

User Manual

SR100*i....*LAN+

No-Break DC UPS - with Ethernet port (SNMP) 100W

Please refer to separate user manual for full SNMP instructions

Safety

The user is responsible for ensuring that input and output wiring segregation complies with local standards and that in the use of the equipment, access is confined to operators and service personnel. A low resistance earth connection is essential to ensure safety and additionally, satisfactory EMI suppression (see below).

HAZARDOUS VOLTAGES EXIST WITHIN A POWER SUPPLY ENCLOSURE AND ANY REPAIRS MUST BE CARRIED OUT BY A QUALIFIED SERVICEPERSON.

Electrical Strength Tests

Components within the power supply responsible for providing the safety barrier between input and output are constructed to provide electrical isolation as required by the relevant standard. However EMI filtering components could be damaged as result of excessively long high voltage tests between input, output and ground. Please contact our technicians for advice regarding electric strength tests.

Earth Leakage

The EMI suppression circuits causes earth leakage currents which may be to the maximum allowable of 3.5mA.

Ventilation

High operating temperature is a major cause of power supply failures, for example it has been well documented that a 10°C rise in the operating temperature of a component will halve its expected life. Therefore always ensure that there is adequate ventilation for the equipment. Batteries and cooling fans also suffer shortened lifetimes if subjected to high ambient temperatures - both should be included in a routine maintenance schedule to check for signs of reduced efficiency.

Water / Dust

Every effort must be made in the installation to minimise the risk of ingress of water or dust. Water will almost always cause instant failure. The effects of dust are slower in causing failure of electronic equipment but all electrical equipment should be cleaned free of any dust accumulation at regular intervals. This is particularly important where internal fans are fitted.

Electromagnetic Interference (EMI)

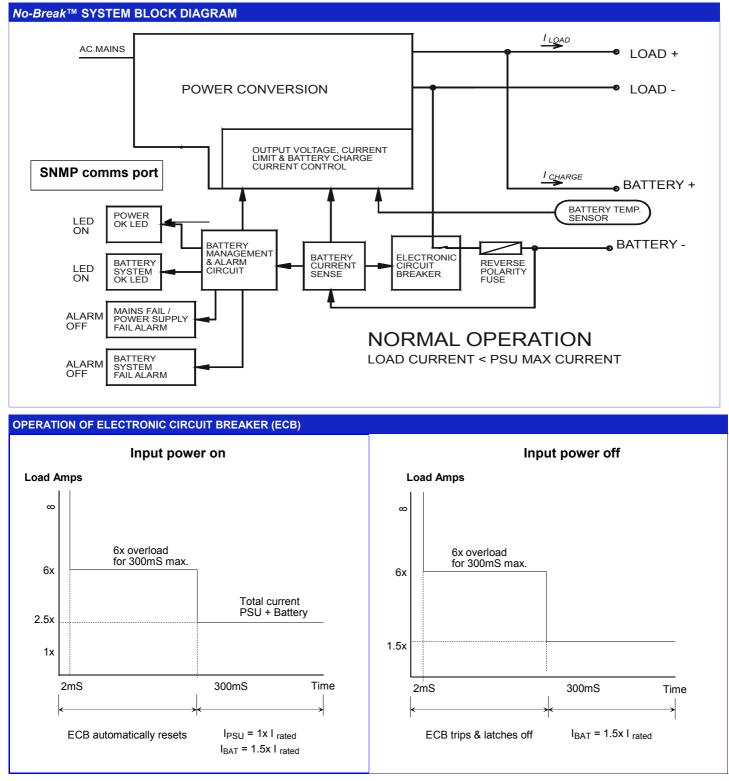
Switching power supplies and converters inherently generate electrical noise. All wiring should be as short as practicable and segregated from all equipment wiring which is sensitive to EMI. Residual noise can be reduced by looping DC wiring through ferrite cable sleeves. These are most effective as close to the power supply as possible and as many turns of the wire taken through the core (+ and - in the same direction) as the core will accommodate.

Fuse ratings

Check that the wiring and fuses or MCBs match the rating of the PSU or converter. Adequate fuse protection of battery circuits is very important owing to the large potential currents available from batteries. Our **No-Break DC** series has an internal ECB for protection of the battery circuit but for all other charging situations should have an external fuse or circuit breaker fitted in the battery circuit.

Connection polarity

It is critical to check the polarity carefully when connecting batteries and equipment to DC power supplies and chargers. Boost chargers (and some float chargers) made by Innovative Energies have reverse polarity protection, which can be by an electronic switch (non-destructive) or an internal fuse which needs to be replaced if a battery is connected in reverse.

