BridgeVIEW
and LabVIEW

Professional G Developers
Tools Reference Manual

‘7 NATIONAL
’ INSTRUMENTS'

May 1998 Edition
Part Number 321393B-01

Internet Support

E-mail: support@natinst.com

FTP Siteftp.natinst.com

Web Addresshttp://www.natinst.com

Bulletin Board Support

BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,

Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200,
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1997, 1998 National Instruments Corporation. All rights reserved.

Important Information

Warranty

Copyright

Trademarks

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

EXCEPTAS SPECIFIEDHEREIN, NATIONAL |NSTRUMENTSMAKES NO WARRANTIES, EXPRESSOR IMPLIED, AND SPECIFICALLY DISCLAIMS

ANY WARRANTY OF MERCHANTABILITY OR FITNESSFORA PARTICULAR PURPOSE CUSTOMER S RIGHT TO RECOVERDAMAGES CAUSED

BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTSSHALL BE LIMITED TO THE AMOUNT THERETOFOREPAID BY THE
CUSTOMER NATIONAL INSTRUMENTSWILL NOT BE LIABLE FORDAMAGES RESULTING FROM LOSSOF DATA, PROFITS USE OF PRODUCTS

OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of

National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.

Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties,

or other events outside reasonable control.

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

BridgeVIEW™, LabVIEW™, natinst.com ™, and National Instrumentsare trademarks of National Instruments
Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the
user or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

Contents

About This Manual
Organization of This Manual............ccccvviiiiiiiee e Xiii
Part I—Software Engineering CONCEPLSuuvuriereeeiiiiiiiiiiieireeeeeesessesennvveeees Xiii
Part Il—Professional Development TOOIS.........cccvvveeiiiiiciiiiiiiieeeee e Xiv
Appendices, Glossary, and INAEXeviieeieeiiiciiiiieeir e ee e rr e e e e e e Xiv
Conventions Used in ThiS MaNUAL...........cuueiiiiiiiiieiie e Xiv
Related DOCUMENTALION........iiuuiiiieiiiiiie ettt s e e e e s e e e e b e e e e e nneee XV
Customer COMMUNICALIONuiiiiiiiiiie sttt s e st e e e e bbb e e s e e e e e enneees XVi
Chapter 1
Introduction
Required System Configuration............ccocuiuiiiiiiiee e ee e e e e e s snenees 1-1
(O] 01T [0 =140] o [PRESSR =l 1
OVEIVIEW ...ttt ettt ettt ettt e e e ettt e e e e ettt e e s et e e e e sabbe e e e e s nbeeeeeannems 12.....
Features Of the TOOIS.........uii et e e e 1-2
PART |
Software Engineering Concepts
Chapter 2
Development Models
Common Development Pitfalls............ocoiiiii e 2-1
LIfECYCIE MOUEIS ..vveeieeeeeee et e e e e e e s e s e e e e aeeeeeaannnns 2-4
Code and FiIX MOGEIcouuviiiiiii e 2-4
Waterfall MOAEL..........oouuiiiiiiiie e 2-5
Modified Waterfall MOdel............coviiiiiiiiii e 2-7
(0 (0477] o [P PERSSRR 2-7
G Prototyping Methodsuuviiiieeeiiiiiiireeee e 2-8
S o1 = 1 o o - SRS 2-9
SUMIMABIY ..ttt e e ettt e e e e et e tab s e e et e ee b e e e e e eae b areeeeaeabaneeeaeeeeen 2:11......

© National Instruments Corporation v Professional G Developers Tools Reference Manual

Contents

Chapter 3
Incorporating Quality into the Development Process
QuUAitY REQUITEIMENTS ...ttt ettt e e e e e e s s s e bbb e e e eeaaaeeaaaannes 3-1
Configuration ManagEMENT..........ciiii ittt e e e e e e s eeeaeaeaeeaaannes 3-2
SoUrce Code CONLIOL......cooi it 3-2
Managing All Project-Related FilesS..........oooi e 3-3
Retrieving Old Versions Of FileS ... 3-3
Tracking ChaNQESuueiiiiiiieie et e e e e e e ea e e e 3-4
Change CONIOLcoiiiiiie et 3-4
TESHNG GUIARINES ...ttt e et e e e snenee s 3-5
Black Box and White BOX TESHNGcoeeiiiiiiiiiiiiiiieeiieee e 3-6
Unit, Integration, and System TeStNGcccvvieriiiiiieiiee e 3-6
UNIE TESHING ettt 3-7
INtEGration TESHING.....cciiiuiriie et 3-8
SYSIEM TESHING .coivvieeie ettt 3-9
Formal Methods of Verificationcccoooiiiiiiiiiii e 3-9
SEYIE GUILEINES. ...ttt ee e 10..... 3-
DESIGN REVIEWS ...ttt ettt e e s et e e e s bt be e e e s annneeeas 3-11
Code WaIKINIOUGRSveiieiiee et 3-11
POSt-MOrtem EVAlUALION........o.ooiiiiie e 3-12
Software Quality StANAAIASocuueiiiiii e 3-13
International Organization for Standards ISO 9000ccccvviiiiereieeennnnnns 3-13
U.S. Food and Drug Administration Standardscccccoeieeiieeeeeeiiicciienee, 3-14
Capability Maturity Model (CMM)oooiiiiiiiiii e 3-14
Institute of Electrical and Electronic Engineers (IEEE) Standards................. 3-16
Chapter 4
Prototyping and Design Techniques
Clearly Define the Requirements of Your Application..........ccccccceeeeeeiiniiiciiiiiieeeeeee, 4-1
LI oI L1V I I L= o | o RSP 4-2
Data Acquisition System EXampleccccvvviiiiiieeii e 4-3
Lo 1T g R o TN D= T T [o SRR 4-6
INStrument Drver EXamMPIE.......c..uuiiiieiieeee e e e e e e e e e 4-7
Designing for Multiple DeVEIOPEISccuuiiiiiiiie ettt e 4-8
Front Panel ProtOtyPinNg.........ueeeiieeeeeoiiiiiiiiiieie et s st eeee e e e e e e s e s s e e eeae e e s e e annnnnnnees 4-9
Performance Benchmarking ..o 4-10
Identify CommOon OPEratioNScccuviiiiiiiie e e e s e st e e e e e e e s s st r e e e e e e e e s s eraneeees 4-11

Professional G Developers Tools Reference Manual vi © MNational Instruments Corporation

Contents

Chapter 5
Scheduling and Project Tracking
1Y 1= V1o o I 5-1......
Source Lines of Code/Number of Nodes Estimationccccoceeveeeiniiinneenn.n. 5-2
Problems with Source Lines of Code and Number of Nodes............ 5-3
Effort EStIMAtioNoovviiiiiiie e 5-4
Wideband Delphi EStMAtioNoooiiiiiiiiiieeee e 5-5
Other Estimation TEChNIQUESoooiiiiiiieieeiee e 5-6
Mapping Estimates to SChedUIES ... 5-6
Tracking Schedules USiNg MiIleSIONES...........ccoiiiiiiiiiiiie e 5-7
Responding to Missed MIleSIONES.........cccuviiiiiiiiiiiiieeee e 5-8
Chapter 6
Creating Documentation
Developing Design-Related DOCUMENLALIONcceeviiiiiiiiiiiiieiie e e e s s ee e e e e e e 6-1
Developing User DOCUMENTALION..........uuuuiiiiieeeeeeieiiiitiier e e e ee e e s e esnraeeeeeeeees e e s s nnnnnenneees 6-2
Documentation for a Library of SUBVIS..........ccccevveviieiiiieee e 6-2
Documentation for an AppliCatioNcveveeeii i 6-3
Creating HelP FilEScoi it e e e e e e ee e e e e e e s e annnees 6-4
VI and Control DESCHPLIONScciiiieiiiie et e e e e e e e e e e s e s s e naennrreneees 6-5
A I =T 1 o] o] o TSRS 6-5
Self-Documenting Front Panelsoccuiiiiiiiieee e 6-5
Control and Indicator DESCIIPLIONSevvieeeeeiiiciiiiiieeeee e e e e e ses s e e e e e e e e 6-6
Chapter 7
Using Consistent Style: The G Style Guide
RV V1= = T o) SR ... 7
Hierarchy With VI LIDFariesuveeieieeiiiicciieeece e 7-3
Front Panels With StYIEuviiiiiiiie e e e e 7-4
(0] 3151 5] 1= o SRR 7-4
IS PRSPPI 7-5
(070 o] o RSP PRS 7-5
Graphics and CUStOM CONLIOIS........cceeiiiiiieiiiie e e e 7-6
Front Panel LaYOULcccueiiiiiieiee ettt e e e e e e e s rnaane e e s 7-7
Sizing and Positioning Front Panels..........ccccceeiiii i 7-7
(0] 1 170] 5= TaTo [[To [Tor=1 (o] &= PRSP 7-8
Do o] (o] o 1= SRR 7-8
LADEIS et 7-8
ENUMErations VEIrSUS RINGS ...viviiieiiiiiiiiiiiiie e ee e e e e e s snnnrranreeeaae e 7-9
Default Values, Ranges, and COEICION.........cc.uuvviiieeeeiiiicciiiieee e 7-10
ALIDULE NOUES oo 7-11

© National Instruments Corporation vii Professional G Developers Tools Reference Manual

Contents

KeY NAVIGALION ...ttt e e e e e e e 7-11
LOCAl VAriabIESooeieiiieeeee et 7-12
A ST = U | o B TP 7:13...
(O70]] g T=Tod (o] gl =T 1= PSP 7-14
o0] 1= PP 7-15
L LCl 2] (o Ted g DI = Vo =Ty o TR T TR 7-16
WIHNG BUOQUETEEeeeiiiieeiie ettt 7-17
LADEING «eeiiee it 7-18
EXECULION SEOUENCEcoiiiiiiiiee ettt 7-18
Left-to-Right LAYOULScuuiiiieeieei i eee e e e e e e e e 7-18
D= 1= W B LY o 11 oo [T o [0 2R 7-19
Adding Common Threadsccccvvvevieeiii e 7-19
SEUUENCE SEITUCTUMNBS ...uuiiiiiiiiiiie ettt e e e e eees 7-20
Watch Out for Missing Dependencies........cccccuvevveeeeeiiccciiiieeneeeeenn, 7-20
(O [=Tod (o] g = o] = SRR 7-21
Sizing and Positioning of Block Diagrams...........ccccccvuviirereeeee e ceciieiieeeee e 7-23
(©]0)1] 474 (o] 1SR 7-24
Code INterface NOUES......ccoiiiiiiee it reeee e 7-25
CIN Description CONLENTSccevvveiviiiiiiiiiiiiis i eer e e e e eeeeaeaeaeeaeeeees 7-25
CIN SOUICE COUR... .ttt 7-25
1Y (= O =T o 4] -26..... 7
VI CNECKIIST ...t 7-26
Front Panel ChecCkIiSt ... 7-27
Block Diagram ChecCkKIiSt..........ccooiiiiiiic e 7-28
PART Il

Professional Development Tools

Chapter 8
VI Metrics Tool
UsiNg the VI MEtrCS TOOL. ...t e e e eneeae s 8-2
WX [0 [T 0T oIS r= 111 o PSSR 8-3
Block Diagram StatiStiCS.........uuurriiieieeeiiiiiiiiieiire e e e e e s s e e e e e e 8-3
User Interface STatiStICSuuvviiiiiiieii i 8-4
GlobalS/LOCAIS STALISHICSvvvviiiieiie e e e e e 8-4
CINs/Shared Library StatiStiCS........cccccviiiiiieiee s ee e 8-4
SubVI INterface StatiStiCS.........cccuiiiiiiiiee e e e e e 8-5
1T T TV T 1o SO 8:5....
Saving Metric INfOrMAatioNcooiii i e e 8-5

Professional G Developers Tools Reference Manual viii © MNational Instruments Corporation

Contents

Chapter 9
Documentation Tool
Chapter 10
VI Comparison Tools
(070] 121 o F= 1Ll o TT=T = 1 o] 1= 10-1
(070] 131 o F= 11T 4 @] o] 1 o] o 1< PP 10-3
SNOW DIffEFENCES ...veiiiiiiiiee e s 10-3
(070} 3 T o 7=V £ = 2 SO -5 10
(070] 121 o F= 1 TS0 I £S1ST U =PRSS 10-6
Source Code Control»Compare FilEScccoiiiiiiiiiiiiiiie e 10-7
Chapter 11
Source Code Control Tools
General Source Code Control CONCEPLS ..vvvvriiieeeeii it ree e e e esrrrrrrr e e e e e e nnnenanees 11-1
Using Individual Files Instead of VI LIbrariesccooovvviieiiiiee e 11-2
QuickStart Guide to UsiNg the SCC TOOISuuuiiiiiiiiieeiii it ee e 11-2
Selecting the Source Code COoNtrol SYSIEMuuuiiiiieeiiieiiiir e e e 114
BUII-IN SYSIEM...eiiiiii e e e e e ae s 11-5
Third-Party SCC SYSEMS.......ccociiiiiieiiiee e e eeesrtiee e e e e e e e et ereeae e e s e e e nnnnes 11-6
F e [Ty (= LT GRS =Y (U] o RS RR 11-7
Configuring the SCC SYSEMccciciiiiiiieeee e e 11-7
BUIIE-IN SYSIEM ..o 11-8
Visual SOUrCESAfEcvviiiei i 11-9
ClEAICASEeeeei ittt e 11-10
Optional Administrator SEtUP........ceveeveeeiiiiiiiiiiiriree e ee e 11-12
Edit Platform List (Advanced OpPtion)cceeeeeiiiiiiiiiiiieicee e 11-13
(o Tor= 1 @] a1 To [0 = 1] o PRSP 11-14
Configuring the SCC SYSEM ... e e e 11-14
BUIIE-IN SYSIEM ..o 11-15
Visual SOUrCESAfEcuvviiiiiiiii e 11-15
ClEAICASEeeieei ittt 11-15
[IoTo= YAV o] 4 QBT {=Tex (o] oY 2SS 11-16
Platform Drop-DOWN MENUccoiiiiiiiiiiieeeeeeeeeee e a e e e 11-17
Managing Source Code CONtrol ProjECES.......uuuvuuriiiiiieiiie i e e ee e e e e e ee e eeee e 11-17
Source Code Control Projects OVErVIEW..........coeeeeeeeiiieieieeeeeeeeeve 11-17
Managing Multiple HierarChi€s.............eeieiiiiiieie e 11-17
11-18

Creating @ PrOJECTcoi i e s e e e e e e e e e e e e e ae e e e e e e aeeeeeeserernne
L0 oo =1 1] o = B][] (SRR 11-20
SCC File Wizard
Managing Files with the Same Name

© National Instruments Corporation ix Professional G Developers Tools Reference Manual

Contents

Removing Files from @ Project ..ot 11-21
Adding Extra Files t0 @ Project...........ueiiiiiiiiiiiiiiie e 11-21
PrOJECE GIOUPS ... ettt et e ettt ettt et e e e e e e e et e e e e e e e e e e e e e neeneeees 11-22
ACCESSING FIBS ... e e as :23....11
REtHEVING FIlES ..o 11-23
FIle StAtUS ..o 11-24
File PrOPeIIEScciiiiiiiii ettt 11-25
ChecKing OUL FIlES.........cooiiiiiiiii e 11-26
Use the History Window to Document Changes.........c..cccvvveerunnnnn. 11-27
(01 0T Tod g oo [N L 1 11 SEESP 11-28
SCC USEI NAIME ...ttt e 11-29
AAVANCEA FEAIUIESviiii ittt e s s e e e bt be e e s s nnneeeeas 11-30
Deleting Files from SCC.....uuuiiii i ee e e 11-31
Y 0L O] L= o 1S3 (o] Y2 SESRRU 11-31
SYSIEM HISTONY ..veiiiiiee e e e e e e e st eeeeeas 11-32
Accessing Previous Versions of FileS.......ccccviviie i 11-33
BUIIt-IN SYSIEM ... 11-33
Third-Party SYSIEMSccviiiiiii e 11-33
Labeling Versions of Files for Easy Retrieval...........cccccceeeiiiiiiiivieeeee, 11-34
Creating REePOIS ...ccoo i e e e e e e e e e e e e e e e e e e e raeaaaae 11-34
BUIIE-IN SYSIEM ... e 11-35
ViSUAI SOUMCESATIE......coi ittt 11-35
MURIPIAFOIM ISSUEBS... .o i e r e e e s e e e e e e e e e aeaaeeeeeeeeeeeanee 11-36
Cross-Platform Source Code CONrolcooviiiiiiiiiiiiiiieeeee e 11-36
Filename LIMItatiONScoooeiiiiiiiiiiieccee et e e e e 11-36
Platform-Dependent SCC FileS........coviiiiiiiniie e 11-37
Platform-SpecifiCc FileSccooveiiiiii i 11-38
Variants of a File for Different Platforms..........cccccooviiniiiiiiiennnnnnn. 11-39
Retrieving Files for a Different Platformcccccinnnns 11-39
Appendix A
References
Appendix B
Customer Communication
Glossary
Index

Professional G Developers Tools Reference Manual X © MNational Instruments Corporation

Contents

Figures
Figure 2-1. Waterfall Lifecycle Model ... 2-5
Figure 2-2. Spiral Lifecycle Model ... 2-9
Figure 3-1. Capability Maturity Model ... 3-15
Figure 4-1. Flowchart of a Data Acquisition SYStem...........ccuvviiiiiiieeriiniiiiiiieeeen 4-4
Figure 4-2. Mapping Pseudocode into a G Data Structureccccocvveeeriiveeeennne. 4-5
Figure 4-3. Mapping Pseudocode into Actual G Codeccceveeeiiiiieenniiiieeee 4-5
Figure 4-4. Data Flow for a Generic Data Acquisition Programcccceeeennnne 4-6
Figure 4-5. VI Hierarchy for the TektroniXx 370A..........cocoiiiiiiiiieiiieeee e 4-8
Figure 4-6. Operations Run Independently...........cccoouveiiiiiiiiiii i 4-11
Figure 4-7. Loop Performs Operation Three TiMeS........ccccvevviiiieeiiiiiee e 4-11
Figure 7-1. Directory HI€rarchy.........coccuueeeiiiiiiiiiieee et 7-2
Figure 7-2. Top-Level VIs Listed at the Top of a VI Library..........cccccoecvvvveinnnnnn. 7-3
Figure 7-3. Mixture of Directories and VI Libraries...........ccccccviiiiiiiiiiiieees 7-4
Figure 7-4. Example of Imported Graphics Used in a Pict Ringccc.occveeeeennnnn 7-6
Figure 7-5. Free Labels on a Boolean Control..............ccccveiiiiiieiiiiiiiieeeee e 7-9
Figure 7-6. Front Panel of Range Finder VIcccciiiiiiiiiiie e 7-10
Figure 7-7. Block Diagram of Range FInder VIccoooiviiiiiiii e 7-10
Figure 7-8. Good and Bad Inputs and OULPULSeeeeiriiieeeiiiiiieeniiiiee e 7-14
Figure 7-9. Good Wiring in a Simple Block Diagramccccoocuvieeeiiniieeeciniiieeee 7-17
Figure 7-10. Example of How Data Acquisition VIs Use Error Clusters.................. 7-19
Figure 7-11. Example of How to Use an Error CIUSEEr...........cooiiiiieiiiiiiee e 7-23
Figure 7-12. Well-Placed Front Panel and Block Diagramcccccceveiniiieneennnne. 7-24
Figure 8-1. VI Metrics TOOI Dialog BOXc.ueveeiiiiiiiieiiiiiee et 8-2
Figure 8-2. Block Diagram with Eight NOAESccceviiiiiiiiiiiiiii e 8-3
Figure 9-1. Documentation Tool Dialog BOXcccuveeeiiiiiieiiiiiicecriiie e 9-1
Figure 10-1. Compare VI HierarChi€s...........ccooiiiiiiiiiiiii e 10-2
Figure 10-2. Differences WINGOW.c.uueiiiiiiiiie it 10-3
Figure 10-3. Block Diagram DiIfferencecoooueeiiiiiiiiiie e 10-4
Figure 10-4. Compare VIS Dialog BOX........cccoiiuiiiieiiiiiiiiiiiiiieee et 10-5
Figure 10-5. Comparison Progress Dialog BOXcceeiiiiiiiiiiiinie e 10-6
Figure 10-6. SCC Compare Files Dialog BOXccooiuiiiiiiiiiiiiiiiiiieee e 10-7
Figure 11-1. G SCC Tools Can Work with Built-In and Third-Party Systems 11-5
Figure 11-2. SCC Administration Dialog BOX...........ueeiiiiiiiiiiiiiiiee i 11-7
Figure 11-3. Administer Builtin System Dialog BOX........cccccoeviiiiieiiniiiie e 11-8
Figure 11-4. SCC Edit Platform List Dialog BOXcoocovvieiiiiiieeiiiiiieeieee e 11-13

© National Instruments Corporation Xi Professional G Developers Tools Reference Manual

Contents

Figure 11-5. SCC Local Configuration Dialog BOX...........eceiiiiiiiiiiiiiiiiiiiiieiaeeeeeee 11-14
Figure 11-6. SCC Project Dialog BOXcccccuueiiiiiieieaaee et 11-18
Figure 11-7. Edit Project File List Dialog BOX..........cccuuuiiiiiiiiaaaiiiiiiiiieeeeee e 11-19
Figure 11-8. Edit Extra Files Dialog BOXccciiiiiiiiiiiiiiiiiiiieiee e 11-22
Figure 11-9. Edit Project Group Dialog BOX.......ccoiiiiiiiiiiiiiiiiiiieieeeeee e 11-23
Figure 11-10. SCC Retrieve Files Dialog BOXccccuieiiiiiiiiiiiiiiiiiiiee e 11-24
Figure 11-11. SCC File Properties Dialog BOX........cceeeeiiiiiiieiiiiice e 11-25
Figure 11-12. SCC Check Files Out Dialog BOXceeeiiiiiiieeeeiiiiiiiee s 11-26
Figure 11-13. SCC Check Files In Dialog BOXcuuveeiiiiiiiiiiiiiiieeeiieee e 11-28
Figure 11-14. Edit Change Comments Dialog BOX..........cccccuviirirerieeii i isiieneeeee e, 11-29
Figure 11-15. SCC Advanced Dialog BOXcccuuiiiieeeeeeiiiiiiiiiieieeeee e s sscvnvvneeeeeaens 11-30
Figure 11-16. SCC Reports Dialog Box for Built-in SCC System..........ccccccvevveerrnnns 11-35
Figure 11-17. SCC Edit File Platforms Dialog BOXuueviieeeeiiiiiiiiiiiiireeeeeeesesiinnns 11-38
Tables
Table 2-1. Risk Exposure Analysis Example............cccouiieiiiiiiiiiiiieieeceeee 2-10
Table 7-1. Examples of Font Styles and When to Use Each.............cccccccceiinie 7-5

Professional G Developers Tools Reference Manual Xii © MNational Instruments Corporation

About This Manual

The Professional G Developers Tools Reference Madeastribes the
features, functions, and operation of the Professional G Developers Tools.
With these tools, you can apply software engineering techniques to G code
development. This package adds important software engineering tools to
LabVIEW and BridgeVIEW.

In addition, this manual describes many of the issues that arise when
developing large applications and provides a basic survey of software
engineering techniques you might find useful when developing your
own projects.

Organization of This Manual

The Professional G Developers Tools Reference Maisudlvided into
two sections. Chapters 2 through 7 describe software engineering
concepts. Chapters 8 through 11 describe the tools.

e Chapter 1)ntroduction introduces you to the features of the
Professional G Developers Tools.

Part I—Software Engineering Concepts

* Chapter 2Development Modelprovides examples of some
common development pitfalls and describes a number of software
engineering lifecycle models.

» Chapter 3|ncorporating Quality into the Development Progess
describes strategies for producing quality software.

e Chapter 4 Prototyping and Design Techniquagves you pointers
for project design, including programming approaches,
prototyping, and benchmarking.

e Chapter 5Scheduling and Project Trackingescribes techniques
for estimating development time and using those estimates to create
schedules.

e Chapter 6Creating Documentatigrdescribes techniques for
documenting your software.

e Chapter 7Using Consistent Style: The G Style Guidescribes
recommended practices for good programming technique and style.

© National Instruments Corporation Xiii Professional G Developers Tools Reference Manual

About This Manual

Part Il—Professional Development Tools

e Chapter 8VI Metrics Too] describes how to use the VI Metrics tool
to measure the complexity of your application.

« Chapter 9Documentation Togldescribes to create documentation
for VIs in HTML or Rich Text Format (RTF), to create source material
for online help files, or to print the material directly to a printer.

¢ Chapter 10YI Comparison Tooldescribes the VI Comparison tools,
which you can use to manage different versions of VIs as you develop
large applications.

e Chapter 11Source Code Control Togldescribes the G Source Code
Control (SCC) tools, which allow you to add files to SCC and access
those files from within the LabVIEW or BridgeVIEW environment.

Appendices, Glossary, and Index

« Appendix A,Referencesprovides a list of references for further
information about software engineering concepts.

* Appendix B,Customer Communicatipeontains forms you can use
to request help from National Instruments or to comment on our
products and manuals.

e TheGlossarycontains an alphabetical list and description of terms
used in this manual, including abbreviations and acronyms.

Thelndexcontains an alphabetical list of key terms and topics in this
manual, including the page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual;

<> Angle brackets enclose the name of a key on the keyboard—for example,
<Shift>.

- A hyphen between two or more key names enclosed in angle brackets
denotes you should simultaneously press the named keys—for example,
<Control-Alt-Delete>.

» The» symbol leads you through nested menu items and dialog box options
to a final action. The sequengie»Page Setup»Options»Substitute
Fonts directs you to pull down thgile menu, select theage Setuptem,

Professional G Developers Tools Reference Manual Xiv © MNational Instruments Corporation

Iy

bold

bold italic
<Control>

italic

monospace

paths

Platform

About This Manual

selectOptions, and finally select th8ubstitute Fontsoption from the last
dialog box.

This icon to the left of bold italic text denotes a note, which alerts you to
important information.

Bold text denotes the names of menus, menu items, parameters, dialog
boxes, dialog box buttons or options, icons, palettes, or windows.

Bold italic text denotes a note.
Key names are capitalized.

Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text from which you supply the
appropriate word or value, as in Windows. 3.

Text in this font denotes text or characters you should literally enter from
the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines, device names, functions,
operations, variables, filenames and extensions, and for statements and
comments taken from programs.

Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, folders, and files.

Text in this font denotes information related to a specific platform.

Related Documentation

The following documentation contains information you might find helpful
as you read this manual:

e BridgeVIEW User Manual

* LabVIEW User Manual

e LabVIEW Function and VI Reference Manual
e G Programming Reference Manual

» BridgeVIEW Online Referencevailable by selecting
Help»Online Reference

« LabVIEW Online Referencevailable by selecting
Help»Online Reference

© National Instruments Corporation XV Professional G Developers Tools Reference Manual

About This Manual

Refer to Appendix AReferencesfor a list of additional documents you
might find helpful as you read this manual and work on your development
projects.

Customer Communication

National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in Appendi<Bstomer
Communicatiopat the end of this manual.

Professional G Developers Tools Reference Manual XVi © MNational Instruments Corporation

Introduction

This chapter introduces you to the features of the Professional G
Developers Tools.

Required System Configuration

These tools are available for all platforms except Windows 3.1.
Windows 3.1 is not supported because the Source Code Control (SCC)
tools require that virtual instruments (VIs) be stored in individual files
rather than in libraries (LLBs). You can use the File Manager tool to
convert LLBs to directories.

Note Although you cannot use these tools under Windows 3.1, you still can develop for
customers who need Windows 3.1 support. You can use Windows 95/NT as the
development platform and save Vls as individual files. When you need to send
software to a Windows 3.1 user, save VIs in LLBs.

Configuration

For installation instructions, refer to tReofessional G Developers Tools
Release Noteg\fter installation is complete, the administrator must set up
the Source Code Control system for the other users. All users must perform
local configuration. Refer to thidministrator SetujandLocal
Configurationsections in Chapter 1$purce Code Control Toglfor more
information.

© National Instruments Corporation 1-1 Professional G Developers Tools Reference Manual

Chapter 1 Introduction

Overview

LabVIEW and BridgeVIEW are flexible tools for using a graphical
programming language called G to design test, measurement, and process
monitoring and control applications.

National Instruments designed G as an easy-to-use, general-purpose
language. Because G is a fully functional programming language,
LabVIEW and BridgeVIEW deal with complex applications that cannot be
developed easily using more restrictive data acquisition and control
applications. G emphasizes hierarchical design and reuse with its concept
of a VI. Each VI is a complete program that consists of a front panel that
provides a user interface and a block diagram that represents the source
code. The block diagram describes the relationship and interactions
between inputs and outputs in the user interface. Every VI is a reusable
component. You can define a calling interface and a representative icon so
you can call the VI as a subroutine, or subVI, from other Vis.

Because Vls can be stored in separate files, multiple developers can work
on different parts of a project simultaneously. As with other programming
languages, developing and managing large applications with multiple
developers requires more rigorous methodologies than simple applications
require. Poor design and development techniques can lead to applications
that are not developed on time, are not easy to maintain, and contain
programming errors that prevent the software from working reliably.

Software engineering is the field of study related to defining the best
processes for developing software. These tools are designed to help users
apply these techniques to G code development. Most software engineering
techniques apply to graphical programming languages just as well as they
apply to textual programming languages.

Features of the Tools

The Professional G Developers Tools are designed to simplify
development of high-end, large-scale applications. The tools can help you
manage and track code in large development projects. These tools are ideal
for large teams of developers, individual users developing large suites of
VIs, and G programmers who must adhere to stringent quality standards
such as those required by 1ISO 9000 or the U. S. Food and Drug
Administration.

Professional G Developers Tools Reference Manual 1-2 © MNational Instruments Corporation

Chapter 1 Introduction

The tools include features that help you do the following:

» Control source code—Integrated Source Code Control tools are
accessible from the menus of LabVIEW or BridgeVIEW. With these
tools, you can share VIs with multiple developers.

You can check out files to begin development and check in files
when you are ready to share your changes with others. This
check out/check in system ensures that only one developer
modifies a specific VI at a time. The G SCC tools are built on an
openApplication Programming Interfacgo they can communicate
with either a built-in SCC system available to all platforms or other
third-party SCC systems. These tools support the built-in system,
Microsoft Visual SourceSafe for Windows 95/NT, and Rational
Software ClearCase for Solaris 2.

« Measure complexity—The VI Metrics tool provides a simple way to
measure the complexity of an application similar to the widely used
source lines of codmetrics for textual languages. With this tool, you
also can view many other statistics about Vls, which are useful in
examining your VIs to find overly complex areas or in establishing
baselines for estimating future projects.

* Print documentation—The Documentation tool makes it easy to
print documentation for VIs in your hierarchy. In addition to creating
printed documentation, you can use this tool to create Web pages,
online help source files, and word-processor documents for your VIs.

e Compare files—VI Comparison tools make it easy to view the
differences between two VIs, two hierarchies of VIs, and between files
and files under Source Code Control. This is extremely important
when multiple developers work on the same set of VIs or when you
need to understand how your VIs have changed.

© National Instruments Corporation 1-3 Professional G Developers Tools Reference Manual

Part |

Software Engineering Concepts

This section of the manual describes software engineering concepts.

Chapter 2Development Modelprovides examples of some
common development pitfalls and describes a number of software
engineering lifecycle models.

Chapter 3Incorporating Quality into the Development Progess
describes strategies for producing quality software.

Chapter 4 Prototyping and Design Techniquagves you pointers
for project design, including programming approaches,
prototyping, and benchmarking.

Chapter 5Scheduling and Project Trackindescribes techniques
for estimating development time and using those estimates to create
schedules.

Chapter 6 Creating Documentatigrdescribes techniques for
documenting your software.

Chapter 7Using Consistent Style: The G Style Guidescribes
recommended practices for good programming technique and style.

Development Models

This chapter provides examples of some common development pitfalls and
describes a number of software engineering lifecycle models.

G, the graphical programming language of LabVIEW and BridgeVIEW,
makes it easy to assemble components of data acquisition, test, and control
systems. Because it is so easy to program in G, you might be tempted to
begin developing VIs immediately with relatively little planning. For

simple applications, such as quick lab tests or monitoring applications, this
approach might be appropriate. However, for larger development projects,
good planning becomes vital.

Common Development Pitfalls

If you have developed large applications before, you probably have heard
some of the following statements. Most of these approaches start out with
good intentions and seem quite reasonable. However, these approaches are
often unrealistic and can lead to delays, quality problems, and poor morale
among team members.

* “I haven't really thought it through, but I'd guess that the project you
are requesting can be completed in...”

Off-the-cuff estimates rarely are correct because they usually are based
on an incomplete understanding of the problem. When developing for
someone else, you might each have different ideas about requirements.
To estimate accurately, you both must clearly understand the
requirements and work through at least a preliminary high-level design
so you understand the components you need to develop. Refer to
chapter Chapter Jjcheduling and Project Trackinfpr more

information on techniques for estimation.

e “I'think I understand the problem the customer wants to solve, so I'm
ready to dive into development.”

There are two problems with this statement. First, lack of consensus on
project goals results in schedule delays. Your idea of what a customer
wants might be based on inadequate communication. Developing a
requirements document and prototyping a system, both described in
theLifecycle Modelsection later in this chapter, can be useful tools to

© National Instruments Corporation 2-1 Professional G Developers Tools Reference Manual

Chapter 2 Development Models

clarify goals. A second problem with this statement is that diving into
development might mean writing code without a detailed design. Just
as builders do not construct a building without architectural plans,
developers should not begin building an application without a detailed
design. Refer to th€ode and Fix Modedection later in this chapter

for more information.

¢ “We don't have time to write detailed plans. We're under a tight
schedule, so we need to start developing right away.”

This situation is similar to the previous example but is such a common
mistake that it is worth emphasizing. Software developers frequently
skip important planning because it does not seem as productive as
developing code. As a result, you develop VIs without a clear idea of
how they all fit together, and you might have to rework sections as you
discover mistakes. Taking the time to develop a plan can prevent costly
rework at the development stage. Refer td_ifexycle Modelsection

later in this chapter and ChaptePptotyping and Design
Techniquesfor better approaches to developing software.

e “Let’s try for the whole ball of wax on the first release. If it doesn't do
everything, it won't be useful.”

