
RabbitCore RCM3700
C-Programmable Core Module

with Ethernet, Serial Flash, and Enhanced Software

User’s Manual

019–0136 • 050107–H

RabbitCore RCM3700

Z-World, Inc.

2900 Spafford Street

Davis, California 95616-6800

USA

Telephone: (530) 757-3737

Fax: (530) 757-3792

www.zworld.com

Rabbit Semiconductor

2932 Spafford Street

Davis, California 95616-6800

USA

Telephone: (530) 757-8400

Fax: (530) 757-8402

www.rabbitsemiconductor.com

RabbitCore RCM3700 User’s Manual

Part Number 019-0136 • 050107–H • Printed in U.S.A.

©2003–2005 Z-World Inc. • All rights reserved.

Z-World reserves the right to make changes and
improvements to its products without providing notice.

Trademarks

Rabbit and Rabbit 3000 are registered trademarks of Rabbit Semiconductor.

RabbitCore is a trademark of Rabbit Semiconductor.

Dynamic C is a registered trademark of Z-World Inc.

User’s Manual

TABLE OF CONTENTS

Chapter 1. Introduction 1
1.1 RCM3700 Features ...1

1.2 Advantages of the RCM3700 ...3

1.3 Development and Evaluation Tools..4

1.3.1 Development Kit ...4
1.3.2 Software ..5
1.3.3 Application Kits ..5
1.3.4 Online Documentation ..5

Chapter 2. Getting Started 7
2.1 Install Dynamic C ...7

2.2 Hardware Connections..8

2.2.1 Attach Module to Prototyping Board..8
2.2.2 Connect Programming Cable ..9
2.2.3 Connect Power ..10

2.2.3.1 Overseas Development Kits ... 10

2.3 Starting Dynamic C ..11

2.4 Run a Sample Program ...11

2.5 Where Do I Go From Here? ...12

2.5.1 Standalone Operation of the RCM3700..12
2.5.2 Technical Support ...12

Chapter 3. Running Sample Programs 13
3.1 Introduction...13

3.2 Sample Programs ..15

3.2.1 Use of Serial Flash ..17
3.2.2 Serial Communication...17
3.2.3 A/D Converter Inputs..19

Chapter 4. Hardware Reference 21
4.1 RCM3700 Digital Inputs and Outputs ..22

4.1.1 Memory I/O Interface ...26
4.1.2 Other Inputs and Outputs ..26

4.2 Serial Communication ..27

4.2.1 Serial Ports ..27
4.2.2 Ethernet Port ...28
4.2.3 Programming Port ...28

4.2.3.1 Alternate Uses of the Programming Port ... 29

4.3 Programming Cable ..30

4.3.1 Changing from Program Mode to Run Mode ...30
4.3.2 Changing from Run Mode to Program Mode ...30

4.4 Other Hardware...31

4.4.1 Clock Doubler ...31
4.4.2 Spectrum Spreader ..31

RabbitCore RCM3700

4.5 Memory .. 32

4.5.1 SRAM... 32
4.5.2 Flash EPROM... 32
4.5.3 Serial Flash ... 32
4.5.4 Dynamic C BIOS Source Files... 32

Chapter 5. Software Reference 33
5.1 More About Dynamic C... 33

5.2 Dynamic C Functions... 34

5.2.1 Board Initialization... 35
5.2.2 Analog Inputs ... 36
5.2.3 Digital I/O... 52
5.2.4 Serial Communication Drivers ... 53
5.2.5 TCP/IP Drivers ... 53

5.3 Upgrading Dynamic C ... 54

5.3.1 Add-On Modules .. 54
5.3.1.1 Featured Application Kit ... 54

Chapter 6. Using the TCP/IP Features 55
6.1 TCP/IP Connections ... 55

6.2 TCP/IP Primer on IP Addresses ... 57

6.2.1 IP Addresses Explained.. 59
6.2.2 How IP Addresses are Used ... 60
6.2.3 Dynamically Assigned Internet Addresses... 61

6.3 Placing Your Device on the Network .. 62

6.4 Running TCP/IP Sample Programs.. 63

6.4.1 How to Set IP Addresses in the Sample Programs... 64
6.4.2 How to Set Up your Computer’s IP Address for Direct Connect .. 65

6.5 Run the PINGME.C Sample Program.. 66

6.6 Running Additional Sample Programs With Direct Connect .. 66

6.6.1 RabbitWeb Sample Programs... 67
6.6.2 Secure Sockets Layer (SSL) Sample Programs.. 68
6.6.3 Dynamic C FAT File System, RabbitWeb, and SSL Modules .. 68

6.7 Where Do I Go From Here? ... 70

Appendix A. RCM3700 Specifications 71
A.1 Electrical and Mechanical Characteristics .. 72

A.1.1 Headers .. 75
A.2 Bus Loading .. 76

A.3 Rabbit 3000 DC Characteristics .. 79

A.4 I/O Buffer Sourcing and Sinking Limit... 80

A.5 Conformal Coating .. 81

A.6 Jumper Configurations .. 82

Appendix B. Prototyping Board 83
B.1 RCM3700 Prototyping Board.. 84

B.1.1 Features.. 85
B.1.2 Mechanical Dimensions and Layout.. 87
B.1.3 Power Supply... 88
B.1.4 Using the RCM3700 Prototyping Board ... 89

B.1.4.1 Adding Other Components ... 90

B.1.5 Analog Features ... 91
B.1.5.1 A/D Converter Inputs.. 91

B.1.5.2 Thermistor Input ... 93

B.1.5.3 Other A/D Converter Features .. 94

B.1.5.4 A/D Converter Calibration.. 95

User’s Manual

B.1.6 Serial Communication..96
B.1.6.1 RS-232 ... 97

B.1.6.2 RS-485 ... 98

B.1.7 Other Prototyping Board Modules ...100
B.1.8 Jumper Configurations ...101
B.1.9 Use of Rabbit 3000 Parallel Ports ..103

B.2 RCM3720 Prototyping Board ..105

B.2.1 Features ..106
B.2.2 Mechanical Dimensions and Layout ..107
B.2.3 Power Supply ...108
B.2.4 Using the RCM3720 Prototyping Board ..109

B.2.4.1 Prototyping Area.. 111

B.2.5 Serial Communication..112
B.2.6 Use of Rabbit 3000 Parallel Ports ..114

Appendix C. LCD/Keypad Module 117
C.1 Specifications ...117

C.2 Contrast Adjustments for All Boards ...119

C.3 Keypad Labeling ..120

C.4 Header Pinouts ...121

C.4.1 I/O Address Assignments...121
C.5 Install Connectors on Prototyping Board...122

C.6 Mounting LCD/Keypad Module on the Prototyping Board ..123

C.7 Bezel-Mount Installation..124

C.7.1 Connect the LCD/Keypad Module to Your Prototyping Board...126
C.8 Sample Programs ...127

C.9 LCD/Keypad Module Function Calls ..128

C.9.1 LCD/Keypad Module Initialization..128
C.9.2 LEDs...128
C.9.3 LCD Display...129
C.9.4 Keypad..145

Appendix D. Power Supply 149
D.1 Power Supplies...149

D.1.1 Battery-Backup Circuits...150
D.1.2 Reset Generator ..150

Appendix E. Secure Embedded Web Application Kit 151
E.1 Sample Programs..152

E.2 Module Documentation..152

Notice to Users 153

Index 155

Schematics 159

RabbitCore RCM3700

User’s Manual 1

1. INTRODUCTION

The RCM3700 is a compact module that incorporates the latest

revision of the powerful Rabbit 3000® microprocessor, flash

memory, onboard serial flash, static RAM, and digital I/O ports.

Throughout this manual, the term RCM3700 refers to the complete series of RCM3700

RabbitCore modules unless other production models are referred to specifically.

The RCM3700 has a Rabbit 3000 microprocessor operating at 22.1 MHz, static RAM,

flash memory, two clocks (main oscillator and real-time clock), and the circuitry necessary

for reset and management of battery backup of the Rabbit 3000’s internal real-time clock

and the static RAM. One 40-pin header brings out the Rabbit 3000 I/O bus lines, parallel

ports, and serial ports.

The RCM3700 receives its +5 V power from the customer-supplied motherboard on

which it is mounted. The RCM3700 can interface with all kinds of CMOS-compatible

digital devices through the motherboard.

The Development Kit and the Ethernet Connection Kit have what you need to design your

own microprocessor-based system: a complete Dynamic C software development system

with optional modules and a Prototyping Board that allows you to evaluate the RCM3700

and to prototype circuits that interface to the RCM3700 module.

1.1 RCM3700 Features

• Small size: 1.20" x 2.95" x 0.89"

(30 mm x 75 mm x 23 mm)

• Microprocessor: latest revision of Rabbit 3000 running at 22.1 MHz supports Dynamic C

Secure Sockets Layer (SSL) module for added security

• 33 parallel 5 V tolerant I/O lines: 31 configurable for I/O, 2 fixed outputs

• External reset I/O

• Alternate I/O bus can be configured for 8 data lines and 5 address lines (shared with

parallel I/O lines), I/O read/write

• Ten 8-bit timers (six cascadable) and one 10-bit timer with two match registers

• 512K flash memory and 512K SRAM (options for 256K flash memory and 128K SRAM)

2 RabbitCore RCM3700

• 1 Mbyte serial flash memory, which is required to run the optional Dynamic C FAT file

system

• Real-time clock

• Watchdog supervisor

• Provision for customer-supplied backup battery via connections on header J1

• 10-bit free-running PWM counter and four pulse-width registers

• Two-channel Input Capture can be used to time input signals from various port pins

• Two-channel Quadrature Decoder accepts inputs from external incremental encoder

modules

• Four available 3.3 V CMOS-compatible serial ports: maximum asynchronous baud rate

of 2.76 Mbps. Three ports are configurable as a clocked serial port (SPI), and one port

is configurable as an HDLC serial port. Shared connections to the Rabbit microproces-

sor make a second HDLC serial port available at the expense of two of the SPI config-

urable ports, giving you two HDLC ports and one asynchronous/SPI serial port.

• Supports 1.15 Mbps IrDA transceiver

There are three RCM3700 production models. Table 1 below summarizes their main

features.

The RCM3700 is programmed over a standard PC serial port through a programming cable

supplied with the Development Kit or the Ethernet Connection Kit, and can also be pro-

gramed through a USB port with an RS-232/USB converter or over an Ethernet with the

RabbitLink (both available from Z-World).

Appendix A provides detailed specifications for the RCM3700.

Table 1. RCM3700 Features

Feature RCM3700 RCM3710 RCM3720

Microprocessor Rabbit 3000
®

 running at 22.1 MHz

Flash Memory 512K 256K 512K

SRAM 512K 128K 256K

Serial Flash Memory 1 Mbyte

Serial Ports

4 shared high-speed, 3.3 V CMOS-compatible ports:

all 4 are configurable as asynchronous serial ports;

3 are configurable as a clocked serial port (SPI) and 1 is configurable as

an HDLC serial port;

option for second HDLC serial port at the expense of 2 clocked serial

ports (SPI)

User’s Manual 3

1.2 Advantages of the RCM3700

• Fast time to market using a fully engineered, “ready-to-run/ready-to-program” micro-

processor core.

• Competitive pricing when compared with the alternative of purchasing and assembling

individual components.

• Easy C-language program development and debugging

• Program download utility (Rabbit Field Utility) and cloning board options for rapid

production loading of programs.

• Generous memory size allows large programs with tens of thousands of lines of code,

and substantial data storage.

• Integrated Ethernet port for network connectivity, with royalty-free TCP/IP software.

• Ideal for network-enabling security and access systems, home automation, HVAC

systems, and industrial controls

4 RabbitCore RCM3700

1.3 Development and Evaluation Tools

1.3.1 Development Kit

The Development Kit contains the hardware and software needed to use the RCM3700.

• RCM3700 module.

• RCM3700 Prototyping Board.

• AC adapter, 12 V DC, 1 A (included only with Development Kits sold for the North

American market). A header plug leading to bare leads is provided to allow overseas

users to connect their own power supply with a DC output of 7.5–30 V.)

• Programming cable with 10-pin header and DE9 connections, and integrated level-

matching circuitry.

• Cable kits to access RS-485 and analog input connectors on Prototyping Board.

• Dynamic C CD-ROM, with complete product documentation on disk.

• Getting Started instructions.

• Accessory parts for use on the Prototyping Board.

• Rabbit 3000 Processor Easy Reference poster.

• Registration card.

Figure 1. RCM3700 Development Kit

����

����

�����������
	�
��

��������������
������������ �����������������

�

RabbitCore RCM3700
Getting Started

Development Kit Contents

The RCM3700 Development Kit contains the following items:

• RCM3700 module.

• Prototyping Board.

• AC adapter, 12 V DC, 500 mA (included only with Development Kits sold for the North American mar-
ket). A header plug leading to bare leads is provided to allow overseas users to connect their own power
supply with a DC output of 7.5–30 V.)

• 10-pin header to DE9 programming cable with integrated level-matching circuitry.

• Cable kits to access RS-485 and analog input connectors on Prototyping Board.

• Dynamic C CD-ROM, with complete product docu-
mentation on disk.

• Getting Started instructions.

• A bag of accessory parts for use on the Prototyping
Board.

• Rabbit 3000 Processor Easy Reference poster.

• Registration card.

Installing Dynamic C

If you haven’t yet installed Dynamic C,
insert the CD from the Development Kit in
your PC’s CD-ROM drive. If the installa-
tion program does not auto-start, then run
the setup.exe program in the root direc-
tory of the Dynamic C CD.

�������������������
�����������������

�	��������
	
��
����������

��
�������

�������	�
�������

�� ��
��
�

!�
�"

!�
�#

!�
�$

!�
�%

�

�

�&
'!

�(
�

!�
�)

!�
�*

!�
�+ �

�

�

� �# �) �) �* �+ �, �

�

�* �) �" �# �$ �% �

�

�&
'!

�(
�

!�
�)

!�
�*

!�
�+ �

�

�

� �# �" �) �* �+ �,

!#

()

(#

��)
�)
�#
�*
�$

�-

 -

�+

�% (*

�.

�, �/

0�) 0)

�$
/+

�
�

1$
/+

0�#

�)#�))
2*

($

(, (/ ()
"

�)*

())

2$

(+ (%

(.

0#

�
�

�����

�&+

�&*

��"

��%

�&"

����

�+�

�3$

�3%

�()���#

�("4 5�

��+

��)

��,4�5�

��$

�&�

��
$��

�#

���6�

��,

�&$

�&#

��)

��*

��+

��,

�&,

�3"

�3)

�3+

�3,

��$

��"

��+

��%
 5�

�(#
 5(

�(*�
��*

�
�

�����������

�

�
(

2)

()#

()*

()+
()$

!)

(), 2# ()/
2%

�)$

�)
().

�#
0$

�(�

�*
7*�

�

�

�+
�

�+
�

�

�

�*
7*�

!(�)0& !(�)0(

!(�)0�

2+

()%

�)+ &)

��
	

 5
�

�5
�

 5
�

��
	

 (84�8 4��('�

�+
�

�&
�

��
+

���
��

��
%4
 5
�

��
"

��
$

��
,

�(
#4
 5
(

�(
"4
 5
�

�3
%

�3
$

�&
+

�&
*

�&
"

�3
)

��
)

��
*

��
+

��
,

0+

�

�

�)% �

�

��
�� ��
$

���
6� ��
)

��
+

�(
*��

�* �3
,

�3
+

�&
,

�&
$

�&
#

�3
"

��
"

��
#

��
$

��
%

��
,

�5
�

�(
)�

��
#

(##

(#%
�#) �)/

(#
"

�).
(#)

�#"

�##

0�$

) #

��)

(5) (5# (5*

(5$

(5+

(5%

(5,

(5/

(5.

(5)"(5))

25#

25)
2/

�#*
(#$ (#+

(#*

2,

(#,
�#+

�#$
(#/

�#%

�#,

�#/

�#.
0�/

�*" �*) �*# �** �*$ �*+ �*%

(*+

�$
*

(#.0,
 9��8�� ��

�*
,

0/

��
�3

�
�	

�$
$

��
��

�

�� ��
 "% "+ "$ "* "# ") "" ��

�
�	

�*
/

(*
"

(*
)

(*
#

(*
*

(*
$

�*.��$" �$)��$#

�$
/

��) ��#

�$+
�$.

�$%

��*

�$,

�*�#�)

(�
���

0�+ 0�% 0�,
(
(
(
(
(
(

�� ��
�
�

!�
�"

!�
�#

!�
�$

!�
�%

�

�

�* �) �" �# �$ �%

�(
8*
%�*
,5
5��

��
���

��
�
�
:�
�

��
&�

��
�

����

User’s Manual 5

1.3.2 Software

The RCM3700 is programmed using version 8.11 or later of Z-World’s Dynamic C.

Z-World also offers for sale other add-on Dynamic C modules including the popular

µC/OS-II real-time operating system, as well as point-to-point protocol (PPP), Advanced

Encryption Standard (AES), and other select libraries. In addition to the Web-based tech-

nical support included at no extra charge, a one-year telephone-based technical support

module is also available for purchase. Visit our Web site at www.zworld.com or contact

your Z-World sales representative or authorized distributor for further information.

1.3.3 Application Kits

Z-World also has application kits featuring the RCM3700 to provide the exact software

and other tools that will enable to tailor your RCM3700 for specific applications.

• Secure Embedded Web Application Kit [Z-World Part No. 101-0897 (North American

markets) and Part No. 101-0898 (overseas markets)]—comes with three CD-ROMs

that have the Dynamic C RabbitWeb, FAT File System, and Secure Sockets Layer

(SSL) modules, and includes Dynamic C 8.51 or a later version and an RCM3700. This

enhanced software bundle facilitates the rapid development of secure Web browser

interfaces for embedded system control. Appendix E provides additional information

about the Secure Embedded Web Application Kit.

• Ethernet Connection Kit [Z-World Part No. 101-0963 (North American markets) and

Part No. 101-0964 (overseas markets)]—comes with one CD-ROM that includes

Dynamic C 9.01 or a later version, an RCM3720 module, and an RCM3720 Prototyp-

ing Board. This kit is intended to demonstrate and help you develop Ethernet-based

applications.

Visit our Web site at www.zworld.com or contact your Z-World sales representative or

authorized distributor for further information.

1.3.4 Online Documentation

The online documentation is installed along with Dynamic C, and an icon for the docu-

mentation menu is placed on the workstation’s desktop. Double-click this icon to reach the

menu. If the icon is missing, use your browser to find and load default.htm in the docs

folder, found in the Dynamic C installation folder.

Each Dynamic C module has complete documentation available with the online documen-

tation described above.

The latest versions of all documents are always available for free, unregistered download

from our Web sites as well.

6 RabbitCore RCM3700

User’s Manual 7

2. GETTING STARTED

This chapter describes the RCM3700 hardware in more detail, and

explains how to set up and use the accompanying Prototyping Board.

NOTE: It is assumed that you have the RCM3700 Development Kit. If you purchased an

RCM3700 module by itself, you will have to adapt the information in this chapter and

elsewhere to your test and development setup.

2.1 Install Dynamic C

To develop and debug programs for the RCM3700 (and for all other Z-World and Rabbit

Semiconductor hardware), you must install and use Dynamic C.

If you have not yet installed Dynamic C version 8.11 (or a later version), do so now by

inserting the Dynamic C CD from the RCM3700 Development Kit in your PC’s CD-ROM

drive. If autorun is enabled, the CD installation will begin automatically.

If autorun is disabled or the installation otherwise does not start, use the Windows

Start | Run menu or Windows Disk Explorer to launch setup.exe from the root folder

of the CD-ROM.

The installation program will guide you through the installation process. Most steps of the

process are self-explanatory.

Dynamic C uses a COM (serial) port to communicate with the target development system.

The installation allows you to choose the COM port that will be used. The default selec-

tion is COM1. You may select any available port for Dynamic C’s use. If you are not cer-

tain which port is available, select COM1. This selection can be changed later within

Dynamic C.

NOTE: The installation utility does not check the selected COM port in any way. Speci-

fying a port in use by another device (mouse, modem, etc.) may lead to a message such

as "could not open serial port" when Dynamic C is started.

Once your installation is complete, you will have up to three icons on your PC desktop.

One icon is for Dynamic C, one opens the documentation menu, and the third is for the

Rabbit Field Utility, a tool used to download precompiled software to a target system.

If you have purchased any of the optional Dynamic C modules, install them after installing

Dynamic C. The modules may be installed in any order. You must install the modules in

the same directory where Dynamic C was installed.

8 RabbitCore RCM3700

2.2 Hardware Connections

There are three steps to connecting the Prototyping Board for use with Dynamic C and the

sample programs:

1. Attach the RCM3700 module to the Prototyping Board.

2. Connect the programming cable between the RCM3700 Prototyping Board and the

workstation PC.

3. Connect the power supply to the Prototyping Board.

The connections are shown for the RCM3700 Prototyping Board, and are similar for the

RCM3720 Prototyping Board.

2.2.1 Attach Module to Prototyping Board

Turn the RCM3700 module so that the Ethernet jack is on the left as shown in Figure 2

below. Insert the module’s J1 header into the TCM_SMT_SOCKET socket on the Proto-

typing Board. The shaded corner notch at the bottom right corner of the RCM3700 module

should face the same direction as the corresponding notch below it on the Prototyping

Board.

Figure 2. Install the RCM3700 Series on the Prototyping Board

NOTE: It is important that you line up the pins on header J1 of the RCM3700 module

exactly with the corresponding pins of the TCM_SMT_SOCKET socket on the Proto-

typing Board. The header pins may become bent or damaged if the pin alignment is off-

set, and the module will not work. Permanent electrical damage to the module may also

result if a misaligned module is powered up.

Press the module’s pins firmly into the Prototyping Board headers.

�� ��
�
�
�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

�

�
#

�
)

�
)

�
*

�
+

�
,

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

� �
#

�
"

�
)

�
*

�
+

�
,

!#

()

(#

��)

�)
�#
�*
�$

�
-

-

�+

�% (*

�.

�, �/

0�) 0)

�$
/+

�
�

1$
/+

0�#

�)#�))

2*

($

(, (
/

(
)"

�)*

())

2$

(+ (%

(
.

0#

�
�

�����

�&+

�&*

��"

��%

�&"

����

�+�

�3$

�3%

�()���#

�("4 5�

��+

��)

��,4�5�

��$

�&�

�
�
$�
�
�
#

���6�

��,

�&$

�&#

��)

��*

��+

��,

�&,

�3"

�3)

�3+

�3,

��$

��"

��+

��%
 5�

�(#
 5(

�(*�
��*

�
�

�����������

�

�

(

2)

()#

()*

()+
()$

!)

(), 2# ()/
2%

�)$

�)
().

�#
0$

�(�

�*
7*
�

�

�

�+
�

�+
�

�

�

�*
7*
�

!(�)0& !(�)0(

!(�)0�

2+

()%

�)+ &)

�
�	

5
�

�
5
�

5
�

�
�	

 (84�8 4��('�

�+
�

�
&
�

�
�
+

���
�
�

�
�
%4

5
�

�
�
"

�
�
$

�
�
,

�
(
#4

5
(

�
(
"4

5
�

�
3
%

�
3
$

�
&
+

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

0+

�

�

�)% �

�

��
�
�

�
�
$

���
6
�

�
�
)

�
�
+

�
(
*�
�
�
*

�
3
,

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�
�
,

�
5
�

�
(
)�

�
�
#

(##

(#%
�#)

�)/

(
#"

�).
(#)

�#"

�##

0�$

) #

��)

(5) (5# (5*

(5$

(5+

(5%

(5,

(5/

(5.

(5)"(5))

25#

25)
2/

�#*
(#$ (#+

(#*

2,

(#,
�#+

�#$
(#/

�#%

�#,

�#/

�#.
0�/

�*" �*) �*# �** �*$ �*+ �*%

(*+

�
$*

(#.0,
 9��8�� ��

�
*,

0/

�
�
�
3

�
�	

�
$$

��
��

�

�
� �
�

"% "+ "$ "* "# ") "" �
�

�
�	

�
*/ (
*"

(
*)

(
*#

(
**

(
*$

�*.��$" �$)��$#

�
$/

��) ��#

�$+
�$.

�$%

��*

�$,

�*�#�)

(�
���

0�+ 0�% 0�,

(

(

(

(

(

(

�� ��
�

�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�
(
8
*%
�*
,5

5
��
�
�
��
�

�
�
�
 �

:
�
�

�
�&
�
�
�
�

����

�
#$

�
#

(
)/

(
*$

��)��# �
)/

�
*%

(*+
().

(
#%

(
#,

(
#/

�)+
�)%

(*%
(*.
�)*

2)(#+

0�)
(,

0�*

0#

(
**

(
*#

(
*"

(
*)

()+

(),
(#"

(*/
($)

2$

�
%

�))(*,

�$�+
2+

(#.

0�
#

:)

($"

()"

;)

�,($.

!#

!)

()$

()#(##

2
/(
#*

:*(+,
�*)

(
+/

�#.

��#
�*#
�*"

��)

0*

�*$

()%

�#/

) (#$

(#)
�)

2%

(+*
�
#%

2*

�**
(/

2))

!$

!*
(+$��(++

!%

��������������

������������
��������	� !""

User’s Manual 9

2.2.2 Connect Programming Cable

The programming cable connects the RCM3700 to the PC running Dynamic C to down-

load programs and to monitor the RCM3700 module during debugging.

Connect the 10-pin connector of the programming cable labeled PROG to header J2 on

the RCM3700 as shown in Figure 3. Be sure to orient the marked (usually red) edge of the

cable towards pin 1 of the connector. (Do not use the DIAG connector, which is used for a

normal serial connection.)

Figure 3. Connect Programming Cable and Power Supply

NOTE: Be sure to use the programming cable (part number 101-0542) supplied with this

Development Kit—the programming cable has blue shrink wrap around the RS-232 con-

verter section located in the middle of the cable. The simplified programming cable and

adapter board that are supplied with the Ethernet Connection Kit may also be used as

shown in the inset diagram above. Programming cables from other Z-World or Rabbit

Semiconductor kits were not designed to work with RCM3700 modules.

Connect the other end of the programming cable to a COM port on your PC.

NOTE: Some PCs now come equipped only with a USB port. If your PC has no RS-232

COM port, but has a USB port, you should buy an RS-232/USB converter from

Z-World’s Web store.

�� ��
�
�
�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

�

�
#

�
)

�
)

�
*

�
+

�
,

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

� �
#

�
"

�
)

�
*

�
+

�
,

!#

()

(#

��)

�)
�#
�*
�$

�
-

-

�+

�% (*

�.

�, �/

0�) 0)

�$
/+

�
�

1$
/+

0�#

�)#�))

2*

($

(, (
/

(
)"

�)*

())

2$

(+ (%

(
.

0#

�
�

�����

�&+

�&*

��"

��%

�&"

����

�+�

�3$

�3%

�()���#

�("4 5�

��+

��)

��,4�5�

��$

�&�

�
�
$�
�
�
#

���6�

��,

�&$

�&#

��)

��*

��+

��,

�&,

�3"

�3)

�3+

�3,

��$

��"

��+

��%
 5�

�(#
 5(

�(*�
��*

�
�

�����������

�

�

(

2)

()#

()*

()+
()$

!)

(), 2# ()/
2%

�)$

�)
().

�#
0$

�(�

�*
7*
�

�

�

�+
�

�+
�

�

�

�*
7*
�

!(�)0& !(�)0(

!(�)0�

2+

()%

�)+ &)

�
�	

5
�

�
5
�

5
�

�
�	

 (84�8 4��('�

�+
�

�
&
�

�
�
+

���
�
�

�
�
%4

5
�

�
�
"

�
�
$

�
�
,

�
(
#4

5
(

�
(
"4

5
�

�
3
%

�
3
$

�
&
+

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

0+

�

�

�)% �

�

��
�
�

�
�
$

���
6
�

�
�
)

�
�
+

�
(
*�
�
�
*

�
3
,

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�
�
,

�
5
�

�
(
)�

�
�
#

(##

(#%
�#)

�)/

(
#"

�).
(#)

�#"

�##

0�$

) #

��)

(5) (5# (5*

(5$

(5+

(5%

(5,

(5/

(5.

(5)"(5))

25#

25)
2/

�#*
(#$ (#+

(#*

2,

(#,
�#+

�#$
(#/

�#%

�#,

�#/

�#.
0�/

�*" �*) �*# �** �*$ �*+ �*%

(*+

�
$*

(#.0,
 9��8�� ��

�
*,

0/

�
�
�
3

�
�	

�
$$

��
��

�

�
� �
�

"% "+ "$ "* "# ") "" �
�

�
�	

�
*/ (
*"

(
*)

(
*#

(
**

(
*$

�*.��$" �$)��$#

�
$/

��) ��#

�$+
�$.

�$%

��*

�$,

�*�#�)

(�
���

0�+ 0�% 0�,

(

(

(

(

(

(

�� ��
�

�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�
(
8
*%
�*
,5

5
��
�
�
��
�

�
�
�
 �

:
�
�

�
�&
�
�
�
�

����

 #���
��$������������

�	��������

�������$����

%��������	�������������
�����������

	�
��

�
#$

�
#

(
)/

(
*$

��)��# �
)/

�
*%

(*+
().

(
#%

(
#,

(
#/

�)+
�)%

(*%
(*.
�)*

2)(#+

0�)
(,

0�*

0#

(
**

(
*#

(
*"

(
*)

()+

(),
(#"

(*/
($)

2$

�
%

�))(*,

�$�+
2+

(#.

0�
#

:)

($"

()"

;)

�,($.

!#

!)

()$

()#(##

2
/(
#*

:*(+,
�*)

(
+/

�#.

��#
�*#
�*"

��)

0*

�*$

()%

�#/

) (#$

(#)
�)

2%

(+*

�
#%

2*

�**
(/

2))

!$

!*
(+$��(++

!%

(�����<
�<=�

 �
�
(
��
�
�
�>
��

&�?�
�������@��>

�
�
�
�

�
��
�

��������
�����������

	�
��

�
�
�
�

0#

0#

!����?>�������<��<=�
@�
��<�

10 RabbitCore RCM3700

2.2.3 Connect Power

When all other connections have been made, you can connect power to the Prototyping

Board. Connect the wall transformer to 3-pin header J4 on the Prototyping Board as

shown in Figure 3. The connector may be attached either way as long as it is not offset to

one side.

Plug in the wall transformer. The LED above the RESET button on the Prototyping Board

should light up. The RCM3700 and the Prototyping Board are now ready to be used.

NOTE: A RESET button is provided on the Prototyping Board to allow a hardware reset

without disconnecting power.

2.2.3.1 Overseas Development Kits

Development kits sold outside North America include a header connector that may be

connected to 3-pin header J4 on the Prototyping Board. The connector may be attached

either way as long as it is not offset to one side. The red and black wires from the connec-

tor can then be connected to the positive and negative connections on your power supply.

The power supply should deliver 7.5 V–30 V DC at 500 mA.