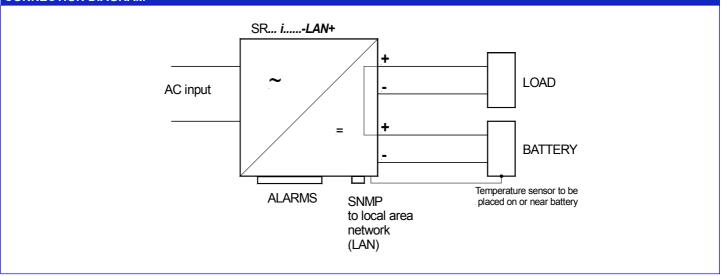

Glossary of terms used in our user manuals

PSU = power supply unit	BCT = battery condition test	ECB = electronic circuit breaker
ELVD = electronic low voltage disconnect	RPP = reverse polarity protection	EMI = electromagnetic interference
SNMP = Simple Network Management Protocol	LAN = local area network	

Introductio

The **No-Break ™DC** power supply is designed to provide DC power to lead acid batteries for critical back up applications. In addition to the normal features of the standard **SR100C..** model, the **SR100***i***...-LAN+** has an ethernet communication interface using SNMP protocol to enable user monitoring of the power supply and battery parameters and control of the battery condition test function.

The ECB is activated under the following conditions: 1. 2.


battery voltage drops below the Vdisco (1.66V/cell) battery current overload (refer to graphs above)

The ECB will latch open only when there is no input power present. It will reset when input power is restored or can be manually reset by briefly shorting the **BAT-** and **LOAD-** terminals together when there is no input power.

Installation Instructions

CONNECTION DIAGRAM

CONNECTION & INITIAL TESTING

- 1 Check input and output voltages of system, ensure that they match the equipment. All loads should be isolated.
- 2 Check polarity of all wiring. Place temperature sensor probe near or on batteries.
- 3 Plug in input power. "**POWER OK**" and "**BATT OK**" LEDs will light up. "**BATT OK**" will go out in about 10 secs as there is no battery connected. DC output voltage should appear at both load and battery outputs.
- 4 Turn off input power.
- 5 Connect battery.
- 6 Check that ECB (internal electronic circuit breaker) closes by shorting together the **BATTERY -ve** and **LOAD -ve** terminals briefly. Both LEDs will light up. If this does not happen, there is a fault in the wiring or the internal battery protection fuse is ruptured (see Note 2 below). The battery voltage will then appear at the load terminals and the "**BAT LOW**" alarm relay energises. The "**POWER OK**" LED stays on for about 30 seconds and then goes out
- 7 Connect load wiring to LOAD+ and LOAD- terminals.
- 8 Turn on input power for the system to be operational.
- 9 Please refer to separate user manual for setting up the SNMP web interface.
- 10 Connect network cable to monitor power supply parameters (refer to separate instructions for SNMP setup)

NOTES

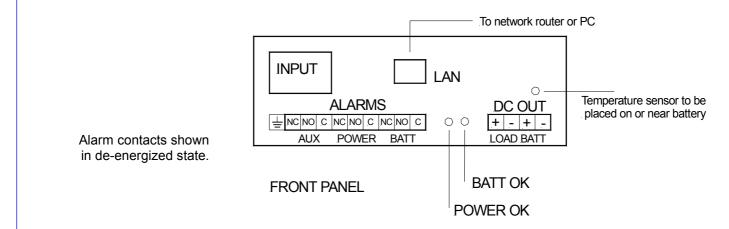
1

Maximum current availablewith input power present:2.5 x rated PSU currentwith no input power:1.5 x rated PSU current

2 Reverse polarity protection

If the battery is connected in reverse, the internal battery protection fuse may be ruptured and the unit should be returned to the manufacturer for repair. If the fuse is good, the voltage measured as at step 3 above should be exactly the same on both the load and battery outputs.

3 Battery Condition Test (BCT)


BCT function is disabled on start up and is controlled via the SNMP interface.

4 BCT fail reset

If the system fails a BCT the BAT LOW alarm latches (de-energized state) until

either: both the mains power input and the battery are disconnected briefly

or: the system passes the next BCT.

<u>ALARMS</u>

POWER:Relay is energized when input power and DC output are presentBATT:Relay is de-energized when either:
1. battery voltage < 1.8V/cell (eg. V batlow = 10.8V for a 12V system) - operates only
when no input power present or
2. battery missing or fault in battery circuit wiring (alarm does not activate for up to
battery detection interval time).AUX:Relay is energized when a BCT is in progress.

