs
else []

Next goal computes the list of the first ten prime numbers

Toy> > take 10 primes

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Elapsed time: 16 ms.

A.2.4 Hamming Codes (hamming.toy)

Let H be the smallest subset of N satisfying the following axioms:

• 1 ∈ H
• ∀x.x ∈ H ⇔ 2x, 3x, 5x ∈ H

The problem consists of obtaining the ordered sequence of elements in H, that is to say:
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, . . .
Let h denotes the list of elements in H. Then, the numbers (i.e., codes) of Hammings can be
obtained by mixing conveniently the following infinite lists
map (2*) h
map (3*) h
map (5*) h
By the expression ‘mixing conveniently’ we mean to order the three lists removing the elements
that are duplicate in the lists, that is to say:
merge3 U V W = (UαV) αW
where the operation α/2 is defined as follows:
[] α V = V : []
U α [] = U : []
[X|Xs] α [Y |Y s] = X : (Xs α Y s) ⇐⇒ X == Y
[X|Xs] α [Y |Y s] = X : (Xs α [Y |Y s]) ⇐⇒ X < Y
[X|Xs] α [Y |Y s] = Y : ([X|Xs] α Y s) ⇐⇒ X > Y
and finally to add the element 1 as initial element. A schematic picture is shown in Figure A.1.
A solution is shown below, where merge2 defines the operator α.

include "misc.toy"

merge3 :: [int] -> [int] -> [int] -> [int]
merge3 U V W = merge2 (merge2 U V) W

158

map (2*)

.. merge3 map (3*)

map (5*)

2,4,6,.....

3,6,9,.....

5,10,15,....

1

2,3,4,.....1,2,3,4,5,.....

Figure A.1: Hamming Codes

merge2 :: [int] -> [int] -> [int]
merge2 [] V = V
merge2 U [] = U
merge2 [X|Xs] [X|Ys] = [X | merge2 Xs Ys]
merge2 [X|Xs] [Y|Ys] = [X | merge2 Xs [Y|Ys]] <== X < Y
merge2 [X|Xs] [Y|Ys] = [Y | merge2 [X|Xs] Ys] <== X > Y

hamming :: [int]
hamming = 1: (merge3 (map (2*) hamming) (map (3*) hamming) (map (4*) hamming))

The next goal computes the 12 first Hamming numbers:

Toy(FD)> > take 12 hamming

[1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27]

Elapsed time: 47 ms.

A.2.5 Process Network: Client-Server Interaction (clientserver.toy)

Processes can be considered as functions consuming data (i.e., arguments) and producing values
for other functions. Processes are often suspended until the evaluation of certain expression is
required (by other process). In these cases, lazy evaluation corresponds to particular coroutines
for the processes.
One interesting application is to solve the communication between a client and a server with the
Input/Output model via Streams: If the client generates requests from one initial requirement,
the server will generate answers that will be again processed by the client, and so on. For
simplicity, we consider that requests and answers are integer numbers. This process network
can be clearly defined in T OY(FD)with recursive definitions as follows:

requests, answers :: [int]

159

requests = client initial answers
answers = server requests

Suppose now that the client returns the request and generates a new one (i.e., a next one)
from the first answer of the server and that the server processes each request to generate a new
answer. This is defined in T OY(FD) as follows:

client :: int -> [int] -> [int]
client Ini [R|Rs] = [Ini | client (next R) Rs]
server :: [int] -> [int]
server [P|Ps] = [process P | server Ps]

The architecture is completed by defining adequately the initial requirement, the processing
function and the selection of the next request. As an example, and for simplicity, we can define
them as follows:

process :: int -> int process = (+3)

initial :: int initial = 4

next :: int -> int
next = id %Idempotence

Note that this is not enough to produce an outcome as the goal requests goes into a non-ending
loop. However, the lazy evaluation mechanism of T OY(FD) allows to evaluate a finite number
(N) of requests; this can be done by redefining the functions client, answers and requests
as follows:

client :: int -> [int] -> [int]
client Ini Rs = [Ini | client (next (head Rs)) (tail Rs)]

answers :: int -> [int]
answers N = server (requests N)

requests :: int -> [int]
requests N = take N (client initial (take N (answers N)))

where head/1 and tail/1 return the head and tail of a list respectively. Below, we show an
example of solving that evaluates exactly the first 15 requests.

Toy(FD)> requests 15 == L
{ L -> [4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46] }
Elapsed time: 47 ms.

more solutions (y/n/d) [y]?
no.
Elapsed time: 0 ms.

160

A.3 Functional Logic Programming

Now we turn to simple examples that show the skill of T OY in combining the features of the
functional and logic languages.

A.3.1 Inserting an Element in a List (insert.toy)

Function insert, defined below, inserts an element X in a list.

insert :: A -> [A] -> [A]
insert X [] = [X]
insert X [Y|Ys] = [X,Y|Ys]
insert X [Y|Ys] = [Y|insert X Ys]

If the list is empty there is only one possibility, as the first rule of insert reflects. On the contrary,
if the list has n elements with n > 0, there are n + 1 different ways of inserting X. In logic
programming, and in T OY as well, all of these possibilities can be encoded by defining a
non-deterministic predicate. However, in T OY we can also define a suitable non-deterministic
function, which renders a more expressive solution in this case. Next goal shows how the different
output lists are computed.

Toy> insert 1 [2,4,6] == X
{ X -> [1, 2, 4, 6] }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ X -> [2, 1, 4, 6] }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ X -> [2, 4, 1, 6] }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ X -> [2, 4, 6, 1] }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
no.
Elapsed time: 0 ms.

A.3.2 The Choice Operator (choice.toy)

The following operator captures the essence of non-deterministic functions. It is called the choice
operator and selects either of its two arguments.

infixr 20 //

(//) :: A -> A -> A

161

X // Y = X
X // Y = Y

For instance, the function insert can be rewritten in the following, more appealing way:

insert :: A -> [A] -> [A]
insert X [] = [X]
insert X [Y|Ys] = [X,Y|Ys] // [Y|insert X Ys]

which yields the same results as above.

A.3.3 The Inverse Function (inverse.toy)

The following is a function that computes the inverse of a given function F . Its definition says
that X is image of Y through the inverse of F if F X = Y . Notice that X does not appear at
the left-hand side of the function.

inverse :: (A -> B) -> (B -> A)
inverse F Y = X <== F X == Y

For instance, the inverse of inserting an element in a list consists of removing such element:

Toy> inverse (insert 3) [4,5,3] == X
{ X -> [4, 5] }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
no.
Elapsed time: 0 ms.

Of course, if function F is not injective, then inverse F will behave as a non-deterministic function.

A.4 Programming with Failure

A.4.1 Default Rules (automata.toy)

An interesting use of failure in functional logic programming is to express default rules. These
rules are implicit in functional systems like Haskell where pattern matching determines the rule
to apply for reducing a call to a function: the n-th rule only applies if pattern matching fails for
the previous n− 1 rules. As an example, consider the following function:

f 0 = 0
f X = 1

If we evaluate the expression f 0 in Haskell we get the result 0, by the first rule. Here the second
rule is working as a default rule as it only applies if the previous fail (in pattern matching). In
contrast, if we submit the corresponding goal f 0 == X in T OY we obtain the answers X → 0
and X → 1, due to non-determinism. Nevertheless, it may be usefull in some cases to have in
T OY the behaviour of Haskell and this is possible by using fails:

162

f 0 = f’ X
f X = 1 <= fails (f’ X)
f’ 0 = 0

It is easy to check that with this definition f 0 == X produces only the answer X → 0 and,
for example, f 2 == X gets X → 1. This scheme of transformation is applicable in the general
case. Consider a function h of the form:

h t1 → e1 ⇐ C1

. . .

h tn → en ⇐ Cn

(′′default ′′) h tn+1 → en+1 ⇐ Cn+1

The construction default is not supported in T OY (for the moment), but we can translate this
function into:

h X → h′ X

h X → en+1 ⇐ fails (h′ X) == true, Cn+1

h′ t1 → e1 ⇐ C1

. . .

h tn → en ⇐ Cn

Notice that with this translation the default rule covers the case of a failure of the previous
rules, even in the case that failure does not come from pattern matching.

Default rules can be usefull a variety of situations. As an example we consider the case of finite
automata. A finite automata can be defined as a 5-tuple of the form:

M = (K, Σ, s, F, δ)

where K is a set of states, Σ is an alphabet, s is the initial state, F ⊆ K is the set of final
states and δ : K × Σ → K is the transiction function. In order to represent automatas in a
program we can assume some simplifications: the states are integer values, Σ is the standard
set of characters, a word is a string (list of characters). Then we can define in T OY:

type state = int
type symbol = char
type word = string
type automata = (state -> symbol -> state, % delta function

state, % initial state
[state]) % final states

Now we can define a generalized transiction function deltaGen to process words by applying δ
repeteadly until consume the input symbols:

deltaGen :: automata -> state -> word -> state
deltaGen (D,I,Fs) Q [] = Q
deltaGen (D,I,Fs) Q [A|As] = deltaGen (D,I,Fs) (D Q A) As

163

And the accepting function:

accept :: automata -> word -> bool
accept (D,I,Fs) W = member (deltaGen (D,I,F) I W) Fs

member :: A -> [A] -> bool
member X [] = false
member X [Y|Ys] = if (X==Y) then true else member X Ys

When recognizing languages with automotatas, in practise it is usefull to transictions with labels
that represent “any character distinct from ” or “any character”. For example an automata for
recognizing the word “end” could be:

1 20 3
e n d

4

=d=n
=e *

*

Here 0 is the initial state, 3 is the final state and 4 stands for an error state. The label ∗
represents any character and 6= e represents any character except e. According to the previous
representation this automata would be:

end = (delta,0,[3])

and the transiction function would be expressed as:

delta 0 ′e′ = 1
delta 1 ′n′ = 2
delta 2 ′d′ = 3
default delta S C = 4

Now, using failure we can eliminate the construction default and write in T OY:

delta S C = delta’ S C
delta S C = 4 <== fails (delta’ S C)
delta’ 0 ’e’ = 1
delta’ 1 ’n’ = 2
delta’ 2 ’d’ = 3

With this automata the call accept end “end” reduces to true and with an other string produces
false, as expected.
Here the use of failure for expressing default rules allows to abreviate definitions (we could
define δ for any character). But this use is more critical when programming non-deterministic
automata. For example, assume the automata ends ab that accepts words ending with ab:

164

1 2
a b

0

a,b

The transiction function δ is programmed as before, but now the function accept is wrong because
accept ends ab “abb” would reduce to true and to false: it is possible to make transictions to
state 2, but also it is possible to stay at state 0. The function accept needs another definition in
the case of non-deterministic automata:

accept (D, I, Fs) W = if (member (deltaGen (D, I, Fs) I W) Fs) then true
default accept (D, I, Fs) W = false

The first rule says reduces to true if there is a transiction from the initial state to a final state,
while the second rule reduces to false otherwise, that is, when there is not any sequence of
transictions that reach a final state. This is exactly what we want and it can be implemented
using fails as:

accept (D,I,Fs) W = accept’ (D,I,Fs) W
accept (D,I,Fs) W = false <== fails (accept’ (D,I,Fs) W)
accept’ (D,I,Fs) W = if (member (deltaGen (D,I,Fs) I W) Fs) then true

A.4.2 A Propositional Tautology Generator (tautology.toy)

The function fails allows to transform failure of reduction into the boolean value false. In this
example we illustrate the reverse use: transform the value false into a failure obtaing more
control on the non-deterministic reductions.
First of all, to manage success results we introduce the function success:

success true = true

This function is the identity on the value true. The interest of such a function is that is not
defined for the value false, that is, it produces a failure for the value false.
Now we build an evaluator for first order logic formulas. For simplicity we assume the proposition
symbols p, q and r and define the type of formulas as:

type formula = p | q | r | neg formula
| conj formula formula | disy formula formula
| implies formula formula | iff formula formula

For example, the formula (p∧ q) → r would be represented as implies (conj p q) r. An interpre-
tation will be a 3-tuple of boolean values corresponding to the values of p, q and r respectively.
The evaluation function eval F I evaluates the formula F over the interpretation I and it is
defined as:

eval p (P,Q,R) = P
eval q (P,Q,R) = Q

165

eval r (P,Q,R) = R
eval (neg F) (P,Q,R) = not (eval F I)
eval (conj A B) I = and (eval A I) (eval B I)
eval (disy A B) I = or (eval A I) (eval B I)
eval (implies A B) I = eval (disy (neg A) B) I
eval (iff A B) I = eval A I == eval B I

neg true = false
neg false = true
and true X = X
and false X = false
or true X = true
or false X = X

For example, for the previous formula (p∧ q) → r and the interpretation (true, false, true), the
expression eval (imples (conj p q) r) (true,false,true) will reduce to true.
Now we are interested in the satisfactibily of logic formulas, in particular we want a tests for
tautologies, contradictions and contingencies. First of all we need a function inter for obtaining
interpretations (in a non-deterministic way):

bval = true
bval = false

inter = (bval,bval,bval)

If we evaluate eval (imples (conj p q) r) inter we will obtain true and false, what means that
this formula is a contingency. The easier test is that for contradictions that can be programmed
as:

isContradiction F = fails (success (eval F inter))

This rule is read as: a formula is a contradiction if the evaluation function does not success over
any interpretation. The other tests are easy to define using this one:

isTautology F = isContradiction (neg F)
isContingency F = and (not (isContradiction F)) (not (isTautology F))
isSatisfiable F = not (isContradiction F)

If we evaluate isSatisfiable (implies p (conj q (neg p))) we get true.
We can program the generation of formulas that satisfy a given test. Moreover, we can introduce
the concept of complexity of a formula in order to obtain more interesting answers. Such a
complexity is defined as the number of conectives that they have (we use z and s for representing
natural numbers and the usual function add):

complexity p = z
complexity q = z
complexity r = z

166

complexity (neg A) = s (complexity A)
complexity (conj A B) = s (add (complexity A) (complexity B))
complexity (disy A B) = s (add (complexity A) (complexity B))
complexity (implies A B) = s (add (complexity A) (complexity B))
complexity (iff A B) = s (add (complexity A) (complexity B))

With this program we can generate for example tautologies of complexity 3 with the goal:

Toy> complexity F == s (s (s z)), isContradiction F == true
{ F -> (neg (disy p (iff p p))) }
Elapsed time: 94 ms.

more solutions (y/n/d) [y]?
{ F -> (neg (disy p (iff q q))) }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?

In the same way we can produce contradictions or contingencies.

A.5 Programming with Equality and Disequality Constraints

One of the most interesting characteristics of T OY is that of dealing with equality and disequality
constraints, as well as arithmetic constraints over real numbers. We show the power of this
feature by means of some examples.

A.5.1 The Cardinal of a List (cardinal.toy)

Next example shows that T OY can represent solutions by using equality and disequality con-
straints. Function card determines the cardinal of a given list regarded as a set. It relies on the
boolean function member that specifies whether an element occurs in a list or not.

card :: [A] -> int
card [] = 0
card [X|Xs] = if member X Xs

then card Xs
else 1 + (card Xs)

member :: A -> [A] -> bool
member X [] = 0
member X [Y|Ys] = if X==Y

then true
else member X Ys

Let’s consider, as an example:

167

Toy> card [1, 0, 1] == N
{ N -> 2 }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
no.
Elapsed time: 0 ms.

A more involved example, using logic variables, shows the convenience of equality and disequality
constraints in solutions:

Toy> card [X, Y, X, Z] == N
{ Y -> X,
Z -> X,
N -> 1 }

Elapsed time: 0 ms.
more solutions (y/n/d) [y]?

{ Y -> X,
N -> 2 }

{ X /= Z }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ Z -> Y,
N -> 2 }

{ Y /= X }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ Z -> X,
N -> 2 }

{ X /= Y }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ N -> 3 }
{ X /= Z,
X /= Y,
Y /= Z }

Elapsed time: 0 ms.
more solutions (y/n/d) [y]?

no.
Elapsed time: 0 ms.

A.6 Programming with Real Constraints

In order to compile real constraint programs in T OY the user must first activate the constraint
solver over reals by means of the command /cflpr. Recall the explanations in Section 1.5.5.

168

A.6.1 Defining Regions of the Plane (regions.toy)

The program below shows the usefulness of using functions with arithmetic constraints over real
numbers. It contains some stuff for dealing with regions (subsets) of the plane. Regions are
sets of points represented by their characteristic function (see the type region below). This is a
typical approach in functional programming. However, the novelty is that constraints provide a
much more flexible way of using and defining functions.

include "misc.toy"

type point = (real,real)
type region = point -> bool

infixr 50 <<-

(<<-) :: point -> region -> bool
P <<- R = R P

rectangle :: point -> point -> region
rectangle (A,B) (C,D) (X,Y) =
(X >= A) /\ (X <= C) /\ (Y >= B) /\ (Y <= D)

circle :: point -> real -> region
circle (A,B) R (X,Y) = (X-A)*(X-A)+(Y-B)*(Y-B) <= R*R

outside :: region -> region
intersect, union :: region -> region -> region
outside R P = not (P <<- R)
intersect R1 R2 P = P <<- R1 /\ P <<- R2
union R1 R2 P = P <<- R1 \/ P <<- R2

The operator <<− is defined in order to know whether a point belongs to a region. It simply
applies the characteristic function to the point. Then the characteristic functions for circles
(given its radius and its center) and rectangles (given its left lower corner and its right upper
corner) are defined. Finally some operations over regions are defined: the outside of a region,
and the intersection and union of two regions. For instance, a point P belongs to the intesection
of two regions R and R′ if it belongs to R and (operator /\) it belongs to R′. A simple goal
could be:

Toy(R)> (0.5, 0.5) <<- (circle (0,0) 1)
yes
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
no

169

Elapsed time: 0 ms.

asking whether the point (0.5, 0.5) belongs to the circle of center (0, 0) and radius 1. A more
interesting (and involved) goal can ask for the points (X, Y) belonging to the region between
two rectangles:

(0,0)

(4,4)

(1,1)

(3,3)

• (X,Y)

This area is the intersection between the big rectangle and the outside of the small rectangle:

Toy(R)> (X,Y) <<- intersect (rectangle (0,0) (4,4))
(outside (rectangle (1,1) (3,3)))

{ Y>3.0,
Y=<4.0,
X>=1.0,
X=<3.0 }

Elapsed time: 0 ms.
more solutions (y/n/d) [y]?

{ X>=1.0,
X=<3.0,
Y>=-0.0,
Y<1.0 }

Elapsed time: 16 ms.
more solutions (y/n/d) [y]?

{ X>3.0,
X=<4.0,
Y>=-0.0,
Y=<4.0 }

Elapsed time: 0 ms.
more solutions (y/n/d) [y]?

{ Y>=-0.0,
Y=<4.0,
X>=-0.0,
X<1.0 }

Elapsed time: 0 ms.
more solutions (y/n/d) [y]?

no
Elapsed time: 0 ms.

170

The answers are given in terms of arithmetic constraints for the coordinates of the point (X, Y).
The union of the areas (rectangles) given by the four solutions constitute the intersection of the
two rectangles.

171

A.7 Programming with Finite Domain Constraints

In order to compile real constraint programs in T OY the user must first activate the constraint
solver over finite domains by means of the command /cflpfd. In addition, it must contain the
directive

include "cflpfd.toy"

as the file cflpfd.toy contains the definitions of data types, constraints and functions related
to finite domains.

A.7.1 A Colouring Problem (colour.toy)

We want to solve the classical map colouring problem. Consider the simple map shown in
Figure A.2. To solve this problem, we have to specify that some countries have different colors
by using the constraint all different L.