User’s Manual 11

2.3 Starting Dynamic C

Once the RCM3700 is connected as described in the preceding pages, start Dynamic C by

double-clicking on the Dynamic C icon or by double-clicking on dcrabXXXX.exe in

the Dynamic C root directory, where XXXX are version-specific characters.

Dynamic C uses the serial port on your PC that you specified during installation.

2.4 Run a Sample Program

Use the File menu to open the sample program PONG.C, which is in the Dynamic C

SAMPLES folder. Press function key F9 to compile and run the program. The STDIO win-

dow will open on your PC and will display a small square bouncing around in a box.

If Dynamic C appears to compile the BIOS successfully, but you then receive a communi-

cation error message when you compile and load a sample program, it is possible that your

PC cannot handle the higher program-loading baud rate. Try changing the maximum

download rate to a slower baud rate as follows.

• Locate the Serial Options dialog in the Dynamic C Options > Project Options >

Communications menu. Select a slower Max download baud rate.

If a program compiles and loads, but then loses target communication before you can

begin debugging, it is possible that your PC cannot handle the default debugging baud

rate. Try lowering the debugging baud rate as follows.

• Locate the Serial Options dialog in the Dynamic C Options > Project Options >

Communications menu. Choose a lower debug baud rate.

If there are any other problems:

• Check that the RCM3700 is powered correctly — the power LED above the RESET

button on the Prototyping Board should be lit.

• Check to make sure you are using the PROG connector, not the DIAG connector, on the

programming cable.

• Check both ends of the programming cable to ensure that they are firmly plugged into

the PC and the programming port on the RCM3700.

• Ensure that the RCM3700 module is firmly and correctly installed in its connectors on

the Prototyping Board.

• Select a different COM port within Dynamic C. From the Options menu, select

Project Options, then select Communications. Select another COM port from the list,

then click OK. Press <Ctrl-Y> to force Dynamic C to recompile the BIOS. If Dynamic C

still reports it is unable to locate the target system, repeat the above steps until you locate

the active COM port.

12 RabbitCore RCM3700

2.5 Where Do I Go From Here?

If the sample program ran fine, you are now ready to go on to other sample programs and to

develop your own applications. The source code for the sample programs is provided to allow

you to modify them for your own use. The RCM3700 User’s Manual also provides com-

plete hardware reference information and describes the software function calls for the

RCM3700, the Prototyping Board, and the optional LCD/keypad module.

For advanced development topics, refer to the Dynamic C User’s Manual and the

Dynamic C TCP/IP User’s Manual, also in the online documentation set.

2.5.1 Standalone Operation of the RCM3700

The RCM3700 must be programmed via the RCM3700 Prototyping Board or via a similar

arrangement on a customer-supplied board. Once the RCM3700 has been programmed

successfully, remove the programming cable from the programming connector and reset

the RCM3700. The RCM3700 may be reset by removing, then reapplying power, or by

pressing the RESET button on the Prototyping Board. The RCM3700 module may now be

removed from the Prototyping Board for end-use installation.

CAUTION: Power to the Prototyping Board or other boards should be disconnected

when removing or installing your RCM3700 module to protect against inadvertent

shorts across the pins or damage to the RCM3700 if the pins are not plugged in cor-

rectly. Do not reapply power until you have verified that the RCM3700 module is

plugged in correctly.

2.5.2 Technical Support

NOTE: If you purchased your RCM3700 through a distributor or through a Z-World or

Rabbit Semiconductor partner, contact the distributor or partner first for technical support.

If there are any problems at this point:

• Check the Z-World/Rabbit Semiconductor Technical Bulletin Board at

www.zworld.com/support/bb/.

• Use the Technical Support e-mail form at www.zworld.com/support/.

Getting Started 13

3. RUNNING SAMPLE PROGRAMS

To develop and debug programs for the RCM3700 (and for all

other Z-World and Rabbit Semiconductor hardware), you must

install and use Dynamic C.

3.1 Introduction

To help familiarize you with the RCM3700 modules, Dynamic C includes several sample

programs. Loading, executing and studying these programs will give you a solid hands-on

overview of the RCM3700’s capabilities, as well as a quick start with Dynamic C as an

application development tool.

NOTE: The sample programs assume that you have at least an elementary grasp of the C

programming language. If you do not, see the introductory pages of the Dynamic C

User’s Manual for a suggested reading list.

More complete information on Dynamic C is provided in the Dynamic C User’s Manual.

In order to run the sample programs discussed in this chapter and elsewhere in this manual,

1. Your RCM3700 must be plugged in to the Prototyping Board as described in Chapter 2,

“Getting Started.”

2. Dynamic C must be installed and running on your PC.

3. The programming cable must connect the programming header on the Prototyping

Board to your PC.

4. Power must be applied to the RCM3700 through the Prototyping Board.

Refer to Chapter 2, “Getting Started,” if you need further information on these steps.

To run a sample program, open it with the File menu, compile it using the Compile menu

(or press F5), and then run it by selecting Run in the Run menu (or press F9). The

RCM3700 must be in Program Mode (see Figure 9) and must be connected to a PC using

the programming cable.

14 RabbitCore RCM3700

The default I/O configuration in the sample programs is based on the RabbitCore module

detected during compile time:

• Any RCM3700 RabbitCore module (except the RCM3720) will have its I/O ports con-

figured for an RCM3700 Prototyping Board.

• An RCM3720 RabbitCore module will have its I/O ports configured for an RCM3720

Prototyping Board.

You may override these default settings to run an RCM3720 RabbitCore module on the

RCM3700 Prototyping Board or to run another RCM3700 RabbitCore module on the

RCM3720 Prototyping Board by adding the following macro to the sample program you

will be running.

• To run an RCM3720 RabbitCore module on an RCM3700 Prototyping Board, add the

following macro at the top of the sample program you will be running.

#define RCM3700_PROTOBOARD

Sample programs that are specifically designed for the RCM3700 Prototyping Board

already have this macro included.

• To run an RCM3700 RabbitCore module (other than the RCM3720) on an RCM3720

Prototyping Board, add the following macro at the top of the sample program you will

be running.

#define RCM3720_PROTOBOARD

Getting Started 15

3.2 Sample Programs

Of the many sample programs included with Dynamic C, several are specific to the

RCM3700. Sample programs illustrating the general operation of the RCM3700, serial

communication, and the A/D converter on the Prototyping Board are provided in the

SAMPLES\RCM3700 and the SAMPLES\RCM3720 folders as shown in the table below. The

sample programs use the features available on the two Prototyping Boards.

Each sample program has comments that describe the purpose and function of the pro-

gram. Follow the instructions at the beginning of the sample program. Note that the

RCM3700 must be installed on the Prototyping Board when using these sample programs.

TCP/IP sample programs are described in Chapter 6, “Using the TCP/IP Features.” Sample

programs for the optional LCD/keypad module that is used on the RCM3700 Prototyping

Board are described in Appendix C.

Additional sample programs are available online at www.zworld.com/support/down-

loads/downloads_prod.shtml.

• DIO.c—Demonstrates the digital I/O capabilities of the A/D converter on the Proto-

typing Board by configuring two lines to outputs and two lines as inputs on Prototyping

Board header JP4.

If you are using the RCM3700 Prototyping Board, install a 2 x 2 header at JP4 and con-

nect pins 1–2 and pins 3–4 on header JP4 before running this sample program.

• FLASHLED.c—Demonstrates assembly-language program by flashing LEDs DS1 and

DS2 on the Prototyping Board at different rates.

• TOGGLESWITCH.c—Uses costatements to detect switches using debouncing. The cor-

responding LEDs (DS1 and DS2) will turn on or off.

Feature
RCM3700 Prototyping

Board

RCM3720 Prototyping

Board

Sample Program Folder SAMPLES\RCM3700 SAMPLES\RCM3720

Digital I/O × ×

IrDA Transceivers ×

Serial Flash × ×

Serial Communication × ×

TCP/IP × ×

A/D Converter ×

LCD/Keypad Module ×

Dynamic C FAT File System,

RabbitWeb,

SSL Modules

× ×

16 RabbitCore RCM3700

• CONTROLLED.c—Demonstrates use of the digital inputs by having you turn the LEDs

on the Prototyping Board on or off from the STDIO window on your PC.

Once you compile and run CONTROLLED.C, the following display will appear in the

Dynamic C STDIO window.

Press “1” or “2” on your keyboard to select LED DS1 or DS2 on the Prototyping

Board. Then follow the prompt in the Dynamic C STDIO window to turn the LED on or

off.

• IR_DEMO.c—Demonstrates sending Modbus ASCII packets between two RCM3700

Prototyping Board assemblies with IrDA transceivers via the IrDA transceivers. Note

that this sample program will only work with the RCM3700 Prototyping Board.

First, compile and run this program on one Prototyping Board assembly, then remove

the programming cable and press the RESET button on the Prototyping Board so that

the first RabbitCore module is operating in the Run mode. Then connect the program-

ming cable to the second Prototyping Board assembly with the RCM3700 and compile

and run the same sample program. With the programming cable still connected to the

second Prototyping Board assembly, press switch S1 on the second Prototyping Board

to transmit a packet. Once the first Prototyping Board assembly receives a test packet, it

will send back a response packet that will be displayed in the Dynamic C STDIO win-

dow. The test packets and response packets have different codes.

Once you have loaded and executed these five programs and have an understanding of

how Dynamic C and the RCM3700 modules interact, you can move on and try the other

sample programs, or begin building your own.

Getting Started 17

3.2.1 Use of Serial Flash

The following sample programs can be found in the SAMPLES\RCM3700\SerialFlash

and the SAMPLES\RCM3720\SerialFlash folders.

• SERIAL_FLASHLOG.C—This program runs a simple Web server and stores a log of

hits on the home page of the serial flash “server.” This log can be viewed and cleared

from a browser.

• SFLASH_INSPECT.C—This program is a handy utility for inspecting the contents of a

serialflash chip. When the sample program starts running, it attempts to initialize a

serial flash chip on Serial Port B. Once a serial flash chip is found, the user can perform

two different commands to either print out the contents of a specified page or clear (set

to zero) all the bytes in a specified page.

3.2.2 Serial Communication

The following sample programs can be found in the SAMPLES\RCM3700\SERIAL and the

SAMPLES\RCM3720\SERIAL folders.

NOTE: Pin PE5 is set up to enable/disable the RS-232 chip on the RCM3700 Prototyping

Board. This pin will also be toggled when you run RS-232 sample programs on an

RCM3700 Prototyping Board. If you plan to use this pin for something else while you

are running any of the RS-232 sample programs, comment out the following line.

 BitWrPortI(PEDR, &PEDRShadow, 0, 5);//set low to enable rs232 device

• FLOWCONTROL.C—This program demonstrates hardware flow control by configuring

Serial Port C for CTS/RTS with serial data coming from Serial Port D. The serial data

received are displayed in the STDIO window.

To set up the Prototyping Board, you will need to tie TxC and RxC

together on the RS-232 header at J2, and you will also tie TxD and

RxD together using the 0.1" jumpers supplied in the Development Kit

as shown in the diagram.

A repeating triangular pattern should print out in the STDIO window.

The program will periodically switch flow control on or off to demonstrate the effect of

no flow control.

• PARITY.C—This program demonstrates the use of parity modes by

repeatedly sending byte values 0–127 from Serial Port D to Serial Port

C. The program will switch between generating parity or not on Serial

Port D. Serial Port C will always be checking parity, so parity errors

should occur during every other sequence.

To set up the Prototyping Board, you will need to tie TxD and RxC together on the

RS-232 header at J2 using the 0.1" jumpers supplied in the Development Kit as shown

in the diagram.

The Dynamic C STDIO window will display the error sequence.

&'
�����������

�
�	

5
�

�
5
�

5
�

�
�	

&'
�����������

�
�	

5
�

�
5
�

5
�

�
�	

18 RabbitCore RCM3700

• SIMPLE3WIRE.C—This program demonstrates basic RS-232 serial

communication. Lower case characters are sent by TxC, and are

received by RxD. The characters are converted to upper case and are

sent out by TxD, are received by RxC, and are displayed in the

Dynamic C STDIO window.

To set up the Prototyping Board, you will need to tie TxD and RxC together on the

RS-232 header at J2, and you will also tie RxD and TxC together using the 0.1" jump-

ers supplied in the Development Kit as shown in the diagram.

• SIMPLE5WIRE.C—This program demonstrates 5-wire RS-232 serial communication

with flow control on Serial Port C and data flow on Serial Port D.

To set up the Prototyping Board, you will need to tie TxD and RxD

together on the RS-232 header at J2, and you will also tie TxC and

RxC together using the 0.1" jumpers supplied in the Development Kit

as shown in the diagram.

Once you have compiled and run this program, you can test flow con-

trol by disconnecting TxC from RxC while the program is running. Characters will no

longer appear in the STDIO window, and will display again once TxC is connected

back to RxC.

• SWITCHCHAR.C—This program demonstrates transmits and then receives an ASCII

string on Serial Ports C and E. It also displays the serial data received from both ports

in the STDIO window.

Before running this sample program, check to make sure that Serial

Port E is set up as an RS-232 serial port—pins 1–3 and pins 2–4 on

header JP2 on the Prototyping Board must be jumpered together using

the 2 mm jumpers supplied in the Development Kit. Then connect TxC

to RxE and connect RxC to TxE on the RS-232 header at J2 using the

0.1" jumpers supplied in the Development Kit as shown in the diagram.

NOTE: The following two sample programs illustrating RS-485 serial communication

will only work with the RCM3700 Prototyping Board.

• SIMPLE485MASTER.C—This program demonstrates a simple RS-485 transmission of

lower case letters to a slave RCM3700. The slave will send back converted upper case

letters back to the master RCM3700 and display them in the STDIO window. Use

SIMPLE485SLAVE.C to program the slave RCM3700, and check to make sure that

Serial Port E is set up as an RS-485 serial port—pins 3–5 and pins 4–6 on header JP2

must be jumpered together using the 2 mm jumpers supplied in the Development Kit.

• SIMPLE485LAVE.C—This program demonstrates a simple RS-485

transmission of lower case letters to a master RCM3700. The slave

will send back converted upper case letters back to the master

RCM3700 and display them in the STDIO window. Use SIMPLE485-
MASTER.C to program the master RCM3700, and check to make sure that Serial Port E

is set up as an RS-485 serial port—pins 3–5 and pins 4–6 on header JP2 must be jum-

pered together using the 2 mm jumpers supplied in the Development Kit.

&'
�����������

�
�	

5
�

�
5
�

5
�

�
�	

&'
�����������

�
�	

5
�

�
5
�

5
�

�
�	

&'
�����������

�
�	

5
�

�
5
�

5
�

�
�	

&�'

&�'

Getting Started 19

3.2.3 A/D Converter Inputs

The following sample programs are found in the SAMPLES\RCM3700\ADC folder.

• AD_CALDIFF_CH.C—Demonstrates how to recalibrate one differential analog input

channel using two known voltages to generate the calibration constants for that channel.

Constants will be rewritten into user block data area.

• AD_CALMA_CH.C—Demonstrates how to recalibrate an A/D input channel being used to

convert analog current measurements to generate the calibration constants for that channel.

Before running this program, make sure that pins 3–5 are connected on headers JP5,

JP6, and JP7. Connect pins 1–2, 3–4, 5–6, 7–8 on header JP8.

• AD_CALSE_ALL.C—Demonstrates how to recalibrate all single-ended analog input

channels for one gain, using two known voltages to generate the calibration constants

for each channel. Constants will be rewritten into the user block data area.

• AD_CALSE_CHAN.C—Demonstrates how to recalibrate one single-ended analog input

channel with one gain using two known voltages to generate the calibration constants

for that channel. Constants will be rewritten into user block data area.

NOTE: The above sample programs will overwrite any existing calibration constants.

• AD_RDDIFF_CH.C—Demonstrates how to read an A/D input channel being used for a

differential input using previously defined calibration constants.

• AD_RDMA_CH.C—Demonstrates how to read an A/D input channel being used to con-

vert analog current measurements using previously defined calibration constants for

that channel.

Before running this program, make sure that pins 3–5 are connected on headers JP5,

JP6, and JP7. Connect pins 1–2, 3–4, 5–6, 7–8 on header JP8.

• AD_RDSE_ALL.C—Demonstrates how to read all single-ended A/D input channels

using previously defined calibration constants.

• AD_SAMPLE.C—Demonstrates how to use a low-level driver on single-ended inputs.

The program will continuously display the voltage (average of 10 samples) that is

present on the A/D channels.

• ANAINCONFIG.C—Demonstrates how to use the Register Mode method to read single-

ended analog input values for display as voltages. The sample program uses the func-

tion call anaInConfig() and the ADS7870 CONVERT line to accomplish this task.

20 RabbitCore RCM3700

• THERMISTOR.C—Demonstrates how to use analog input THERM_IN7 to calculate

temperature for display to the STDIO window. This sample program assumes that the

thermistor is the one included in the Development Kit whose values for beta, series

resistance, and resistance at standard temperature are given in the part specification.

• DNLOADCALIB.C—Demonstrates how to retrieve analog calibration data to rewrite it

back to simulated EEPROM in flash with using a serial utility such as Tera Term.

• UPLOADCALIB.C—Demonstrates how to read calibrations constants from the user

block in flash memory and then transmitting the file using a serial port and a PC serial

utility such as Tera Term. Use DNLOADCALIB.C to download the calibration constants

created by this program.

User’s Manual 21

4. HARDWARE REFERENCE

Chapter 4 describes the hardware components and principal hardware

subsystems of the RCM3700. Appendix A, “RCM3700 Specifica-

tions,” provides complete physical and electrical specifications.

Figure 4 shows the Rabbit-based subsystems designed into the RCM3700.

Figure 4. RCM3700 Subsystems

�	
�

����
�
���

����
�
���

��

��	����������

�����(
 """

	�������#��������
�)������� �*�
������

	�+�#��,����������

	�������	����������

����� ���!!"#���$��#

%��&�����#�!�$'��(���%

�"�$�!����)���*��
�)) ���$��#�

+�$$��,�+���")
����"�$

-�&�
��#&��$��

�$'��#�$

.��/��!
0 ��'

�����
0 ��'

22 RabbitCore RCM3700

4.1 RCM3700 Digital Inputs and Outputs

Figure 5 shows the RCM3700 pinouts for header J1.

Figure 5. RCM3700 Pinouts

Header J1 is a standard 2 x 20 IDC header with a nominal 0.1" pitch.

-���. ������	
��
�����������������
��������������������������
���

��%
��$
��#
��"
�3"
�&#
�&$
�&,
�3+
�3,

�()���#
�(*���*

��+
��)
��,

���6�
��$
����
�
�
�
�

��,
��+
��*
��)
�3)
�&"
�&*
�&+
�3$
�3%
�("
�(#
��,
��$
��"
��%
�����
��+
�&�
�+��

1�

User’s Manual 23

Figure 6 shows the use of the Rabbit 3000 microprocessor ports in the RCM3700 modules.

Figure 6. Use of Rabbit 3000 Ports

The ports on the Rabbit 3000 microprocessor used in the RCM3700 are configurable, and

so the factory defaults can be reconfigured. Table 2 lists the Rabbit 3000 factory defaults

and the alternate configurations.

�����(
 """

.��$�
 .��$�+ .��$��
2��$'��#�$�.��$3

.��$��

��"1��, �&"A��&,A
��&+

��"1��)A
��$1��+A
��,

��$1��+

����A
���6�

4�$�'%�/
�����!���

� ������"(��
� �&��.��$

	�� ���!��� ���

	
� +���")�+�$$��,
�"))��$ 0 ��'

.��$��
2����� �.��$����5��3

.��/��!!�#/
.��$

2����� �.��$�
3

�$'��#�$
.��$$��
�����
���=����

�(%
�&)A��(,A������ A

� � 2�A
�8���"A��8���)

�("A��(#

�()A��(*

.��$�6
2����� �.��$����5�03

.��$�0 �3$1�3,

����7��8�
����
�����

��#1��*
��%1��,

24 RabbitCore RCM3700

Table 2. RCM3700 Pinout Configurations

Pin Pin Name Default Use Alternate Use Notes

H
ea

d
er

 J
1

1–8 PA[7:0] Parallel I/O

External data bus

(ID0–ID7)

Slave port data bus

(SD0–SD7)

External Data Bus

9 PF1 Input/Output
QD1A

CLKC

10 PF0 Input/Output
QD1B

CLKD

11 PB0 Input/Output CLKB

12 PB2 Input/Output
IA0

/SWR

External Address 0

Slave port write

13 PB3 Input/Output
IA1

/SRD

External Address 1

Slave port read

14 PB4 Input/Output
IA2

SA0

External Address 2

Slave Port Address 0

15 PB5 Input/Output
IA3

SA1

External Address 3

Slave Port Address 1

16 PB7 Input/Output
IA5

/SLAVEATTN

External Address 5

Slave Port Attention

17 PF4 Input/Output
AQD1B

PWM0

18 PF5 Input/Output
AQD1A

PWM1

19 PF6 Input/Output
AQD2B

PWM2

20 PF7 Input/Output
AQD2A

PWM3

21 PC0 Output TXD Serial Port D

22 PC1/PG2 Input/Output RXD/TXF
Serial Port D

Serial Port F

23 PC2 Output TXC Serial Port C

24 PC3/PG3 Input/Output RXC/RXF
Serial Port C

Serial Port F

25 PE7 Input/Output
I7

/SCS

External Address 7

Slave Port Chip Select

User’s Manual 25

H
ea

d
er

 J
1

26 PE5 Input/Output
I5

INT1B

27 PE4 Input/Output
I4

INT0B

28 PE1 Input/Output
I1

INT1A

I/O Strobe 1

Interrupt 1A

29 PE0 Input/Output
I0

INT0A

I/O Strobe 0

Interrupt 0A

30 PG7 Input/Output RXE
Serial Port E

31 PG6 Input/Output TXE

32 /IOWR Output External write strobe

33 /IORD Input External read strobe

34 PD4 Input/Output ATXB
Alternate Serial Port B

35 PD5 Input/Output ARXB

36 /RES Reset output Reset input
Reset output from Reset

Generator

37 VBAT

38 GND

39 +5 V

40 GND

Table 2. RCM3700 Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use Notes

26 RabbitCore RCM3700

4.1.1 Memory I/O Interface

The Rabbit 3000 address lines (A0–A18) and all the data lines (D0–D7) are routed inter-

nally to the onboard flash memory and SRAM chips. I/0 write (/IOWR) and I/0 read

(/IORD) are available for interfacing to external devices.

Parallel Port A can also be used as an external I/O data bus to isolate external I/O from the

main data bus. Parallel Port B pins PB2–PB5 and PB7 can also be used as an auxiliary

address bus.

When using the auxiliary I/O bus for either Ethernet or the LCD/keypad module on the

Prototyping Board, or for any other reason, you must add the following line at the begin-

ning of your program.

#define PORTA_AUX_IO // required to enable auxiliary I/O bus

4.1.2 Other Inputs and Outputs

/RES is an output from the reset circuitry that can be used to reset other peripheral devices.

This pin can also be used to reset the microprocessor.

User’s Manual 27

4.2 Serial Communication

The RCM3700 board does not have any serial transceivers directly on the board. How-

ever, a serial interface may be incorporated on the board the RCM3700 is mounted on. For

example, the Prototyping Board has RS-232, RS-485 and IrDA transceiver chips.

4.2.1 Serial Ports

There are five serial ports designated as Serial Ports A, C, D, E, and F. All five serial ports

can operate in an asynchronous mode up to the baud rate of the system clock divided by 8.

An asynchronous port can handle 7 or 8 data bits. A 9th bit address scheme, where an

additional bit is sent to mark the first byte of a message, is also supported.

Serial Port A is normally used as a programming port, but may be used either as an asyn-

chronous or as a clocked serial port once the RCM3700 has been programmed and is oper-

ating in the Run Mode.

Serial Ports C and D can also be operated in the clocked serial mode. In this mode, a clock

line synchronously clocks the data in or out. Either of the two communicating devices can

supply the clock.

Serial Ports E and F can also be configured as HDLC serial ports. The IrDA protocol is

also supported in SDLC format by these two ports.

Either Serial Ports C and D or Serial Port F can be used at one time because these ports

share some common pins on header J1, as shown in Figure 7. The selection of port(s)

depends on your need for two clocked serial ports (Serial Ports C and D) vs. a second

HDLC serial port (Serial Port F).

Figure 7. RCM3700 Serial Ports C, D, and F

The serial ports used are selected with the serXOpen function call, where X is the serial

port (C, D, or F). Remember that Serial Ports C and D cannot be used if Serial Port F is

being used

 5(
�5(

�5�
 5�

 53
�53

.��

.��

.�9

.��

.6�

.6�

1�:���

1�:���

1�:���

1�:���

28 RabbitCore RCM3700

4.2.2 Ethernet Port

Figure 8 shows the pinout for the RJ-45 Ethernet port (J3). Note that some Ethernet con-

nectors are numbered in reverse to the order used here.

Figure 8. RJ-45 Ethernet Port Pinout

Two LEDs are placed next to the RJ-45 Ethernet jack, one to indicate an Ethernet link

(LINK) and one to indicate Ethernet activity (ACT).

The RJ-45 connector is shielded to minimize EMI effects to/from the Ethernet signals.

4.2.3 Programming Port

Serial Port A has special features that allow it to cold-boot the system after reset. Serial

Port A is also the port that is used for software development under Dynamic C.

The RCM3700 is accessed using a 10-pin program header labeled J2. The programming

port uses the Rabbit 3000’s Serial Port A for communication, and is used for the following

operations.

• Programming/debugging

• Cloning

• Remote program download/debug over an Ethernet connection via the RabbitLink

EG2100

The Rabbit 3000 startup-mode pins (SMODE0, SMODE1) are presented to the program-

ming port so that an externally connected device can force the RCM3700 to start up in an

external bootstrap mode. The RCM3700 can be reset by Dynamic C via the /RESET line

on the programming port.

The Rabbit 3000 status pin is also presented to the programming port. The status pin is an

output that can be used to send a general digital signal.

The clock line for Serial Port A is presented to the programming port, which makes syn-

chronous serial communication possible.

��������

�&#/0�����

)7���4 -�
#7���4 -1
*7���4�-�
%7���4�-1

) /

�&#/0�&��1

User’s Manual 29

The programming port is used to start the RCM3700 in a mode where the RCM3700 will

download a program from the port and then execute the program. The programming port

transmits information to and from a PC while a program is being debugged.

NOTE: Refer to the Rabbit 3000 Microprocessor User’s Manual for more information.

4.2.3.1 Alternate Uses of the Programming Port

The programming port may also be used as an application port with the DIAG connector

on the programming cable.

All three clocked Serial Port A signals are available as

• a synchronous serial port

• an asynchronous serial port, with the clock line usable as a general CMOS input

• two general-purpose CMOS inputs and one general-purpose CMOS output.

Two startup-mode pins, SMODE0 and SMODE1, are available as general CMOS inputs

after they are read during the initial boot-up. The logic state of these two pins determines

the startup procedure after a reset.

/RESET is an external input used to reset the Rabbit 3000 microprocessor.

The status pin may also be used as a general-purpose CMOS output.

30 RabbitCore RCM3700

4.3 Programming Cable

The RCM3700 is automatically in program mode when the PROG connector on the pro-

gramming cable is attached, and is automatically in run mode when no programming cable

is attached.

The DIAG connector of the programming cable may be used on header J2 of the RCM3700

Prototyping Board with the RCM3700 operating in the run mode. This allows the pro-

gramming port to be used as a regular serial port.

Figure 9. Switching Between Program Mode and Run Mode

4.3.1 Changing from Program Mode to Run Mode

1. Disconnect the programming cable from header J2 on the RCM3700.

2. Reset the RCM3700. You may do this as explained in Figure 9.

The RCM3700 is now ready to operate in the run mode.

4.3.2 Changing from Run Mode to Program Mode

1. Attach the programming cable to header J2 on the RCM3700.

2. Reset the RCM3700. You may do this as explained in Figure 9.

The RCM3700 is now ready to operate in the program mode.

�� ��
�
�
�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

�

�
#

�
)

�
)

�
*

�
+

�
,

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

� �
#

�
"

�
)

�
*

�
+

�
,

!#

()

(#

��)

�)
�#
�*
�$

�
-

-

�+

�% (*

�.

�, �/

0�) 0)

�$
/+

�
�

1$
/+

0�#

�)#�))

2*

($

(, (
/

(
)"

�)*

())

2$

(+ (%

(
.

0#

�
�

�����

�&+

�&*

��"

��%

�&"

����

�+�

�3$

�3%

�()���#

�("4 5�

��+

��)

��,4�5�

��$

�&�

�
�
$�
�
�
#

���6�

��,

�&$

�&#

��)

��*

��+

��,

�&,

�3"

�3)

�3+

�3,

��$

��"

��+

��%
 5�

�(#
 5(

�(*�
��*

�
�

�����������

�

�

(

2)

()#

()*

()+
()$

!)

(), 2# ()/
2%

�)$

�)
().

�#
0$

�(�

�*
7*
�

�

�

�+
�

�+
�

�

�

�*
7*
�

!(�)0& !(�)0(

!(�)0�

2+

()%

�)+ &)

�
�	

5
�

�
5
�

5
�

�
�	

 (84�8 4��('�

�+
�

�
&
�

�
�
+

���
�
�

�
�
%4

5
�

�
�
"

�
�
$

�
�
,

�
(
#4

5
(

�
(
"4

5
�

�
3
%

�
3
$

�
&
+

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

0+

�

�

�)% �

�

��
�
�

�
�
$

���
6
�

�
�
)

�
�
+

�
(
*�
�
�
*

�
3
,

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�
�
,

�
5
�

�
(
)�

�
�
#

(##

(#%
�#)

�)/

(
#"

�).
(#)

�#"

�##

0�$

) #

��)

(5) (5# (5*

(5$

(5+

(5%

(5,

(5/

(5.

(5)"(5))

25#

25)
2/

�#*
(#$ (#+

(#*

2,

(#,
�#+

�#$
(#/

�#%

�#,

�#/

�#.
0�/

�*" �*) �*# �** �*$ �*+ �*%

(*+

�
$*

(#.0,
 9��8�� ��

�
*,

0/

�
�
�
3

�
�	

�
$$

��
��

�

�
� �
�

"% "+ "$ "* "# ") "" �
�

�
�	

�
*/ (
*"

(
*)

(
*#

(
**

(
*$

�*.��$" �$)��$#

�
$/

��) ��#

�$+
�$.

�$%

��*

�$,

�*�#�)

(�
���

0�+ 0�% 0�,

(

(

(

(

(

(

�� ��
�

�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�
(
8
*%
�*
,5

5
��
�
�
��
�

�
�
�
 �

:
�
�

�
�&
�
�
�
�

����

�%�%(

�
#$

�
#

(
)/

(
*$

��)��# �
)/

�
*%

(*+
().

(
#%

(
#,

(
#/

�)+
�)%

(*%
(*.
�)*

2)(#+

0�)
(,

0�*

0#

(
**

(
*#

(
*"

(
*)

()+

(),
(#"

(*/
($)

2$

�
%

�))(*,

�$�+
2+

(#.

0�
#

:)

($"

()"

;)

�,($.

!#

!)