Power OK LED	Battery OK LED	Power Alarm	Battery Low Alarm	Condition
籇	*	Normal	Normal	System Normal: Input power on, battery circuit is OK
*	١	Normal	Normal	Battery detection test in progress
*	0	Normal	Alarm	 Input power on, battery system fault: Internal battery fuse has opened <i>or</i> Battery circuit wiring open circuit, battery missing, ECB has tripped
0	*	Alarm	Normal	Input power off <i>or</i> PSU has failed. Battery system is OK (battery volts > Vbatl)
0		Alarm	Alarm	Input power off <i>or</i> PSU has failed. Battery has discharged to < V batl
0	0	Alarm	Alarm	Input power off <i>or</i> PSU has failed. ECB has activated and disconnected battery from load
	₹ C C C C C C C C C C C C C C C C C C C	Normal	Normal	BCT is in progress: LEDs flash slowly
	₹ C C C C C C C C C C C C C C C C C C C	Normal	Alarm	Input power on, battery voltage < Vpres during a BCT (ie. failed BCT)

LEGEND :

=On

= fast flash

🕉 = slow flash

◯ =Off

Default Settings (at 20°C)

Parameter		Default					
i arameter	12V	24V	30V	30V 36V		Value	
*1 V out = Output voltage	13.8	27.6	34.5	41.4	55.2	2.3V/cell	
V pres = Voltage threshold for battery detec- tion & battery condition test (BCT). If voltage drops to this level during BCT then the test is aborted and BATT SYS OK alarm shows	12.2	24.4	30.5	36.6	48.8	2.03V/cell	
V shutd = Output voltage of PSU during bat- tery detection & BCT	11.5	23	28.8	34.5	46	1.92V/cell	
V batI = Battery low alarm voltage during mains fail. (BATT SYS OK alarm relay de-energizes)	11	22	27.6	33	44	1.84V/cell	
V disco = Battery disconnect voltage during mains fail	10	20	25	30	40	1.66V/cell	
Bccl = Maximum charge current as % of rated PSU rated current					100%		
Comms = communications mode of PSU: F = c M = r			of status It made by a	controller		М	
BatDetect = Battery detection interval time, active only when no battery charge current is detected (the unit may not detect a missing battery for up to this time)					60 min		
BCT = length of battery condition test						20 min	
Ret = retest option: N = after a failed BCT further scheduled BCTs are inhibited Y = after a failed BCT further scheduled BCTs will be allowed					Y		
CC = Length of charge cycle in minutes/hours/days. ie. time between battery condition tests					40m/23h/ 027d		
MfiBCT = time before mains fail check during BCT. A mains fail during a BCT will stop the BCT. If set longer than BCT time no mains fail check will occur.					30 min		

NOTES:

*1 Output voltage is set by an internal potentiometer.

Notes

100W No-Break DC UPS System with Communications

Charger

- Battery detection regular battery presence and battery circuit integrity checks
- Deep discharge protection for battery
- Battery circuit overload & short circuit protection
- Automatic temperature compensated output
- Automatic or manually controlled battery condition test (BCT)
- LED flash codes for precise state indication
- Alarm relay outputs
- Adjustable charge current limit
- Reverse battery polarity protection
- For use with external lead acid batteries
- Optional second DC output -#

Communication interfaces

- Ethernet
- RS485
- RS232

converterInnovative Energies ASCII code

Modbus RTU, TCP/HTTP (using external protocol

24 Month Warranty

Protocols

•

SNMP

SPECIFICATIONS All specifications are typical at nominal input, full load and at 20°C unless otherwise stated.