In some cases, this might be correct. However, in most applications,
developing in stages is a better approach. When you analyze the
requirements for a project, you should prioritize features. You might be
able to develop an initial system that provides useful functionality in a
shorter time at a lower cost. Then, you can add features incrementally.
The more you try to accomplish in a single stage, the greater the risk
of falling behind schedule. Releasing software incrementally reduces
schedule pressures and ensures timely software release. Refer to the
Lifecycle Modelsection later in this chapter for more information.

e “Ifl can just get all the features in within the next month, | should be
able to fix any problems before the software is released.”

To release high-quality products on time, you should maintain quality
standards throughout development. Do not build new features on an
unstable foundation and rely on correcting problems later. This
exacerbates problems and increases cost. Although you might
complete all the features on time, the time required to correct the
problems in the existing and the new code can delay the release of the
product. You should prioritize features and implement the most
important ones first. Once the most important features are tested
thoroughly, you can choose to work on lower-priority features or defer
them to a future release. Refer to Chaptén@rporating Quality into

the Development Procedsr more information on techniques for
producing high-quality software.

Professional G Developers Tools Reference Manual 2-2 © MNational Instruments Corporation

Chapter 2 Development Models

“We're behind in our project. Let’'s throw more developers onto the
problem.”

In many cases, doing this actually can delay your project. Adding
developers to a project requires time for training, which can take away
time originally scheduled for development. Add resources eatrlier in
the project rather than later. Also, there is a limit to the number of
people who can work on a project effectively. With a few people, there
is less overlap. You can partition the project so each person works on
a particular section. The more people you add, the more difficult it
becomes to avoid overlap. ChapteP4dototyping and Design
Techniquesdescribes methods for partitioning software for multiple
developers. Chapter Bjcorporating Quality into the Development
Processdescribesonfiguration managemetechniques that can help
minimize overlap.

“We're behind in our project, but we still think we can get all the
features in by the specified date.”

When you are behind in a project, it is important to recognize that fact
and deal with it. Assuming you can make up lost time can postpone
choices until it becomes costly to deal with them. For example, if
you realize in the first month of a six-month project that you are
behind, you could sacrifice planned features or add time to the
overall schedule. If you do not realize you are behind schedule until
the fifth month, other groups might have made decisions that are
costly to change.

When you realize you are behind, adjust the schedule or consider
features you can drop or postpone to subsequent releases. Do not
ignore the delay or sacrifice testing scheduled for later in the process.
Refer to Chapter Scheduling and Project Trackintpr more
information on estimating project schedules.

Numerous other problems can arise when developing software. The
following list includes some of the fundamental elements of developing
quality software on time:

© National Instruments Corporation

Spend sufficient time planning.

Make sure the whole team thoroughly understands the problems that
must be solved.

Have a flexible development strategy that minimizes risk and
accommodates changes.

2-3 Professional G Developers Tools Reference Manual

Chapter 2

Development Models

Lifecycle Models

Software development projects are complex. To deal with these
complexities, developers have collected a core set of development
principles. These principles define the field of software engineering. A
major component of this field is thigecycle modelThe lifecycle model
describes the steps you follow to develop software—from the initial

concept stage to the release, maintenance, and subsequent upgrading of the
software.

Currently, there are many different lifecycle models. Each has advantages
and disadvantages in terms of time-to-release, quality, and risk
management. This section describes some of the most common models
used in software engineering. Many hybrids of these models exist, so use
the parts you believe will work for your project.

Although this section is theoretical in its discussion, in practice you should
consider all the steps these models encompass. You should consider when
and how you decide that the requirements and specifications are complete
and how you deal with changes to them. The lifecycle model serves as a
foundation for the entire development process. Good choices in this area
can improve the quality of the software you develop and decrease the time
it takes to develop it.

Code and Fix Model

Thecode and fix modgdrobably is the most frequently used development
methodology in software engineering. It starts with little or no initial
planning. You immediately start developing, fixing problems as you find
them, until the project is complete.

Code and fix is a tempting choice when you are faced with a tight
development schedule because you begin developing code right away and
see immediate results.

Unfortunately, if you find major architectural problems late in the process,
you might have to rewrite large parts of your application. Alternative
development models can help you catch these problems in the early concept
stages when it is easier and much less expensive to make changes.

The code and fix model is appropriate only for small projects that are not
intended to serve as the basis for future development.

Professional G Developers Tools Reference Manual 2-4 © MNational Instruments Corporation

Waterfall Model

Chapter 2 Development Models

Thewaterfall modeis the classic model of software engineering. It has
deficiencies, but it serves as a baseline for many other lifecycle models.

The pure waterfall lifecycle consists of several hon-overlapping stages, as
shown in Figure 2-1. It begins with the software concept and continues
through requirements analysis, architectural design, detailed design,
coding, testing, and maintenance.

System

Requirements \

Software
Requirements

\ Architectural

Design

R N
\

N

Maintenance

© National Instruments Corporation

Figure 2-1. Waterfall Lifecycle Model

System requirements—Establishes the components for building the
system. This includes the hardware requirements (number of channels,
acquisition speed, and so on), software tools, and other necessary
components.

Software requirements—Concentrates on the expectations for
software functionality. You identify which of the system requirements
the software affects. Requirements analysis might include determining
interaction needed with other applications and databases, performance
requirements, user interface requirements, and so on.

Architectural design—Determines the software framework of a system
to meet the specified requirements. The design defines the major
components and their interaction, but it does not define the structure of
each component. You also determine the external interfaces and tools
that will be used in the project. Examples include decisions on

2-5 Professional G Developers Tools Reference Manual

Chapter 2 Development Models

hardware, such as plug-in boards, and external pieces of software, such
as databases or other libraries.

« Detailed design—Examines the software components defined in the
architectural design stage and produces a specification for how each
component is implemented.

e Coding—Implements the detailed design specification.

* Testing—Determines whether the software meets the specified
requirements and finds any errors present in the code.

¢ Maintenance—Performed as needed to deal with problems and
enhancement requests after the software is released. In some
organizations, each change is reviewed by a change control board to
ensure that quality is maintained. You also can apply the full waterfall
development cycle model when you implement these change requests.

In each stage, you create documents that explain your objectives and
describe the requirements for that phase. At the end of each stage, you hold
a review to determine whether the project can proceed to the next stage.
Also, you can incorporate prototyping into any stage from the architectural
design and after. Refer to tReototypingsection later in this chapter for

more information.

The waterfall lifecycle model is one of the oldest models and is widely used
in government projects and in many major companies. Because it
emphasizes planning in the early stages, it helps catch design flaws before
they are developed. Also, because it is document and planning intensive, it
works well for projects in which quality control is a major concern.

Many people believe you should not apply this model to all situations. For
example, with the pure waterfall model, you must state the requirements
before you begin the design, and you must state the complete design before
you begin coding. There is no overlap between stages. In real-world
development, however, you might discover issues during the design or
coding stages that point out errors or gaps in the requirements.

The waterfall method does not prohibit returning to an earlier phase, for
example, from the design phase to the requirements phase. However, this
involves costly rework. Each completed phase requires formal review and
extensive documentation development. Thus, oversights made in the
requirements phase are expensive to correct later.

Because the actual development comes late in the process, you do not see
results for a long time. This can be disconcerting to management and to

Professional G Developers Tools Reference Manual 2-6 © MNational Instruments Corporation

Chapter 2 Development Models

customers. Many people also think the amount of documentation is
excessive and inflexible.

Although the waterfall model has its weaknesses, it is instructive because it
emphasizes important stages of project development. Even if you do not
apply this model, you should consider each of these stages and its
relationship to your own project.

Modified Waterfall Model

Many engineers recommend modified versions of the waterfall lifecycle.
These modifications tend to focus on allowing some of the stages to
overlap, reducing the documentation requirements, and reducing the cost of
returning to earlier stages to revise them. Another common modification is
to incorporate prototyping into the requirements phases, as described in the
following section.

Overlapping stages such as requirements and design make it possible to
feed information from the design phase back into the requirements.
However, this can make it more difficult to know when you are finished

with a given stage. Consequently, it is more difficult to track progress.
Without distinct stages, problems might cause you to defer important
decisions until late in the process when they are more expensive to correct.

Prototyping

One of the main problems with the waterfall model is that the requirements
often are not completely understood in the early development stages. When
you reach the design or coding stages, you begin to see how everything
works together, and you might discover you need to adjust requirements.

Prototyping can be an effective tool for demonstrating how a design might
deal with a set of requirements. You can buifgt@otype adjust the
requirements, and revise the prototype several times until you have a clear
picture of your overall objectives. In addition to clarifying the

requirements, the prototype also defines many areas of the design
simultaneously.

The pure waterfall model allows for prototyping in the later architectural
design stage and subsequent stages, but not in the early requirements
stages.

© National Instruments Corporation 2-7 Professional G Developers Tools Reference Manual

Chapter 2

Development Models

Prototyping has drawbacks, however. Because it appears that you have a
working system quickly, customers might expect a complete system sooner
than is possible. In most cases, the prototype is built on compromises that
allow it to come together quickly but that could prevent the prototype from
being an effective basis for future development. You need to decide early
whether you will use the prototype as a basis for future development. All
parties should agree to this decision before development begins.

You should be careful that prototyping does not become a disguise for a
code and fix development cycle. Before you begin prototyping, you should
gather clear requirements and create a design plan. Limit the amount of
time you will spend prototyping before you begin. This helps to avoid
overdoing the prototyping phase. As you incorporate changes, you should
update the requirements and the current design. After you finish
prototyping, you might consider returning to one of the other development
models. For example, you might consider prototyping as part of the
requirements or design phases of the waterfall model.

G Prototyping Methods

There are a number of ways to prototype a system.

In systems with I/O requirements that might be difficult to satisfy, you can
develop a prototype to test the control and acquisition loops and rates. In
I/O prototypes, random data can simulate data acquired in the real system.

Systems with many user interface requirements are perfect for prototyping.
Determining the method you will use to display data or prompt the user for
settings can be difficult on paper. Instead, consider designing VI front
panels with the controls and indicators you need. You might leave the block
diagram empty and just talk through the way the controls would work and
how various actions would lead to other front panels. For more extensive
prototypes, you could even tie the front panels together. However, be
careful not to get too carried away with this process.

If you are bidding on a project for a client, using front panel prototypes can
be an extremely effective way to discuss with the client how you might be
able to satisfy his or her requirements. Because you can add and remove
controls quickly, especially if you avoid developing block diagrams, you
can help customers clarify their requirements.

Professional G Developers Tools Reference Manual 2-8 © MNational Instruments Corporation

Chapter 2 Development Models

Spiral Model

Thespiral modelis a popular alternative to the waterfall model. It
emphasizes risk management so you find major problems earlier in the
development cycle. In the waterfall model, you have to complete the design
before you begin coding. With the spiral model, you break up the project
into a set of risks that need to be dealt with. You then begin a series of
iterations in which you analyze the most important risk, evaluate options
for resolving the risk, deal with the risk, assess the results, and plan for the
next iteration. Figure 2-2 illustrates the spiral lifecycle model.

Determine Objectives, Evaluate Alternatives
Alternatives, and Constraints and Risks
Risk
Ana|ysis Cumulative Cost

Commit to Protlotype

Next Cycle

[k

/

Plan Next Phase Develop and Test

Figure 2-2. Spiral Lifecycle Model

Risks are any issues that are not clearly defined or have the potential to
affect the project adversely. For each risk, you need to consider two things:
How likely it is to occur (probability) and the severity of its effect on the
project (loss). You might use a scale of 1 to 10 for each of these items, with
1 representing the lowest and 10 representing the highest. Your risk
exposure is the product of these two rankings.

© National Instruments Corporation 2-9 Professional G Developers Tools Reference Manual

Chapter 2 Development Models

You can use a table to keep track of the top risk items of your project.
Table 2-1 gives an example of how to do this.

Table 2-1. Risk Exposure Analysis Example

not be efficient

Risk Risk Management
ID Risk Probability Loss Exposure Approach
1 Acquisition rates 5 9 45 Develop prototype
too high to demonstrate feasibility
2 File format might 5 3 15 Develop benchmarks

to show speed of data
manipulation

3 Uncertain user
interface

2 5 10 Involve customer;
develop prototype

In general, you should deal with the risks with the highest risk exposure
first. In this example, the first spiral should deal with the potential of the
data acquisition rates being too high. After the first spiral, you might have
demonstrated that the rates are not too high, or you might have to change to
a different configuration of hardware to meet the acquisition requirements.
Each iteration might identify new risks. In this example, using more
powerful hardware might make higher cost a new, more likely risk.

For example, assume you are designing a data acquisition system with a
plug-in data acquisition card. In this case, the risk is whether the system can
acquire, analyze, and display data quickly enough. Some of the constraints
in this case are system cost and requirements for a specific sampling rate
and precision.

After determining the options and constraints, you evaluate the risks. In this
example, you could create a prototype or benchmark to test acquisition
rates. After you see the results, you can evaluate whether to continue with
the approach or choose a different option. You do this by reassessing the
risks based on the new knowledge you gained from building the prototype.

In the final phase, you evaluate the results with the customer. Based on
customer input, you can reassess the situation, decide on the next highest
risk, and start the cycle over. This process continues until the software is
finished or you decide the risks are too great and terminate development.
You might find that none of the options is viable because each is too
expensive, time-consuming, or does not meet the requirements.

Professional G Developers Tools Reference Manual 2-10 © MNational Instruments Corporation

Chapter 2 Development Models

The advantage of the spiral model over the waterfall model is that you can
evaluate which risks to take care of with each cycle. Because you can
evaluate risks with prototypes much earlier than in the waterfall process,
you can deal with major obstacles and select alternatives in the earlier
stages, which is less expensive. With a standard waterfall model, you might
have allowed assumptions about the risky components to spread throughout
your design, which requires much more expensive rework when the
problems are later discovered.

Summary

Lifecycle models are described as distinct choices from which you must
select. In practice, however, you can apply more than one model to a single
project. You might start a project with a spiral model to help refine the
requirements and specifications over several iterations using prototyping.
Once you have reduced the risk of a poorly stated set of requirements, you
might apply a waterfall lifecycle model to the design, coding, testing, and
maintenance stages.

Other lifecycle models exist. Appendix Referencedists documents that
contain information about other development methodologies.

© National Instruments Corporation 2-11 Professional G Developers Tools Reference Manual

Incorporating Quality into the
Development Process

This chapter describes strategies for producing quality software.

Many developers who follow the code and fix style of programming
described in Chapter Pevelopment Modelsnistakenly believe they do

not need to deal with the issue of quality until the testing phase. This is
simply not true. Quality must be designed into a product from the start.
Developing quality software begins by selecting a development model that
helps you avoid problems in the first place. Quality should be considered
during all stages of development: requirements and specification, design,
coding, testing, release, and maintenance.

Quality controls should not be regarded as tedious requirements that
impede development. Most of them help streamline development so
problems are found before they are in the software, when it is inexpensive
to fix them.

Quality Requirements

Set the quality standards for your product during the requirements stage.
The desired quality level should be treated as a requirement, just like other
requirements. Weigh the merits and costs of various options you have for
applying quality measures to your project. Some of the trade-offs you
should consider include speed versus robustness, and ease-of-use versus
power and complexity.

For short projects that will be used only in-house as tools or quick
prototypes, you do not need to emphasize robustness. For example, if you
decide to develop a VI to benchmark 1/0 and graphing speeds, error
checking is not as crucial.

However, with more complicated projects that must be reliable, such as
applications for monitoring and controlling a factory process, the software
should deal with invalid input gracefully. For example, if an operator
mistakenly selects invalid voltage or current settings, your application

© National Instruments Corporation 3-1 Professional G Developers Tools Reference Manual

Chapter 3

Incorporating Quality into the Development Process

should deal with it appropriately. Institute as many safeguards as possible
to prevent problems. Select a lifecycle development model that helps you
find problems as early as possible and allow time for formal reviews and
thorough testing.

Configuration Management

Configuration management is the process of controlling changes and
ensuring they are reviewed before they are made. Chaierglopment
Models outlines development models, such as the waterfall model. A
central focus of these models is to convert software development from a
chaotic, unplanned activity to a controlled process. These models improve
software development by establishing specific, measurable goals at each
stage of development.

Regardless of how well development proceeds, changes will need to be
implemented. Customers might introduce new requirements in the design
stage. Performance problems discovered during development might prompt
reevaluation of the design. You might need to rewrite a section of code to
correct a problem found in testing. Changes can affect any components of
the project from the requirements and specification to the design, code, and
tests. If these changes are not made carefully, you might introduce
problems that can delay development or degrade quality.

Source Code Control

After setting the project quality requirements, develop a process to deal
with changes. This is important for projects with multiple developers. As
the developers work on VIs, they need a method for collecting and sharing
their work. A simple method to deal with this is to establish a central source
repository. If each of the developer’'s computers is networked, you can
create a shared location that serves as a central source for development.
When developers need to modify files, they can retrieve them from this
location. When they are finished with the changes and the system is
working, they can return the files to this location.

Common files and areas of overlap introduce the potential for accidental
loss of work. If two developers decide to work on the same VI at the same
time, only one developer really can easily merge changes into the project.
The other developer will have to use the VI Comparison tool to determine
the differences and merge the changes into a new version. You might avoid
this with good communication, if each developer notifies the others when
he or she needs to work on a specific VI. Inevitably, however, a mistake will
be made, and work will be lost.

Professional G Developers Tools Reference Manual 3-2 © MNational Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

Source Code Control tools deal with the problems of sharing VIs and
controlling access to avoid accidental loss of data. Source Code Control
tools make it easy to set up shared projects and to retrieve the latest files
from the server. Once you have created a project, you can check out a file
for development. Checking out a file marks it with your name so that no
other developer can modify the file. Other developers can, however, retrieve
the current version from the server. A developer can check out the file,
make modifications, test the changes, and check in the file to the source
code system. After the file is checked in, it is accessible to the whole
development team again. Another developer can then check out the file to
make further modifications.

The G Source Code Control tools are accessible frorRribject menu.
Refer to Chapter 15ource Code Control Togl&r more information on
these tools.

Managing All Project-Related Files

The G Source Code Control tools can manage more than just Vis. You can
use them to manage all aspects of your project: requirements,
specifications, illustrations, reviews, and other documents related to your
project. This ensures that you can control access to these documents and
share them as needed. You can use the tools to track changes and access
older versions of files.

As described in Chapter Byototyping and Design Techniquesurce
management of all project-related files is extremely important for
developing quality software. In fact, source management is a requirement
for certification under existing quality standards such as 1ISO 9000.

Retrieving 0ld Versions of Files

There are times when you need to retrieve an old version of a file or project.
This might happen if you make a change to a file and check it in, only to
realize you made a mistake. Another reason it might happen is if you send
a beta version of your software to a customer and continue development.
If the customer reports a problem, you might need to access a copy of the
beta version.

One way to achieve this is to back up your files periodically. However,
unless you back up your system after every change, you might not have
access to every version.

© National Instruments Corporation 3-3 Professional G Developers Tools Reference Manual

Chapter 3 Incorporating Quality into the Development Process

Tracking Changes

Change Control

The G Source Code Control tools provide a way to check in new versions
of a file and make a back-up copy of the old version. Depending on how
you configure the system, the tools can maintain multiple backup copies of
a file.

You can use the tools to label versions of files with descriptive names like
beta ,v1.0 , and so on. You can label any number of files and later retrieve
all versions of a file with a specific label. When you release a version of
your software, take a snapshot of the files by attaching a label to them.
Chapter 11Source Code Control Togldescribes the file and system
history options.

If you are managing a software project, it is important to monitor changes
and track progress toward specific milestone objectives. You also can use
this information to determine problem areas of a project by identifying
which components required a lot of changes.

The G Source Code Control tools maintain a log of all changes made to files
and projects. When checking in a file, the developer is prompted to enter a
summary of the changes made. This summary information is added to the
log for that file.

You can view the history information for a file or for the system and
generate reports that contain that information. Refer t& @ File
History, System HistoryandCreating Reportsections of Chapter 11,
Source Code Control Togl®r more information.

In addition, if you back up your project at specific checkpoints, you can use
the VI Comparison tools to compare the latest version of a project with
another version to verify the changes in your project. Refer to Chapter 10,
VI Comparison Toolsor more information.

Large projects might require a formal process for evaluation and approval
of each change request. A formal evaluation system like this might be too
restrictive, so be selective when choosing the control mechanisms you
introduce into your system.

Changes to specific components, such as documents related to user
requirements, must be dealt with cautiously because they generally are
worked out through several iterations with the customer. In this case, the
word customeis used in a general sense. You might be your own customer,

Professional G Developers Tools Reference Manual 3-4 © MNational Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

other departments in your company might be your target audience, or you
might develop the software under contract for a third party. When you are
your own customer, it is much easier to adjust requirements as you move
through the specification and even the design stage. If you are developing
for someone else, changing requirements can be extremely difficult.

Source Code Control tools give you a degree of control when making
changes. You can trace all changes, and you can configure the system to
maintain previous versions so you can back out of changes if necessary.
Some Source Code Control systems give you more options for controlling
software change. For example, with Microsoft Visual SourceSafe or
Rational Software ClearCase for Solaris 2, you can control access to files
S0 some users have access to specific files but others do not. You also can
specify that anyone can retrieve files but only certain users can make
modifications.

With this kind of access control, you might limit change privileges for
requirement documents to specific team members. Or, you might control
access so a user has privileges to modify a file only when the change
request is approved.

The amount of control you apply can vary throughout the development
process. In the early stages of the project, before formal evaluation of the
requirements, you do not necessarily need to restrict change access to files
nor do you need to follow formal change request processes. Once the
requirements are approved, however, you can institute stronger controls.
You can apply the same concept of varying the level of control before and
after a project phase is complete to specifications, test plans, and code.

Testing Guidelines

You should decide up front what level of testing is expected. Engineers
under deadline pressure frequently give short attention to testing, devoting
more time to other development. Most software engineers will tell you,
however, that a certain level of testing is guaranteed to save you time.

The degree to which you expect developers to test should be clearly
understood. Also, testing methodologies should be standardized, and
results of tests should be tracked. As you develop the requirements and
design specifications, you also should develop a test plan to help you verify
the system and all its components work. Testing should reflect the quality
goals you want to achieve. For example, if performance is more critical
than robustness, you should develop more tests for performance and fewer
that attempt incorrect input, low-memory situations, and so on.

© National Instruments Corporation 3-5 Professional G Developers Tools Reference Manual

Chapter 3 Incorporating Quality into the Development Process

Testing should not be an afterthought. It should be considered part of the
initial design phases and should be implemented throughout development
to find and fix problems as soon as possible.

There are a variety of testing methodologies you can use to help increase
the quality of your VI projects. The following sections describe some
testing methodologies.

Black Box and White Box Testing

The method oblack box testings based on the expected functionality of
software, without knowledge of how it works. It is called black box testing
because you cannot see the internal workings. Black box testing can be
done based largely on a knowledge of the requirements and the interface of
a module. For a subVI, you could perform black box tests on the interface
of a subVI to evaluate results for various input values. If robustness is a
quality goal, you should include erroneous input data to see if the subVI
deals with it well. For example, for numeric inputs, you should see how the
subVI deals with infinity, not a number, and other out-of-range values.
Refer to thdJnit Testingsection later in this chapter for more examples.

The method o#vhite box testings designed with knowledge of the internal
workings of the software. Use white box testing to check that all the major
paths of execution are exercised. By examining a block diagram and
looking at the conditions of Case Structures and the values controlling
loops, you can design tests that check those paths. White box testing on a
large scale is impractical because it is difficult to test all possible paths.

Although white box testing is difficult to fully implement for large
programs, you can choose to test the most important or complex paths.
White box testing can be combined with black box testing for more
thorough testing of software.

Unit, Integration, and System Testing

Black box and white box testing can be used to test any component of
software, regardless of whether it is an individual VI or the complete
application. Unit, integration, argystem testingre phases of your project
at which you can apply black box and white box tests.

Professional G Developers Tools Reference Manual 3-6 © MNational Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

Unit Testing

You can uselnit testingto concentrate on testing individual software
components. For example, you might test an individual VI to see that it
works correctly, deals with out-of-range data, has acceptable performance,
and that all major execution paths in its block diagram are executed and
performed correctly. Individual developers can perform unit tests as they
work on their modules.

Some examples of common problems unit tests might account for include
the following:

* Boundary conditions for each input, such as empty arrays and empty
strings, or O for a size input. Be sure floating point parameters deal
with infinity and not a number.

e Invalid values for each input, such as -3 for a size input.
e Strange combinations of inputs.
* Missing files and bad pathnames.

* What happens when the user clicks @ancelbutton in a file
dialog box?

* What happens if the user aborts the VI?

Define various sets of inputs that thoroughly test your VI and write a test
VI that calls your VI with each combination of inputs and checks the
results. You can use interactive data logging to create your input sets, or test
vectors, and replay them interactively to re-test the VI or automatically
from a test VI that uses programmatic data retrieval.

To perform unit testing, you might needstoib outsome components that
have not been implemented yet or that are being developed. For example,
if you are developing a VI that communicates with an instrument and writes
information to a file, another developer can work on a file I/O driver that
writes the information in a specific format. To test your components early,
you might choose to stub out the file I/O driver by creating a VI with the
same interface. This VI can write the data in a format that is easy for you
to check. You can test the driver with the real file 1/0 driver later during the
integration phase as described in the followimggration Testingection.

Regardless of how you test your VIs, record exactly how, when, and what
you tested and keep any test VIs you created. This test documentation is
especially important if you are creating VIs for paying customers, and it is
also useful for yourself. When you revise your VIs, you should run the
existing tests to make sure you have not broken anything. You also should
update the tests for any new functionality you have added.

© National Instruments Corporation 3-7 Professional G Developers Tools Reference Manual

Chapter 3

Incorporating Quality into the Development Process

Integration Testing

You performintegration testingon a combination of units. Unit testing
usually finds most bugs, but integration testing might reveal unanticipated
problems. Modules might not work together as expected. They might
interact in unexpected ways because of the way they manipulate shared
data. For more information, refer to ChapterR8formance Issues the

G Programming Reference Manual

Integration testing also can be done in earlier stages before you put the
whole system together. For example, if a developer creates a set of VIs that
communicates with an instrument, he or she could develop unit tests to
verify that each subVI correctly sends the appropriate commands. He or she
also could develop integration tests that use several of the subVls in
conjunction with each other to verify that there is not any unexpected
interaction.

Integration testing should not be performed as a comprehensive test in
which you combine all the components and try to test the top-level
program. Doing this can be expensive because it is difficult to determine the
specific source of problems within a large set of VIs. Instead, you should
consider testing incrementally with a top-down or bottom-up testing
approach.

With a top-down approach, you gradually integrate major components,
testing the system with the lower level components of the system disabled,
or stubbed out, as described in U@t Testingsection earlier in this

chapter. Once you have verified that the existing components work together
within the existing framework, you can enable additional components.

With a bottom-up approach, you test low-level modules first and gradually
work up toward the high-level modules. Begin by testing a small number of
components combined into a simple system, such as the driver test
described in th&nit Testingsection earlier in this chapter. After you have
combined a set of modules and verified that they work together, add
components and test them with the already-debugged subsystem.

The bottom-up approach consists of tests that gradually increase their
scope, while the top-down approach consists of tests that are gradually
refined as new components are added.

Regardless of the approach you take, you must perform regression testing
at each step to verify that the features that already have been tested still
work. Regression testing consists of repeating some or all previous tests.
Because you might need to perform the same tests numerous times, you

Professional G Developers Tools Reference Manual 3-8 © MNational Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

might want to develop representative subsets of tests to use for frequent
regression tests. These components can be run at each stage, while the more
detailed tests can be run to test an individual set of modules if problems are
encountered or as part of a more detailed regression test that is applied
periodically during development.

System Testing

System testing happens after integration to determine whether the product
meets customer expectations and to make sure the software works as
expected within the hardware system. This can be done first as a set of
black box tests to verify that the requirements have been met. Most
LabVIEW and BridgeVIEW applications perform some kind of 1/0. The
application also might communicate with other applications. With system
testing, you test the software to make sure it fits into the overall system as
expected. When testing the system, you will ask and answer questions such
as the following:

e Are performance requirements met?

» If my application communicates with another application, does it deal
with an unexpected failure of that application well?

You can complete this testing with alpha and beta testing. Alpha and beta
testing serve to catch test cases that might not have been considered or
completed by the developers. With alpha testing, a functionally complete
product is tested in-house to see if any problems are found. When alpha
testing is complete, the product is beta tested by customers in the field.

Alpha and beta testing are the only testing mechanisms for some
companies. This is unfortunate because alpha and beta testing actually can
be inexact. Alpha and beta testing are not a substitute for other forms of
testing that rigorously test each component to verify that it meets stated
objectives. Because this type of testing is done late in the development
process, it is difficult and costly to incorporate changes suggested as a
result.

Formal Methods of Verification

Some software engineers are proponents of formal verification of software.
Other testing methodologies attempt to find problems by exploration, but
formal methods attempt firovethe correctness of software
mathematically.

© National Instruments Corporation 3-9 Professional G Developers Tools Reference Manual

Chapter 3

Incorporating Quality into the Development Process

The principal idea is to analyze each function of a program to determine if
it does what you expect. You mathematically state the list of preconditions
before the function and the postconditions that are present as a result of the
function. This process can be performed either by starting at the beginning
of the program and adding conditions as you work through each function
or by starting at the end and working backward, developing a set of weakest
preconditions for each function. Appendix Referencedists documents

that contain information on this process.

This type of testing becomes more complex as more and more possible
paths of execution are added to a program through the use of loops and
conditions. Many people believe that formal testing presents interesting
ideas for looking at software that can help in small cases but that it is
impractical for most programs.

Style Guidelines

Inconsistent approaches to development and to user interfaces can be a
problem when multiple developers work on a project. Each developer has
his or her own style of development, color preferences, display techniques,
documentation practices, and diagram methodologies. One developer
might make extensive use of global variables and Sequence Structures
while another might prefer to make more use of data flow.

Inconsistent style techniques can create software that, at a minimum, looks
bad. Users might become confused and find the user interface VIs difficult
to use if the VIs have different behaviors, such as some expecting a user to
click a button when he or she is finished and others expecting the user to
use a keyboard function key.

Inconsistent style also makes software difficult to maintain. For example, if
one developer does not like to use subVls and decides to develop all
features within a single large VI, that VI will be difficult to modify.

Establish a set of guidelines for your VI development team. Establish an
initial set of guidelines and add additional rules as the project progresses.
You can use these style guidelines in future projects.

Chapter 7Using Consistent Style: The G Style Guigl®vides some style
recommendations. Use these guidelines as a basis for developing your own
style guide. A single standard for programming style in any language really
cannot exist because what one group prefers, another group might disagree
with. Select a set of guidelines that works for you and your development
team.

Professional G Developers Tools Reference Manual 3-10 © MNational Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

Design Reviews

Design reviews are a great way to identify and fix problems during
development. When the design of a feature is complete, set up a design
review with at least one other developer. Discuss quality goals, asking
guestions such as the following:

» Does the design incorporate testing?
e Is error handling built-in?
» Are there any assumptions in the system that might be invalid?

Also, look at the design with an eye for features that are essential as
opposed to features that are extras. There is nothing wrong with building in
extra features. If quality and schedule are important, however, you should
ensure that these extra features are scheduled for late in the development
process, so they can be dropped, or moved to the list of features for
subsequent releases. Document the results of the design review and any
recommended changes.

Code Walkthroughs

A code walkthrough is similar to a design review except that it analyzes the
code instead of the design. To perform a code review, give one or more
developers printouts of the VIs to review. You might want to perform the
review online because VIs are easier to read and navigate online. The
designer should talk through the design. The reviewers compare the
description to the actual implementation. The reviewers should consider
many of the same issues included in a design review. During a code
walkthrough, many of the following questions might be asked and
answered:

* What happens if a specific VI or function returns an error? Are errors
dealt with and/or reported correctly?

« Are there anyace condition® An example of a race condition is a
block diagram that reads from and writes to a global variable. There is
the potential a parallel block diagram could simultaneously attempt to
manipulate the same global variable, resulting in loss of data.

© National Instruments Corporation 3-11 Professional G Developers Tools Reference Manual

Chapter 3 Incorporating Quality into the Development Process

¢ Isthe block diagram implemented well? Are the algorithms efficient in
terms of speed and/or memory usage? For more information, refer to
Chapter 28Performance Issue#n theG Programming Reference
Manual

* Is the block diagram easy to maintain? Has the developer made good
use of hierarchy, or is he or she placing too much functionality in a
single VI? Does the developer adhere to established guidelines?

There are a number of other features you can look for in a code
walkthrough. Take notes on the problems you encounter and add them to a
list you can use as a guideline for other walkthroughs.

Focus on technical issues when doing a code walkthrough. Remember to
review only the code, not the developer who produced it. Try not to focus
only on the negative and be sure to raise positive points.

Appendix A,Referencedists documents that contain information on
walkthrough techniques.

Post-Mortem Evaluation

At the end of each stage in the development process, you should consider
having a post-mortem meeting to discuss what has gone well and what has
not. Each developer should evaluate the project and be honest in discussing
obstacles that reduce the quality level of the project. Each developer should
consider the following questions:

¢ What are we doing right? What is working well?
¢ What are we doing wrong? What can we improve?

« Are there specific areas of the design/code that need a lot of work?
Is a design review or code walkthrough of that section necessary?

* Arethe quality systems working? Could we catch more problems if we
changed the quality requirements? Are there better ways to get the
same results?

Post-mortem meetings at major milestones can help to correct problems
mid-schedule instead of waiting until the release is complete.

Professional G Developers Tools Reference Manual 3-12 © MNational Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

Software Quality Standards

As software has become a more critical component in systems, concerns
about software quality have increased. Consequently, a number of
organizations have developed quality standards that are specific to software
or that can be applied to software. When developing software for some
large organizations, especially government organizations, you might be
required to follow one of these standards.