()$

()#(##

2
/(
#*

:*(+,
�*)

(
+/

�#.

��#
�*#
�*"

��)

0*

�*$

()%

�#/

) (#$

(#)
�)

2%

(+*

�
#%

2*

�**
(/

2))

!$

!*
(+$��(++

!%

(�����<
�<=�

 �
�
(
��
�
�
�>
��

&�?�
�������@��>

�
�
�
�

�
��
�

�����������
	�
��

�
�
�
�

0#

	�����	���;99�<'�#��'�#/�#/�!�%�:
����������� ��
������
��
�
����������	
������������	
�����������������		���	� ��
�*$�����!�&�#/�����$$��'�#/�)��/��!!�#/���(�7

User’s Manual 31

4.4 Other Hardware

4.4.1 Clock Doubler

The RCM3700 takes advantage of the Rabbit 3000 microprocessor’s internal clock dou-

bler. A built-in clock doubler allows half-frequency crystals to be used to reduce radiated

emissions. The 22.1 MHz frequency specified for the RCM3700 is generated using a

11.06 MHz resonator.

The clock doubler may be disabled if 22.1 MHz clock speeds are not required. This will

reduce power consumption and further reduce radiated emissions. The clock doubler is

disabled with a simple change to the BIOS as described below.

4.4.2 Spectrum Spreader

The Rabbit 3000 features a spectrum spreader, which helps to mitigate EMI problems. The

spectrum spreader is on by default, but it may also be turned off or set to a stronger setting

by changing the following macro in the BIOS.

#define ENABLE_SPREADER 1 // Set to 0 to disable spectrum spreader,
 // 1 to enable normal spreading, or
 // 2 to enable strong spreading.

NOTE: Refer to the Rabbit 3000 Microprocessor User’s Manual for more information

on the spectrum-spreading setting and the maximum clock speed.

1. Open the BIOS source code file, RABBITBIOS.C in the BIOS directory.

2. Change the line

#define CLOCK_DOUBLED 1 // set to 1 to double clock if
 // Rabbit 2000: crystal <= 12.9024 MHz,
 // Rabbit 3000: crystal <= 26.7264 MHz,
 // or to 0 to always disable clock doubler

to read as follows.

#define CLOCK_DOUBLED 0

3. Save the change using File > Save.

32 RabbitCore RCM3700

4.5 Memory

4.5.1 SRAM

RCM3700 series boards have 256K–512K of SRAM packaged in a 32-pin sTSOP case.

4.5.2 Flash EPROM

RCM3700 series boards also have 256K–512K of flash EPROM packaged in a 32-pin

sTSOP case.

NOTE: Z-World recommends that any customer applications should not be constrained

by the sector size of the flash EPROM since it may be necessary to change the sector

size in the future.

Writing to arbitrary flash memory addresses at run time is also discouraged. Instead, use a

portion of the “user block” area to store persistent data. The functions writeUser-
Block and readUserBlock are provided for this. Refer to the Rabbit 3000 Micropro-

cessor Designer’s Handbook for additional information.

A Flash Memory Bank Select jumper configuration option based on 0 Ω surface-mounted

resistors exists at header JP1 on the RCM3700 modules. This option, used in conjunction

with some configuration macros, allows Dynamic C to compile two different co-resident

programs for the upper and lower halves of the 512K flash in such a way that both pro-

grams start at logical address 0000. This is useful for applications that require a resident

download manager and a separate downloaded program. See Technical Note TN218,

Implementing a Serial Download Manager for a 256K Flash, for details.

4.5.3 Serial Flash

A 1Mbyte serial flash is available to store data and Web pages. Sample programs in the

SAMPLES\RCM3700 folder illustrate the use of the serial flash.

4.5.4 Dynamic C BIOS Source Files

The Dynamic C BIOS source files handle different standard RAM and flash EPROM sizes

automatically.

User’s Manual 33

5. SOFTWARE REFERENCE

Dynamic C is an integrated development system for writing

embedded software. It runs on an IBM-compatible PC and is

designed for use with Z-World controllers and other controllers

based on the Rabbit microprocessor. Chapter 5 describes the

libraries and function calls related to the RCM3700.

5.1 More About Dynamic C

Dynamic C has been in use worldwide since 1989. It is specially designed for program-

ming embedded systems, and features quick compile and interactive debugging. A com-

plete reference guide to Dynamic C is contained in the Dynamic C User’s Manual.

You have a choice of doing your software development in the flash memory or in the static

SRAM included on the RCM3700. The advantage of working in RAM is to save wear on

the flash memory, which is limited to about 100,000 write cycles. The disadvantage is that

the code and data might not both fit in RAM.

NOTE: An application can be compiled in RAM, but cannot run standalone from RAM

after the programming cable is disconnected. All standalone applications can only run

from flash memory.

NOTE: Do not depend on the flash memory sector size or type in your program logic.

The RCM3700 and Dynamic C were designed to accommodate flash devices with

various sector sizes in response to the volatility of the flash-memory market.

The disadvantage of using flash memory for debug is that interrupts must be disabled for

approximately 5 ms whenever a break point is set in the program. This can prevent fast

interrupt routines from running when you set a break point. The flash memory and SRAM

options are selected with the Options > Program Options > Compiler menu.

Dynamic C provides a number of debugging features. You can single-step your program,

either in C, statement by statement, or in assembly language, instruction by instruction.

You can set break points to stop the program, and you can evaluate watch expressions. A

watch expression is any C expression that can be evaluated in the context of the program.

You can evaluate watch expressions by hitting <Ctrl-U> without stopping the program,

and they are evaluated automatically every time the program stops at a break point or at

each single-step.

34 RabbitCore RCM3700

5.2 Dynamic C Functions

The functions described in this section are for use with the Prototyping Board features.

The source code is in the RCM37xx.LIB library in the Dynamic C SAMPLES\RCM3700 or

the SAMPLES\RCM3720 folder, depending on which Prototyping Board you will be using,

if you need to modify it for your own board design.

Other generic functions applicable to all devices based on Rabbit microprocessors are

described in the Dynamic C Function Reference Manual.

User’s Manual 35

5.2.1 Board Initialization

Call this function at the beginning of your program. This function initializes Parallel Ports A through G

for use with the RCM3700 Prototyping Board or the RCM3720 Prototyping Board.

The brdInit function is set up to a default I/O configuration based on the RabbitCore module detected

at compile time:

• Any RCM3700 RabbitCore module (except the RCM3720) will have its I/O ports configured for an

RCM3700 Prototyping Board.

• An RCM3720 RabbitCore module will have its I/O ports configured for an RCM3720 Prototyping

Board.

You may override these default settings to run an RCM3720 RabbitCore module on the RCM3700 Proto-

typing Board or to run another RCM3700 RabbitCore module on the RCM3720 Prototyping Board by

adding the following macro to the program you will be running.

• To run an RCM3720 RabbitCore module on an RCM3700 Prototyping Board, add the following

macro at the top of the program you will be running.

#define RCM3700_PROTOBOARD

Sample programs that are specifically designed for the RCM3700 Prototyping Board already have

this macro included. When you run a sample program designed for the RCM3700 Prototyping

Board on an RCM3720, a warning message will be displayed to inform you of that. You can disable

the warning by commenting out the line indicated by the compiler.

• To run an RCM3700 RabbitCore module (other than the RCM3720) on an RCM3720 Prototyping

Board, add the following macro at the top of the program you will be running.

#define RCM3720_PROTOBOARD

Summary of Initialization

1. I/O port pins are configured for Prototyping Board operation.

2. Unused configurable I/O are set as tied inputs or outputs.

3. The LCD/keypad module is disabled.

4. RS-485 is not enabled.

5. RS-232 is not enabled.

6. The IrDA transceiver is disabled.

7. LEDs are off.

8. The A/D converter is reset and SCLKB is to 57,600 bps (RCM3700 Prototyping Board only).

9. The A/D converter calibration constants are read (this function cannot run in RAM) (RCM3700

Prototyping Board only).

10. Ethernet select is disabled.

11. Serial flash select is disabled.

CAUTION: Pin PB7 is connected as both switch S2 and as an external I/O bus on the RCM3700

Prototyping Board. Do not use S2 when the LCD/keypad module is installed.

CAUTION: Pins PC1 and PG2 are tied together, and pins PC3 and PG3 are tied together on the

RCM3700 RabbitCore module. Both pairs of pins are connected to the IrDA transceiver and to

the RS-232 transceiver via serial ports on the RCM3700 Prototyping Board. Do not enable both

transceivers on the RCM3700 Prototyping Board at the same time.

RETURN VALUE

None.

void brdInit (void);

36 RabbitCore RCM3700

5.2.2 Analog Inputs

NOTE: The function calls for the A/D converter in this section will work only with the

RCM3700 Prototyping Board.

Use this function to configure the ADS7870 A/D converter. This function will address the ADS7870 in

Register Mode only, and will return error if you try the Direct Mode. This appendix provides additional

addressing and command information.

unsigned int anaInConfig(unsigned int
instructionbyte, unsigned int cmd, long baud);

ADS7870 Signal ADS7870 State RCM3700 Function/State

LN0 Input AIN0

LN1 Input AIN1

LN2 Input AIN2

LN3 Input AIN3

LN4 Input AIN4

LN5 Input AIN5

LN6 Input AIN6

LN7 Input AIN7

/RESET Input Board reset device

RISE/FALL Input Pulled up for SCLK active on rising edge

PIO0 Input Pulled down

PIO1 Input Pulled down

PIO2 Input Pulled down

PIO3 Input Pulled down

CONVERT Input Pulled down

BUSY Output PD1 pulled down; logic high state converter is busy

CCLKCNTRL Input Pulled down; 0 state sets CCLK as input

CCLK Input Pulled down; external conversion clock

SCLK Input PB0; serial data transfer clock

SDI Input PD4; 3-wire mode for serial data input

SDO Output PD5; serial data output /CS driven

/CS Input PD2 pulled up; active-low enables serial interface

BUFIN Input Driven by VREF; reference buffer amplifier

VREF Output Connected to BUFIN

BUFOUT Output VREF output

User’s Manual 37

PARAMETERS

instructionbyte is the instruction byte that will initiate a read or write operation at 8 or 16 bits on

the designated register address. For example,

checkid = anaInConfig(0x5F, 0, 9600); // read ID and set baud rate

cmd are the command data that configure the registers addressed by the instruction byte. Enter 0 if you

are performing a read operation. For example,

i = anaInConfig(0x07, 0x3b, 0); // write ref/osc reg and enable

baud is the serial clock transfer rate of 9600 to 57,600 bps. baud must be set the first time this function

is called. Enter 0 for this parameter thereafter, for example,

anaInConfig(0x00, 0x00, 9600); // resets device and sets baud

RETURN VALUE

0 on write operations,

data value on read operations

SEE ALSO

anaInDriver, anaIn, brdInit

38 RabbitCore RCM3700

Reads the voltage of an analog input channel by serial-clocking an 8-bit command to the ADS7870 A/D

converter by the Direct Mode method. This function assumes that Mode1 (most significant byte first) and

the A/D converter oscillator have been enabled. See anaInConfig() for the setup.

The conversion begins immediately after the last data bit has been transferred. An exception error will

occur if Direct Mode bit D7 is not set.

PARAMETERS

cmd contains a gain code and a channel code as follows.

D7—1; D6–D4—Gain Code; D3–D0—Channel Code

Use the following calculation and the tables below to determine cmd:

cmd = 0x80 | (gain_code*16) + channel_code

len, the output bit length, is always 12 for 11-bit conversions

RETURN VALUE

unsigned int anaInDriver(unsigned int cmd,
unsigned int len);

Gain Code Multiplier

0 x1

1 x2

2 x4

3 x5

4 x8

5 x10

6 x16

7 x20

Channel Code
Differential Input

Lines
Channel Code

Single-Ended

Input Lines*

* Negative input is ground.

4–20 mA

Lines

0 +AIN0 -AIN1 8 AIN0 AIN0*

1 +AIN2 -AIN3 9 AIN1 AIN1*

2 +AIN4 -AIN5 10 AIN2 AIN2*

3†

† Not accessible on RCM3700 Prototyping Board

+AIN6 -AIN7 11 AIN3 AIN3

4 -AIN0 +AIN1 12 AIN4 AIN4

5 -AIN2 +AIN3 13 AIN5 AIN5

6 -AIN4 +AIN5 14 AIN6 AIN6

7* -AIN6 +AIN7 15 AIN7 AIN7*

User’s Manual 39

A value corresponding to the voltage on the analog input channel:

0–2047 for 11-bit conversions (bit 12 for sign)

-1 overflow or out of range

-2 conversion incomplete, busy bit timeout

SEE ALSO

anaInConfig, anaIn, brdInit

40 RabbitCore RCM3700

Reads the value of an analog input channel using the direct method of addressing the ADS7870 A/D

converter. The A/D converter is enabled the first time this function is called—this will take approxi-

mately 1 second to ensure that the A/D converter capacitor is fully charged.

PARAMETERS

channel is the channel number (0 to 7) corresponding to ADC_IN0 to ADC_IN7

opmode is the mode of operation:

SINGLE—single-ended input

DIFF—differential input

mAMP—4–20 mA input

gaincode is the gain code of 0 to 7

unsigned int anaIn(unsigned int channel,
int opmode, int gaincode);

channel SINGLE DIFF mAMP

0 +AIN0 +AIN0 -AIN1 +AIN0*

* Not accessible on RCM3700 Prototyping Board.

1 +AIN1 +AIN1 -AIN0* +AIN1*

2 +AIN2 +AIN2 -AIN3 +AIN2*

3 +AIN3 +AIN3 -AIN2* +AIN3

4 +AIN4 +AIN4 -AIN5 +AIN4

5 +AIN5 +AIN5 -AIN4* +AIN5

6 +AIN6 +AIN6 -AIN7* +AIN6

7 +AIN7 +AIN7 -AIN6* +AIN7*

Gain Code Multiplier
Voltage Range*

(V)

* Applies to RCM3700 Prototyping Board.

0 x1 0–20

1 x2 0–10

2 x4 0–5

3 x5 0–4

4 x8 0–2.5

5 x10 0–2

6 x16 0–1.25

7 x20 0–1

User’s Manual 41

RETURN VALUE

A value corresponding to the voltage on the analog input channel:

0–2047 for 11-bit A/D conversions (signed 12th bit)

ADOVERFLOW (defined macro = -4096) if overflow or out of range

-4095 if conversion is incomplete or busy-bit timeout

SEE ALSO

anaIn, anaInConfig, anaInDriver

42 RabbitCore RCM3700

Calibrates the response of the desired A/D converter channel as a linear function using the two conver-

sion points provided. Four values are calculated and placed into global tables to be later stored into sim-

ulated EEPROM using the function anaInEEWr(). Each channel will have a linear constant and a

voltage offset.

PARAMETERS

channel is the analog input channel number (0 to 7) corresponding to ADC_IN0 to ADC_IN7

opmode is the mode of operation:

SINGLE—single-ended input

DIFF—differential input

mAMP—milliamp input

gaincode is the gain code of 0 to 7

int anaInCalib(int channel, int opmode,
int gaincode, int value1, float volts1,
int value2, float volts2);

channel SINGLE DIFF mAMP

0 +AIN0 +AIN0 -AIN1 +AIN0*

* Not accessible on RCM3700 Prototyping Board.

1 +AIN1 +AIN1 -AIN0* +AIN1*

2 +AIN2 +AIN2 -AIN3 +AIN2*

3 +AIN3 +AIN3 -AIN2* +AIN3

4 +AIN4 +AIN4 -AIN5 +AIN4

5 +AIN5 +AIN5 -AIN4* +AIN5

6 +AIN6 +AIN6 -AIN7* +AIN6

7 +AIN7 +AIN7 -AIN6* +AIN7*

Gain Code Multiplier
Voltage Range*

(V)

* Applies to RCM3700 Prototyping Board.

0 x1 0–20

1 x2 0–10

2 x4 0–5

3 x5 0–4

4 x8 0–2.5

5 x10 0–2

6 x16 0–1.25

7 x20 0–1

User’s Manual 43

value1 is the first A/D converter channel value (0–2047)

volts1 is the voltage or current corresponding to the first A/D converter channel value (0 to +20 V or

4 to 20 mA)

value2 is the second A/D converter channel value (0–2047)

volts2 is the voltage or current corresponding to the first A/D converter channel value (0 to +20 V or

4 to 20 mA)

RETURN VALUE

0 if successful.

-1 if not able to make calibration constants.

SEE ALSO

anaIn, anaInVolts, anaInmAmps, anaInDiff, anaInCalib, brdInit

44 RabbitCore RCM3700

Reads the state of a single-ended analog input channel and uses the calibration constants previously set

using anaInCalib to convert it to volts.

PARAMETERS

channel is the channel number (0–7)

gaincode is the gain code of 0 to 7

RETURN VALUE

A voltage value corresponding to the voltage on the analog input channel.

ADOVERFLOW (defined macro = -4096) if overflow or out of range.

SEE ALSO

anaInCalib, anaIn, anaInmAmps, brdInit

float anaInVolts(unsigned int channel,
unsigned int gaincode);

Channel Code
Single-Ended

Input Lines*

* Negative input is ground.

Voltage Range†

(V)

† Applies to RCM3700 Prototyping Board.

0 +AIN0 0–20

1 +AIN1 0–20

2 +AIN2 0–20

3 +AIN3 0–20

4 +AIN4 0–20

5 +AIN5 0–20

6 +AIN6 0–20

7 +AIN7 0–2‡

‡ Used for thermistor in sample program.

Gain Code Multiplier
Voltage Range*

(V)

* Applies to RCM3700 Prototyping Board.

0 x1 0–20

1 x2 0–10

2 x4 0–5

3 x5 0–4

4 x8 0–2.5

5 x10 0–2

6 x16 0–1.25

7 x20 0–1

User’s Manual 45

Reads the state of differential analog input channels and uses the calibration constants previously set

using anaInCalib to convert it to volts.

PARAMETERS

channel is the analog input channel number (0 to 7) corresponding to ADC_IN0 to ADC_IN7

gaincode is the gain code of 0 to 7

RETURN VALUE

A voltage value corresponding to the voltage on the analog input channel.

ADOVERFLOW (defined macro = -4096) if overflow or out of range.

SEE ALSO

anaInCalib, anaIn, anaInmAmps, brdInit

float anaInDiff(unsigned int channel,
unsigned int gaincode);

channel DIFF
Voltage Range

(V)

0 +AIN0 -AIN1 -20 to +20*

* Applies to RCM3700 Prototyping Board.

1 +AIN1 -AIN0 —

2 +AIN2 -AIN3 -20 to +20*

3 +AIN3 -AIN2 —

4 +AIN4 -AIN5 -20 to +20*

5 +AIN5 -AIN4 —

6 +AIN6 -AIN7 —

7 +AIN7 -AIN6 —

Gain Code Multiplier
Voltage Range*

(V)

* Applies to RCM3700 Prototyping Board.

0 x1 0–20

1 x2 0–10

2 x4 0–5

3 x5 0–4

4 x8 0–2.5

5 x10 0–2

6 x16 0–1.25

7 x20 0–1

46 RabbitCore RCM3700

Reads the state of an analog input channel and uses the calibration constants previously set using

anaInCalib to convert it to current.

PARAMETERS

channel is the channel number (0–7)

RETURN VALUE

A current value between 4.00 and 20.00 mA corresponding to the current on the analog input channel.

ADOVERFLOW (defined macro = -4096) if overflow or out of range.

SEE ALSO

anaInCalib, anaIn, anaInVolts

int anaInmAmps(unsigned int channel);

Channel Code
4–20 mA

Input Lines*

* Negative input is ground.

0 +AIN0

1 +AIN1

2 +AIN2

3 +AIN3†

† Applies to RCM3700 Prototyp-

ing Board.

4 +AIN4*

5 +AIN5*

6 +AIN6*

7 +AIN7

User’s Manual 47

Reads the calibration constants, gain, and offset for an input based on their designated position in the

simulated EEPROM area of the flash memory, and places them into global tables for analog inputs. The

constants are stored in the top 2K of the reserved area in the user block memory—note that while

Z-World “reserves” an area in the user block memory for calibration constants, this “reserved” area is not

protected. The following macros can be used to identify the starting address for these locations.

ADC_CALIB_ADDRS, address start of single-ended analog input channels

ADC_CALIB_ADDRD, address start of differential analog input channels

ADC_CALIB_ADDRM, address start of milliamp analog input channels

NOTE: This function cannot be run in RAM.

PARAMETER

channel is the analog input channel number (0 to 7) corresponding to ADC_IN0 to ADC_IN7

opmode is the mode of operation:

SINGLE—single-ended input line

DIFF—differential input line

mAMP—milliamp input line

root int anaInEERd(unsigned int channel,
unsigned int opmode, unsigned int gaincode);

channel SINGLE DIFF mAMP

0 +AIN0 +AIN0 -AIN1 +AIN0*

* Not accessible on RCM3700 Prototyping Board.

1 +AIN1 +AIN1 -AIN0* +AIN1*

2 +AIN2 +AIN2 -AIN3 +AIN2*

3 +AIN3 +AIN3 -AIN2* +AIN3

4 +AIN4 +AIN4 -AIN5 +AIN4

5 +AIN5 +AIN5 -AIN4* +AIN5

6 +AIN6 +AIN6 -AIN7* +AIN6

7 +AIN7 +AIN7 -AIN6* +AIN7*

ALLCHAN read all channels for selected opmode

48 RabbitCore RCM3700

gaincode is the gain code of 0 to 7. The gaincode parameter is ignored when channel is ALLCHAN.

RETURN VALUE

0 if successful.

-1 if address is invalid or out of range.

SEE ALSO

anaInEEWr, anaInCalib

Gain Code
Voltage Range*

(V)

* Applies to RCM3700 Prototyping

Board.

0 0–20

1 0–10

2 0–5

3 0–4

4 0–2.5

5 0–2

6 0–1.25

7 0–1

User’s Manual 49

Writes the calibration constants, gain, and offset for an input based from global tables to designated posi-

tions in the simulated EEPROM area of the flash memory. The constants are stored in the top 2K of the

reserved area in the user block memory—note that while Z-World “reserves” an area in the user block

memory for calibration constants, this “reserved” area is not protected. The following macros can be

used to identify the starting address for these locations.

ADC_CALIB_ADDRS, address start of single-ended analog input channels

ADC_CALIB_ADDRD, address start of differential analog input channels

ADC_CALIB_ADDRM, address start of milliamp analog input channels

NOTE: This function cannot be run in RAM.

PARAMETER

channel is the analog input channel number (0 to 7) corresponding to ADC_IN0–ADC_IN7

opmode is the mode of operation:

SINGLE—single-ended input line

DIFF—differential input line

mAMP—milliamp input line

int anaInEEWr(unsigned int channel, int opmode
unsigned int gaincode);

channel SINGLE DIFF mAMP

0 +AIN0 +AIN0 -AIN1 +AIN0*

* Not accessible on RCM3700 Prototyping Board.

1 +AIN1 +AIN1 -AIN0* +AIN1*

2 +AIN2 +AIN2 -AIN3 +AIN2*

3 +AIN3 +AIN3 -AIN2* +AIN3

4 +AIN4 +AIN4 -AIN5 +AIN4

5 +AIN5 +AIN5 -AIN4* +AIN5

6 +AIN6 +AIN6 -AIN7* +AIN6

7 +AIN7 +AIN7 -AIN6* +AIN7*

ALLCHAN read all channels for selected opmode

50 RabbitCore RCM3700

gaincode is the gain code of 0 to 7. The gaincode parameter is ignored when channel is ALLCHAN.

RETURN VALUE

0 if successful

-1 if address is invalid or out of range.

SEE ALSO

anaInEEWr, anaInCalib

Configures channels PIO0 to PIO3 on the A/D converter to allow them to be used as digital I/O via

header JP4 on the RCM3700 Prototyping Board.

Remember to execute the brdInit function before calling this function to prevent a runtime error.

PARAMETER

statemask is a bitwise mask representing JP4 channels 1 to 4. Use logic 0 for inputs and logic 1 for

outputs in these bit positions:

bits 7–5—0

bit 4—JP4:4

bit 3—JP4:3

bit 2—JP4:2

bit 1—JP4:1

bit 0—0

RETURN VALUE

None.

SEE ALSO

digOut, digIn

Gain Code
Voltage Range*

(V)

* Applies to RCM3700 Prototyping

Board.

0 0–20

1 0–10

2 0–5

3 0–4

4 0–2.5

5 0–2

6 0–1.25

7 0–1

void digConfig(char statemask);

User’s Manual 51

Writes a state to a digital output channel on header JP4 of the RCM3700 Prototyping Board. The PIO0 to

PIO3 channels on the A/D converter chip are accessed via header JP4 on the RCM3700 Prototyping

Board.

A runtime error will occur if the brdInit function was not executed before calling this function or if

the channel is out of range.

PARAMETERS

channel is channel 1 to 4 for JP4:1 to JP4:4

state is a logic state of 0 or 1

RETURN VALUE

None.

SEE ALSO

brdInit, digIn

Reads the state of a digital input channel on header JP4 of the RCM3700 Prototyping Board. The PIO0 to

PIO3 channels on the A/D converter chip are accessed via header JP4 on the RCM3700 Prototyping

Board.

A runtime error will occur if the brdInit function was not executed before calling this function or if

the channel is out of range.

PARAMETERS

channel is channel 1 to 4 for JP4:1 to JP4:4

state is a logic state of 0 or 1

RETURN VALUE

None.

SEE ALSO

brdInit, digOut

void digOut(int channel, int state);

int digIn(int channel);

52 RabbitCore RCM3700

5.2.3 Digital I/O

The RCM3700 was designed to interface with other systems, and so there are no drivers

written specifically for the I/O. The general Dynamic C read and write functions allow

you to customize the parallel I/O to meet your specific needs. For example, use

WrPortI(PEDDR, &PEDDRShadow, 0x00);

to set all the Port E bits as inputs, or use

WrPortI(PEDDR, &PEDDRShadow, 0xFF);

to set all the Port E bits as outputs.

When using the auxiliary I/O bus on the Rabbit 3000 chip, add the line

#define PORTA_AUX_IO // required to enable auxiliary I/O bus

to the beginning of any programs using the auxiliary I/O bus.

The sample programs in the Dynamic C SAMPLES/RCM3700 and the SAMPLES/RCM3720

folders provide further examples.

User’s Manual 53

5.2.4 Serial Communication Drivers

Library files included with Dynamic C provide a full range of serial communications sup-

port. The RS232.LIB library provides a set of circular-buffer-based serial functions. The

PACKET.LIB library provides packet-based serial functions where packets can be delimited

by the 9th bit, by transmission gaps, or with user-defined special characters. Both libraries

provide blocking functions, which do not return until they are finished transmitting or

receiving, and nonblocking functions, which must be called repeatedly until they are fin-

ished, allowing other functions to be performed between calls. For more information, see

the Dynamic C Function Reference Manual and Technical Note TN213, Rabbit Serial

Port Software.

5.2.5 TCP/IP Drivers

The TCP/IP drivers are located in the LIB\TCPIP folder. Complete information on these

libraries and the TCP/IP functions is provided in the Dynamic C TCP/IP User’s Manual.

54 RabbitCore RCM3700

5.3 Upgrading Dynamic C

Dynamic C patches that focus on bug fixes are available from time to time. Check the Web

sites

• www.zworld.com/support/

or

• www.rabbitsemiconductor.com/support/

for the latest patches, workarounds, and bug fixes.

5.3.1 Add-On Modules

Dynamic C installations are designed for use with the board they are included with, and

are included at no charge as part of our low-cost kits. Z-World offers for purchase add-on

Dynamic C modules including the popular µC/OS-II real-time operating system, as well

as PPP, Advanced Encryption Standard (AES), and other select libraries.

In addition to the Web-based technical support included at no extra charge, a one-year

telephone-based technical support module is also available for purchase.

5.3.1.1 Featured Application Kit

The Secure Embedded Web Application Kit includes three Dynamic C modules that are

bundled together facilitates the rapid development of secure Web browser interfaces for

embedded system control.

• Dynamic C FAT file system module.

• Dynamic C RabbitWeb module.

• Dynamic C Secure Sockets Layer (SSL) module.

Appendix E provides additional information about the Secure Embedded Web Application

Kit.

User’s Manual 55

6. USING THE TCP/IP FEATURES

6.1 TCP/IP Connections

Programming and development can be done with the RCM3700 modules without connect-

ing the Ethernet port to a network. However, if you will be running the sample programs

that use the Ethernet capability or will be doing Ethernet-enabled development, you

should connect the RCM3700 module’s Ethernet port at this time.

Before proceeding you will need to have the following items.

• If you don’t have Ethernet access, you will need at least a 10Base-T Ethernet card

(available from your favorite computer supplier) installed in a PC.

• Two RJ-45 straight through Ethernet cables and a hub, or an RJ-45 crossover Ethernet

cable.

The Ethernet cables and a 10Base-T Ethernet hub are available from Z-World in a TCP/IP

tool kit. More information is available at www.zworld.com.

1. Connect the AC adapter and the programming cable as shown in Chapter 2, “Getting

Started.”

2. Ethernet Connections

There are four options for connecting the RCM3700 module to a network for develop-

ment and runtime purposes. The first two options permit total freedom of action in

selecting network addresses and use of the “network,” as no action can interfere with

other users. We recommend one of these options for initial development.

• No LAN — The simplest alternative for desktop development. Connect the RCM3700

module’s Ethernet port directly to the PC’s network interface card using an RJ-45

crossover cable. A crossover cable is a special cable that flips some connections

between the two connectors and permits direct connection of two client systems. A

standard RJ-45 network cable will not work for this purpose.

• Micro-LAN — Another simple alternative for desktop development. Use a small

Ethernet 10Base-T hub and connect both the PC’s network interface card and the

RCM3700 module’s Ethernet port to it using standard network cables.

56 RabbitCore RCM3700

The following options require more care in address selection and testing actions, as

conflicts with other users, servers and systems can occur:

• LAN — Connect the RCM3700 module’s Ethernet port to an existing LAN, preferably

one to which the development PC is already connected. You will need to obtain IP

addressing information from your network administrator.

• WAN — The RCM3700 is capable of direct connection to the Internet and other Wide

Area Networks, but exceptional care should be used with IP address settings and all

network-related programming and development. We recommend that development and

debugging be done on a local network before connecting a RabbitCore system to the

Internet.

TIP: Checking and debugging the initial setup on a micro-LAN is recommended before

connecting the system to a LAN or WAN.

The PC running Dynamic C does not need to be the PC with the Ethernet card.

3. Apply Power

Plug in the AC adapter. The RCM3700 module and Prototyping Board are now ready to

be used.

User’s Manual 57

6.2 TCP/IP Primer on IP Addresses

Obtaining IP addresses to interact over an existing, operating, network can involve a num-

ber of complications, and must usually be done with cooperation from your ISP and/or

network systems administrator. For this reason, it is suggested that the user begin instead

by using a direct connection between a PC and the RCM3700 using an Ethernet crossover

cable or a simple arrangement with a hub. (A crossover cable should not be confused with

regular straight through cables.)