1

2 3

45
6

7 8 9

10

111213

14

15

16 17 18 19

20

21

22232425

Figure A.2: A Map Colouring Problem

The code to solve this problem is shown below:

include "cflpfd.toy"

colour :: [int] -> bool
colour [I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13,

I14, I15, I16, I17, I18, I19, I20, I21, I22, I23, I24, I25] = true <==
domain [I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13, I14,

I15, I16, I17, I18, I19, I20, I21, I22, I23, I24, I25] 1 4,
all_different [I1, I2],all_different [I1, I3],
all_different [I1, I4],all_different [I1, I5],
all_different [I2, I3],all_different [I2, I5],

172

all_different [I2, I6],all_different [I2, I7],
all_different [I2, I8],all_different [I3, I4],
all_different [I3, I8],all_different [I3, I9],
all_different [I3, I10],all_different [I4, I5],
all_different [I4, I10],all_different [I4, I11],
all_different [I4, I12],all_different [I5, I6],
all_different [I5, I12],all_different [I5, I13],
all_different [I6, I7],all_different [I6, I13],
all_different [I6, I14],all_different [I6, I15],
all_different [I7, I8],all_different [I7, I15],
all_different [I7, I16],all_different [I7, I17],
all_different [I8, I9],all_different [I8, I17],
all_different [I8, I18],all_different [I9, I10],
all_different [I9, I18],all_different [I9, I19],
all_different [I9, I20],all_different [I10, I11],
all_different [I10, I20],all_different [I10, I21],
all_different [I11, I12],all_different [I11, I21],
all_different [I11, I22],all_different [I11, I23],
all_different [I12, I13], all_different [I12, I23],
all_different [I12, I24], all_different [I13, I24],
all_different [I13, I25],all_different [I13, I14],
labeling [ff] [I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13,

I14, I15, I16, I17, I18, I19, I20, I21, I22, I23, I24, I25]

Below, we show an example of constraint solving with two different solution to this problem:

Toy(FD)> colour L
{ L -> [1, 2, 3, 2, 3, 1, 3, 1, 2, 1, 3, 1, 2,

3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 1] }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ L -> [1, 2, 3, 2, 3, 1, 3, 1, 2, 1, 3, 1, 2,

3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 3] }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?

... up to all the possible solutions

A.7.2 Linear Equations (eq10.toy and eq20.toy)

This classical problem solves a set of 10 linear equations with seven finite domain variables
ranging in the interval [0,10].

include "cflpfd.toy"

173

equation10 :: [labelingType] -> [int] -> bool
equation10 Label LD =
true <==
LD == [X1,X2,X3,X4,X5,X6,X7],
domain LD 0 10,
0 #+ 98527 #* X1 #+ 34588 #* X2 #+ 5872 #* X3 #+ 59422 #* X5 #+ 65159 #* X7
#= 1547604 #+ 30704 #* X4 #+ 29649 #* X6,
0 #+ 98957 #* X2 #+ 83634 #* X3 #+ 69966 #* X4 #+ 62038 #* X5 #+ 37164 #* X6

#+ 85413 #* X7
#= 1823553 #+ 93989 #* X1,
900032 #+ 10949 #* X1 #+ 77761 #* X2 #+ 67052 #* X5
#= 0 #+ 80197 #* X3 #+ 61944 #* X4 #+ 92964 #* X6 #+ 44550 #* X7,
0 #+ 73947 #* X1 #+ 84391 #* X3 #+ 81310 #* X5
#= 1164380 #+ 96253 #* X2 #+ 44247 #* X4 #+ 70582 #* X6 #+ 33054 #* X7,
0 #+ 13057 #* X3 #+ 42253 #* X4 #+ 77527 #* X5 #+ 96552 #* X7
#= 1185471 #+ 60152 #* X1 #+ 21103 #* X2 #+ 97932 #* X6,
1394152 #+ 66920 #* X1 #+ 55679 #* X4
#= 0 #+ 64234 #* X2 #+ 65337 #* X3 #+ 45581 #* X5 #+ 67707 #* X6 #+ 98038 #* X7,
0 #+ 68550 #* X1 #+ 27886 #* X2 #+ 31716 #* X3 #+ 73597 #* X4 #+ 38835 #* X7
#= 279091 #+ 88963 #* X5 #+ 76391 #* X6,
0 #+ 76132 #* X2 #+ 71860 #* X3 #+ 22770 #* X4 #+ 68211 #* X5 #+ 78587 #* X6
#= 480923 #+ 48224 #* X1 #+ 82817 #* X7,
519878 #+ 94198 #* X2 #+ 87234 #* X3 #+ 37498 #* X4
#= 0 #+ 71583 #* X1 #+ 25728 #* X5 #+ 25495 #* X6 #+ 70023 #* X7,
361921 #+ 78693 #* X1 #+ 38592 #* X5 #+ 38478 #* X6
#= 0 #+ 94129 #* X2 #+ 43188 #* X3 #+ 82528 #* X4 #+ 69025 #* X7,

labeling Label LD

The next goal uses the first-fail labeling strategy:

Toy(FD)> equation10 [ff] L
{ L -> [6, 0, 8, 4, 9, 3, 9] }
Elapsed time: 32 ms.

more solutions (y/n/d) [y]?
no.
Elapsed time: 15 ms.

Another version considers 20 linear equations with the same number of finite domain variables
and related domains.

include "cflpfd.toy"

equation20 :: [labelingType] -> [int] -> bool equation20 Label LD =
true <==

174

LD == [X1,X2,X3,X4,X5,X6,X7],
domain LD 0 10 ,
876370 #+ 16105 #* X1 #+ 6704 #* X3 #+ 68610 #* X6
#= 0 #+ 62397 #* X2 #+ 43340 #* X4 #+ 95100 #* X5 #+ 58301 #* X7,
533909 #+ 96722 #* X5
#= 0 #+ 51637 #* X1 #+ 67761 #* X2 #+ 95951 #* X3 #+ 3834 #* X4 #+ 59190 #* X6

#+ 15280 #* X7,
915683 #+ 34121 #* X2 #+ 33488 #* X7
#= 0 #+ 1671 #* X1 #+ 10763 #* X3 #+ 80609 #* X4 #+ 42532 #* X5 #+ 93520 #* X6,
129768 #+ 11119 #* X2 #+ 38875 #* X4 #+ 14413 #* X5 #+ 29234 #* X6
#= 0 #+ 71202 #* X1 #+ 73017 #* X3 #+ 72370 #* X7,
752447 #+ 58412 #* X2
#= 0 #+ 8874 #* X1 #+ 73947 #* X3 #+ 17147 #* X4 #+ 62335 #* X5 #+ 16005 #* X6

#+ 8632 #* X7,
90614 #+ 18810 #* X3 #+ 48219 #* X4 #+ 79785 #* X7
#= 0 #+ 85268 #* X1 #+ 54180 #* X2 #+ 6013 #* X5 #+ 78169 #* X6,
1198280 #+ 45086 #* X1 #+ 4578 #* X3
#= 0 #+ 51830 #* X2 #+ 96120 #* X4 #+ 21231 #* X5 #+ 97919 #* X6 #+ 65651 #* X7,
18465 #+ 64919 #* X1 #+ 59624 #* X4 #+ 75542 #* X5 #+ 47935 #* X7
#= 0 #+ 80460 #* X2 #+ 90840 #* X3 #+ 25145 #* X6,
0 #+ 43525 #* X2 #+ 92298 #* X3 #+ 58630 #* X4 #+ 92590 #* X5
#= 1503588 #+ 43277 #* X1 #+ 9372 #* X6 #+ 60227 #* X7,
0 #+ 47385 #* X2 #+ 97715 #* X3 #+ 69028 #* X5 #+ 76212 #* X6
#= 1244857 #+ 16835 #* X1 #+ 12640 #* X4 #+ 81102 #* X7,
0 #+ 31227 #* X2 #+ 93951 #* X3 #+ 73889 #* X4 #+ 81526 #* X5 #+ 68026 #* X7
#= 1410723 #+ 60301 #* X1 #+ 72702 #* X6,
0 #+ 94016 #* X1 #+ 35961 #* X3 #+ 66597 #* X4
#= 25334 #+ 82071 #* X2 #+ 30705 #* X5 #+ 44404 #* X6 #+ 38304 #* X7,
0 #+ 84750 #* X2 #+ 21239 #* X4 #+ 81675 #* X5
#= 277271 #+ 67456 #* X1 #+ 51553 #* X3 #+ 99395 #* X6 #+ 4254 #* X7,
0 #+ 29958 #* X2 #+ 57308 #* X3 #+ 48789 #* X4 #+ 4657 #* X6 #+ 34539 #* X7
#= 249912 #+ 85698 #* X1 #+ 78219 #* X5,
0 #+ 85176 #* X1 #+ 57898 #* X4 #+ 15883 #* X5 #+ 50547 #* X6 #+ 83287 #* X7
#= 373854 #+ 95332 #* X2 #+ 1268 #* X3,
0 #+ 87758 #* X2 #+ 19346 #* X4 #+ 70072 #* X5 #+ 44529 #* X7
#= 740061 #+ 10343 #* X1 #+ 11782 #* X3 #+ 36991 #* X6,
0 #+ 49149 #* X1 #+ 52871 #* X2 #+ 56728 #* X4
#= 146074 #+ 7132 #* X3 #+ 33576 #* X5 #+ 49530 #* X6 #+ 62089 #* X7,
0 #+ 29475 #* X2 #+ 34421 #* X3 #+ 62646 #* X5 #+ 29278 #* X6
#= 251591 #+ 60113 #* X1 #+ 76870 #* X4 #+ 15212 #* X7,
22167 #+ 29101 #* X2 #+ 5513 #* X3 #+ 21219 #* X4
#= 0 #+ 87059 #* X1 #+ 22128 #* X5 #+ 7276 #* X6 #+ 57308 #* X7,
821228 #+ 76706 #* X1 #+ 48614 #* X6 #+ 41906 #* X7
#= 0 #+ 98205 #* X2 #+ 23445 #* X3 #+ 67921 #* X4 #+ 24111 #* X5,

175

labeling Label LD

And a goal for this program:

Toy(FD)> equation20 [ff] L
{ L -> [1, 4, 6, 6, 6, 3, 1] }
Elapsed time: 16 ms.

more solutions (y/n/d) [y]?
no.
Elapsed time: 47 ms.

A.7.3 DNA Sequencing (dna.toy)

In this section, we show a simplified version of restriction site mapping (RSM) taken from
[17]. A DNA sequence is a finite string over the elements {A,C,G,T}. An enzyme partitions
a DNA sequence into certain fragments. The problem consists of reconstructing the original
DNA sequence from the fragments and other information taken from experiments. To keep the
problem concise, we consider a simplification of this problem, which only deals with the length
of the fragments, instead of the fragments themselves.
Consider the use of two enzymes. The first enzyme partitions the DNA sequence into A1,...,AN

and the second into B1,...,BM . A simultaneous use of the two enzymes also produces a partition
into D1,...,DK , which corresponds to the combination of the previous two partitions, that is: ∀i
∃j: A1...Ai = D1...Dj ∧ ∀i ∃j: B1...Bi = D1...Dj and, conversely, ∀j ∃i: D1...Dj =
A1...Ai ∨ D1...Dj = B1...Bi, where ‘A1...Ai’ denotes the sequence of fragments A1 to Ai, and
‘=’ denotes syntactic equality.
Let ai (bi and di, resp.) denote the length of Ai (Bi and Di, resp.). Let ai denote the subsequence
a1 . . . ai, 1 ≤ i ≤ N (and similarly for bi and di)
The problem is stated as follows: given the multisets a = {a1,...,aN}, b = {b1,...,bN}, and d
= {d1,...,dN}, construct the sequences aN = a1...aN, bM = b1...bM , and dK = d1...dK .
The algorithm to solve this problem generates d1, d2, ... in order, and extends the partitions
for a and b using the following invariant property which can be obtained from the problem
definition above. Either

• dk is aligned with ai, that is, d1 + · · · + dk = a1 + · · · + ai, or

• dk is aligned with bj , but not with ai, (for simplicity, we assume we never have all three
partitions aligned except at the beginning and at the end), that is, d1 + · · · + dk = a1

+ · · · + ai.

The following Boolean function solve/6 takes three input lists representing a, b, and d, in its
three first arguments respectively. The output represents the possibilities to construct d from
the fragments taken from a, and b.

include "cflpfd.toy"

solve :: [int] -> [int] -> [int] -> [int] -> [int] -> [int] -> bool
solve A B D [AF|MA] [BF|MB] [DF|MD] :-

176

choose_initial A B D AF BF DF A2 B2 D2,
rsm A2 B2 D2 AF BF DF MA MB MD

rsm :: [int] -> [int] -> [int] -> int -> int -> int -> [int] ->
[int] -> [int] -> bool rsm [] [] [] LenA LenB LenD [] [] [] = true

rsm A B D LenA LenB LenA [Ai|MA] MB [Dk|MD] :-
LenA #< LenB,
Dk #<= LenB #- LenA, Ai #>= Dk,
choose Ai A == A2, choose Dk D == D2,
NLenA #= LenA #+ Ai, NLenD #= LenA #+ Dk,
rsm A2 B D2 NLenA LenB NLenD MA MB MD

rsm A B D LenA LenB LenB MA [Bj|MB] [Dk|MD] :-
LenB #< LenA,
Dk #<= LenA #- LenB, Bj #>= Dk,
choose Dk D == D2, choose Bj B == B2,
NLenB #= LenB #+ Bj, NLenD #= LenB #+ Dk,
rsm A B2 D2 LenA NLenB NLenD MA MB MD

choose_initial :: [int] -> [int] -> [int] -> int -> int -> int ->
[int] -> [int] -> [int] -> bool choose_initial A B D AF BF DF A2 B2
D2 :-

choose AF A == A2,
choose BF B == B2,
choose DF D == D2

choose :: int -> [int] -> [int] choose X [] = [] choose Ai [Ai|A2] =
A2 choose Ai [A1, A2|A] = [A1|choose Ai [A2|A]]

For instance, one goal for this program could be:

Toy(FD)> solve [3,2,4,5,9] [7,8] [3,2,3,4,2,2,3,4] L1 L2 L3
{ L1 -> [4, 2, 5, 9, 3],
L2 -> [8, 7, 3, _A],
L3 -> [4, 2, 2, 3, 4, 3, 2, 3] }

{ 18 #+ _A #= _B #+ 20,
_B in 3..sup,
_A in 5..sup }

Elapsed time: 31 ms.
sol.1, more solutions (y/n/d/a) [y]? n

which means that L1 (L2 resp.) constructs L3 by aligning the fragments as the following table
indicates:

177

L1 L3 L2 L3
4 4 8 4,2,2
2 2 7 3,4
5 2,3 3 3
9 4,3,2 5 2,3
3 3

In the program code, rsm/9 provides the choice of partitioning with either one of the two
available enzymes. The last three arguments hold the length of the subsequences found so far.
The function choose initial/9 chooses the first fragment and the first call to rsm is made with
this invariant holding. Finally, the procedure choose/2 deletes some element from the given list
and returns the resultant list.
Note that the Boolean functions solve/6, rsm/9, and choose initial/9 have been written in
a Prolog-like fashion, thanks to the syntactic sugaring allowed in our system, whereas choose/2
has been written as a function which returns the list resulting from deleting an element of its
input list.

A.7.4 A Scheduling Problem (scheduling.toy)

Here, we consider the problem of scheduling tasks that require resources to complete, and have
to fulfill precedence constraints1. Figure A.3 shows a precedence graph for six tasks which are
labelled as tXY

mZ , where X stands for the identifier of a task t, Y for its time to complete
(duration), and Z for the identifier of a machine m (a resource needed for performing task tX).

3
11PW

4
26PW

3
25PW 8

13PW

6
24PW

8
12PW

Figure A.3: Precedence Graph.

The following program (included in the distribution in the directory Examples in the file
scheduling.toy) models the posed scheduling problem. Observe in the syntax that function
arguments are not enclosed in parentheses to allow higher order applications. Also, syntactic
sugar is provided for expressing Boolean functions à la Prolog. The rules that define a function
follow its type declaration. The type declaration consists of the types for each argument and
for the result separated by ->. Lists adhere to the syntax as Prolog lists and int is a predefined
type for the integers. Note also functional applications in arguments, such as (End-D) in the
second rule defining horizon. (Logic) Variables start with uppercase, whereas the remaining
symbols start with lowercase.

1Adapted from [27].

178

include "cflpfd.toy"
include "misc.toy"

data taskName = t1 | t2 | t3 | t4 | t5 | t6
data resourceName = m1 | m2
type durationType = int
type startType = int
type precedencesType = [taskName]
type resourcesType = [resourceName]
type task = (taskName, durationType, precedencesType, resourcesType, startType)

start :: task -> int
start (Name, Duration, Precedences, Resources, Start) = Start

duration :: task -> int
duration (Name, Duration, Precedences, Resources, Start) = Duration

schedule :: [task] -> int -> int -> bool
schedule TL Start End = true <== horizon TL Start End, scheduleTasks TL TL

horizon :: [task] -> int -> int -> bool
horizon [] S E = true
horizon [(N, D, P, R, S)|Ts] Start End = true <==

domain [S] Start (End#-D),
horizon Ts Start End

scheduleTasks :: [task] -> [task] -> bool
scheduleTasks [] TL = true
scheduleTasks [(N, D, P, R, S)|Ts] TL = true <==

precedeList (N, D, P, R, S) P TL,
requireList (N, D, P, R, S) R TL,
scheduleTasks Ts TL

precedeList :: task -> [taskName] -> [task] -> bool
precedeList T [] TL = true
precedeList T1 [TN|TNs] TL = true <== member (TN, D, P, R, S) TL,

precedes T1 (TN, D, P, R, S),
precedeList T1 TNs TL

precedes :: task -> task -> bool
precedes T1 T2 = true <== ST1 == start T1,

DT1 == duration T1,
ST2 == start T2,
ST1 #+ DT1 #<= ST2

requireList :: task -> [resourceName] -> [task] -> bool
requireList T [] TL = true
requireList T [R|Rs] TL = true <== requires T R TL, requireList T Rs TL

179

requires :: task -> resourceName -> [task] -> bool
requires T R [] = true
requires (N1, D1, P1, R1, S1) R [(N2, D2, P2, R2, S2)|Ts] = true <== N1 /= N2,

member R R2,
noOverlaps (N1, D1, P1, R1, S1) (N2, D2, P2, R2, S2),
requires (N1, D1, P1, R1, S1) R Ts

requires T1 R [T2|Ts] = true <== requires T1 R Ts

noOverlaps :: task -> task -> bool
noOverlaps T1 T2 = true <== precedes T1 T2
noOverlaps T1 T2 = true <== precedes T2 T1

A task is modelled (via the type task) as a 5-tuple which holds its name, duration, list of
precedence tasks, list of required resources, and the start time. Two functions for accessing the
start time and duration of a task are provided (start and duration, respectively) that are used
by the function precedes. This last function imposes the precedence constraint between two
tasks. The function requireList imposes the constraints for tasks requiring resources, i.e., if
two different tasks require the same resource, they cannot overlap. The function noOverlaps
states that for two non overlapping tasks t1 and t2, either t1 precedes t2 or vice versa. The main
function is schedule, which takes three arguments: a list of tasks to be scheduled, the scheduling
start time, and the maximum scheduling final time. These last two arguments represent the time
window that has to fit the scheduling. The time window is imposed via domain pruning for each
task’s start time (a task cannot start at a time so that its duration makes its end time greater
than the end time of the window; this is imposed with the function horizon). The function
scheduleTasks imposes the precedence and requirement constraints for all of the tasks in the
scheduling. Precedence constraints and requirement constraints are imposed by the functions
precedeList and requireList, respectively.
With this model, we can declare for example a function that defines the solution to the problem.

sched :: startType -> startType -> startType -> startType ->
startType -> startType -> bool

sched S1 S2 S3 S4 S5 S6 :-
Tasks == [(t1,3,[t5,t6],[m1],S1),

(t2,8,[],[m1],S2),
(t3,8,[],[m1],S3),
(t4,6,[t3],[m2],S4),
(t5,3,[t3],[m2],S5),
(t6,4,[],[m2],S6)],

schedule Tasks 1 20,
labeling [ff] [S1,S2,S3,S4,S5,S6]

where Tasks defines the set of tasks. Observe that the problem for a possible scheduling is
limited to time window (1,20) by the goal schedule Tasks 1 20. An example of goal solving
is given next:

Toy(FD)> sched S1 S2 S3 S4 S5 S6

180

{ S1 -> 1,
S2 -> 4,
S3 -> 12,
S4 -> 1,
S5 -> 7,
S6 -> 10 }

Elapsed time: 31 ms.
more solutions (y/n/d) [y]?

{ S1 -> 1,
S2 -> 4,
S3 -> 12,
S4 -> 1,
S5 -> 7,
S6 -> 11 }

Elapsed time: 0 ms.
more solutions (y/n/d) [y]? n

A.7.5 A Hardware Design Problem

A more interesting example comes from the hardware arena. In this setting, many constrained
optimization problems arise in the design of both sequential and combinational circuits as well
as the interconnection routing between components. Constraint programming has been shown
to effectively attack these problems. In particular, the interconnection routing problem (one of
the major tasks in the physical design of very large scale integration - VLSI - circuits) have been
solved with constraint logic programming [40].
For the sake of conciseness and clarity, we focus on a constraint combinational hardware problem
at the logical level but adding constraints about the physical factors the circuit has to meet.
This problem will show some of the nice features of T OY for specifying issues such as behavior,
topology and physical factors.
Our problem can be stated as follows. Given a set of gates and modules, a switching function,
and the problem parameters maximum circuit area, power dissipation, cost, and delay (dynamic
behavior), the problem consists of finding possible topologies based on the given gates and
modules so that a switching function and constraint physical factors are met. In order to have
a manageable example, we restrict ourselves to the logical gates NOT, AND, and OR. We also
consider circuits with three inputs and one output, and the physical factors aforementioned. We
suppose also the following problem parameters:

Gate Area Power Cost Delay
NOT 1 1 1 1
AND 2 2 1 1
OR 2 2 2 2

In the sequel we will introduce the problem by first considering the features T OY offers for
specifying logical circuits, what are its weaknesses, and how they can effectively be solved with
the integration of constraints in T OY(FD) .