The following sections include a brief overview of the most popular
standards. Appendix AReferencedists several documents that contain
more information on these standards.

International Organization for Standards IS0 9000

The International Organization for Standards developed the 1ISO 9000
family of standards for quality management and assurance. Many countries
have adopted these standards. In some cases, governmental bodies require
compliance with this ISO standard. Compliance generally is measured by
certification performed by a third-party auditor. The 1ISO 9000 family is
widely used within Europe and Asia. It has not been widely adopted within
the United States, although many companies and some government
agencies are starting to adopt it.

In each country, the ISO family of standards might be referred to by slightly
different names. For example, in the United States it has been adopted as
the ANSI/American Society for Quality Control (ASQC) Q90 Series. In
Europe, it has been adopted by the European Committee for
Standardization (CEN) and the European Committee for Electrotechnical
Standardization (CENELEC) as the European Norm (EN) 29000 Series. In
Canada, it has been adopted by the Canadian Standards Association (CSA)
as the Q 9000 series. However, it is most commonly referred to as ISO 9000
in all countries.

ISO 9000 is an introduction to the ISO 9000 family of standards. ISO 9001
is a model for quality assurance in design, development, production,
installation, and servicing. Its focus on design and development makes it
the most appropriate standard for software products.

Because the ISO 9000 family is designed to apply to any industry, it can be
somewhat difficult to apply to software development. ISO 9000.3 is a set of
guidelines designed to explain how to apply ISO 9001 specifically to
software development.

© National Instruments Corporation 3-13 Professional G Developers Tools Reference Manual

Chapter 3

Incorporating Quality into the Development Process

ISO 9001 does not dictate software development procedures. Instead, it
requires documentation of development procedures and adherence to the
standards you set. Conformance with ISO 9001 does not guarantee quality.
Instead, the idea behind ISO 9001 is that companies that emphasize quality
and follow their documented practices will produce higher quality products
than companies that do not.

U.S. Food and Drug Administration Standards

The U.S. Food and Drug Administration (FDA) requires all software used
in medical applications to meet its Current Good Manufacturing Practices
(CGMP). One of the goals of the standard is to make it as consistent as
possible with ISO 9001 and a supplement to ISO 9001, ISO/CD 13485.
These FDA standards are largely consistent with ISO 9001, but there are
some differences. Specifically, the FDA did not think ISO 9001 was
specific enough about certain requirements, so the FDA clearly outlined
them in its rules.

Refer to the FDA Internet home pagentip://www.fda.gov for more
information on the new CGMP rules and how they compare to 1ISO 9001.

Capability Maturity Model (CMM)

In 1984, the United States Department of Defense creat&bftveare
Engineering Institute (SEtp establish standards for software quality. The
SEIl developed a model for software quality called@hapability Maturity
Model (CMM) The CMM focuses on improving the maturity of an
organization’s processes.

Whereas ISO establishes only two levels of conformance, pass or fail, the
CMM ranks an organization into one of five categories.

Level 1. Initial—The organization has few defined processes; quality
and schedules are unpredictable.

Level 2. Repeatable—The organization establishes policies based on
software engineering techniques and previous projects that
allow repeated success. Groups use configuration
management tools to manage projects. Also, they track
software costs, features, and schedules. Project standards are
defined and followed. Although the groups can deal with
similar projects based on this experience, their processes
might not be mature enough to deal with significantly different
types of projects.

Professional G Developers Tools Reference Manual 3-14 © MNational Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

Level 3. Defined—The organization establishes a baseline set of
policies for all projects. Groups are well trained and know
how to customize this set of policies for specific projects.
Each project has well-defined characteristics that make it
possible to accurately measure progress.

Level 4. Managed—The organization sets quality goals for projects
and processes and measures progress toward those goals.

Level 5. Optimizing—The organization emphasizes continuous
process improvement across all projects. The organization
evaluates the software engineering techniques it uses in
different groups and applies them throughout the
organization.

Figure 3-1 illustrates the five levels of the CMM and the processes
necessary for advancement to the next level.

Level 5
Optimizing
/ Tune Processes Based

on Measurements

Level 4
Managed
Measure Success
of Processes

Level 3
Defined
/ Defined Process
for Organization
Level 2
Repeatable
/ Stable Process
for Projects
Level 1
Initial

Figure 3-1. Capability Maturity Model

Most companies are at Level 1 or 2. The U.S. Department of Defense
prefers a Level 3 or higher CMM assessment in bids on new government
software development. Some commercial companies, mainly in the United
States, also use the CMM.

The CMM differs from ISO 9001 in that it is software specific. Also, the
ISO specifications are fairly high-level documents. ISO 9001 is only a few
pages. CMM is very detailed, with more than 500 pages.

© National Instruments Corporation 3-15 Professional G Developers Tools Reference Manual

Chapter 3 Incorporating Quality into the Development Process

Institute of Electrical and Electronic Engineers (IEEE) Standards

IEEE defined a number of standards for software engineering.

IEEE Standard 730, first published in 1980, is a standard for software
quality assurance plans. This standard serves as a foundation for several
other IEEE standards and gives a brief description of the minimum
requirements for a quality plan in the following areas:

L]

Purpose

Reference documents

Management

Documentation

Standards, practices, conventions, and metrics
Reviews and audits

Test

Problem reporting and corrective action

Tools, techniques, and methodologies

Code control

Media control

Supplier control

Records collection, maintenance, and retention
Training

Risk management

As with the ISO standards, IEEE 730 is fairly short. It does not dictate how
to meet the requirements but requires documentation for these practices to
a specified minimum level of detalil.

In addition to IEEE 730, several other IEEE standards related to software
engineering exist, including the following:

L]

L]

IEEE 610—Defines standard software engineering terminology.
IEEE 829—Establishes standards for software test documentation.

IEEE 830—EXxplains the content of good software requirements
specifications.

IEEE 1074—Describes the activities that should be performed as part
of a software lifecycle without requiring a specific lifecycle model.

IEEE 1298—Details the components of a software quality
management system; similar to ISO 9001.

Professional G Developers Tools Reference Manual 3-16 © MNational Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

Your projects might be required to meet some or all these standards. Even
if you are not required to develop to any of these specifications, they can be
helpful in developing your own requirements, specifications, and quality
plans.

© National Instruments Corporation 3-17 Professional G Developers Tools Reference Manual

Prototyping and Design
Techniques

This chapter gives you pointers for project design, including programming
approaches, prototyping, and benchmarking.

When you first begin a programming project, deciding how to start can be
intimidating. A lot of G programmers start immediately with a code and fix
development process, building some of the VIs they think they will need.
Then they realize they actually need something different from what they
have built already. Consequently, a lot of code is developed, reworked,
or thrown away unnecessarily.

Clearly Define the Requirements of Your Application

Before you develop a detailed design of your system, you should define
your goals as clearly as possible. Begin by making a list of requirements.
Some requirements are specific, such as the types of /0O, sampling rates, or
the need for real-time analysis. You need to do some research at this early
stage to be sure you can meet the specifications. Other requirements depend
on user preference, such as file formats or graph styles.

Try to distinguish between absolute requirements and desires. You might be
able to satisfy all requests, but it is best to have an idea about what you can
sacrifice if you run out of time.

Also, be careful that the requirements are not so detailed that they constrain
the design. For example, when you design an I/O system, the customer
probably has certain sampling rate and precision requirements. He or she
also is constrained by cost. You should include those issues in your
requirements. However, if you can avoid specifying the operating system
and hardware, you can adjust your design after you begin prototyping and
benchmarking various components. As long as the costs are within budget
and the timing and precision issues are met, the customer might not care
whether the system uses a particular type of plug-in card or other hardware.

© National Instruments Corporation 4-1 Professional G Developers Tools Reference Manual

Chapter 4

Prototyping and Design Techniques

Another example of overly constraining a design is to be too specific about
the format for display used in various screens with which the customer
interacts. A picture of a display might be useful to explain requirements, but
be clear about whether the picture is a requirement or a guideline. Some
designers go through significant difficulties trying to produce a system that
behaves in a specific way because a certain behavior was a requirement. In
this case, there might be a simpler solution that produces the same results
at a much lower cost in a shorter time.

Top-Down Design

The block diagram programming metaphor G uses was designed to be easy
to understand. Most engineers already use block diagrams to describe
systems. The goal of the block diagram is to make it easier for you to move
from the system block diagrams you create to executable code.

The basic concept is to divide the task into manageable pieces at logical
places. Begin with a high-level block diagram that describes the main
components of your system. For example, you might have a block diagram
that consists of a block for configuration, a block for acquisition, a block
for analysis of the acquired data, a block for saving the data to disk, and a
block to clean up at the end of the system.

After you determine the high-level blocks, create a block diagram that
uses those blocks. For each block, create astigiVI, which is a
non-functional prototype that represents a future subVI. Create an icon for
this stub VI and create a front panel with the necessary inputs and outputs.
You do not have to create a block diagram for this VI yet. Instead, define
the interface and see if this stub VI is a useful part of your top-level block
diagram.

After you assemble a group of these stub Vls, determine the function of
each block and how it works. Ask yourself whether any given block
generates information that some subsequent VI needs. If so, make sure your
top-level block diagram sketch contains wires to pass the data between the
VIs. You can document the functionality of the VI and the inputs and
outputs using the Info VI and Description tools in LabVIEW and
BridgeVIEW.

Professional G Developers Tools Reference Manual 4-2 © MNational Instruments Corporation

Chapter 4 Prototyping and Design Techniques

In analyzing the transfer of data from one block to another, try to avoid
global variables because they hide the data dependency between Vls and
might introduce race conditions. Refer to ChaptelP28formance Issues

of theG Programming Reference Manual more information. As your
system becomes larger, it becomes difficult to debug if you use global
variables as your method of transferring information between Vils.

Continue to refine your design by breaking down each of the component
blocks into more detailed outlines. You can do this by going to the block
diagram of what was once a stub VI and filling out its block diagram,
placing lower level stub VIs on the block diagram that represent each of the
major actions the VI must perform.

Be careful not to jump too quickly into implementing the system at this
point. One of the objectives here is to gradually refine your design so you
can determine whether you have left out any necessary components at
higher levels. For example, when refining the acquisition phase, you might
realize there is more information you need from the configuration phase. If
you completely implement one block before you analyze a subsequent
block, you might need to redesign the first block significantly. It is better to
try to refine the system gradually on several fronts, with particular attention
to sections that have more risk because of their complexity.

The following example illustrates how you might apply top-down design
techniques to a data acquisition system.

Data Acquisition System Example

This example describes how you might design a general data acquisition
system. This system must let the user provide some configuration of the
acquisition, such as rates, channels, and so on, acquire data, process the
data, and save the data to disk.

© National Instruments Corporation 4-3 Professional G Developers Tools Reference Manual

Chapter 4 Prototyping and Design Techniques

Start to design the VI hierarchy by breaking the problem into logical pieces.
The flowchart in Figure 4-1 shows several major blocks you can expect to
see in one form or another in every data acquisition system.

Main
Config Hardware File Read Process Save
Setup Setup Data Data Data
File 110 Hardware
Handler Drivers

Figure 4-1. Flowchart of a Data Acquisition System

Think about the data structures you will need, asking questions such as
“What information needs to accompany the raw data values from the Read
Data VI to the Save Data VI?” This might imply a cluster array, which is an
array of many channels, each element of which is a cluster that contains the
value, the channel name, scale factors, and so on. A method that performs
some action on such a data structure is called an algorithm. Algorithms and
data structures are intertwined. This is reflected in modern structured
programming, and it works well in G. If you like to use pseudocode, try that
technique as well. Figures 4-2 and 4-3 show a relationship between
pseudocode and G structures.

Professional G Developers Tools Reference Manual 4-4 © MNational Instruments Corporation

Chapter 4 Prototyping and Design Techniques

Pseudocode

FOR each module defined

IF module is active

THEN

FOR each channel
IF channel is active
THEN

Read_Data (module, channel);
Store data in output array;

ENDIF
ENDFOR
ENDIF
ENDFOR

Configuration Data Structure

MODIJLES
ACTIVE SLOT
&
ﬁ B
CHANMELS
0|
MAE
Chanmnel Mame
ACTIVE

Figure 4-2. Mapping Pseudocode into a G Data Structure

FOR each module defined NIFOR each module...
IF module is active e Fa[Trueh
THEN HBTES NI FOR sach channel..
ACTIVE
FOR each channel \E—‘ Shils — o Tie bf
IF channel is active — | CHANNELS TCTIVE -
THEN —
Read_Data (module, channel); = —— S5
Store data in output array; T
ENDIF
ENDFOR (| .
ENDIF
ENDFOR [Iz

Figure 4-3. Mapping Pseudocode into Actual G Code

Notice that the program and the data structure correspond.

Many experienced LabVIEW and BridgeVIEW users prefer to use

G sketches. You can draw caricatures of the familiar structures and
wire them together on paper. This is a good way to think things through,
sometimes with the help of other G programmers.

© National Instruments Corporation

4-5 Professional G Developers Tools Reference Manual

Chapter 4

Prototyping and Design Techniques

If you are not sure how a certain function will work, prototype it in a simple
test VI, as shown in Figure 4-4. Artificial data dependency between the
initialization VIs and the main While Structure in Figure 4-4 eliminates the
need for a Sequence Structure.

|| Process|| Displays

Figure 4-4. Data Flow for a Generic Data Acquisition Program

Finally, you are ready to write the program in G. Remember to make your
code modular, building subVIs when there is a logical division of labor or
the potential for code reuse. Solve the more general problems along with
your specific ones. Test your subVls as you write them. This might involve
constructing higher level test routines. It is much easier to catch the bugs in
one small module than in a large hierarchy of Vls.

Bottom-Up Design

Usually, you should avoid bottom-up system design. It is sometimes useful
when used in conjunction with top-down design. Bottom-up design is the
exact opposite of top-down design. You start by building the lower level
components and then progressing up the hierarchy, gradually putting pieces
together until you have the complete system.

The problem with bottom-up design is that because you do not start with a
clear idea of the big picture, you might build pieces that do not fit together
the way you expect.

There are specific cases in which using bottom-up design is appropriate. If
the design is constrained by low-level functionality, you might need to build
that low-level functionality first to get an idea of how it can be used. This
might be true of an instrument driver, where the command set for the
instrument constrains you in terms of when you can do certain operations.
For example, with a top-down design, you might break up your design so
configuration of the instrument and reading a measurement from the
instrument are done in distinct VIs. The instrument command set might

Professional G Developers Tools Reference Manual 4-6 © MNational Instruments Corporation

Chapter 4 Prototyping and Design Techniques

turn out to be more constraining than you thought, requiring you to
combine these operations. In this case, with a bottom-up strategy, you
might start by building VIs that deal with the instrument command set.

In most cases, you should use a top-down design strategy. You might mix
in some components of bottom-up design, if necessary. Thus, in the case of
an instrument driver, you might use a risk-minimization strategy to
understand the limitations of the instrument command set and develop the
lower level components. Then you could use a top-down approach to
develop the high-level blocks.

The following example shows in more detail how you can apply this
technique to the process of designing a driver for a GPIB instrument.

Instrument Driver Example

A complex GPIB-controlled instrument can have hundreds of commands,
many of which interact with each other. A bottom-up approach might be
the most effective way to design a driver for such an instrument. The key
here is that the problem is detail driven. You must learn the command set
and design a front panel that is simple for the user yet gives full control of
the instrument functionality. Design a preliminary VI hierarchy, preferably
one based on similar instrument drivers. You must satisfy the user’s needs.
Designing a driver requires more than putting knobs on GPIB commands.
The example chosen here is the Tektronix 370A Curve Tracer. It has about
100 GPIB commands if you include the read and write versions of

each one.

Once you begin programming, the hierarchy will fill out naturally, one
subVI at a time. Add lower level support VIs as required, such as a
communications handler, a routine to parse a complex header message, or
an error handler. For instance, the 370A requires a complicated parser for
the waveform preamble that contains information such as scale factors,
offsets, sources, and units. It is much cleaner to bury this operation in a
subVI than to let it obscure the function of a higher level VI. Also, a
communications handler makes it simple to exchange messages with the
instrument. Such a handler formats and sends the message, reads the
response if required, and checks for errors.

Once the basic functions are ready, assemble them into a demonstration
driver VI that makes the instrument do something useful. You will quickly
find any fundamental flaws in your earlier choices of data structures,
terminal assignments, and default values.

© National Instruments Corporation 4-7 Professional G Developers Tools Reference Manual

Chapter 4

Prototyping and Design Techniques

Chapter 7Getting Started with a LabVIEW Instrument Drivef the
LabVIEW User Manuatiescribes this development process in detail.

The top-level VI in Figure 4-5 is an automated test example. It calls nine of
the major functions included in the driver package. Each function, in turn,
calls subViIs to perform GPIB I/O, file I/O, or data conversion.

Tek3704
ATE
Crerno

TEKIMA

:‘.:Lg)l?
=]

BI0s371 TEKJ?OQ HI0,371 [?0.371 370371 Setup

e T eep? = =]
L= AN AN v

™ L4

Hb_ Tf%ﬁ

'WFHMpre
i

T2k3I0A

sy

Figure 4-5. VI Hierarchy for the Tektronix 370A

Designing for Multiple Developers

One of the main challenges in the planning stage is to establish discrete
project areas for each developer. As you design the specification and
architectural design, you should begin to see areas that have a minimal
amount of overlap. For example, a complicated data monitoring system
might have one set of VIs to display and manipulate data and another set to
acquire the information and transfer it to disk. These two modules are
substantial, do not overlap, and can be assigned to different developers.

Inevitably, there will be some interaction between the modules. One of the
principal objectives of the early design work is to design how those

Professional G Developers Tools Reference Manual 4-8 © MNational Instruments Corporation

Chapter 4 Prototyping and Design Techniques

modules interact with each other. The data display system must access the
data it needs to display. The acquisition component needs to provide this
information for the other module. At an early stage in development, you
might design the connector panes of VIs needed to transfer information
between the two modules. Likewise, if there are global data structures

that must be shared, these should be analyzed and defined early in the
architectural design stage before the individual developers begin work

on their components.

In the early stages, each developer can create stub VIs with the connector
pane interface that was defined for the shared module. This stub VI can do
nothing, or if it is a VI that returns information, you could have it generate
random data. This allows each member of the development team to
continue development without having to wait for the other modules to be
finished. It also makes it easy for the individuals to perform unit testing of
their modules as described in Chaptdn8prporating Quality into the
Development Process

As components near completion, you can integrate the modules by
replacing the stub components with their real counterparts. At this point
you can perform integration testing to verify the system works as a whole.
Refer to thdntegration Testingection in Chapter 3ncorporating

Quiality into the Development Proce$sr more information.

Front Panel Prototyping

As mentioned in Chapter Pevelopment Model$ront panel prototypes

can provide insight into the organization of your program. Assuming your
program is user-interface intensive, you can attempt to create a mock
interface that represents what the user sees.

Avoid implementing block diagrams in the early stages of creating
prototypes so you do not fall into the code and fix trap. Instead, create just
the front panels. As you create buttons, list boxes, and rings, think about
what should happen as the user makes selections. Ask yourself questions
such as the following:

e Should the button lead to another front panel?

» Should some controls on the front panel be hidden and replaced by
others?

If new options are presented, follow those ideas by creating new front
panels toillustrate the results. This kind of prototyping can help solidify the
requirements for a project and give you a better idea of its scope.

© National Instruments Corporation 4-9 Professional G Developers Tools Reference Manual

Chapter 4

Prototyping and Design Techniques

Prototyping cannot solve all development problems, however. You have to
be careful how you present the prototype to customers. Prototypes can give
an overly inflated sense that you are rapidly making progress on the project.
You have to be clear to the customer, whether it is an external customer or
other members of your company, that this prototype is strictly for design
purposes and that much of it will be reworked in the development phase.

Another danger in prototyping is that you might overdo it. Consider setting
strict time goals for the amount of time you will prototype a system to
prevent yourself from falling into the code and fix trap.

Of course, front panel prototyping deals only with user interface
components. As described here, it does not deal with I/O constraints, data
types, or algorithm issues in your design. The front panel issues might help
you better define some of these areas because it gives you an idea of some
of the major data structures you need to maintain, but it does not deal with
all these issues. For those issues, you need to use one of the other methods
described in this chapter, such as performance benchmarking and top-down
design.

Performance Benchmarking

For I/O systems with a number of data points or high transfer rate
requirements, test the performance-related components early because the
test might prove your design assumptions are incorrect.

For example, if you plan to use an instrument as your data acquisition
system, you might want to build some simple tests that perform the type of
1/0 you plan to use. While the specifications might seem to indicate that the
instrument can handle the application you are creating, you might find that
triggering, for example, takes longer than you expected, that switching
between channels with different gains cannot be done at the necessary rate
without reducing the accuracy of the sampling, or that even though the
instrument can handle the rates, you do not have enough time on the
software side to perform the desired analysis.

A simple prototype of the time-critical sections of your application can

help reveal this kind of problem. The timing template example in the
examples/general/structs.llb directory illustrates how to time a
process. Because timings can fluctuate from one run to another for a variety
of reasons, you should put the operation in a loop and display the average
execution time. You also can use a graph to display timing fluctuations.
Causes of timing fluctuations can include system interrupts, screen
updates, user interaction, and initial buffer allocation.

Professional G Developers Tools Reference Manual 4-10 © MNational Instruments Corporation

Chapter 4 Prototyping and Design Techniques

Identify Common Operations

As you design your programs, you might find that certain operations are
performed frequently. Depending on the situation, this might be a good
place to use subVIs or loops to repeat an action.

For example, consider Figure 4-6, where three similar operations run
independently.

sub\l'l

sub\rl

sub\l'l

Figure 4-6. Operations Run Independently

An alternative to this design is a loop that performs the operation three
times, as shown in Figure 4-7. You can build an array of the different

arguments and use auto-indexing to set the correct value for each iteration
of the loop.

subi|

]

Figure 4-7. Loop Performs Operation Three Times

If the array elements are constant, you can use an array constant instead of
building the array on the block diagram.

© National Instruments Corporation 4-11 Professional G Developers Tools Reference Manual

Chapter 4 Prototyping and Design Techniques

Some users mistakenly avoid using subVIs because they are afraid of the
overhead it might add to their execution time. It is true that you probably
do not want to create a subVI from a simple mathematical operation such
as the Add function, especially if it must be repeated thousands of times.
However, the overhead for a subVI is fairly small and usually is dwarfed by
any 1/0 you perform or by any memory management that might occur from
complex manipulation of arrays.

Professional G Developers Tools Reference Manual 4-12 © MNational Instruments Corporation

Scheduling and Project Tracking

This chapter describes techniques for estimating development time and
using those estimates to create schedules. This chapter also distinguishes
between an estimate, which reflects the time required to implement a
feature, and a schedule, which reflects how you fulfill that feature.
Estimates are commonly expressed in ideal person-days, or 8 hours of
work. In creating a schedule from estimates, you must consider
dependencies, one project might have to be completed before another can
begin, and other tasks, such as meetings, support for existing projects, and
so on.

Estimation

One of the principal tasks of planning is to estimate the size of the project
and fit it into the schedule because most projects are at least partially driven
by a schedule. Schedule, resources, and critical requirements interact to
determine what you can implement in a release.

Unfortunately, when it comes to estimating software schedules accurately,
few people are successful. Major companies have had software projects
exceed original estimates by a year or more. Poor planning or an
incomplete idea of project goals often causes deadlines to be missed.
Another major cause of missed scheduldeasure creepYour design
gradually grows to include features that were not part of the original
requirements. In many cases, the delays in schedule are a result of using
a code and fix development process rather than a more measurable
development model.

© National Instruments Corporation 5-1 Professional G Developers Tools Reference Manual

Chapter 5

Scheduling and Project Tracking

Off-the-cuff estimates are almost never accurate for the following reasons:

« People are usually overly optimistic. An estimate of 2 months at first
might seem like an infinite amount of time. During the last 2 weeks of
the project, when developers find themselves working many overtime
hours, it becomes clear that it is not.

e The objectives, implementation issues, and quality requirements are
not understood clearly. When challenged with the task of creating a
data monitoring system, an engineer might estimate 2 weeks. If the
product is designed by the engineer and for the engineer, this estimate
might be right. However, if it is for other users, he or she probably is
not considering requirements that might be assumed by a less
knowledgeable user but never are specified clearly.

For example, VIs need to be reliable and easy to use because the
engineer is not going to be there to correct them if a problem occurs.
A considerable amount of testing and documentation is necessary.
Also, the user needs to save results to disk, print reports, and view and
manipulate the data on screen. If he or she has not discussed or
considered the project in detail, the engineer is setting himself or
herself up for failure.

« Day-to-day tasks are ignored. There are meetings and conferences to
attend, holidays, reports to write, existing projects to maintain, and
other tasks that make up a standard work week.

Accurate estimates are difficult because of the imprecise nature of most
software projects. In the initial phase of a project, complete requirements
are not known. The way you will implement those requirements is even less
clear. As you clarify the objectives and implementation plans, you can
make more realistic estimates.

The following sections outline some of the current best-practice estimation
techniques in software engineering. All these techniques require breaking
the project down into more manageable components you can estimate
individually. There are other methods of estimating development time.
Refer to Appendix AReferencedor a list of documents that describe
these and other estimation techniques in more detail.

Source Lines of Code/Number of Nodes Estimation

Software engineering documentation frequently refesotoce lines of
code(SLOC) as a measurement, or metric, of software complexity. SLOC
as a measurement of complexity is popular in part because the information
is easy to gather. Numerous programs exist for analyzing textual
programming languages to measure complexity. In general, SLOC

Professional G Developers Tools Reference Manual 5-2 © MNational Instruments Corporation

Chapter 5 Scheduling and Project Tracking

measurements include every line of source code developed for a project,
excluding comments and blank lines.

The VI Metrics tool, described in Chaptend,Metrics Too] provides a
method for measuring a corresponding metric for G-based code. The

VI Metrics tool counts theumber of nodegsed within a VI or within a
hierarchy of VIs. A node is almost any object on a block diagram excluding
labels and graphics but including functions, VIs, and structures such as
loops and sequences. Refer to Chapt&fl 8/etrics Too] for more

information on how to use this tool and the accounting mechanism it uses.

You can use number of nodes as a method for estimating future project
development efforts. For this to work, you must build a base of knowledge
about current and previous projects. You must have an idea of the amount
of time it took to develop components of existing software products and
associate that information with the number of nodes used in that
component.

Armed with this historical information, you next need to estimate the
number of nodes required for a new project. It is not possible to do this for
an entire project at once. Instead, you must break the project down into
subprojects you can compare to other tasks completed in the past. Once you
have broken it down, you can estimate each component and produce a total
estimate of the number of nodes and the time required for development.

Problems with Source Lines of Code
and Number of Nodes

Size-based metrics are not uniformly accepted in software engineering.
Many people favor them because it is a relatively easy metric to gather and
because a lot of literature has been written about it. Detractors of size
metrics point out the following flaws:

* Size-based metrics are dependent on the organization. Lines of
code/numbers of nodes can be useful within an organization as long as
you are dealing with the same group of people and they are following
the same style guidelines. Trying to use size metrics from other
companies/groups can be difficult because of differing levels of
experience, different expectations for testing and development
methodologies, and so on.

* Size-based metrics are also dependent on the programming language.
Comparing a line of code in assembly language to one written in C can
be like comparing apples to oranges. Statements in higher level

© National Instruments Corporation 5-3 Professional G Developers Tools Reference Manual

Chapter 5 Scheduling and Project Tracking

Effort Estimation

languages can provide more functionality than those in lower level
languages. Comparing numbers of nodes in G to lines of code in a
textual language can be inexact for this reason.

* Not all code is created with the same level of quality. A VI that
retrieves information from a user and writes it to a file can be written
so efficiently that it involves a small number of nodes or it can be
written poorly with a large number of nodes.

« Notall code is equal in complexity. An add function is much easier to
use than an array index node. A block diagram that consists of 50
nested loops is much more difficult to understand than 50 icons
connected together in a line.

« Size-based metrics rely on a solid base of information that associates
productivity with various projects. To be accurate, you should have
statistics for each member of a team because the experience level of
team members varies.

Despite these problems, size metrics are used widely for estimating
projects. A good technique is to estimate a project using size metrics in
conjunction with one of the other methods described later in this chapter.
The two different methods can complement each other. If you find
differences between the two estimates, analyze the assumptions in each
to determine the source of the discrepancy.

Effort estimation is similar in many ways to number of nodes estimation.
You break down the project into components that can be more easily
estimated. A good guideline is to break the project into tasks that take no
more than a week to complete. More complicated tasks are difficult to
estimate accurately.

Once you have broken down the project into tasks, you can estimate
the time to complete each task and add the results to calculate an
overall cost.

Professional G Developers Tools Reference Manual 5-4 © MNational Instruments Corporation

Chapter 5 Scheduling and Project Tracking

Wideband Delphi Estimation

You can useavideband delphi estimatidan conjunction with any of the

other estimation techniques this chapter describes to achieve more reliable
estimates. For successful wideband delphi estimation, multiple developers
must contribute to the estimation process.

First divide the project into separate tasks. Then meet with other developers
to explain the list of tasks. Avoid discussing time estimates during this early
discussion.

Once you have agreed on a set of tasks, each developer separately estimates
the time it will take to complete each task using uninterrupted person-days
as the unit of estimation. The developers should list any assumptions made
in forming their estimates. The group then reconvenes to graph the overall
estimates as a range of values. It is a good idea to keep the estimates
anonymous and to have a person outside the development team lead

this meeting.

After graphing the original set of values, each developer reports any
assumptions made in determining the estimate. For example, one developer
might have assumed a certain VI project takes advantage of existing
libraries. Another developer might point out that a specific VI is more
complicated than expected because it involves communicating with another
application or a shared library. Another team member might be aware of a
task that involves an extensive amount of documentation and testing.

After stating assumptions, each developer reexamines and adjusts the
estimates. The group then graphs and discusses the new estimates. This
process might go on for three or four cycles.

In most cases, you will converge to a small range of values. Absolute
convergence is not required. After the meeting, the developer in charge of
the project can use the average of the results, or he or she might ignore
certain outlying values. If some tasks turn out to be too expensive for the
time allowed, he or she might consider adding resources or scaling back the
project.

Even if the estimate is incorrect, the discussion from the meetings gives a
clear idea of the scope of a project. The discussion serves as an exploration
tool during the specification and design part of the project so you can avoid
problems later.

For a list of documents that include more information on the wideband
delphi estimation method, refer to AppendixReferences

© National Instruments Corporation 5-5 Professional G Developers Tools Reference Manual

Chapter 5

Scheduling and Project Tracking

Other Estimation Techniques

Several other techniques exist for estimating development cost. These are
described in detail in some of the documents listed in Appendix A,
ReferencesThe following list briefly describes some popular techniques:

« Function-Point Estimation-Function-point estimation differs
considerably from the size-estimation techniques described so far.
Rather than divide the project into tasks that are estimated separately,
function points are based on a formula applied to a category
breakdown of the project requirements. The requirements are analyzed
for features such as inputs, outputs, user inquiries, files, and external
interfaces. These features are tallied, and each is weighted. The results
are added to produce a number that represents the complexity of the
project. You can compare this number to function-point estimates of
previous projects to determine an estimate.

Function-point estimates were designed primarily with database
applications in mind but have been applied to other software areas as
well. Function-point estimation is popular as a rough estimation
method because it can be used early in the development process based
on requirements documents. However, the accuracy of function points
as an estimation method has not been thoroughly analyzed.

¢ COCOMO Estimatior-COCOMO (COnstructive COst MOdel) is a
formula-based estimation method for converting software size
estimates to estimated development time. COCOMO is a set of
methods that range from basic to advanced. Basic COCOMO makes a
rough estimate based on a size estimate and a simple classification of
the project type and experience level of a team. Advanced COCOMO
takes into account reliability requirements, hardware features and
constraints, programming experience in a variety of areas, and tools
and methods used for developing and managing the project.

Mapping Estimates to Schedules

An estimate of the amount of effort required for a project can differ greatly
from the calendar time needed to complete the project. You might
accurately estimate that a VI should take only 2 weeks to develop.
However, in implementation you must fit that development into your
schedule. You might have other projects to complete first, or you might
need to wait for another developer to complete his or her work before you
can start the project. You might have meetings and other events during
that time also.

Professional G Developers Tools Reference Manual 5-6 © MNational Instruments Corporation

Chapter 5 Scheduling and Project Tracking

Estimate project development time separately from scheduling it into your
work calendar. Consider estimating task&lgal person-days, which
correspond to 8 hours of development without interruption.

After estimating project time, try to develop a schedule that accounts for
overhead estimates and project dependencies. Remember that you have
weekly meetings to attend, existing projects to support, reports to write, and
other responsibilities.

Record your progress at meeting time estimates and schedule estimates.
Track project time and time spent on other tasks each week. This
information might vary from week to week, but you should be able to
determine an average that is a useful reference for future scheduling.
Recording more information helps you plan future projects accurately.

Tracking Schedules Using Milestones

Milestones are a crucial technique for gauging progress on a project. If
completing the project by a specific date is important, consider setting
milestones for completion.

Set up a small number of major milestones for your project, making sure
each one has clear requirements. To minimize risk, set milestones to
complete the most important components first. If, after reaching a
milestone, the project falls behind schedule and there is not enough time for
another milestone, the most important components will have been
completed.

Throughout development, strive to keep the quality level high. If you defer
problems until a milestone is reached, you are, in effect, deferring risks that
might delay the schedule. Delaying problems can make it seem like you are
making more progress than you actually are. Also, it can create a situation
where you attempt to build new development on top of an unstable
foundation.

When working toward a major milestone, set smaller goals to gauge
progress. Derive minor milestones from the task list you created as part of
your estimation.

A number of the books listed in Appendix Referencesprovide more
information about major and minor milestones.

© National Instruments Corporation 5-7 Professional G Developers Tools Reference Manual

Chapter 5 Scheduling and Project Tracking

Responding to Missed Milestones

One of the biggest mistakes people make is to miss a milestone and not
reexamine the project as a consequence. After missing a milestone, many
developers continue on the same schedule, assuming they will be able to
work harder and make up the time.