In order to set up this direct connection, you will have to use a PC without networking, or

disconnect a PC from the corporate network, or install a second Ethernet adapter and set

up a separate private network attached to the second Ethernet adapter. Disconnecting your

PC from the corporate network may be easy or nearly impossible, depending on how it is

set up. If your PC boots from the network or is dependent on the network for some or all

of its disks, then it probably should not be disconnected. If a second Ethernet adapter is

used, be aware that Windows TCP/IP will send messages to one adapter or the other,

depending on the IP address and the binding order in Microsoft products. Thus you should

have different ranges of IP addresses on your private network from those used on the cor-

porate network. If both networks service the same IP address, then Windows may send a

packet intended for your private network to the corporate network. A similar situation will

take place if you use a dial-up line to send a packet to the Internet. Windows may try to

send it via the local Ethernet network if it is also valid for that network.

The following IP addresses are set aside for local networks and are not allowed on the

Internet: 10.0.0.0 to 10.255.255.255, 172.16.0.0 to 172.31.255.255, and 192.168.0.0 to

192.168.255.255.

The RCM3700 uses a 10/100-compatible Ethernet connection with a 10Base-T interface,

which is the most common scheme. The RJ-45 connectors are similar to U.S. style tele-

phone connectors, except they are larger and have 8 contacts.

An alternative to the direct connection using a crossover cable is a direct connection using

a hub. The hub relays packets received on any port to all of the ports on the hub. Hubs are

low in cost and are readily available. The RCM3700 uses 10 Mbps Ethernet, so the hub or

Ethernet adapter must be either a 10 Mbps unit or a 10/100 unit that adapts to 10 Mbps.

In a corporate setting where the Internet is brought in via a high-speed line, there are typi-

cally machines between the outside Internet and the internal network. These machines

include a combination of proxy servers and firewalls that filter and multiplex Internet traf-

fic. In the configuration below, the RCM3700 could be given a fixed address so any of the

computers on the local network would be able to contact it. It may be possible to configure

the firewall or proxy server to allow hosts on the Internet to directly contact the controller,

but it would probably be easier to place the controller directly on the external network out-

side of the firewall. This avoids some of the configuration complications by sacrificing

some security.

58 RabbitCore RCM3700

If your system administrator can give you an Ethernet cable along with its IP address, the

netmask and the gateway address, then you may be able to run the sample programs with-

out having to setup a direct connection between your computer and the RCM3700. You

will also need the IP address of the nameserver, the name or IP address of your mail

server, and your domain name for some of the sample programs.

Hub(s)

Firewall
Proxy
Server

T1 in
Adapter

Ethernet Ethernet

Network

RCM3700
SystemTypical Corporate Network

User’s Manual 59

6.2.1 IP Addresses Explained

IP (Internet Protocol) addresses are expressed as 4 decimal numbers separated by periods,

for example:

216.103.126.155

10.1.1.6

Each decimal number must be between 0 and 255. The total IP address is a 32-bit number

consisting of the 4 bytes expressed as shown above. A local network uses a group of adja-

cent IP addresses. There are always 2N IP addresses in a local network. The netmask (also

called subnet mask) determines how many IP addresses belong to the local network. The

netmask is also a 32-bit address expressed in the same form as the IP address. An example

netmask is:

255.255.255.0

This netmask has 8 zero bits in the least significant portion, and this means that 28

addresses are a part of the local network. Applied to the IP address above

(216.103.126.155), this netmask would indicate that the following IP addresses belong to

the local network:

216.103.126.0

216.103.126.1

216.103.126.2

etc.

216.103.126.254

216.103.126.255

The lowest and highest address are reserved for special purposes. The lowest address

(216.102.126.0) is used to identify the local network. The highest address

(216.102.126.255) is used as a broadcast address. Usually one other address is used for the

address of the gateway out of the network. This leaves 256 - 3 = 253 available IP

addresses for the example given.

60 RabbitCore RCM3700

6.2.2 How IP Addresses are Used

The actual hardware connection via an Ethernet uses Ethernet adapter addresses (also

called MAC addresses). These are 48-bit addresses and are unique for every Ethernet

adapter manufactured. In order to send a packet to another computer, given the IP address

of the other computer, it is first determined if the packet needs to be sent directly to the

other computer or to the gateway. In either case, there is an Ethernet address on the local

network to which the packet must be sent. A table is maintained to allow the protocol

driver to determine the MAC address corresponding to a particular IP address. If the table

is empty, the MAC address is determined by sending an Ethernet broadcast packet to all

devices on the local network asking the device with the desired IP address to answer with

its MAC address. In this way, the table entry can be filled in. If no device answers, then

the device is nonexistent or inoperative, and the packet cannot be sent.

Some IP address ranges are reserved for use on internal networks, and can be allocated

freely as long as no two internal hosts have the same IP address. These internal IP

addresses are not routed to the Internet, and any internal hosts using one of these reserved

IP addresses cannot communicate on the external Internet without being connected to a

host that has a valid Internet IP address. The host would either translate the data, or it

would act as a proxy.

Each RCM3700 RabbitCore module has its own unique MAC address, which consists of

the prefix 0090C2 followed by a code that is unique to each RCM3700 module. For exam-

ple, a MAC address might be 0090C2C002C0.

TIP: You can always obtain the MAC address on your board by running the sample pro-

gram DISPLAY_MAC.C from the SAMPLES\TCPIP folder.

User’s Manual 61

6.2.3 Dynamically Assigned Internet Addresses

In many instances, devices on a network do not have fixed IP addresses. This is the case

when, for example, you are assigned an IP address dynamically by your dial-up Internet

service provider (ISP) or when you have a device that provides your IP addresses using

the Dynamic Host Configuration Protocol (DHCP). The RCM3700 modules can use such

IP addresses to send and receive packets on the Internet, but you must take into account

that this IP address may only be valid for the duration of the call or for a period of time,

and could be a private IP address that is not directly accessible to others on the Internet.

These addresses can be used to perform some Internet tasks such as sending e-mail or

browsing the Web, but it is more difficult to participate in conversations that originate

elsewhere on the Internet. If you want to find out this dynamically assigned IP address,

under Windows 98 you can run the winipcfg program while you are connected and look

at the interface used to connect to the Internet.

Many networks use IP addresses that are assigned using DHCP. When your computer

comes up, and periodically after that, it requests its networking information from a DHCP

server. The DHCP server may try to give you the same address each time, but a fixed IP

address is usually not guaranteed.

If you are not concerned about accessing the RCM3700 from the Internet, you can place

the RCM3700 on the internal network using an IP address assigned either statically or

through DHCP.

62 RabbitCore RCM3700

6.3 Placing Your Device on the Network

In many corporate settings, users are isolated from the Internet by a firewall and/or a

proxy server. These devices attempt to secure the company from unauthorized network

traffic, and usually work by disallowing traffic that did not originate from inside the net-

work. If you want users on the Internet to communicate with your RCM3700, you have

several options. You can either place the RCM3700 directly on the Internet with a real

Internet address or place it behind the firewall. If you place the RCM3700 behind the fire-

wall, you need to configure the firewall to translate and forward packets from the Internet

to the RCM3700.

User’s Manual 63

6.4 Running TCP/IP Sample Programs

We have provided a number of sample programs demonstrating various uses of TCP/IP for

networking embedded systems. These programs require you to connect your PC and the

RCM3700 board together on the same network. This network can be a local private net-

work (preferred for initial experimentation and debugging), or a connection via the Internet.

RCM3700

User’s PC

Ethernet
crossover
cable

Direct Connection
(network of 2 computers)

RCM3700

Hub

Ethernet
cables

To additional
network
elements

Direct Connection Using a Hub

System
System

64 RabbitCore RCM3700

6.4.1 How to Set IP Addresses in the Sample Programs

With the introduction of Dynamic C 7.30 we have taken steps to make it easier to run

many of our sample programs. You will see a TCPCONFIG macro. This macro tells

Dynamic C to select your configuration from a list of default configurations. You will

have three choices when you encounter a sample program with the TCPCONFIG macro.

1. You can replace the TCPCONFIG macro with individual MY_IP_ADDRESS, MY_NET-
MASK, MY_GATEWAY, and MY_NAMESERVER macros in each program.

2. You can leave TCPCONFIG at the usual default of 1, which will set the IP configurations

to 10.10.6.100, the netmask to 255.255.255.0, and the nameserver and gateway

to 10.10.6.1. If you would like to change the default values, for example, to use an IP

address of 10.1.1.2 for the RCM3700 board, and 10.1.1.1 for your PC, you can edit

the values in the section that directly follows the “General Configuration” comment in

the TCP_CONFIG.LIB library. You will find this library in the LIB\TCPIP directory.

3. You can create a CUSTOM_CONFIG.LIB library and use a TCPCONFIG value greater

than 100. Instructions for doing this are at the beginning of the TCP_CONFIG.LIB
library in the LIB\TCPIP directory.

There are some other “standard” configurations for TCPCONFIG that let you select differ-

ent features such as DHCP. Their values are documented at the top of the TCP_CON-

FIG.LIB library in the LIB\TCPIP directory. More information is available in the

Dynamic C TCP/IP User’s Manual.

User’s Manual 65

6.4.2 How to Set Up your Computer’s IP Address for Direct Connect

When your computer is connected directly to the RCM3700 module via an Ethernet con-

nection, you need to assign an IP address to your computer. To assign the PC the address

10.10.6.101 with the netmask 255.255.255.0, do the following.

Click on Start > Settings > Control Panel to bring up the Control Panel, and then

double-click the Network icon. Depending on which version of Windows you are using,

look for the TCP/IP Protocol/Network > Dial-Up Connections/Network line or tab.

Double-click on this line or select Properties or Local Area Connection > Properties

to bring up the TCP/IP properties dialog box. You can edit the IP address and the subnet

mask directly. (Disable “obtain an IP address automatically.”) You may want to write

down the existing values in case you have to restore them later. It is not necessary to edit

the gateway address since the gateway is not used with direct connect.

RCM3700

User’s PC

Ethernet

crossover

cable

IP 10.10.6.101

Netmask

255.255.255.0

Direct Connection PC to RCM3700 Board

System

66 RabbitCore RCM3700

6.5 Run the PINGME.C Sample Program

Connect the crossover cable from your computer’s Ethernet port to the RCM3700 board’s

RJ-45 Ethernet connector. Open this sample program from the SAMPLES\TCPIP\ICMP

folder, compile the program, and start it running under Dynamic C. When the program

starts running, the green LINK light on the RCM3700 module should be on to indicate an

Ethernet connection is made. (Note: If the LNK light does not light, you may not be using

a crossover cable, or if you are using a hub perhaps the power is off on the hub.)

The next step is to ping the board from your PC. This can be done by bringing up the MS-

DOS window and running the pingme program:

ping 10.10.6.100

or by Start > Run

and typing the entry

ping 10.10.6.100

Notice that the yellow ACT light flashes on the RCM3700 module while the ping is taking

place, and indicates the transfer of data. The ping routine will ping the board four times

and write a summary message on the screen describing the operation.

6.6 Running Additional Sample Programs With Direct Connect

The sample programs discussed here are in the Dynamic C SAMPLES\RCM3700\TCPIP\

and the SAMPLES\RCM3720\TCPIP\ folders.

The program BROWSELED.C demonstrates how to make the RCM3700 board be a Web

server. Two “LEDs” are created on the Web page, along with two buttons to toggle them.

Users can change the status of the lights from the Web browser. The LEDs on the Proto-

typing Board match the ones on the Web page. As long as you have not modified the

TCPCONFIG 1 macro in the sample program, enter the following server address in your

Web browser to bring up the Web page served by the sample program.

http://10.10.6.100.

Otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library.

The optional LCD/keypad module (see Appendix C) must be plugged in to the RCM3700

Prototyping Board when using this sample program. The sample program MBOXDEMO.C

implements a Web server that allows e-mail messages to be entered and then shown on the

LCD/keypad module. The keypad allows the user to scroll within messages, flip to other

e-mails, mark messages as read, and delete e-mails. When a new e-mail arrives, an LED

(on the Prototyping Board and LCD/keypad module) turns on, then turns back off once the

message has been marked as read. A log of all e-mail actions is kept, and can be displayed

in the Web browser. All current e-mails can also be read with the Web browser.

The sample program PINGLED.C demonstrates ICMP by pinging a remote host. It will

flash LEDs DS1 and DS2 on the Prototyping Board when a ping is sent and received.

User’s Manual 67

The sample program SMTP.C allows you to send an e-mail when a switch on the Prototyp-

ing Board is pressed. Follow the instructions included with the sample program. LED DS1

on the Prototyping Board will light up when sending e-mail. Note that pin PB7 is con-

nected to both switch S2 and to the external I/O bus on the Prototyping Board, and so

switch S2 should not be used with Ethernet operations.

6.6.1 RabbitWeb Sample Programs

You will need to have the Dynamic C RabbitWeb module installed before you run the

sample programs described in this section. The sample programs can be found in the SAM-

PLES\RCM3700\TCPIP\RABBITWEB folder.

• BLINKLEDS.C—This program demonstrates a basic example to change the rate at

which the DS1 and DS2 LEDs on the RCM3700 Prototyping Board or the RCM3720

Prototyping Board blink.

• DOORMONITOR.C—The optional LCD/keypad module (see Appendix C) must be plugged

in to the RCM3700 Prototyping Board when using this sample program. This program

demonstrates adding and monitoring passwords entered via the LCD/keypad module.

• HANGMAN_GAME.C—This sample program based on the children's hangman word

guessing game demonstrates some RabbitWeb capabilities using the RCM3720 Proto-

typing Board.

• LEDS_CHECKBOX.C—This sample program provides a bare-bones sample of using

some RabbitWeb features to control digital I/O using the RCM3720 Prototyping Board.

• SPRINKLER.C—This program demonstrates how to schedule times for the digital out-

puts in a 24-hour period using the RCM3700 Prototyping Board or the RCM3720

Prototyping Board.

• TEMPERATURE.C—This program demonstrates the use of a thermistor with the

RCM3700 Prototyping Board to measure temperature, and it also demonstrates some

simple #web variable registration along with the authentication features. An e-mail

message will be sent if the current temperature exceeds the minimum or maximum lim-

its set by the user.

Before running this sample program, you will have to install the thermistor included in

the RCM3700 Development Kit at location J7 on the RCM3700 Prototyping Board,

which is connected to analog input THERM_IN7.

68 RabbitCore RCM3700

6.6.2 Secure Sockets Layer (SSL) Sample Programs

You will need to have the Dynamic C SSL module installed before you run the sample

programs described in this section. The sample programs can be found in the SAMPLES\
RCM3700\TCPIP\SSL folder.

Before running these sample programs, you will have to create an SSL certificate. The

SSL walkthrough in the online documentation for the Dynamic C SSL module explains

how to do this.

• SSL_BROWSELED.C—This program demonstrates a basic controller running a Web

page. Two “LEDs” are created on the Web page, along with two buttons to toggle them.

Users can change the status of the lights from the Web browser. The LEDs on the Pro-

totyping Board match the ones on the Web page. As long as you have not modified the

TCPCONFIG 1 macro in the sample program, enter the following server address in your

Web browser to bring up the Web page served by the sample program.

http://10.10.6.100

Otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library.

• SSL_MBOXDEMO.C—Implements a Web server that allows e-mail messages to be

entered and then shown on the LCD/keypad module. The keypad allows the user to

scroll within messages, flip to other e-mails, mark messages as read, and delete e-mails.

When a new e-mail arrives, an LED (on the Prototyping Board and LCD/keypad

module) turns on, then turns back off once the message has been marked as read. A log

of all e-mail actions is kept, and can be displayed in the Web browser. All current e-

mails can also be read with the Web browser.

6.6.3 Dynamic C FAT File System, RabbitWeb, and SSL Modules

The Dynamic C FAT File System, RabbitWeb, and Secure Sockets Layer (SSL) modules

have been integrated into a sample program for the RCM3700. The sample program

requires that you have installed the Dynamic C FAT File System, RabbitWeb, and SSL

modules. Visit our Web site at www.zworld.com or contact your Z-World sales representa-

tive or authorized distributor for further information on these Dynamic C modules.

NOTE: These sample programs will work only on the RCM3700 and the RCM3720, but

not the RCM3710. The RCM3700 RabbitCore modules do not support the download

manager portion of the sample program.

TIP: Before running any of the sample programs described in this section, you should

look at and run sample programs for the TCP/IP ZSERVER.LIB library, the FAT file

system, RabbitWeb, SSL, the download manager, and HTTP upload to become more

familiar with their operation.

The INTEGRATION.C sample program in the SAMPLES\RCM3700\Module_Integration
and the SAMPLES\RCM3720\Module_Integration folders demonstrate the use of the

TCP/IP ZSERVER.LIB library and FAT file system functionality with RabbitWeb

dynamic HTML content, all secured using SSL. The sample program also supports

dynamic updates of both the application and its resources using the Rabbit Download

Manager (DLM) and HTTP upload capability, respectively—note that neither of these

currently supports SSL security.

User’s Manual 69

Before you run the INTEGRATION.C sample program, you will first need to format and

partition the serial flash. Find the FMT_DEVICE.C sample program in the Dynamic C

SAMPLES\FileSystem folder. Open this sample program with the File > Open menu,

then compile and run it by pressing F9. FMT_DEVICE.C formats the serial flash for use

with the FAT file system. If the serial flash is already formatted, FMT_DEVICE.C gives

you the option of erasing the serial flash and reformatting it with a single large partition.

This erasure does not check for non-FAT partitions and will destroy all existing partitions.

Next, run the INTEGRATION_FAT_SETUP.C sample program in the Dynamic C

SAMPLES\RCM3700\Module_Integration folder. Open this sample program with the

File > Open menu, then compile and run it by pressing F9. INTEGRATION_FAT_

SETUP.C will copy some files into the FAT file system via #ximport.

The last step to complete before you can run the INTEGRATION.C sample program is to

create an SSL certificate. The SSL walkthrough in the online documentation for the

Dynamic C SSL module explains how to do this.

Now you are ready to run the INTEGRATION.C sample program in the Dynamic C

SAMPLES\RCM3700\Module_Integration folder. Open this sample program with the

File > Open menu, then compile and run it by pressing F9.

NOTE: Since HTTP upload and the Dynamic C SSL module currently do not work

together, compiling the INTEGRATION.C sample program will generate a serious

warning. Ignore the warning because we are not using HTTP upload over SSL. A

macro (HTTP_UPLOAD_SSL_SUPRESS_WARNING) is available to suppress the

warning message.

Open a Web browser, and browse to the device using the IP address from the TCP_

CONFIG.LIB library or the URL you assigned to the device. The humidity monitor will

be displayed in your Web browser. This page is accessible via plain HTTP or over SSL-

secured HTTPS. Click on the administrator link to bring up the admin page, which is

secured automatically using SSL with a user name and a password. Use myadmin for user

name and use myadmin for the password.

The admin page demonstrates some RabbitWeb capabilities and provides access to the

HTTP upload page. Click the upload link to bring up the HTTP upload page, which allows

you to choose new files for both the humidity monitor and the admin page. If your browser

prompts you again for your user name and password, they are the same as before.

Note that the upload page is a static page included in the program flash, and can only be

updated by recompiling and downloading the application. This way, the page is protected

so that you cannot accidentally change it, possibly restricting yourself from performing

future updates. If you wish, you may place the upload page into the FAT file system to

allow the upload page to be updated.

To try out the update capability, click the upload link on the admin page and choose a

simple text file to replace monitor.ztm. Open another browser window and load the

main Web page. You will see that your text file has replaced the humidity monitor. To

70 RabbitCore RCM3700

restore the monitor, go back to the other window, click back to go to the upload page

again, and choose HUMIDITY_MONITOR.ZHTML to replace monitor.ztm, and click

Upload.

When you refresh the page in your browser, you will see that the page has been restored.

You have successfully updated and restored your application's files remotely!

When you are finished with the INTEGRATION.C sample program, you need to follow a

special shutdown procedure before powering off to prevent any possible corruption of the

FAT file system. Press and hold switch S1 on the Prototyping Board until LED DS1 blinks

rapidly to indicate that it is now safe to turn the RCM3700 off. This procedure can be

modified by the user to provide other application-specific shutdown tasks.

6.7 Where Do I Go From Here?

NOTE: If you purchased your RCM3700 through a distributor or through a Z-World or

Rabbit Semiconductor partner, contact the distributor or Z-World partner first for tech-

nical support.

If there are any problems at this point:

• Check the Z-World/Rabbit Semiconductor Technical Bulletin Board at

www.zworld.com/support/bb/.

• Use the Technical Support e-mail form at www.zworld.com/support/.

If the sample programs ran fine, you are now ready to go on.

Additional sample programs are described in the Dynamic C TCP/IP User’s Manual.

Please refer to the Dynamic C TCP/IP User’s Manual to develop your own applications.

An Introduction to TCP/IP provides background information on TCP/IP, and is available

on the CD and on Z-World’s Web site.

User’s Manual 71

APPENDIX A. RCM3700 SPECIFICATIONS

Appendix A provides the specifications for the RCM3700, and

describes the conformal coating.

72 RabbitCore RCM3700

A.1 Electrical and Mechanical Characteristics

Figure A-1 shows the mechanical dimensions for the RCM3700.

Figure A-1. RCM3700 Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.

All dimensions have a manufacturing tolerance of ±0.01" (0.2 mm).

���������������������	� !""
�������������������������������
�������)�������������������
���������2

�
#$

�
#

(
)/

(
*$

��) ��#�
)/

�
*%

(*+
().

(
#%

(
#,

(
#/

�)+
�)%

(*%
(*.
�)*

2) (#+

0�)
(,

0�*

0#

(
**

(
*#

(
*"

(
*)

()+

(),
(#"

(*/
($)

2$

�
%

�)) (*,

�$ �+
2+

(#.
0�
#

:)

($"

()"

;)

�, ($.

!#

!)

()$

()# (##

2
/ (
#*

:* (+,
�*)

(
+/

�#.

��#
�*#
�*"

��)

0*

�*$

()%

�#/

)(#$

(#)
�)

2%

(+*

�
#%

2*

�**
(/

2))

!$

!*
(+$��(++

!%

"7
)*

	*
7*
�

"7
*,

	.
7*
�

"7
/.

	#
*�"7
"%
*

)
7%
�

#7.+"
	,$7.�

#7.+"
	,$7.�

)7#""
	*"7+�

)7
#"
"

	*
"7
+�

"7
)*

	*
7*
�

"7
*,

	.
7*
�

"7
/.

	#
*�"7

"%
*

)
7%
�

"7
."
%

	#
*7
"�

"7
#.
$

	,
7+
�

"7)""
	#7+�

"7
$%

)
#�

"7
$%

)
#�

User’s Manual 73

It is recommended that you allow for an “exclusion zone” of 0.04" (1 mm) around the

RCM3700 in all directions when the RCM3700 is incorporated into an assembly that

includes other printed circuit boards. An “exclusion zone” of 0.16" (4 mm) is recom-

mended below the RCM3700 when the RCM3700 is plugged into another assembly using

the shortest connectors for header J1. Figure A-2 shows this “exclusion zone.”

Figure A-2. RCM3700 “Exclusion Zone”

"7
)% 	$
�

"7
)% 	$
�

%)�������
3���

#7.+"
	,$7.�"7"$

)�

"7
$%

)
#�

)7#""
	*"7+�

"7
$%

)
#�

"7"$
)�

"7"$
)�

"7
"$)
�

"7"$
)�

"7
"$)
�

74 RabbitCore RCM3700

Table A-1 lists the electrical, mechanical, and environmental specifications for the RCM3700.

Table A-1. RabbitCore RCM3700 Specifications

Parameter RCM3700 RCM3710 RCM3720

Microprocessor Low-EMI Rabbit 3000® at 22.1 MHz

Ethernet Port 10/100-compatible with 10Base-T interface, RJ-45, 2 LEDs

Flash Memory 512K 256K 512K

SRAM 512K 128K 256K

Serial Flash Memory 1Mbyte

Backup Battery
Connection for user-supplied backup battery

(to support RTC and SRAM)

General-Purpose I/O

33 parallel digital I/0 lines:

• 31 configurable I/O

• 2 fixed outputs

Additional I/O Reset

Auxiliary I/O Bus
Can be configured for 8 data lines and

5 address lines (shared with parallel I/O lines), plus I/O read/write

Serial Ports

Four 3.3 V CMOS-compatible ports configurable as:

• 4 asynchronous serial ports (with IrDA) or

• 3 clocked serial ports (SPI) plus 1 HDLC (with IrDA) or

• 1 clocked serial port (SPI) plus 2 HDLC serial ports (with IrDA)

Serial Rate Maximum asynchronous baud rate = CLK/8

Slave Interface

A slave port allows the RCM3700 to be used as an intelligent peripheral

device slaved to a master processor, which may either be another Rabbit

3000 or any other type of processor

Real-Time Clock Yes

Timers
Ten 8-bit timers (6 cascadable, 3 reserved for internal peripherals),

one 10-bit timer with 2 match registers

Watchdog/Supervisor Yes

Pulse-Width Modulators
4 PWM output channels with 10-bit free-running counter

and priority interrupts

Input Capture/

Quadrature Decoder

2-channel input capture can be used to time input signals from various

port pins

• 1 quadrature decoder unit accepts inputs from external incremental

encoder modules or

• 1 quadrature decoder unit shared with 2 PWM channels

Power
4.75–5.25 V DC

100 mA @ 22.1 MHz, 5 V; 78 mA @ 11.05 MHz, 5 V

Operating Temperature –40°C to +70°C

Humidity 5% to 95%, noncondensing

Connectors One 2 x 20, 0.1" pitch

Board Size
1.20" × 2.95" × 0.89"

(30 mm × 75 mm × 23 mm)

User’s Manual 75

A.1.1 Headers

The RCM3700 uses one header at J1 for physical connection to other boards. J1 is a

2 × 20 SMT header with a 0.1" pin spacing.

Figure A-3 shows the layout of another board for the RCM3700 to be plugged into. These

values are relative to the designated fiducial (reference point).

Figure A-3. User Board Footprint for RCM3700

�(8*,""�3��
>���

0)

"7#%*
	%7,�

"7"""
	"7"�

"7"%"
)7+�

"7#."
	,7$�

76 RabbitCore RCM3700

A.2 Bus Loading

You must pay careful attention to bus loading when designing an interface to the

RCM3700. This section provides bus loading information for external devices.

Table A-2 lists the capacitance for the various RCM3700 I/O ports.

Table A-3 lists the external capacitive bus loading for the various RCM3700 output ports.

Be sure to add the loads for the devices you are using in your custom system and verify

that they do not exceed the values in Table A-3.

Table A-2. Capacitance of Rabbit 3000 I/O Ports

I/O Ports

Input

Capacitance

(pF)

Output

Capacitance

(pF)

Parallel Ports A to G 12 14

Table A-3. External Capacitive Bus Loading -40°C to +85°C

Output Port
Clock Speed

(MHz)

Maximum External

Capacitive Loading (pF)

All I/O lines with clock

doubler enabled
22.1 100

User’s Manual 77

Figure A-4 shows a typical timing diagram for the Rabbit 3000 microprocessor external

I/O read and write cycles.

Figure A-4. I/O Read and Write Cycles—No Extra Wait States

NOTE: /IOCSx can be programmed to be active low (default) or active high.

 �<�

 �<�

%)��������4+������5����)����$����������6

(!'

�B)+C"D

%)��������4+�������5����)����$����������6

(!'

�B)+C"D

�����

�����

) @

) @ #

�����

 #

�&23�

���(�-

���6�

�&23�

�B,C"D �����

 ��
?>

 ���<

�(�-

���(�-

 (�-

 ��(�-

 ����

 &23�

 (�-

 ��(�-

 ����

 &23�

������B,C"D

�(�-
 (�-

 ��(�-

 ��6�

 (�-

 ��(�-

 ��6�

 &23�
 &23�

 �9E� ��9E

78 RabbitCore RCM3700

Table A-4 lists the delays in gross memory access time.

The measurements are taken at the 50% points under the following conditions.

• T = -40°C to 85°C, V = VDD ±10%

• Internal clock to nonloaded CLK pin delay ≤ 1 ns @ 85°C/3.0 V

The clock to address output delays are similar, and apply to the following delays.

• Tadr, the clock to address delay

• TCSx, the clock to memory chip select delay

• TIOCSx, the clock to I/O chip select delay

• TIORD, the clock to I/O read strobe delay

• TIOWR, the clock to I/O write strobe delay

• TBUFEN, the clock to I/O buffer enable delay

The data setup time delays are similar for both Tsetup and Thold.

When the spectrum spreader is enabled with the clock doubler, every other clock cycle is

shortened (sometimes lengthened) by a maximum amount given in the table above. The

shortening takes place by shortening the high part of the clock. If the doubler is not

enabled, then every clock is shortened during the low part of the clock period. The maxi-

mum shortening for a pair of clocks combined is shown in the table.

Technical Note TN227, Interfacing External I/O with Rabbit 2000/3000 Designs, con-

tains suggestions for interfacing I/O devices to the Rabbit 3000 microprocessors.

Table A-4. Data and Clock Delays VIN ±10%, Temp, -40°C–+85°C (maximum)

VIN

Clock to Address Output Delay

(ns) Data Setup

Time Delay

(ns)

Spectrum Spreader Delay

(ns)

30 pF 60 pF 90 pF
Normal

no dbl/dbl

Strong

no dbl/dbl

3.3 V 6 8 11 1 3/4.5 4.5/9

User’s Manual 79

A.3 Rabbit 3000 DC Characteristics

Stresses beyond those listed in Table A-5 may cause permanent damage. The ratings are

stress ratings only, and functional operation of the Rabbit 3000 chip at these or any other

conditions beyond those indicated in this section is not implied. Exposure to the absolute

maximum rating conditions for extended periods may affect the reliability of the Rabbit

3000 chip.

Table A-6 outlines the DC characteristics for the Rabbit 3000 at 3.3 V over the recom-

mended operating temperature range from TA = –55°C to +85°C, VDD = 3.0 V to 3.6 V.

Table A-5. Rabbit 3000 Absolute Maximum Ratings

Symbol Parameter Maximum Rating

TA Operating Temperature -55° to +85°C

TS Storage Temperature -65° to +150°C

Maximum Input Voltage:

• Oscillator Buffer Input

• 5-V-tolerant I/O

VDD + 0.5 V

5.5 V

VDD Maximum Operating Voltage 3.6 V

Table A-6. 3.3 Volt DC Characteristics

Symbol Parameter Test Conditions Min Typ Max Units

VDD Supply Voltage 3.0 3.3 3.6 V

VIH High-Level Input Voltage 2.0 V

VIL Low-Level Input Voltage 0.8 V

VOH High-Level Output Voltage
IOH = 6.8 mA,

VDD = VDD (min)

0.7 x

VDD
V

VOL Low-Level Output Voltage
IOL = 6.8 mA,

VDD = VDD (min)
0.4 V

IIH
High-Level Input Current

(absolute worst case, all buffers)

VIN = VDD,

VDD = VDD (max)
10 µA

IIL
Low-Level Input Current

(absolute worst case, all buffers)

VIN = VSS,

VDD = VDD (max)
-10 µA

IOZ

High-Impedance State

Output Current

(absolute worst case, all buffers)

VIN = VDD or VSS,

VDD = VDD (max), no pull-up
-10 10 µA

80 RabbitCore RCM3700

A.4 I/O Buffer Sourcing and Sinking Limit

Unless otherwise specified, the Rabbit I/O buffers are capable of sourcing and sinking

6.8 mA of current per pin at full AC switching speed. Full AC switching assumes a

22.1 MHz CPU clock and capacitive loading on address and data lines of less than 100 pF

per pin. The absolute maximum operating voltage on all I/O is 5.5 V.