181

FLP Simple Circuits (circuit.toy)

With this example we show the FLP approach that can be followed for specifying the problem
stated above. We use patterns to provide an intensional representation of functions. The alias
behavior is used for representing the type bool → bool → bool → bool. Functions of this
type are intended to represent simple circuits which receive three Boolean inputs and return a
Boolean output. Given the Boolean functions not, and, and or defined elsewhere, we specify
three-input, one-output simple circuits as follows.

i0 :: behavior
i0 I2 I1 I0 = I0

i1 :: behavior
i1 I2 I1 I0 = I1

i2 :: behavior
i2 I2 I1 I0 = I2

notGate :: behavior -> behavior
notGate B I2 I1 I0 = not (B I2 I1 I0)

andGate, orGate :: behavior -> behavior -> behavior
andGate B1 B2 I2 I1 I0 = and (B1 I2 I1 I0) (B2 I2 I1 I0)
orGate B1 B2 I2 I1 I0 = or (B1 I2 I1 I0) (B2 I2 I1 I0)

Functions i0, i1, and i2 represent inputs to the circuits, that is, the minimal circuit which just
copies one of the inputs to the output. (In fact, this can be thought as a fixed multiplexer -
selector.) They are combinatorial modules as depicted in Figure A.4. The function notGate
outputs a Boolean value which is the result of applying the NOT gate to the output of a circuit
of three inputs. In turn, functions andGate and orGate output a Boolean value which is the
result of applying the AND and OR gates, respectively, to the outputs of three-input circuits
(see Figure A.4).
These functions can be used in a higher-order fashion just to generate or match topologies.
In particular, the higher-order functions notGate, andGate and orGate take behaviors as pa-
rameters and build new behaviors, corresponding to the logical gates NOT, AND and OR. For
instance, the multiplexer depicted in Figure A.5 can be represented by the following pattern:

orGate (andGate i0 (notGate i2)) (andGate i1 i2).

This first-class citizen higher-order pattern can be used for many purposes. For instance, it can
be compared to another pattern or it can be applied to actual values for its inputs in order to
compute the circuit output. So, with the previous pattern, the goal:

Toy(FD) > P == orGate (andGate i0 (notGate i2)) (andGate i1 i2),
P true false true == O

182

$QG�*DWH
0RGXOH

%�

%�

2U�*DWH
0RGXOH

%�

%�

1RW�*DWH
0RGXOH

%

,QSXW��
0RGXOH

,QSXW��
0RGXOH

,QSXW��
0RGXOH

Figure A.4: Basic Modules.

0

1
s

L�

L�

L�

L�

L�

L�

Symbol Sum of products equivalence

Figure A.5: Two-Input Multiplexer Circuit.

is evaluated to true and produces the substitution O == false. The rules that define the
behavior can be used to generate circuits, which can be restricted to satisfy some conditions.
If we use the standard arithmetics, we could define the following set of rules for computing or
limiting the power dissipation.

power :: behavior -> int
power i0 = 0
power i1 = 0
power i2 = 0
power (notGate C) = notGatePower + (power C)
power (andGate C1 C2) = andGatePower + (power C1) + (power C2)
power (orGate C1 C2) = orGatePower + (power C1) + (power C2)

Then, we can submit the goal power B == P, P < maxPower (provided the function maxPower
acts as a problem parameter that returns just the maximum power allowed for the circuit) in
which the function power is used as a behavior generator2. As outcome, we get several solutions
B==i0, P==0,
B==i1, P==0,
B==i2, P==0,

2Equivalently and more concisely, power B < maxPower could be submitted, but doing so we make the power
unobservable.

183

B==not i0, P==1,
. . .,
B==not (not i0), P==2,
Declaratively, it is fine; but our operational semantics requires a head normal form for the
application of the arithmetic operand +. This implies that we reach no more solutions beyond
not (. . . (not i0) . . .), because the application of the fourth rule of power yields to an infinite
computation. This drawback is solved by resorting to Peano’s arithmetics, that is:

data nat = z | s nat

plus :: nat -> nat -> nat
plus z Y = Y
plus (s X) Y = s (plus X Y)

less :: nat -> nat -> bool
less (s X) (s Y) = less X Y
less z (s X) = true

power’ :: behavior -> nat
power’ i0 = z
power’ i1 = z
power’ i2 = z
power’ (notGate C) = plus notGatePower (power’ C)
power’ (andGate C1 C2) = plus andGatePower (plus (power’ C1) (power’ C2))
power’ (orGate C1 C2) = plus orGatePower (plus (power’ C1) (power’ C2))

So, we can submit the goal less (power’ P) (s (s (s z))), where we have written down
explicitly the maximum power (3 power units).
With this the second approach we get a more awkward representation due to the use of suc-
cessor arithmetics. The first approach to express this problem is indeed more declarative than
the second one, but we get non-termination. FD constraints can be profitably applied to the
representation of this problem as we show in the next example.

Simple Circuits with FD Constraints (circuitFD.pl)

As for any constraint problem, modelling can be started by identifying the FD constraint vari-
ables. Recalling the problem specification, circuit limitations refer to area, power dissipation,
cost, and delay. Provided we can choose finite units to represent these factors, we choose them as
problem variables. A circuit can therefore be represented by the 4-tuple state 〈area, power, cost,
delay〉. The idea to formulate the problem consists of attaching this state to an ongoing circuit
so that state variables reflect the current state of the circuit during its generation. By contrast
with the first example, we do not “generate” and then “test”, but we “test” when “generating”,
so that we can find failure in advance. A domain variable has a domain attached indicating the
set of possible assignments to the variable. This domain can be reduced during the computa-
tion. Since domain variables are constrained by limiting factors, during the generation of the

184

circuit a domain may become empty. This event prunes the search space avoiding to explore a
branch known to yield no solution. Let’s firstly focus on the area factor. The following function
generates a circuit characterized by its state variables.

type area, power, cost, delay = int
type state = (area, power, cost, delay)
type circuit = (behavior, state)
genCir :: state -> circuit
genCir (A, P, C, D) = (i0,(A, P, C, D))
genCir (A, P, C, D) = (i1,(A, P, C, D))
genCir (A, P, C, D) = (i2,(A, P, C, D))
genCir (A, P, C, D) = (notGate B, (A, P, C, D)) <==

domain [A] ((fd_min A) + notGateArea) (fd_max A),
genCir (A, P, C, D) == (B, (A, P, C, D))

genCir (A, P, C, D) = (andGate B1 B2, (A, P, C, D)) <==
domain [A] ((fd_min A) + andGateArea) (fd_max A),
genCir (A, P, C, D) == (B1, (A, P, C, D)),
genCir (A, P, C, D) == (B2, (A, P, C, D))

genCir (A, P, C, D) = (orGate B1 B2, (A, P, C, D)) <==
domain [A] ((fd_min A) + orGateArea) (fd_max A),
genCir (A, P, C, D) == (B1, (A, P, C, D)),
genCir (A, P, C, D) == (B2, (A, P, C, D))

The function genCir has an argument to hold the circuit state and returns a circuit characterized
by a behavior and a state. (Note that we can avoid the use of the state tuple as a parameter,
since it is included in the result.) The template of this function is like the previous example. The
difference lies in that we perform domain pruning during circuit generation with the membership
constraint domain, so that each time a rule is selected, the domain variable representing area
is reduced in the size of the gate selected by the operational mechanism. For instance, the
circuit area domain is reduced in a number of notGateArea when the rule for notGate has
been selected. For domain reduction we use the reflection functions fd_min and fd_max. This
approach allows us to submit the following goal:

domain [Area] 0 maxArea, genCir (Area, Power, Cost, Delay) == Circuit

which initially sets the possible range of area between 0 and the problem parameter area ex-
pressed by the function maxArea, and then generates a Circuit. Recall that testing is performed
during search space exploration, so that termination is ensured because the add operation is
monotonic. The mechanism which allows this “test” when “generating” is the set of propaga-
tors, which are concurrent processes that are triggered whenever a domain variable is changed
(pruned). The state variable delay is more involved since one cannot simply add the delay of
each function at each generation step. The delay of a circuit is related to the maximum number
of levels an input signal has to traverse until it reaches the output. This is to say that we cannot
use a single domain variable for describing the delay. Therefore, considering a module with
several inputs, we must compute the delay at its output by computing the maximum delays

185

from its inputs and adding the module delay. So, we use new fresh variables for the inputs of
a module being generated and assign the maximum delay to the output delay. This solution is
depicted in the following function:

genCirDelay :: state -> delay -> circuit
genCirDelay (A, P, C, D) Dout = (i0, (A, P,C, D))
genCirDelay (A, P, C, D) Dout = (i1, (A, P, C, D))
genCirDelay (A, P, C, D) Dout = (i2, (A, P, C, D))
genCirDelay (A, P, C, D) Dout = (notGate B, (A, P, C, D)) <==

domain [Dout] ((fd_min Dout) + notGateDelay) (fd_max Dout),
genCirDelay (A, P, C, D) Dout == (B, (A, P, C, D))

genCirDelay (A, P, C, D) Dout = (andGate B1 B2, (A, P, C, D)) <==
domain [Din1, Din2] ((fd_min Dout) + andGateDelay)(fd_max Dout),
genCirDelay (A, P, C, D) Din1 == (B1, (A, P, C, D)),
genCirDelay (A, P, C, D) Din2 == (B2, (A, P, C, D)),
domain [Dout] (maximum (fd_min Din1)(fd_min Din2)) (fd_max Dout)

genCirDelay (A, P, C, D) Dout = (orGate B1 B2, (A, P, C, D)) <==
domain [Din1, Din2] ((fd_min Dout) + orGateDelay) (fd_max Dout),
genCirDelay (A, P, C, D) Din1 == (B1, (A, P, C, D)),
genCirDelay (A, P, C, D) Din2 == (B2, (A, P, C, D)),
domain [Dout] (maximum (fd_min Din1)(fd_min Din2)) (fd_max Dout)

Observing the rules for the AND and OR gates, we can see two new fresh domain variables for
representing the delay in their inputs. These new variables are constrained to have the domain
of the delay in the output but pruned with the delay of the corresponding gate. After the
circuits connected to the inputs had been generated, the domain of the output delay is pruned
with the maximum of the input module delays. Note that although the maximum is computed
after the input modules had been generated, the information in the given output delay has
been propagated to the input delay domains so that whenever an input delay domain becomes
empty, the search branch is no longer searched and another alternative is tried. Putting together
the constraints about area, power dissipation, cost, and delay is straightforward, since they are
orthogonal factors that can be handled in the same way. In addition to the constraints shown, we
can further constrain the circuit generation with other factors as fan-in, fan-out, and switching
function enforcement, to name a few. Then, we could submit the following goal:

domain [A] 0 maxArea, domain [P] 0 maxPower, domain [C] 0 maxCost,
domain [D] 0 maxDelay, genCir (A,P,C,D) == (B, S), switchingFunction B == sw

where switchingFunction can be defined as the switching function that returns the result of
a behavior B for all its input combinations, and sw is the function that returns the intended
result (sw is referred to as a problem parameter, as well as maxArea, maxPower, maxCost, and
maxDelay).

data functionality = [bool]
switchingFunction :: behavior -> functionality
switchingFunction Behavior = [Out1,Out2,Out3,Out4,Out5,Out6,Out7,Out8] <==

186

(Behavior false false false) == Out1,
(Behavior false false true) == Out2,
(Behavior false true false) == Out3,
(Behavior false true true) == Out4,
(Behavior true false false) == Out5,
(Behavior true false true) == Out6,
(Behavior true true false) == Out7,
(Behavior true true true) == Out8

Then, to generate a NOR circuit with maxArea, maxPower, maxCost and maxDelay equal 6, we
could submit the following goal:

domain [A, P, C, D] 0 6, genCir (A,P,C,D) == (B, S),
switchingFunction B == [true,false,false,false,false,false,false,false]

An example of generating a NOR circuit is shown next:

Toy(FD)> F==[true,false,false,false,false,false,false,false],
genCircuit 6 6 6 6 F == CIRCUIT

{ F -> [true, false, false, false, false, false, false, false],
CIRCUIT -> ((notGate (orGate i0 (orGate i1 i2))), (_A, _B, _C, _D)) }

{ _A in 5..6,
_B in 5..6,
_C in 5..6,
_D in 5..6 }

Elapsed time: 5312 ms.
sol.1, more solutions (y/n/d/a) [y]?

{ F -> [true, false, false, false, false, false, false, false],
CIRCUIT -> ((notGate (orGate i0 (orGate i2 i1))), (_A, _B, _C, _D)) }

{ _A in 5..6,
_B in 5..6,
_C in 5..6,
_D in 5..6 }

Elapsed time: 32 ms.
sol.2, more solutions (y/n/d/a) [y]?

... up to 24 solutions

The solutions shown above to the problem are included in the distribution.

A.7.6 Golomb Rulers: An Optimization Problem (golomb.toy)

A Golomb ruler is a class of undirected graphs that, unlike usual rulers, measures more discrete
lengths than the number of marks it carries. Its particularity is that on any given ruler, all
differences between pairs of marks are unique. This feature makes Golomb Rulers to be really

187

interesting for practical applications such as radio astronomy, X-ray crystallography, circuit
layout, geographical mapping, radio communications, and coding theory.
Traditionally, researchers are usually interested in discovering rulers with minimum length and
Golomb rulers are not an exception. An Optimal Golomb Ruler (OGR) is defined as the shortest
Golomb ruler for a number of marks. OGRs may be multiple for a specific number of marks.
However, the search for OGRs is a task extremely difficult as this is a combinatorial problem
whose bounds grow geometrically with respect to the solution size [34]. This has been a major
limitation as each new ruler to be discovered is by necessity larger than its predecessor. Fortu-
nately, the search space is bounded and, therefore, solvable [18]. To date, the highest Golomb
ruler whose shortest length is known is the ruler with 23 marks [35]. Solutions to OGRs with
a number of marks between 10 and 19 were obtained by very specialized techniques, and best
solutions for OGRs between 20 and 23 marks were obtained by massive parallelism projects
(these solutions took several months to be found) [35].
T OY(FD) enables the solving of optimization problems by using the function labeling with
the value toMinimize X and/or toMaximize X (these values are intended for the minimization
and maximization, respectively, of an FD variable X). Below, we show a T OY(FD) program to
solve OGRs with N marks.

golomb :: int -> [int] -> bool
golomb N L = true <==

hasLength L N,
NN == trunc(2^(N-1)) - 1,
domain L 0 NN,
append [0|_] [Xn] == L,
distances L Diffs,
domain Diffs 1 NN,
all_different Diffs,
append [D1|_] [Dn] == Diffs,
D1 #< Dn,
labeling [toMinimize Xn] L

distances :: [int] -> [int] -> bool
distances [] [] = true
distances [X|Ys] D0 = true <== distancesB X Ys D0 D1, distances Ys D1

distancesB :: int -> [int] -> [int] -> [int] -> bool
distancesB _ [] D D = true
distancesB X [Y|Ys] [Diff|D1] D0 = true <== Diff #= Y#-X, distancesB X Ys D1 D0

The next goal solves a rule for N = 12 marks.

Toy(FD)> golomb 12 L
{ L <- [0,2,6,24,29,40,43,55,68,75,76,85] }

T OY(FD) solves 10-marks OGRs in 17 seconds and 12-marks OGRs in 10,918 seconds (i.e.,
about three hours), in a Pentium 1.4 Ghz under Windows. See [9] for performance results.

188

A.7.7 Lazy Constraint Programs

A very powerful characteristic of T OY(FD) is lazy evaluation of goals (to our knowledge,
T OY(FD) is the first constraint programming language providing laziness in the solving of
goals). In this section, we show some examples of programs that combine FD constraint solving
and lazy evaluation.

Lazy Magic Series (lazymagicser.toy)

Now we present a lazy solution for the problem of the magic series problem that was already
treated in Section 3.3.5. With this new solution we illustrate some of the extra capabilities of
the CFLP (FD) approach of T OY(FD)with respect to the traditional CLP (FD) approach.

include "misc.toy" %% To use take/2, map/2 and ./2
include "cflpfd.toy"

generateFD :: int -> [int]
generateFD N = [X | generateFD N] <== domain [X] 0 (N-1)

lazymagic :: int -> [int]
lazymagic N = L <==

take N (generateFD N) == L, %% Lazy evaluation
constrain L L 0 Cs,
sum L (#=) N, %% HO FD constraint
scalar_product Cs L (#=) N, %% HO FD constraint
labeling [ff] L

constrain :: [int] -> [int] -> int -> [int] -> bool
constrain [] A B [] = true
constrain [X|Xs] L I [I|S2] = true <==

count I L (#=) X, %% HO FD constraint
I1 == I+1,
constrain Xs L I1 S2

The goal lazymagic N, for some natural number N, returns the N-magic series. Observe the lazy
evaluation of the condition take N (generateFD N) as (generateFD N) produces an infinite
list (as it was shown above). A possible goal is as follows:

Toy(FD)> > lazymagic 10
[6, 2, 1, 0, 0, 0, 1, 0, 0, 0]

Elapsed time: 48 ms.

Alternative solutions and more flexibility can be reached in T OY with FD constraints. For
instance, a more interesting case consists of returning a list of solutions for a (possibly infinite)
set of different instances of the problem. This can be done, for example, from a number N that

189

identified the first instance of the problem. Now we can make use of the concept of infinite lists
by defining the following function.

magicfrom :: int -> [[int]]
magicfrom N = [lazymagic N|magicfrom(N+1)]

Now, it is easy to generate a list of N-magic series. For example, the following goal generates
a 3-element list containing, respectively, the solution to the problems of 7-magic, 8-magic and
9-magic series3.

Toy(FD)> take 3 (magicfrom 7) == L
{ L -> [[3, 2, 1, 1, 0, 0, 0], [4, 2, 1, 0, 1, 0, 0, 0],

[5, 2, 1, 0, 0, 1, 0, 0, 0]] }
Elapsed time: 141 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

More expressiveness is shown by mixing curried functions, HO functions, infinite lists and func-
tion composition (another nice feature from the functional component of T OY). For example,
consider the code below: :

from :: int -> [int]
from N = [N|from (N+1)]

lazyseries :: int -> [[int]]
lazyseries = map lazymagic.from

where the operator ‘.’ defines the composition of functions as follows (again, the function ./2
is predefined in the file misc.toy):

(.):: (B -> C) -> (A -> B) -> (A -> C) (F . G) X = F (G X)

Observe that lazyseries curries the composition (map lazymagic).from. Then, it is easy to
generate the 3-element list shown above by just typing the goal

Toy(FD)> take 3 (lazyseries 7) == L
{ L -> [[3, 2, 1, 1, 0, 0, 0], [4, 2, 1, 0, 1, 0, 0, 0],

[5, 2, 1, 0, 0, 1, 0, 0, 0]] }
Elapsed time: 125 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.

3The function take/2 is predefined in the file misc.toy (see Appendix B).

190

This goal is equivalent to the following

Toy(FD)> take 3 (map lazymagic (from 7)) == L

This simple example gives an idea of the nice features of T OY that combines FD constraint
solving, management of infinite lists and lazy evaluation, curried notation of functions, poly-
morphism, HO functions (and thus HO constraints), composition of functions and a number of
other characteristics that increase the potentialities with respect to CLP (FD).