CZ367

ELECTRICAL		<i>No-Break</i> ™ FUNCTION	S AND ALARMS		
Input voltage	230VAC(180-265) 45-65Hz 115VAC (88- 32) 45-65Hz	Battery charge current limit	100% of PSU rated current unless specified on ordering		
Fusing / protection	Input fuse & varistor Output fuse & ECB for battery circuit	Reverse polarity pro- tection	Battery reverse connection will open internal fuse (and produce alarm)		
Isolation	1KV DC input - output / earth	Battery monitoring	Detects for presence of battery on start up,		
Efficiency	<u>></u> 85%		then every 60 minutes when charge current 200mA		
Inrush current	<30A, 1.8ms	Battery circuit protec-	Electronic circuit breaker (ECB) operates		
Output power	100W	tion - low battery volts	 under the following conditions: battery voltage drops to 1.67V/cell - 		
Output voltage	13.8, 27.6, 34.5, 41.4, 55.2VDC		auto reset on power on		
Voltage adj. range	85 - 105% of Vout	- overload	 < 300ms for I bat > 6 x I PSU rated , al- lows ~1.5x rated PSU current from bat- 		
Temp. compensation	Temperature sensor on 1.7m lead with adhesive pad: $-4mV / ^{\circ}C / cell \pm 10\%$	- short circuit	 e < 2ms, backed up by fuse 		
Current Limit	PSU: 100% rated current Battery: 25-100% PSU current	LED indication	Green: Power OK Green: Battery OK		
	<0.04% over AC input range	Alarms	Power OK (Mains/PSU fail)		
Line regulation	<0.5% open circuit to 100% load		 Battery System OK - alarms when batter voltage low (on mains fail), battery 		
Load regulation	<0.3%		missing, battery circuit wiring faulty, BCT fail (if enabled)		
Noise Transient response	200mV over / undershoot, load step 20-100%, 400us settling time	Alarm relay contacts	C - NO - NC full changeover rated 30VDC,2A /110VDC,0.3A/125VAC,0.5A		
Thermal protection	Yes, self-resetting	Battery condition test (BCT)	Standard on SR100 <i>i</i> versions BCT relay contact provided to control an		
Hold-up time	15 - 20 ms (nom max. Vin) without battery	()	external test load.		
STANDARDS		PHYSICAL			
EMI	to CISPR 22 / EN55022 class A, C-tick com-	Dimensions	147W x 177D x 62H mm		
	pliance	Weight	0.95 Kg		
Safety	to IEC950 / EN60950 / AS/NZS3260				

Specifications are subject to change without notice. No liability accepted for errors or omissions.

100 Watt No-Break™ DC charger for lead acid batteries

STANDARD MODEL TABLE

			DC Output	t	
MODELS	Output (V)	PSU Rated (A)	Charge Limit (A) * ¹	Recomm. Load (A)	Peak load on power fail (A)
SR100 <i>i</i> 12	13.8	7.5	7.5	6.0	11
SR100 <i>i</i> 24	27.6	3.7	3.7	3.0	5.5
SR100 <i>i</i> 30	34.5	2.9	2.9	2.3	4.3
SR100 <i>i</i> 36	41.4	2.4	2.4	1.9	3.6
SR100 <i>i</i> 48	55.2	1.9	1.9	1.5	2.8

Versions optional second DC output (-#)

add +PROTOCONMB-OE with ethernet port

ENVIRONMENTAL

Operating temperature	0 - 50 °C ambient at full load De-rate linearly >50 °C to no load @ 70 °C
Storage temperature	-10 to 85 °C ambient
Humidity	0 - 95% relative humidity non-condensing

Battery Condition Test Add option SFMCT xxxxx for SR100C. Default setting 20mins/28 days. SR100i : default setting is scheduled BCT disabled at start up Communication Port for -i & V versions Choice of RS485, RS232, LAN+ (SNMP), LAN (ASCII) Modbus converter For SR100i ... 485, use protocol converter, with programming port for PC. Power MBLink setup software supplied. add +PROTOCONMB or

*1 Charge current limit 25% & 50% settings available

ACCESSORIES SUPPLIED

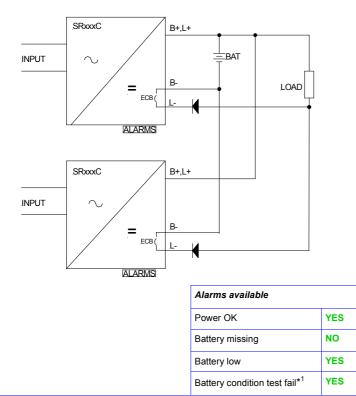
Mounting feet together with screws AC power cord 1.5m with IEC320 socket & AUS/NZ plug Mating screw terminal plug for DC output Mating screw terminal plug for alarms

SCHEMATIC BLOCK DIAGRAM	

CABINET OPTIONS

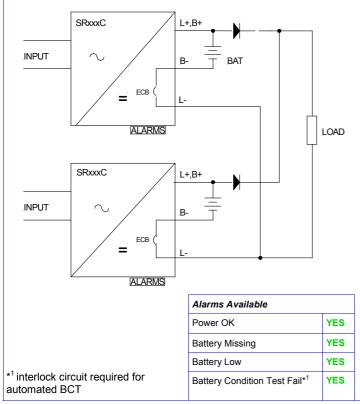
OPTIONS

19"Rack Mount	2U sub rack option: add SR-RM2U Optional V/I meter for subrack : SR-METER
Wall Mount Enclosure	PSU may be fitted into enclosure with MCBs and terminals: add SEC-SR