Table A-7 shows the AC and DC output drive limits of the parallel I/O buffers when the

Rabbit 3000 is used in the RCM3700.

Under certain conditions, you can exceed the limits outlined in Table A-7. See the Rabbit

3000 Microprocessor User’s Manual for additional information.

Table A-7. I/O Buffer Sourcing and Sinking Capability

Pin Name

Output Drive (Full AC Switching)

Sourcing/Sinking Limits

(mA)

Sourcing Sinking

All data, address, and I/O

lines with clock doubler

enabled

6.8 6.8

User’s Manual 81

A.5 Conformal Coating

The areas around the 32 kHz real-time clock crystal oscillator have had the Dow Corning

silicone-based 1-2620 conformal coating applied. The conformally coated area is shown

in Figure A-5. The conformal coating protects these high-impedance circuits from the

effects of moisture and contaminants over time.

Figure A-5. RCM3700 Areas Receiving Conformal Coating

Any components in the conformally coated area may be replaced using standard soldering

procedures for surface-mounted components. A new conformal coating should then be

applied to offer continuing protection against the effects of moisture and contaminants.

NOTE: For more information on conformal coatings, refer to Technical Note 303, Con-

formal Coatings.

(��F�����������
�<
����

�
#$

�
#

(
)/

(
*$

��) ��#�
)/

�
*%

(*+
().

(
#%

(
#,

(
#/

�)+
�)%

(*%
(*.
�)*

2) (#+

0�)
(,

0�*

0#

(
**

(
*#

(
*"

(
*)

()+

(),
(#"

(*/
($)

2$

�
%

�)) (*,

�$ �+
2+

(#.

0�
#

:)

($"

()"

;)

�, ($.

!#

!)

()$

()# (##

2
/ (
#*

:* (+,
�*)

(
+/

�#.

��#
�*#
�*"

��)

0*

�*$

()%

�#/

)(#$

(#)
�)

2%

(+*

�
#%

2*

�**
(/

2))

!$

!*
(+$��(++

!%

82 RabbitCore RCM3700

A.6 Jumper Configurations

Figure A-6 shows the header locations used to configure the various RCM3700 options

via jumpers.

Figure A-6. Location of RCM3700 Configurable Positions

Table A-8 lists the configuration options.

NOTE: The jumper connections are made using 0 Ω surface-mounted resistors.

Table A-8. RCM3700 Jumper Configurations

Header Description Pins Connected
Factory

Default

JP1 Flash Memory Bank Select
1–2 Normal Mode ×

2–3 Bank Mode

JP2 SRAM Size
1–2 128K–256K

RCM3710

RCM3720

2–3 512K RCM3700

JP3 Flash Memory Size

1–2 256K RCM3710

2–3 512K
RCM3700

RCM3720

(�������

0�) 0�*

0�#

User’s Manual 83

APPENDIX B. PROTOTYPING BOARD

Two different Prototyping Boards are available for the

RCM3700 series of RabbitCore modules. The RCM3700 Proto-

typing Board has power-supply connections and also provides

some basic I/O peripherals (RS-232, RS-485, A/D converter,

IrDA transceiver, LEDs, and switches), as well as a prototyping

area for more advanced hardware development. The RCM3720

Prototyping Board was designed specifically for the Ethernet

Connection Kit, and only has the power-supply connections,

prototyping area, LEDs, switches, and space for an optional

RS-232 chip to be installed.

Either Prototyping Board may be used with the full line of

RCM3700 RabbitCore modules. Appendix B describes the fea-

tures and accessories for the two prototyping boards.

84 RabbitCore RCM3700

R
C

M
3

7
0

0

B.1 RCM3700 Prototyping Board

The RCM3700 Prototyping Board included in the RCM3700 Development Kit makes it

easy to connect an RCM3700 module to a power supply and a PC workstation for devel-

opment. It also provides some basic I/O peripherals (RS-232, RS-485, A/D converter,

IrDA transceiver, LEDs, and switches), as well as a prototyping area for more advanced

hardware development.

For the most basic level of evaluation and development, the RCM3700 Prototyping Board

can be used without modification.

As you progress to more sophisticated experimentation and hardware development, modi-

fications and additions can be made to the board without modifying or damaging the

RCM3700 module itself.

The RCM3700 Prototyping Board is shown below in Figure B-1, with its main features

identified.

Figure B-1. RCM3700 Prototyping Board

�� ��
�
�
�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

�

�
#

�
)

�
)

�
*

�
+

�
,

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

� �
#

�
"

�
)

�
*

�
+

�
,

!#

()

(#

��)

�)
�#
�*
�$

�
-

-

�+

�% (*

�.

�, �/

0�) 0)

�$
/+

�
�

1$
/+

0�#

�)#�))

2*

($

(, (
/

(
)"

�)*

())

2$

(+ (%

(
.

0#

�
�

�����

�&+

�&*

��"

��%

�&"

����

�+�

�3$

�3%

�()���#

�("4 5�

��+

��)

��,4�5�

��$

�&�

��
$�
��

#

���6�

��,

�&$

�&#

��)

��*

��+

��,

�&,

�3"

�3)

�3+

�3,

��$

��"

��+

��%
 5�

�(#
 5(

�(*�
��*

�
�

�����������

�

�

(

2)

()#

()*

()+
()$

!)

(), 2# ()/
2%

�)$

�)
().

�#
0$

�(�

�*
7*
�

�

�

�+
�

�+
�

�

�

�*
7*
�

!(�)0& !(�)0(

!(�)0�

2+

()%

�)+ &)

�
�	

5
�

�
5
�

5
�

�
�	

 (84�8 4��('�

�+
�

�
&
�

�
�
+

���
�
�

�
�
%4

5
�

�
�
"

�
�
$

�
�
,

�
(
#4

5
(

�
(
"4

5
�

�
3
%

�
3
$

�
&
+

�
&
*

�
&
"

�
3
)

��
)

��
*

��
+

��
,

0+

�

�

�)% �

�

��
�
�

�
�
$

���
6
�

�
�
)

�
�
+

�
(
*�
�
�
*

�
3
,

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

��
"

��
#

��
$

��
%

�
�
,

�
5
�

�
(
)�

�
�
#

(##

(#%
�#)

�)/

(
#"

�).
(#)

�#"

�##

0�$

) #

��)

(5) (5# (5*

(5$

(5+

(5%

(5,

(5/

(5.

(5)"(5))

25#

25)
2/

�#*
(#$ (#+

(#*

2,

(#,
�#+

�#$
(#/

�#%

�#,

�#/

�#.
0�/

�*" �*) �*# �** �*$ �*+ �*%

(*+

�
$*

(#.0,
 9��8�� ��

�
*,

0/

�
�
�
3

�
�	

�
$$

��
��

�

�
� �
�

"% "+ "$ "* "# ") "" �
�

�
�	

�
*/ (
*"

(
*)

(
*#

(
**

(
*$

�*.��$" �$)��$#

�
$/

��) ��#

�$+
�$.

�$%

��*

�$,

�*�#�)

(�
���

0�+ 0�% 0�,

(

(

(

(

(

(

�� ��
�

�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�
(
8
*%
�*
,5

5
��
�
�
��
�

�
�
�
 �

:
�
�

�
�&
�
�
�
�

����

��@��
��>?

��@��
!��

����

�@�
��

2���
!���

�(8*,""�8�<?��
�-
�������9��<��

�+��A�*7*��A���<
�
��&?���

�(8*,""
8�<?��

(�����
��

2���
�@�
����

�8 ����
�
�>��=
����

!(��'��>�<
8�<?��

(�����
����

����
 �������G��

 ���?=�H9���
���
�
�>��=�����

(+*

��H$/+
��H#*#
9��<��

�����=
��>?
�

�����=
��F������
(��G��

���?�<

&���?>
&�

���

User’s Manual 85

R
C

M
3

7
0

0

B.1.1 Features

• Power Connection—A 3-pin header is provided for connection to the power supply.

Note that the 3-pin header is symmetrical, with both outer pins connected to ground and

the center pin connected to the raw DCIN input. The cable of the AC adapter provided

with the North American version of the Development Kit ends in a plug that connects

to the power-supply header, and can be connected to the 3-pin header in either orienta-

tion. A similar header plug leading to bare leads is provided for overseas customers.

Users providing their own power supply should ensure that it delivers 7.5–30 V DC at

500 mA. The voltage regulators will get warm while in use.

• Regulated Power Supply—The raw DC voltage provided at the POWER IN jack is

routed to a 5 V switching voltage regulator, then to a separate 3.3 V linear regulator.

The regulators provide stable power to the RCM3700 module and the Prototyping

Board.

• Power LED—The power LED lights whenever power is connected to the Prototyping

Board.

• Reset Switch—A momentary-contact, normally open switch is connected directly to the

RCM3700’s /RESET_IN pin. Pressing the switch forces a hardware reset of the system.

• I/O Switches and LEDs—Two momentary-contact, normally open switches are con-

nected to the PF4 and PB7 pins of the RCM3700 module and may be read as inputs by

sample applications.

Two LEDs are connected to the PF6 and PF7 pins of the RCM3700 module, and may

be driven as output indicators by sample applications.

• Prototyping Area—A generous prototyping area has been provided for the installation

of through-hole components. +3.3 V, +5 V, and Ground buses run at both edges of this

area. Several areas for surface-mount devices are also available. (Note that there are

SMT device pads on both top and bottom of the Prototyping Board.) Each SMT pad is

connected to a hole designed to accept a 30 AWG solid wire or wire-wrap wire.

• LCD/Keypad Module—Z-World’s LCD/keypad module may be plugged in directly to

headers LCD1JA, LCD1JB, and LCD1JC. The signals on headers LCD1JB and

LCD1JC will be available only if the LCD/keypad module is plugged in to header

LCD1JA. Appendix C provides complete information for mounting and using the

LCD/keypad module.

• Module Extension Headers—The complete non-analog pin set of the RCM3700

module is duplicated at header J3. Developers can solder wires directly into the appro-

priate holes, or, for more flexible development, a 2 × 20 header strip with a 0.1" pitch

can be soldered into place. See Figure B-4 for the header pinouts.

• Analog I/O Shrouded Headers—The complete analog pin set of the RCM3700

Prototyping Board is available on shrouded headers J8 and J9. See Figure B-4 for the

header pinouts.

86 RabbitCore RCM3700

R
C

M
3

7
0

0

• RS-232—Three 3-wire serial ports or one 5-wire RS-232 serial port and one 3-wire

serial port are available on the Prototyping Board at header J2. A jumper on header JP2

is used to select the drivers for Serial Port E, which can be set either as a 3-wire RS-232

serial port or as an RS-485 serial port. Serial Ports C and D are not available while the

IrDA transceiver is in use.

A 10-pin 0.1-inch spacing header strip is installed at J2 allows you to connect a ribbon
cable that leads to a standard DE-9 serial connector.

• RS-485—One RS-485 serial port is available on the Prototyping Board at shrouded

header J1. A 3-pin shrouded header is installed at J1. A jumper on header JP2 enables

the RS-485 output for Serial Port E.

• IrDA—An infrared transceiver is included on the Prototyping Board, and is capable of

handling link distances up to 1.5 m. The IrDA uses Serial Port F—Serial Ports C and D

are unavailable while Serial Port F is in use.

• Backup Battery—A 2032 lithium-ion battery rated at 3.0 V, 220 mA·h, provides

battery backup for the RCM3700 SRAM and real-time clock.

User’s Manual 87

R
C

M
3

7
0

0

B.1.2 Mechanical Dimensions and Layout

Figure B-2 shows the mechanical dimensions and layout for the RCM3700 Prototyping Board.

Figure B-2. RCM3700 Prototyping Board Dimensions

�� ��
�
�
�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

�

�
#

�
)

�
)

�
*

�
+

�
,

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

� �
#

�
"

�
)

�
*

�
+

�
,

!#

()

(#

��)

�)
�#
�*
�$

�
-

-

�+

�% (*

�.

�, �/

0�) 0)

�$
/+

�
�

1$
/+

0�#

�)#�))

2*

($

(, (
/

(
)"

�)*

())

2$

(+ (%

(
.

0#

�
�

�����

�&+

�&*

��"

��%

�&"

����

�+�

�3$

�3%

�()���#

�("4 5�

��+

��)

��,4�5�

��$

�&�

�
�
$�
�
�
#

���6�

��,

�&$

�&#

��)

��*

��+

��,

�&,

�3"

�3)

�3+

�3,

��$

��"

��+

��%
 5�

�(#
 5(

�(*�
��*

�
�

�����������

�

�

(

2)

()#

()*

()+
()$

!)

(), 2# ()/
2%

�)$

�)
().

�#
0$

�(�

�*
7*
�

�

�

�+
�

�+
�

�

�

�*
7*
�

!(�)0& !(�)0(

!(�)0�

2+

()%

�)+ &)

�
�	

5
�

�
5
�

5
�

�
�	

 (84�8 4��('�

�+
�

�
&
�

�
�
+

���
�
�

�
�
%4

5
�

�
�
"

�
�
$

�
�
,

�
(
#4

5
(

�
(
"4

5
�

�
3
%

�
3
$

�
&
+

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

0+

�

�

�)% �

�

��
�
�

�
�
$

���
6
�

�
�
)

�
�
+

�
(
*�
�
�
*

�
3
,

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�
�
,

�
5
�

�
(
)�

�
�
#

(##

(#%
�#)

�)/

(
#"

�).
(#)

�#"

�##

0�$

) #

��)

(5) (5# (5*

(5$

(5+

(5%

(5,

(5/

(5.

(5)"(5))

25#

25)
2/

�#*
(#$ (#+

(#*

2,

(#,
�#+

�#$
(#/

�#%

�#,

�#/

�#.
0�/

�*" �*) �*# �** �*$ �*+ �*%

(*+

�
$*

(#.0,
 9��8�� ��

�
*,

0/

�
�
�
3

�
�	

�
$$

��
��

�

�
� �
�

"% "+ "$ "* "# ") "" �
�

�
�	

�
*/ (
*"

(
*)

(
*#

(
**

(
*$

�*.��$" �$)��$#

�
$/

��) ��#

�$+
�$.

�$%

��*

�$,

�*�#�)

(�
���

0�+ 0�% 0�,

(

(

(

(

(

(

�� ��
�

�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�
(
8
*%
�*
,5

5
��
�
�
��
�

�
�
�
 �

:
�
�

�
�&
�
�
�
�

����

%7+"
)%+�

$7
+"

)
)$
�

%7)"
)++�

"7#"
	+� "7#"

	+�

$7
)"

)
"$
�

"7
#" 	+
�

"7#"
	+�

88 RabbitCore RCM3700

R
C

M
3

7
0

0

Table B-1 lists the electrical, mechanical, and environmental specifications for the

RCM3700 Prototyping Board.

B.1.3 Power Supply

The RCM3700 requires a regulated 4.75 V to 5.25 V DC power source to operate.

Depending on the amount of current required by the application, different regulators can

be used to supply this voltage.

The RCM3700 Prototyping Board has an onboard +5 V switching power regulator from

which a +3.3 V linear regulator draws its supply. Thus both +5 V and +3.3 V are available

on the RCM3700 Prototyping Board.

The RCM3700 Prototyping Board itself is protected against reverse polarity by a Shottky

diode at D2 as shown in Figure B-3.

Figure B-3. RCM3700 Prototyping Board Power Supply

Table B-1. RCM3700 Prototyping Board Specifications

Parameter Specification

Board Size 4.50" × 6.50" × 0.75" (114 mm × 165 mm × 19 mm)

Operating Temperature –20°C to +60°C

Humidity 5% to 95%, noncondensing

Input Voltage 7.5 V to 30 V DC

Maximum Current Draw

(including user-added circuits)

800 mA max. for +3.3 V supply,

1 A total +3.3 V and +5 V combined

A/D Converter

8-channel ADS7870 with programmable gain configurable for

11-bit single-ended, 12-bit differential, and 4–20 mA inputs

• Input impedance 6–7 MΩ
• A/D conversion time (including 120 µs raw count and

Dynamic C) 180 µs

IrDA Transceiver HSDL-3602, link distances up to 1.5 m

Prototyping Area
2.5" × 3" (64 mm × 76 mm) throughhole, 0.1" spacing,

additional space for SMT components

Standoffs/Spacers 5, accept 4-40 × 1/2 screws

!�
������6��
���2!� ��

�
�
6
�
�

�

0$

)"�I3

!8))),
2)

�*7*��

*

)

#

)

#

*)
+/).

�#

$,�I3 **"�I3

�+��

!)

().
**"�I9

�)
)
+/).

�6� (9�
����6������2!� ��

�(�

2#

!8#+,+

)"�I3

User’s Manual 89

R
C

M
3

7
0

0

B.1.4 Using the RCM3700 Prototyping Board

The RCM3700 Prototyping Board is actually both a demonstration board and a prototyp-

ing board. As a demonstration board, it can be used to demonstrate the functionality of the

RCM3700 right out of the box without any modifications.

Figure B-4 shows the RCM3700 Prototyping Board pinouts.

Figure B-4. RCM3700 Prototyping Board Pinout

&'

�

�

-�

�
-�
-�

�

�

�

�

�
-(

-(
�
-�

&7

&8

&!

�
�

���6�

��,

�&$

�&#

��)

��*

��+

��,

�&,

�3"

�3)

�3+

�3,

�(*���*

�(#4 -(

��$

��"

��%4 -�

��+

�
�

�����

�&+

�&*

��"

��#

��$

��%

�&"

����

�+��

�3$

�3%

�()���#

�("4 -�

��+

��)

��,4�-�

��$

�&�

&

&

�
�
H$
/+
1

�

�

�
�
H$
/+
�

�	� !""
-��#������

�������

��#' '

&9
(���������

�
�
�
3

(
�

�
�
�

�

�
!�

�
4�

�

9
�
�
8
4�

,

�
�
(
4�

%

�
�
(
4�

+

�
�
(
4�

$

�
�
(
4�

*

�
�
(
4�

#

�
�
(
4�

)

9
�
�
8
4�

"

�

�
!�

�
4�

�

������
�4+

��#/90

90 RabbitCore RCM3700

R
C

M
3

7
0

0

The RCM3700 Prototyping Board comes with the basic components necessary to demon-

strate the operation of the RCM3700. Two LEDs (DS1 and DS2) are connected to PF6 and

PF7, and two switches (S1 and S2) are connected to PF4 and PB7 to demonstrate the inter-

face to the Rabbit 3000 microprocessor. Reset switch S3 is the hardware reset for the

RCM3700.

The RCM3700 Prototyping Board provides the user with RCM3700 connection points

brought out conveniently to labeled points at header J3 on the RCM3700 Prototyping Board.

Although header J3 is unstuffed, a 2 × 20 header is included in the bag of parts. RS-485 sig-

nals are available on shrouded header J1, and RS-232 signals (Serial Ports C, D, and E) are

available on header J2. A header strip at J2 allows you to connect a ribbon cable. A shrouded

header connector and wiring harness are included with the RCM3700 Development Kit parts

to help you access the RS-485 signals on shrouded header J1.

There is a 2.5" × 3" through-hole prototyping space available on the RCM3700 Prototyping

Board. The holes in the prototyping area are spaced at 0.1" (2.5 mm). +3.3 V, +5 V, and

GND traces run along both edges of the prototyping area for easy access. Small to medium

circuits can be prototyped using point-to-point wiring with 20 to 30 AWG wire between the

prototyping area, the +3.3 V, +5 V, and GND traces, and the surrounding area where sur-

face-mount components may be installed. Small holes are provided around the surface-

mounted components that may be installed around the prototyping area.

B.1.4.1 Adding Other Components

There are two sets of pads for 28-pin devices that can be used for surface-mount prototyp-

ing SOIC devices. (Although the adjacent sets of pads could accommodate up to a 56-pin

device, they do not allow for the overlap between two 28-pin devices.) There are also pads

that can be used for SMT resistors and capacitors in an 0805 SMT package. Each compo-

nent has every one of its pin pads connected to a hole in which a 30 AWG wire can be sol-

dered (standard wire-wrap wire can be soldered in for point-to-point wiring on the

RCM3700 Prototyping Board). Because the traces are very thin, carefully determine

which set of holes is connected to which surface-mount pad.

User’s Manual 91

R
C

M
3

7
0

0

B.1.5 Analog Features

The RCM3700 Prototyping Board has an onboard ADS7870 A/D converter to demon-

strate the interface capabilities of the Rabbit 3000. The A/D converter multiplexes con-

verted signals from eight single-ended or three differential inputs to alternate Serial Port B

on the Rabbit 3000 (Parallel Port pins PD4 and PD5).

B.1.5.1 A/D Converter Inputs

Figure B-5 shows a pair of A/D converter input circuits. The resistors form an approx.

10:1 attenuator, and the capacitor filters noise pulses from the A/D converter input.

Figure B-5. A/D Converter Inputs

The A/D converter chip can make either single-ended or differential measurements

depending on the value of the opmode parameter in the software function call. Adjacent

A/D converter inputs can be paired to make differential measurements. The default setup

on the Prototyping Board is to measure only positive voltages for the ranges listed in

Table B-2.

),/���
��(4�
"

��
�

���

��(4�
)

���3

),/���

)��3
#"
��
�

�:	

#"
��
�

)��3

;����	�������

0�,

92 RabbitCore RCM3700

R
C

M
3

7
0

0

Other possible ranges are possible by physically changing the resistor values that make up

the attenuator circuit.

It is also possible to read a negative voltage on ADC_IN0 to ADC_IN5 by moving the

jumper (see Figure B-5) on header JP7, JP6, or JP5 associated with the A/D converter

input from analog ground to VREF, the reference voltage generated and buffered by the

A/D converter. Adjacent input channels are paired so that moving a particular jumper

changes both of the paired channels. At the present time Z-World does not offer the soft-

ware drivers to work with single-ended negative voltages, but the differential mode

described below may be used to measure negative voltages.

NOTE: THERM_IN7 was configured to illustrate the use of a thermistor with the sample

program, and so is not available for use as a differential input. There is also no resistor

attenuator for THERM_IN7, so its input voltage range is limited.

Differential measurements require two channels. As the name differential implies, the dif-

ference in voltage between the two adjacent channels is measured rather than the differ-

ence between the input and analog ground. Voltage measurements taken in differential

mode have a resolution of 12 bits, with the 12th bit indicating whether the difference is

positive or negative.

The A/D converter chip can only accept positive voltages. Both differential inputs must be

referenced to analog ground, and both inputs must be positive with respect to analog

ground. Table B-3 provides the differential voltage ranges for this setup.

Table B-2. Positive A/D Converter Input Voltage Ranges

Min. Voltage

(V)

Max. Voltage

(V)

Amplifier

Gain
mV per Count

0.0 +20.0 1 10

0.0 +10.0 2 5

0.0 +5.0 4 2.5

0.0 +4.0 5 2.0

0.0 +2.5 8 1.25

0.0 +2.0 10 1.0

0.0 +1.25 16 0.625

0.0 +1.0 20 0.500

User’s Manual 93

R
C

M
3

7
0

0

The A/D converter inputs can also be used with 4–20 mA current sources by measuring the

resulting analog voltage drop across 249 Ω 1% precision resistors placed between the ana-

log input and analog ground for ADC_IN3 to ADC_IN6. Be sure to reconfigure the

jumper positions on header JP8 as shown in Section B.1.8 using the slip-on jumpers

included with the spare parts in the Development Kit.

B.1.5.2 Thermistor Input

Analog input THERM_IN7 on the Prototyping Board was designed specifically for use

with a thermistor in conjunction with the THERMISTOR.C sample program, which demon-

strates how to use analog input THERM_IN7 to calculate temperature for display to the

Dynamic C STDIO window. The sample program is targeted specifically for the thermistor

included with the Development Kit with R0 @ 25°C = 3 kΩ and β 25/85 = 3965. Be sure

to use the applicable R0 and β values for your thermistor if you use another thermistor.

Install the thermistor at location J7, which is shown in Figure B-4.

Figure B-6. RCM3700 Prototyping Board Thermistor Input

Table B-3. Differential Voltage Ranges

Min. Differential

Voltage

(V)

Max. Differential

Voltage

(V)

Amplifier

Gain
mV per Count

0 ±20.0 x1 10

0 ±10.0 x2 5

0 ±5.0 x4 2.5

0 ±4.0 x5 2.0

0 ±2.5 x8 1.25

0 ±2.0 x10 1.00

0 ±1.25 x16 0.625

0 ±1.0 x20 0.500

��(

)���

�:	 9��84�
,

�
�!��4�
�

0,

���3

(���������

94 RabbitCore RCM3700

R
C

M
3

7
0

0

B.1.5.3 Other A/D Converter Features

The A/D converter’s internal reference voltage is software-configurable for 1.15 V, 2.048 V,

or 2.5 V. The scaling circuitry on the Prototyping Board and the sample programs are opti-

mized for an internal reference voltage of 2.048 V. This internal reference voltage is avail-

able on pin 3 of shrouded header J8 as VREF, and allows you to convert analog input

voltages that are negative with respect to analog ground.

NOTE: The amplifier inside the A/D converter’s internal voltage reference circuit has a

very limited output-current capability. The internal buffer can source up to 20 mA and

sink only up to 20 µA. A separate buffer amplifier at U7 supplies the load current.

The A/D converter’s CONVERT pin is available on pin 2 of shrouded header J8, and can

be used as a hardware means of forcing the A/D converter to start a conversion cycle. The

CONVERT signal is an edge-triggered event and has a hold time of two CCLK periods for

debounce.

A conversion is started by an active (rising) edge on the CONVERT pin. The CONVERT

pin must stay low for at least two CCLK periods before going high for at least two CCLK

periods. Figure B-7 shows the timing of a conversion start. The double falling arrow on

CCLK indicates the actual start of the conversion cycle.

Figure B-7. Timing Diagram for Conversion Start Using CONVERT Pin

��-�

+=�>

��?@

(��G��������
��
�

User’s Manual 95

R
C

M
3

7
0

0

B.1.5.4 A/D Converter Calibration

To get the best results from the A/D converter, it is necessary to calibrate each mode (sin-

gle-ended, differential, and current) for each of its gains. It is imperative that you calibrate

each of the A/D converter inputs in the same manner as they are to be used in the applica-

tion. For example, if you will be performing floating differential measurements or differ-

ential measurements using a common analog ground, then calibrate the A/D converter in

the corresponding manner. The calibration must be done with the attenuator reference

selection jumper in the desired position (see Figure B-5). If a calibration is performed and

the jumper is subsequently moved, the corresponding input(s) must be recalibrated. The

calibration table in software only holds calibration constants based on mode, channel, and

gain. Other factors affecting the calibration must be taken into account by calibrating

using the same mode and gain setup as in the intended use.

Sample programs are provided to illustrate how to read and calibrate the various A/D

inputs for the three operating modes.

These sample programs are found in the ADC subdirectory in SAMPLES\RCM3700. See

Section 3.2.3 for more information on these sample programs and how to use them.

Mode Read Calibrate

Single-Ended, one channel — AD_CALSE_CH.C

Single-Ended, all channels AD_RDSE_ALL.C AD_CALSE_ALL.C

Milliamp, one channel AD_RDMA_CH.C AD_CALMA_CH.C

Differential, analog ground AD_RDDIFF_CH.C AD_CALDIFF_CH.C

96 RabbitCore RCM3700

R
C

M
3

7
0

0

B.1.6 Serial Communication

The RCM3700 Prototyping Board allows you to access five of the serial ports from the

RCM3700 module. Table B-4 summarizes the configuration options.

Serial Port E is configured in hardware for RS-232 or RS-485 via jumpers on header JP2

as shown in Section B.1.8. Serial Port F is configured in software for the IrDA transceiver

in lieu of Serial Ports C and D.

Table B-4. RCM3700 Prototyping Board Serial Port Configurations

Serial Port Signal Header
Configured via

Header
Default Use Alternate Use

C J2 JP2 RS-232 —

D J2 JP2 RS-232 —

E J1, J2 JP1, JP2 RS-485 (J1) RS-232 (J2)

User’s Manual 97

R
C

M
3

7
0

0

B.1.6.1 RS-232

RS-232 serial communication on the RCM3700 Prototyping Board is supported by an

RS-232 transceiver installed at U4. This transceiver provides the voltage output, slew rate,

and input voltage immunity required to meet the RS-232 serial communication protocol.

Basically, the chip translates the Rabbit 3000’s signals to RS-232 signal levels. Note that

the polarity is reversed in an RS-232 circuit so that a +5 V output becomes approximately

-10 V and 0 V is output as +10 V. The RS-232 transceiver also provides the proper line

loading for reliable communication.

RS-232 can be used effectively at the RCM3700 module’s maximum baud rate for distances

of up to 15 m.

RS-232 flow control on an RS-232 port is initiated in software using the serXflowcon-

trolOn function call from RS232.LIB, where X is the serial port (C or D). The locations

of the flow control lines are specified using a set of five macros.

SERX_RTS_PORT—Data register for the parallel port that the RTS line is on (e.g., PCDR).

SERA_RTS_SHADOW—Shadow register for the RTS line's parallel port (e.g., PCDRShadow).

SERA_RTS_BIT—The bit number for the RTS line.

SERA_CTS_PORT—Data register for the parallel port that the CTS line is on (e.g., PCDRShadow).

SERA_CTS_BIT—The bit number for the CTS line.

Standard 3-wire RS-232 communication using Serial Ports C and D is illustrated in the

following sample code.

#define CINBUFSIZE 15
#define COUTBUFSIZE 15

#define DINBUFSIZE 15
#define DOUTBUFSIZE 15

#define MYBAUD 115200
#endif

main(){
 serCopen(_MYBAUD);
 serDopen(_MYBAUD);
 serCwrFlush();
 serCrdFlush();
 serDwrFlush();
 serDrdFlush();
}

98 RabbitCore RCM3700

R
C

M
3

7
0

0

B.1.6.2 RS-485

The RCM3700 Prototyping Board has one RS-485 serial channel, which is connected to

the Rabbit 3000 Serial Port E through an RS-485 transceiver. The half-duplex communi-

cation uses an output from PF5 on the Rabbit 3000 to control the transmit enable on the

communication line. Using this scheme a strict master/slave relationship must exist

between devices to insure that no two devices attempt to drive the bus simultaneously.

Serial Port E is configured in software for RS-485 as follows.

#define ser485open serEopen
#define ser485close serEclose
#define ser485wrFlush serEwrFlush
#define ser485rdFlush serErdFlush
#define ser485putc serEputc
#define ser485getc serEgetc

#define EINBUFSIZE 15
#define EOUTBUFSIZE 15

The configuration shown above is based on circular buffers. RS-485 configuration may

also be done using functions from the PACKET.LIB library.