Pipelines (pipelines.toy)

Pipelines can be a powerful tool to solve heterogeneous constraint satisfaction problems, and
these are easily expressed at a high level in T OY via applying HO constraints and curried
notation. For example, recall the programs Optimal Golomb ruler (OGR), N-queens and client-
server. Then, the goal (for some natural N):

map (map (queens [ff]))(map golomb (requests N)) == L

corresponds directly to the scheme shown in Figure A.6 if we redefine the function process of
Section A.2.5 as process = (+1). The solving of this goal, as in the preceding example of
client-server architecture, generates N answers in the form of a N-elements list A from an initial
request initial = 4; each element ai ∈ A (i.e., each answer of the server with i ∈ {1,...,N}
and ai = initial + i - 1) is used to feed the OGR solver with ai marks producing a new
list S = [sa1,...,saN] containing N solutions for OGRs with marks a1,...,aN. Finally, each
element ok (with k∈{1,...,ai}) belonging to the solution to the OGR with ai marks in S (i.e.,
sai = [o1,...,oai]) feeds the ok-queens solver and the first solution to the ok-queens problem
is computed.
For example, the goal shown above (for N = 2) first calculates the solutions for the OGR with
4 marks (i.e., [0,1,4,6]) and 5 marks (i.e., [0,1,4,9,11]), and feeds the queens solver with
each mark returning the first solution for 0,1,4,6,0,1,4,9 and 11 queens.

Toy(FD)> map (map (queens [ff])) (map golomb (requests 2)) == L
{ L -> [[[], [1], [2, 4, 1, 3], [2, 4, 6, 1, 3, 5]],

[[], [1], [2, 4, 1, 3], [1, 3, 6, 8, 2, 4, 9, 7, 5],
[1, 3, 5, 7, 9, 11, 2, 4, 6, 8, 10]]] }

Elapsed time: 187 ms.
more solutions (y/n/d) [y]? n
This example illustrates how easy and natural may be the combination of different problems in
T OY without adding extra code.

A Tiling Problem (tiling.toy)

This example addresses the problem of tiling a given rectangular region with a set of available
pieces. The simplest piece is a unit square (1 × 1)4. Less simple pieces can be seen as composed
of unit squares. For instance, a 1 × 2 rectangle can be seen as two stacked unit squares.

4X × Y means a rectangle of X horizontal length units by Y vertical length units.

191

4,5,6,7,8,.....

OGR
Solver

0

4

6

OGR

1

0

1

4

9

11

OGR
Solution for

Solution for
4−marks

5−marks

..

.

.

.

....

[]

[1]

[2,4,3,1]

[1,3,6,8,2,4,9,7,5]

[1,3,5,7,9,11,2,4,6,8,10]

[]

[1]

[2,4,3,1]

[2,4,6,1,3,5]

0−Queens solver

1−Queens solver

4−Queens solver

6−Queens solver

0−Queens solver

1−Queens solver

4−Queens solver

9−Queens solver

11−Queens solver

Process..
answers

requests

requests

Client Server

4

5,6,7,8,.........

Figure A.6: Pipeline with Client-Server Architecture

For the sake of easing the presentation, we recourse to one-dimensional coordinates for rep-
resenting the Cartesian plane so that, given a LX × LY region, we identify each coordinate
pair (X, Y) (X ∈ {0, . . . , LX − 1}, Y ∈ {0, . . . , LY − 1}) as X + Y ∗ LX. Assume that, for a
given identifier I, coor(I) = (X, Y) so that I = X + Y ∗ LX. Piece locations are defined by
one-dimensional coordinates.
The idea to specify this problem is to have a finite domain variable R representing the region
to be filled. A number I in the domain of R means that we have room for placing a unit square
at I (i.e., given coor(I) = (X,Y), we can place at I the unit square defined by its borders
(X,Y), (X, Y + 1), (X + 1, Y), (X + 1, Y + 1)). An absent value I from R means that a unit
square is already located at I in the same sense as before. Therefore, we type type region,
location = int.
Pieces located in the plane can be represented by a list of pairs (piece, location). Each
element in this list can be computed by a function returning the name of the piece (its function
symbol) and its location, whose type definition is type piece = ((region -> location),
location).
We can define an infinite list generator of such pairs with indeterministic choice of pieces, as:

pieces :: region -> [piece]
pieces Region = [(Piece,Location)|pieces Region] <==

choose_piece == Piece, Piece Region == Location
pieces Region = []

Note that this function definition embodies lazy evaluation, higher order applications, and con-
straint solving. choose piece returns the function symbols for pieces, and is defined as:

192

choose_piece :: (region -> location)
choose_piece = square1
choose_piece = rectangle1x2 ...

The application of a piece to a region returns possible locations, pruning the region by constraint
solving. For domain pruning, each piece application drops the values it occupies from the region
domain, so that no other piece can be placed in the same location. For instance, the definition
of a unit square is:

square1 :: region -> location
square1 R = L <== domain [L] (fd_min R) (fd_max R),

inbounds L 1 1, free L R, R #\= L

The first condition restricts the domain of the location L of the unit square to that of the region.
Next, a condition tests whether the unit square located at L is not out of bounds (by means
of constraints). Then, if there is room for the unit square (tested by the function free), it is
allocated by the disequality constraint, removing the location L from the domain of R.
The inbounds function is implemented as follows:

inbounds :: location -> int -> int -> bool
inbounds L X Y = true <== (L #mod spaceX) #+ X #< spaceX, %X limit

(L #+ spaceX #* Y) #< spaceY #* spaceX %Y limit

where spaceX and spaceY are problem parameters for imposing the horizontal and vertical
available space. free is implemented via the predefined FD reflection function fdset belongs
L R (see Section 3.2.9). Given the complete program, we can submit goals as:

Toy(FD)> domain [R] 0 15, pieces R == L
{ L -> [(square1, 0), (square1, 1), (square1, 2),

(square1, 4), (square1, 5), (square1, 6),
(square1, 8), (square1, 9), (square1, 10)] }

{ R in{3}\/{7}\/(11..15) }
Elapsed time: 0 ms.

which fills the region R with unit squares. Note that labeling is not needed since fdset belongs
bounds its argument whenever it is not bound. We can also submit the following goal, which
tests whether a region can be filled with at least some pieces:

Toy(FD)> domain [R] 0 15,
pieces R == [(rectangle2x1,L1),(rectangle1x2,L2),(square2,L3)|P]

{ L1 -> 0,
L2 -> 2,
L3 -> 4,
P -> [(square1, 10)] }

{ R in {3}\/{7}\/(11..15) }
Elapsed time: 15 ms.

193

Note that we can request further solutions, obtaining all possible assignments of pieces in the
region, even if the region is not completely filled. If we want to fill the region, we have to ensure
that the region is empty. A straightforward condition is to test that all the available positions
are occupied by pieces (that is, the cardinality of the region domain is the number of points
where pieces cannot be allocated). Given the function empty, defined as follows:

empty :: int -> bool
empty R = (fd_size R #= spaceX + spaceY - 1)

So, we can submit the goal:

Toy(FD)> domain [R] 0 15, pieces R == L, empty R

This problem can be augmented with other constraints, such as the cost of filling the region
with particular costs for each piece. Finally, note that regions to be filled can have any shape
and even they have neither been connected nor convex.

A.7.8 Programmable Search (search.toy)

As an example of practical use of the reflection functions, here we show a two search strategies:
First, a naive one (implemented with the function search naive/1), which selects the variables
to be labeled following the ordering of the input list, and the values in their domains in ascending
order. Second, one of the most popular labeling strategies often supported by most constraint
systems, the so-called first-fail strategy (implemented with the function search ff/1), that
selects the variable to be labeled which has the least number of values in its domain, and selects
the values in their domains again in ascending order.

search_naive :: [int] -> bool
search_naive [] = true
search_naive [X] = false <== empty_fdset (fd_set X)
search_naive [X] = true <== domain [X] (fd_min X) (fd_min X)
search_naive [X] = true <==

Next == (fd_min X) + 1,
domain [X] Next (fd_max X),
search_naive [X]

search_naive [X,X1|Xs] = true <==
search_naive [X],
search_naive [X1],
search_naive Xs

search_ff :: [int] -> bool
search_ff [] = true
search_ff [X] = false <== empty_fdset (fd_set X)
search_ff [X] = true <== domain [X] (fd_min X) (fd_min X)
search_ff [X] = true <==

194

Next == (fd_min X) +1,
domain [X] Next (fd_max X),
search_ff [X]

search_ff [X,X1|Xs] = true <==
choose_min_and_remove [X,X1|Xs] Y Ys,
choose_min_and_remove Ys Y2 Yss,
search_ff [Y],
search_ff [Y2],
search_ff Yss

choose_min_and_remove :: [int] -> int -> [int] -> bool
choose_min_and_remove [X] X [] = true
choose_min_and_remove [X,Y|Ys] M [Y|Rs] = choose_min_and_remove [X|Ys] M Rs <==

fd_set X SX,
fd_set Y SY,
fdset_size SX <= fdset_size SY

choose_min_and_remove [X,Y|Ys] M [X|Rs] = choose_min_and_remove [Y|Ys] M Rs <==
fd_set X SX,
fd_set Y SY,
fdset_size SX > fdset_size SY

Observe that when there are several variables to label, this function selects the one with the
minimum domain cardinality (via choose min and remove/3) by making use of information
recovered by the reflection functions fd set/2 and fdset size/1. Also, when there is just one
variable X, it reactivates the search process by dividing its domain by the value (fd min X).
The search.toy file contains several modified example programs to be solved with the labeling
strategies search naive/1 and search ff/1.

195

Appendix B

A Miscellanea of Functions

This chapter presents the contents of the two files misc.toy and miscfd.toy, which include use-
ful functions and type declarations for programming and can be found in the directory include
of the distribution.

B.1 misc.toy

% FILE: misc.toy
% A collection of useful functions and type declarations,
% many of them taken from Haskell’s prelude

% type alias for strings
type string = [char]

infixl 90 !! % nth-element selector
infixr 90 . % function composition
infixr 50 ++ % concatenation of lists
infixr 40 // % non-deterministic choice
infixr 40 ‘and‘,/\ % parallel and sequential conjunction
infixr 30 ‘or‘,\/ % parallel and sequential disjunction

% boolean functions

and,or,(/\),(\/) :: bool -> bool -> bool
not :: bool -> bool

% Parallel and
false ‘and‘ _ = false
_ ‘and‘ false = false
true ‘and‘ true = true

196

% Parallel or
true ‘or‘ _ = true
_ ‘or‘ true = true
false ‘or‘ false = false

% Sequential and
false /\ _ = false
true /\ X = X

% Sequential or
true \/ X = true
false \/ X = X

% Negation
not true = false
not false = true

andL, orL ,orL’ :: [bool] -> bool
andL = foldr (/\) true
orL = foldr or false
orL’ = foldr (\/) false
% orL’ is ’stricter’, but more deterministic, than orL

any, any’,all :: (A -> bool) -> [A] -> bool
any P = orL . (map P)
any’ P = orL’ . (map P)
% any’ is ’stricter’, but more deterministic, than any

all P = andL . (map P)

undefined :: A
undefined = if false then undefined

% (def X) is true if X is finite and totally defined
def X :- X == _

% (not_undef X) is true if X is not undefined
not_undef X :- X /= _

% (nf X) is the identity, restricted to finite and totally defined values
% Operationally, (nf X) forces the computation of a normal form for X,
% if it exists.
nf X = Y <== X==Y

197

% (hnf X) is the identity, restricted to not undefined values.
% Operationally, (hnf X) forces the computation of a head normal form for X,
% if it exists.
hnf X = X <== X /= _

% (strict F) is the restriction of F to finite, totally defined arguments.
% It forces the evaluation to nf of the argument before applying F
strict F X = F Y <== X==Y

% (strict’ F) is the restriction of F to not undefined arguments.
% It forces the evaluation to hnf of the argument before applying F
strict’ F X = F X <== X /= _

% mapping a function through a list
map:: (A -> B) -> [A] -> [B]
map F [] = []
map F [X|Xs] = [(F X)|(map F Xs)]

%% Function composition
(.) :: (B -> C) -> (A -> B) -> (A -> C)
(F . G) X = F (G X)

%% List concatenation
(++) :: [A] -> [A] -> [A]
[] ++ Ys = Ys
[X|Xs] ++ Ys = [X|Xs ++ Ys]

%% Xs!!N is the Nth-element of Xs
(!!) :: [A] -> int -> A
[X|Xs] !! N = if N==0 then X else Xs !! (N-1)

iterate :: (A -> A) -> A -> [A]
iterate F X = [X|iterate F (F X)]

repeat :: A -> [A]
repeat X = [X|repeat X]

copy :: int -> A -> [A]
copy N X = take N (repeat X)

filter :: (A -> bool) -> [A] -> [A]
filter L [] = []

198

filter P [X|Xs] =
if P X then [X|filter P Xs]

else filter P Xs

%% Fold primitives: The foldl and scanl functions, variants foldl1 and
%% scanl1 for non-empty lists, and strict variants foldl’ scanl’ describe
%% common patterns of recursion over lists. Informally:
%%
%% foldl F a [x1, x2, ..., xn] = F (...(f (f a x1) x2)...) xn
%% = (...((a ‘f‘ x1) ‘f‘ x2)...) ‘f‘ xn
%% etc...
%%
%% The functions foldr, scanr and variants foldr1, scanr1 are duals of these
%% functions:
%% e.g. foldr F a Xs = foldl (flip f) a (reverse Xs) for any finite lists Xs

foldl :: (A -> B -> A) -> A -> [B] -> A
foldl F Z [] = Z
foldl F Z [X|Xs] = foldl F (F Z X) Xs

foldl1 :: (A -> A -> A) -> [A] -> A
foldl1 F [X|Xs] = foldl F X Xs

foldl’ :: (A -> B -> A) -> A -> [B] -> A
foldl’ F A [] = A
foldl’ F A [X|Xs] = strict (foldl’ F) (F A X) Xs

scanl :: (A -> B -> A) -> A -> [B] -> [A]
scanl F Q [] = [Q]
scanl F Q [X|Xs] = [Q|scanl F (F Q X) Xs]

scanl1 :: (A -> A -> A) -> [A] -> [A]
scanl1 F [X|Xs] = scanl F X Xs

scanl’ :: (A -> B -> A) -> A -> [B] -> [A]
scanl’ F Q [] = [Q]
scanl’ F Q [X|Xs] = [Q|strict (scanl’ F) (F Q X) Xs]

foldr :: (A -> B -> B) -> B -> [A] -> B
foldr F Z [] = Z
foldr F Z [X|Xs] = F X (foldr F Z Xs)

foldr1 :: (A -> A -> A) -> [A] -> A
foldr1 F [X] = X

199

foldr1 F [X,Y|Xs] = F X (foldr1 F [Y|Xs])

scanr :: (A -> B -> B) -> B -> [A] -> [B]
scanr F Q0 [] = [Q0]
scanr F Q0 [X|Xs] = auxForScanr F X (scanr F Q0 Xs)
%where
auxForScanr F X Ys = [F X (head Ys)|Ys]

scanr1 :: (A -> A -> A) -> [A] -> [A]
scanr1 F [X] = [X]
scanr1 F [X,Y|Xs] = auxForScanr F X (scanr1 F [Y|Xs])

%% List breaking functions:
%%
%% take n Xs returns the first n elements of Xs
%% drop n Xs returns the remaining elements of Xs
%% splitAt n Xs = (take n Xs , drop n Xs)
%%
%% takeWhile P Xs returns the longest initial segment of Xs whose
%% elements satisfy p
%% dropWhile P Xs returns the remaining portion of the list
%% span P Xs = (takeWhile P Xs , dropWhile P Xs)
%%
%% takeUntil P Xs returns the list of elements upto and including the
%% first element of Xs which satisfies p

take :: int -> [A] -> [A]
take N [] = []
take N [X|Xs] = if N==0 then [] else [X|take (N-1) Xs]

drop :: int -> [A] -> [A]
drop N [] = []
drop N [X|Xs] = if N==0 then [X|Xs] else drop (N-1) Xs

splitAt :: int -> [A] -> ([A] , [A])
splitAt N [] = ([],[])
splitAt N [X|Xs] = if N==0

then ([], [X|Xs])
else auxForSplitAt X (splitAt (N-1) Xs)

%where

200

auxForSplitAt X (Xs,Ys) = ([X|Xs],Ys)

takeWhile :: (A -> bool) -> [A] -> [A]
takeWhile P [] = []
takeWhile P [X|Xs] = if P X then [X| takeWhile P Xs] else []

takeUntil :: (A -> bool) -> [A] -> [A]
takeUntil P [] = []
takeUntil P [X|Xs] = if P X then [X] else [X| takeUntil P Xs]

dropWhile :: (A -> bool) -> [A] -> [A]
dropWhile P [] = []
dropWhile P [X|Xs] = if P X then dropWhile P Xs else [X|Xs]

span, break :: (A -> bool) -> [A] -> ([A] , [A])
span P [] = ([],[])
span P [X|Xs] = if P X

then auxForSpan X (span P Xs)
else ([], [X|Xs])

auxForSpan X (Xs,Ys) = ([X|Xs],Ys) % Identical to auxForSplitAt

break P = span (not . P)

zipWith :: (A->B->C) -> [A]->[B]->[C]
zipWith Z [] Bs = []
zipWith Z [A|As] [] = []
zipWith Z [A|As] [B|Bs] = [Z A B | zipWith Z As Bs]

zip :: [A]->[B]->[(A,B)]
zip Xs Ys = zipWith mkpair Xs Ys
%where
mkpair :: A -> B ->(A,B)
mkpair X Y = (X,Y)

unzip :: [(A,B)] -> ([A],[B])
unzip [] = ([],[])
unzip [(X,Y)|XsYs] = auxForUnzip X Y (unzip XsYs)

auxForUnzip X Y (Xs,Ys) = ([X|Xs],[Y|Ys])

until :: (A -> bool) -> (A -> A) -> A -> A

201

until P F X = if P X then X else until P F (F X)

until’ :: (A -> bool) -> (A -> A) -> A -> [A]
until’ P F = (takeUntil P) . (iterate F)

%% Standard combinators: %% %% %% %% %% %%

const :: A -> B -> A
const K X = K

id :: A -> A
id X = X

% non-deterministic choice
(//) :: A -> A -> A
X // _ = X
_ // Y = Y

curry :: ((A,B) -> C) -> A -> B -> C
curry F A B = F (A,B)

uncurry :: (A -> B -> C) -> (A,B) -> C
uncurry F (A,B) = F A B

fst :: (A,B) -> A
fst (X,Y) = X

snd :: (A,B) -> B
snd (X,Y) = Y

fst3 :: (A,B,C) -> A
fst3 (X,Y,Z) = X

snd3 :: (A,B,C) -> B
snd3 (Y,X,Z) = X

thd3 :: (A,B,C) -> C
thd3 (Y,Z,X) = X

subtract :: real -> real-> real
subtract = flip (-)

even, odd :: int -> bool

202

even X = (X ‘mod‘ 2) == 0
odd = not . even

lcm :: int -> int -> int
lcm X Y = if ((X==0) \/ (Y == 0)) then 0

else abs ((X ‘div‘ (gcd X Y)) * Y)

%%%% Standard list processing functions: %% %% %% %% %% %%

head :: [A] -> A
head [X|_] = X

last :: [A] -> A
last [X] = X
last [_,Y|Xs] = last [Y|Xs]

tail :: [A] -> [A]
tail [_|Xs] = Xs

init :: [A] -> [A]
init [X] = []
init [X,Y|Xs] = [X|init [Y|Xs]]

nub :: [A] -> [A] %% remove duplicates from list
nub [] = []
nub [X|Xs] = [X| nub (filter (X /=) Xs)]

length :: [A] -> int
length [] = 0
length [_|Xs] = 1 + length Xs

size :: [A] -> int
size = length . nub

reverse :: [A] -> [A] %% reverse elements of list
reverse = foldl (flip (:)) []

member,notMember :: A -> [A] -> bool
member = any’ . (==) %% test for membership in list
notMember = all . (/=) %% test for non-membership

203

concat :: [[A]] -> [A] %% concatenate list of lists
concat = foldr (++) []

transpose :: [[A]] -> [[A]] %% transpose list of lists
transpose = foldr

auxForTranspose
[]

%where
auxForTranspose Xs Xss = zipWith (:) Xs (Xss ++ repeat [])

%% (\\) is used to remove the first occurrence of each element in the second
%% list from the first list. It is a kind of inverse of (++) in the sense
%% that (xs ++ ys) \\ xs = ys for any finite list xs of proper values xs.

infix 50 \\

(\\) :: [A] -> [A] -> [A]
(\\) = foldl del
%where

[] ‘del‘ Y = []
[X|Xs] ‘del‘ Y = if X == Y then Xs

else [X|Xs ‘del‘ Y]

B.2 misc.toy

% FILE: miscfd.toy
% A collection of useful FD functions

% hasLength/2 computes the length of a list, irrespective of its mode of usage
% Whereas a goal as length L == 4 length does not terminate when prompting for all
% solutions, hasLength L 4 does
hasLength :: [A] -> int -> bool hasLength [] 0 :- true hasLength
[X|Xs] N :- N #> 0, hasLength Xs (N #- 1)