Instead, if you miss a milestone you should evaluate the reasons you missed
it. Is there a systematic problem that could affect subsequent milestones? Is
the specification still changing? Are quality problems slowing down new
development? Is the development team at risk of burning out from too much
overtime?

Consider problems carefully. Discuss each problem or setback and have the
entire team make suggestions on how to get back on track. Avoid
accusations. You might have to stop development and return to design for a
period of time. You might decide to cut back on certain features, stop
adding new features until all the bugs are fixed, or renegotiate the schedule.

Deal with problems as they arise and monitor progress to avoid repeating
mistakes or making new ones. Do not wait until the end of the milestone or
the end of the project to correct problems.

Missing a milestone should not come as a complete surprise. Schedule
delays do not occur all at once. They happen little by little, day by day.
Correct problems as they arise. If you do not realize you are behind
schedule until the last 2 months of a year-long project, you probably will
not be able to get back on schedule.

Professional G Developers Tools Reference Manual 5-8 © MNational Instruments Corporation

Creating Documentation

This chapter describes techniques for documenting your software.

You should create several documents for software you develop. The two
main categories for this documentation are as follows:

» Design-related documentation—Requirements, specifications,
detailed design plans, test plans, and change history documents are
examples of the kinds of design-related documents you might need to
produce.

« User documentation—User documentation consists of printed
manuals and online help files that explain how to use your software.

The style of each of these documents is different. Design-related
documentation generally is written for an audience with extensive
knowledge of the tools they are using. User documentation is written for an
audience with a lesser degree of understanding.

The size and style of each document can vary according to the type of
project. For simple tools that will be used only in-house, you might not
need to do much of either. If you plan to sell a product, you must allow a
significant amount of time to develop detailed user-oriented documentation
that describes the product. For products that must go through a quality
certification process, such as a review by the U.S. Food and Drug
Administration, you must ensure that the design-related documentation is
as detailed as required.

Developing Design-Related Documentation

The format and detail level of the documentation you develop for
requirements, specifications, and other design-related documentation is
determined by the quality goals of your project. If you are developing to
meet a quality standard such as 1ISO 9000, the format and detail level of
these documents are different than the format and detail level of an
in-house project.

Appendix A,Referencedists resources that contain information on the
types of documents to prepare as part of your development process.

© National Instruments Corporation 6-1 Professional G Developers Tools Reference Manual

Chapter 6

Creating Documentation

LabVIEW and BridgeVIEW include features that can help you produce
some of the documentation you must create. You can use some of the
following features of these tools to simplify the process:

e History window—The History window is a place to record changes to
a VI as you make them. When you check in a file using the Source
Code Control (SCC) tools described in ChapterSdyrce Code
Control Tools the SCC tools retain the History window text. You can
view it later or print it using the report generation features of the
SCC tools.

e SCCreport generation—In addition to accessing the change history for
a file, you can view the change history for all files under Source Code
Control to see which files have changed and when. You also can view

listings of the projects under SCC and the files that make up those

projects. You can view this information on screen or save it to a file so
you can import it into a word processor to add it to reports. Refer to the

Advanced Featuresection in Chapter 18ource Code Control Togls
for more information.

e Print Documentation dialog box—With this dialog box, you can

create printouts of the front panel, block diagram, connector pane, and
description of a VI. It also prints the names and descriptions of controls
and indicators for the VI and the names and paths of any subVls. You

can print this information, generate Web pages, create online help
source files, or create word-processor documents.

« Documentation tool—With this tool, you can automate the process of

printing documentation for the VIs in your VI hierarchy. Refer to
Chapter 9Documentation Togfor more information.

Developing User Documentation

The format of user documentation depends on the type of product you
create.

Documentation for a Library of SubVls

If the software you are creating is a library of subVIs for use by other
developers, such as an instrument driver or add-on package, you should
create documents with a format similar to ItleéVIEW Function and

VI Reference ManuglLabVIEW userspr Appendix A,HMI Function
Referencgn theBridgeVIEW User ManudBridgeVIEW users). Because
the audience is other developers, you can assume they have a working
knowledge of LabVIEW or BridgeVIEW. Your documentation might

Professional G Developers Tools Reference Manual 6-2 © MNational Instruments Corporation

Chapter 6 Creating Documentation

consist of an overview of the contents of the package, examples of how to
use the subVIs, and a detailed description of each subVI.

For each subVI, you might want to include the VI nhame and description, a
picture of the connector pane, and the description and a picture of the data
type for each of the controls and indicators on the connector pane.

You can generate much of this documentation easily if you use the
description feature for VIs and controls as described iWttad Control
Descriptionssection later in this chapter. You can &#e»Print
Documentation...to create a printout of a VI in a format almost identical
to the format used in the VI reference manuals that ship with BridgeVIEW
and LabVIEW.

If you want to incorporate the text into a manual, Web page, or help file,
you can uséile»Print Documentation... and then select the destination
from theDestination drop-down menu. If you want to create
documentation for multiple Vis all at once, lB®ject»Documentation
Tool. Refer to Chapter Yocumentation Togfor more information.

Documentation for an Application

If you are developing an application for users who are not familiar with
LabVIEW or BridgeVIEW, your documentation requires more

introductory material. Your documentation should cover basic features
such as installation and system requirements. It should provide an overview
of how the package works. If the package uses I/O, describe the necessary
hardware and any configuration that must be done before the user starts
your application.

For each front panel the user interacts with, provide a picture of the front
panel and a description of the major controls and indicators. Organize the
front panel descriptions in a top-down fashion, with the first front panels
the user sees documented first. As described in the previous section, you
can use therint Documentation dialog box or the Documentation tool to
create this documentation.

© National Instruments Corporation 6-3 Professional G Developers Tools Reference Manual

Chapter 6

Creating Documentation

Creating Help Files

You can create your own online help or reference documents if you have
the right development tools. Online help documents are based on formatted
text documents. You can create these documents using a word-processing
program, such as Microsoft Word, or using one of the tools described later
in this section. Special help features such as links and hotspots are created
as hidden text.

You can use therint Documentation dialog box or the Documentation
tool to help you create the source material for your help documents.

Once you have created source documents, use a help compiler to create a
help document. If you need help files on multiple platforms, you must use
the help compiler for the specific platform on which the help files will be
used. You might want to use any of the following compilers. The Windows
compilers also include tools for creating help documents.

e (Windows) RoboHelp from Blue Sky Software, (800) 459-2356;
http://www.blue-sky.com

e (Windows) Doc-To-Help from WexTech Systems, Inc.,
(914) 741-9700http://www.wextech.com

e (Macintosh) QuickHelp from Altura Software, Inc. (408) 655-8005;
http://www.altura.com

« (UNIX) HyperHelp from Bristol Technology, Inc. (203) 798-1007;
http://www.bristol.com

Once you have created and compiled your help files, you can add them to
theHelp menu of LabVIEW, BridgeVIEW, or your own custom

application by placing them in the Help directory. You also can link to them
directly from a VI in one of two ways:

e You can add a link using thé Setup»Documentationoption. Pop
up on the VI connector pane of the VI for which you want to link a file.
SelectVI Setup from the pop-up menu and chod3ecumentation
from the drop-down menu. In the Help Tag box type the topic you want
to link to in the help file. Choose the help file by clicking Brewse...
button. The path of the fileppears in the Help Path bdyow users
can access this link from théelp window. If the VI is a subVI on
another block diagram, you can pop up on the subVI icon and select
Online Help to link to the selected topic in the specified help file.

¢ You can use the Help functions from fRenctions»Application
Control»Help palette to link to topics in specific help files
programmatically.

Professional G Developers Tools Reference Manual 6-4 © MNational Instruments Corporation

Chapter 6 Creating Documentation

VI and Control Descriptions

You can integrate information for the user in each VI you create by using
the VI description feature, by placing instructions on the front panel, and
by including descriptions for each control and indicator.

VI Description

The VI description in th&1 Information dialog box from the
Windows»Show VI Info... menu is often a user’s only source of
information about a VI. Thelelp window displays a VI description when

the user moves the mouse cursor over the VI icon, either the icon on the VI
front panel or the icon used as a subVI in a block diagram.

Important items to include in a VI description are as follows:
* An overview of the VI function

* Instructions for use

» Descriptions of inputs and outputs

Self-Documenting Front Panels

One way of providing important instructions is to place a block of text
prominently on the front panel. A concise list of important steps is valuable.
You might even include a suggestion such as, “S&8kotv VI Info...

from theWindows menu for instructions” or “Sele&how Helpfrom the

Help menu.” For long instructions, you can use a scrolling string instead of
a free label. Be sure to pop up and sdbath Operations»Make Current
Value Defaultto save the text when you finish entering the text.

If a text block requires too much space on your front panel, you can include
a highly visibleHelp button on the front panel instead. Include the
instruction string on its own front panel that pops up when the user clicks
on theHelp button. Use the Window Options\V Setup to configure this

help panel as either a dialog box that requires the user to cli@K dutton

to close it and continue or as a window the user can move anywhere and
close anytime.

Alternatively, you can use thidelp button to open an entry in an online
help file. You can use the Help functions from Blumctions»Application
Control»Help palette to open the LabVIEW or BridgeVIEMEIp
window or to open a help file and link to a specific topic.

© National Instruments Corporation 6-5 Professional G Developers Tools Reference Manual

Chapter 6 Creating Documentation

Control and Indicator Descriptions

Include a description for every control and indicator. You can enter this
with theData Operations»Description...pop-up menu item. Thdelp
window displays an object description when the user moves the mouse
cursor over the object.

When confronted with a new VI, a user has no alternative but to guess the
function of each control and indicator unless you include a description.
Always remember to enter a description as soon as you create the object.
Then, if you copy the object to another VI, the description is copied also.
Also be sure to tell users about this feature.

Every control and indicator needs a description that includes the following
information:

¢ Functionality

e Datatype

« Valid range (for inputs)

e Default value (for inputs)

« Behavior for special values (0, empty array, empty string, and so on)

* Additional information, such as whether the user must set this value
always, often, or rarely

Alternatively, you can list the default value in parentheses as part of the VI
name. For controls and indicators on the VI connector pane, mark the
inputs and outputs &equired, RecommendedorOptional. Refer to the
Connector Panesection in Chapter Ising Consistent Style: The G Style
Guide for more information.

Professional G Developers Tools Reference Manual 6-6 © MNational Instruments Corporation

Using Consistent Style:
The G Style Guide

VI Hierarchy

This chapter describes recommended practices for good programming
technique and style. Remember that these arereabmmendationsot

laws or strict rules. Consider your audience: Users need a good front panel;
developers need a good block diagram; and everybody needs good
documentation. Several experienced G programmers have contributed to
this guide.

As mentioned in Chapter Bycorporating Quality into the Development
Processinconsistent style causes problems when multiple developers are
working on the same project. The resulting VIs can confuse users and be
difficult to maintain. To avoid these problems, establish a set of style
guidelines for VI development. You can establish an initial set at the
beginning of the project and add additional guidelines as the project
progresses.

A style checklist is included at the end of this chapter to help you maintain
consistency and quality as you develop Vls. To save time, review the list
before and during development.

Organize your VIs in the file system to reflect the hierarchical nature of
your software. Make the top-level Vs directly accessible. Place subVIs in
subdirectories and group them to reflect any modular components you have
designed, such as instrument drivers, configuration utilities, and file I/O
drivers.

© National Instruments Corporation 7-1 Professional G Developers Tools Reference Manual

Chapter 7

Using Consistent Style: The G Style Guide

Create a directory for all the VIs for one application and give it a
meaningful name, as shown in Figure 7-1. Save the main VIs in this
directory and the subViIs in a subdirectory. If the subVIs have subVIs,
continue the directory hierarchy downward.

/B
o

Ay Appvi by App Sub

Figure 7-1. Directory Hierarchy

When naming Vls, VI libraries, and directories, avoid using characters that
are not accepted by all file systems, such as slash (/), backslash (\), colon
(:), tilde (=), and so on. With the exception of Windows 3.1, most operating
systems accept long descriptive names for files, up to 31 characters on a
Macintosh and 255 characters on other platforms. Refer to the
Multiplatform Issuesection of Chapter 15ource Code Control Toglr

more information on filename limits for different platforms.

SelectEdit»Preferences...to make sure the VI Search Path contains
<topvi>* and <foundvi>*. The * causes all subdirectories to be searched.
In Figure 7-1MyApp.vi is the top VI. This means that the application will
search for subVIs in the directoyApp before searching the entire disk.
Once a subVI is found in a directory, the application will look in that
directory for subsequent subViIs.

Avoid creating files with the same name anywhere within your hierarchy.
Only one VI of a given name can be in memory at a time. If you have a VI
with a specific name in memory and you attempt to load another VI that
references a subVI of the same name, the VI will link to the VI in memory.
If you make backup copies of your files, be sure to save them into a
directory outside the normal search hierarchy.

Professional G Developers Tools Reference Manual 7-2 © MNational Instruments Corporation

Chapter 7 Using Consistent Style: The G Style Guide

Hierarchy with VI Libraries

If you need to create an application or ship Vls to a customer using
Windows 3.1, save the Vis into VI libraries (LLBs). Within LLBs, the Vs
can have long, descriptive names even under Windows 3.1. Only the LLB
itself and the directories are subject to the 8+3 character limit.

Note The G Source Code Control tools described in ChapterSdurce Code Control
Tools do not support LLBs. As described in that chapter in thsing Individual
Files Instead of VI Librariesection, you can develop under Windows 95/NT using
directories. When it is time to test and ship under Windows 3.1, you can save your
files into LLBs.

There are some disadvantages to saving VIs in a VI library. First, as a VI
library grows, it takes longer to save VIs to it because a copy of the entire
library must be made during the save.

Second, Vs inside a VI library are not visible to your computer file
management system so fhied File command of the operating system
cannot find them.

The third disadvantage to LLBs is the lack of hierarchy within a VI
library. You can simulate one level of hierarchy by marking some VIs as
top-level Vls by selectingile»Edit VI Library... . Top-level Vis

are listed above and apart from the others irFiteeDialog dialog box
when you seledtile»Open, as shown in Figure 7-2.

File Dialog [<]
I Mudpp. b JE3 [I
. -
[o7) An Example of Main v _I
[ez] Mair.wi
[ox] Subl.wi
[ex] SubZ. wi
[o7] Sub3.wi
[

Choose the ¥l to open: -

i

I Catcel

| s & Controls =1

Figure 7-2. Top-Level VIs Listed at the Top of a VI Library

© National Instruments Corporation 7-3 Professional G Developers Tools Reference Manual

Chapter 7 Using Consistent Style: The G Style Guide

If you use LLBs, use a combination of directories and VI libraries to use
the advantages and avoid the disadvantages of both. Separating main Vs
and subVIs into two or more VI libraries in the same directory makes the
VI libraries smaller and the hierarchy more obvious, as shown in

Figure 7-3.

=
= =

Mysppllb MpdppSubllb

Figure 7-3. Mixture of Directories and VI Libraries

You might move the LLBs that contain subVIs into subdirectories to
distinguish the top-level Vs from the subVIs. You can break the subVls
into multiple LLBs without making the top-level structure too confusing.

Front Panels with Style

Consistency

Consider the following analogy: The front panel of a VI is to a G program
what the cockpit is to an airplane. Just as cockpit instruments give the pilot
control over even the most technologically complex aircraft, G front-panel
instruments give you, the programmer, control over program input and
output. No conventional programming environment has anything
comparable to a LabVIEW or BridgeVIEW built-in user interface.

A user’s first contact with your work, and with LabVIEW or BridgeVIEW,
is the front panel, so it had better be high quality.

Even if you decide not to follow these guidelines, at least be consistent. The
user cannot adapt to your style if your application contains significant
changes with every front panel. While stylized fonts and garish colors are
eye-catching, they can distract the user. Standardize on a few colors, fonts,
and layout practices that are attractive and functional. Professional
societies have written standards for human-machine interface design.

Professional G Developers Tools Reference Manual 7-4 © MNational Instruments Corporation

Text

Color

Chapter 7 Using Consistent Style: The G Style Guide

Do not be tempted to use all the fonts and styles available. Stick to three
standard fonts, application, system, and dialog, unless you have a specific
reason to use a different font. For example, monospace fonts, fonts that are
not proportionally spaced, are useful for string controls and indicators
where the number of characters is critical. To set the default font, choose it
from theText Settingsdrop-down menu in the toolbasithout any text or
objects selectedrou can select all the labels you need to change and set
the font in all of them at once using thext Settingsdrop-down menu in

the toolbar.

The actual font used for the three standard fonts varies depending on the
platform, your preferences, and video driver settings, when working under
Windows. Text might appear larger or smaller. To compensate for this,
allow extra space for larger fonts and keepSize to Textoption on the
pop-up menu. Use carriage returns to make multiline text instead of
resizing the text frame.

You can prevent controls and indicators from overlapping because of font
changes on multiple platforms by allowing extra space between controls.
Fonts are the least portable aspect of the front panel, so always test them on
all your target platforms.

Table 7-1 shows suggestions for a consistent set of text styles.

Table 7-1. Examples of Font Styles and When to Use Each

Font Description of Use
Application Font Bold Controls and indicators of primary
importance.
Dialog Font Controls and indicators of primary

importance; groups of controls or titles;
indicators and controls on pop-up panels.

Application Font Plain Secondary indicators or controls used gs
constants; groups of controls or titles.

Like fonts, it is easy to get carried away with color. The particular danger
of color is that it distracts the operator from important information. For

instance, a yellow, green, and bright orange background make it difficult to
see a red danger light. Another problem is that other platforms might not

© National Instruments Corporation 7-5 Professional G Developers Tools Reference Manual

Using Consistent Style: The G Style Guide

have as many colors available. Also, some users have black-and-white
monitors that cannot display certain color combinations well. For example,
black-and-white monitors display black letters on a red background as all
black. Use a minimal number of colors, emphasizing black, white, and
gray. The following are some simple guidelines for using color:

¢ Never use color as the sole indicator of device state. People with some
degree of color-blindness (5% of men) might not detect the change.
Also, multiplot graphs and charts can lose meaning when displayed in
black and white. Use line styles in addition to color.

e Use light gray, white, or pastel colors for backgrounds.

e Select bright, highlighting colors only when the item is important, such
as an error notification.

« Always check your VI on other platforms and on a black-and-white
monitor.

* Be consistent.

Graphics and Custom Controls

You can enhance the functionality of your front panel with imported
graphics. You can import bitmaps, Macintosh PICTs, Windows Enhanced
Metafiles, and text objects for use as backgrounds or in pict rings and
custom controls, as shown in Figure 7-4.

a Yoo

Base Comman, = =
Emitter Steplen Base Yoo, Basze Steplen,
Ernittet Common Ernitter Common

4 I [3 4] 3 4] [3

Figure 7-4. Example of Imported Graphics Used in a Pict Ring

Use a pict ring when a function or mode is conveniently described by a
picture.

A custom Boolean control that is transparent in one state appears when the
state changes. A completely transparent Boolean is useful for detecting
mouse clicks in specified regions of the screen.

Check how your imported pictures look when your VI is loaded on another
platform. For example, a Macintosh PICT file that has an irregular shape
might convert to a rectangular bitmap with a white background under
Windows or UNIX.

Professional G Developers Tools Reference Manual 7-6 © MNational Instruments Corporation

Chapter 7 Using Consistent Style: The G Style Guide

One disadvantage of imported graphics is that they slow down screen
updates. The following suggestions might improve performance:

» Make sure indicators and controls are not placed on top of a graphic
object. That way, the object does not have to be redrawn each time the
indicator is updated.

« If you must use a large background picture with controls on top of it,
try breaking it into several smaller objects and import them separately.
Large graphics usually take longer to draw than small ones. For
instance, you could import several pictures of valves and pipes
individually instead of importing one large picture.

Front Panel Layout

Consider the arrangement of controls on front panels. Keep front panels
simple to avoid confusing the user. For top-level Vis that users see, place
the most important controls in the most prominent positions. Use the
Align Objects and theDistribute Objects drop-down menus to create a
uniform layout. Usdedit»Panel Order... to arrange controls in a logical
sequence. Refer to tiey Navigatiorsection later in this chapter for more
information. Do not overlap controls with other controls or with their own
label, digital display, or other parts unless you are trying to achieve a
special effect. Overlapped controls are much slower to draw and might
flash. Place angtart or Stop buttons near thRun button on the toolbar

for two reasons: The buttons are easier to find, an8tthyebutton will be
more prominent than th&bort button, if you did not hide it. The user will
be less likely to abort the VI by accident.

Use simple elements such as rounded rectangles to visually group objects
with related functions. Use clusters to group related data. However, do not
use clusters for aesthetic purposes only. It makes connections to your VI
more difficult to understand. Avoid importing graphic objects that are
inanimate copies of real controls. For instance, do not use a copy of a
cluster border to group controls that are not actually in a cluster.

For subVI front panels the user does not see, you can place the objects so
they correspond to the connector pattern. Generally, inputs should be on the
left and outputs on the right.

Sizing and Positioning Front Panels

Front panels should fit on a monitor that is the standard size for most
intended users. Make the window as small as possible without crowding
controls or sacrificing a good layout. If your Vls are intended for in-house
use and everyone has a large monitor, design large front panels. If you are

© National Instruments Corporation 7-7 Professional G Developers Tools Reference Manual

Chapter 7 Using Consistent Style: The G Style Guide

doing commercial development, keep in mind that not everyone has a large
monitor.

Front panels should open in the upper-left corner of the screen for the
convenience of users with small screens. Sets of VIs that are often opened
together should be placed so the user can see at least a small part of each.
Place front panels that open automatically in the center of the screen by
selecting théuto-Center option in the Windows Options version of the

VI Setup dialog box to optimize this for monitors of various sizes.

Moving a window is not considered a modification within the VI editor. To
save the VI with the windows properly placed, make a small change, such
as moving a control by one pixel then moving it back, and save the VI or
selectFile»Save As..and use the same name.

Controls and Indicators

The following sections guide you on when and how to use various controls
and indicators effectively.

Descriptions

Every control and indicator should have a description. Refer tglthad
Control Descriptionsection in Chapter &reating Documentatigrfor
more information.

Labels

TheHelp window displays labels as part of the connector. Label the most
important controls and indicators on a front panélald. Display controls

and indicators that are rarely used in square brackets. If the default value of
a control is valid, add it to the name in parentheses. Include the units of the
value, where applicable. The Required/Recommended/Optional setting
affects the appearance of the inputs and outputs iHéhewindow. The
Connector Panesection later this chapter describes the
Required/Recommended/Optional setting.

The name of a control or indicator should describe its function. For
example, for a ring or labeled slide with options for volts, ohms, or
amperes, a name like “Select units for display” is better than “V/O/A” and
is certainly an improvement over the generic “Mode.” Of course, long
names use valuable space on the block diagram, especially if you use any
local variables or Bundle/Unbundle by Name functions. You might prefer
to give the control a short name, then add an explanatory label to it.

Professional G Developers Tools Reference Manual 7-8 © MNational Instruments Corporation

Chapter 7 Using Consistent Style: The G Style Guide

For Booleans, the name should give an indication of which state
corresponds to which function, while still indicating the default state. The
following examples is a recommended format for a Boolean where true
means reset but the default is false:

Reset Device? (F)

Free labels next to the Boolean can help clarify the meaning of each
position on a switch, as shown in Figure 7-5.

Reset Device? [F
g Reset to default configuration before munning
Fiun with current configuration

Figure 7-5. Free Labels on a Boolean Control

Enumerations versus Rings

Rings and enumerations look identical on a front panel, but they are
different. On a block diagram, a ring is simply an integer numeric. Rings
have the appearance of a pop-up menu, associating each string with a
number. The strings can be set at edit time or at run time using an
attribute node.

An enumeration is similar to a ring, but the strings in the enumeration are
really a part of the enumeration data type. If you wire an enumeration to a
Case Structure, the Case Structure displays the names from the
enumeration instead of the numbers. Also, if you pop up on an enumeration
input of a function or subVI and create a control, constant, or indicator, the
resulting object also will be an enumeration. With a ring, you would simply
get a numeric.

Because the names are really a part of the type, you cannot change the
names in an enumeration programmatically at run time. Also, you cannot
compare two enumerations of different types. If you wire an enumeration
to something that expects a standard numeric, you will see a coercion dot
because the type is being converted.

Enumerations are useful for making code easier to read. Rings are useful

for front panels the user interacts with, where you want to
programmatically change the strings.

© National Instruments Corporation 7-9 Professional G Developers Tools Reference Manual

Chapter 7 Using Consistent Style: The G Style Guide

Default Values, Ranges, and Coercion

Expect the user to supply invalid values to every control. You can check for
invalid values in your block diagram or set the corfrala Rangeitem to

coerce values into the desired range: minimum, maximum, and increment.

If the values are not evenly spaced, such as a 1-2-5 sequence, use a function
similar to the Range Finder VI shown in Figures 7-6 and 7-7.

Range Finder._vi =]

File Edit Qperate Project Windows Help

=)] [3etfopicaton Fort =] [foe] [roo] 20 <] |8

Valid settings Mext higher walue
] +1.0000 1.0000

Setting ta find [0
A

Setting in range —

1l I;Ii

Figure 7-6. Front Panel of Range Finder VI

Setting ta find [0

= S etting in range

5lid settinﬁ&
[E:ﬂ]l lE
i et
B o higher
@— mt value
[EXT]

Figure 7-7. Block Diagram of Range Finder VI

Professional G Developers Tools Reference Manual 7-10 © MNational Instruments Corporation

Attribute Nodes

Key Navigation

Chapter 7 Using Consistent Style: The G Style Guide

Other difficult situations must be dealt with programmatically. Many GPIB
instruments limit the permissible settings of one control based on the
settings of another. For example, a voltmeter might permit a range setting
of 2,000 V for DC but only 1,000 V for AC. If the affected controls like
Range and Mode reside in the same VI, put the interlock logic there. Refer
to theAttribute NodesindLocal Variablessections later in this chapter for
more information. If one or more of the controls are not readily available,
you can request the present settings from the instrument to ensure you do
not try to set an invalid combination.

There are some speed and memory usage drawbacks to limiting ranges. The
Data Range function adds some execution overhead, as does the Find
Range VI and similar VIs. If you choose Suspend for range error action, the
VI front panel remains in memory and will open if a range error occurs.
This consumes additional memory.

Controls should have reasonable default values. A VI should not fail when
run with default values. Remember to show the default in parentheses in the
control label. Do not set default values of indicators like graphs, arrays, and
strings without a good reason because that wastes disk space when saving
the VI.

Use default values intelligently. In the case of high-level file VIs such as the
Write Characters to File VI, the default is an empty path that forces the VI
to display aFile Selectiondialog box. This can save the use of a Boolean
switch in many cases.

Use attribute nodes to give the user more feedback on the front panel. There
are many things you can do to make your VI easier to use, including the
following suggestions:

e Set the text focus to the main, most commonly used control.
« Dim or hide controls that are not currently relevant or valid.
» Guide the user through steps by highlighting controls.

» Change screen colors to bring attention to error conditions.

Some users prefer to use the keyboard instead of a mouse. In some
environments, such as a manufacturing plant, only a keyboard is available.
Even if a mouse is used, keyboard shortcuts, such as using the <Enter> key
to select the default action of a dialog box, add convenience.

© National Instruments Corporation 7-11 Professional G Developers Tools Reference Manual

Chapter 7 Using Consistent Style: The G Style Guide

Local Variables

For these reasons, consider including keyboard shortcuts to your programs.

Consider the tab order of controls. If you seledit»Panel Order..., you

can see the order of your front panel controls. This order controls the tab
order for your front panel. In general, set the order to read left to right and
top to bottom.

Pay attention to the key navigation options for buttons on the front panel.
You can set key navigation options from Key Navigation... item of the
pop-up menu of any control. Set the <Enter> key to be the keyboard
shortcut to the front panel default control. However, if you have a multiline
string control on the front panel, you might not want to use the <Enter> key
as a shortcut.

If your front panel has @ancelbutton, assign a shortcut to the <Esc> key.
You also can use function keys as navigation buttons to move from screen
to screen. If you do this, be sure to use the shortcuts consistently. Do not
use F5 on one front panel and F6 on another front panel for the same action.

For controls that are offscreen, use Kiey Navigation dialog box to skip
over the controls when tabbing.

Also, you might consider using the Key Focus attribute to set the focus
programmatically to a specific control when the front panel opens.

If you have controls with interdependent values, use local variables to keep
the values consistent and valid. For example, a VI that generates a square
wave might have two inputs, period and frequency. If the user sets period,
the VI should detect the change in value and change frequency to the
corresponding value.

Use local variables when you need a control/indicator combination. For
example, the VI might set some parameter values, using write-to controls
with local variables, but the user must be able to override those values by
entering his or her own values, using type-into controls.

But, avoid using local variables if possible. Some users use local variables
because it seems like a convenient way to avoid passing wires from one
point to another on the block diagram. Doing so hides the data flow, making
the block diagram more difficult to understand and maintain. Also, using
local variables increases the possibility of havanze conditionsin which
multiple locations on the block diagram attempt to modify the same local
variable, resulting in the loss of data. Refer to ChaptelP@8prmance

Professional G Developers Tools Reference Manual 7-12 © MNational Instruments Corporation

VI Setup

Chapter 7 Using Consistent Style: The G Style Guide

Issues of theG Programming Reference Manual more information
about using local variables.

To access th¥l Setup dialog box, pop up on the VI icon and choose
VI Setup. Think about the window behavior and style of every VI in your
project.

In the Execution Options version of tiéSetup dialog box, selecshow

Front Panel When LoadedandClose Afterwards if Originally Closed

for front panels you want to appear and disappear automatically. Do not set
higher priority than the default on any VI without giving it some serious
thought. A high-priority VI that loops forever will block execution of all
other Vls. Refer to Chapter 28nderstanding the G Execution Systeimn

theG Programming Reference Manual information on how priorities

work.

In the Window Options version of thd Setup dialog box, select

Dialog Box for front panels that should wait for input from the user before
the program can continue. Turn off tAbow User to Close Window

option to keep users from accidentally closing an important front panel
while it is running. Disable the scroll bars, the menu bar, and the toolbar
unless the user needs them. You can use the keyboard shortcuts for cut,
copy, and paste even if the menu is hidden. Hiding menu bars and using
dialog box style makes Help and VI descriptions inaccessible. You can add
aHelp button on the front panel and design it to show the Help window or
help file entries programmatically. Remember that you can abort a VI by
using the following keyboard shortcuts:

e <Ctrl-period>(Windows)

e <Cmd-period>Macintosh)

e <meta-periodxSun)

e <Alt-period> (HP-UX)

Hide theAbort button if the user should not abort the VI. HidingAttert

button disables the keyboard shortcut for aborting the VI. You should
provide a front-panel Boolea®top button for Vis that loop.

You can hide the single-stepping and execution highlighting buttons to save
a small amount of execution time when the VI is finished by turning off the
Allow Debugging option. However, these debugging tools often are useful
to a user trying to understand how the block diagram works.

© National Instruments Corporation 7-13 Professional G Developers Tools Reference Manual

Chapter 7 Using Consistent Style: The G Style Guide

Connector Panes

Consider selecting a connector pattern with extra terminals. You can leave
these extra terminals unconnected. That way, you do not have to change the
connector pattern for your VI if you later find that you need another input
or output. Changing patterns requires replacing the subVI in all calling VIs.
By adding extra, unused terminals, you can add an input or output with
minimal effect on your hierarchy.

Put at least one input and one output on each subVI to define data flow.
Error in and error out are ideal dataflow connections. If a set of Vs is used
together and must be sequenced, you can add a common thread. Refer to
the Adding Common Thread®ction later in this chapter for more
information.

Position connections for inputs on the left and connections for outputs on
the right. This conventional left-to-right data flow prevents complicated,
unclear wiring patterns. Figure 7-8 gives examples of good and bad inputs
and outputs.

EAD Input

— BAD Output
GO0 Input ﬁ

[GOOD Dutput
an 0K Input — 1 I—an Ok Output

Figure 7-8. Good and Bad Inputs and Outputs

When several VIs use the same inputs and outputs, try to place the inputs
and outputs in the same location on each VI. For example, refnums are
usually located at the top left and right of an icon, and error I/Os are located
at the bottom left and right. Placing these inputs and outputs in these
locations makes it easier to wire icons together.

On the front panel, you can edit required inputs for subVIs by clicking on
a terminal in the connector pane at the upper right side of the window and
choosingThis Connection is»from the pop-up menu. If the connector

pane is not visible, pop up on the VI icon and seldaiw Connector

From theThis Connection is»submenu, sele®equired,

Recommended or Optional. By default, inputs are all considered to be
Recommended

If you have theShow Warningspreference enabled in tlror List
dialog box, the Error window warns you of unwired, recommended inputs.

Professional G Developers Tools Reference Manual 7-14 © MNational Instruments Corporation

Chapter 7 Using Consistent Style: The G Style Guide

If you designate an input as required, it must be wired in a calling VI for
the VI to work. This is appropriate for inputs such as refnums, where the
VI does not make sense unless the input is wired. You should not make an
input required unless it is necessary for the VI to execute properly.
Required inputs appear in bold in tHelp window.

If you make an input optional, théelp window does not display it in

simple help mode, which helps to simplify the connector pane idehe
window. With simple help mode turned off, the input appears dimmed. You
should use the optional setting for parameters you rarely need to wire.

You can specify whether outputs should be recommended or optional, but
you cannot mark outputs as required.

Icons

Create a meaningful icon for every VI. Always create a black-and-white
icon for printouts and menus and add color later. The examples and
vilib directories are full of well-designed icons that illustrate the
functionality of the underlying program. Collect ideas for icons. You might
have to use text if you cannot create a picture. However, if you intend to
send your VIs to customers who speak a language other than English, a
well-chosen icon is much more effective.

If your VI is a mathematical function, draw a plot of that function, as shown

in the following examples.
] :
T
tl LoG| | SIME]

For simple data-processing functions, depict the input and output data types
and the nature of the operation. This can become cryptic, however, so use
caution. The following examples are icons for the 1D Linear Evaluation
and Solve Linear Equations VIs.

l:l'pE:-:
_c:

Within driver packages, maintain a unifying theme for groups of icons.
Basing your design on drivers for similar instruments makes it easier for

© National Instruments Corporation 7-15 Professional G Developers Tools Reference Manual

Chapter 7 Using Consistent Style: The G Style Guide

users to convert from one instrument to another with minimal confusion.
The following examples are icons for the HP 54570 instrument driver.