The RCM3700 Prototyping Boards with RCM3700 modules installed can be used in an

RS-485 multidrop network spanning up to 1200 m (4000 ft), and there can be as many as

32 attached devices. Connect the 485+ to 485+ and 485– to 485– using single twisted-pair

wires as shown in Figure B-8. Note that a common ground is recommended.

Figure B-8. RCM3700 Multidrop Network

�
�
H$
/+
1

�
�
$/
+�

�

�

�
�
H$
/+
1

�
�
$/
+�

�

�

�
�
H$
/+
1

�
�
$/
+�

�

�

User’s Manual 99

R
C

M
3

7
0

0

The RCM3700 Prototyping Board comes with a 220 Ω termination resistor and two 681 Ω
bias resistors installed and enabled with jumpers across pins 1–2 and 5–6 on header JP1,

as shown in Figure B-9.

Figure B-9. RS-485 Termination and Bias Resistors

For best performance, the termination resistors in a multidrop network should be enabled

only on the end nodes of the network, but not on the intervening nodes. Jumpers on boards

whose termination resistors are not enabled may be stored across pins 1–3 and 4–6 of

header JP1.

�� ��
�
�
�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

�

�
#

�
)

�
)

�
*

�
+

�
,

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

� �
#

�
"

�
)

�
*

�
+

�
,

!#

()

(#

��)

�)
�#
�*
�$

�
-

-

�+

�% (*

�.

�, �/

0�) 0)

�$
/+

�
�

1$
/+

0�#

�)#�))

2*

($

(, (
/

(
)"

�)*

())

2$

(+ (%

(
.

0#

�
�

�����

�&+

�&*

��"

��%

�&"

����

�+�

�3$

�3%

�()���#

�("4 5�

��+

��)

��,4�5�

��$

�&�

�
�
$�
�
�
#

���6�

��,

�&$

�&#

��)

��*

��+

��,

�&,

�3"

�3)

�3+

�3,

��$

��"

��+

��%
 5�

�(#
 5(

�(*�
��*

�
�

�����������

�

�

(

2)

()#

()*

()+
()$

!)

(), 2# ()/
2%

�)$

�)
().

�#
0$

�(�

�*
7*
�

�

�

�+
�

�+
�

�

�

�*
7*
�

!(�)0& !(�)0(

!(�)0�

2+

()%

�)+ &)

�
�	

5
�

�
5
�

5
�

�
�	

 (84�8 4��('�

�+
�

�
&
�

�
�
+

���
�
�

�
�
%4

5
�

�
�
"

�
�
$

�
�
,

�
(
#4

5
(

�
(
"4

5
�

�
3
%

�
3
$

�
&
+

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

0+

�

�

�)% �

�

��
�
�

�
�
$

���
6
�

�
�
)

�
�
+

�
(
*�
�
�
*

�
3
,

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�
�
,

�
5
�

�
(
)�

�
�
#

(##

(#%
�#)

�)/

(
#"

�).
(#)

�#"

�##

0�$

) #

��)

(5) (5# (5*

(5$

(5+

(5%

(5,

(5/

(5.

(5)"(5))

25#

25)
2/

�#*
(#$ (#+

(#*

2,

(#,
�#+

�#$
(#/

�#%

�#,

�#/

�#.
0�/

�*" �*) �*# �** �*$ �*+ �*%

(*+

�
$*

(#.0,
 9��8�� ��

�
*,

0/

�
�
�
3

�
�	

�
$$

��
��

�

�
� �
�

"% "+ "$ "* "# ") "" �
�

�
�	

�
*/ (
*"

(
*)

(
*#

(
**

(
*$

�*.��$" �$)��$#

�
$/

��) ��#

�$+
�$.

�$%

��*

�$,

�*�#�)

(�
���

0�+ 0�% 0�,

(

(

(

(

(

(

�� ��
�

�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�
(
8
*%
�*
,5

5
��
�
�
��
�

�
�
�
 �

:
�
�

�
�&
�
�
�
�

����

�
#$

�
#

(
)/

(
*$

��)��# �
)/

�
*%

(*+
().

(
#%

(
#,

(
#/

�)+
�)%

(*%
(*.
�)*

2)(#+

0�)
(,

0�*

0#

(
**

(
*#

(
*"

(
*)

()+

(),
(#"

(*/
($)

2$

�
%

�))(*,

�$�+
2+

(#.

0�
#

:)

($"

()"

;)

�,($.

!#

!)

()$

()#(##

2
/(
#*

:*(+,
�*)

(
+/

�#.

��#
�*#
�*"

��)

0*

�*$

()%

�#/

) (#$

(#)
�)

2%

(+*

�
#%

2*

�**
(/

2))

!$

!*
(+$��(++

!%

0�)

$

*

#

)

%

+

<������
:������

�,
%/)��

�.
##"��

�/
%/)��

$/+�

$/+1

%

,

������
����	�

���

���

2* 0�)
% +

)

�
�
��

100 RabbitCore RCM3700

R
C

M
3

7
0

0

B.1.7 Other Prototyping Board Modules

An optional LCD/keypad module is available that can be mounted on the RCM3700

Prototyping Board. The signals on headers LCD1JB and LCD1JC will be available only if

the LCD/keypad module is installed. Refer to Appendix C, “LCD/Keypad Module,” for

complete information.

CAUTION: Pin PB7 is connected as both switch S2 and as an external I/O bus on the

Prototyping Board. Do not use S2 when the LCD/keypad module is installed.

User’s Manual 101

R
C

M
3

7
0

0

B.1.8 Jumper Configurations

Figure B-10 shows the header locations used to configure the various RCM3700 Proto-

typing Board options via jumpers.

Figure B-10. Location of RCM3700 Prototyping Board Configurable Positions

0�)

0�#

0�$

0�/
0�+ 0�% 0�,

&�

���

102 RabbitCore RCM3700

R
C

M
3

7
0

0

Table B-5 lists the configuration options using jumpers.

Table B-5. RCM3700 Prototyping Board Jumper Configurations

Header Description Pins Connected
Factory

Default

JP1
RS-485 Bias and Termination

Resistors

1–2

5–6

Bias and termination resistors

connected
×

1–3

4–6

Bias and termination resistors not

connected (parking position for

jumpers)

JP2 RS-232/RS-485 on Serial Port E

1–3

2–4
RS-232

3–5

4–6
RS-485 ×

JP4 A/D Converter Outputs

1 PIO_0 n.c.

2 PIO_1 n.c.

3 PIO_2 n.c.

4 PIO_3 n.c.

JP5 ADC_IN4–ADC_IN5

1–2 Tied to VREF

2–3 Tied to analog ground ×

JP6 ADC_IN2–ADC_IN3

1–2 Tied to VREF

2–3 Tied to analog ground ×

JP7 ADC_IN0–ADC_IN1

1–2 Tied to VREF

2–3 Tied to analog ground ×

JP8
Analog Voltage/4–20 mA

Options

1–2 Connect for 4–20 mA option on ADC_IN3 n.c.

3–4 Connect for 4–20 mA option on ADC_IN4 n.c.

5–6 Connect for 4–20 mA option on ADC_IN5 n.c.

7–8 Connect for 4–20 mA option on ADC_IN6 n.c.

User’s Manual 103

R
C

M
3

7
0

0

B.1.9 Use of Rabbit 3000 Parallel Ports

Table B-6 lists the Rabbit 3000 parallel ports and their use for the RCM3700 Prototyping

Board.

Table B-6. RCM3700 Prototyping Board Use of Rabbit 3000 Parallel Ports

Port I/O Use Initial State

PA0–PA7 Output External ID0–ID7, LCD/keypad module High (core module)

PB0 Output CLKB, A/D Converter SCLK High (SCLK set by driver)

PB1 Output CLKA Programming Port
High (core module)

(when not driven by CLKA)

PB2–PB5 Output External IA0–IA3, LCD/keypad module High

PB6 Output IA4, not used High (core module)

PB7 Output External IA5, Switch S2 High

PC0 Output TXD RS-232
Serial Port D

High (set by drivers)

PC1 Input RXD RS-232 Pulled up (core module)

PC2 Output TXC RS-232
Serial Port C

High (set by drivers)

PC3 Input RXC RS-232 Pulled up (core module)

PC4 Output TXB Serial Flash
Serial Port B

High (set by drivers)

PC5 Input RXB Serial Flash Pulled up (core module)

PC6 Output TXA Programming Port
Serial Port A

High (when not driven)

PC7 Input RXA Programming Port Pulled up (core module)

PD0 Output Ethernet RSTDRV Pulled up (core module)

PD1 Input Ethernet BD5 (EESK) Set by Ethernet

PD2 Input Ethernet BD6 (EEDI) Set by Ethernet

PD3 Input Ethernet BD6 (EEDO) Set by Ethernet

PD4 Output ATXB, A/D converter SDI High (set by driver)

PD5 Input ARXB, A/D converter SDO Pulled up (core module)

PD6–PD7 Input Not used Pulled up (core module)

PE0 Output IrDA MD0 Pulled up (Proto Board)

PE1 Output IrDA MD1 Pulled down (Proto Board)

PE2 Output Ethernet AEN High (driven by Ethernet)

PE3 Input Not used Pulled up (core module)

PE4 Output IrDA FIR_SEL Low (slow baud rate)

PE5 Output RS-232 enable Pulled up (Proto Board)

104 RabbitCore RCM3700

R
C

M
3

7
0

0

PE6 Output Serial Flash Select Pulled up (core module)

PE7 Output LCD/keypad module BUFEN Pulled up (Proto Board)

PF0 Output A/D converter select line Pulled up (Proto Board)

PF1 Input A/D converter busy Pulled down (Proto Board)

PF2–PF3 Input Not used Pulled up (core module)

PF4 Input Switch S1 Pulled up (Proto Board)

PF5 Output RS-485 Tx enable Pulled down (Proto Board)

PF6 Output LED DS1 High

PF7 Output LED DS2 High

PG0–PG1 Input Not used Pulled up (Proto Board)

PG2 Input TXF IrDA
Serial Port F

Pulled up (core module)

PG3 Input RXF IrDA Pulled up (core module)

PG4–PG5 Input Not used Pulled up (Proto Board)

PG6 Output TXE RS-485 or RS-232
Serial Port E

High (set by drivers)

PG7 Input RXE RS-485 or RS-232 Pulled up (set by drivers)

Table B-6. RCM3700 Prototyping Board Use of Rabbit 3000 Parallel Ports

Port I/O Use Initial State

User’s Manual 105

R
C

M
3

7
2

0

B.2 RCM3720 Prototyping Board

The RCM3720 Prototyping Board included in the Ethernet Connection Kit makes it easy

to connect an RCM3720 module to a power supply and a PC workstation for development.

It also provides some basic I/O peripherals (LEDs and switches), as well as a prototyping

area for more advanced hardware development. An optional RS-232 chip can be added for

RS-232 serial communication.

For the most basic level of evaluation and development, the RCM3720 Prototyping Board

can be used without modification.

As you progress to more sophisticated experimentation and hardware development, modi-

fications and additions can be made to the board without modifying or damaging the

RCM3720 module itself.

The RCM3720 Prototyping Board is shown below in Figure B-11, with its main features

identified.

Figure B-11. RCM3720 Prototyping Board

�+
�

�
&
�

�
�
+

���
�
�

�
�
%

�
�
"

�
�
$

�
�
,

�
(
#

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

�
(
"

�
3
%

�
3
$

�
&
+

�

�

�

�

��
�
�

�
�
$

���
6
�

�
�
,

�
�
)

�
�
+

�
(
*�
�
�
*

�
(
)�
�
�
#

�
3
,

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�

�

�

�

��
�
�

�
�
$

���
�
�

�
�
,

�
�
)

�
�
+

�
(
*�
�
�
*

�
(
)�
�
�
#

�
3
)

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�+
�

��

�

�
�
+

���
�	

�
�
%

�
�
"

�
�
$

�
�
,

�
(
#

�
(
"

�
3
%

�
3
$

�
&
+

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

0$

�3$

�&,

�3%

�3,

�6)

�6#

��)

��#

0*0)

0%2#

(,
(#

(. �)

()

()$

2*(
))

()#

()*�()"

�%

0#

&)

�(8*,#"���� � :��
��&����

(5)

(
5
#

�5,

�5/

�5.

�5)"

�5))

�5)#

�5)*

�5)$

�5)+

�5)%

�
5
+

(5)$

(5)* �
5
%

25.

(5)#

(5)"

(5+(5*

(
5
%

25,

(
5
$

�
5
)

(5. �
5
#

25/

�
5
$

(5))�
5
*

25*

25#

25)

(
5
/

(5,

0+

�+�

�
�

�
3
,

�
*

�
#

�
#

2)

(/

(+

($

(%

(*

�$

�
) �*

�
3
$

�+

�
&
,

�
#

�
)

�
��
�

��
6
��

�
3
%

�
�
#

�
�
)

�
�
*)

*

$
#

) *

$

)

$

*

���
�=�
��=?��
��

9��
�����

 ���?=�H9���
��H#*#�(��>
	?��
?FF�<�

�?�F���H8�?�

��H#*#�(��>
	?��
?FF�<�

��@��
��>?

��@���!��

����
��@�
��

2���
!���

�(8*,#"�8�<?��
�-
�������9��<��

�(8*,#"
8�<?��

(�����
��

2���
�@�
����

�8 ����
�
�>��=
����

 ���?=�H9���
���
�
�>��=�����

(+*

��H#*#�9��<��
	?��
?FF�<�

&���?>
&�

���

�+�����<��
�
&?���

106 RabbitCore RCM3700

R
C

M
3

7
2

0

B.2.1 Features

• Power Connection—A 3-pin header is provided for connection to the power supply.

Note that the 3-pin header is symmetrical, with both outer pins connected to ground and

the center pin connected to the raw DCIN input. The cable of the AC adapter provided

with the North American version of the Ethernet Connection Kit ends in a plug that

connects to the power-supply header, and can be connected to the 3-pin header in either

orientation.

Users providing their own power supply should ensure that it delivers 7.5–15 V DC at

200 mA. The voltage regulator will get warm while in use.

• Linear Power Supply—The raw DC voltage provided at the POWER IN jack is

routed to a 5 V linear voltage regulator. The regulator provides stable power to the

RCM3720 module and the Prototyping Board.

• Power LED—The power LED lights whenever power is connected to the Prototyping

Board.

• Reset Switch—A momentary-contact, normally open switch is connected directly to the

RCM3720’s /RESET_IN pin. Pressing the switch forces a hardware reset of the system.

• I/O Switches and LEDs—Two momentary-contact, normally open switches are con-

nected to the PF4 and PB7 pins of the RCM3720 module and may be read as inputs by

sample applications.

Two LEDs are connected to the PF6 and PF7 pins of the RCM3720 module, and may

be driven as output indicators by sample applications.

• Prototyping Area—A generous prototyping area has been provided for the installation

of through-hole components. +5 V and ground buses run along the bottom edge of this

area. Several areas for surface-mount devices are also available. (Note that there are

SMT device pads on both top and bottom of the Prototyping Board.) Each SMT pad is

connected to a hole designed to accept a 30 AWG solid wire or wire-wrap wire.

• Module Extension Headers—The complete pin set of the RCM3720 module is dupli-

cated at header J2. Developers can solder wires directly into the appropriate holes, or,

for more flexible development, a 2 × 20 header strip with a 0.1" pitch can be soldered

into place. See Figure B-14 for the header pinouts.

• RS-232—An optional through-hole MAX232 RS-232 chip may be installed at U1 or a

surface-mount MAX232 RS-232 chip may be installed at U3. (Five 0.1 µF capacitors

also need to be added for the RS-232 circuit to work.) When stuffed, the RS-232 chip

brings out Serial Ports C and D to the header J3 area on the RCM3720 Prototyping

Board. An optional 2 × 5 header strip with a 0.1" pitch can be installed at J3 to allow

you to connect a ribbon cable that leads to a standard DB-9 serial connector.

Two 3-wire serial ports or one 5-wire RS-232 serial port are then available at header J3.

• Backup Battery—A 2032 lithium-ion battery rated at 3.0 V, 220 mA·h, provides

battery backup for the RCM3720 SRAM and real-time clock.

User’s Manual 107

R
C

M
3

7
2

0

B.2.2 Mechanical Dimensions and Layout

Figure B-12 shows the mechanical dimensions and layout for the RCM3720 Prototyping Board.

Figure B-12. RCM3720 Prototyping Board Dimensions

�+
�

�
&
�

�
�
+

���
�
�

�
�
%

�
�
"

�
�
$

�
�
,

�
(
#

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

�
(
"

�
3
%

�
3
$

�
&
+

�

�

�

�

��
�
�

�
�
$

���
6
�

�
�
,

�
�
)

�
�
+

�
(
*�
�
�
*

�
(
)�
�
�
#

�
3
,

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�

�

�

�

��
�
�

�
�
$

���
�
�

�
�
,

�
�
)

�
�
+

�
(
*�
�
�
*

�
(
)�
�
�
#

�
3
)

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�+
�

��

�

�
�
+

���
�	

�
�
%

�
�
"

�
�
$

�
�
,

�
(
#

�
(
"

�
3
%

�
3
$

�
&
+

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

0$

�3$

�&,

�3%

�3,

�6)

�6#

��)

��#

0*0)

0%2#

(,
(#

(. �)

()

()$

2*(
))

()#

()*�()"

�%

0#

&)

�(8*,#"���� � :��
��&����

(5)

(
5
#

�5,

�5/

�5.

�5)"

�5))

�5)#

�5)*

�5)$

�5)+

�5)%

�
5
+

(5)$

(5)* �
5
%

25.

(5)#

(5)"

(5+(5*

(
5
%

25,

(
5
$

�
5
)

(5. �
5
#

25/

�
5
$

(5))�
5
*

25*

25#

25)

(
5
/

(5,

0+

�+�

�
�

�
3
,

�
*

�
#

�
#

2)

(/

(+

($

(%

(*

�$

�
) �*

�
3
$

�+

�
&
,

�
#

�
)

�
��
�

��
6
��

�
3
%

�
�
#

�
�
)

�
�
*)

*

$
#

) *

$

)

$

*

7""
))#�

*7
/+
%

	.
/�

$7)""
)"$�

"7)+
	*7/� "7)+

	*7/�
*7
++
%

	.
"�

"7
)+

	*
7/
�

"7)+
	*7/�

108 RabbitCore RCM3700

R
C

M
3

7
2

0

Table B-1 lists the electrical, mechanical, and environmental specifications for the

RCM3720 Prototyping Board.

B.2.3 Power Supply

The RCM3720 requires a regulated 4.75 V to 5.25 V DC power source to operate.

Depending on the amount of current required by the application, different regulators can

be used to supply this voltage.

The RCM3720 Prototyping Board has an onboard +5 V linear power regulator.

The RCM3720 Prototyping Board itself is protected against reverse polarity by a Shottky

diode at D1 as shown in Figure B-13.

Figure B-13. RCM3720 Prototyping Board Power Supply

Table B-7. RCM3720 Prototyping Board Specifications

Parameter Specification

Board Size 3.856" × 4.400" × 0.37" (114 mm × 165 mm × 9 mm)

Operating Temperature –20°C to +60°C

Humidity 5% to 95%, noncondensing

Input Voltage 7.5 V to 15 V DC

Maximum Current Draw

(including user-added circuits)
225 mA max.

Prototyping Area
1.8" × 2.4" (46 mm × 61 mm) throughhole, 0.1" spacing,

additional space for SMT components

Mounting Holes 4, 0.156" (4 mm) diameter, accept 6-32 screws and #6 spacers

�
�
6
�
�

�

0)

)"�I3

!8)*$"+H+
2#)

#

*

)

#

*)
+/).

�)

$,�I3 **"�I3

�+��

()

!�
������6������2!� ��

�(�

)"�I3
(. (# (,

User’s Manual 109

R
C

M
3

7
2

0

B.2.4 Using the RCM3720 Prototyping Board

The RCM3720 Prototyping Board is actually both a demonstration board and a prototyp-

ing board. As a demonstration board, it can be used to demonstrate the functionality of the

RCM3720 right out of the box without any modifications.

Figure B-14 shows the RCM3720 Prototyping Board pinouts.

Figure B-14. RCM3720 Prototyping Board Pinout

&'

�
�

�-�
 -�

�

�

�

�

��
�
�

�
�
$

���
�
�

�
�
,

�
�
)

�
�
+

�
(
*�
�
�
*

�
(
)�
�
�
#

�
3
)

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�+
�

��

�

�
�
+

���
�	

�
�
%

�
�
"

�
�
$

�
�
,

�
(
#

�
(
"

�
3
%

�
3
$

�
&
+

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

&

�	� !'"
�������

��#' '

 -(
�-(

110 RabbitCore RCM3700

R
C

M
3

7
2

0

The RCM3720 Prototyping Board comes with the basic components necessary to demon-

strate the operation of the RCM3720. Two LEDs (DS1 and DS2) are connected to PF6 and

PF7, and two switches (S1 and S2) are connected to PF4 and PB7 to demonstrate the inter-

face to the Rabbit 3000 microprocessor. Reset switch S3 is the hardware reset for the

RCM3720.

The RCM3720 Prototyping Board provides the user with RCM3720 connection points

brought out conveniently to labeled points at header J2 on the RCM3720 Prototyping

Board. Although header J2 is unstuffed, a 2 × 20 header strip with a 0.1" pitch can be

installed. The 2 × 20 header (part number 405-0016) can be purchased through Rabbit

Semiconductor’s online store.

To maximize the availability of resources, the demonstration hardware (LEDs and

switches) on the Prototyping Board may be disconnected. This is done by cutting the

traces seen within the silkscreen outline for header J4 on the bottom side of the RCM3720

Prototyping Board. Figure B-15 shows the four traces where cuts should be made. An

exacto knife or high-speed precision grinder tool like a Dremel® tool would work nicely

to cut the traces. Alternatively, if safety is a major concern, a small standard screwdriver

may be carefully and forcefully used to wipe through the PCB traces.

Figure B-15. Where to Cut Traces to Permanently Disable

Demonstration Hardware on RCM3720 Prototyping Board

�3$

�&,

�3%

�3,

�6)

�6#

��)

��#

�+�

�
�

(2 �9���

(?

(?

�	� !'"
�����������

�����
�����������

User’s Manual 111

R
C

M
3

7
2

0

A 2 × 4 header strip with a 0.1" pitch can be installed at J4, and jumpers across the appro-

priate pins on header J4 can be used to reconnect specific demonstration hardware later if

needed. Each pin is labeled on the PCB to facilitate placing the jumpers. The jumper posi-

tions are summarized in Table B-8.

B.2.4.1 Prototyping Area

There is a 1.8" × 2.4" through-hole prototyping space available on the RCM3720 Proto-

typing Board. The holes in the prototyping area are spaced at 0.1" (2.5 mm). +5 V and

ground traces run along the bottom edge of the prototyping area for easy access. Small to

medium circuits can be prototyped using point-to-point wiring with 20 to 30 AWG wire

between the prototyping area, the +5 V, and ground traces, and the surrounding area where

surface-mount components may be installed. Small holes are provided around the surface-

mounted components that may be installed around the prototyping area.

There are six sets of pads (three on each side) for 16-pin devices that can be used to surface-

mount SOIC devices. There are also pads that can be used for SMT resistors and capaci-

tors in an 0805 SMT package. Each component has every one of its pin pads connected to

a hole in which a 30 AWG wire can be soldered (standard wire-wrap wire can be soldered

in for point-to-point wiring on the RCM3720 Prototyping Board). Because the traces are

very thin, carefully determine which set of holes is connected to which surface-mount pad.

Table B-8. RCM3720 Prototyping Board Jumper Settings

Header J4

Pins Signal Description Demonstration Hardware

1–2 PF4 Switch S1

3–4 PB7 Switch S2

5–6 PF6 LED DS1

7–8 PF7 LED DS2

112 RabbitCore RCM3700

R
C

M
3

7
2

0

B.2.5 Serial Communication

As shipped, the RCM3720 Prototyping Board has no RS-232 chip installed, and so no

RS-232 communication is possible. An optional through-hole RS-232 chip may be

installed at U1 or a surface-mount RS-232 chip may be installed at U3. Five correspond-

ing through-hole or surface-mount 0.1 µF capacitors must also be installed. Figure B-16

shows where to install the RS-232 chip and its associated capacitors for the two options.

Figure B-16. Locations Where to Install RS-232 Chip and Capacitors

NOTE: Only one RS-232 circuit needs to be stuffed.

Z-World offers the through-hole RS-232 chip and 0.1 µF capacitors for sale in a subas-

sembly with some other parts (part number 151-0082). Contact your Z-World sales repre-

sentative or authorized distributor for more information.

RS-232 serial communication on the RCM3720 Prototyping Board is supported by the

RS-232 transceiver you installed at U1 or U3. This transceiver provides the voltage out-

put, slew rate, and input voltage immunity required to meet the RS-232 serial communica-

tion protocol. Basically, the chip translates the Rabbit 3000’s signals to RS-232 signal

levels. Note that the polarity is reversed in an RS-232 circuit so that a +5 V output

becomes approximately -10 V and 0 V is output as +10 V. The RS-232 transceiver also

provides the proper line loading for reliable communication.

�+
�

�
&
�

�
�
+

���
�
�

�
�
%

�
�
"

�
�
$

�
�
,

�
(
#

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

�
(
"

�
3
%

�
3
$

�
&
+

�

�

�

�

��
�
�

�
�
$

���
6
�

�
�
,

�
�
)

�
�
+

�
(
*�
�
�
*

�
(
)�
�
�
#

�
3
,

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�

�

�

�

��
�
�

�
�
$

���
�
�

�
�
,

�
�
)

�
�
+

�
(
*�
�
�
*

�
(
)�
�
�
#

�
3
)

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�+
�

��

�

�
�
+

���
�	

�
�
%

�
�
"

�
�
$

�
�
,

�
(
#

�
(
"

�
3
%

�
3
$

�
&
+

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

0$

�3$

�&,

�3%

�3,

�6)

�6#

��)

��#

0*0)

0%2#

(,
(#

(. �)

()

()$

2*(
))

()#

()*�()"

�%

0#

&)

�(8*,#"���� � :��
��&����

(5)

(
5
#

�5,

�5/

�5.

�5)"

�5))

�5)#

�5)*

�5)$

�5)+

�5)%

�
5
+

(5)$

(5)* �
5
%

25.

(5)#

(5)"

(5+(5*

(
5
%

25,

(
5
$

�
5
)

(5. �
5
#

25/

�
5
$

(5))�
5
*

25*

25#

25)

(
5
/

(5,

0+

�+�

�
�

�
3
,

�
*

�
#

�
#

2)

(/

(+

($

(%

(*

�$

�
) �*

�
3
$

�+

�
&
,

�
#

�
)

�
��
�

��
6
��

�
3
%

�
�
#

�
�
)

�
�
*)

*

$
#

) *

$

)

$

*

=�

��

��

�A

��

��

=������&

�������#������+�����
J���#*#�(��� ����>
���	EH6���<�>��
���7�%%"H")//�

J�F�G��"7)�I3���>���
���
���	EH6���<�>��
���7�*#)H"""$�

()$

2*(
))

()#

()*�()"

#*#�
(�

J���#*#�(�����>
���	EH6���<�>��
���7�%%"H"""%�

J�F�G��"7)�I3���>���
���
���	EH6���<�>��
���7�*""H"""+�

(������#=����+�����

:+�-+(��-�(�>>
�+(=�+�(�+-�?

User’s Manual 113

R
C

M
3

7
2

0

RS-232 can be used effectively at the RCM3720 module’s maximum baud rate for distances

of up to 15 m.

When stuffed, the RS-232 chip brings out Serial Ports C and D to the header J3 area on the

RCM3720 Prototyping Board. An optional 2 × 5 header strip with a 0.1" pitch can be

installed at J3 to allow you to connect a ribbon cable that leads to a standard DB-9 serial

connector. The 2 × 5 header (part number 405-0023) can be purchased through Rabbit

Semiconductor’s online store, and is included with the subassembly (part number 151-0082)

described above.

Table B-9 summarizes the serial port locations.

These serial ports can be configured in software as either one 5-wire or two 3-wire RS-232

channels. RS-232 flow control on an RS-232 port is initiated in software using the serX-

flowcontrolOn function call from RS232.LIB, where X is the serial port (C or D). The

locations of the flow control lines are specified using a set of five macros.

SERX_RTS_PORT—Data register for the parallel port that the RTS line is on (e.g., PCDR).

SERA_RTS_SHADOW—Shadow register for the RTS line's parallel port (e.g., PCDRShadow).

SERA_RTS_BIT—The bit number for the RTS line.

SERA_CTS_PORT—Data register for the parallel port that the CTS line is on (e.g., PCDRShadow).

SERA_CTS_BIT—The bit number for the CTS line.

Standard 3-wire RS-232 communication using Serial Ports C and D is illustrated in the

following sample code.

#define CINBUFSIZE 15
#define COUTBUFSIZE 15

#define DINBUFSIZE 15
#define DOUTBUFSIZE 15

#define MYBAUD 115200
#endif

main(){
 serCopen(_MYBAUD);
 serDopen(_MYBAUD);
 serCwrFlush();
 serCrdFlush();
 serDwrFlush();
 serDrdFlush();
}

Table B-9. RCM3720 Prototyping Board Serial Port Locations

Serial Port Signal Header Header Pins

C J3
TxC…6

RxC…4

D J3
TxD…3

RxD…5

114 RabbitCore RCM3700

R
C

M
3

7
2

0

B.2.6 Use of Rabbit 3000 Parallel Ports

Table B-10 lists the Rabbit 3000 parallel ports and their use for the RCM3720 Prototyping

Board.

Table B-10. RCM3720 Prototyping Board Use of Rabbit 3000 Parallel Ports

Port I/O Use Initial State

PA0–PA7 Input Not used Pulled up (core module)

PB0 Output CLKB, Serial Flash SCLK High

PB1 Output CLKA Programming Port
High

(when not driven by CLKA)

PB2–PB6 Output Not used High

PB7 Input External IA5, Switch S2 Pulled up (Proto Board)

PC0 Output TXD RS-232
Serial Port D

High (set by drivers)

PC1 Input RXD RS-232 Pulled up (core module)

PC2 Output TXC RS-232
Serial Port C

High (set by drivers)

PC3 Input RXC RS-232 Pulled up (core module)

PC4 Output TXB Serial Flash
Serial Port B

High (set by drivers)

PC5 Input RXB Serial Flash Pulled up (core module)

PC6 Output TXA Programming Port
Serial Port A

High (when not driven)

PC7 Input RXA Programming Port Pulled up (core module)

PD0 Output Ethernet RSTDRV Pulled up (core module)

PD1 Input Ethernet BD5 (EESK) Set by Ethernet

PD2 Input Ethernet BD6 (EEDI) Set by Ethernet

PD3 Input Ethernet BD6 (EEDO) Set by Ethernet

PD4–PD5 Output Not used High

PD6–PD7 Input Not used Pulled up (core module)

PE0–PE1 Output Not used High

PE2 Output Ethernet AEN High (driven by Ethernet)

PE3 Input Not used Pulled up (core module)

PE4–PE5 Output Not used High

PE6 Input Serial Flash Select Pulled up (core module)

PE7 Output Not used High

PF0 Output Not used High

PF1 Input Not used Low

User’s Manual 115

R
C

M
3

7
2

0

PF2–PF3 Input Not used Pulled up (core module)

PF4 Input Switch S1 Pulled up (Proto Board)

PF5 Output Not used High

PF6 Output LED DS1 High

PF7 Output LED DS2 High

PG0–PG1 Output Not used High

PG2–PG3 Input Not used Pulled up (core module)

PG4–PG7 Output Not used High

Table B-10. RCM3720 Prototyping Board Use of Rabbit 3000 Parallel Ports

Port I/O Use Initial State

116 RabbitCore RCM3700

User’s Manual 117

APPENDIX C. LCD/KEYPAD MODULE

An optional LCD/keypad is available for the RCM3700 Prototyp-

ing Board. Appendix C describes the LCD/keypad and provides

the software APIs to make full use of the LCD/keypad.