% belongsOrd/2 is a version of belongs/2 that allows its second argument to be
% an infinite list
belongsOrd :: int -> [int] -> bool belongsOrd X L =
belongs X (intersectOrdIntLists (fdset_to_list (fd_set X)) L)

% intersectOrdIntLists/2 returns the intersection of its two input (ordered) integer
% lists, allowing infinite lists
intersectOrdIntLists :: [int] -> [int] -> [int] intersectOrdIntLists

204

[] L = [] intersectOrdIntLists [X|Xs] [] = [] intersectOrdIntLists
[X|Xs] [Y|Ys] =
if X #< Y

then intersectOrdIntLists Xs [Y|Ys]
else if X #> Y

then intersectOrdIntLists [X|Xs] Ys
else [X|intersectOrdIntLists Xs Ys]

205

Appendix C

Sample Modules

% NATURAL NUMBERS
module nat

exports
data nat = z | s nat
(+.) :: nat -> nat -> nat
(*.) :: nat -> nat -> nat
(-.) :: nat -> nat -> nat
(<=.) :: nat -> nat -> bool
(>.) :: nat -> nat -> bool
(<.) :: nat -> nat -> bool
mx :: nat -> nat -> nat
mn :: nat -> nat -> nat
even :: nat -> bool
odd :: nat -> bool
dv :: nat -> nat -> nat
md :: nat -> nat -> nat

% dv and md are only defined for non-zero second argument

body

z +. N = N
(s M) +. N = s (M +. N)

z *. N = z
(s M) *. N = (M *. N) +. N

z -. N = z
(s M) -. z = s M
(s M) -. (s N) = M -. N

z <=. N = true
(s M) <=. z = false

206

(s M) <=. (s N) = M <=. N

M <. z = false
z <. (s N) = true
(s M) <. (s N) = M <. N

N >. M = M <. N

mn N M = if M >. N then N else M

mx N M = if M >. N then M else N

even z = true
even (s M) = odd M

odd z = false
odd (s M) = even M

N ‘dv‘ P = if P >. N then z else s ((N -. P) ‘dv‘ P)
<== P /= z

N ‘md‘ P = if P >. N then N else (N -. P) ‘md‘ P
<== P /= z

% LISTS
module list

imports
nat exporting types nat

ops z, s

exports
data list A = nil | A :+ (list A)
tail :: list A -> list A
head :: list A -> A
(++) :: list A -> list A -> list A
length :: list A -> nat
reverse :: list A -> list A
take :: nat -> list A -> list A
drop :: nat -> list A -> list A

% tail and head are only defined for non-empty lists

body

tail (N :+ L) = L

head (N :+ L) = N

207

nil ++ L = L
(N :+ L) ++ L’ = N :+ (L ++ L’)

length nil = z
length (N :+ L) = s (length L)

reverse nil = nil
reverse (N :+ L) = (reverse L) ++ (N :+ nil)

take z L = nil
take N nil = nil
take (s N) (M :+ L) = M :+ (take N L)

drop z L = L
drop N nil = nil
drop (s N) (M :+ L) = drop N L

% ORDERED LISTS
module ordlist

parameters
type elt
le :: elt -> elt -> bool

imports
list exporting types list elt

ops nil,tail,head,length

exports
is_ordered :: list elt -> bool
insertsort :: list elt -> list elt
mergesort :: list elt -> list elt
quicksort :: list elt -> list elt

body
% local auxiliary operations

insert_list :: list elt -> elt -> list elt
insert_list nil M = M :+ nil
insert_list (N :+ OL) M = if (le M N)

then (M :+ (N :+ OL))
else (N :+ (insert_list OL M))

merge :: list elt -> list elt -> list elt
merge OL nil = OL
merge nil OL = OL
merge (N :+ OL) (M :+ OL’) = if (le N M)

208

then N :+ (merge OL (M :+ OL’))
else M :+ (merge (N :+ OL) OL’)

le_elems :: list elt -> elt -> list elt
le_elems nil M = nil
le_elems (N :+ L) M = if (le N M)

then N :+ (le_elems L M)
else le_elems L M

gr_elems :: list elt -> elt -> list elt
gr_elems nil M = nil
gr_elems (N :+ L) M = if (le N M)

then gr_elems L M
else N :+ (gr_elems L M)

% equations for main operations

is_ordered nil = true
is_ordered (N :+ nil) = true
is_ordered (N :+ (N :+ L)) = is_ordered (N :+ L)
is_ordered (N :+ (M :+ L)) = if (le N M)

then is_ordered (M :+ L)
else false

<== N /= M

insertsort nil = nil
insertsort (N :+ L) = insert_list (insertsort L) N

mergesort nil = nil
mergesort (N :+ nil) = N :+ nil
mergesort L = if length L >. (s z)

then merge (mergesort (take ((length L) ‘dv‘ (s (s z))) L))
(mergesort (drop ((length L) ‘dv‘ (s (s z))) L))

quicksort nil = nil
quicksort (N :+ L) =

(quicksort (le_elems L N)) ++ (N :+ (quicksort (gr_elems L N)))

% BINARY TREES
module bintree

imports
nat exporting types nat

ops z, s

exports
data bintree A = empty | tree (bintree A) A (bintree A)
left :: bintree A -> bintree A

209

right :: bintree A -> bintree A
root :: bintree A -> A
depth :: bintree A -> nat

% left, right, and root are only defined for non-empty trees

body

left (tree L _ _) = L
right (tree _ _ R) = R
root (tree _ N _) = N

depth empty = z
depth (tree L N R) = s (mx (depth L) (depth R))

% BINARY TREE TRAVERSALS
module bintree_traversals

extends
bintree

imports
list exporting all

exports
leaves :: bintree A -> list A
preorder :: bintree A -> list A
inorder :: bintree A -> list A
postorder :: bintree A -> list A

body

leaves empty = nil
leaves (tree empty N empty) = N :+ nil
leaves (tree L N R) = (leaves L) ++ (leaves R)

<== (leaves L) ++ (leaves R) /= nil

preorder empty = nil
preorder (tree L N R) = N :+ ((preorder L) ++ (preorder R))

inorder empty = nil
inorder (tree L N R) = (inorder L) ++ (N :+ (inorder R))

postorder empty = nil
postorder (tree L N R) = (postorder L) ++ ((postorder R) ++ (N :+ nil))

% SEARCH TREES

210

module searchtree

parameters
type elt
le :: elt -> elt -> bool
eq :: elt -> elt -> bool

imports
bintree renaming (type bintree elt to stree elt)

exporting types stree elt
ops empty, root, left, right

exports
insert :: stree elt -> elt -> stree elt
delete :: stree elt -> elt -> stree elt
is_in :: stree elt -> elt -> bool

body
% local auxiliary operations
% mint and maxt are not defined on the empty tree

mint :: stree elt -> elt
mint (tree empty N _) = N
mint (tree L _ _) = mint L

<== L /= empty

maxt :: stree elt -> elt
maxt (tree _ N empty) = N
maxt (tree _ _ R) = maxt R <== R /= empty

% is_stree is not used in the following but may be useful
% in defining operations such that they check the arguments

is_stree :: stree elt -> bool
is_stree empty = true
is_stree (tree empty _ empty) = true
is_stree (tree L N empty) = if is_stree L

then le (maxt L) N
else false

<== L /= empty

is_stree (tree empty N R) = if is_stree R
then le N (mint R)
else false

<== R /= empty

is_stree (tree L N R) = if is_stree L
then if le (maxt L) N

then if is_stree R

211

then le N (mint R)
else false

else false
else false

<== L /= empty, R /= empty

% equations for main operations

insert empty M = tree empty M empty
insert (tree L N R) M = if (eq M N)

then tree L M R
else if (le M N)

then tree (insert L M) N R
else tree L N (insert R M)

delete empty _ = empty
delete (tree L N R) M = tree (delete L M) N R

<== le M N
delete (tree L N R) M = tree L N (delete R M)

<== le N M
delete (tree empty N R) M = R

<== eq N M
delete (tree L N empty) M = L

<== eq N M
delete (tree L N R) M = tree L X (delete R X)

<== eq N M, L /= empty, R /= empty, X == mint R

is_in empty _ = false
is_in (tree L N R) M = if eq M N

then true
else if le M N

then is_in L M
else is_in R M

% SORTING A LIST USING A SEARCH TREE
module searchtree_sort

parameters
type elt
le :: elt -> elt -> bool
eq :: elt -> elt -> bool

extends
ordlist
% default instantiation

imports
searchtree

212

% default instantiation

exports
stree_sort :: list elt -> list elt

body
% local auxiliary operations

listToStree :: list elt -> stree elt
listToStree nil = empty
listToStree (N :+ L) = insert (listToStree L) N

inorder_st :: stree elt -> list elt
inorder_st empty = nil
inorder_st T = (inorder_st (left T)) ++

((root T) :+ (inorder_st (right T)))
<== T /= empty

% Note: There is no way to reuse the inorder traversal
% from bintree_traversals because parameter types do not match

% main operation

stree_sort L = inorder_st (listToStree L)

% stree_sort only works for lists with no repetitions,
% because all elements in a search tree are different

% DICTIONARY AS SEARCH TREE
module dictionary

parameters
type key
type contents
kle,keq :: key -> key -> bool
default :: contents
combine :: contents -> contents -> contents

parbody
ple,peq :: (key, contents) -> (key, contents) -> bool
ple (k1,c1) (k2,c2) = kle k1 k2
peq (k1,c1) (k2,c2) = keq k1 k2

imports
searchtree (type elt to (key, contents),

op le to ple,
op eq to peq)

renaming (type stree (key, contents) to dict (key, contents))

213

exporting types dict (key, contents)
ops empty

exports
find :: dict (key,contents) -> key -> bool
insertcont :: dict (key,contents) -> key -> contents -> dict (key,contents)
deletekey :: dict (key,contents) -> key -> dict (key,contents)
lookup :: dict (key,contents) -> key -> contents

body

find D K = is_in D (K,default)

insertcont D K C = if C’ == default
then insert D (K,C)
else insert D (K, (combine C’ C))

<== C’ == lookup D K

deletekey D K = delete D (K,default)

lookup empty K = default
lookup D K = if (keq K K’)

then C’
else if (kle K K’)

then lookup (left D) K
else lookup (right D) K

<== D /= empty, (K’,C’) == root D

% MULTISET AS DICTIONARY
module multiset

parameters
type elt
le,eq :: elt -> elt -> bool

imports
nat exporting all
dictionary (type key to elt,

type contents to nat,
op kle to le,
op keq to eq,
op default to z,
op combine to (+.))

exports
type multiset elt
empty_ms :: multiset elt
add_one :: multiset elt -> elt -> multiset elt

214

add_many :: multiset elt -> elt -> nat -> multiset elt
mult :: multiset elt -> elt -> nat
delete_one :: multiset elt -> elt -> multiset elt
delete_all :: multiset elt -> elt -> multiset elt

body

type multiset elt = dict (elt, nat)

empty_ms = empty

add_one MS E = insertcont MS E (s z)

add_many MS E N = insertcont MS E N

mult MS E = lookup MS E

delete_all MS E = deletekey MS E

delete_one MS E = if (s z) <. N
then add_many MS’ (N -. (s z))
else MS’

<== N == mult MS E, MS’ == delete_all MS E

215

Appendix D

Syntax

In this appendix the lexicon and grammar of the language are presented.

D.1 Lexicon

First we describe the set of tokens allowed in the language, as well as the reserved words and
operations.
A token must belong to one of the following categories:

• identifier = A lower case letter followed by any sequence of letters, digits and symbols ’ ’ ’
and ’ ’.

• variable = Analogous to identifier but beginning with an upper case letter.

• Integer = sequence of digits optionally preceded by a symbol ’-’.

• Float = sequence of digits including a decimal dot and optionally preceded by a symbol
’-’.

• Char = Any character enclosed between single quotes. Also some special characters (in-
cluding control characters) must be preceded by a backslash. The following list presents
these special characters:

- ’\\’ backslash

- ’\’ ’ quote

- ’\”’ double quote

- ’\n’ new line

- ’\r’ carriage return

- ’\t’ horizontal tabulator

- ’\v’ vertical tabulator

- ’\a’ bell

216

, = :- ::
<== -> data else
if in include includecflpfd (reserved)
infix infixl infixr primitive
then type where

Table D.1: Reserved Symbols

User-Defined
Function Data Type Data Constructor

Function × √ ×
Predefined Data Type

√ × √
Data Constructor × √ ×

Table D.2: Predefined vs. User-Defined Symbol Compatibility Table

- ’\b’ backspace

- ’\f’ form feed

- ’\e’ escape

- ’\d’ delete

• String: Sequence of characters enclosed by double quotes.

• Bool: Either true or false.

• Operator: Sequence of characters in the set { ’.’, ’/’, ’ !’, ’#’, ’&’, ’*’, ’+’, ’>’, ’<’, ’¿’, ’?’,
’@’, ’\’, ’̂’, ’|, ’-’, ’:’, ’%’, ’$’ } whose first character is neither ’%’ nor ’$’ nor ’:’.

• ConsOperator: Analogous to an operator but beginning by ’:’.

Table D.1 shows the set of reserved symbols (keywords) which cannot be used for any other
purpose they are deserved to. (See section 2.) In this and following tables, if (reserved) occurs
next to a symbol, it means that this symbol is reserved for a forthcoming release.
There is also a set of predefined symbols which can be classified as functions, data constructors,
and data types. Table D.2 shows the compatibility of user defined symbols versus predefined
symbols. This table states, for instance, that the user can define a new data type symbol even
if there is a predefined function or data constructor with the same symbol. On the other hand,
the user cannot define a new function with a name which is already defined for a predefined
function or data constructor.
Tables D.3, D.4, and D.5 summarize the functions, data types, and data constructors in the plain
language. The user must be aware of the aforementioned compatibility table when defining new
symbols in user programs.
The predefined symbols in the libraries I/O File, I/O Graphic and Finite Domain Constraints
are summarized in the following tables. Table D.6 shows the predefined functions for the library

217

+ - * / **
^ == /= < <=
> >= >> >>= abs
acos acosh acot acoth asin
asinh atan atanh ceiling chr
collect collectN cont1 cont2 cos
cosh cot coth div do
done dVal dValToString else evalfd (reserved)
exp fails flip floor gcd
getChar getConstraintStore getLine if_then if_then_else
ln log max min mod
once ord putChar putStr putStrLn
readFile readFileContents return round selectWhereVariableXi
sin sinh sqrt tan tanh
toReal trunc uminus writeFile

Table D.3: Plain Language Predefined Functions

() (τ1, . . .) (τ1 → τ2) [τ] bool
atomicConstraint channel char constraint cTree
handle int io τ ioMode pVal
real varmut

Table D.4: Plain Language Predefined Data Types

, : [] appendMode atomicConstraint
channel char constraint cTreeNode cTreeVoid
false io pValApp pValBottom pValChar
pValNum pValVar readMode stream true
varmut writeMode

Table D.5: Plain Language Predefined Data Constructors

218

closeFile contin1 contin2 end_of_file getCharFile
getLineFile openFile putCharFile putStrFile putStrLnFile

Table D.6: I/O File Library Predefined Functions

aux aux1 aux2 aux3 aux4
checkWishConsistency closeWish escape_tcl forkWish getNumber
getString initSchedule intTostr newVar newVar1
newVar2 openWish readVar readWish runWidget
runWidgetInit runWidgetPassive setlistelems setmenuelems strToint
tk2tcl tkAddCanvas tkcitem tkcitems2tcl tkConf2tcl
tkConfCollection2tcl tkConfig tkConfs2handler tkConfs2tcl tkExit
tkFocus tkGetValue tkGetVar tkGetVarMsg tkGetVarValue
tkLabel2Refname tkmain2tcl tkMenu2handler tkMenu2tcl tkParseInt
tkRef2Label tkRef2Wtype tkRefname2Label tks2tcl tkSchedule
tkSelectEvent tkSetValue tkShowCoords tkShowErrors tkslabels
tkTerminateWish tkUpdate tkVoid writeVar writeVar1
writeWish

Table D.7: I/O Graphic Library Predefined Functions

I/O File. Note that the data type and data constructors needed for these functions are already
defined in the plain language predefinitions. Tables D.7, D.8, and D.9 show, respectively, the
predefined symbols for functions, data types, and data constructors for the library I/O Graphic.
Finally, tables D.10, D.11, and D.12 show, respectively, the predefined symbols for functions,
data types, and data constructors for the library Finite Domain Constraints. Observe that the
library Real Constraints does not introduce new symbols and arithmetic operators from the
plain language are otherwise reused for building constraints.

D.2 Grammar

This section describes T OY syntax. Terminals are shown enclosed in square boxes like this .
Curly brackets (’{’, ’}’) represent the choice of one among several elements, separated by com-
mas. Square brackets enclose optional elements, while rounded brackets are used for grouping.
The postfix operator ∗ represents the repetition of tokens of some syntactic category zero or
more times, while + represents the repetition one or more times. Syntactic categories of tokens
are written in italic letters (see lexicon above).

tkCanvasItem tkConfCollection tkConfItem
tkMenuItem τ tkRefType tkWidget

Table D.8: I/O Graphic Library Predefined Data Types

219

tkActive tkAnchor tkBackground tkBottom tkButton
tkCanvas tkCenter tkCheckButton tkCmd tkCol
tkEntry tkExpand tkExpandX tkExpandY tkHeight
tkInit tkItems tkLabel tkLeft tkLine
tkList tkListBox tkMButton tkMenu tkMenuButton
tkMessage tkMMenuButton tkMSeparator tkOval tkPolygon
tkRectangle tkRef tkRefLabel tkRight tkRow
tkScale tkScrollH tkScrollV tkTcl tkText
tkTextEdit tkTop tkWidth

Table D.9: I/O Graphic Library Predefined Data Constructors

#= #\= #< #<=
#> #>= #+ #-
#* #/ #& #<=>
#=> #\/ all_different all_different’
assignment belongs circuit circuit’
count cumulative cumulative’ domain
element empty_fdset empty_interval end_fd (reserved)
exactly fd_closure fd_degree fd_dom
fd_global (reserved) fd_max fd_min fd_neighbors
fd_set fd_size fd_statistics fd_statistics’
fd_var fdmaximize (reserved) fdminimize (reserved) fdset_add_element
fdset_belongs fdset_complement fdset_del_element fdset_disjoint
fdset_equal fdset_intersect fdset_intersection fdset_max
fdset_member fdset_min fdset_parts fdset_singleton
fdset_size fdset_split fdset_subset fdset_subtract
fdset_to_interval fdset_to_list fdset_to_range fdset_union
fdsets_intersection fdsets_union indomain inf
init_fd (reserved) inset intersect interval_to_fdset
is_fdset isin (reserved) labeling list_to_fdset
minimum (reserved) range_to_fdset scalar_product serialized
serialized’ setcomplement subset sum
sup

Table D.10: Finite Domain Library Predefined Functions

allDiffOptions fdinterval fdset
labelingType range reasoning
serialOptions statistics wakeOptions (reserved)

Table D.11: Finite Domain Library Predefined Data Types

220

assumptions backtracks bisect compl
complete constraints cte decomposition
domains domm (reserved) down each
edge_finder entailments enum ff
ffc inter interval leftmost
lift liftedInt maxi maxx (reserved)
mini minmax (reserved) minn (reserved) path_consistency
precedences prunings range reasoning
resumptions static_sets step superior
toMaximize toMinimize typeprecedence uni
up vall (reserved) value

Table D.12: Finite Domain Library Predefined Data Constructors

% P R O G R A M S

% A program is a sequence of declarations
program → decl∗

% Top-level declarations
decl → includeDecl

| infixDecl
| dataDecl
| typeAliasDecl
| funTypeDecl
| funDecl
| clauseDecl

% T O P L E V E L D E C L A R A T I O N S

% Include declaration
includeDecl → include String

% Infix operator declaration
infixDecl → { infix , infixr , infixl } Integer op(, op)∗

221

% Datatype declaration
dataDecl → data typeId varId∗ = dataTypeRhs (| dataTypeRhs)∗

dataTypeRhs → type consOp type
| constructor simpleType∗

% Type alias declaration
typeAliasDecl → type typeId varId∗ = type

% Function type declaration
funTypeDecl → function (, function)∗ :: type

% F U N C T I O N A N D C L A U S E D E F I N I T I O N S

% Function rule declaration
funDecl → rule+

% Function defining rule
rule → ruleLhs { = , –> } expr [conditionDecls] [whereDecls]