HF54510| [HFS45T0

....... A

Do not spoil the international language of pictures by creating an icon that
is a play on English words. For example, do not represent a datalogging VI
with a picture of a lumberjack.

Icons for higher level VIs might require some artistic talent. The following
icons are examples of good icons.

Fila

& e A

Peak [ebechive Updabe Table Filz Decizsion Dialog

The Icon Editor offers useful tools for creating icons. For example, to make
symbols for the various inputs and outputs on the icon, you can display the
connector pattern in the Icon Editor.

Use the Labeling tool to add text to an icon. Double click the Labeling tool
to change the font or font size of the text. Some fonts, like Symbol and
Glyph, contain many small pictures you can use in your icons. Because it
is in bitmap form, text you type in the Icon Editor does not change when
viewed on a machine with different fonts.

The Block Diagram

The block diagram concept used in LabVIEW and BridgeVIEW is
considered a breakthrough in software engineering. Like any new tool,
developers still are learning optimal methods for its application.
Fortunately, programming in LabVIEW and BridgeVIEW is graphical, so
you can create programs that are functional and visually engaging. This
section contains recommendations for improving block diagrams in
function and in appearance.

Professional G Developers Tools Reference Manual 7-16 © MNational Instruments Corporation

Wiring Etiquette

Chapter 7 Using Consistent Style: The G Style Guide

Haphazard wiring can distract the user and make block diagrams difficult
to follow. Align and distribute objects to make a block diagram as neat as
possible. Employ symmetry and straight lines to make the block diagram
easy to read. Do not hide objects behind structures or other objects.

The following are some general wiring tips:

Avoid routing wires underneath structures or icons, and never route
wires through an icon to a terminal on the other side of the icon.

Do not use local variables just to avoid having long wires. Every local
variable that reads the data makes a copy of it. Using local variables
can lead to race conditions. Refer to ChapteP28formance Issues

in theG Programming Reference Manual more information.

Reduce the number of pivot points in wires by aligning the source and
destination of the wires. Use the cursor keys to remove single-pixel
kinks from wires.

Delete excess wires, such as loops.
Evenly space parallel wires in straight lines and around corners.

Notice object alignment, consistent spacing, and labels on the long wires
illustrated in Figure 7-9.

4 of points|

[False

© National Instruments Corporation

Figure 7-9. Good Wiring in a Simple Block Diagram

7-17 Professional G Developers Tools Reference Manual

Chapter 7 Using Consistent Style: The G Style Guide

Labeling

Give major structures in the block diagram names and descriptions through
theDescription... pop-up menu item. This helps the user understand
complex segments of code.

Use enumerations as inputs to Case Structures when possible because the
names from the enumerations appear at the top of Case Structures instead
of numbers. Add comments to explain the purpose of each frame. For
comments, choose a font size and style that will stand out. Always label
constants because they are not self-explanatory. Show the label of a subVI
if the icon does not describe the function of the VI sufficiently.

Use free labels on long stretches of wire to label the signal data. Place the
label right on top of the wire with a transparent border as shown in the
following example:

Hariz ¥
[Hmult
Woffrek
Vert A
F——Y mult
Y offret

(=] =] =] [=] [=] [=)
i] R |
—lr uiu I

Paste long comments into small string constants and make them scrollable.
Place large scrollable text items off to the side of the block diagram to avoid
cluttering the screen.

When a Vl is loaded on a different platform, the fonts change. Front panel
labels might move automatically if they overlap controls. Block diagram
elements, however, do not move to accommodate font changes. Place labels
below objects to ensure they stay next to the object even if they grow or
shrink on the bottom and right sides. Right-justify any labels you place to
the left of an object.

Execution Sequence

The following sections describe programming concepts that will help you
take advantage of the natural data flow in block diagrams.

Left-to-Right Layouts

G was designed to use a left-to-right and sometimes top-to-bottom layout.
Your block diagrams should follow this convention. While the positions of
program elements do not determine execution order, avoid wiring from
right to left. Only data connections, or wires, and structures determine
execution order.

Professional G Developers Tools Reference Manual 7-18 © MNational Instruments Corporation

Chapter 7 Using Consistent Style: The G Style Guide

Data Dependency

As described in Chapter 18tructuresin theG Programming Reference
Manual artificial data dependency should be applied wherever practical. If
a section of the block diagram is missing the appropriate inputs or outputs,
you might use a single-frame Sequence Structure. Do not overdo it, though.
To impose a pure dataflow model just for the sake of avoiding Sequence
Structures completely is as bad as overusing them. Use dataflow
programming techniques to create a clear, single-page main program.

Adding Common Threads

If you make a collection of subVIs that are used together often, give them
all a common input/output terminal pair to chain them together without
requiring Sequence or Case Structures. A good example of a common
thread is an error code. Each VI should test the incoming error and not
execute if there is an existing error, then pass that error or its own error to
the output. The only exception to this rule is a function like the Close File
function, which must perform cleanup regardless of whether an error
occurred previously. The Close File function closes the specified file and
passes error input as its output. This error information is commonly kept in
a cluster that contains a numeric error code, a string that contains the name
of the function that generated the error, and an error Boolean for quick
testing. This technique is sometimes called Error In/Error Out and is used
in most of the 1/O libraries.

Figure 7-10 shows an example of how the data acquisition VIs use the error
cluster. The While Loop stops if an error is detected, and the General Error
Handler VI reports the error to the user at the end. Notice the clean
appearance of this style of programming.

CUﬂFlG STHRT REII:!D CL'EIHR
aeBl Loy g |

-
ﬁ o
cnntlnuous

Figure 7-10. Example of How Data Acquisition VIs Use Error Clusters

© National Instruments Corporation 7-19 Professional G Developers Tools Reference Manual

Chapter 7

Using Consistent Style: The G Style Guide

Sequence Structures

Avoid overusing Sequence Structures. G has a great deal of inherent
parallelism. Using a Sequence Structure guarantees the order of execution
but prohibits parallel operations. For instance, asynchronous tasks that use
1/0 devices, such as GPIB, serial, plug-in boards, can run concurrently with
CPU-bound operationSequence Structures add no code or execution
overhead, but they do restrict parallelis&ctually, your program might
execute faster if you can add parallelism by reducing the use of sequences.
Sequences also hide parts of the program and interrupt the natural
left-to-right flow of data.

While pure dataflow programming means avoiding Sequence Structures,
there are cases where it is appropriate to use them. Use Sequence Structures
only if one node must execute before another and cannot be connected by
a wire. Refer to th®ata Dependencgection earlier in this chapter for

more information. Sequence Structures also can be used to conserve screen
space, although proper use of subVis is better.

Lesson 8Additional Topicsin theLabVIEW Basics Il Course Manual
describes a State Machine, which is an alternative to the Sequence
Structure. Use a Case Structure wired to a counter in a For or While Loop.
This technique allows you to jump around in the sequence by manipulating
the counter. For instance, any frame can jump directly to an error handling
frame.

Watch Out for Missing Dependencies

Make sure you have explicitly defined the sequence of events, when
necessary. Do not assume left-to-right or top-to-bottom execution when no
data dependency exists.

In the following example, there is no dependency between the Read File
and Close File functions. More than likely, this program cannot work as

expected.
DFEN FILE [K LOEE
g

Professional G Developers Tools Reference Manual 7-20 © MNational Instruments Corporation

Chapter 7 Using Consistent Style: The G Style Guide

The following version of the block diagram establishes a dependency by
wiring an output of the Read File to the Close File. The operation cannot
end until the Close File receives the output of the Read File.

OFER

|

FILE
=

.

E r

Notice that the preceding example still does not check for errors. For
instance, if the file does not exist, the program does not display a warning.
The following version of the block diagram illustrates one method for
handling this problem. In this example, the block diagram uses the error I/O
inputs and outputs of these functions to propagate any errors to the simple
Error Handler VI.

== FILE
= |
04 E‘

'

if

=

Check for Errors

When you perform any kind of I/O, consider the possibility that errors
might occur. Almost all I/O functions return error information. Make sure
your program checks for errors and you deal with them appropriately.

BridgeVIEW and LabVIEW do not deal with errors automatically because
users usually want specific error-handling methods. For example, if an
I/O VI in your block diagram times out, you might or might not want your
entire program to halt. You also might want the VI to retry for a certain
period of time. In BridgeVIEW and LabVIEWpumake error-handling
decisions.

© National Instruments Corporation 7-21 Professional G Developers Tools Reference Manual

Chapter 7

Note

Using Consistent Style: The G Style Guide

The following list describes three situations in which errors frequently
occur:

* Incorrect initialization of communication or data that has been
improperly written to your external device

« Broken or improperly working external device or loss of power
* Incorrect file permissions or a lack of disk space

When an error occurs, you might not want certain subsequent operations to
take place. For instance, if an analog output operation fails because you
specify the wrong device, you might not want BridgeVIEW or LabVIEW

to perform a subsequent analog input operation.

One method for managing such a problem is to test for errors after every
function and put subsequent functions inside Case Structures. This can
complicate your diagrams and can ultimately hide the purpose of your
application.

An alternative approach, which has been used successfully in a number of
applications and many of the VI libraries, is to incorporate error handling
in the subVIs that perform 1/0O. Each VI can have an error input and an error
output. You can design the VI to check the error input to see if an error has
previously occurred. If there is an error, the VI can be set up to halt
execution and to pass the error input to the error output. If there is no error,
the VI can execute the operation and pass the result to the error output.

In some cases, such asGoseoperation, you might want the VI to perform the
operation regardless of the error it receives.

Using the preceding technique, you can easily wire several Vls together,
connecting error inputs and outputs to propagate errors from one VI to the
next. At the end of a series of Vs, you can use the Simple Error Handler VI
to display a dialog box if an error occurs. The Simple Error Handler VI

is located in thé-unctions»Time & Dialog palette. In addition to
encapsulating error handling, you can use this technique to determine
the order of several I/O operations.

One of the main advantages in using the error input and output clusters is
that you can use them to control the execution order of dissimilar
operations.

Professional G Developers Tools Reference Manual 7-22 © MNational Instruments Corporation

Chapter 7 Using Consistent Style: The G Style Guide

The error information is generally represented using a cluster that contains
a numeric error code, a string that contains the name of the function that
generated the error, and an error Boolean for quick testing. Figure 7-11
shows how you can use this in your own applications. Notice that the
While Loop stops if it detects an error.

shap an error

O e
- |

Figure 7-11. Example of How to Use an Error Cluster

Sizing and Positioning of Block Diagrams

Like the front panel, the block diagram should fit the user’s monitor. The
amount and density of wiring on a diagram often indicate the skill,
forethought, and intentions of the programmer. Having to remove a section
of code and put it in a subVI because you ran out of space is a sign of not
using effective top-down design.

When the front panel and block diagram fit on an average-sized monitor,
place the block diagram to the right of or below the front panel. This
arrangement gives users the optimum view of your program. When the
front panel and block diagram do not fit on one screen, place the block
diagram in the upper-left corner of the screen. If possible, show the title bar
of the front panel and the block diagram. To set the window position, make
a small change, such as modifying or moving any object and changing it
back, and save or seldate»Save As...and use the same name.

© National Instruments Corporation 7-23 Professional G Developers Tools Reference Manual

Chapter 7 Using Consistent Style: The G Style Guide

Figure 7-12 illustrates how a front panel and a block diagram can fit
comfortably on a small monitor with room to spare forkedp window.

Extract Humbers. vi 1 [m] [Help [] 54

File Edit Operate Project windows Help ;I

‘il@l |/@\i 11 | I‘I 3pt Application Faont _,I I:J-T-'

Sinagle Precizsion Aray

Stiing

This 1 takes a stiing containing multiple numbers and d Extract Humbers. vi
extracts thoze numbers into an arnray, See the Get Info i
dialog box for more information. Finds all numbers in the given sting and puts them into
Shing an array as single-precision numbers. Al of the
following formats are recognized;
h3, 42, 37 123 1.23 1.23e2 1.23E2

Mo spaces or other characters may appear within the
riumber, but any characters may appear before or after
the number,

Single Precizion Aray —
K | ﬁ ERER ﬂ',‘

File Edit Operate Project ‘windows Help

:{}I{Eﬂ /ééﬁéééé\;] I @ kullﬁ’hg [13pt Application Font =] |30 =] |0a =] |29 =]

Figure 7-12. Well-Placed Front Panel and Block Diagram

Optimization

Professional G Developers Tools Reference Manual 7-24

There are many things you can do to optimize memory usage and execution
time of your G program. Generally an advanced topic, optimization quickly
becomes a concern when your program has large arrays and/or critical

timing problems. Refer to Chapter Zrformance Issue# the
G Programming Reference Manual more information on optimizing

G programs.

© MNational Instruments Corporation

Code Interface Nodes

Chapter 7 Using Consistent Style: The G Style Guide

A Code Interface Nod€CIN) can obscure the function of your Vls. Use
CINs only when absolutely necessary. Include the following information to
help your users understand what your CIN does and how to rebuild it.

CIN Description Contents

In theDescription pop-up menu item of a CIN, or in a scrolling label next
to the node, record the following information:

Source code filename

Platform and operating system

Compiler and version

Location of source code

What the code does

List of other files required to build the CIN

Other critical information required to maintain the CIN

CIN Source Code

You should enter the same kind of information in the header file with the
source code that you enter in fDescription... pop-up menu item of a
CIN. If the source code is not too long, paste it into a scrollable block
diagram string constant.

© National Instruments Corporation

7-25 Professional G Developers Tools Reference Manual

Chapter 7 Using Consistent Style: The G Style Guide

Style Checklist

VI Checklist

Use the following checklist to help you maintain consistent style and
quality. You might want to copy this checklist to use on all your projects.

Organize Vls in a hierarchical directory with easily accessible
top-level Vis and subVls in subdirectories.

Avoid putting too many VIs in one library because large LLBs take
longer to save.

With LLBs, useFile»Edit VI Library... to mark top-level Vis.

If the VIs will be used as subVIs, uBdit»Edit Control & Function
Palettes...to create amnu file or edit the menu that is part of the
LLB. Be sure to do the following:

« Arrange palettes.
¢« Name menus.
¢ Hide dependent subVis.

Give VI meaningful namewithoutspecial characters such as
backslash (\), slash (/), colon (:), and tilde (~).

Use standard extensions so Windows and UNIX can distinguish files
(wvi ,.ctl).

Capitalize initial letters of VI names.

Distinguish example VIs, top-level VIs, subVls, controls, and global
variables by saving them in subdirectories, separate libraries in the
same directory, or by giving them descriptive names such as
MainX.vi , Example of X.vi , Global X.vi , and

TypeDef X.ctl

Write a VI description. Proofread it. Check tHelp window.
Include your name and/or company and the date in the VI description.

When you modify a VI, use the History window to document your
changes.

Create a meaningful black-and-white icon. Color icons are optional.

Professional G Developers Tools Reference Manual 7-26 © MNational Instruments Corporation

Chapter 7 Using Consistent Style: The G Style Guide

[1 Make a connector pane. Provide in and out data flow. Leave extra
inputs and outputs for later development. Use consistent layout.

[l Consider VI and window options carefully. Remember the following:
« Do not set higher priority without serious thought.

* Remember that hiding menu bars and using dialog box style
makes Help and VI descriptions inaccessible.

» Hiding Abort and debugging buttons increases performance
slightly.

Set print options to print attractive output in the most useful format.

Make test Vs that check error conditions, invalid values,Gamtel
buttons.

Save test VIs in a separate directory so you can reuse them.

Load and test VIs on multiple platforms, making sure labels fit and
window size and position are correct.

Front Panel Checklist
[l Give controls meaningful names. Use consistent capitalization.
[l Make name label backgrounds transparent.

1 Check for consistent placement of control names, for example,
upper left.

Use standard, consistent fonts throughout all front panels.

UseSize to Textfor all text for portability and add carriage returns if
necessary.

[0 UseRequired, Recommended andOptional settings on the
connector pane.

Put default values in parentheses after input names.

Include unit information in names if applicable, for example, Time
Limit (10 Seconds).

[0 Write descriptions for controls, including array, cluster, and refnum
elements. Remember that you might need to change the description if
you copy the control.

© National Instruments Corporation 7-27 Professional G Developers Tools Reference Manual

Chapter 7 Using Consistent Style

N

O O 0o O

: The G Style Guide

Arrange controls logically. For top-level Vs, put the most important
controls in the most prominent positions. For subVIs, put inputs on the
left and outputs on the right and follow connector arrangement.

Arrange controls attractively, using tAdign Objects and the
Distribute Objects drop-down menus.

Do not overlap controls.
Use color logically and sparingly, if at all.
Use error in, error out clusters where appropriate.

Consider other common thread controls, such as taskID, refnum,
and name.

Provide aStopbutton if necessary. Do not use #iwort button to stop
a VI. Hide theAbort button.

Use rings and enumerations where appropriate. If you are using a
Boolean for two options, consider using an enumeration instead to
allow for future expansion of options.

Use Custom Controls or TypeDefs for common controls, especially for
rings and enumerations. Include it with Vis.

In control Vls, label controls with the same name as the VI, for
exampleAlarm Boolean.ctl has the default name Alarm Boolean.

Block Diagram Checklist

N

O

Avoid creating extremely large block diagrams. Limit them to one to
two screens if possible.

Label controls, important functions, subVls, constants, attribute nodes,
local variables, global variables, and structures.

Add comments. Use object labels instead of free labels where
applicable and scrollable strings for long comments.

Make comment backgrounds transparent to distinguish from
name labels.

Place labels below objects when possible and right-justify text if label
is placed to the left of an object.

Professional G Developers Tools Reference Manual 7-28 © MNational Instruments Corporation

O O o o O

© National Instruments Corporation

Chapter 7 Using Consistent Style: The G Style Guide

Use standard, consistent font conventions throughout.
UseSize to Textfor all text and add carriage returns if necessary.

Reduce white space in smaller block diagrams but allow at least
3—4 pixels between objects.

Flow data from left to right. Wires enter from the left and exit to the
right, not the top or the bottom.

Align and distribute functions, terminals, and constants.
Label long wires with small transparent labels.

Do not wire behind objects.

Make good use of reusable, testable subVils.

Make sure the program can deal with error conditions and invalid
values.

Show name of source code or include source code for any CINSs.
Save with the most important or the first frame of structures showing.

Review for efficiency, especially data copying, and accuracy,
especially parts without data dependency.

7-29 Professional G Developers Tools Reference Manual

Part i

Professional Development Tools

This section of the manual describes the features of the tools.

Chapter 8VI Metrics Too] describes how to use the VI Metrics tool
to measure the complexity of your application.

Chapter 9Documentation Togldescribes how to create
documentation for VIs in HTML or Rich Text Format (RTF), to create
source material for online help files, or to print the material directly to
a printer.

Chapter 10Vl Comparison Toolsdescribes the VI Comparison tools,
which you can use to manage different versions of VlIs as you develop
large applications.

Chapter 11Source Code Control Togldescribes the G Source Code
Control (SCC) tools, which allow you to add files to SCC and access
those files from within the LabVIEW or BridgeVIEW environment.

VI Metrics Tool

This chapter describes how to use the VI Metrics tool to measure the
complexity of your application.

The VI Metrics tool provides a way to measure the complexity of an
application similar to the widely used source lines of code (SLOC) metrics
for textual languages. With the VI Metrics tool you can view statistics about
VIs, which can be useful in finding areas that are too complex. You also can
use those statistics to establish baselines for estimating future projects.

Remember that any metric, such as SLOC, is a crude measurement of
complexity. The VI Metrics tool gives you access to several statistics
because you might find that some columns are more valuable than others in
some cases. For example, you might decide that for user interface VIs you
can combine certain statistics to get a better idea of the complexity of a VI.
In that case, you can make your own metric by saving the information about
a VI and writing VIs to parse the results, combining fields to produce a new
measurement of the complexity of a VI.

National Instruments is interested in hearing about combined or alternative
metrics you find useful in analyzing your VIs. You can use the Technical
Support form at the back of this manual or the National Instruments Web
site, located atww.natinst.com , to submit suggestions.

© National Instruments Corporation 8-1 Professional G Developers Tools Reference Manual

Chapter 8 VI Metrics Tool

Using the VI Metrics Tool

To use the tool, first open the VI(s) you want to analyze. Select
Project»VI Metrics... . TheVI Metrics dialog box appears, as shown in

Figure 8-1.
¥l Metrics. vi
Shiow statiztics for
Select aV: I Simulation of Tormagraphy. vi j FEee
#of uzerVls 7 ™ User interface
#ofvilbVls 0 I- Globalzdlocal:
[CiNs/shared lib calls
¥ Exclude vilib files from statistics I™ Subl interface
of nodes -~
total 124
Simulation of T amagraphy. vi a7
Drawitng a Circle. vi 15
Drawing a Filled Circle. vi 17
Tomography Globalz.glb i]
Situation at Time Lwi 33 ;I
B ,
Save.. | Dane I

Figure 8-1. VI Metrics Tool Dialog Box

Use the drop-down menu at the top of the dialog box to select from the list
of VIs with open front panels in memory. After you select a VI, the dialog
box updates the list at the bottom with the names of the VI and its subVls
plus information on each VI.

For each VI in the selected hierarchy, the dialog box lists the number of
nodes that VI contains. Nodes are the executable objects on your block
diagram. They are analogous to statements, operators, and subroutine calls
in conventional programming languages. This number gives you a rough
metric that is comparable to the SLOC metric commonly used with textual
languages.

The number of nodes includes functions, such as Add, Subtract, and so on,
subVI calls, and structures, such as Case, While Loop, and so on. It also
includes terminals for front panel objects, constants, local and global
references, and attribute nodes. Notice that for attribute nodes, reading
multiple attributes with the same node counts as one node. If you want to

Professional G Developers Tools Reference Manual 8-2 © MNational Instruments Corporation

Chapter 8 VI Metrics Tool

know the total number of attributes a VI reads or writes, refer to/see
Interface Statisticsection later in this chapter.

The number of nodes does not include wires, tunnels, or objects that are
subcomponents of structures, such as the loop iteration count of a For Loop
or a sequence local.

As an example, the block diagram in Figure 8-2 contains eight nodes: three
terminals, a constant, a random number function, a multiply, a Case
Structure, and a For Loop.

i [132] . P
Mumnber of points N TRITES
raphi
100 : j& [oBL]
ig]

Tl False 3

Figure 8-2. Block Diagram with Eight Nodes

Additional Statistics

In addition to measuring the number of nodes, the VI Metrics tool measures
a number of other statistics related to the complexity of your VI(s). To
show the additional information, turn on the appropriate category checkbox
at the top right of th¥/| Metrics dialog box.

Block Diagram Statistics

e Structures—Number of For Loops, While Loops, Case Structures, and
Sequence Structures.

» Diagrams—Number of block diagrams. Each VI has a single top-level
block diagram. In addition, it has one subdiagram for each loop and for
each frame of a sequence or case.

© National Instruments Corporation 8-3 Professional G Developers Tools Reference Manual

Chapter 8 VI Metrics Tool

Maximum diagram depth—Deepest nesting level of block diagrams in
a VI. If your VI has no structures, such as cases, loops, and sequences,
it has a depth of 0.

Diagram width—Width of the block diagram in pixels.
Diagram height—Height of the block diagram in pixels.

Wire sources—Wire sources measures the total number of sources in
your VI. Each wire has a single source, but it can branch to multiple
destinations. If, however, a wire crosses from one block diagram to
another through a tunnel, the tunnel is considered to be a new source.

User Interface Statistics

Controls—Number of top-level controls on a VI front panel. A cluster
or an array is counted as a single control.

Indicators—Number of top-level indicators on a VI front panel.
A cluster or an array is counted as a single indicator.

Attribute reads—Number of attribute reads by a VI block diagram. If
you read multiple attributes with the same attribute node, each attribute
increments this number.

Attribute writes—Number of attribute writes by a VI block diagram. If
you write multiple attributes with the same attribute node, each
attribute increments this number.

Globals/Locals Statistics

Global reads—Number of reads of global variables in a
VI block diagram.

Global writes—Number of writes to global variables in a VI
block diagram.

Local reads—Number of reads of local variables in a VI block
diagram.

Local writes—Number of writes to local variables in a VI
block diagram.

CINs/Shared Library Statistics

CINs—Number of Code Interface Nodes in a VI block diagram.

Shared library calls—Number of Call Library Nodes in a VI block
diagram.

Professional G Developers Tools Reference Manual 8-4 © MNational Instruments Corporation

Chapter 8 VI Metrics Tool

SubVI Interface Statistics

Files in vi.lib

e Connector inputs—Number of controls on a VI connector pane.
» Connector outputs—Number of indicators on a VI connector pane.

By default, thevl Metrics dialog box excludes Vis ii.lib from the

listing and from the totals. Calls tolib VIs are counted as nodes, but
information about the number of VIs they call and the complexity of those
vilib VIs are not added to the total measurements for the selected
hierarchy. This is appropriate if you are trying to get a measurement of the
complexity of the code you have written. You can turn offfkelude

vi.lib files from statistics option if you want to gather statistics on

vilib Vis as well.

Saving Metric Information

You can save the metric information for a VI hierarchy to a text file by
clicking on theSave...button in thé/l Metrics dialog box. Only the
columns that are displayed are saved. The information at the top of the
dialog box that concerns the number of user VIs and the number of library
Vs also is saved to the file. The information is saved in a tab-delimited
format so you can easily read it into a spreadsheet or read and parse it
using Vls.

© National Instruments Corporation 8-5 Professional G Developers Tools Reference Manual

Documentation Tool

You can use the Documentation tool to create documentation for VIs in
HTML or Rich Text Format (RTF), to create source material for online
help files, or to print the material directly to a printer.

You can use thEile»Print Documentation... command to create
documentation for a single VI by printing it directly to a printer or by
creating source material for online help, Web pages, or word processors.

You can use thBroject»Documentation Tool...command to create
documentation for all the VIs in your applications. Trecumentation
Tool dialog box is shown in Figure 9-1.

Documentation Tool

Fird ‘wheels

Findwheelz2

LP B coeffs

2 stage B filker

process wheel2

Findwheels state machine
read scanblk point2

read scanblk file bdr2
Open/Create/Replace File.vi
Wite To Spreadsheet File.vi
B HFF nio tranzient

B LPF no transient
General Eror Handler.wi
irite File+ [string). vi

’7 Using Subt/1 Ed

Figure 9-1. Documentation Tool Dialog Box

© National Instruments Gorporation 9-1 Professional G Developers Tools Reference Manual

Chapter 9

Documentation Tool

Use theAdd Hierarchy..., Add LLB... , Add Directory..., andAdd

File... buttons on the right side of the dialog box to add VI hierarchies from
memory, add all the files in a directory or LLB, or add individual files from
disk. The files are listed in the listbox in the dialog box after they are added.
The order of the files controls the order that the VIs appear in the resulting
documentation. You can reorder the VIs by selecting files from the list and
dragging them to the desired location. If the paths are too long to view, you
can deselect th8how Full Pathscheckbox at the top of the dialog box.

When you have the files in the order you want, select one of the following
buttons to create the documentation:

e Create HTML File —With HTML, you can make your
documentation accessible from the World Wide Web. Images are
written to external files ilPNG, .JPEG, or.GIF format based on the
format you choose in tHBocumentation Tooldialog box. Refer to
Chapter 5Printing and Documenting V]$n theG Programming
Reference Manudbr more information about these formats.

e Create RTF File—RTF is a standard format that is supported by a
number of word processors, including Microsoft Word.

« Create Help Source—This produces an RTF file that is formatted for
online help hilp) files. Allimages are saved as external bitmaps, and
a help project and table of contents are created. These files can then be
compiled using a help compiler. Refer to @eating Help Files
section in Chapter &;reating Documentatigrfor information about
compilers for different platforms.

e Print—Click this button to print documentation to a printer.

You can use th8ave Script...button at the top of the dialog box to save
the settings and list of files you create to a file. If you clickLibad

Script... button, you can restore the settings from the file you created using
the Save Script...button.

Professional G Developers Tools Reference Manual 9-2 © MNational Instruments Corporation

VI Comparison Tools

This chapter describes the VI Comparison tools, which you can use to
manage different versions of Vis as you develop large applications. When
you make changes to a VI, you might want to compare the VI to an older
version to verify the changes you have made. Also, when multiple users are
working on the same VIs, you might need to view two versions of the same
files to merge changes made by different users.

You can use the following tools to compare Vils:

» Project»Compare Hierarchies—Compares two different versions of
the same hierarchy of Vis.

e Project»Compare Vis—Compares two VIs.

» Project»Source Code Control»Compare Files-Compares the local
versions of files with the versions under Source Code Control.

Compare Hierarchies

You can use th€ompare Hierarchiescommand to compare two
hierarchies of Vis. Any file with the same name in both hierarchies is
compared. After the comparison completésmpare Hierarchies

displays a summary of the differences. You can select a set of Vis that have
differences and visually compare them using the Compare ViIs tool.

© National Instruments Corporation 10-1 Professional G Developers Tools Reference Manual

Chapter 10

VI Comparison Tools

To compare two VI hierarchies, sel&bject»Compare VI
Hierarchies.... Use theCompare VI Hierarchies dialog box, shown in
Figure 10-1, to select two hierarchies to compare.

Compare ¥l Hierarchies E

File Edt QOperate Project Windows Help

First 1 Higrarchy:

%

D:sbernphternpspe bW T emperature System Demo.vi

B | Fiead Hierarchies

Second Yl Hierarchy [will be temporarily renamed):

J histogram+ vi

J Temperature Status.vi
@ by Statistics. vi

o Update Statistics.w

& furay To Bar Graph.vi

® Standard Deviation. vi

& Digital Thermometer. vi
® DemoVoltage Read.vi

7 DLW 45 exampleshappsitempsys. |65 T emperature System Demo.vi :
| Save o File...

¥ diferent Comparison Dptions ‘ Done

V/ same 7 Wl Attribut ¥ Block Di

@ added to first hierarchy o oSS R |aqram

= deleted from first higrarchy [Front Panel [~ Cosmelic

?:ﬁ;;ocmnlared [Posiion/Size P Fand
Wz in Hierarchies Deszcription

X Temperat. & Block Diagram objects -

D:stemphtempays. IBYT emperature Spstem Demo.wi <-» D0ALVYAShexampleshappshtempsepe b\ T emperature System Demo.vi

| Compare Hierarchies I

objects replaced/added/deleted

Show Differences

=

Professional G Developers Tools Reference Manual

Figure 10-1. Compare VI Hierarchies

Select two VI hierarchies to compare by entering the path to the top-level
VI. Use the... button to open a file dialog box to select a VI from the file
system. You then can use thempare Hierarchiesbutton to compare Vls

in the hierarchies. VIs with the same name but different paths are compared
and categorized as being the same or different. VIs with the same name and
path are considered shared VIs. All other Vls are categorized as added or
deleted from the first VI hierarchy. Ths in Hierarchies listbox displays

the VlIs and a symbol that indicates how they are categorized. As you select
different VIs in the listbox, a more detailed description appears in the
Description listbox to the right. To view the differences on the screen,
double click an item in the listbox or click tB&éow Differencesbutton.

TheRead Hierarchiesbutton categorizes the VIs in the hierarchy. Vis
that need to be compared are categorizetiasompared . You can
selectively compare individual VIs by double clicking an item or clicking
the Show Differencesbutton.

10-2 © MNational Instruments Corporation

Chapter 10 VI Comparison Tools

To abort comparisons of large VI hierarchies, uséherate»Stopmenu
item or press the <Ctrl-.> (Control and the period) key combination.

Comparison Options

Show Differences

You selectively can find differences in the front panel and block diagram

of a VI and VI attributes, such as settings in VI Setup. For the block
diagram, you can choose to ignore cosmetic differencesstetic

changeis any change that does not affect the execution of the block
diagram. Furthermore, you can choose to ignore the position and size
changes in front panel and block diagram objects. Position and size changes
include movement of an object from front to back and vice versa.

Differences are shown by tiling the front panels and block diagrams of the
two Vls in theDifferenceswindow, as shown in Figure 10-2.

Differences

5 Differences

+ Block Diagram objects
Block Diagram objects
Frant Panel objects
Front Panel - Waveform Chart
Front Panel - Mumeric

Shiow Difference

0] %]

Update |
Tile Left and Right |
Tile Up and Down |

2 Dietails
objects added/deleted

J wining changes

Clear Show Detail ¥ Circle Differences

© National Instruments Corporation

Figure 10-2. Differences Window

The Differenceswindow includes a list of differences and details of the
selected difference. To highlight a difference, double click an item in the
differences list or select an item and click 8w Differencebutton. To
highlight a detail, double click an item in the details list or select an item
and click theShow Detailbutton. A checkmark indicates the items you
selected. You also can use frike Left and Right and theTile Up and

Down buttons to tile the windows of the two VIs you are comparing. Click
theClear button to clear the differences list. If you have made edits after a
comparison, some of the differences might be stale. Clickpluate

button to again compare the two VIs and update the differences list. You
also can show thBifferenceswindow by selectindgProject»Show
Differences

10-3 Professional G Developers Tools Reference Manual

Chapter 10 VI Comparison Tools

When you highlight a difference, objects that are part of the difference are
selected. Th€ircle Differencescheckbox option allows you to draw a red
circle around the object(s) that has changed. Figure 10-3 shows an example
of a block diagram difference.

Figure 10-3. Block Diagram Difference

In Figure 10-3, the circled objects are inserted into the block diagram.
Obijects selected but not circled are not differences. They are selected as
anchor objectgo provide reference points for the difference. Objects that
appear dimmed are not part of the difference.

Professional G Developers Tools Reference Manual 10-4 © MNational Instruments Corporation

Chapter 10 VI Comparison Tools

Compare Vis

When developing applications, you might have multiple versions of the
same VIs. The Compare VIs feature, also called Graphical Differencing,
helps you track changes in your application by comparing multiple versions
of a VI. This becomes especially important as your project grows and
involves more developers.