C.1 Specifications

The LCD/keypad module comes with or without a panel-mounted NEMA 4 water-resistant

bezel as shown in Figure C-1.

Figure C-1. LCD/Keypad Modules Versions

Both versions can mount directly on the RCM3700 Prototyping Board, and the version

with a bezel can be installed at a remote location up to 60 cm (24") away. Contact your

Z-World sales representative or your authorized Z-World distributor for further assistance

in purchasing an LCD/keypad module.

Mounting hardware and a 60 cm (24") extension cable are also available for the

LCD/keypad module through your Z-World sales representative or authorized distributor.

>	:4��������������

118 RabbitCore RCM3700

Table C-1 lists the electrical, mechanical, and environmental specifications for the

LCD/keypad module.

The LCD/keypad module has 0.1"

IDC headers at J1, J2, and J3 for

physical connection to other boards

or ribbon cables. Figure C-2 shows

the LCD/keypad module footprint.

These values are relative to one of the

mounting holes.

Table C-1. LCD/Keypad Specifications

Parameter Specification

Board Size
2.60" x 3.00" x 0.75"

(66 mm x 76 mm x 19 mm)

Bezel Size
4.50" × 3.60" × 0.30"

(114 mm × 91 mm × 7.6 mm)

Temperature
Operating Range: 0°C to +50°C

Storage Range: –40°C to +85°C

Humidity 5% to 95%, noncondensing

Power Consumption 1.5 W maximum*

* The backlight adds approximately 650 mW to the power consumption.

Connections
Connects to high-rise header sockets on the RCM3700 Prototyping

Board

LCD Panel Size 122 x 32 graphic display

Keypad 7-key keypad

LEDs Seven user-programmable LEDs

Figure C-2. User Board Footprint for

LCD/Keypad Module

&'

&8

"7#""
	+7)�

"7)""
	#7+�

"7+""
)#7,�

)7$+"
	*%7/�

&

#7#""
	++7.�

)7
%"
"

	$
"7
%�

"7
,%
/

)
.7
+�

"7
%"
,

)
+7
$�

User’s Manual 119

C.2 Contrast Adjustments for All Boards

Depending on when you acquired your LCD/keypad module, you will be able to set the

contrast on the LCD display by adjusting the potentiometer at R2 or by setting the voltage

for 3.3 V by setting the jumper across pins 3–4 on header J5 as shown in Figure C-3. Only

one of these two options is available on a given LCD/keypad module.

Figure C-3. LCD/Keypad Module Voltage Settings

NOTE: Older LCD/keypad modules that do not have a header at J5 or a contrast adjust-

ment potentiometer at R2 are limited to operate only at 5 V, and will not work with the

RCM3700 Prototyping Board. The older LCD/keypad modules are no longer being

sold.

(
#

�#

�
)

(
*

�# () �)

(
+

2#

0�) �*
2)

($

(
)"

(�)

�
%

()*
()#

�
,

�/

�#+

�#%

�)) �)* �)$ �)" �. �)# �)+

�
)/

;/

�
)%

;+

�
#);#

2+

0#

����!�:
&����

0$

'�)

�
), ;$

�
;%

�
#* ;,

�
#"

;
* �
).

2, ()$

�
#$

(
)+

(
)%

2%

2$

(,(.
2*

!(�) ())

�$
�+

(%

0)

;)

0+

(), �
)

0+

!�*+""
#7/��

� 9��
7��

)

#

*

$

�7�7�K�+��

>	:4��������������&������	�������������

��%�� ������)$��# .�#�
��##��$�%

0��$��,
��*�" $

��

�	
��

	
��

���

���

��

�	�	

�

0+
)

#

*

$

�
��

�

�7
�)
")
H"
+$
)

��������
!�"
������

120 RabbitCore RCM3700

C.3 Keypad Labeling

The keypad may be labeled according to your needs. A template is provided in Figure C-4

to allow you to design your own keypad label insert.

Figure C-4. Keypad Template

To replace the keypad legend, remove the old legend and insert your new legend prepared

according to the template in Figure C-4. The keypad legend is located under the blue key-

pad matte, and is accessible from the left only as shown in Figure C-5.

Figure C-5. Removing and Inserting Keypad Label

The sample program KEYBASIC.C in the 122x32_1x7 folder in SAMPLES\LCD_KEYPAD

shows how to reconfigure the keypad for different applications.

)7)"
	#/�

#7*+
	%"�

'��>�<���L����������
�<

�����
���L�?�����>�<���

�7

User’s Manual 121

C.4 Header Pinouts

Figure C-6 shows the pinouts for the LCD/keypad module.

Figure C-6. LCD/Keypad Module Pinouts

C.4.1 I/O Address Assignments

The LCD and keypad on the LCD/keypad module are addressed by the /CS strobe as

explained in Table C-2.

Table C-2. LCD/Keypad Module Address Assignment

Address Function

0xE000 Device select base address (/CS)

0xExx0–0xExx7 LCD control

0xExx8 LED enable

0xExx9 Not used

0xExxA 7-key keypad

0xExxB (bits 0–6) 7-LED driver

0xExxB (bit 7) LCD backlight on/off

0xExxC–ExxF Not used

�
&
%&

�
&
$&

�
&
#&

�
&
"&

�
)&

�
*&

�

�

!�
�
,

!�
�
+

!�
�
*

!�
�
)

��
�
�

�
(
(

�
&
,&

�
&
+&

�
&
*&

�
&
)&

�
"&

�
#&

�

�

�

�

!�
�
%

!�
�
$

!�
�
#

�(
�

�+
&
'
!

1�

�

�

�

�

!�
�
%

!�
�
$

!�
�
#

�
�
,

�+
&
'
!

�

�

!�
�
,

!�
�
+

!�
�
*

!�
�
)

��
�
�

�
(
(

1�

�

�

�
&
,&

�
&
+&

�
&
*&

�
&
)&

�
"&

�
#&

�

�

�
&
%&

�
&
$&

�
&
#&

�
&
"&

�
)&

�
*&

1�

122 RabbitCore RCM3700

C.5 Install Connectors on Prototyping Board

Before you can use the LCD/keypad module with the RCM3700 Prototyping Board, you

will need to install connectors to attach the LCD/keypad module to the RCM3700 Proto-

typing Board. These connectors are included with the RCM3700 Development Kit.

First solder the 2 x 13 connector to location LCD1JA on the RCM3700 Prototyping Board

as shown in Figure C-7.

• If you plan to bezel-mount the LCD/keypad module, continue with the bezel-mounting

instructions in Section C.7, “Bezel-Mount Installation.”

• If you plan to mount the LCD/keypad module directly on the RCM3700 Prototyping

Board, solder two additional 2 x 7 connectors at locations LCD1JB and LCD1JC on the

RCM3700 Prototyping Board. Section C.6, “Mounting LCD/Keypad Module on the

Prototyping Board,” explains how to mount the LCD/keypad module on the RCM3700

Prototyping Board.

Figure C-7. Solder Connectors to RC3700 Prototyping Board

�� ��
�
�
�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

�

�
#

�
)

�
)

�
*

�
+

�
,

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

� �
#

�
"

�
)

�
*

�
+

�
,

!#

()

(#

��)

�)
�#
�*
�$

�
-

-

�+

�% (*

�.

�, �/

0�) 0)

�$
/+

�
�

1$
/+

0�#

�)#�))

2*

($

(, (
/

(
)"

�)*

())

2$

(+ (%

(
.

0#

�
�

�����

�&+

�&*

��"

��%

�&"

����

�+�

�3$

�3%

�()���#

�("4 5�

��+

��)

��,4�5�

��$

�&�

�
�
$�
�
�
#

���6�

��,

�&$

�&#

��)

��*

��+

��,

�&,

�3"

�3)

�3+

�3,

��$

��"

��+

��%
 5�

�(#
 5(

�(*�
��*

�
�

�����������

�

�

(

2)

()#

()*

()+
()$

!)

(), 2# ()/
2%

�)$

�)
().

�#
0$

�(�

�*
7*
�

�

�

�+
�

�+
�

�

�

�*
7*
�

!(�)0& !(�)0(

!(�)0�

2+

()%

�)+ &)

�
�	

5
�

�
5
�

5
�

�
�	

 (84�8 4��('�

�+
�

�
&
�

�
�
+

���
�
�

�
�
%4

5
�

�
�
"

�
�
$

�
�
,

�
(
#4

5
(

�
(
"4

5
�

�
3
%

�
3
$

�
&
+

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

0+

�

�

�)% �

�

��
�
�

�
�
$

���
6
�

�
�
)

�
�
+

�
(
*�
�
�
*

�
3
,

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�
�
,

�
5
�

�
(
)�

�
�
#

(##

(#%
�#)

�)/

(
#"

�).
(#)

�#"

�##

0�$

) #

��)

(5) (5# (5*

(5$

(5+

(5%

(5,

(5/

(5.

(5)"(5))

25#

25)
2/

�#*
(#$ (#+

(#*

2,

(#,
�#+

�#$
(#/

�#%

�#,

�#/

�#.
0�/

�*" �*) �*# �** �*$ �*+ �*%

(*+

�
$*

(#.0,
 9��8�� ��

�
*,

0/

�
�
�
3

�
�	

�
$$

��
��

�

�
� �
�

"% "+ "$ "* "# ") "" �
�

�
�	

�
*/ (
*"

(
*)

(
*#

(
**

(
*$

�*.��$" �$)��$#

�
$/

��) ��#

�$+
�$.

�$%

��*

�$,

�*�#�)

(�
���

0�+ 0�% 0�,

(

(

(

(

(

(

�� ��
�

�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�
(
8
*%
�*
,5

5
��
�
�
��
�

�
�
�
 �

:
�
�

�
�&
�
�
�
�

����

�
#$

�
#

(
)/

(
*$

��)��# �
)/

�
*%

(*+
().

(
#%

(
#,

(
#/

�)+
�)%

(*%
(*.
�)*

2)(#+

0�)
(,

0�*

0#

(
**

(
*#

(
*"

(
*)

()+

(),
(#"

(*/
($)

2$

�
%

�))(*,

�$�+
2+

(#.

0�
#

:)

($"

()"

;)

�,($.

!#

!)

()$

()#(##

2
/(
#*

:*(+,
�*)

(
+/

�#.

��#
�*#
�*"

��)

0*

�*$

()%

�#/

) (#$

(#)
�)

2%

(+*

�
#%

2*

�**
(/

2))

!$

!*
(+$��(++

!%

-���1�

-���1

-���1+

User’s Manual 123

C.6 Mounting LCD/Keypad Module on the Prototyping Board

Install the LCD/keypad module on header sockets LCD1JA, LCD1JB, and LCD1JC of the

RCM3700 Prototyping Board as shown in Figure C-8. Be careful to align the pins over the

headers, and do not bend them as you press down to mate the LCD/keypad module with

the RCM3700 Prototyping Board.

Figure C-8. Install LCD/Keypad Module on RCM3700 Prototyping Board

�� ��
�
�
�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

�

�
#

�
)

�
)

�
*

�
+

�
,

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�

�

�&
'
! �(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

� �
#

�
"

�
)

�
*

�
+

�
,

!#

()

(#

��)

�)
�#
�*
�$

�
-

-

�+

�% (*

�.

�, �/

0�) 0)

�$
/+

�
�

1$
/+

0�#

�)#�))

2*

($

(, (
/

(
)"

�)*

())

2$

(+ (%

(
.

0#

�
�

�����

�&+

�&*

��"

��%

�&"

����

�+�

�3$

�3%

�()���#

�("4 5�

��+

��)

��,4�5�

��$

�&�

�
�
$�
�
�
#

���6�

��,

�&$

�&#

��)

��*

��+

��,

�&,

�3"

�3)

�3+

�3,

��$

��"

��+

��%
 5�

�(#
 5(

�(*�
��*

�
�

�����������

�

�

(

2)

()#

()*

()+
()$

!)

(), 2# ()/
2%

�)$

�)
().

�#
0$

�(�

�*
7*
�

�

�

�+
�

�+
�

�

�

�*
7*
�

!(�)0& !(�)0(

!(�)0�

2+

()%

�)+ &)

�
�	

5
�

�
5
�

5
�

�
�	

 (84�8 4��('�

�+
�

�
&
�

�
�
+

���
�
�

�
�
%4

5
�

�
�
"

�
�
$

�
�
,

�
(
#4

5
(

�
(
"4

5
�

�
3
%

�
3
$

�
&
+

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

0+

�

�

�)% �

�

��
�
�

�
�
$

���
6
�

�
�
)

�
�
+

�
(
*�
�
�
*

�
3
,

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�
�
,

�
5
�

�
(
)�

�
�
#

(##

(#%
�#)

�)/

(
#"

�).
(#)

�#"

�##

0�$

) #

��)

(5) (5# (5*

(5$

(5+

(5%

(5,

(5/

(5.

(5)"(5))

25#

25)
2/

�#*
(#$ (#+

(#*

2,

(#,
�#+

�#$
(#/

�#%

�#,

�#/

�#.
0�/

�*" �*) �*# �** �*$ �*+ �*%

(*+

�
$*

(#.0,
 9��8�� ��

�
*,

0/

�
�
�
3

�
�	

�
$$

��
��

�

�
� �
�

"% "+ "$ "* "# ") "" �
�

�
�	

�
*/ (
*"

(
*)

(
*#

(
**

(
*$

�*.��$" �$)��$#

�
$/

��) ��#

�$+
�$.

�$%

��*

�$,

�*�#�)

(�
���

0�+ 0�% 0�,

(

(

(

(

(

(

�� ��
�

�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�
(
8
*%
�*
,5

5
��
�
�
��
�

�
�
�
 �

:
�
�

�
�&
�
�
�
�

����

�
#$

�
#

(
)/

(
*$

��)��# �
)/

�
*%

(*+
().

(
#%

(
#,

(
#/

�)+
�)%

(*%
(*.
�)*

2)(#+

0�)
(,

0�*

0#

(
**

(
*#

(
*"

(
*)

()+

(),
(#"

(*/
($)

2$

�
%

�))(*,

�$�+
2+

(#.

0�
#

:)

($"

()"

;)

�,($.

!#

!)

()$

()#(##

2
/(
#*

:*(+,
�*)

(
+/

�#.

��#
�*#
�*"

��)

0*

�*$

()%

�#/

) (#$

(#)
�)

2%

(+*

�
#%

2*

�**
(/

2))

!$

!*
(+$��(++

!%

-���1�

-���1

-���1+

124 RabbitCore RCM3700

C.7 Bezel-Mount Installation

This section describes and illustrates how to bezel-mount the LCD/keypad module

designed for remote installation. Follow these steps for bezel-mount installation.

1. Cut mounting holes in the mounting panel in accordance with the recommended dimen-

sions in Figure C-9, then use the bezel faceplate to mount the LCD/keypad module onto

the panel.

Figure C-9. Recommended Cutout Dimensions

2. Carefully “drop in” the LCD/keypad module with the bezel and gasket attached.

*7
$"
"

	/
%7
$�

*7)""
	,/7/�

#7/,"
	,#7.�

"7#*"
	+7/�

0.125 D, 4x
(3)

	;(+;(
0.

13
0

(3
.3

)

User’s Manual 125

3. Fasten the unit with the four 4-40 screws and washers included with the LCD/keypad

module. If your panel is thick, use a 4-40 screw that is approximately 3/16" (5 mm)

longer than the thickness of the panel.

Figure C-10. LCD/Keypad Module Mounted in Panel (rear view)

Carefully tighten the screws until the gasket is compressed and the plastic bezel face-

plate is touching the panel.

Do not tighten each screw fully before moving on to the next screw. Apply only one or

two turns to each screw in sequence until all are tightened manually as far as they can

be so that the gasket is compressed and the plastic bezel faceplate is touching the panel.

��@��4
��1��

����!�:�&����

2) 2#
()

(# (*

($
2*

�
),

0)

;)

�)

�)

�# �* �$

�
.

�
)"

�
))

;# ;* ;$

�
)#

�+ �%

;+ ;%

�
)*

�,

�
)$

�/

�
)+

�
)/

;, ;/ (+

�
)%

(%0*
2$

�
)
0#

(
/

(
,

'�)

�����

126 RabbitCore RCM3700

C.7.1 Connect the LCD/Keypad Module to Your Prototyping Board

The LCD/keypad module can be located as far as 2 ft. (60 cm) away from the RCM3700

Prototyping Board, and is connected via a ribbon cable as shown in Figure C-11.

Figure C-11. Connecting LCD/Keypad Module to RCM3700 Prototyping Board

Note the locations and connections relative to pin 1 on both the RCM3700 Prototyping

Board and the LCD/keypad module.

Z-World offers 2 ft. (60 cm) extension cables. Contact your authorized Z-World distributor

or a Z-World sales representative at +1(530)757-3737 for more information.

����
�
�
�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�&
'
!

�(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

�

�
#

�
)

�
)

�
*

�
+

�
,

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�

�

�&
'
!

�(
�

!�
�
)

!�
�
*

!�
�
+

�

�

�

��
#

�
"

�
)

�
*

�
+

�
,

!#

()

(#

��)

�)
�#
�*
�$

�
-

-

�+

�%(*

�.

�,�/

0�)0)

�$/+

�
�

1$/+

0�#

�)# �))

2*

($

(,(
/

(
)"

�)*

())

2$

(+(%

(
.

0#

�
�

�����

�&+

�&*

��"

��%

�&"

����

�+�

�3$

�3%

�()���#

�("4 5�

��+

��)

��,4�5�

��$

�&�

�
�
$��

�
#

���6�

��,

�&$

�&#

��)

��*

��+

��,

�&,

�3"

�3)

�3+

�3,

��$

��"

��+

��%
 5�

�(#
 5(

�(*�
��*

�
�

�����������

�

�

(

2)

()#

()*

()+
()$

!)

(),2#()/
2%

�)$

�)
().

�#
0$

�(�

�*7*�

�

�

�+�

�+�

�

�

�*7*�

!(�)0&!(�)0(

!(�)0�

2+

()%

�)+&)

�
�	

5
�

�
5
�

5
�

�
�	

 (84�8 4��('�

�+�

�
&
�

�
�
+

���
�
�

�
�
%4

5
�

�
�
"

�
�
$

�
�
,

�
(
#4

5
(

�
(
"4

5
�

�
3
%

�
3
$

�
&
+

�
&
*

�
&
"

�
3
)

�
�
)

�
�
*

�
�
+

�
�
,

0+

�

�

�)%�

�

��
�
�

�
�
$

���
6
�

�
�
)

�
�
+

�
(
*��

�
*

�
3
,

�
3
+

�
&
,

�
&
$

�
&
#

�
3
"

�
�
"

�
�
#

�
�
$

�
�
%

�
�
,

�
5
�

�
(
)�

�
�
#

(##

(#%
�#)

�)/

(
#"

�).
(#)

�#"

�##

0�$

)#

��)

(5)(5#(5*

(5$

(5+

(5%

(5,

(5/

(5.

(5)" (5))

25#

25)
2/

�#*
(#$(#+

(#*

2,

(#,
�#+

�#$
(#/

�#%

�#,

�#/

�#.
0�/

�*"�*)�*#�**�*$�*+�*%

(*+

�
$*

(#. 0,
 9��8�� ��

�
*,

0/

�
�
�
3

�
�	

�
$$

�����

���
�

"%"+"$"*"#")""�
�

�
�	

�
*/

(
*"

(
*)

(
*#

(
**

(
*$

�*.��$"�$)��$#

�
$/

��)��#

�$+
�$.

�$%

��*

�$,

�* �# �)

(�
���

0�+0�%0�,

(

(

(

(

(

(

����
�

�

!�
�
"

!�
�
#

!�
�
$

!�
�
%

�

�

�
*

�
)

�
"

�
#

�
$

�
%

�
(
8
%�,5

5
��
�
�
��
�

�
�
�
 �

:
�
�

�
�&
�
�
�
�

����

(
#

�#

�
)

(
*

�# () �)

(
+

2#

0�) �*
2)

($

(
)"

(�)

�
%

()*
()#

�
,

�/

�#+

�#%

�)) �)* �)$ �)" �. �)# �)+

�
)/

;/

�
)%

;+

�
#);#

2+

0#

����!�:
&����

0$

'�)

�
), ;$

�
;%

�
#* ;,

�
#"

;
* �
).

2, ()$

�
#$

(
)+

(
)%

2%

2$

(,(.
2*

!(�) ())

�$
�+

(%

0)

;)

0+

(), �
)

0+

!�*+""
#7/��

� 9��
7��

)

#

*

$

�7�7�K�+��

-���1

�
���)

�
��
�)

�
#$

�
#

(
)/

(
*$

��) ��#�
)/

�
*%

(*+
().

(
#%

(
#,

(
#/

�)+
�)%

(*%
(*.
�)*

2) (#+

0�)
(,

0�*

0#

(
**

(
*#

(
*"

(
*)

()+

(),
(#"

(*/
($)

2$

�
%

�)) (*,

�$ �+
2+

(#.

0�
#

:)

($"

()"

;)

�, ($.

!#

!)

()$

()# (##

2
/ (
#*

:* (+,
�*)

(
+/

�#.

��#
�*#
�*"

��)

0*

�*$

()%

�#/

)(#$

(#)
�)

2%

(+*

�
#%

2*

�**
(/

2))

!$

!*
(+$��(++

!%

User’s Manual 127

C.8 Sample Programs

Sample programs illustrating the use of the LCD/keypad module with the RCM3700

Prototyping Board are provided in the SAMPLES\RCM3700 folder.

These sample programs use the auxiliary I/O bus on the Rabbit 3000 chip, and so the

#define PORTA_AUX_IO line is already included in the sample programs.

Each sample program has comments that describe the purpose and function of the pro-

gram. Follow the instructions at the beginning of the sample program. To run a sample

program, open it with the File menu (if it is not still open), compile it using the Compile

menu, and then run it by selecting Run in the Run menu. The RCM3700 must be in

Program mode (see Section 4.3, “Programming Cable”), and must be connected to a PC

using the programming cable as described in Chapter 2, “Getting Started.”.

More complete information on Dynamic C is provided in the Dynamic C User’s Manual.

The following sample programs are found in the SAMPLES\RCM3700\LCD_KEYPAD folder.

• KEYPADTOLED.C—This program demonstrates the use of the external I/O bus. The

program will light up an LED on the LCD/keypad module and will display a message

on the LCD when a key press is detected. The DS1 and DS2 LEDs on the RCM3700

Prototyping Board will also light up.

• LCDKEYFUN.C—This program demonstrates how to draw primitive features from the

graphic library (lines, circles, polygons), and also demonstrates the keypad with the key

release option.

• SWITCHTOLED.C—This program demonstrates the use of the external I/O bus. The

program will light up an LED on the LCD/keypad module and will display a message

on the LCD when a switch press is detected. The DS1 and DS2 LEDs on the RCM3700

Prototyping Board will also light up.

Additional sample programs are available in the 122x32_1x7 folder in

SAMPLES\LCD_KEYPAD.

128 RabbitCore RCM3700

C.9 LCD/Keypad Module Function Calls

When mounted on the RCM3700 Prototyping Board, the LCD/keypad module uses the

auxiliary I/O bus on the Rabbit 3000 chip. Remember to add the line

#define PORTA_AUX_IO

to the beginning of any programs using the auxiliary I/O bus.

C.9.1 LCD/Keypad Module Initialization

The initialization function is found in the LCD122KEY7.LIB library in the Dynamic C

DISPLAYS folder.

Initializes the LCD/keypad module. The keypad is set up using keypadDef() or keyConfig() after

this function call.

RETURN VALUE

None.

C.9.2 LEDs

When power is applied to the LCD/keypad module for the first time, the red LED (DS1)

will come on, indicating that power is being applied to the LCD/keypad module. The red

LED is turned off when the brdInit function executes.

One function is available to control the LEDs, and can be found in the LCD122KEY7.LIB

library in the Dynamic C DISPLAYS folder.

LED on/off control. This function will only work when the LCD/keypad module is installed on the

RCM3700 Prototyping Board.

PARAMETERS

led is the LED to control.

0 = LED DS1

1 = LED DS2

2 = LED DS3

3 = LED DS4

4 = LED DS5

5 = LED DS6

6 = LED DS7

value is the value used to control whether the LED is on or off (0 or 1).

0 = off

1 = on

RETURN VALUE

None.

void dispInit();

void displedOut(int led, int value);

User’s Manual 129

C.9.3 LCD Display

The functions used to control the LCD display are contained in the GRAPHIC.LIB library

located in the Dynamic C DISPLAYS\GRAPHIC library folder. When x and y coordinates

on the display screen are specified, x can range from 0 to 121, and y can range from 0 to

31. These numbers represent pixels from the top left corner of the display.

Initializes the display devices, clears the screen.

RETURN VALUE

None.

SEE ALSO

glDispOnOFF, glBacklight, glSetContrast, glPlotDot, glBlock, glPlotDot,
glPlotPolygon, glPlotCircle, glHScroll, glVScroll, glXFontInit, glPrintf,
glPutChar, glSetBrushType, glBuffLock, glBuffUnlock, glPlotLine

Turns the display backlight on or off.

PARAMETER

onOff turns the backlight on or off

1—turn the backlight on

0—turn the backlight off

RETURN VALUE

None.

SEE ALSO

glInit, glDispOnoff, glSetContrast

Sets the LCD screen on or off. Data will not be cleared from the screen.

PARAMETER

onOff turns the LCD screen on or off

1—turn the LCD screen on

0—turn the LCD screen off

RETURN VALUE

None.

SEE ALSO

glInit, glSetContrast, glBackLight

void glInit(void);

void glBackLight(int onOff);

void glDispOnOff(int onOff);

130 RabbitCore RCM3700

Sets display contrast.

NOTE: This function is not used with the LCD/keypad module since the support circuits

are not available on the LCD/keypad module.

Fills the LCD display screen with a pattern.

PARAMETER

The screen will be set to all black if pattern is 0xFF, all white if pattern is 0x00, and vertical stripes

for any other pattern.

RETURN VALUE

None.

SEE ALSO

glBlock, glBlankScreen, glPlotPolygon, glPlotCircle

Blanks the LCD display screen (sets LCD display screen to white).

RETURN VALUE

None.

SEE ALSO

glFillScreen, glBlock, glPlotPolygon, glPlotCircle

Draws a rectangular block in the page buffer and on the LCD if the buffer is unlocked. Any portion of the

block that is outside the LCD display area will be clipped.

PARAMETERS

x is the x coordinate of the top left corner of the block.

y is the y coordinate of the top left corner of the block.

bmWidth is the width of the block.

bmWidth is the height of the block.

RETURN VALUE

None.

SEE ALSO

glFillScreen, glBlankScreen, glPlotPolygon, glPlotCircle

void glSetContrast(unsigned level);

void glFillScreen(char pattern);

void glBlankScreen(void);

void glBlock(int x, int y, int bmWidth,
int bmHeight);

User’s Manual 131

Plots the outline of a polygon in the LCD page buffer, and on the LCD if the buffer is unlocked. Any

portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are

specified, the function will return without doing anything.

PARAMETERS

n is the number of vertices.

*pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3,...

RETURN VALUE

None.

SEE ALSO

glPlotPolygon, glFillPolygon, glFillVPolygon

Plots the outline of a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any

portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are

specified, the function will return without doing anything.

PARAMETERS

n is the number of vertices.

y1 is the y coordinate of the first vertex.

x1 is the x coordinate of the first vertex.

y2 is the y coordinate of the second vertex.

x2 is the x coordinate of the second vertex.

... are the coordinates of additional vertices.

RETURN VALUE

None.

SEE ALSO

glPlotVPolygon, glFillPolygon, glFillVPolygon

void glPlotVPolygon(int n, int *pFirstCoord);

void glPlotPolygon(int n, int y1, int x2, int y2,
...);

132 RabbitCore RCM3700

Fills a polygon in the LCD page buffer and on the LCD screen if the buffer is unlocked. Any portion of

the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified,

the function will return without doing anything.

PARAMETERS

n is the number of vertices.

*pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3,...

RETURN VALUE

None.

SEE ALSO

glFillPolygon, glPlotPolygon, glPlotVPolygon

Fills a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the

polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, the

function will return without doing anything.

PARAMETERS

n is the number of vertices.

x1 is the x coordinate of the first vertex.

y1 is the y coordinate of the first vertex.

x2 is the x coordinate of the second vertex.

y2 is the y coordinate of the second vertex.

... are the coordinates of additional vertices.

RETURN VALUE

None.

SEE ALSO

glFillVPolygon, glPlotPolygon, glPlotVPolygon

Draws the outline of a circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any por-

tion of the circle that is outside the LCD display area will be clipped.

PARAMETERS

xc is the x coordinate of the center of the circle.

yc is the y coordinate of the center of the circle.

rad is the radius of the center of the circle (in pixels).

RETURN VALUE

None.

SEE ALSO

glFillCircle, glPlotPolygon, glFillPolygon

void glFillVPolygon(int n, int *pFirstCoord);

void glFillPolygon(int n, int x1, int y1, int x2,
int y2, ...);

void glPlotCircle(int xc, int yc, int rad);

User’s Manual 133

Draws a filled circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the

circle that is outside the LCD display area will be clipped.

PARAMETERS

xc is the x coordinate of the center of the circle.

yc is the y coordinate of the center of the circle.

rad is the radius of the center of the circle (in pixels).

RETURN VALUE

None.

SEE ALSO

glPlotCircle, glPlotPolygon, glFillPolygon

Initializes the font descriptor structure, where the font is stored in xmem.

PARAMETERS

*pInfo is a pointer to the font descriptor to be initialized.

pixWidth is the width (in pixels) of each font item.

pixHeight is the height (in pixels) of each font item.

startChar is the value of the first printable character in the font character set.

endChar is the value of the last printable character in the font character set.

xmemBuffer is the xmem pointer to a linear array of font bitmaps.

RETURN VALUE

None.

SEE ALSO

glPrinf

void glFillCircle(int xc, int yc, int rad);

void glXFontInit(fontInfo *pInfo, char pixWidth,
char pixHeight, unsigned startChar,
unsigned endChar, unsigned long xmemBuffer);

134 RabbitCore RCM3700

Returns the xmem address of the character from the specified font set.