% Predicate clause: similar to Prolog, but possibly with where declarations
% and not ending in ’.’
clauseDecl → ruleLhs :- conditionDecls [whereDecls]

% Right-hand side (both for program rules and for clauses)
ruleLhs → function fPat∗

| infixOpLhs
infixOpLhs → fPat funOp fPat

| (fPat funOp fPat) fPat∗

% Conditional part (of a function rule or predicate clause)
conditionDecls → <== expr (, expr)∗

% Where declarations: the lhs must be a linear pattern
whereDecls → where { patBinding (; patBinding)∗ }
patBinding → pattern = expr

% T Y P E S

222

type → cType (-> cType)∗

% Types without any external occurrence of ->
cType → typeId simpleType+

| simpleType

% Simple Types
simpleType → typeId

| varId
| listType
| tupleType
| (type)

listType → [type]

tupleType → (type (, type)∗)

% P A T T E R N S

% m less than the arity of the function
% m′ less or equal than the arity of the constructor
pattern → function simplePat1 . . . simplePatm

| constructor simplePat1 . . . simplePatm′

| simplePat

% Patterns that can appear in the lhs of a function rule
fPat → nPlusk

| asPattern
| simplePat

% Simple patterns
simplePat → varId

| constructor
| function
| constant
| listPat
| tuplePat
| (pattern)

223

% Lists of patterns
listPat → []

| (pattern (: pattern)+)

| [pattern (, pattern)∗ [| pattern]]

% Tuples of patterns
tuplePat → (pattern (, pattern)∗)

% (n+k) patterns
nPlusk → (varId + Integer)

% as patterns
asPattern → varId @ simplePat

% E X P R E S S I O N S

expr → simpleExpr
| appExpr

% Simple expressions
simpleExpr → doExpr

| list
| tuple
| intensionalExpr
| aExpr

% Applications
appExpr → aExpr expr∗

| expr op expr

% Argument expressions: expressions that can be applied
% to some arguments
aExpr → aAtom

| section
| (expr)

224

% Appliable atoms
aAtom → varId

| constructor
| function

% Left and right sections
section → (simpleExpr funOp)

| (funOp simpleExpr)

% do expressions
doExpr → do { doDecl (; doDecl)∗ }
doDecl → varId <- expr

| expr

% Lists
list → []

| (expr (: expr)+)

| [expr (, expr)∗ [| expr]]

% Tuples
tuple → (expr (, expr∗)

% Intensional Lists
intensionalExpr → [expr || qual (, qual)∗]
qual → varId <- expr

| pattern == expr
| expr

% C O N S T A N T S

constant → Integer
| Float
| Char
| String
| Bool

225

% B A S I C N O N - T E R M I N A L S

% Infix operators and constructors
op → funOp

| consOp
funOp → opFunId

| ‘ funId ‘
consOp → opConsId

| ‘ consId ‘

% Functions and constructors
constructor → consId

| (opConsId)
function → funId

| (opFunId)

% Identifiers
funId → identifier
consId → identifier
opConsId → consOperator
opFunId → operator
typeId → identifier
varId → variable

226

Appendix E

Type Inference

As we have seen in Section 2.2, T OY uses a type inference system based on the Damas-Milner
polymorphic type system [7]. In this appendix we explain the type inference algorithm imple-
mented in T OY. This algorithm performs two main steps: first it makes a dependency analysis
on function definitions to split the program into blocks of mutually dependent functions, and
then it uses the resulting blocks to do perform type inference in the proper sense.

E.1 Dependency Analysis

When a function f is defined by using another function g we say that the f depends on g. It
is quite natural to assume that in such case the type of f must be inferred before the type of
g, of course, if g does not use f in its definition. But if we have a set of mutually recursive
functions, then we must infer their types simultaneously. So, first of all we have to study the
dependencies between the function definitions of the program to extract blocks of mutually
dependent functions. We define the relation < over function symbols of a program as:

f < g ⇔ the definition of g uses f

This relation corresponds to a simple syntactical criteria: we have f < g iff there is some defining
rule of g that includes the symbol f in its right-hand side, or in its conditions, or in its local
definitions. Consider now the reflexive and transitive closure<∗ of <, and the relation ∼ defined
as: f ∼ g iff f <∗ g and g <∗ f , i.e., the definitions of f and g are mutually dependent. The
relation ∼ is an equivalence relation and we can consider the quotient set FS/∼ (where FS is
the set of function symbols of the program). We need to consider a sorted sequence B1, ..., Bn

of equivalence classes of FS/∼ in such a way that functions of Bi do not use functions of Bj

for any j > i, i.e., let B1, ..., Bn a partition of FS such that:

i) {B1, ..., Bn} = FS/∼
ii) if f ∈ Bi, g ∈ Bj and j > i then g 6<∗f

In the sequel, we call block to each element Bi of this partition. The set of blocks {B1, ..., Bn}
corresponds to the strongly connected components of a directed graph, in which nodes are labeled

227

with the function symbols of the program and arcs are defined by the relation <. Therefore,
it is clear that any ordering of the blocks satisfies item i). For satisfying item ii) we consider
a new graph in which each node is labeled with a strongly connected component and arcs are
defined by the relation < extended to components: Bi < Bj iff there exists f ∈ Bi and g ∈ Bj

such that f < g. Notice that this is a directed acyclic graph and we can perform a topological
sort on it in order to obtain an ordered sequence B1, ..., Bn which verifies item ii). In practice,
T OY implements both algorithms (they can be found e.g. in [6]) to obtain the ordered sequence
of blocks.
As an example, consider the following program:

data nat = zero | suc nat

even :: nat -> bool
even zero = true
even (suc X) = odd X

odd :: nat -> bool
odd zero = false
odd (suc X) = even X

lstEven :: [nat] -> bool
lstEven [] = true
lstEven [X|Xs] = lstEven Xs <== even X == true
lstEven [X|Xs] = false <== odd X == true

from :: nat -> [nat]
from N = [N|from (suc N)]

In this program we have FS = {even, odd, lstEven, from} and the dependences odd < even,
even < odd, even < lstEven and odd < lstEven. One possible sequence of blocks that satisfies
i) and ii) is {even, odd}, {lstEven}, {from}. The functions even and odd are mutually recursive,
so they must appear in the same block; the function lstEven depends on even, so the block
{lstEven} must appear after the block that contains even; and as the function from does not
depend on any other function, it constitutes a single block. In fact, the block {from} could
appear at any position of the sequence.
The second and main step of the type inference algorithm takes as input the sequence of blocks
B1, ..., Bn resulting from the dependency analysis.

E.2 Type Inference Algorithm

The sequence of blocks B1, ..., Bn determines the order in which type inference must be per-
formed. The types of the functions belonging to each block Bj must be inferred simultaneously,
after having inferred the types of all functions belonging to the preceding blocks Bi, 1 ≤ i < j.
We distinguish two roles for occurrences of function symbols in the defining rules of the program:

228

an occurrence can have a definition role or it can have a use role. For example, the symbol f
in the left-hand side of a defining rule for f plays a definition role and also every occurrence
of f in the right-hand side, the conditions, or the local definitions of the rule (since the rule is
part of the definition of f). The role of a symbol g in a defining rule of f depends on the blocks
of the program: if f and g are both in the same block then g plays a definition role, while if
they belong to different blocks then g has a use role. Intuitively, in the first case as f and g
are mutually dependent, the definition of any of them is also part of the definition of the other
and, as a consequence, the type of any of them depends on the type of the other. In the second
case, if the rule of f contains the symbol g but both functions appear in different blocks, then
the type of g must be fixed before inferring the type for f . In this case, the occurrence of g
corresponds to a use of this function.
These ideas suggest the way in which the algorithm works. The inference is done sequentially
block by block, from the first to the last one. While inferring types for functions of a block,
any type information about those functions extracted from definitions is added to the type
information of those functions in order to refine the information obtained previously. When a
block is completely processed, the types inferred for its functions are fixed for the next blocks,
in which those functions can appear with a use role.
The algorithm uses a context ∆ which stores fixed type information obtained from previously
processsed blocks, an environment Γ which stores temporary type information for functions in
the current block, and an environment Θ which stores type information for variables in the
current defining rule. The three stores have the same structure: a set of annotations of the form
s :: τ , meaning that τ is the type of the symbol s. The symbols s belong to different syntactic
categories depending on the store where they occur. In ∆, they can be data constructors or
defined function symbols from previously processed blocks. In Γ, they must be defined function
symbols from the current block, and in Θ they must be variables from the current program rule.
Moreover, the type variables occurring in ∆ have an implicit universal quantification. For these
reason, whenever a type assumption s :: τ is taken form Γ, the type variables occurring in τ
can be renamed and eventually become bound to other types, if this is needed for subsequent
type inferences.
Initially, the context ∆ contains the principal types for the constructor symbols of predefined
data types (such as true, false, [], (:), ...), the principal types for predefined functions (such as
numeric functions (+), (−), (div), ..., equality and disequality functions (==), (/ =), and some
others as if then else), and the principal types for constructor symbols of user defined
data types (these types are directly obtained from the definition of data types). For example,
for the previous program the initial context has the form:

∆ = {true :: bool, false :: bool, [] :: [A], (:) :: B → [B] → [B], zero :: nat, suc :: nat → nat, ...}

where he type variables A and B have an implicit universal quantification.
The type inference algorithm uses a function T for obtaining the type of a expression e, making
use of the type annotations in ∆, Γ and Θ. A general call to the function T has the form
T (e,∆, Γ,Θ), and it returns a pair (τ, θ), where τ is the type inferred for e, and θ is a type
substitution variables which must be applied to enable the type inference. Type substitutions
are just substitutions of types for type variables. Tey can be represented as sets of variable

229

bindings in the usual way; in particular, [] represents the empty type substitution. A call
T (e,∆, Γ,Θ) expects that the three stores ∆, Γ, and Θ contain type annotations for all the
symbols occurring in the expression e.
The formal definition of T works by recursion on the syntactic structure of the expression e.
The main cases are presented below, assuming that X is a variable, c ∈ DC, f ∈ FS and e, e′

are expressions. We also use the notation θ1θ2 for the composition of two type substitutions,
meaning that θ2 is applied after θ1.

• T (X, ∆,Γ, Θ) = (τ, []), if X :: τ ∈ Θ;

• T (f, ∆,Γ, Θ) = (τ, []), if f :: τ ∈ Γ;

• T (h, ∆, Γ,Θ) = (τ ′, []), if h :: τ ∈ ∆ and τ ′ is a variable renaming of τ with fresh variables;

• T ((e1, e2), ∆, Γ, Θ) =

– ((τ1θ2, τ2), θ1θ2), if
T (e1,∆, Γ,Θ) = (τ1, θ1) and
T (e2,∆, Γθ1,Θθ1) = (τ2, θ2)

• T ((e e′), ∆, Γ, Θ) =

– (Aθ, θ1θ2θ), if
T (e,∆, Γ, Θ) = (τ1, θ1),
T (e′, ∆,Γθ1, Θθ1) = (τ2, θ2), and
θ is a m.g.u. for τ1θ2 and τ2 → A (where A is a fresh type variable)

– (A, []), otherwise (with a fresh type variable A). In this case there is some type error
in the expression (e e′).

The first three cases are quite easy to understand; they just consult the stores. Notice that
the types taken from the context ∆ are renamed with fresh type variables, due to the implicit
universal quantification of all the type variables occurring in ∆. The fourth case infers a product
type for an expression which represents an ordered pair. Similar cases should be added for n-
tuples, n > 2.
The most interesting case is the last one, dealing with an application (e e′). In order to infer
the type of this expression, T obtains types for e and e′ and then tries to unify the type of e
with a functional type, in such a way that e can be applied to e′. This is done with the help of a
new type variable A and type unification. Notice that the substitution θ1 obtained from typing
e is applied to Γ and Θ when typing e′, but ∆ is untouched. The final substitution returned
by T is the composition of the three substitutions obtained during the process. If some type
error has appeared when typing e or e′, or the the m.g.u. θ does not exist, then a type error
in the application (e e′) has been detected. In this case T returns a pair consisting of a fresh
type variable and the empty type substitution. This behaviour supports an error recovering
policy: since the fresh variable A represents the most general type for an expression, the error
is not propagated; moreover, the substitution [] guarantees that the stores are not be affected

230

Build the initial context ∆

For i=1 to n do
Let Γ be the set of annotations f :: Af for each f ∈ Bi

For each defining rule R ≡ l = e ⇐ CD of f ∈ Bi do
Let Θ be the set of X :: AX for each X ∈ var(R)
Let T (l, ∆,Γ, Θ) = (τl, θl)
(Γ, Θ) ← (Γθl, Θθl)
Let T (e, ∆,Γ, Θ) = (τe, θe)
(Γ, Θ) ← (Γθe,Θθe)
If there exists a m.g.u. θ of τlθe and τe then

(Γ, Θ) ← (Γθ,Θθ)
For each condition or local definition e′3e′′ in CD do

Let T (e′, ∆, Γ,Θ) = (τe′ , θe′)
(Γ, Θ) ← (Γθe′ , Θθe′)
Let T (e′′,∆, Γ, Θ) = (τe′′ , θe′′)
(Γ, Θ) ← (Γθe′′ , Θθe′′)
If there exists a m.g.u. θ′ of τe′ and τe′′ then

(Γ, Θ) ← (Γθ′,Θθ′)
Else error in e′3e′′

Else error in rule R
For each f ∈ Bi do

If f has a user-defined type τf then
Let T (f, ∆,Γ, Θ) = (τ ′f , [])
If there exists σ such that τf = τ ′fσ then

Γ ← (Γ− {f :: τ ′f}) ∪ {f :: τf}
Else error in inferred/declared types for f

∆ ← ∆ ∪ Γ

Table E.1: Inference Algorithm

231

by the error. The real implementation, as a collateral effect, produces an error message with
appropriate information for the user.
Using the function T we can now present a type inference algorithm which starts with the
sequence of blocks B1, ..., Bn resulting from the dependency analysis of a program. The algorithm
is shown in Table E.1, using the notation a ← c for assignment. In order to simplify the
presentation, we assume that the CD part of a program rule R ≡ l = e ⇐ CD includes both
conditions and local definitions. This makes sense, because any condition or local definition has
the syntactic form e′3e′′ with two ‘sides’ e′ and e′′. We write var(R) for the set of variables
occurring in R.
The main loop proceeds block by block from B1 to Bn. For each block, the algorithm builds an
environment Γ whose type annotations represent the types inferred for all the functions in the
block. First, Γ is initialized by assumming a fresh type variable as the type of each function.
Then, the program rules in the current block are processed one by one. The types of the left-
hand and the right-hand sides are computed by means of the function T , and an attempt to unify
them is made. Any internal type error in the left-hand side or the right-hand side is detected
by T . In the case that unification succeeds, the algorithm checks the conditions and the local
definitions of the program rule, trying to unify the types obtained for its two sides. After any
application of T the environments Γ and Θ are appropriately updated. After processing all the
program rules in the current block, Γ contains the inferred types for all the functions in the
block. At this point, the algorithm compares the inferred types with the types declared by the
user, if available. If there is no declared type, then the inferred type remains in Γ. If there is a
declared type which is an instance of the inferred one, then the declared type is plced in Γ and
the system emits a warning. If the declared type is not an instance of the inferred one, then the
system signals an error, pointing to the inconsistency between the declared and inferred types.
Finally, before processing the next block, the algorithm updates the context ∆ by adding all the
type annotations in Γ to it. At the end, the context ∆ contains the principal types inferred for
all the functions occurring in the program (or instances of them, if the user has provieded some
less general type declarations for some functions).
Now, let us see how the full process works in the example shown in Section E.1. We had the
three blocks {even, odd}, {lstEven}, an {from}, and the initial context was:

∆ = ∆0 = {true :: bool, false :: bool, [] :: [A], (:) :: B → [B] → [B], zero :: nat, suc :: nat →
nat, ...}

For processing the first block we initially build the environment:

Γ = {even :: C, odd :: D}

Then we process the four program rules for even and odd in their textual order. In fact, the
order chosen for processing the program rules within a fixed block is not relevant. For the rule
even zero = true we consider Θ = {}. The call T (even, ∆, Γ, Θ) performs two recursive calls:
T (even, ∆,Γ, Θ) that produces the pair (C, []), and T (zero,∆, Γ, Θ) that returns (nat, []). Then
we unify C with nat → E, this type is annotated in Γ as the type of even, and the first call to
T for the expression even zero returns (E, [C 7→ (nat → E)]). For the right-hand side, the call

232

T (true, ∆,Γ, Θ) returns (bool, []) and the types inferred for the left-hand side and the right-hand
(i.e., E and bool) are unified. Finally we obtain:

Γ = {even :: nat → bool, odd :: D}

For the second rule even (suc X) = odd X the initial environment Θ = {X :: F} is created. From
the expression suc X, the type nat is inferred for X. The type of the left-hand side, inferred
from Γ, is bool. Regarding the right-hand side, the call T ((odd X), ∆, Γ, Θ) unifies (through
recursive calls) the type D asssumed for odd in Γ with nat → G, returning G as the type for
odd X. Then, by unification of types of the left-hand side and the right-hand side, we obtain
odd :: nat → bool. This yields:

Γ = {even :: nat → bool, odd :: nat → bool}

The two rules for odd do not supply new information about the type annotations in Γ and do
not produce any error. Finally, the algorithm contrasts the inferred types for even and odd with
the declared types, that are identical in this case. The types for the first block are now inferred,
and we can update ∆, obtaining:

∆ = ∆0 ∪ {even :: nat → bool, odd :: nat → bool}

For the second block {lstEven}, the initial environment is:

Γ = {lstEven :: H}
From the first program rule we obtain lstEven :: [I] → bool, where the variable I is obtained by
renaming the type [] :: [A], taken from ∆. Then, checking the condition even X == true leads
to the refined type assumption lstEven :: [nat] → bool. The second rule for lstEven rule does
not supply additional information and does not produce any error. The updated context after
processing the second block is then:

∆ = ∆0 ∪ {even :: nat → bool, odd :: nat → bool, lstEven :: nat → bool}

Finally, for the last block {from} the inferred type from :: nat → [nat] is the same as the
declared one, and type inference ends up with the following context:

∆ = ∆0 ∪ {even :: nat → bool, odd :: nat → bool, lstEven :: nat → bool, from :: nat → [nat]}

T OY stores this final context ∆ in order to perform type checking of the different goals proposed
by the user in an interactive session. As explained in Section 2.13, goals are sequences of
conditions. Therefore, type checking of goals can be performed by following the innermost loop
of the type inference algorithm, using an empty Γ environment and with no modification of the
context ∆.

233

Appendix F

Declarative Semantics

The semantics of programs written in a declarative programming language can be explained
in terms of logical deduction. This so-called declarative semantics allows to separate what
programs do (the logical meaning) from how it is done (the complex operational execution
model). In this appendix we present the core ideas of T OY’s declarative semantics. More
technical details can be found in [11] for first-order programs, and in [13] for the higher-order
case.