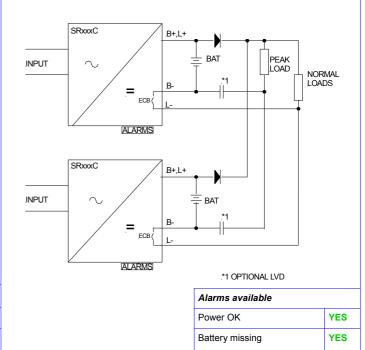

MODEL CODING AND SELECTION CHART

SR1	00 <i>i</i>	12	? T	X	G	-LA	N+ # —	# = Additio	nal DC output: 1 = 12V	2= 12.5V	4 = 24V	Blank = none
							Optional Communic Port	ations Interface	Blank = no comms. port LAN+ = Ethernet (SNMP)	485 = RS LAN = Et	485 232 hernet (ASCII)	= RS232
							Input voltage and fro standby switch	nt panel	Blank = 230V AC G = 110V AC	J = 1	88-135VDC	
							Output DC connecto	r	X = Plug in /screw terminal	block		
							Temperature Compe	nsation	T = Yes	BI	ank = No	
							— DC output (nominal b	oattery voltage)	12, 24, 30, 36, 48V			
							Function		i = No-Break DC UPS wit	h serial or ether	net communicat	tions port
							Power		100W			

Specifications are subject to change without notice. No liability accepted for errors or omissions.


#1 N+1 for *No-Break*™*DC* charger and single battery bank

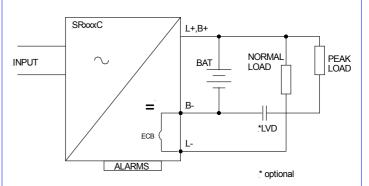
This connection provides for redundancy of the charger and retains most of the No-Break functions.


#3 2 x No-Break™DC chargers and 2 x battery banks

2 x No-Break[™]DC chargers connected in parallel with separate battery banks & output diodes. This solution provides an extremely high level of redundancy for very critical applications, with redundancy of the battery in addition to the power supply. The diodes isolate the units from one another in the event of a short circuit appearing at the other output and aid current sharing.

#2 N+1 for *No-Break*™*DC* charger and N+1 for battery bank (use this connection for high peak loads)

All *No-Break* alarms are available and the low voltage disconnect for the peak load is optionally implemented with an external relay.

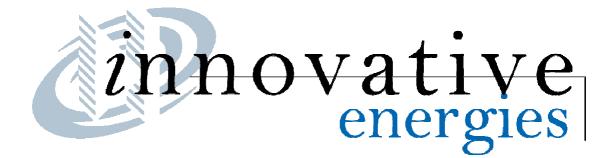


Battery condition test fail *1 YES

Battery low

#4 1 x *No-Break*™*DC* Connection for high peak loads

This is a basic connection which is used when there is a connected load with a peak current greater than 1.5 times the rated current of the charger. Standing loads are connected normally and an optional external low voltage disconnect may be used for the peak load.



Alarms Available	
Power OK	YES
Battery Missing	YES
Battery Low	YES
Battery Condition Test Fail	YES

Specifications are subject to change without notice. No liability accepted for errors or omissions.

YES

Notes

TERMS OF WARRANTY

Innovative Energies Ltd warrants its power supplies for 24 months (two years) from date of shipment against material and workmanship defects.

Innovative Energies' liability under this warranty is limited to the replacement or repair of the defective product as long as the product has not been damaged through misapplication, negligence, or unauthorized modification or repair.

Thank you for purchasing from Innovative Energies.

We trust your power supply will exceed your expectations and perform for years to follow.

Sincerely, The Innovative Energies team.

Innovative Energies Limited

Phone: Freephone:	+64 9 835 0700 0800 654 668 (New Zealand) 1800 148 494 (Australia)
Fax:	+64 9 837 3446
Email:	info@innovative.co.nz
Online:	www.innovative.co.nz or www.innovative-energies.com
In Person:	1 Heremai Street, Henderson, Auckland, New Zealand
By Post:	PO Box 19-501, Auckland 1746, New Zealand