PARAMETERS

*pInfo is the xmem address of the bitmap font set.

letter is an ASCII character.

RETURN VALUE

xmem address of bitmap character font, column major, and byte-aligned.

SEE ALSO

glPutFont, glPrintf

Puts an entry from the font table to the page buffer and on the LCD if the buffer is unlocked. Each font

character's bitmap is column major and byte-aligned. Any portion of the bitmap character that is outside

the LCD display area will be clipped.

PARAMETERS

x is the x coordinate (column) of the top left corner of the text.

y is the y coordinate (row) of the top left corner of the text.

*pInfo is a pointer to the font descriptor.

code is the ASCII character to display.

RETURN VALUE

None.

SEE ALSO

glFontCharAddr, glPrintf

Sets the glPrintf() printing step direction. The x and y step directions are independent signed values.

The actual step increments depend on the height and width of the font being displayed, which are multi-

plied by the step values.

PARAMETERS

stepX is the glPrintf x step value

stepY is the glPrintf y step value

RETURN VALUE

None.

SEE ALSO

Use glGetPfStep() to examine the current x and y printing step direction.

unsigned long glFontCharAddr(fontInfo *pInfo,
char letter);

void glPutFont(int x, int y, fontInfo *pInfo,
char code);

void glSetPfStep(int stepX, int stepY);

User’s Manual 135

Gets the current glPrintf() printing step direction. Each step direction is independent of the other,

and is treated as an 8-bit signed value. The actual step increments depends on the height and width of the

font being displayed, which are multiplied by the step values.

RETURN VALUE

The x step is returned in the MSB, and the y step is returned in the LSB of the integer result.

SEE ALSO

Use glGetPfStep() to control the x and y printing step direction.

Provides an interface between the STDIO string-handling functions and the graphic library. The

STDIO string-formatting function will call this function, one character at a time, until the entire format-

ted string has been parsed. Any portion of the bitmap character that is outside the LCD display area will

be clipped.

PARAMETERS

ch is the character to be displayed on the LCD.

*ptr is not used, but is a place holder for STDIO string functions.

*cnt is not used, is a place holder for STDIO string functions.

*pInst is a font descriptor pointer.

RETURN VALUE

None.

SEE ALSO

glPrintf, glPutFont, doprnt

int glGetPfStep(void);

void glPutChar(char ch, char *ptr, int *cnt,
glPutCharInst *pInst)

136 RabbitCore RCM3700

Prints a formatted string (much like printf) on the LCD screen. Only the character codes that exist in

the font set are printed, all others are skipped. For example, '\b', '\t', '\n' and '\r' (ASCII backspace, tab,

new line, and carriage return, respectively) will be printed if they exist in the font set, but will not have

any effect as control characters. Any portion of the bitmap character that is outside the LCD display area

will be clipped.

PARAMETERS

x is the x coordinate (column) of the top left corner of the text.

y is the y coordinate (row) of the top left corner of the text.

*pInfo is a font descriptor pointer.

*fmt is a formatted string.

... are formatted string conversion parameter(s).

EXAMPLE

glprintf(0,0, &fi12x16, "Test %d\n", count);

RETURN VALUE

None.

SEE ALSO

glXFontInit

Increments LCD screen locking counter. Graphic calls are recorded in the LCD memory buffer and are

not transferred to the LCD if the counter is non-zero.

NOTE: glBuffLock() and glBuffUnlock() can be nested up to a level of 255, but be

sure to balance the calls. It is not a requirement to use these procedures, but a set of

glBuffLock() and glBuffUnlock() bracketing a set of related graphic calls speeds

up the rendering significantly.

RETURN VALUE

None.

SEE ALSO

glBuffUnlock, glSwap

Decrements the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD

if the counter goes to zero.

RETURN VALUE

None.

SEE ALSO

glBuffLock, glSwap

void glPrintf(int x, int y, fontInfo *pInfo,
char *fmt, ...);

void glBuffLock(void);

void glBuffUnlock(void);

User’s Manual 137

Checks the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD if the

counter is zero.

RETURN VALUE

None.

SEE ALSO

glBuffUnlock, glBuffLock, _glSwapData (located in the library specifically for the LCD

that you are using)

Sets the drawing method (or color) of pixels drawn by subsequent graphic calls.

PARAMETER

type value can be one of the following macros.

PIXBLACK draws black pixels (turns pixel on).

PIXWHITE draws white pixels (turns pixel off).

PIXXOR draws old pixel XOR'ed with the new pixel.

RETURN VALUE

None.

SEE ALSO

glGetBrushType

Gets the current method (or color) of pixels drawn by subsequent graphic calls.

RETURN VALUE

The current brush type.

SEE ALSO

glSetBrushType

Draws a single pixel in the LCD buffer, and on the LCD if the buffer is unlocked. If the coordinates are

outside the LCD display area, the dot will not be plotted.

PARAMETERS

x is the x coordinate of the dot.

y is the y coordinate of the dot.

RETURN VALUE

None.

SEE ALSO

glPlotline, glPlotPolygon, glPlotCircle

void glSwap(void);

void glSetBrushType(int type);

int glGetBrushType(void);

void glPlotDot(int x, int y);

138 RabbitCore RCM3700

Draws a line in the LCD buffer, and on the LCD if the buffer is unlocked. Any portion of the line that is

beyond the LCD display area will be clipped.

PARAMETERS

x0 is the x coordinate of one endpoint of the line.

y0 is the y coordinate of one endpoint of the line.

x1 is the x coordinate of the other endpoint of the line.

y1 is the y coordinate of the other endpoint of the line.

RETURN VALUE

None.

SEE ALSO

glPlotDot, glPlotPolygon, glPlotCircle

Scrolls byte-aligned window left one pixel, right column is filled by current pixel type (color).

PARAMETERS

left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE

None.

SEE ALSO

glHScroll, glRight1

Scrolls byte-aligned window right one pixel, left column is filled by current pixel type (color).

PARAMETERS

left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE

None.

SEE ALSO

glHScroll, glLeft1

void glPlotLine(int x0, int y0, int x1, int y1);

void glLeft1(int left, int top, int cols, int rows);

void glRight1(int left, int top, int cols, int rows);

User’s Manual 139

Scrolls byte-aligned window up one pixel, bottom column is filled by current pixel type (color).

PARAMETERS

left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE

None.

SEE ALSO

glVScroll, glDown1

Scrolls byte-aligned window down one pixel, top column is filled by current pixel type (color).

PARAMETERS

left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE

None.

SEE ALSO

glVScroll, glUp1

void glUp1(int left, int top, int cols, int rows);

void glDown1(int left, int top, int cols, int rows);

140 RabbitCore RCM3700

Scrolls right or left, within the defined window by x number of pixels. The opposite edge of the scrolled

window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will

be truncated to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is

a width of 8 pixels and a height of one row.

PARAMETERS

left is the top left corner of bitmap, must be evenly divisible by 8.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll

to the left).

RETURN VALUE

None.

SEE ALSO

glVScroll

void glHScroll(int left, int top, int cols,
int rows, int nPix);

User’s Manual 141

Scrolls up or down, within the defined window by x number of pixels. The opposite edge of the scrolled

window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will

be truncated to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is

a width of 8 pixels and a height of one row.

PARAMETERS

left is the top left corner of bitmap, must be evenly divisible by 8.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll

up).

RETURN VALUE

None.

SEE ALSO

glHScroll

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function calls

glXPutFastmap automatically if the bitmap is byte-aligned (the left edge and the width are each

evenly divisible by 8).

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS

left is the top left corner of the bitmap.

top is the top left corner of the bitmap.

width is the width of the bitmap.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE

None.

SEE ALSO

glXPutFastmap, glPrintf

void glVScroll(int left, int top, int cols,
int rows, int nPix);

void glXPutBitmap(int left, int top, int width,
int height, unsigned long bitmap);

142 RabbitCore RCM3700

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function is like

glXPutBitmap, except that it is faster. The restriction is that the bitmap must be byte-aligned.

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS

left is the top left corner of the bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

width is the width of the bitmap, must be evenly divisible by 8, otherwise truncates.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE

None.

SEE ALSO

glXPutBitmap, glPrintf

Defines a text-only display window. This function provides a way to display characters within the text

window using only character row and column coordinates. The text window feature provides end-of-line

wrapping and clipping after the character in the last column and row is displayed.

NOTE: Execute the TextWindowFrame function before other Text... functions.

PARAMETERS

*window is a window frame descriptor pointer.

*pFont is a font descriptor pointer.

x is the x coordinate of the top left corner of the text window frame.

y is the y coordinate of the top left corner of the text window frame.

winWidth is the width of the text window frame.

winHeight is the height of the text window frame.

RETURN VALUE

 0—window frame was successfully created.

 -1—x coordinate + width has exceeded the display boundary.

-2—y coordinate + height has exceeded the display boundary.

void glXPutFastmap(int left, int top, int width,
int height, unsigned long bitmap);

int TextWindowFrame(windowFrame *window,
fontInfo *pFont, int x, int y, int winWidth,
int winHeight)

User’s Manual 143

Sets the cursor location to display the next character. The display location is based on the height and

width of the character to be displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS

*window is a pointer to a font descriptor.

col is a character column location.

row is a character row location.

RETURN VALUE

None.

SEE ALSO

TextPutChar, TextPrintf, TextWindowFrame

Gets the current cursor location that was set by a Graphic Text... function.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS

*window is a pointer to a font descriptor.

*col is a pointer to cursor column variable.

*row is a pointer to cursor row variable.

RETURN VALUE

Lower word = Cursor Row location

Upper word = Cursor Column location

SEE ALSO

TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

void TextGotoXY(windowFrame *window, int col,
int row);

void TextCursorLocation(windowFrame *window,
int *col, int *row);

144 RabbitCore RCM3700

Displays a character on the display where the cursor is currently pointing. If any portion of a bitmap

character is outside the LCD display area, the character will not be displayed. The cursor increments its

position as needed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS

*window is a pointer to a font descriptor.

ch is a character to be displayed on the LCD.

RETURN VALUE

None.

SEE ALSO

TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

Prints a formatted string (much like printf) on the LCD screen. Only printable characters in the font

set are printed, also escape sequences, '\r' and '\n' are recognized. All other escape sequences will be

skipped over; for example, '\b' and 't' will print if they exist in the font set, but will not have any effect as

control characters.

The text window feature provides end-of-line wrapping and clipping after the character in the last col-

umn and row is displayed. The cursor then remains at the end of the string.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS

*window is a pointer to a font descriptor.

*fmt is a formatted string.

... are formatted string conversion parameter(s).

EXAMPLE

TextPrintf(&TextWindow, "Test %d\n", count);

RETURN VALUE

None.

SEE ALSO

TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

void TextPutChar(struct windowFrame *window, char ch);

void TextPrintf(struct windowFrame *window,
char *fmt, ...);

User’s Manual 145

C.9.4 Keypad

The functions used to control the keypad are contained in the KEYPAD7.LIB library

located in the Dynamic C KEYPADS library folder.

Initializes keypad process

RETURN VALUE

None.

SEE ALSO

brdInit

Assigns each key with key press and release codes, and hold and repeat ticks for auto repeat and

debouncing.

PARAMETERS

cRaw is a raw key code index.

1x7 keypad matrix with raw key code index assignments (in brackets):

User Keypad Interface

cPress is a key press code

An 8-bit value is returned when a key is pressed.

0 = Unused.

See keypadDef() for default press codes.

cRelease is a key release code.

An 8-bit value is returned when a key is pressed.

0 = Unused.

cCntHold is a hold tick, which is approximately one debounce period or 5 µs.

How long to hold before repeating.

0 = No Repeat.

cSpdLo is a low-speed repeat tick, which is approximately one debounce period or 5 µs.

How many times to repeat.

0 = None.

cCntLo is a low-speed hold tick, which is approximately one debounce period or 5 µs.

How long to hold before going to high-speed repeat.

0 = Slow Only.

void keyInit(void);

void keyConfig(char cRaw, char cPress,
char cRelease, char cCntHold, char cSpdLo,
char cCntLo, char cSpdHi);

[0] [1] [2] [3]

[4] [5] [6]

146 RabbitCore RCM3700

cSpdHi is a high-speed repeat tick, which is approximately one debounce period or 5 µs.

How many times to repeat after low speed repeat.

0 = None.

RETURN VALUE

None.

SEE ALSO

keyProcess, keyGet, keypadDef

Scans and processes keypad data for key assignment, debouncing, press and release, and repeat.

NOTE: This function is also able to process an 8 x 8 matrix keypad.

RETURN VALUE

None

SEE ALSO

keyConfig, keyGet, keypadDef

Get next keypress.

RETURN VALUE

The next keypress, or 0 if none

SEE ALSO

keyConfig, keyProcess, keypadDef

Pushes the value of cKey to the top of the input queue, which is 16 bytes deep.

PARAMETER

cKey

RETURN VALUE

None.

SEE ALSO

keyGet

void keyProcess(void);

char keyGet(void);

int keyUnget(char cKey);

User’s Manual 147

Configures the physical layout of the keypad with the default ASCII return key codes.

Keypad physical mapping 1 x 7

where

'D' represents Down Scroll

'U' represents Up Scroll

'R' represents Right Scroll

'L' represents Left Scroll

'–' represents Page Down

'+' represents Page Up

'E' represents the ENTER key

Example: Do the followingfor the above physical vs. ASCII return key codes.

keyConfig (3,'R',0, 0, 0, 0, 0);
keyConfig (6,'E',0, 0, 0, 0, 0);
keyConfig (2,'D',0, 0, 0, 0, 0);
keyConfig (4,'-',0, 0, 0, 0, 0);
keyConfig (1,'U',0, 0, 0, 0, 0);
keyConfig (5,'+',0, 0, 0, 0, 0);
keyConfig (0,'L',0, 0, 0, 0, 0);

Characters are returned upon keypress with no repeat.

RETURN VALUE

None.

SEE ALSO

keyConfig, keyGet, keyProcess

Writes "1" to each row and reads the value. The position of a keypress is indicated by a zero value in a bit

position.

PARAMETER

*pcKeys is a pointer to the address of the value read.

RETURN VALUE

None.

SEE ALSO

keyConfig, keyGet, keypadDef, keyProcess

void keypadDef();

0 4 1 5 2 6 3

['L'] ['U'] ['D'] ['R']

['–'] ['+'] ['E']

void keyScan(char *pcKeys);

148 RabbitCore RCM3700

User’s Manual 149

APPENDIX D. POWER SUPPLY

Appendix D provides information on the current requirements

of the RCM3700, and includes some background on the chip

select circuit used in power management.

D.1 Power Supplies

Power is supplied from the motherboard to which the RCM3700 is connected via header

J1. The RCM3700 has an onboard +3.3 V linear power regulator that provides the +3.3 V

supply to operate the microprocessor-related circuitry of the RCM3700, but not the Ether-

net circuit, which requires + 5 V. Figure D-1 shows the power-supply circuit.

Figure D-1. RCM3700 Power Supply

The RCM3700 requires a regulated 4.75 V to 5.25 V DC power source. An RCM3700 with

no loading at the outputs operating at 22.1 MHz typically draws 100 mA.

CAUTION: Be sure that the input to pin 39 on header J1 is connected to a regulated 5 V

supply. The regulated 5 V supply is required for the Ethernet circuitry, which is not

protected against overvoltage conditions.

!�
������6������2!� ��

�
�
6
�
�

�

0)

)"�I3

!8))),
2,

�*7*��

*

)

#

*/

*.

$"

)"�I3

��

*, �&� 4�5

�-
�����
&�

���

�+��

150 RabbitCore RCM3700

D.1.1 Battery-Backup Circuits

The RCM3700 does not have a battery, but there is provision for a customer-supplied bat-

tery to back up the data SRAM and keep the internal Rabbit 3000 real-time clock running.

Header J1, shown in Figure D-1, allows access to the external battery. This header makes

it possible to connect an external 3 V power supply. This allows the SRAM and the inter-

nal Rabbit 3000 real-time clock to retain data with the RCM3700 powered down.

A lithium battery with a nominal voltage of 3 V and a minimum capacity of 165 mA·h is

recommended. A lithium battery is strongly recommended because of its nearly constant

nominal voltage over most of its life.

The drain on the battery by the RCM3700 is typically 6 µA when no other power is sup-

plied. If a 235 mA·h battery is used, the battery can last about 4.5 years:

Note that the shelf life of a lithium ion battery is ultimately 10 years. The RCM3700 does

not drain the battery while it is powered up normally.

D.1.2 Reset Generator

The RCM3700 uses a reset generator to reset the Rabbit 3000 microprocessor when the volt-

age drops below the voltage necessary for reliable operation. The reset occurs between

2.85 V and 3.00 V, typically 2.93 V.

The RCM3700 has a reset pin, pin 36 on header J1. This pin provides access to the reset

output from the reset generator, and is also connected to the reset input of the Rabbit 3000

to allow you to reset the microprocessor externally. A resistor divider consisting of R22

and R23 attenuates the signal associated with an externally applied reset to prevent it from

affecting the reset generator.

235 mA·h

6 µA
------------------------ 4.5 years.=

User’s Manual 151

APPENDIX E. SECURE EMBEDDED WEB

APPLICATION KIT

Appendix E provides information for the Secure Embedded Web

Application Kit based on the RCM3700. In addition to an

RCM3700 RabbitCore module and Dynamic C 8.51 or a later

version, the Secure Embedded Web Application Kit comes with

an enhanced software bundle that facilitates the rapid develop-

ment of secure Web browser interfaces for embedded system

control.

The enhanced software bundle that is provided in the Secure Embedded Web Application

Kit comes on three CD-ROMs. The software modules included in the software bundle

require Dynamic C 8.51 or a later version, which is included on a separate CD-ROM in

the Secure Embedded Web Application Kit.

Software Modules on CD-ROM 1—Dynamic C FAT File System module.

The Dynamic C FAT (File Allocation Table) File System module provides a ready-to-run

flash-based file system that:

• works with a Dynamic C® HTTP or RabbitWeb server to update content reliably

• provides reliable storage and transfer of databases and Web pages according to an

established, widely used file system

• supports a battery-backed wear-reducing cache system that protects the file system dur-

ing power cycles

Software Modules on CD-ROM 2—Dynamic C RabbitWeb module.

The Dynamic C RabbitWeb module provides an HTTP/HTML rapid Web development

extension for embedded devices, allowing you to:

• read and write program variables remotely, eliminating complex CGI programming

• easily create controls such as pulldown menus or control buttons

• ensure valid input values and proper user authorization

• elegantly indicate input errors for easy correction

152 RabbitCore RCM3700

Software Modules on CD-ROM 3—Dynamic C Secure Sockets Layer (SSL) module.

This module provides HTTPS security for supported Rabbit-based devices to provide:

• fast processing of complex encryption algorithms (up to 120 kbits/s)

• support for HTTPS with SSL version 3 and Transport Layer Security (TLS) version 1

• royalty- and license-free with digital certificate creation utility

• secure existing Web application in minutes with less than 10 lines of code

E.1 Sample Programs

Sample programs are included with the bundled Dynamic C modules to illustrate the soft-

ware features associated with each Dynamic C module.

• The SAMPLES\FILESYSTEM folder contains sample programs that demonstrate the use

of the Dynamic C FAT file system.

• The SAMPLES\TCPIP\RABBITWEB folder contains sample programs that demonstrate

the use of the Dynamic C RabbitWeb software.

• The SAMPLES\TCPIP\SSL\HTTPS folder contains sample programs that demonstrate

the use of the Dynamic C Secure Sockets Layer (SSL) software.

E.2 Module Documentation

Complete documentation for the Dynamic C modules and their functions is provided as

part of the Dynamic C installation. Double-click the documentation icon to reach the

menu or, if the icon is missing, use your browser to find and load default.htm in the docs

folder, found in the Dynamic C installation folder.

User’s Manual 153

NOTICE TO USERS

Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE-

SUPPORT DEVICES OR SYSTEMS UNLESS A SPECIFIC WRITTEN AGREEMENT REGARDING

SUCH INTENDED USE IS ENTERED INTO BETWEEN THE CUSTOMER AND Z-WORLD PRIOR

TO USE. Life-support devices or systems are devices or systems intended for surgical implantation into the

body or to sustain life, and whose failure to perform, when properly used in accordance with instructions for

use provided in the labeling and user’s manual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always present in a system of any size. In

order to prevent danger to life or property, it is the responsibility of the system designer to incorporate

redundant protective mechanisms appropriate to the risk involved.

All Z-World products are 100 percent functionally tested. Additional testing may include visual quality con-

trol inspections or mechanical defects analyzer inspections. Specifications are based on characterization of

tested sample units rather than testing over temperature and voltage of each unit. Z-World products may

qualify components to operate within a range of parameters that is different from the manufacturer’s recom-

mended range. This strategy is believed to be more economical and effective. Additional testing or burn-in

of an individual unit is available by special arrangement.

154 RabbitCore RCM3700

User’s Manual 155

INDEX

A

additional information

online documentation 5

application kits

Ethernet Connection Kit 5

Secure Embedded Web Appli-

cation Kit 5

auxiliary I/O bus 26

B

battery backup

reset generator 150

bus loading 76

C

clock doubler 31

conformal coating 81

D

Development Kit 4, 7

AC adapter 4

DC power supply 4

Getting Started instructions 4

programming cable 4

digital I/O 22

I/O buffer sourcing and sink-

ing limits 80

memory interface 26

SMODE0 29

SMODE1 29

dimensions

LCD/keypad module 117

LCD/keypad template 120

RCM3700 72

RCM3700 Prototyping

Board 87

RCM3720 Prototyping

Board 107

Dynamic C 5, 7, 11, 33

add-on modules 5, 7, 54

FAT file system module 151

installation 7

RabbitWeb module 151

Secure Sockets Layer (SSL)

module 152

libraries 34

sample programs 15

telephone-based technical

support 5, 54

upgrades and patches 54

E

Ethernet cables 55

Ethernet connections 55, 57

10/100-compatible 57

10Base-T Ethernet card 55

additional resources 70

direct connection 57

Ethernet hub 55

IP addresses 57, 59

MAC addresses 60

steps 55, 56

Ethernet port 28

pinout 28

exclusion zone 73

F

features 1

RCM3700 Prototyping

Board 84, 85

RCM3720 Prototyping

Board 105, 106

flash memory addresses

user blocks 32

H

hardware connections

install RCM3700 on Prototyp-

ing Board 8

power supply 10

programming cable 9

hardware reset 10

headers

RCM3700 Prototyping Board

JP1 99

JP2 96

RCM3720 Prototyping Board

J3 113

I

I/O address assignments

LCD/keypad module 121

I/O buffer sourcing and sinking

limits 80

IP addresses 59

how to set in sample pro-

grams 64

how to set PC IP address .. 65

J

jumper configurations 82

JP3 (flash memory size) 82

JP4 (flash memory bank

select) 32, 82

jumper locations 82

RCM3700 Prototyping

Board 101

JP1 (RS-485 bias and termi-

nation resistors) .. 99, 102

JP2 (RS-232/RS-485 on

Serial Port E) 102

JP4 (A/D converter out-

puts) 102

JP5 (analog inputs refer-

ence) 102

JP6 (analog inputs refer-

ence) 102

JP7 (analog inputs refer-

ence) 102

JP8 (analog voltage/4–20

mA measurement op-

tions) 102

RCM3720 Prototyping

Board 111

156 RabbitCore RCM3700

K

keypad template120

removing and inserting la-

bel120

L

LCD/keypad module

bezel-mount installation ..124

dimensions117

header pinout121

I/O address assignments ..121

keypad template120

mounting instructions123

reconfigure keypad120

remote cable connection ..126

removing and inserting keypad

label120

sample programs127

specifications118

versions117

voltage settings119

M

MAC addresses60

mounting instructions

LCD/keypad module123

P

pinout

Ethernet port28

LCD/keypad module121

RCM3700

alternate configurations .24

RCM3700 headers22

RCM3700 Prototyping

Board89

RCM3720 Prototyping

Board109

power supplies

+5 V149

battery backup150

linear voltage regulator149

Program Mode30

switching modes30

programming cable

PROG connector30

RCM3700 connections9

programming port28

Prototyping Board

features15

mounting RCM37008

sample programs15

R

Rabbit 3000

data and clock delays78

spectrum spreader time de-

lays78

Rabbit subsystems23

RCM3700

mounting on Prototyping

Board8

RCM3700 Prototyping Board 84

A/D converter

CONVERT pin94

inputs

current measurements .93

differential measure-

ments92

negative voltages92

single-ended measure-

ments91

reference voltage (VREF) 94

adding components90

dimensions87

expansion area85

features84, 85

jumper configurations

.............................101, 102

jumper locations101

pinout89

power supply88

prototyping area90

RS-485 network98

termination and bias

resistors99

specifications88

use of parallel ports103

RCM3720 Prototyping Board 105

adding components111

RS-232 components112

dimensions107

expansion area106

features105, 106

how to disable demonstration

hardware110

jumper configurations111

pinout109

power supply108

prototyping area111

specifications108

use of parallel ports114

reset10

use of reset pin150

Run Mode30

switching modes30

S

sample programs15

A/D converter inputs

AD_CALDIFF_CH.C

...............................19, 95

AD_CALMA_CH.C 19, 95

AD_CALSE_ALL.C 19, 95

AD_CALSE_CH.C95

AD_CALSE_CHAN.C ..19

AD_RDDIFF_CH.C 19, 95

AD_RDMA_CH.C ..19, 95

AD_RDSE_ALL.C ..19, 95

AD_SAMPLE.C19

ANAINCONFIG.C19

DNLOADCALIB.C20

THERMISTOR.C20, 93

UPLOADCALIB.C20

configuring to run on a

Prototyping Board14

FAT file system

FMT_DEVICE.C69

FAT file system module ..152

getting to know the RCM3700

CONTROLLED.C16

DIO.C15

FLASHLED1.C15

IR_DEMO.C16

TOGGLESWITCH.C15

how to run TCP/IP sample

programs63, 64

how to set IP address64

LCD/keypad module127

KEYBASIC.C120

KEYPADTOLED.C127

LCDKEYFUN.C127

reconfigure keypad120

SWITCHTOLED.C127

module integration68

INTEGRATION.C69

INTEGRATION_FAT_

SETUP.C69

onboard serial flash

SERIAL_FLASHLOG.C 17

SFLASH_INSPECT.C ..17

PONG.C11

RabbitWeb module152

Secure Sockets Layer (SSL)

module152

User’s Manual 157

serial communication

FLOWCONTROL.C 17

PARITY.C 17

SIMPLE3WIRE.C 18

SIMPLE485MASTER.C 18

SIMPLE485SLAVE.C .. 18

SIMPLE5WIRE.C 18

SWITCHCHAR.C 18

TCP/IP

BROWSELED.C 66

DISPLAY_MAC.C 60

MBOXDEMO.C 66

PINGLED.C 66

PINGME.C 66

RabbitWeb

BLINKLEDS.C 67

DOORMONITOR.C . 67

HANGMAN_GAME.C

................................. 67

LEDS_CHECKBOX.C

................................. 67

SPRINKLER.C 67

TEMPERATURE.C .. 67

SMTP.C 67

SSL

SSL_BROWSELED.C

................................. 68

SSL_MBOXDEMO.C

................................. 68

serial communication 27

RCM3700 Prototyping Board

RS-232 97

RS-485 network 98

RS-485 termination and bias

resistors 99

RCM3720 Prototyping Board

RS-232 113

serial ports 27

Ethernet port 28

programming port 28

software 5

A/D converter

digConfig 50

digIn 51

digOut 51

A/D converter inputs

anaIn 40

anaInCalib 42

anaInConfig 36

anaInDiff 45

anaInDriver 38

anaInEERd 47

anaInEEWr 49

anaInmAmps 46

anaInVolts 44

auxiliary I/O bus . 26, 52, 128

board initialization 35

brdInit 35

I/O drivers 52

keypad

keyConfig 145

keyGet 146

keyInit 145

keypadDef 147

keyProcess 146

keyScan 147

keyUnget 146

LCD display

glBackLight 129

glBlankScreen 130

glBlock 130

glBuffLock 136

glBuffUnlock 136

glDispOnOff 129

glDown1 139

glFillCircle 133

glFillPolygon 132

glFillScreen 130

glFillVPolygon 132

glFontCharAddr 134

glGetBrushType 137

glGetPfStep 135

glHScroll 140

glInit 129

glLeft1 138

glPlotCircle 132

glPlotDot 137

glPlotLine 138

glPlotPolygon 131

glPlotVPolygon 131

glPrintf 136

glPutChar 135

glPutFont 134

glRight1 138

glSetBrushType 137

glSetContrast 130

glSetPfStep 134

glSwap 137

glUp1 139

glVScroll 141

glXFontInit 133

glXPutBitmap 141

glXPutFastmap 142

TextCursorLocation 143

TextGotoXY 143

TextPrintf 144

TextPutChar 144

TextWindowFrame 142

LCD/keypad module

dispInit 128

displedOut 128

LEDs 128

libraries 34

PACKET.LIB 53

RCM37xx.LIB 34

RS232.LIB 53

TCP/IP 53

readUserBlock 32

sample programs 15, 54

serial communication driv-

ers 53

TCP/IP drivers 53

writeUserBlock 32

specifications 71

bus loading 76

digital I/O buffer sourcing and

sinking limits 80

dimensions 72

electrical, mechanical, and

environmental 74

exclusion zone 73

header footprint 75

headers 75

LCD/keypad module

dimensions 117

electrical 118

header footprint 118

mechanical 118

relative pin 1 locations 118

temperature 118

Rabbit 3000 DC characteris-

tics 79

Rabbit 3000 timing dia-

gram 77

RCM3700 Prototyping

Board 88

RCM3720 Prototyping

Board 108

relative pin 1 locations 75

spectrum spreader 78

subsystems

digital inputs and outputs .. 22

switching modes 30

T

TCP/IP primer 57

technical support 12

troubleshooting

changing COM port 11

connections 11

158 RabbitCore RCM3700

User’s Manual 159

SCHEMATICS

090-0177 RCM3700 Schematic
www.rabbitsemiconductor.com/documentation/schemat/090-0177.pdf

090-0180 RCM3600/RCM3700 Prototyping Board Schematic
www.rabbitsemiconductor.com/documentation/schemat/090-0180.pdf

090-0199 RCM3720 Prototyping Board Schematic
www.rabbitsemiconductor.com/documentation/schemat/090-0199.pdf

090-0156 LCD/Keypad Module Schematic
www.rabbitsemiconductor.com/documentation/schemat/090-0156.pdf

090-0128 Programming Cable Schematic
www.rabbitsemiconductor.com/documentation/schemat/090-0128.pdf

090-0185 Programming Cable with Adapter Board Schematic
www.rabbitsemiconductor.com/documentation/schemat/090-0185.pdf

The schematics included with the printed manual were the latest revisions available at the

time the manual was last revised. The online versions of the manual contain links to the

latest revised schematic on the Web site. You may also use the URL information provided

above to access the latest schematics directly.