F.1 Motivation

Declarative semantics originated in the field of pure logic programming, where programs are
given as sets of definite Horn clauses. In this setting, the logical meaning of a program P can
be modelled as the set of atomic facts p(t1, . . . , tn) which can be derived from P in the logical
calculus HL (for Horn Logic) consisting of one single inference rule:

qi(ti,1, . . . , ti,mi) (1 ≤ i ≤ k)
p(t1, . . . , tn)

IF p(t1, . . . , tn) <== q1(ti,1, . . . , t1,m1), . . . , qk(ti,1, . . . , tk,mk
)

is an instance of some clause in P

HL is a very simple inference system, which reflects the logical reading of a program clause
as a universally quantified implication. Atomic facts play a key rôle here because program
clauses behave as definitions of predicates. In the case of a multiparadigm declarative language
like T OY, program clauses are replaced by defining rules for functions, which are lazy and
possibly non-deterministic, as we have seen in Chapter 2. Therefore, a declarative semantics
for T OY must rely on some suitable generalization of atomic facts. Following [13] we consider
atomic facts of the form f t1 . . . tn → t, whose intended meaning is: “t represents one of the
possible approximations of the result returned by a call to the n-ary function f , provided that
t1, · · · , tn represent finite approximations of f ’s arguments.” More precisely, in any atomic fact
f t1 . . . tn → t, f ∈ FSn must be a defined function symbol of arity n and ti, t must be patterns
with abstract syntax

234

t ::= ⊥ | X | (t1, . . . , tn) | c t1 . . . tm (c ∈ DCn, 0 ≤ m ≤ n) |
f t1 . . . tm (f ∈ FSn, 0 ≤ m < n)

This syntax is almost the same as the one already introduced in Section 2.1, except that the
special symbol ⊥ (read bottom) is now allowed to occur in patterns. The symbol ⊥ represents
an undefined value. A pattern t is called total if there is no occurrence of ⊥ in t, and partial
otherwise. Partial patterns can be understood as a representation of partially known values,
where the occurrences of ⊥ stand for the unknown parts. Therefore, the result of replacing
(some or all) occurrences of ⊥ in a given pattern is a more defined pattern. More precisely, the
notation t v t′ (read: t approximates t′; or t′ is more defined than t) indicates a partial order
between patterns which holds iff t′ can be obtained from t by replacing (some or all occurrences)
of ⊥ by other patterns. This partial order is called the semantic ordering between patterns. For
instance, using the list constructor (:) and integer constants (viewed as nullary constructors)
we can build the infinite list of patterns, which is increasing w.r.t. v:

⊥ v 0 : ⊥ v 0 : 1 : ⊥ v 0 : 1 : 2 : ⊥ v · · ·
The patterns in this sequence represent more and more defined approximations of the infinite
list of all non-negative integers, which is the expected result of the function call from 0 (re-
member the definition of from given in Section 2.6). Therefore, the atomic facts from 0 →
0:1:...:n-1:⊥ (for all n ≥ 0) belong to the declarative semantics of any T OY program which
includes the definition of from. This example shows that partial patterns are essential to model
the semantics of lazy functions, whose returned results can be potentially infinite.
Atomic facts, in the sense of pure logic programming, can be represented in the form

p(t1, . . . , tn) → true

By convention, this may be abbreviated as p(t1, . . . , tn). For instance, the declarative semantics
of the Prolog-like T OY program presented in Section 2.11 includes (among others) the atomic
fact ancestorOf("alice","john").
The declarative semantics we are aiming at is also able to reflect non-determinism. As an
example, recall the non-deterministic nullary functions coins, rcoins :: [int] defined in
Section 2.12. Their declarative semantics contains the following atomic facts:

coins → 0 : ⊥; coins → 1 : ⊥;
coins → 0 : 0 : ⊥; coins → 0 : 1 : ⊥; coins → 1 : 0 : ⊥; coins → 1 : 1 : ⊥;
· · ·
rcoins → 0 : ⊥; coins → 0 : 0 : ⊥;
rcoins → 1 : ⊥; rcoins → 1 : 1 : ⊥;
· · ·

but not rcoins → 0 : 1 : ⊥ neither rcoins → 1 : 0 : ⊥. This reflects the behavioural
difference between coins and rcoins which was intended in their respective definitions. Recall
the informal discussion on call-time choice semantics of non-deterministic functions, in Section
2.12.
Formally, the declarative semantics of a T OY program P is modelled as the set of all the atomic
facts f t1 · · · tn → t which can be derived from P in the Constructor-based ReWriting Logic
CRWL presented in the next section. In the case of pure logic programs, CRWL behaves just as
Horn Logic. As seen from the examples in this motivating section, the logical meaning of T OY

235

programs given by CRWL lacks information on computed answers. In a way, this is a limitation.
Note, however, that any semantics which provides information on computed answers must be
more dependent on some particular operational model for goal solving. CRWL semantics is more
abstract in this sense, and still useful for various purposes, as e.g. investigating the completeness
of goal-solving methods (see [11, 13]), or designing provably correct declarative debugging tools,
like those described in Chapter 6.

F.2 A Constructor-Based Rewriting Logic

As explained in the previous section, the main aim of CRWL is to derive atomic facts from a
program. However, due to the occurrence of nested function calls in defining rules (see Section
2.6), CRWL must be able to derive more general facts of the form e → t, where t is a possibly
partial pattern and e is a possibly partial expression. These facts are called approximation
statements. The abstract syntax for partial expressions is like the one introduced for expressions
in Section 2.1, extended to allow occurrences of ⊥. Moreover, due to the occurrence of conditions
in defining rules, CRWL must also be able to derive conditions. For the moment we consider
only strict equality conditions e1 == e2; the extension of CRWL to deal with other kinds of
conditions will be briefly discussed in Section F.5.
CRWL can be presented as an inference system consisting of the six inference rules displayed
below. In each of them, the premises and the conclusion are approximation statements, except
in the case of the inference SE, where the conclusion is a strict equality condition.

BT Bottom:
e → ⊥ VR Variable:

X → X

TD Tuple Decomposition:
e1 → t1, . . . , en → tn

(e1, . . . , en) → (t1, . . . , tn)

PD Pattern Decomposition:
e1 → t1, . . . , em → tm

h e1 . . . em → h t1 . . . tm

FC Function Call:
e1 → t1, . . . , en → tn, C, r a1 . . . ak → t

f e1 . . . en a1 . . . ak → t
(k ≥ 0)

IF (f t1 . . . tn → r ⇐ C) ∈ [P]⊥

SE Strict Equality:
e1 → t, e2 → t

e1 == e2

IF t is a total pattern
In all the rules, ti stand for possibly partial patterns, while ei, aj stand for possibly partial
expressions. In rule FC the notation [P]⊥ refers to the set of all the possible instances of
program rules, where each particular instance is obtained from some function defining rule in
P, by some substitution of (possibly partial) patterns in place of variables. Moreover, the
formulation of rule FC must be understood assumming that C includes both strict equality
conditions e1 == e2 and approximation statements d → s in place of the local definitions s = d
occurring in the defining rule. This means that CRWL specifies the semantics of local definitions
as a particular case of approximation statements.

236

A derivation in CRWL can be presented as a finite sequence of statements ϕi, 0 ≤ i ≤ n, such
that each statement ϕi (0 ≤ i ≤ n) follows from some other statements ϕj (i < j ≤ n), by
means of some CRWL inference rule. A statement ϕ is called CRWL-provable from a program
P (in symbols, P `CRWL ϕ) iff there is some CRWL-derivation such that ϕ0 is ϕ, using only
rule instances from the set P at the FC steps.
The declarative semantics of a T OY program P is modelled by the set of all atomic facts
f t1 · · · tn → t such that P `CRWL f t1 · · · tn → t. For example, assume any program P
including the defining rules for coin and coins given in Section 2.12. Then, P `CRWL coins
→ 0:1:⊥ is proved by the following CRWL derivation:

0. coins → 0:1:⊥ by FC, 1.

1. coin:coins → 0:1:⊥ by PD, 2,3.

2. coin → 0 by FC, 4.

3. coins → 1:⊥ by FC, 5.

4. 0 → 0 by PD.

5. coin:coins → 1:⊥ by PD, 6,7.

6. coin → 1 by FC, 8.

7. coins → ⊥ by BT.

8. 1 → 1 by PD.

Note that all the CRWL inference rules, with the exception of FC, are program independent.
In particular, the rules BT, VR, TD, and PD essentially specify the semantic ordering. Con-
sidering the empty program ∅, and any approximation statement t′ → t where t′ and t are both
patterns, it is easy to check that ∅ `CRWL t′ → t holds if and only if t v t′. Some other technical
properties of CRWL can be found in [11, 13].

F.3 Correctness of Computed Answers

As we said already in Section F.1, CRWL semantics provides no direct information about com-
puted answers. Nevertheless, CRWL can be used to specify the logical correctness of compu-
tations. More precisely, assume a substitution σ (of patterns for variables) computed by the
T OY system as answer for a goal G which consists of strict equality conditions, using a program
P. Correctness of σ means that P `CRWL Gσ (i.e., P `CRWL ϕσ for each strict equality ϕ in
G). This correctness criterion can be used as a basis to prove soundness and completeness of
formally specified goal-solving mechanisms; see [11, 13]. The case of goals including other kinds
of conditions can be treated analogously with the extensions of CRWL mentioned in Section
F.5.

237

F.4 Models

In the pure logic programming field, declarative semantics also includes models. A model of a
logic program P is any interpretation of the predicate symbols over a certain domain, so that
all the clauses in P become true when interpreted as universally quantified implications. In
particular, models whose domain is the set of all the data terms (see Section 2.1) are called open
Herbrand models; such models can be represented as sets of atomic facts, closed under arbitrary
substitutions of data terms for variables. A well-known result of logic programming theory says
that the set MP = {p(t1, . . . , tn) | P `HL p(t1, . . . , tn)} (i.e., the set of all the atomic facts
that can be derived from P in Horn logic) is an open Herbrand model of P, and even the least
open Herbrand model (w.r.t. set inclusion).
All this can be generalized to the case of multiparadigm declarative languages like T OY. Here
we limit ourselves to introduce the analog of open Herbrand models; results about more general
models can be found in [11, 13]. Given a T OY program P, an open Herbrand interpretation
is defined as any set I of atomic facts f t1 . . . tn → t which satisfies the three following closure
properties:

1. (f t1 . . . tn → ⊥) ∈ I, for all f ∈ FSn and all (possible partial) patterns ti (1 ≤ i ≤ n).

2. IF (f t1 . . . tn → t) ∈ I and ti v t′i (1 ≤ i ≤ n) and t w t′ THEN (f t′1 . . . t′n → t′) ∈ I.

3. IF (f t1 . . . tn → t) ∈ I and θ is any substitution of total patterns for variables
THEN (f t1 . . . tn → t)θ ∈ I

Given an open Herbrand interpretation I and any statement ϕ, let us use the notation I ² ϕ
(reads: “ϕ is valid in I”) to indicate that ϕ can be derived in the inference system consisting of
all the CRWL inference rules, except FC, which is replaced by the following inference rule:

AFI Atomic Fact in I:
e1 → t1, . . . , en → tn, r a1 . . . ak → t

f e1 . . . en a1 . . . ak → t
(k ≥ 0)

IF (f t1 . . . tn → r) ∈ I
An open Herbrand interpretation I is called a model of a program P iff every program rule
instance (f t1 . . . tn → r ⇐ C) ∈ [P]⊥ is true in I when interpreted as a conditional implication;
more precisely, the following must hold:

IF I ² C (i.e., I ² ϕ for all ϕ ∈ C)
THEN (f t1 . . . tn → t) ∈ I for every pattern t such that I ² r → t.

Using this notion of model, it can be shown thatMP = {f t1 . . . tn → t | P `CRWL f t1 . . . tn →
t} (i.e., the set of all the atomic facts that can be derived from P in CRWL) is an open Herbrand
model of P, and even the least open Herbrand model (w.r.t. set inclusion). This is a nice
generalization of the classical results known for pure logic programs.
Models are a useful tool for various purposes, including program analysis, verification and de-
bugging. In particular, the foundations of T OY’s declarative debugger rely on the comparison
between the least open Herbrand model MP and another open Herbrand model I which plays
the rôle of the intended model of P. The observation of some wrong computed answer σ for some
goal G indicates that MP 6⊆ I. Since MP is the least open Herbrand model of P, it follows

238

that I is not a model of M. Therefore, some program rule instance must be false in I. As
explained in Chapter 6, the debugger locates such a wrong rogram rule instance by searching a
computation tree. In fact, the computation tree represents the FC inference steps in a CRWL
derivation which proves P `CRWL Gσ. All the other CRWL inferences can be ignored by the
debugger, since they are program independent and cannot cause logical errors. See [4, 5] for
more details.

F.5 Extensions

The presentation of CRWL in Section F.2 and [11, 13] is limited to the derivation of approxi-
mation statements and strict equality conditions. However, T OY programs can also use other
kinds of conditions, including disequality and arithmetic constraints (see Sections 2.6 and 2.16).
In order to obtain a declarative semantics for such programs, CRWL must be extended to a
more powerful inference system (CCRWL, say) with the ability to derive conditional statements
of the form σ ⇒ ϕ, where σ is a finite conjunction of atomic conditions and ϕ is either an ap-
proximation statement or an atomic condition. The definition of CCRWL is currently ongoing
work. Our aim is to characterize the declarative semantics of a program P as the set of all the
conditional basic facts of the form σ ⇒ f t1 . . . tn → t such that P `CCRWL σ ⇒ f t1 . . . tn → t.
This will naturally lead to a logical criterion of correctness for computed answers includ-
ing constraints. For instance, in Section 2.13 whe have already met the computed answer
L == [2,X,3] {X>=2.0} {X=<3.0} for the goal permutationSort [3,2,X] == L. The logical
correctness of this computation means that CCRWL should be able to derive the conditional
statement

L == [2,X,3] ∧ X>=2.0 ∧ X=<3.0 ⇒ permutationSort [3,2,X] == L.
We also expect CCRWL to provide a logical basis for the declarative debugging of T OY programs
with constraints, thus eliminating one limitation of the current debugger (see Chapter 6).

239

Appendix G

Operational Semantics

We define the operational semantics of T OY by means of a translation function T : Toy →
Prolog, where Toy and Prolog are the sets of T OY programs and Prolog programs, respec-
tively. The translation function, which constitutes the core of the implementation of T OY, is
the result of composing three intermediate functions

T = pc ◦ sf ◦ fo

where

• fo (which stands for first-order) translates source T OY programs, which use higher-order
syntax, into T OY-like programs written in first-order syntax.

• sf (which stands for suspended forms) introduces suspensions into first-order T OY pro-
grams, a technicality useful for achieving sharing in the execution of T OY programs.

• pc (which stands for prolog code) generates properly the Prolog clauses which are the final
result of the translation. The generation of Prolog code is made as to implement a demand-
driven strategy for lazy narrowing, according to the ideas presented in [22]. A crucial step
for the code generation will be the construction of the definitional trees of all the functions
defined in the T OY program.

We now give the technical details of all the above mentioned functions.

G.1 First-Order Translation of T OY Programs

It consists essentially in the three following changes:

• Enhancing the signature with new constructor symbols for expressing partial applications
of constructor or function symbols, and adding a new function symbol @ (read apply).

• Translating all program rules by writing all applications in first-order syntax, using the
new symbols of the enhanced signature whenever necessary.

• Adding program rules for the new function symbol @ .

240

The details of this translation are given below. The semantic correctness of the translation has
been justified in [12].

G.1.1 Enhancing the Signature

Given a signature Σ = DC ∪ FS, the first-order signature corresponding to Σ is Σfo = DCfo ∪
FSfo, where

FSfo = FS ∪ {@}
DCfo =

⋃
c∈DCn,n∈N {c0, . . . , cn} ∪ ⋃

f∈FSn,n∈N{f0, . . . , fn−1}
where {c0, . . . , cn, f0, . . . , fn−1} are new symbols. The idea is that in first-order syntax we use
the symbol ci whenever in higher-order syntax we encounter the symbol c applied to i arguments,
and similarly for f .

G.1.2 First-Order Translation of Program Rules and Rules for @

Let P be a T OY program consisting of the rules R1, . . . , Rn. Then the first-order translation of
P , fo(P), is defined as follows

fo(P) = {fo(R1), . . . , fo(Rn)} ∪@−Rules

fo(l = e ⇐ C) = fo(l) = fo(e) ⇐ fo(C)

fo(X) = X
fo(n) = n
fo((e1, . . . , en)) = (fo(e1), . . . , fo(en))
fo(c e1 . . . ek) = ck(fo(e1), . . . , fo(ek)), if c ∈ DCn, k ≤ n
fo(f e1 . . . ek) = fk(fo(e1), . . . , fo(ek)), if f ∈ FSn, k < n
fo(f e1 . . . en) = f(fo(e1), . . . , fo(en)), if f ∈ FSn

fo(f e1 . . . en en+1 . . . en+k) = @(. . .@(f(fo(e1), . . . , fo(en)), fo(en+1)), . . .), fo(en+k)),
if f ∈ FSn, k > 0

fo(X e1 . . . ek) = @(. . .@(X, fo(e1)), . . .), fo(ek))

fo(e1 ¦ e2) = fo(e1) ¦ fo(e2), if ¦ ∈ {==, / =, <,<=, >,>=}
% The @−Rules
@(ck(X1, . . . , Xk), Y) = ck+1(X1, . . . , Xk, Y), if c ∈ DCn, k ≤ n
@(fk(X1, . . . , Xk), Y) = fk+1(X1, . . . , Xk, Y), if f ∈ FSn, k + 1 ≤ n
@(fn−1(X1, . . . , Xn−1), Y) = f(X1, . . . , Xn−1, Y), if f ∈ FSn

Remarks

1. The real implementation does not need to use different symbols for c0, c1, . . . , cn (or
f0, f1, . . . , fn resp.). Instead, c (f resp.) is used to represent all of them. This can be
done since Prolog allows the use of the same constructor with different arities.

2. Goals must also be translated to first-order syntax, in the same way as conditions of
program rules are translated, that is

fo(. . . , e1 ¦ e2, . . .) = . . . , fo(e1) ¦ fo(e2), . . . , if ¦ ∈ {==, / =, <, <=, >, >=}

241

3. The first-order translation fo determines indeed a way of representing as Prolog terms
T OY programs (program rules, more precisely), expressions, and goals.

G.2 Introduction of Suspensions

We assume a T OY program P , translated to first-order syntax, consisting of the rules R1, . . . , Rn.
The idea of suspensions is to replace each subexpression in P with the shape of a function call
f(e1, . . . , en) by a Prolog term of the form susp(f(e1, . . . , en), R, S) (called a suspension) where
R and S are initially (i.e., at the time of translation) new Prolog variables. If during execution
the computation of a head normal form for f(e1, . . . , en) is required, the variable R will be used
to get the obtained value, and we say that the suspension has been evaluated. The argument
S in a suspension is a flag to indicate if the suspension has been evaluated or not. Initially
S is a variable (indicating a non-evaluated suspension), which is set to the value hnf once the
suspension is evaluated (to head normal form).
The result of introducing suspensions into first-order T OY programs is formally defined by
means of the following function fs:

fs(P) = {fs(R1), . . . , fs(Rn)}
fs(f(t1, . . . , tn)) = e ⇐ C) = f(t1, . . . , tn) = fs(e) ⇐ fs(C)

fs(X) = X
fs(n) = n
fs((e1, . . . , en)) = (fs(e1), . . . , fs(en))
fs(c(e1, . . . , en)) = c(fs(e1), . . . , fs(en))
fs(f(e1, . . . , en)) = susp(f(fs(e1), . . . , fs(en)), R, S)
fs(e1 ¦ e2) = fs(e1) ¦ fs(e2)

G.3 Prolog Code Generation

We now define the function pc which, given a T OY program (translated to first-order and with
suspensions), returns a Prolog program which implements (equality and disequality) constraint
solving by means of lazy narrowing with the demand-driven strategy described in [22].
We assume a (first-order with suspensions) TOY program P for a signature Σ = DC ∪FS. The
Prolog code for P , pc(P), is defined as

pc(P) = Solve ∪ EqualDC ∪ NotEqualDC ∪ HnfΣ ∪ PrologFS

where Solve,EqualDC , NotEqualDC ,HnfΣ, PrologFS are sets of Prolog clauses to be defined below.
For the sake of clarity, we present here in most occasions a simplification of the more optimized
sets of clauses used in the actual implementation. For a more detailed presentation, we refer to
[32] or T OY’s source code, specially the file toycomm.pl.
It will be apparent below that in some cases the code depends on the signature, having different
but similar clauses for different constructor or function symbols. Whenever we write c of f in
the clauses below, it indicates that a different clause must be considered for each constructor

242

symbol c ∈ DC or function symbol f ∈ FS. The actual code might be more compact by using
metapredicates to recognize and decompose the structure of expressions.

G.3.1 Clauses for Goal Solving (Solve)

A goal (or constraint) takes the form e1♦e′1, . . . , en♦e′n, where ♦ can be == or /=. As answer
for a goal the system produces a collection of constraints in solved form.
Solved forms for equality constraints can be handled as substitutions, and the system indeed
does it. Substitutions are managed by means of Prolog unification, and therefore there is no
need of explicit management of substitutions in the Prolog code.
Things are different for the case of disequality constraints, which are explicitly managed in the
code by means of a disequality constraint store with the form of a list [X : [t1, . . . , tn], Y :
[s1, . . . , sm], . . .], representing the collection of constraints in solved form X 6= t1, . . . , X 6=
tn, Y 6= s1, . . . , Y 6= sm, This constraint store must be consistently kept and taken into
account throughout the computation. This is why many Prolog procedures below have two
arguments Cin, Cout containing the constraint store as it is before and after the procedure
acts.
These are the top-level clauses for goal solving:
solve(G,OutStore) :- solve(G,[],OutStore).
solve((G,Gs),Cin,Cout) :- !, solve(G,Cin,Cout1), solve(Gs,Cout1,Cout).
solve(E1==E2,Cin,Cout) :- equal(E1,E2,Cin,Cout).
solve(E1/=E2,Cin,Cout) :- notEqual(E1,E2,Cin,Cout).
It is clear that the predicate solve can be eliminated by partial evaluation, resulting in direct
calls to equal and notEqual. This is done in the system.