You can use theroject»Compare VIs...command to graphically

compare two VIs. You can select options to control the types of differences
you want to detect and view. For example, you can filter out cosmetic
changes such as objects being moved or resized. When you compare the
VIs, a dialog displays a summary of the differences. If you select an item
from the summary, Compare VIs displays and highlights the differences
between the two VIs.

To compare two VIs, seleBroject»Compare Vls.... Use theCompare
VIs dialog box to select two VIs to compare, as shown in Figure 10-4.

Compare ¥ls E

—lz to Compare

Itesl'l i Select...

_select. |
Itest2.vi Select.. |

— Compare
W W Attributes v Block Diagram
¥ Front Panel ¥ Cosmetic changes
[" Position/size changes ™ Positiondsize changes

Compare I Cancel |

Figure 10-4. Compare Vs Dialog Box

The Select...button opens a dialog box to select a VI by hame. You can
select only VIs that are already loaded into memory.

© National Instruments Corporation 10-5 Professional G Developers Tools Reference Manual

Chapter 10

VI Comparison Tools

Comparing very large VIs can be lengthy. You can cancel the comparison
of two VIs through th&€€omparison Progressdialog box, shown in
Figure 10-5.

Comparison Progress]

"Prngress

Stop... |

Figure 10-5. Comparison Progress Dialog Box

The progress bar indicates the steps in the comparison algorithm, not the
number of differences left to find. When the comparison is complete, the
front panels and block diagrams of the two VIs are displayed in the
Differenceswindow, as shown in Figure 10-2.

Comparison Issues

Because G cannot load two VIs with the same name, you must rename your
VIs to compare them. When the Compare VI Hierarchies tool compares
two VIs, the first VI loads as is, and the second VI is moved to the
temporary directory with emp. prefix. When using the Compare Vs tool

you must rename the appropriate VI to load the two VIs into memory.

However, renaming the VIs does not affect the name of subVIs. Because
the Compare VI Hierarchies tool does not rename the suthiélsecnamed
VI will link to the subVIs loaded by the first. VI

Professional G Developers Tools Reference Manual 10-6 © MNational Instruments Corporation

Chapter 10 VI Comparison Tools

Source Code Control»Compare Files

You can use th8ource Code Control»Compare Files..command to
compare files from projects under Source Code Control with the local
versions of those files.

To compare VIs under SCC, sel&bject»Source Code
Control»Compare Files... You can use th8CC Compare Filesdialog
box, shown in Figure 10-6, to compare the project files on the master
directory with the project files on the local directory.

SCC Compare Files 1]
File Edit QOperate Project Windows Help
Jszer name: Ray Hzsu -
Project: I Werify Wz group [Werify %1 Toal Search Directorny Handler) j ‘ Cornpare Files I
Comparnizon Options ‘ Diane I
M %l Attibutes ¥ Block Diagram
@ nat compared
[+ Frart Panel [~ Cosmetic same
[~ Puosition/Size o X different
= riok & Wl
Changed Files in Project
X Werify W1 Toolvi [out: B ay Haul [local copy has ‘ File P i I
% Do Search.vi [out Fay Hsu) (local copy has changed) DO
X Find in%|.vi [out:Ray Hzu] [local copy haz changed)
 Search Directory Handler.vi [out:Rap Hsu) local copy has changed) ‘ Show Differences I
‘ Sawe to File... I
Description
& Block Diagram objects -
objects added/deleted
wiring changes
@ Block Diagram objects
Boolean Constant: data value i

Figure 10-6. SCC Compare Files Dialog Box

After you select a project, tI®CC Compare Filesdialog box displays all
changed files between the master copy and local copy. You then can use the
Compare Filesbutton to compare the changed files. Only VI files are
compared. Other external files are not compared. This tool is similar to the
Project»Compare VI Hierarchies... tool. Refer to th€€ompare Vis

section for more information.

© National Instruments Corporation 10-7 Professional G Developers Tools Reference Manual

Source Code Control Tools

This chapter describes the G Source Code Control (SCC) tools. The
SCC tools, accessible from tReoject»Source Code Controimenu, let

you add files to SCC and access those files from within the LabVIEW or
BridgeVIEW environment.

General Source Code Control Concepts

Source Code Control tools help significantly in managing projects by
allowing you to share files among multiple developers and multiple
projects. SCC tools maintain a centralized master copy of project files. As
you make changes, you update the master copy to reflect those changes.
This makes it easy for any developer to access the latest version of the
project files. Also, it encourages code reuse by making all code easily
accessible.

SCC tools also help improve security and quality. When a developer
decides to modify a file, he or she checks out the file, marking it so other
developers cannot modify the same file at the same time accidentally.
When he or she completes his or her changes to the file, the developer
checks the new version of the file in to Source Code Control. The file
becomes part of the master copy of the project. If incorrect changes are
made, most Source Code Control systems allow you to access previous
versions of files.

SCC tools help track changes to your project. When a developer checks in
a file, SCC tools ask the user to describe the changes. This information is
maintained so you can clearly document the evolution of your project. In
addition to maintaining the source code, SCC tools can manage all aspects
of your project, including specifications and illustrations. They also can
keep track of the changes made to those documents. The ability to track the
evolution of software is important to most organizations that are concerned
with quality.

© National Instruments Corporation 11-1 Professional G Developers Tools Reference Manual

Chapter 11

Source Code Control Tools

Using Individual Files Instead of VI Libraries

VI libraries (LLBs) give you a method of storing multiple VIs within the
same file. The main advantage of this is that it allows you to create VIs with
long, descriptive names even under Windows 3.1, in which filenames are
limited to 8+3 characters in length. When you store VIs in an LLB, only the
VI library name itself needs to be limited to 8+3 characters in length.

You should not use VI libraries for files you want to put under Source Code
Control. VI libraries are not practical for SCC because SCC tools cannot
manage the files within a VI library individually. You would have to check
out the entire LLB if you wanted to make changes to any file within the VI
library. The G SCC tools do not support LLBs because VI libraries do not
permit fine enough control over individual VIs.

The primary reason you might want to use VI libraries is that you need to
support Windows 3.1, where filenames are limited. The G Source Code
Control tools are not supported under Windows 3.1. If you need to support
Windows 3.1, consider whether you can develop under other operating
systems the G SCC tools support, such as Windows 95/NT. When
developing, save your Vls as individual files, not in LLBs. When you need
to release your VIs for use on Windows 3.1, you can save them into LLBs
at that point.

The File Manager tool can help you move Vls to and from VI libraries.

QuickStart Guide to Using the SCC Tools

Following is a brief summary of the steps required for configuring and
using the SCC tools:

1. Administrator sets up syster—At least one user in your workgroup
should be selected to administer the SCC system. This user should
select theAdministration option when installing the Professional
Developers Tools.

The administrator is responsible for initializing the SCC system
and setting up systemwide preferences. You do this by selecting
Project»Source Code Control»Administration... When you set up
the SCC system there are a few decisions you need to make:

— Which storage system do you want to uselhe SCC tools can
manage files or they can integrate with a third-party tool. Refer to

Professional G Developers Tools Reference Manual 11-2 © MNational Instruments Corporation

© National Instruments Corporation

Chapter 11 Source Code Control Tools

the followingSelecting the Source Code Control Systegtion
for more information.

— Will users be developing on multiple platforms or a single
platform? This decision might help decide the storage system
you will use, as well as how to configure that system. For
multiplatform development, National Instruments recommends
the built-in system. For single platform development you can use
either the built-in system or one of the third-party SCC tools that
are supported.

Once the system is up and running, there is typically not a lot of work
involved on the part of the administrator unless you want to change
access privileges for files or limit access for specific users.

If you are using ClearCase, refer to tblearCasesection later in this
chapter for more information.

Users configure the SCC tools to access the systefiihe main
decision users must make is where they will hawerking directory

The working directory is a directory on your local system where all VI
development takes place. As you retrieve files from SCC, they are
retrieved to this directory and its subdirectories. You cannot add files
to SCC that are outside of this directory.

With the built-in system, it is important to understand the difference
between the working directory, which is where you do your work, and
the master directory, which is where SCC stores the latest versions of
files. Users will not modify the master directory except when they
check in files or create projects.

With SourceSafe, the tools take care of copying files from the
SourceSafe database to your working directory or vice versa.

With ClearCase, your work directory is the same directory as the
master directory. ClearCase uses a virtual file system model that allows
multiple users to have a unique view and set of files in the same
directory. Refer to th€learCasesection later in this chapter for more
information.

Users set up Vls for use with the SCC toolsAs mentioned above,

all files that the user will work with must be in the working directory
or one of its subdirectories. In addition, files that will be stored under
SCC cannot be stored in LLBs. LLBs are not flexible enough for them
to work well with an SCC system because they do not allow for easy
access to individual files. You can selBebject»File Manager... to
convert your LLBs to directories of Vls.

In converting LLBs to directories, you might find that you have some
files with names that cannot be managed by the file system (for

11-3 Professional G Developers Tools Reference Manual

Chapter 11

Source Code Control Tools

example, it contains a separator character such\gsor/).
Consequently, you might have to rename some files and update
references within your hierarchy.

If you need to support Windows 3.1, refer to @ress-Platform
Source Code Contralection later in this chapter for suggestions on the
best strategy for handling development.

Users create SCC projects-A project in the SCC tools corresponds
to a hierarchy of VlIs. To create a project, first open the top-level VI of
a hierarchy. Then seleBroject»Source Code Control»Project...

and click theNew Project... button.

The SCC Edit Project File List dialog box lets you select your VI
hierarchy, which can then be added to SCC. As mentioned previously,
all files that you want to add to SCC must be in your working directory
or one of its subdirectories. They cannot be in LLBs.

You can add other project-related files such as documentation and
shared libraries by using tlixtra Files... button in this dialog box.

Users use SCC commands to access project filedit this point, you

can begin to work with files under SCC. All commands related to SCC
are in theProject»Source Code Controlmenu. Following is a brief
description of the remaining commands:

— Check Files In—Use to copy a file from your working directory
to SCC so that other users can access it.

— Check Files Out—Use to check out files to your working
directory so that you can modify them.

— Compare Files—Use to compare the files in your working
directory with those under SCC.

— Retrieve Files—Use to copy files from SCC to your working
directory.

— Advanced—Use to create reports, view the history of files under
SCC, access previous versions of files, and delete files.

Selecting the Source Code Control System

The G Source Code Control tools can integrate with third-party Source
Code Control systems. You can have the SCC tools manage the source
internally using the built-in system, or you can have the tools communicate
with a third-party system that is responsible for storing, retrieving,
checking in, and checking out files. The SCC user interface in LabVIEW
and BridgeVIEW is the same regardless of whether you use the built-in
system or a third-party system.

Professional G Developers Tools Reference Manual 11-4 © MNational Instruments Corporation

Built-In System

Chapter 11 Source Code Control Tools

Currently, two third-party SCC systems are supported: Microsoft Visual
SourceSafe for Windows 95/NT and Rational Software ClearCase for
Solaris 2, as shown in Figure 11-1. National Instruments might add support
for other third-party tools in the future based on user demand.

G Source Code Control Tools

Built-In SCC System | | ClearCase for Solaris 2

Visual SourceSafe
for Windows 95/NT

Figure 11-1. G SCC Tools Can Work with Built-In and Third-Party Systems

In some cases, the decision to use one of the third-party tools might be
made based on the fact that your company has standardized on one of these
tools. If not, you must decide which strategy you want to use for managing
your files.

The built-in system manages files by copying them to and from a shared
network directory that all users in a development group can access. It has
many of the capabilities of full-featured Source Code Control systems,
including access to previous versions of files, history information
maintenance, and labeling files for easy retrieval.

The built-in system has some advantages over using third-party systems,
including the following:

« ltis available for all platforms except Windows 3.1. Most third-party
tools work only for a single operating system.

e Most third-party tools have additional licensing costs.

© National Instruments Corporation 11-5 Professional G Developers Tools Reference Manual

Chapter 11 Source Code Control Tools

However, there are some disadvantages to the built-in system compared to
a third-party system, including the following:

¢ The built-in system does not provide as much security as most
third-party systems. You can control access somewhat by using file
system permissions, but you do not have the same level of control as
with a more powerful SCC system.

e The built-in system does not use compression for files on the server.
Some third-party systems can store files on the server and differences
between versions, or deltas, in a compressed format. However, because
VIs are binary files, most Source Code Control systems do not handle
deltas for Vls efficiently.

Third-Party SCC Systems

In addition to the advantages and disadvantages described in the previous
section, there are some additional points to notice when considering a
third-party SCC system. Although you can use a third-party SCC system,
you might not be able to take advantage of all the features that tool offers.
For instance, the G SCC tools do not support a feature called branching,
where different projects use different versions of a VI. If you want to
branch development, you need to make a copy of the VIs you want

to change.

If you already have VIs stored under an existing SCC, the G SCC tools will
not be aware of them. You will need to create projects for the files using the
G SCC tools.

With Visual SourceSafe, the G SCC tools have to keep track of the
modification date and check-out status for files internally. Consequently,
you should not modify VI files or check them out from the SourceSafe
Explorer because the G SCC tools will get out of sync with the state of the
files. Instead, if you need to perform any operation that modifies a VI file

in the SourceSafe database, you need to do that modification using the SCC
tools in LabVIEW or BridgeVIEW.

Professional G Developers Tools Reference Manual 11-6 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

Administrator Setup

The administrator has an extra menu optRmject»Source Code
Control»Administration... that he or she uses to set up the SCC system
so others can use it.

The administrator uses tI®C Administration dialog box, as shown in
Figure 11-2, to select and configure the SCC system the G SCC tools use
for maintaining files. The drop-down menu lets him or her choose from the
built-in system or from other supported third-party systems. Refer to the
Selecting the Source Code Control Systention earlier in this chapter for
information on the differences among these options.

SCC Adminiztration

Select the zource code contral system uzed at pour site:

Edt Platfom List.. | ok | concel |

Figure 11-2. SCC Administration Dialog Box

Configuring the SCC System

The following sections describe how to configure the built-in SCC system,
Microsoft Visual SourceSafe for Windows 95/NT, and ClearCase for
Solaris 2.

© National Instruments Corporation 11-7 Professional G Developers Tools Reference Manual

Chapter 11

Source Code Control Tools

Built-In System

If you select the built-in system, t@@minister Builtin System dialog

box, as shown in Figure 11-3, allows you to configure systemwide options
that affect all users. If you need to change one of these settings later, click
the Configure... button in theSCC Administration dialog box.

Administer Builtin System <]

The built-in Source Code Control System stores master images of files in a common
directary. Thiz directory is typically a fileshare directory on the network. accessible to
everyone who needs to wark on a project.

_ C:\master
tazter directon: %

Backups of previous versigns | Maintain limited number of backups... j =[5

Local files that are not checked out should be locked to prevent users fram modifying
files accidentally. The builtin system supports two methods of locking files:

i |Jzing file permizzions - Checked in filez are read only. This option warks best
for single platform development.

- IJzing internal locking - Checked in files are read write but are marked
internally az locked. Files cannot be edited but they can still be zaved,
This option works best for multplatform development,

ak. | Cancel |

Figure 11-3. Administer Builtin System Dialog Box

You must select a master directory, which is where the Source Code Control
tools store the files you add to SCC. Its important that all users have access
to this directory. If you want users to be able to modify files, they need to
have read-write access to this directory. As users check files in and out, the
files are copied to this directory, and history information for each file is
maintained within this directory. Consequently, you should make sure that
this directory has plenty of available disk space.

In addition, under Windows 95/NT, each user should connect to the volume
that contains this directory and map that volume as a network drive, for
example, a®:\ rather than as a UNC path of the foimachine\

volume . UNC filename support varies slightly between Windows 95/NT.
Consequently, the SCC tools do not support UNC filenames.

Professional G Developers Tools Reference Manual 11-8 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

Use the drop-down menu in the center ofAldeninister Builtin System

dialog box to configure how many backups to maintain for files under
Source Code Control. If you decide to maintain file backups, a copy of the
old file is created when a user checks in a file. You can configure the system
S0 no backups are maintained, a specific number is maintained, or there is
no limit on backups. In general, it is probably good to maintain a small
number of backups so you can retrieve older versions of the files. If you
choose to have no limits on backups, you need to delete old versions
periodically to avoid running out of storage space on the server. You can
monitor the amount of storage used for backups by selecting
Project»Source Code Control»Advanced...

You have a set of options for deciding how files are locked for each user.
Locking prevents users from accidentally modifying files without first
checking them out. Th&dminister Builtin System dialog box gives you
the following options:

» File System Locking—For many sites, this is the appropriate
selection. WithFile System Locking as you check files in they are
marked as read-only in the file system. As you check them out, they are
changed to read-write. This works well for most developers.

e Internal Locking —With this option, as you check files in they are
locked by LabVIEW or BridgeVIEW. If you open ti8how VI Info
dialog box, you will see that the lock option is turned on. When you
check files out they are automatically unlocked. This is the best choice
for multiplatform development, for example, Windows, Macintosh,
and/or UNIX development. When you bring a VI from another
platform, it must be recompiled and saved. With internal locking, you
can actually save the VI. The internal locking just prevents you from
making edits to a VI. The SCC tools can distinguish between real
changes and simple modifications such as a recompile that occurs
when you load the VI.

Visual SourceSafe

With Visual SourceSafe, it is important that you first install Visual
SourceSafe on a server and then use the Visual SourceSafe administration
tool to add user accounts for each user.

After you install Visual SourceSafe, sel@bject»Source Code
Control»Administration... to display theSCC Administration dialog

box. Select Microsoft Visual SourceSafe from the drop-down menu and
click theOK button to add configuration files used by the G SCC tools to

© National Instruments Corporation 11-9 Professional G Developers Tools Reference Manual

Chapter 11 Source Code Control Tools

the Visual SourceSafe database. The G SCC tools maintain the following
two files:

e scclist.Ist —This is a master file list the G SCC tools use to
maintain information about each file, including the projects to which
the file belongs.

e sccplats.txt —This file contains a list of the platforms users can
select for retrieving files.

You also can configure the platforms, such as Windows 95, 68K Macintosh,
and so on, that a user can select. Refer taditePlatform List (Advanced
Option) section later in this chapter for more information.

ClearCase

The Professional Developers tools provide the interface for using
ClearCase in the G development environment on Solaris 2. The
administrator must create a ClearCase Versioned Object Base (VOB)

and an associated storage space outside of G before users can use Source
Code Control with ClearCase. When the administrator sets up the

Source Code Control system from inside G, he or she must provide the
VOB directory as the master directory. Because ClearCase uses a virtual
file system, users also must use this VOB directory as their local directory.

Once the administrator and users configure their ClearCase systems,
ClearCase is invisibly integrated into the G Source Code Control interface.

Take the following steps to complete the administrator setup for ClearCase:

1. Install ClearCase if it is not already on your system. Refer to the
ClearCase documentation for instructions.

2. Ifyou wantto create public VOBs, set up a registry password or locate
the existing registry password.

3. Create the VOB.
a. Setyouumask. For shared VOBS, the suggestmthsk setting
is2.
b. Create a mount point directory, suchvats .

c. Create or choose a directory to store the VOB database, such as
/vobstore

d. Typecleartool mkvob -public -tag /vobs/vobname
/vobstore/vobname.vbs , Wherevobs is the mount point
directory androbstore s the directory where the VOB database
is stored.

Professional G Developers Tools Reference Manual 11-10 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

e. Enter registry password (from step 2) if creating a public VOB.
f. Enter comments, if any.
g. Restore younmask to its original setting.

4. Mount the VOB. For example, type
cleartool mount /vobs/vobname

5. Provide the name of the VOB (for exampl@bs/vobname) to
users.

6. For ClearCase, you must specify that VIs are binary files and decide if
you want to compress files. For each file extension that your Vls use,
you must define an association of these extensions with their file type.
For most G applications, this includes VAs (), controls (ctl), and
globals (glb). If you use any other extensions, you must define file
types for those as well.

a. Choose afile type for Vls, suchfés , compressed_file
or binary_delta_file . You also can define your own file
type and type manager. Refer to the ClearCase documentation.
National Instruments recommencsnpressed_file because
binary_delta_file storage does not work as well.

b. You specify this association imaagic filein one of the paths in
themagic path Refer to the ClearCase documentation to
determine where the magic path is.

c. Somewhere in the search path for magic files, create a file with a
.magic suffix.

d. Add the linecompressed_file : -name "*.vi" ;
Replacecompressed_file with your chosen file type.

For controls, add the lineompressed_file : -name
"*.ctl" ;

For global variables, add the lir@mpressed _file : -name
"*.glb" ;

7. Setup aview. Refer to tidearCasesection later in this chapter for
instructions on setting up a view.

Set the view and launch LabVIEW or BridgeVIEW.

SelectProject»Source Code Control»Administration...
10. SelecClearCaseas the Source Code Control system.
11. TheClearCase Configurationdialog box opens.

© National Instruments Corporation 11-11 Professional G Developers Tools Reference Manual

Chapter 11 Source Code Control Tools

12. Set VOB directory (e.gvobs/vobname).
13. ClickOK in theClearCase Configurationdialog box.
14. ClickOK in theSCC Administration dialog box.

Optional Administrator Setup

You must complete these steps if you want to add VIs to ClearCase.

1.

Complete local configuration. Refer to tBkearCasesection later in
this chapter for more information.

Set youumask to2 to give other users in your group access to any new
directories you create.

Set a view and launch LabVIEW or BridgeVIEW.

Copy files to the VOB directory. Us&oject»File Manager... or

copy them using UNIX commands. The File Manager tool is useful
because it can convert LLBs to VIs. LLBs are not supported by the
SCC tools.

Open the top-level VI for a new project.

Create a new project usiRgoject»Source Code
Control»Project....

Click theNew Project... button.

Select the top-level VI from the pop-up menu near the top of the dialog
box. It will automatically assign a name for the project. You can
change the assigned name. Clgave

The VI hierarchy and its subVIs are now in Source Code Control.
Repeat this process for additional hierarchies.

Professional G Developers Tools Reference Manual 11-12 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

Edit Platform List (Advanced Option)

Clicking theEdit Platform List... button in theSCC Administration
dialog box displays th8CC Edit Platform List dialog box, as shown in

Figure 11-4.

For platfarm specific files, the fallowing list defines the platforms [up to 32 a
uger can zelect. “ou can add additional platforms if you have to support
other OSes or if you have other needs for conditionally retrieving files.
Don't remove or change the order of platforms for which fles alieady exist
in SCC.

- windows 95 [w95] -
indows NT [nt) _I
Swindows 3.1 (w3l]

- BAK Macintosh [B3k)

- Power b acintozh [pmac)
- Solariz 1.# [zal1]

- Solariz 2.8 [20l2)

- HP-L [hp)

- Powertak [pmax)

1
2
3
4
5
B
7
8
9

Add... | Change...l Delete |

Save I Cancel |

Figure 11-4. SCC Edit Platform List Dialog Box

This dialog box contains a list of the platforms users can select from when
they perform local configuration. In general, most users should not change
any of the options in this dialog box.

Each entry consists of a long name and an abbreviation. The user sees long
names when performing local configuration and if he or she chooses to
mark a file as platform-specific. The abbreviation is used in file lists such
as in theSCC Advanceddialog box.

The main reason you might want to edit this list is if LabVIEW or
BridgeVIEW becomes available for a new platform. In that case, you can
add the name to the list and immediately be able to support it.

In general, it is probably a good idea to not modify this list, even if you
initially need to support only a single platform. Assuming you do not
change any existing items, the G SCC tools automatically detect the
platform being used. If you delete one of the existing platforms and you
later decide you want to add support for that platform, you must add that

© National Instruments Corporation 11-13 Professional G Developers Tools Reference Manual

Chapter 11

Source Code Control Tools

name back in exactly as it was spelled originally to have the auto-detection
feature work correctly.

The list is limited to 32 entries. Do not change the order after you have
added files because each file remembers the platforms it applies to by
number, not by name.

Although these tools do not directly support Windows 3.1, the platform is
listed as an option so you can have files specific to Windows 3.1. Refer to
theMultiplatform Issuesection later in this chapter for more information.

Local Configuration

Each user has to configure the G SCC tools before they can use them by
selectingProject»Source Code Control»Local Configuration...

The main thing each user needs to do inRB€ Local Configuration

dialog box, as shown in Figure 11-5, is select the SCC system the
administrator configured. Ask your SCC administrator to determine which
system your site uses.

SCC Local Configuration

Select and configure the source code contol [SCC) spstem uzed at your zite
and specify the directary on your computer that you will uze for development:

Local work directony: “E|C:\F'rngram Files'M ational Irstrurnents | Erowse... |

Platform: | Windows 95 =l

ak. | Cancel |

Figure 11-5. SCC Local Configuration Dialog Box

Configuring the SCC System

Users need to choose the SCC system they are using, set the local work
directory, and set the platform option in tREC Local Configuration
dialog box.

Professional G Developers Tools Reference Manual 11-14 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

Built-In System

Your system administrator should have configured a master directory on a
drive or a network to use for storing files under SCC. Users need to connect
to that network drive so it is accessible to them for reading and writing.

SelectProject»Source Code Control»Local Configuration...to display

the SCC Local Configuration dialog box. SeledBuilt-in from the

SCC Systenmdrop-down menu to display a new dialog box that allows you
to select the master directory. The dialog box verifies the path you specify
is valid and has been set up by the administrator for Source Code Control.
You also can click th€onfigure... button in theSCC Local

Configuration dialog box to access this dialog box.

After you configure the master directory, you need to configure the local
directory as described in thecal Work Directorysection later in this
chapter.

Visual SourceSafe

To use Visual SourceSafe, relatively little configuration is needed. Install
Visual SourceSafe and make sure your administrator assigned you an
account and password. In tB€C Local Configuration dialog box,

specify the local work directory and the platform as described ibhdta!
Work Directorysection later in this chapter.

ClearCase

In addition to providing the correct local directory, users must set up a
ClearCase view and make sure it is set every time they launch LabVIEW
or BridgeVIEW. To emulate the model of having local copies of files, users
must set up unique labels to mark current working versions of files. When
working under this model, users must edit their views to show labeled files
before most recent versions. Users must take the following steps to
configure their ClearCase Source Code Control system:

1. Find out the VOB directory name from the administrator(s). For
example/vobs/vobname

2. Create a view.

a. Setumask (typically 2 for shared files). Refer to the ClearCase
documentation for more information.

cleartool mkview -tag viewname viewstorage
(for examplecleartool mkview -tag george
/viewstore/george.vws)

Each user should have his or her own view.

© National Instruments Corporation 11-15 Professional G Developers Tools Reference Manual

Chapter 11 Source Code Control Tools

w

10.
11.
12.

13.
14.

Local Work Directory

b. Restoraimask to original value.
Set your view. For exampléeegartool setview viewname .

Choose a label to mark current working versions of files. Your userid
in all uppercase letters is a good choice. Your label must be unique
among all who will access a particular VOB.

Edit your view to show versions with this label.
a. Edit your view. With your view set, executeartool edcs

b. Using the text editor (launched tigartool), add the line:
element* LABELNAMEreplacingLABELNAMBvith your
chosen label to the view configuration spec just after the line
element CHECKEDOUT

Launch LabVIEW or BridgeVIEW. You must set the view every time
you launch LabVIEW or BridgeVIEW.

SelectProject»Source Code Control»Local Configuration...
ChooseClearCaseas your Source Code Control system.

Enter the VOB directory name given to you by the administrator in
step 1.

Enter the label name from step 4.
Click OK.

Enter your local working directory, which must be the same as the
VOB directory.

Click OK.

To freeze your working set of VIs so that changes made by other users
do not affect your work until you retrieve them, seRaiject»Source

Code Control»Retrieve Files...and retrieve the files you want to
freeze. When you seleRetrieve Files.., G indicates if the files in

your view are out of date and if retrieving files will update your view

by showing a snapshot of the latest versions of those files.

The local work directory you set in ti & C Local Configuration dialog

box is the directory where you store all your work. The idea of the work
directory is that all users will have the same set of subdirectories and files
within that directory. As you change files within your directory and check
them in to Source Code Control, other users can copy the files from Source
Code Control to their own work directory.

The exact location for the work directory is completely up to you, unless
you are using ClearCase. You should make sure you have enough disk

Professional G Developers Tools Reference Manual 11-16 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

space on the drive that contains that directory because it needs to be able to
contain all the files you work on that are under Source Code Control.

Platform Drop-Down Menu

You select the platform you are working with in tflatform drop-down
menu in thesCC Local Configuration dialog box. Unless your
administrator has changed the setup, the G SCC tools should correctly
detect the platform you are using automatically. In general, you will not
need to change this setting. Refer tothétiplatform Issuesection later

in this chapter for information on the how the platform information is used
and a description of situations when you might want to change it.

Managing Source Code Control Projects

The following sections outline how to create and update a Source Code
Control project, how to add or delete files from a project, and how to work
with project groups.

Source Code Control Projects Overview

The G Source Code Control tools help you create projects under Source
Code Control. A project is primarily a single VI hierarchy, which is a VI
and all or some of its subViIs. In addition, an SCC project also can contain
extra project-related files such as specifications, shared libraries, and
external subroutines.

The G SCC tools can maintain multiple projects. If you create two projects
that contain the same subVI, only one copy of that subVI is maintained on
the server.

By creating a project based on a VI hierarchy, the G SCC tools can help you
keep the SCC project up to date. As you add files to or remove files from
your hierarchy, the G SCC tools notice the changes and help you update the
project.

Managing Multiple Hierarchies

Some applications you develop might have more than one hierarchy. For
example, if you use the VI Control VIs to dynamically load a VI, you have
one hierarchy for the main set of VIs and another for the VI you load
dynamically. You should create separate projects for each hierarchy and
then create a project group to make it more convenient to access the

VI hierarchies simultaneously. Refer to thmject Groupssection later in

this chapter for more information on project groups.

© National Instruments Corporation 11-17 Professional G Developers Tools Reference Manual

Chapter 11 Source Code Control Tools

Creating a Project

To create and edit the contents of projects, s€lagect»Source Code
Control»Project... to display thesCC Projectdialog box, as shown in

Figure 11-6.
SCC Project [<]
IJzer name: callie]
Local wark directang: “.-_,lE:\F'loglam FilestMational InstrumentssLabhE'w |
Projects:

Simulation of Tomography. wi [Simulation of Tamography. i

MNew Project... | Edit Praject... | Delete Project |

Mew Project Group... | Dane |

Figure 11-6. SCC Project Dialog Box

A Source Code Control project consists of a hierarchy of VIs, which is a VI
and all or some of its subVIs. To create a project, open the top-level VI you
want to add to SCC. Seldetoject»Source Code Control»Project...

Click theNew Project... button in theSCC Projectdialog box. In the

SCC Edit Project File List dialog box, select the top-level VI for which

you want to create a project, as shown in Figure 11-7. The project contents
listbox updates the list of subVIs the VI calls.

Professional G Developers Tools Reference Manual 11-18 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

SCC Edit Project File List
Project name: | |
Local waork directory: %, C:\Program FilesiMational InstrumentstLabiy1EW
Top level V1 | J [none zelected yet]

Simulation of Tomography. vi
Project contents: ¥ Show paths
Eutra filaz... Erclude dirs... Platfarmz. . Save Caticel

Figure 11-7. Edit Project File List Dialog Box

If you click theSavebutton, the project is created and all Vls in the listbox
are added to SCC if they are not already part of SCC. As files are added to
Source Code Control, they are locked to prevent accidental modification.
When you want to modify a file that is under SCC, you must check out the
file. Refer to theChecking Out Filesection later in this chapter for more
information.

The files in your hierarchy must be present in your working directory or in
an LLB before you can add those files to Source Code Control.

You can add files that are not part of your hierarchy to the project by
clicking theExtra Files... button. You can add project-related documents
such as proposals, specifications, and illustrations to SCC. You also can add
support files such as shared libraries (DLLs) and external subroutines

(Isb files) that are not detected normally as part of your VI hierarchy but
are necessary to run your software. Refer toAthding Extra Files to a
Projectsection later in this chapter for more information.

ThePlatforms... andExclude Dirs... buttons are advanced options you
typically do not need to modify.

ThePlatforms... button lets you work with platform-specific files. If your
application calls Code Interface Nodes (CINs) or DLLs, you might have

© National Instruments Corporation 11-19 Professional G Developers Tools Reference Manual

Chapter 11

Updating a Project

Source Code Control Tools

files that are specific to a given operating system. A DLL might be available
under Windows but not other operating systems. If you write a CIN for
multiple platforms, you need a different variant of the VI that contains the
CIN for each platform. Th8CC Edit File Platforms dialog box deals

with both issues because it lets you mark a file as platform specific and lets
you create variants of a file for different platforms. Refer to the
Multiplatform Issuesection later in this chapter for more information.

TheExclude Dirs... button lets you edit a list of directories that should be
ignored as far as source code is concerned. For example, the files in the
vilib directory are not listed as candidates for SCC by default. In
general, you do not need to change this setting, although you might want to
add a directory of your own if you have specific files you do not need to add
to Source Code Control.

As you develop your VIs, you create new subVIs and remove calls to
subVIs. The integrated SCC tools make it easy to keep the SCC project up
to date.

To update the SCC project, first open the top-level VI for your project and
then seledProject»Source Code Control»Project...Select the projectin
the SCC Projectsdialog box and click th&dit Project... button.

As always, the files must be in your working directory and cannot be in
LLBs unless they are in one of the excluded directories for the project. By
default, files invilib are excluded.

SCC File Wizard

When you edit a project usifiyoject»Source Code Control»Project..,

the SCC tools compare your hierarchy to the version that is already under
SCC. If there are differences in the list of files, the SCC File Wizard walks
you through the process of updating SCC to reflect local changes.

This wizard first presents a dialog box that summarizes the differences
between the local version of your hierarchy and the version that is under
SCC. This wizard detects whether one hierarchy has files that the other
does not and whether files are in different locations in the local hierarchy
from the hierarchy under SCC. If you choose to edit the project, a series of
dialog boxes describe these differences in more detail and give you the
option to change the project or ignore the difference. No changes are made
unless you cliclSavein the final dialog box, which summarizes the new

list of files.