Clauses for Solving Equalities (EqualDC)

equal(E1,E2,,Cin,Cout) :-
hnf(E1,H1,Cin,Cout1),
hnf(E2,H2,Cout1,Cout2),
equalHnf(H1,H2,Cout2,Cout).

equalHnf(X,H,Cin,Cout) :-
var(X),!, binding(X,H,Cin,Cout).

equalHnf(H,X,Cin,Cout) :-
var(X),!, binding(X,H,Cin,Cout).

equalHnf(c(X1,. . . ,Xn),c(Y1,. . . ,Yn),Cin,Cout) :- % a clause for each c ∈ DCn

equal(X1,Y1,Cin,Cout1),
. . . ,
equal(Xn,Yn,Coutn−1,Coutn).

binding(X,Y,Cin,Cin) :-
var(Y),X==Y,!.

binding(X,Y,Cin,Cout) :-
var(Y),!,
extractCtr(Cin,X,Cout1,CX),

243

not member(Y,CX),
extractCtr(Cout1,Y,Cout2,CY),
append(CX,CY,CXY),
X=Y,
Cout = [X:CXY—Cout2].

binding(X,H,Cin,Cout) :-
occursNot(X,H,SkelH,Res),
extractCtr(Cin,X,Cout1,CX),
X=SkelH,
propagate(X,CX,Cout1,Cout2),
continueBind(Res,Cout2,Cout).

occursNot(X,Y,SkY,Res) :- occursNot(X,Y,SkY,[],Res).
occursNot(X,Y,Y,Res,Res) :-

var(Y),!,X =̄ Y.
occursNot(X,c(Y1,. . . ,Yn),c(Sk1,. . . ,Skn),Res0,Resn) :-

occursNot(X,Y1,Sk1,Res0,Res1),
. . . ,
occursNot(X,Yn,Skn,Resn−1,Resn).

occursNot(X,susp(E,R,S),U,Res,[U==susp(E,R,S)—Res]) :- var(S),!.
occursNot(X,susp(E,R,S),Skel,Res,Res1) :-

occursNot(X,R,Skel,Res,Res1).
propagate(X,[],Cin,Cin).
propagate(X,[T—Terms],Cin,Cout) :-

notEqual(X,T,Cin,Cout1),
propagate(X,Terms,Cout1,Cout).

continueBind([],Cin,Cin).
continueBind([X==Y—Res],Cin,Cout) :-

equal(X,Y,Cin,Cout1),
continueBind(Res,Cout1,Cout).

extractCtr([],X,[],[]).
extractCtr([Y:Terms—Ctrs],X,Ctrs,Terms) :- X==Y,!.
extractCtr([Y:CY—Ctrs],X,[Y:CY—Ctrs1],CX) :-

extractCtr(Ctrs,X,Ctrs1,CX).

Clauses for Solving Disequalities (NotEqualDC)

notEqual(X,Y,Cin,Cout) :-
hnf(X,HX,Cin,Cout1),
hnf(Y,HY,Cout1,Cout2),
notEqualHnf(HX,HY,Cout2,Cout).

notEqualHnf(X,Y,Cin,Cout) :-
var(X),!,notEqualVar(X,Y,Cin,Cout).

notEqualHnf(Y,X,Cin,Cout) :-
var(X),!,notEqualVar(X,Y,Cin,Cout).

244

notEqualHnf(c(X1,. . . ,Xn),d(Y1,. . . ,Ym),Cin,Cin). % if c 6= d
notEqualHnf(c(X1,. . . ,Xn),c(Y1,. . . ,Yn),Cin,Cout) :-

notEqual(X1,Y1,Cin,Cout)
;
. . . % don’t know nondeterminism
;

notEqual(Xn,Yn,Cin,Cout).
notEqualVar(X,Y,Cin,Cout) :-

var(Y),!,X =̄Y,
addCtr(X,Y,Cin,Cout1),
addCtr(Y,X,Cout1,Cout).

notEqualVar(X,Y,Cin,Cout) :-
occursNot(X,Y,ShY,Res),
!,
contNotEqual(X,Y,ShY,Res,Cin,Cout).

notEqualVar(X,Y,Cin,Cin). % The occur-check failed, then X 6= Y is valid
contNotEqual(X, ,ShY,[],Cin,Cout) :- % No residual; Y was a cterm

!,addCtr(X,ShY,Cin,Cout).
contNotEqual(X,c(X1,. . . ,Xn),Cin,Cout) :-

hnf(X,d(Y1,. . . ,Ym),Cin,Cout)
; % don’t know nondeterminism

hnf(X,c(Y1,. . . ,Yn),Cin,Cout1),
notEqual(X,c(X1,. . . ,Xn),Cout1,Cout).

addCtr(X,Term,Cin,Cout) :-
extractCtr(Cin,X,Cout1,CX),
Cout = [X:[Term—CX]—Cout1]

G.3.2 Clauses for Computing Head Normal Forms (HnfΣ)

hnf(X,H,Cin,Cin) :-
var(X),var(H),!,X=H.

hnf(X,H,Cin,Cout) :-
var(X),!,
extractCtr(Cin,X,Cout1,CX),
X=H,
propagate(X,CX,Cout1,Cout).

hnf(c(X1,. . . ,Xn),H,Cin,Cin) :-
!, H=c(X1,. . . ,Xn).

hnf(susp(f(X1,. . . ,Xn),R,S),H,Cin,Cout) :-
var(S),!,
f(X1,. . . ,Xn,H,Cin,Cout),
R=H,
S=hnf.

hnf(susp(E,R,S),H,Cin,Cout) :-

245

hnf(R,H,Cin,Cout).

G.3.3 Clauses for Function Definitions (PrologFS)

Construction of Definitional Trees

Definition G.1 (Demanded positions)

• A position u is demanded by a rule f(t1, . . . , tn) = e ⇐ C if f(t1, . . . , tn) has a constructor
symbol at position u.

• A position u is demanded by a set of rules S if it is demanded by at least one rule of S.

• A position u is uniformly demanded by a set of rules S if it is demanded by all the rules
of S.

Definition G.2 (Call patterns) • A call pattern for f is f(s1, . . . , sn), where (s1, . . . , sn)
is a linear tuple of patterns.

• A call pattern f(s1, . . . , sn) is compatible with a set of rules S if f(s1, . . . , sn) matches
all the left-hand sides of the rules in S, that is, f(s1, . . . , sn) ≤ f(t1, . . . , tn) for any
f(t1, . . . , tn) which is a left-hand side of a rule of S.

In the following definition we write vpos(e) for the set of positions in e occupied by variables.

Definition G.3 (Definitional trees) Let f ∈ FSn be a function symbol defined by a set of
rules Rf in a program P . Then:

• dt(f) = dt(f(X1, . . . , Xn), Rf)

• Let S be a nonempty subset of Rf , and pat a call pattern for f compatible with S. The defi-
nitional tree for pat corresponding to S, written dt(pat, S), is defined recursively according
to the following cases (exactly must hold, and the second case involves a non-deterministic
choice):

1. Some position in vpos(pat) is uniformly demanded by S.
Let u be one of them (non-determinism)

X the variable in pat at u
c1, . . . , cm the constructor symbols at u in the rules of S
Si = {R ∈ S | R has ci at u } (i ∈ {1, . . . , m})
pati = pat[u ← ci(U1, . . . , Uk)] (ci ∈ DCk, U1, . . . , Uk news)

Then dt(pat, S) = pat → case X of
〈c1 : dt(pat1, S1)
. . .
cm : dt(patm, Sm)〉

246

2. Some position in vpos(pat) is demanded by S, but no one is uniformly demanded.
Let u1, . . . , um the demanded positions, in any order (non-determinism)

Su1 = {R ∈ S | R demands u1} ; Q1 = S − Su1

Su2 = {R ∈ Q1 | R demands u2} ; Q2 = Q1 − Su2

. . .
Sum = {R ∈ Qm−1 | R demands um}
S0 = Qm−1 − Sum (if S0 = ∅, it is ignored)

Then dt(pat, S) = pat → or 〈dt(pat, S0)
| dt(pat, Su1)
. . .
| dt(pat, Sum)〉

3. No position in vpos(pat) is demanded by S (therefore, since pat is compatible with S,
the left-handsides of S are variants of pat).
Let R1 ≡ pat = e1 ⇐ C1

. . .
Rn ≡ pat = en ⇐ Cn

be variants of the rules of S

Then dt(pat, S) = pat → try 〈e1 ⇐ C1

| e2 ⇐ C2

. . .
| en ⇐ Cn〉

Prolog Code associated to Definitional Trees

For each function symbol f ∈ FS, a set of Prolog clauses is generated, which is responsible
of computing head normal forms for calls to f of the form f(e1, . . . , en). At the top-level, the
Prolog code for f ∈ FS defines a Prolog predicate f 1 with three more arguments than the
original function f (one for the computed head normal form H, two more for the initial and
final states (Cin, Cout) of the disequality constraints store). Thus the top-level clause for f has
the shape

f(E1, . . . , En,H,Cin,Cout) : − . . .

The complete code for f , called here prolog(f), is extracted from the definitional tree of f , and
is defined as

prolog(f) = prolog(f, dt(f))

where the auxiliary function prolog/2 takes a definitional tree and a function symbol (possibly
different to the function of the definitional tree), returning as value a set of Prolog clauses, as
defined below.

• prolog(f(s)) → case X of 〈c1 : dt1 . . . cm : dtm〉 , g)

1In the actual implementation, the predicate is named $f in order to avoid conflicts between ‘user-defined’
predicates coming from the Prolog translation of a T OY program and built-in predicates or predicates belonging
to the Prolog translator itself.

247

= let σ = X/HX in
{g(s,H,Cin,Cout) : − hnf(X, HX, Cin, Cout1), g′(sσ,H,Cout1, Cout)}
∪ prolog(dt1, g

′)
. . .
∪ prolog(dtm, g′)

where g′ is a new function symbol.

• prolog(f(s)) → or 〈dt1 | . . . | dtm〉, g)

= {g(s,H,Cin,Cout) : − g1(s,H,Cin, Cout),
. . . ,
g(s,H,Cin, Cout) : − gm(s,H,Cin,Cout)}
∪ prolog(dt1, g1)
. . .
∪ prolog(dtm, gm)

where g1, . . . , gm are new function symbols.

• prolog(f(s)) → try 〈e1 ⇐ C1 | . . . | em ⇐ Cm〉, g)

= {g(s,H,Cin,Cout) : − solve(C1, Cin, Cout1), hnf(e1,H, Cout1, Cout),
. . . ,
{g(s,H,Cin,Cout) : − solve(Cm, Cin,Cout1), hnf(em,H,Cout1, Cout)},

248

Appendix H

Release Notes History

This chapter lists in reverse chronological order the release notes history from the first maintained
versioning system (Toy system version 2.0. February, 2002).

H.1 Version 2.3. Launched on December, 2006

Enhancements

• communication function bridge has beed added: (#==) :: int -> real -> bool.

• The libraries CLP(R) and CLP(FD) can be activated together.

• Implementation of the propagation for the cooperation between the real and finite domain
solvers (see 4)

• New commands:

/prop Enables propagation
/noprop Disables propagation

• More examples have been added.

examples/. Uncataloged examples

• New chapter in the manual:

– ??hapter 4. Cooperation of Solvers.

Deprecations
Changes
Fixed Bugs

249

H.2 Version 2.2.3. Launched on July, 2006

Enhancements

• Optimization functions have beed added to the library CFLPR: minimize, maximize ::
real -> real, for linear optimization bb minimize, bb maximize :: real -> [real]
-> real, for linear optimization with integral constraints

• When the library CLP(R) is activated, the function log/2 is now handled by the real
solver

• The file miscfd.toy is added to contain useful finite domain functions

• More run-time errors due to demandness are handled by means of exceptions, instead of
failures (e.g., belongs, sum, scalar product, ...)

• The implementation of several finite domain functions has been modified, also adding some
missing usage mode information

• New commands:

/prolog(Goal) Executes the Prolog goal Goal
/status Informs about the loaded libraries
/version Displays the Toy software version

• More examples have been added. Moreover, the directory examples becomes more struc-
tured:

examples/. Uncataloged examples
examples/apifd/. Program examples for the API FD
examples/cflpfp/. Program examples for CFLP(FD)
examples/cflpr/. Program examples for CFLP(R)
examples/debug/. Debugging examples
examples/failure/. Programming with failure examples
examples/flp/. Functional logic programming examples
examples/fp/. Functional programming examples
examples/h_constr/. Program examples for Herbrand constraints

(equality and disequality)
examples/io_file/. Program examples for the library IO File
examples/io_graphic/. Program examples for the library IO Graphic
examples/lp/. Logic programming examples
examples/tads/. Program examples for abstract data types

• New sections in the manual:

250

– Release Notes History

– Known Bugs

Deprecations

• substract (in misc.toy). See Section Changes below

• wakeoptions. See Section Changes below

• options. See Section Changes below

• newOptions. See Section Changes below

Changes

• fd_statistics and fd_statistics’ have interchanged their role in order to adhere to the
convention that the prime indicates that options can be used. The type of fd_statistics’
has changed to statistics -> int

• substract (in misc.toy) becomes subtract

• wakeoptions becomes wakeOptions

• options becomes allDiffOptions

• newOptions becomes serialOptions

Fixed Bugs

• The command type did not work on expressions. Fixed

• User-defined commands as described in section 1.5.5 of User Manual for version 2.2.2 did
not work. Fixed

• sum and scalar_product were not correctly implemented, giving rise to type error excep-
tions. Fixed

• fd_statistics delivered duplicate solutions. Fixed

• /nocflpfd did not completely unload the library CFLPFD. Fixed

• The libraries IO File and IO Graphic could not be unloaded. Fixed

• When first loading the libraries IO File and IO Graphic, and depending on the previous
state of the system, their functions were not available at command prompt until a program
were compiled. Fixed

• The data type ioMode was documented as:

data ioMode = read | write | append

251

but the actual declaration is:

data ioMode = readMode | writeMode | appendMode

H.3 Version 2.2.2. Launched on March, 2006

Enhancements

• Dynamic cut optimization. It can be activated using the /cut command before compiling
a program.

• The debugger now allows programs/goals with constraints over real numbers. See the
example examples/debug/ladder.toy

• New finite domain functions and constraints:

– Membership constraints:

subset :: int -> int -> bool % Domain subset
setcomplement :: int -> int -> bool % Domain complement
inset :: int -> int -> bool % Domain member
intersect :: int -> int -> int % Domain intersection
belongs :: int -> [int] -> bool % Domain definition

– Propositional constraints:

(#\/) :: bool -> bool -> bool % Disjunction
(#<=>) :: bool -> bool -> bool % Equivalence
(#=>) :: bool -> bool -> bool % Implication

– Arithmetic constraint operators:

(#&) :: int -> int -> int % Integer remainder

• More constraints are now reifiable (e.g., sum, scalar_product, ...)

• Some constraints become more declarative as they do not demand arguments with known
finite types. This is the case, for instance, of labeling. Now, it produces all the admissible
options for labeling. Consider the following goal:

Toy(FD)> domain [X] 0 1, labeling L [X]
{ X -> 0,

L -> [] }
Elapsed time: 110 ms.

252

more solutions (y/n/d) [y]?
{ X -> 1,

L -> [] }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ X -> 0,

L -> [bisect] }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ X -> 1,

L -> [bisect] }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ X -> 0,

L -> [bisect, ff] }
Elapsed time: 0 ms.

. . .

Up to all the correct answers

• More examples added to the distribution

• User Manual updated (draft published)

• New formatted output

• Nonlinear real functions revisited. Arguments of nonlinear real functions do not need to
be instantiated when the library CLP(R) is loaded: ln, exp, cot, asin, acos, atan, acot,
sinh, cosh, tanh, coth, asinh, acosh, atanh, acoth

Deprecations

• all_distinct is deprecated since its behaviour is the same as all_different

• all_distinct’ is deprecated since its behaviour is the same as all_different’

Changes

• [fdset] becomes simply fdset. See type declaration in User Manual

Fixed Bugs

• The goal:

labeling X [Y]

ran into an infinite loop. Fixed

253

• The goal:

domain [(id X)] 0 1

with the program:

id :: A -> A id A = A

shows the following error:

SYSTEM ERROR:
type_error(domain([$$susp($id,[_116],_121,_122)],0,1),1,integer,

$$susp($id,[_116],_121,_122))

The same situation held for labeling. Fixed

• Reification. Missing answer:

Toy(FD)> domain [X] 0 1, B #<=> (X#=0)
{ X -> 0,

B -> true }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
no.
Elapsed time: 0 ms.

With the current version:

Toy(FD)> domain [X] 0 1, B #<=> (X#=0)
{ X -> 0,

B -> true }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
{ X -> 1,

B -> false }
Elapsed time: 0 ms.

more solutions (y/n/d) [y]?
no.
Elapsed time: 0 ms.

• Equality and inequality constraints missed during processing of scheduling constraints.
Fixed

• Duplicate solutions with scheduling constraints. Fixed

• Non ground, non FD variables were output as inf..sup. Fixed

254

H.4 Version 2.2.1. Launched on November, 2005

Enhancements

• The set of examples has been extended with a new folder examples/debug containing
examples of buggy programs that can be used for testing the declarative debugger

• The computation tree generated by the declarative debugger is now stored in the direc-
tory javaTree. This avoids the creation of auxiliary files in the directory containing the
program to be debugged

Fixed Bugs

• A program as

data d = c int int
f (c 3) = 4

yielded an error during compilation (error code 24). Fixed

H.5 Version 2.2.0. Launched on August, 2005

Enhancements

• The system variable TOYDIR is no longer necessary

• The answers for a goal are now displayed as two sets, the first one representing a substitu-
tion and the second one a conjunction of constraints. For instance, a goal as X==5, X/=Y
displays the answer:

{ X -> 5}
{ Y /= 5}

meaning that if X is substituted by 5 and Y is any value different from 5 the goal holds.
However, not all finite domain constraints are shown up to now

• Totality constraints allowed. They can be activated by typing /tot and disabled with
/notot

• The declarative debugger handles programs including equality and disequality constraints

• Four new (non-declarative) primitives, collect, collectN, once, and fails have been
included

255

– collect e collects in a list all the values obtained when evaluating the expression
e. For instance, a goal as collect (3 // 4 // 5) == R has one answer { R ->
[3,4,5] }. The elements of the list correspond to all the values V computed for the
goal e==V. If e==V has no answer then collect e returns []

– collectN n e collects in a list the n first values obtained when evaluating e. For
instance a goal as collectN 2 (3 // 4 // 5) == R has one answer { R -> [3,4]
}. If e cannot be evaluated to n values, the primitive fails

– once e is equivalent to head (collectN 1 e)

– fails e returns true if the goal e==V fails, or false if the goal e==V has some answer.
For instance, the goal fails (head [])==R has the single answer {R -> true}. In
contrast, fails (head [X|Xs]) == R has the single answer {R -> false}

• The system can display statistics about the number of head normal forms, the system
memory or the number of the choice points required by the underlying Prolog program
during a certain computation. See /statistics in the help command (displayed by typing
/help) to check all the possibilities

Fixed Bugs

• The finite domain library was not working properly if no program was compiled after
typing /cflpfd. Fixed

• Fixed an error which involved the combination of disequality and equality with real num-
bers. For example, after loading the library CLP(R) (by typing /cflpr), a goal as X/=1,
X==2 was throwing an exception

• Fixed an error that occurred when combining disequality and equality constraints of com-
posed terms. For example, X/=(1,1), X==(2,2) was throwing an exception

H.6 Version 2.1.0. Launched on May, 2005

Enhancements

• Finite Domain Constraints

• Enhanced Declarative Debugging

• Multiplatform Support (including Windows, UNIX, and Linux)

• Executables for Windows 98 and later, and SunOS54

H.7 Version 2.0. Launched on February, 2002

Undocummented

256

Appendix I

Known Bugs

• The concurrent execution of several Toy interpreter sessions is not guaranteed to work
properly when loading and downloading libraries.

• 0-arity tuples are not allowed.

• You can compile and load a program with FD constraints without loading the library
CFLP(FD), but the correct implementation of primitive FD constraints and functions is
not available. So, before “running” a CFLP(FD) program, load this library by means of
the command /cflpfd.

• If CFLP(FD) is loaded and a program is compiled and run without the directive include
"cflpfd.toy", then the definitions of the FD constraint and functions are lost.

• When Ctrl-C is pressed, the stand-alone T OY application exits.

257