Professional G Developers Tools Reference Manual 11-20 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

Managing Files with the Same Name

In general, you should be cautious when working with files with the same

name because it is easy to accidentally link the wrong version of a file to a
hierarchy. The SCC tools detect if you accidentally link the wrong version

of a file when you edit a project using t8€C Edit Project File List

dialog box. You have the choice to avoid changing the project by moving

the existing file in SCC to the new location or by adding the new file as file

with the same name in a different location.

Removing Files from a Project

To remove files from a project, seldttoject»Source Code
Control»Project.... Select the project in tH&CC Projectdialog box and
click theEdit Project... button. Select the file(s) in tI®CC Edit Project
File List dialog box and click thRemovebutton or double click the file.

When you remove Vls from a project, they remain listed in the project file
list but they have an ‘X’ next to them to indicate that they have been
removed. You can add the files back to the project by double clicking on the
file. A checkmark appears next to the file.

Another way to remove files from the project is to useBkelude
Directories dialog box and select the directory that contains the files you
want to exclude. You can access Ehelude Directoriesdialog box by
clicking theExclude Dirs... button in theSCC Edit Project File List

dialog box. Files you exclude in this fashion are dimmed in the project
file list.

Notice that when you remove a file from a project, it is not removed from
Source Code Control. One reason for this is that multiple projects can share
files. Also, even files that are not part of a project are retained in SCC
because they might be important for historical reasons. To permanently
delete a file, seledroject»Source Code Control»Advanced...Select

the file you want to delete and click tBelete Filebutton in theSCC
Advanceddialog box.

Adding Extra Files to a Project

In many cases, the work you develop consists of more than just VIs. You
probably have specifications, proposals, and illustrations that describe your
project. You also can have support files like DLLs or external subroutines.
The integrated SCC tools support storing these extra, project-related files
as part of your SCC projects.

© National Instruments Corporation 11-21 Professional G Developers Tools Reference Manual

Chapter 11 Source Code Control Tools

To add extra files to your project, sel&€bject»Source Code
Control»Project.... Select the project in tH&CC Projectdialog box and
click theEdit Project... button. In theSCC Edit Project File List dialog
box, click theExtra Files... button to display th8CC Edit Extra Files
dialog box, as shown in Figure 11-8.

SCC Edit Extra Files]

In addition to the Wz in the hierarchy, you can have other related files
under source code contral. Shared libraries and project documents are
examples of files pou should include in thiz category. vouw should nat
include ¥ls since they should be included as separate projects or as part of
the: hierarchy.

Entra files in thiz project: [~ Show paths

-

Add... Remove Save Canicel

Figure 11-8. Edit Extra Files Dialog Box

Add or remove extra files by selecting them and clicking/ttie... or
Removebuttons. Once you are finished, click B&vebutton to commit
any changes you make.

Do not use th&CC Edit Extra Files dialog box to add Vls to a project.

VIs should be added automatically if they are part of a hierarchy. If you
have a set of VIs that are not part of the project but that you want to store
in Source Code Control, create new project(s) for the additional Vls. If you
want to be able to retrieve multiple projects simultaneously as though they
were a single project, create a project group. Refer to the foll®Rvijgct
Groupssection for more information.

Project Groups

Each SCC project consists of a VI, all or some of its subVIs, and extra files
associated with the project. Some development efforts you work on might
have more than one top-level VI. For example, if your VI uses the

VI Control VIs to dynamically load and call Vls, the dynamically called
subVIs are not considered a part of your hierarchy. In this case, create
separate projects for each dynamically called VI.

Professional G Developers Tools Reference Manual 11-22 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

An SCC project group is a collection of projects. You can use project
groups to make it more convenient to retrieve and manipulate files from
multiple projects.

To create a project group, first define the individual projects you want the
project group to contain. Seldetoject»Source Code Control»Project...

and click theNew Project Group... button in theSCC Projectdialog box

to display theSCC Edit Project Group dialog box, as shown in

Figure 11-9.

SCC Edit Project Group

Group name:

|Test Graoup |

Select the projects the group should contain;

Simulation of Tormography.wi [Simulation of Tamographg. i) ;l

Save I Canicel

Figure 11-9. Edit Project Group Dialog Box

The SCC Edit Project Group dialog box lets you enter a name for the
group and select the projects for the group to contain. Project groups can
contain any number of projects and can contain references to other project
groups.

Once you create a project group, its name shows up as a project you can
select when you use tIC Check Files Ouf SCC Check Files In
SCC Retrieve Files or SCC Advanceddialog boxes.

Accessing Files

The following sections show you how to retrieve, check out, and check in
files of a Source Code Control project.

Retrieving Files

To copy files from the master directory to your working directory, select
Project»Source Code Control»Retrieve Files...

© National Instruments Corporation 11-23 Professional G Developers Tools Reference Manual

Chapter 11 Source Code Control Tools

The SCC Retrieve Filesdialog box lets you select a project or project
group from which to retrieve files, as shown in Figure 11-10.

SCC Retrieve Files

Jzer name: callig]

Praject: I Simulation of Tomographw. «i [Simulation of Tomography. i) j

[Only list ¥ls with open panels

Interior of a Circle.vi
Situation at Time bwi
Tomography Globals.glb

Get Filels) I File Properties... Done

Figure 11-10. SCC Retrieve Files Dialog Box

To retrieve a file, select it and click tl&et File(s)button. To retrieve

multiple files, shift click items to select them and then clickGle¢ File(s)
button. Because the list can be long if you have several files in your project,
you can use th@nly list VIs with open panelscheckbox to ignore
unopened files.

File Status

TheSCC Retrieve Fileddialog box automatically compares the local copy
of files in the project with the master copy the SCC system maintains. It
categorizes the files into the following categories and indicates this
information in parentheses next to each file in the list:

* Local copy has changed—If the file is not checked out, you should
either check out the file or replace the local copy with the version from
the server. You should not modify local files without first checking
them out.

e Server copy has changed—This generally means that another
developer has modified the VI.

« Local copy does not exist—Either the file is a file on the server that you
have never retrieved or you deleted it from your local system. If you

Professional G Developers Tools Reference Manual 11-24 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

have intentionally deleted it and you want to update the project, refer
to theUpdating a Projecskection earlier in this chapter.

» Server copy does not exist—Either the file has been deleted on the
server by another developer or it is a new file you have created. If it is
a new file you created and you want to update the project, refer to the
Updating a Projecsection earlier in this chapter.

File Properties

Clicking theFile Properties... button in theSCC Retrieve Files

dialog box displays th8CC File Propertiesdialog box, as shown in
Figure 11-11. This dialog box gives you a summary of information about
the file, including the projects it belongs to, the checkout status, and
modification dates.

SCC File Properties <]
Filename: 9, TomoaraphysSimulation of Tomography. ¥
Checkout statug: Projects file iz a member of:
Simulation of Tomography.vi j

File iz nat currently checked out.

SCC file status:
SCC wersion: 2
Modification date: 03:14:08 Pk
04/02/1938 =
Local file status
Full path: 9, C:AProgram Files\M ational InstrumentsiLabYIE'w™ T omographwsSimulation of
Lazt edit date: 03:14:08 P
04,/02/1998
Original date; 03:14:08 P
04/02/1938

Figure 11-11. SCC File Properties Dialog Box

You can get more information about a file, including a file history, by
selectingProject»Source Code Control»Advanced...

© National Instruments Corporation 11-25 Professional G Developers Tools Reference Manual

Chapter 11 Source Code Control Tools

Checking Out Files

When you want to modify a file, first check out the file to reserve it so
nobody else can modify the file.

When you check out a file, if there is a newer version on the server, that
version is copied to your local system. It is then unlocked so you can edit
the VI. While you have the file checked out, nobody else can check out the
file or modify it. This helps to ensure that only one developer at a time
modifies a VI.

To check out files, seleBtroject»Source Code Control»Check Files
Out... to display theSCC Check Files Outdialog box, as shown in
Figure 11-12.

The SCC Check Files Outdialog box lets you select a project or project
group from which to check out files. When you check out a file, it is
checked out for all projects. When you check the file back in, the new
version is available for all projects that contain the file.

SCC Check Files Dut]
|Jzer name: callie]
Project: I Simulation of Tamaaraphy.vi [Simulation of Tomography. i) j

™ Only list Wiz with open panels

Eiil'l'll_l|-£1ti|:|r'| |:|f Tl:lfl'll:u:][a lh'..'. I
= subvis
] Cut Length,wi
] Drawing a Circle.vi
] Drawitg a Filled Circle. vi
] Imkerior of & Circle. vi
] Situation at Time bwi
] Tamography Globals.glb

Checkout File I File Properties... Doke

Figure 11-12. SCC Check Files Out Dialog Box

Professional G Developers Tools Reference Manual 11-26 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

The interface for checking out files is almost identical to that for retrieving
files. You cannot check out files that are already checked out to you or to
another developer. If the file is checked out, the list indicates the username
of the developer with the VI. If you need to check out multiple files, shift
click items in the listbox to select the files you want to work on and click
the Checkout File button.

In general, you should avoid checking out files for long periods of time.
Instead, you should try to make incremental changes to your files. When
you are sure your files are in good shape, you should check them in.
Whenever you check in a file, make sure you have tested it thoroughly so
you do not cause problems for other developers. If you need to modify other
VIs before you can check in a specific VI, check out the other VIs, make
the changes, and test the VIs before checking in any of the Vis.

If you need to make several changes to a VI, consider checking in the file
between modifications and then check the file back out to start the next
modification. Not only does this allow other developers access to your
changes, but it also gives you a checkpoint you can return to if you later
decide that your subsequent changes were incorrect.

Use the History Window to Document Changes

As you make modifications to a VI, sel&indows»Show History...to

enter notes about your changes. You can check out a file for several days.
The History window helps you remember the changes you have made.
When you check the file back in, the SCC tools let you enter a description
of your changes. By default, this text is the history text since you checked
out the file.

The more detailed you are in making notes, the better off you will be.
These notes can help if you need to make reports about the changes you
have made or if you later need to retrieve an older version and you need
to distinguish between two different versions. You can create reports

and access old versions by selecfirgject»Source Code
Control»Advanced....

© National Instruments Corporation 11-27 Professional G Developers Tools Reference Manual

Chapter 11 Source Code Control Tools

Checking In Files

When you finish making changes to a file you have checked out, select
Project»Source Code Control»Check Files In..to display the

SCC Check Files Indialog box, as shown in Figure 11-13. This dialog box
lets you copy your version of the file into Source Code Control so that it is
available to other users. The VI is locked automatically as it is checked in
to prevent you or others from accidentally modifying the file without first
checking it out.

5CC Check Files In]
|Jzer name: callie]
Project: I Simulation of Tomagraphy. wi [Simulation of Tomaography. i) j

™ Only list Wiz with open panels

> Simulation of Tamography. «i [outzallie]] [local copy has changed)
= subvis
] Cut Length,wi
] Drawing a Circle.vi
] Drawitg a Filled Circle. vi
] Imkerior of & Circle. vi
] Situation at Time bwi
] Tamography Globals.glb

Checkin File I File Properties... Doke

Figure 11-13. SCC Check Files In Dialog Box

The interface for checking in files is similar to that for checking out files
and for retrieving files. You can check in a file only if it is checked out to
you. Your username must be the same as when you checked out the file.

When you check in a file, you are prompted to enter a summary of the
changes you made. If you used the History window to record changes, the
SCC Edit Change Commentslialog box initially contains the history text
since you checked out the file, as shown in Figure 11-14.

Professional G Developers Tools Reference Manual 11-28 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

SCC Edit Change Comments

Enter a description of the changes you made since you checked
out the fallowing file:

9, C:AProgram Files'H ational InstrumentzhLabh EWw™,

Time checked our 03:35:36 P
04/02/1938

Change dezcription:
e, 14 Thur, April 02, 1998 3:45:02 PM calliej _‘I
Fieszized the ¥-ray graph.

Changed the colar zcale of the reconstuction araph.

oK |

Figure 11-14. Edit Change Comments Dialog Box

You can edit this text to expand the information or to remove unimportant
information. When you change this text, you are not modifying the VI
history. Instead, the modified text is stored in Source Code Control with the
file as part of a log of changes. This log is useful for report generation and
can be helpful if you later need to retrieve an older version and you need to
distinguish between two different versions. You can create reports and
access old versions by selectiPigject»Source Code

Control»Advanced....

SCC User Name

When you check in files or modify projects, the G SCC tools use your
LabVIEW or BridgeVIEW username to access the Source Code Control
system. You can change this username by seleEtitgUser Name...

Also, you can control whether to prompt for a username when you launch
LabVIEW or BridgeVIEW by selectingdit»Preferences.. to display the
Preferencesdialog box. Select the appropriate options in this dialog box.

© National Instruments Corporation 11-29 Professional G Developers Tools Reference Manual

Chapter 11 Source Code Control Tools

It is important that the username be unique among your team. The built-in
SCC system does not check for a password, so it is possible for users to
check files in or out as another developer if you do not use unique names.
The built-in system relies on a certain degree of trust. If more security is
important, consider using an alternative SCC system such as Microsoft
Visual SourceSafe or Rational Software ClearCase for Solaris 2 for storing
files. Visual SourceSafe and other third-party tools prompt you to enter a
password whenever you access files or modify projects. Refer to the
Selecting the Source Code Control Systention earlier in this chapter for
more information on the built-in system and third-party systems.

Advanced Features

You can access most advanced features by sel&uiifect»Source Code
Control»Advanced... to display the&sCC Advanceddialog box, as shown

in Figure 11-15. This dialog box contains features for viewing all files
under SCC, determining the projects those files belong to, accessing older
versions of files, permanently deleting files, and creating reports.

SCC Advanced E

Uzer name: callig)

Project: I

Show all filez ;I

Display
’7 v Checkout state [~ Wersion numbers [Projects [Platfarms |

==+ T ormography

= subvis
] Cut Length. vi

[« e el

< Simulation of Tomography. vi

Drawing a Circle. vi
Drawing a Filled Circle.vi
Interior of a Circle. i
Situation at Tire b
Tomography Globals.glb

Space an server far file: Tatal 0.000 ME Previous versions 0.000 ME
Space on server for all files: Total 1.022 MB Previous versions 0522 MEB Freespace 278.281 MB

File: Histary...

I File Properties... | Werify File Status | Delete File |

System History. ..

| Fepaorts. .. | Werify System Status | Doke |

Figure 11-15. SCC Advanced Dialog Box

Professional G Developers Tools Reference Manual 11-30 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

Deleting Files from SCC

When you remove a file from a project, it is not removed automatically
from Source Code Control. The main reason for this is that although a file
might not be needed currently, it is important historically in terms of being
able to understand the evolution of your software. If you later decide you
need to retrieve an older version of the project, the file is still present

in SCC.

If you decide you do not need a file, you can delete it by selecting
Project»Source Code Control»Advanced...In theSCC Advanced
dialog box, select the files you want to delete and cliclDttlete File
button.

Use caution in deleting files. In addition to removing the current version, it
also deletes all previous versions of the file the SCC system maintains and
the history log for that file. Also, you should enable Ehgplay Projects

option in theSCC Advanceddialog box to verify that the files you want to
delete are not used currently by any other projects.

SCC File History

Every Source Code Control transaction that modifies the contents of the
SCC system is recorded. When you create projects, add files to projects,
check files in and out, or delete files or projects, that information is logged.
The comments you enter when you check in a file are added to the log for
a file.

To view the SCC history information for a file, selBcbject»Source

Code Control»Advanced... Click theFile History... button in the

SCC Advanceddialog box to display a scrolling list of the SCC history for
the file, including dates and names for every person who modified the file.

It is important to understand the difference between the SCC file history
and the VI history you modify with a VI History window. You can use the

VI History window as a place to enter notes about changes to a VI as you
make them. This VI history is a part of the VI. If you give the VI to someone
else, the VI history is still present unless you reset it using an option from
the History window. When you check in a file, regardless of whether it is a
VI or another document, such as a specification, you are given a chance to
make an entry in the SCC file history. For Vls, the default text for this entry
is the VI history text since you checked out the file. However, you are given
a chance to change this entry so the SCC history entry is more detailed or
more succinct. This SCC file history information is maintained within the
SCC system and does not become a part of the VI.

© National Instruments Corporation 11-31 Professional G Developers Tools Reference Manual

Chapter 11 Source Code Control Tools

System History

TheSCC View File History dialog box appearance depends on the Source
Code Control system you use, either the built-in system or a third-party
source code system. At a minimum, it lets you scroll through a listing of
information about each file. In addition, most systems should allow you to
access previous versions of files. Refer toAbeessing Previous Versions

of Filessection later in this chapter for more information. Also, the built-in
system, and some third-party systems such as Visual SourceSafe and
ClearCase for Solaris 2, gives you the option to label the current version of
afile so it is easier to recognize if you later want to retrieve it. For example,
you might label a file as beta so you can easily retrieve that checkpoint
version later. Refer to tHeabeling Versions of Files for Easy Retrieval
section later in this chapter for more information.

It is important that you enter detailed comments when you check in files
and if you use the History window because that information can help you
understand the evolution of your software. It also is extremely helpful if
you need to determine which version introduced a problem.

If you want to view a summary of transactions for multiple files, click the
System History... button instead of thEile History... button in the

SCC Advanceddialog box. Refer to the followin§ystem Historgection

for more information. If you use the report generation feature of the
SCC Advanceddialog box, you can save the system and file histories for
files in a project. Refer to tHereating Reportsection later in this chapter
for more information.

TheSCC View System Historydialog box lets you view a brief summary

of transactions that affect the Source Code Control system. It lists any
transaction that modified the contents of projects, created or deleted files,
or checked in files.

As with theSCC View File History dialog box, the&sCC View System
History dialog box appearance depends on the Source Code Control
system you use, either the built-in system or a third-party system. At a
minimum, it lets you scroll through a listing of transactions. In addition,
most systems allow you to label the current version of all files in projects
so they are easier to recognize if you later want to retrieve them. For
example, you might apply a beta label to all files in a project or multiple
projects so you can easily retrieve those versions later. Refer to the
Labeling Versions of Files for Easy Retriegaktion later in this chapter
for more information.

Professional G Developers Tools Reference Manual 11-32 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

Accessing Previous Versions of Files

Most SCC systems automatically maintain previous versions of files. This

is helpful if you ever make a mistake and need to recall an older version of
afile. It also is useful if you give a version of a file to a customer, continue
development, and subsequently need to retrieve the same version you sent
the customer so you can reproduce the system he or she has.

Built-In System

The built-in SCC system supports maintaining previous versions of files.
The system administrator can enable this feature, but he or she might
choose to disable it for disk storage reasons. Maintaining older versions of
files can dramatically increase your storage requirements. In addition, the
administrator can configure the SCC system so it maintains only a limited
number of previous versions of each file. In this case, as you check in a
newer version of a file, a fixed number of previous versions will be
maintained.

If you label versions of files with the built-in system, the labeled versions
are not automatically deleted and are not counted as part of this system
administrator limit. Labeled versions are maintained until you choose to
delete them.

With the built-in system, you can access previous versions of files from
the SCC View File History and theSCC View System Historydialog

boxes. ThesCC View File History dialog box allows you to retrieve a
previous version of a single file. TI®CC View System Historydialog

box allows you to scan the system for all versions of a file with a specific
label and allows you to retrieve those versions. This can be useful in taking
a snapshot of your product that you can retrieve easily. For example, you
can label the current version of all files in a projeattis for the first
release.

Third-Party Systems

Most third-party systems, including Visual SourceSafe and ClearCase for
Solaris 2, offer similar features for maintaining previous versions of

files and labeling files. The option might be configurable. Consult the
documentation for the third-party SCC system to determine the options.
By default, Visual SourceSafe and ClearCase for Solaris 2 maintain
history for files.

© National Instruments Corporation 11-33 Professional G Developers Tools Reference Manual

Chapter 11 Source Code Control Tools

Labeling Versions of Files for Easy Retrieval

Creating Reports

With the built-in SCC system, thele History... button in the

SCC Advanceddialog box lets you retrieve older versions of files. By
default, however, the names you see are based on the older version number
and the version creation date. T®€C View File History dialog box lets

you optionally label the current version so it is easier to recognize if

you later need to retrieve it. Also, labeling a file ensures that it is not
automatically deleted as it gets older. One of the administrator options

for the built-in system is to specify how many older versions of a file to
maintain. Labeled versions of a file are not deleted unless you delete them
yourself, either from th&CC File History dialog box or from the

SCC Advanceddialog box.

If you use a third-party SCC system, you probably have the option of
labeling files as well, but you might have to do it using the SCC tools that
company provides. Also, notice that with third-party tools, the way in
which previous versions are maintained and when they get deleted is
configured using the tools provided with the third-party SCC system.

If you use the built-in SCC system and you need to label multiple files, you
can use th&CC View File History dialog box on each one, but that can be
tedious. Instead, if you want to take a snapshot of all the files in a project
and apply the same label to all the files, useStB€ View System History
dialog box. It has an option that lets you label all files in a project with the
same label. It also has an option for retrieving files with the same label.

An important feature of any SCC tool is the ability to generate reports
that describe system and file activity because SCC tools should help you
not only to maintain files but also to track the changes that happen to
those files.

TheReports... button in theSCC Advanceddialog box lets you create

basic reports that describe file transactions and information about the
projects maintained under Source Code Control. These reports are saved to
a text file that you can edit or print using a word processor.

The options in th&CC Reportsdialog box depend on the SCC system
you use.

Professional G Developers Tools Reference Manual 11-34 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

Built-In System

If you use the built-in system, you get the dialog box shown in

Figure 11-16.

V¥ System file listing

¥ Summary of spstem transactions

Praject: -I Simulation of Tomagraphy. vi ;l—

v Project file listing
¥ File histories

Save.. I Cancel

Figure 11-16. SCC Reports Dialog Box for Built-in SCC System

TheSystem file listingoption describes all files maintained in Source Code
Control. It lists the current file version and the projects that those files
belong to for each file.

The Summary of system transaction®ption gives the same information

as in theéSCC View System Historydialog box. It lists all check outs and
check ins, project creations, file creations, and file deletions. It includes the
username, the date, and a brief summary of the changes for each
transaction.

TheProject file listing option lists only the files that are members of the
selected project.

TheFile histories option lists the same information as in 8@€C View

File History dialog box for each file in the selected project. It lists
information about when the file was first added to Source Code Control and
all information about subsequent changes to the file, including the
username, the date, and a brief summary of the changes.

Visual SourceSafe

With Visual SourceSafe, you can generate the file listings from the
SCC Reportsdialog box. You have to generate transaction listings and
other reports from the Visual SourceSafe environment. Remember that the

© National Instruments Corporation 11-35 Professional G Developers Tools Reference Manual

Chapter 11 Source Code Control Tools

system history can be viewed by looking at the history of the
sccfiles.Ist file. Refer to theSystem Historgection earlier in this
chapter for more information.

Multiplatform Issues

This section describes multiplatform issues, such as cross-platform SCC,
filename limitations, and platform-dependent SCC files.

Cross-Platform Source Code Control

Unlike most Source Code Control tools, the built-in SCC system lets you
access files from all the platforms LabVIEW and BridgeVIEW support
except Windows 3.1. Refer to thising Individual Files Instead of

VI Libraries section earlier in this chapter for more information.

Windows 3.1 is not supported because the SCC tools manage Vls as
individual files and the Windows 3.1 8+3 character naming limitation
makes this impractical. While LLBs make it possible to use longer names,
they do not provide the level of transparent access to files that is needed for
the built-in SCC tools.

Although you cannot use the SCC tools on Windows 3.1, National
Instruments understands that customers need Windows 3.1 support. As a
developer, you might need to deploy applications to customers that are
using systems with Windows 3.1. In that case, develop your application
under Windows 95/NT. On those platforms you can use individual files for
VIs. When you are ready to distribute to Windows 3.1 users, you can save
copies of your Vls into LLBs. An easy way to convert your files to or from
LLBs is to use the File Manager tool, which allows you to convert between
directories and LLBs.

Once the administrator has set up the Source Code Control system, you can
access it from any supported platform. There are some issues you should be
aware of if you are developing VIs on or for multiple platforms, including
filename limitations and platform-dependent SCC files.

Filename Limitations

Macintosh, Windows 95/NT, and UNIX systems each have restrictions
about filenames and paths you need to be cautious about if you plan to
support multiplatform development.

Macintosh filenames are limited to 31 characters in length and cannot
contain the "’ character. Paths are not limited in length.

Professional G Developers Tools Reference Manual 11-36 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

UNIX filenames are limited to 255 characters in length and cannot contain
the /' character. Paths are not limited in length.

Windows 95 filenames are limited to 255 characters in length and cannot
contain the following characters: \, :;, /, *, ?, ", <, >, and |. Paths are limited
to 255 characters, including the filename.

Windows NT supports FAT and NTFS file systems. FAT filename
restrictions are the same for Windows 95. NTFS filenames are limited to
255 characters in length and have the same character limitations as FAT.
NTFS paths are not limited in length.

Consequently, for maximum portability you should avoid using :, \, /, *, ?,

" <, >, and | in filenames and limit filenames to 31 characters or less. Also,
because of the path length restrictions under the FAT file system of
Windows 95/NT, you should avoid paths that are deeply nested, longer than
255 characters. The File Manager tool can scan a set of directories or VI
libraries for invalid names.

Platform-Dependent SCC Files

LabVIEW and BridgeVIEW are available for a variety of computing
platforms. You can open most VIs on any platform LabVIEW and
BridgeVIEW support, and they will run without modification. You can use
the G SCC tools to share code among developers on any platform where
LabVIEW or BridgeVIEW is available.

In most cases, you will probably want all files in Source Code Control to
be available for all platforms. In some cases you might have files in your
system that are platform specific.

The following are cases that might involve platform-specific issues:

* VIs that take advantage of platform-specific features, such as DDE,
can be taken to a platform that does not support the feature, but the VI
will be broken on that platform. In this case, you might prefer to have
the file treated as platform specific so that it is not normally retrieved
on unsupported platforms.

e If you write any Vls that contain CINs, you need a different version of
the VI for each platform because CINs contain code compiled with
platform-specific compilers.

» If your application uses DLLs, the libraries apply only to specific
platforms. The VIs that call the libraries are platform independent,
assuming you have a corresponding library for each platform.

© National Instruments Corporation 11-37 Professional G Developers Tools Reference Manual

Chapter 11 Source Code Control Tools

The G Source Code Control tools give you the flexibility of marking files
as platform specific and creating variants for different platforms.

Platform-Specific Files

You can mark a file as platform specific by selectirgject»Source

Code Control»Project... to display the&sCC Projectdialog box. Select a
project that contains the file you want to modify and clickEde

Project... button to display th€CC Edit Project File List dialog box.
Click thePlatforms... button to display th&CC Edit File Platforms

dialog box, as shown in Figure 11-17. This dialog box lets you mark the
platforms for which a file is available.

SCC Edit File Platforms]

|F pau want thiz file to apply only to specific platforms, select them from the list an the nght. The file will
nat be copied down from zource code control on unselected platfarms. This is uzeful for files such as
zhared libraries.

IF pou want ta have different variations of this file come down dependent upon the platfarm, highlight
the wariation pou want to copy, select the Create a wariation button, and then define the platforms for
each waniation.

Wariations of thiz file:

Drawing a Circle. vi [Selection applies to all platforms

wiitdows 3.1

BAkK. M acintozh

Pawer b acintozh

Solariz 1.» x

Create a'Variation... | Save Cancel

Figure 11-17. SCC Edit File Platforms Dialog Box

The platforms selected in the list on the right determine the platforms the
file is available on.

Each user of the G SCC tools will have configured the platform for which
they want files by selectingroject»Source Code Control»Local
Configuration.... Assuming you do not modify this list, t8&C Local
Configuration dialog box should have automatically detected your
platform correctly.

Professional G Developers Tools Reference Manual 11-38 © MNational Instruments Corporation

Chapter 11 Source Code Control Tools

Variants of a File for Different Platforms

To create a variant of a file for another platform, sefeofect»Source
Code Control»Project... to display thesCC Projectdialog box. Select a
project that contains the file and click thdit Project... button to display
the SCC Edit Project File List dialog box.Click thePlatforms... button

to display theSCC Edit File Platforms dialog box. To create a new
variant, click theCreate a Variation... button. Choose the new variant and
select the platforms to which it applies. If necessary, modify the existing
variants to ensure there is no overlap. SR Edit File Platforms dialog

box does not allow you to apply multiple variants to the same platform.

Retrieving Files for a Different Platform

In some cases, you might need to retrieve files for a different platform. For
example, if you create a CIN, you will have different versions for each
platform. Suppose you have a VI that calls a CIN and at some point you
decide to add a parameter to the CIN. You will first check out the VI on a
platform, modify the CIN code, recompile, reload the CIN, and check the
VI back in. You might attempt to make the same modifications to the
variant of the VI for each platform, but this would require a lot of work and
is prone to error. Instead, a better method is to check out the VI on each
platform, replace it with the VI with the correct block diagram, recompile,
and reload the CIN. Afterward, you can check in the resulting VI as the
variant for the current platform.

TheSCC Check Files In SCC Check Files OutandSCC Retrieve Files
dialog boxes restrict the list to the current platform. To change the platform,
selectProject»Source Code Control»Local Configuration...to display

the SCC Local Configuration dialog box. Choose the platform for which
you wish to retrieve files. After you retrieve the files, go back and reset the
platform to its original value.

© National Instruments Corporation 11-39 Professional G Developers Tools Reference Manual

References

This appendix provides a list of references for further information about
software engineering concepts.

LabVIEW Function and VI Reference Manualuseful sample of quality
documentation for libraries of Vls.

Dataflow Programming with LabVIEWational Instruments Application
Note. A set of perspectives on dataflow programming that shows how
LabVIEW compares with classical dataflow graphs, equations, and block
diagrams.

Visual Programming Using Structured Data Flaleffrey Kodosky,

J. MacCrisken, and G. Rymar. Proceedings from IEEE Workshop on
Visual Languages, 1991. (Also available from National Instruments.)
Description of some of the theory behind the graphical programming
paradigm of LabVIEW.

LabVIEW Graphical Programming—Practical Applications in
Instrumentation and ControGary W. Johnson, McGraw-Hill Inc., 1994,
ISBN 0-07-032719-4. An excellent overview of how to apply LabVIEW to
real-world problems.

LabVIEW Technical Resourdedited by Lynda P. Gruggett, LTR
Publishing, phone (214) 706-0587, fax (214) 706-0506. A quarterly disk of
VIs and a newsletter that features technical articles about all aspects of
LabVIEW.

Rapid Developmensteve McConnell, Microsoft Press. Explanation of
software engineering practices in a down-to-earth fashion with many
examples and practical suggestions.

Microsoft SecretsMichael A. Cusumano and Richard W. Selby, Free
Press, 1995, ISBN 0-02-874048-3. In-depth examination of the
programming practices Microsoft uses. Contains interesting discussions of
what Microsoft has done right and what it has done wrong. Includes a good
discussion of team organization, scheduling, and milestones.

© National Instruments Corporation A-1 Professional G Developers Tools Reference Manual

Appendix A

References

Dynamics of Software Developmehitn McCarthy, Microsoft Press, 1995,
ISBN 1-55615-823-8. Another look at what has worked and what has not
for developers at Microsoft. This book is written by a developer from
Microsoft and contains numerous real-world stories that help bring
problems and solutions into focus.

Software Engineering—A Practitioner's Approaétoger S. Pressman,
McGraw-Hill Inc., 1992, ISBN 0-07-050814-3. A detailed survey of
software engineering techniques with descriptions of estimation
techniques, testing approaches, and quality control techniques.

Handbook of Walkthroughs, Inspections, and Technical Reviews:
Evaluating Programs, Projects, and ProdudBsniel P. Freedman

and Gerald M. Weinberg, Dorset House Publishing Co., Inc., 1990,
ISBN 9-932633-19-6. An excellent, down-to-earth discussion of how to
conduct design and code reviews with many examples of things to look
for and the best practices to follow during a review.

ISO 9000.3: A Tool for Software Product and Process Improvement.
Raymond Kehoe and Alka Jarvis, Springer-Verlag New York, Inc., 1996,
ISBN 0-387-94568-7. Describes what is expected by ISO 9001 in
conjunction with ISO 9000.3 and provides templates for documentation.

Software Engineering Economiddarry W. Boehm, Prentice-Hall, 1981,
ISBN 0-13-822122-7. Description of the wideband delphi and COCOMO
estimation techniques.

Software Engineering=dited by Merlin Dorfman and Richard Thayer,
IEEE Computer Science Press, 1996, ISBN 0-8186-7609-4. Collection of
articles on a variety of software engineering topics, including a discussion
of the spiral lifecycle model by Barry W. Boehm.

Professional G Developers Tools Reference Manual A-2 © MNational Instruments Corporation

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form and
the configuration form, if your manual contains one, about your system configuration to answer your
guestions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to quickly
provide the information you need. Our electronic services include a bulletin board service, an FTP site,
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first try the
electronic support systems. If the information available on these systems does not answer your
guestions, we offer fax and telephone support through our technical support centers, which are staffed
by applications engineers.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files
and documents to answer most common customer questions. From these sites, you can also downloac
the latest instrument drivers, updates, and example programs. For recorded instructions on how to use
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. You can
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 1559
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support

To access our FTP site, log on to our Internet Hipstatinst.com , asanonymous and use
your Internet address, suchjassmith@anywhere.com , as your password. The support files and
documents are located in tlsapport directories.

© National Instruments Corporation B-1 Professional G Developers Tools Reference Manual

Fax-on-Demand Support

Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
512 418 1111.

E-Mail Support (Currently USA Only)

You can submit technical support questions to the applications engineering team through e-mail at the
Internet address listed below. Remember to include your name, address, and phone number so we can
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support

National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact

the source from which you purchased your software to obtain support.

Country Telephone Fax

Australia 03 9879 5166 03 9879 6277
Austria 0662 4579900 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
CanadaQuébeg 514 694 8521 514 694 4399
Denmark 4576 26 00 45 76 26 02
Finland 0972572511 09 725 725 55
France 0148142424 0148142414
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5520 2635 5520 3282
Netherlands 0348 433466 0348 430673
Norway 32848400 328486 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 0873049 70 08 7304370
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644

United Kingdom
United States

01635 523545
512 795 8248

Professional G Developers Tools Reference Manual B-2

01635 523154
512 794 5678

© MNational Instruments Corporation

Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and use
the completed copy of this form as a reference for your current configuration. Completing this form
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name

Company

Address

Fax (___) Phone (___)

Computer brand Model Processor
Operating system (include version number)

Clock speed MHz RAM__ MB Display adapter

Mouse ___yes __ no Other adapters installed

Hard disk capacity _ MB Brand

Instruments used

National Instruments hardware product model Revision
Configuration

National Instruments software product Version
Configuration

The problem is:

List any error messages:

The following steps reproduce the problem:

Professional G Developers Tools Reference Manual
Hardware and Software Configuration Form

Record the settings and revisions of your hardware and software on the line to the right of each item.
Complete a new copy of this form each time you revise your software or hardware configuration, and
use this form as a reference for your current configuration. Completing this form accurately before
contacting National Instruments for technical support helps our applications engineers answer your
guestions more efficiently.

National Instruments Products

Hardware revision

Interrupt level of hardware

DMA channels of hardware

Base I/0O address of hardware

Programming choice

National Instruments software

Other boards in system

Base I/O address of other boards

DMA channels of other boards

Interrupt level of other boards

Other Products

Computer make and model

Microprocessor

Clock frequency or speed

Type of video board installed

Operating system version

Operating system mode

Programming language

Programming language version

Other boards in system

Base I/0O address of other boards

DMA channels of other boards

Interrupt level of other boards

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: Professional G Developers Tools Reference Manual
Edition Date: May 1998
Part Number: 321393B-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.
Name

Title
Company
Address

E-Mail Address

Phone (___) Fax(___)

Mail to: Technical Publications Faxto: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678

Austin, Texas 78730-5039

Glossary

A

Application
Programming Interface

black box testing

C

Capability Maturity
Model (CMM)

CIN

COCOMO Estimation

code and fix model

The programming interface for controlling some software packages, such
as Microsoft Visual SourceSafe.

A form of testing where a module is tested without knowing how the
module is implemented. The module is treated as if it were a black box that
you cannot look inside. Instead, you generate tests to verify the module
behaves the way it is supposed to according to the requirements
specification.

A model for judging the maturity of the processes of an organization and
for identifying the key practices that are required to increase the maturity
of these processes. The Software CMM (SW-CMM) has become a de facto
standard for assessing and improving software processes. Through the
SW-CMM, the Software Engineering Institute and software development
community have put in place an effective means for modeling, defining,
and measuring the maturity of the processes software professionals use.

SeeCode Interface Node.

COnstructive COst MOdel. A formula-based estimation method for
converting software size estimates to estimated development time.

A lifecycle model that involves developing code with little or no planning,
fixing problems as they arise.

© National Instruments Corporation G-1 Professional G Developers Tools Reference Manual

Glossary

Code Interface Node

configuration
management

F

Function-Point
Estimation

integration testing

L

lifecycle model

LLB

P

prototype

Professional G Developers Tools Reference Manual G-2

A function in G that allows it to call compiled subroutines from other
languages, such as C.

A mechanism for controlling changes to source code, documents, and other
material that make up a product. During software development, Source
Code Control is a form of configuration management: Changes occur only
through the Source Code Control mechanism. It is also common to
implement release configuration management to ensure a particular release
of software can be rebuilt, if necessary. This implies archival development
of tools, source code, and so on.

A formula-based estimation method applied to a category breakdown of
project requirements.

Integration testing assures that individual components work together
correctly. Such testing may uncover, for example, a misunderstanding of
the interface between modules.

A model for software development, including steps to follow from the
initial concept through the release, maintenance, and upgrading of the
software.

LabVIEW VI Library.

A simple, quick implementation of a particular task used to demonstrate
that the design has the potential to work. The prototype usually has missing
features and might have design flaws. In general, prototypes should be
thrown away, and the feature should be reimplemented for the final version.

© MNational Instruments Corporation

Glossary

R

race conditions Race conditions occur when one block diagram reads from and writes to a
global variable and there is the potential that a parallel block diagram
attempts to manipulate the same global variable, resulting in loss of data.

S

Software Engineering A federally funded research and development center chartered to study

Institute (SEI) software engineering technology. The SEl is located at Carnegie Mellon
University and is sponsored by the Defense Advanced Research Projects
Agency. Refer tdittp://iwww.sei.cmu.edu . for more information.

source lines of code The measure of the number of lines of code that make up a project. Itis used

in some organizations to measure the complexity and cost of a project. How
the lines are counted depends on the organization. For example, some
organizations do not count blank lines and comment lines. Some count

C lines, and some count only the final assembly language lines.

spiral model A lifecycle model that emphasizes risk management through a series of
iterations in which risks are identified, evaluated, and dealt with.

system testing System testing begins after integration testing is complete. System testing
assures that all the individual components function correctly together and
constitute a product that meets the intended requirements. This stage often
uncovers performance, resource usage, and other problems.

U

unit testing Testing only a single component of a system, in isolation from the rest of
the system. Unit testing occurs before the module is incorporated into the
rest of the system.

© National Instruments Corporation G-3 Professional G Developers Tools Reference Manual

Glossary

w

waterfall model

white box testing

wideband delphi
estimation

A lifecycle model that consists of several non-overlapping stages,
beginning with the software concept and continuing through testing and
maintenance.

Unlike black box testing, white box testing creates tests that take into
account the particular implementation of the module. For example, white
box testing is used to verify all the paths of execution of the module have
been exercised.

Wideband delphi is a technique used by a group to estimate the amount of
effort a particular project will take.

Professional G Developers Tools Reference Manual G4 © MNational Instruments Corporation

Index

A

accessing filesSeefile management, SCC tools.
administrator setup, SCC tools, 11-5t0 11-9
built-in system, 11-8 to 11-9
ClearCase, 11-10to 11-12
Edit Platform List, 11-13 to 11-14
Visual SourceSafe, 11-9to 11-10
alpha testing, 3-9
attribute nodes, 7-11

beta testing, 3-9
bibliography, A-1 to A-2
black box testing, 3-6
block diagram
statistics, 8-3 to 8-4
style considerations, 7-17 to 7-25
adding common threads, 7-19
checklist, 7-28 to 7-29
Code Interface Nodes (CINs), 7-25
data dependency, 7-19
error checking, 7-21 to 7-23
execution sequence, 7-18 to 7-21
labeling, 7-18
left-to-right layouts, 7-18
missing dependencies, 7-20 to 7-21
optimization, 7-24
Sequence Structures, 7-20
sizing and positioning, 7-23 to 7-24
wiring etiquette, 7-17
top-down design, 4-2 to 4-3
bottom-up design, 4-6 to 4-8
BridgeVIEW software, 1-2
bulletin board support, B-1

© National Instruments Corporation

C

Capability Maturity Model (CMM) standards,
3-151t0 3-16

changesSeeconfiguration management; Source
Code Control tools.
CINs
CIN/shared library statistics, 8-4
description contents, 7-25
source code, 7-25
ClearCase for Solaris 2
accessing previous versions of files, 11-33
administrator setup, 11-10to 11-12
advantages and disadvantages, 11-5
local configuration, 11-15to 11-16
support for, 11-5
CMM (Capability Maturity Model) standards,
3-15t0 3-16
COCOMO (Constructive Cost Model)
estimation, 5-6
code and fix model, 2-4
Code Interface Nodes (CINSeeCINs.
code walkthroughs, 3-11 to 3-12ee also
design reviews.
coercion of invalid values, 7-10 to 7-11
color, style guidelines for, 7-5 to 7-6
common input/output terminal pairs, 7-19
common operations, identifying, 4-11 to 4-12
Compare Files command, 10-7
Compare Files dialog box, 10-4
Compare Hierarchies command, 10-1 to 10-4
Compare VI Hierarchies dialog box,
10-2to 10-3
comparison options, 10-3
showing differences, 10-3 to 10-4
Compare VI Hierarchies dialog box,
10-2 to 10-3

Professional G Developers Tools Reference Manual

Index

Compare VIs command, 10-5 to 10-6
Compare Vls dialog box, 10-5
Comparison Progress dialog box, 10-6
renaming VIs for comparison, 10-6
configuration management, 3-2 to 3-5
change control, 3-4 to 3-5
definition, 3-2
managing project-related files, 3-3
retrieving old versions of files, 3-3 to 3-4
source code control, 3-2 to 3-3
tracking changes, 3-4
configuration of SCC tool$SeeSource Code
Control tools.

connector panes, style considerations,
7-14to0 7-15

consistency of style&Seestyle guidelines.

Constructive Cost Model (COCOMO)
estimation, 5-6

control descriptions, as documentation, 6-6

controls and indicators
default values, ranges, and coercion,

7-10to 7-11
indicator descriptions, as
documentation, 6-6
local variables for consistent
values, 7-12 to 7-13
style considerations, 7-8 to 7-13
attribute nodes, 7-11
default values, ranges, and coercion,
7-10to 7-11
descriptions, 7-8
enumerations vs. rings, 7-9
key navigation, 7-11 to 7-12
labels, 7-8 to 7-9
local variables, 7-12 to 7-13
text styles, 7-5

cross-platform consideratiorSee

multiplatform considerations.

custom controls and graphics, 7-6 to 7-7

customer communicationyi, B-1 to B-2

Professional G Developers Tools Reference Manual -2

D

data dependency, 7-19
missing dependencies, 7-20 to 7-21
default values for controls, 7-10 to 7-11
design reviews, 3-15ee als@ode
walkthroughs.
design techniques, 4-1 to 4-8ee also
development models.
bottom-up design, 4-6 to 4-8
data acquisition system (example),
4-31t0 4-6
defining requirements for application,
4-1to0 4-2
front panel prototyping, 4-9 to 4-10
identifying common operations,
4-11t0 4-12
instrument driver (example), 4-7 to 4-8
multiple developer considerations,
4-81t0 4-9
performance benchmarking, 4-10
top-down design, 4-2 to 4-6
design-related documentation, 6-1 to 6-2
development models, 2-1 to 2-19ee also
design techniques; prototyping.
common pitfalls, 2-1 to 2-3
lifecycle models, 2-4 to 2-11
code and fix model, 2-4
definition, 2-4
G prototyping methods, 2-8
modified waterfall model, 2-7
prototyping, 2-7 to 2-8
spiral model, 2-9 to 2-11
waterfall model, 2-5 to 2-7
Differences window, 10-3 to 10-4
directories
local work directory, 11-16 to 11-17
naming, 7-2
style considerations, 7-2
VI search path, 7-2
Document Tool command, 9-1

© MNational Instruments Corporation

documentation foProfessional G Developers
Tools Reference
conventions used in manualy-xv
organization of manuaxiii-xiv
references, A-1 to A-2
related documentatioRy-xvi
documentation of applications, 6-1 to 6-6
BridgeVIEW and LabVIEW features, 6-2
design-related documentation, 6-1 to 6-2
Documentation tool, 9-1 to 9-2
help files, 6-4
overview, 6-1
user documentation, 6-2 to 6-3
application documentation, 6-3
library of subVls, 6-2 to 6-3
VI and control descriptions, 6-5 to 6-6
control and indicator
descriptions, 6-6
self-documenting front panels, 6-5
VI description, 6-5
Documentation Tool dialog box, 9-1 to 9-2
Add Directory button, 9-2
Add File button, 9-2
Add Hierarchy button, 9-2
Add LLB button, 9-2
Create Help Source button, 9-2
Create HTML File button, 9-2
Create RTF File button, 9-2
illustration, 9-1
Print button, 9-2
Save Script button, 9-2

E

Edit Extra Files dialog box, 11-22

Edit Platform List dialog box, 11-13 to 11-14
Edit Project File List dialog box, 11-19

Edit Project Group dialog box, 11-23

effort estimation, 5-4See als@stimation.
electronic support services, B-1 to B-2
e-mail support, B-2

© National Instruments Corporation -3

Index

enumerations vs. rings, 7-9
error checking, 7-21 to 7-23
estimation, 5-1 to 5-6

COCOMO estimation, 5-6

of effort, 5-4

feature creep, 5-1

function point estimation, 5-6

lines of code/number of nodes, 5-2 to 5-3

mapping estimates to schedules,
5-6 to 5-7

overview, 5-1 to 5-2

problems with size-based metrics,
5-3to5-4

wideband Delphi estimation, 5-5

execution sequence, 7-18 to 7-21

F

adding common threads, 7-19

data dependency, 7-19

left-to-right layouts, 7-18

missing dependencies, 7-20 to 7-21
Sequence Structures, 7-20

fax and telephone support numbers, B-2
Fax-on-Demand support, B-2
FDA (U.S. Food and Drug Administration)

standards, 3-14

feature creep, 5-1
file management, SCC tools, 11-23 to 11-30

change control, 3-4 to 3-5

checking in files, 11-28 to 11-29

checking out files, 11-26 to 11-27

deleting files from SCC, 11-31

Edit Change Comments dialog box, 11-29

file properties, 11-25

file status, 11-24 to 11-25

History window for documenting
changes, 11-27

labeling versions of files for easy
retrieval, 11-34

Professional G Developers Tools Reference Manual

Index

managing project-related files, 3-3
previous versions of files, 3-3 to 3-4,
11-33
retrieving files, 11-23 to 11-25
SCC Check Files In dialog box, 11-28
SCC Check Files Out dialog box, 11-26
SCC File Properties dialog box, 11-25
SCC Retrieve Files dialog box, 11-24
SCC user name, 11-29 to 11-30
tracking changes, 3-4
filenames
directories, VI libraries, and Vls, 7-2
limitations on various platforms,
11-36 to 11-39
fonts, style guidelines, 7-5
Food and Drug Administration (FDA)
standards, 3-14
front panels
self-documenting, 6-5
style checklist, 7-27 to 7-28
style considerations, 7-4 to 7-8
color, 7-5to 7-6
consistency, 7-4
graphics and custom controls,
7-6t0 7-8
layout, 7-7
sizing and positioning, 7-7 to 7-8
text, 7-5
FTP support, B-1
function point estimation, 5-6

G

G Developers ToolsSeeProfessional G
Developers Tools.

G style guideSeestyle guidelines.

globals/locals statistics, 8-4

graphics and custom controls, 7-6 to 7-7

Professional G Developers Tools Reference Manual -4

H

help files
creating, 6-4
help compilers, 6-4
using Document tool, 9-2
linking to VIs, 6-4
hierarchical organization of files, 7-1 to 7-4
directories (folders), 7-1to 7-2
naming VIs, VI libraries, and directories,
7-2
VI libraries, 7-3 to 7-4
hierarchies for projects, multiple, 11-17
hierarchies of VIs, comparinGeeCompare
Hierarchies command.
History window, 6-2, 11-27
HTML (Hypertext Markup Language), for
documentation, 9-2

icons, style considerations, 7-15 to 7-16

IEEE (Institute of Electrical and Electronic
Engineers) standards, 3-16 to 3-17

indicators.Seecontrols and indicators.

installation, 1-1

Institute of Electrical and Electronic Engineers
(IEEE) standards, 3-16 to 3-17

integration testing, 3-8 to 3-9

International Organization for Standards
(ISO) 9000, 3-13 to 3-14

K

keyboard navigation, 7-11 to 7-12

L

labels
block diagrams, 7-18
font usage, 7-5

© MNational Instruments Corporation

style guidelines, 7-8 to 7-9
LabVIEW software version required, 1-2
left-to-right layouts, 7-18
libraries.SeeVI libraries.
lifecycle models, 2-4 to 2-11

code and fix model, 2-4

definition, 2-4

G prototyping methods, 2-8

modified waterfall model, 2-7

prototyping, 2-7 to 2-8

spiral model, 2-9 to 2-11

waterfall model, 2-5 to 2-7
lines of codeSeeSource Lines of Codes

(SLOCs) metric.
LLBs. SeeV! libraries.
local configuration, SCC tools, 11-14 to 11-17

built-in system, 11-15

ClearCase, 11-15t0 11-16

local work directory, 11-16 to 11-17

Platform drop-down menu, 11-17

Visual SourceSafe, 11-15
local variables

globals/locals statistics, 8-4

using for consistent values, 7-12 to 7-13

manual Seedocumentation for Professional G
Developers Tools Reference.
metrics.Seesize-based metrics; VI Metrics
tool.
Microsoft Visual SourceSafe for
Windows 95/NTSeeVisual SourceSafe for
Windows 95/NT.
milestones
responding to missed milestones, 5-8
tracking schedules using milestones,
5-7t05-8
missing dependencies, 7-20 to 7-21
modified waterfall model, 2-7

© National Instruments Corporation -5

Index

multiplatform considerations, 11-36 to 11-39
cross platform source code control, 11-36
Edit Platform List, 11-13 to 11-14
filename limitations, 11-36 to 11-37
Platform drop-down menu, 11-17
platform-dependent SCC files,

11-37 to 11-39
platform-specific files, 11-38
retrieving files for different

platforms, 11-39
variants of files for different

platforms, 11-39
work directory, 11-16 to 11-17

multiple hierarchies, managing, 11-17

naming
filename limitations on various platforms,
11-36 to 11-39
VIs, VI libraries, and directories, 7-2
nodesSee als®ize-based metrics.
number of, 5-3, 8-2 to 8-3

0

optimizing programs, 7-24

P

performance benchmarking, 4-10
Platform drop-down menu, 11-17
platforms.Seemultiplatform considerations.
postmortem evaluation, 3-12
Print Documentation command, 6-2, 9-1
Print documentation dialog box, 6-2
Professional G Developers Tools

features, 1-2to 1-3

installation, 1-1

overview, 1-2

required system configuration, 1-1

Professional G Developers Tools Reference Manual

Index

project management, SCC tools,
11-17 to 11-23

adding extra files, 11-21 to 11-22
creating projects, 11-18 to 11-20
Edit Extra Files dialog box, 11-22
Edit Project File List dialog box, 11-19
Edit Project Group dialog box, 11-23
managing multiple hierarchies, 11-17
overview, 11-17

project groups, 11-22 to 11-23
removing files from projects, 11-21
SCC File Wizard, 11-20

SCC Project dialog box, 11-18
updating projects, 11-20 to 11-21

project trackingSeescheduling and project
tracking.
prototyping.See alsalesign techniques.

Q

development model, 2-7 to 2-8
front panel prototyping, 4-9 to 4-10
G prototyping methods, 2-8

quality control, 3-1 to 3-17

Professional G Developers Tools Reference Manual

code walkthroughs, 3-11 to 3-12
configuration management, 3-2 to 3-5
change control, 3-4 to 3-5
managing project-related files, 3-3
retrieving old versions of
files, 3-3to 3-4
source code control, 3-2 to 3-3
tracking changes, 3-4
design reviews, 3-11
postmortem evaluation, 3-12
requirements, 3-1to 3-2
software quality standards, 3-13 to 3-17
CMM, 3-15to 3-16
FDA standards, 3-14
IEEE, 3-16 to 3-17
ISO 9000, 3-13 to 3-14
style guidelines, 3-10

-6

testing guidelines, 3-5to 3-10
black box and white box testing, 3-6
formal methods of verification,
3-9to 3-10
integration testing, 3-8 to 3-9
system testing, 3-9
unit testing, 3-7

R

ranges of values for controls, 7-10 to 7-11

Rational Software ClearCase for SolariS@e
ClearCase for Solaris 2.

references, A-1to A-2

report generation with SCC tools, 6-2,
11-34t0 11-36

required system configuration, 1-1

Rich Text Format (RTF) file, for
documentation, 9-2

rings vs. enumerations, 7-9
risk managemengeespiral model.
RTF file, for documentation, 9-2

S

safeguarding applications, 3-1 to 3Sze also
quality control.
SCC.SeeSource Code Control tools.
scheduling and project tracking, 5-1 to 5-8.
See alsproject management, SCC tools; VI
Metrics tool.
estimation, 5-1 to 5-6
COCOMO estimation, 5-6
effort estimation, 5-4
function point estimation, 5-6
lines of code/number of nodes,
5-2t0 5-3
problems with size-based metrics,
5-3t0 5-4
wideband Delphi estimation, 5-5
mapping estimates to schedules,
5-6 to 5-7

© MNational Instruments Corporation

tracking schedules using milestones,
5-7t05-8
missed milestones, 5-8

Sequence Structures, 7-20
size-based metricSee alsd/I Metrics tool.

lines of codes, 5-2 to 5-3

number of nodes, 5-3

problems, 5-3 to 5-4

SLOCs.SeeSource Lines of Code (SLOCSs)

metric.
software quality standards, 3-13 to 3-17
CMM, 3-15t0 3-16
FDA standards, 3-14
IEEE, 3-16 to 3-17
ISO 9000, 3-13to 3-14
Source Code Control tools
accessing files, 11-23 to 11-30
change control, 3-4 to 3-5
checking in files, 11-28 to 11-29
checking out files, 11-26 to 11-27
deleting files from SCC, 11-31
Edit Change Comments dialog
box, 11-29
file properties, 11-25
file status, 11-24 to 11-25
History window for documenting
changes, 11-27
labeling versions of files for easy
retrieval, 11-34
managing project-related files, 3-3

previous versions of files, 3-3 to 3-4,

11-33

retrieving files, 11-23 to 11-25

SCC Check Files In dialog box,
11-28

SCC Check Files Out dialog box,
11-26

SCC File Properties dialog box,
11-25

SCC Retrieve Files dialog box, 11-24

© National Instruments Corporation

Index

SCC user name, 11-29to 11-30
tracking changes, 3-4
administrator setup, 11-5to 11-9
built-in system, 11-8 to 11-9
ClearCase, 11-10to 11-12
Edit Platform List, 11-13 to 11-14
Visual SourceSafe, 11-9 to 11-10
advanced features, 11-30 to 11-36
general concepts, 11-1
local configuration, 11-14 to 11-17
built-in system, 11-15
ClearCase, 11-15to0 11-16
local work directory, 11-16 to 11-17
Platform drop-down menu, 11-17
Visual SourceSafe, 11-15
multiplatform issues, 11-36 to 11-39
cross platform source code control,
11-36
filename limitations, 11-36 to 11-37
platform-dependent SCC files,
11-37t0 11-39
platform-specific files, 11-38
retrieving files for different
platforms, 11-39
variants of files for different
platforms, 11-39
overview, 3-3
project management, 11-17 to 11-23
adding extra files, 11-21 to 11-22
creating projects, 11-18 to 11-20
Edit Extra Files dialog box, 11-22
Edit Project File List dialog box,
11-19
Edit Project Group dialog box, 11-23
managing multiple hierarchies, 11-17
overview, 11-17
project groups, 11-22 to 11-23
removing files from projects, 11-21
SCC File Wizard, 11-20
SCC Project dialog box, 11-18
updating projects, 11-20 to 11-21

Professional G Developers Tools Reference Manual

Index

quality control considerations, 3-2 to 3-3
quickstart guide, 11-2to 11-4
report generation, 11-34 to 11-36
SCC File History, 11-31 to 11-32
selecting system for source code control,
11-4to 11-6
built-in system, 11-5to 11-6
third-party systems, 11-6 to 11-7
System History, 11-32
using files instead of VI libraries, 11-2
Source Lines of Code (SLOCs) metric, 8-1.
See als®ize-based metrics.
in estimation, 5-2 to 5-3
spiral model, 2-9 to 2-11
standardsSeesoftware quality standards.
statistics. SeeVI Metrics tool.
stub Vs, 4-9
style guidelines, 7-1 to 7-29
block diagram, 7-17 to 7-25
adding common threads, 7-19
Code Interface Nodes (CINs), 7-25
data dependency, 7-19

front panels, 7-4to 7-8
color, 7-5to0 7-6
consistency, 7-4
graphics and custom controls,
7-6to 7-8
layout, 7-7
sizing and positioning, 7-7 to 7-8
text, 7-5
hierarchical organization of files,
7-1to7-4
directories (folders), 7-1to 7-2
naming VIs, VI libraries, and
directories, 7-2
VI libraries, 7-3 to 7-4
icons, 7-15to 7-16
problems with inconsistent developer
styles, 3-10
style checklist, 7-26 to 7-29
block diagram, 7-28 to 7-29
front panel, 7-27 to 7-28
Vlis, 7-26 to 7-27
VI setup, 7-13

error checking, 7-21 to 7-23
execution sequence, 7-18 to 7-21
labeling, 7-18

left-to-right layouts, 7-18

missing dependencies, 7-20 to 7-21
optimization, 7-24

Sequence Structures, 7-20

sizing and positioning, 7-23 to 7-24
wiring etiquette, 7-17

connector panes, 7-14 to 7-15
controls and indicators, 7-8 to 7-13

attribute nodes, 7-11

default values, ranges, and coercion,
7-10to 7-11

descriptions, 7-8

enumerations vs. rings, 7-9

key navigation, 7-11 to 7-12

labels, 7-8 to 7-9

local variables, 7-12 to 7-13

Professional G Developers Tools Reference Manual -8

subVI interface statistics, 8-5

subVI library, documenting, 6-2 to 6-3
System History dialog box, 11-32
system testing, 3-9

I

technical support, B-1 to B-2
telephone and fax support numbers, B-2
testing guidelines, 3-5to 3-10
black box and white box testing, 3-6
formal methods of verification,
3-9to 3-10
integration testing, 3-8 to 3-9
system testing, 3-9
unit testing, 3-7
text, style guidelines, 7-5
top-down design, 4-2 to 4-6
tracking changes, 3-4

© MNational Instruments Corporation

tracking projectsSeeproject management,
SCC tools; scheduling and project tracking.

U

unit testing, 3-7

U.S. Food and Drug Administration (FDA)
standards, 3-14

user documentatiorseedocumentation of
applications.

user interface statistics, 8-4

username, SCC, 11-29to 11-30

v

verification methods, 3-9 to 3-18ee also

testing guidelines.

VI Comparison tools, 10-1 to 10-7
Compare Files command, 10-7
Compare Hierarchies command,

10-1to 10-4

Compare VI Hierarchies dialog box,
10-2to 10-3

comparison options, 10-3

showing differences, 10-3 to 10-4

Compare VIs command, 10-5 to 10-6

Compare Vls dialog box, 10-5

Comparison Progress dialog
box, 10-6

renaming VIs for comparison, 10-6

VI libraries

avoiding with Source Code Control
tools, 11-2

documenting subVI libraries, 6-2 to 6-3

files in vi.lib excluded from VI Metrics
tool, 8-5

hierarchy with VI libraries, 7-3 to 7-4

Windows 3.1 considerations, 7-3

© National Instruments Corporation 1-9

Index

VI Metrics tool, 8-1to 8-5
dialog box, 8-2
files in vi.lib, 8-5
number of nodes, 8-2 to 8-3
purpose and use, 8-2 to 8-3
saving metric information, 8-5
statistics, 8-3 to 8-5
block diagrams, 8-3 to 8-4
CIN/shared library statistics, 8-4
globals/locals statistics, 8-4
subVI interface statistics, 8-5
user interface, 8-4
VI Search Path, 7-2
VI setup, 7-13
Vis
description, as documentation, 6-5
hierarchy on disk, 7-1to 7-2
style checklist, 7-26 to 7-27
Visual SourceSafe for Windows 95/NT
accessing previous versions of files, 11-33
administrator setup, 11-9 to 11-10
advantages and disadvantages, 11-5
local configuration, 11-15
report generation, 11-35to 11-36
support for, 11-5

W

waterfall model, 2-5to 2-7
modified, 2-7
white box testing, 3-6
wideband Delphi estimation, 5-5
Windows 3.1
restrictions on development (note), 1-1
saving VIs in libraries, 7-3
Source Code Control tools unavailable,
11-5
wiring tips, 7-17

Professional G Developers Tools Reference Manual

	Professional G Developers Tools�Reference Manual
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Organization of This Manual
	Part I—Software Engineering Concepts
	Part II—Professional Development Tools
	Appendices, Glossary, and Index

	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	Required System Configuration
	Configuration
	Overview
	Features of the Tools

	Chapter 2 Development Models
	Common Development Pitfalls
	Lifecycle Models
	Code and Fix Model
	Waterfall Model
	Modified Waterfall Model
	Prototyping
	G Prototyping Methods

	Spiral Model

	Summary

	Chapter 3 Incorporating Quality into the Development Process
	Quality Requirements
	Configuration Management
	Source Code Control
	Managing All Project-Related Files
	Retrieving Old Versions of Files
	Tracking Changes
	Change Control

	Testing Guidelines
	Black Box and White Box Testing
	Unit, Integration, and System Testing
	Unit Testing
	Integration Testing
	System Testing

	Formal Methods of Verification

	Style Guidelines
	Design Reviews
	Code Walkthroughs
	Post-Mortem Evaluation
	Software Quality Standards
	International Organization for Standards ISO�9000
	U.S. Food and Drug Administration Standards
	Capability Maturity Model (CMM)
	Institute of Electrical and Electronic Engineers (IEEE) Standards

	Chapter 4 Prototyping and Design Techniques
	Clearly Define the Requirements of Your Application
	Top-Down Design
	Data Acquisition System Example

	Bottom-Up Design
	Instrument Driver Example

	Designing for Multiple Developers
	Front Panel Prototyping
	Performance Benchmarking
	Identify Common Operations

	Chapter 5 Scheduling and Project Tracking
	Estimation
	Source Lines of Code/Number of Nodes Estimation
	Problems with Source Lines of Code and�Number�of�Nodes

	Effort Estimation
	Wideband Delphi Estimation
	Other Estimation Techniques

	Mapping Estimates to Schedules
	Tracking Schedules Using Milestones
	Responding to Missed Milestones

	Chapter 6 Creating Documentation
	Developing Design-Related Documentation
	Developing User Documentation
	Documentation for a Library of SubVIs
	Documentation for an Application

	Creating Help Files
	VI and Control Descriptions
	VI Description
	Self-Documenting Front Panels
	Control and Indicator Descriptions

	Chapter 7 Using Consistent Style: The G Style Guide
	VI Hierarchy
	Hierarchy with VI Libraries

	Front Panels with Style
	Consistency
	Text
	Color
	Graphics and Custom Controls
	Front Panel Layout
	Sizing and Positioning Front Panels

	Controls and Indicators
	Descriptions
	Labels
	Enumerations versus Rings
	Default Values, Ranges, and Coercion
	Attribute Nodes
	Key Navigation
	Local Variables

	VI Setup
	Connector Panes
	Icons
	The Block Diagram
	Wiring Etiquette
	Labeling
	Execution Sequence
	Left-to-Right Layouts
	Data Dependency
	Adding Common Threads
	Sequence Structures
	Watch Out for Missing Dependencies

	Check for Errors
	Sizing and Positioning of Block Diagrams
	Optimization
	Code Interface Nodes
	CIN Description Contents
	CIN Source Code

	Style Checklist
	VI Checklist
	Front Panel Checklist
	Block Diagram Checklist

	Chapter 8 VI Metrics Tool
	Using the VI Metrics Tool
	Additional Statistics
	Block Diagram Statistics
	User Interface Statistics
	Globals/Locals Statistics
	CINs/Shared Library Statistics
	SubVI Interface Statistics

	Files in vi.lib
	Saving Metric Information

	Chapter 9 Documentation Tool
	Chapter 10 VI Comparison Tools
	Compare Hierarchies
	Comparison Options
	Show Differences

	Compare VIs
	Comparison Issues

	Source Code Control»Compare Files

	Chapter 11 Source Code Control Tools
	General Source Code Control Concepts
	Using Individual Files Instead of VI�Libraries
	QuickStart Guide to Using the SCC Tools
	Selecting the Source Code Control System
	Built-In System
	Third-Party SCC Systems

	Administrator Setup
	Configuring the SCC System
	Built-In System
	Visual SourceSafe
	ClearCase

	Edit Platform List (Advanced Option)

	Local Configuration
	Configuring the SCC System
	Built-In System
	Visual SourceSafe
	ClearCase

	Local Work Directory
	Platform Drop-Down Menu

	Managing Source Code Control Projects
	Source Code Control Projects Overview
	Managing Multiple Hierarchies
	Creating a Project
	Updating a Project
	SCC File Wizard
	Managing Files with the Same Name

	Removing Files from a Project
	Adding Extra Files to a Project
	Project Groups

	Accessing Files
	Retrieving Files
	File Status
	File Properties

	Checking Out Files
	Use the History Window to Document Changes

	Checking In Files
	SCC User Name

	Advanced Features
	Deleting Files from SCC
	SCC File History
	System History
	Accessing Previous Versions of Files
	Built-In System
	Third-Party Systems

	Labeling Versions of Files for Easy Retrieval
	Creating Reports
	Built-In System
	Visual SourceSafe

	Multiplatform Issues
	Cross-Platform Source Code Control
	Filename Limitations
	Platform-Dependent SCC Files
	Platform-Specific Files
	Variants of a File for Different Platforms
	Retrieving Files for a Different Platform

	Appendix A References
	Appendix B Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	Professional G Developers Tools Reference Manual Hardware and Software Configuration�Form
	National Instruments Products
	Other Products

	Documentation Comment Form

	Glossary
	A-C
	F-P
	R-U
	W

	Index
	A-C
	D
	E-F
	G-L
	M-P
	Q-S
	T
	U-W

	Figures
	Figure 2-1. Waterfall Lifecycle Model
	Figure 2-2. Spiral Lifecycle Model
	Figure 3-1. Capability Maturity Model
	Figure 4-1. Flowchart of a Data Acquisition System
	Figure 4-2. Mapping Pseudocode into a G Data Structure
	Figure 4-3. Mapping Pseudocode into Actual G Code
	Figure 4-4. Data Flow for a Generic Data Acquisition Program
	Figure 4-5. VI Hierarchy for the Tektronix 370A
	Figure 4-6. Operations Run Independently
	Figure 4-7. Loop Performs Operation Three Times
	Figure 7-1. Directory Hierarchy
	Figure 7-2. Top-Level VIs Listed at the Top of a VI Library
	Figure 7-3. Mixture of Directories and VI Libraries
	Figure 7-4. Example of Imported Graphics Used in a Pict Ring
	Figure 7-5. Free Labels on a Boolean Control
	Figure 7-6. Front Panel of Range Finder VI
	Figure 7-7. Block Diagram of Range Finder VI
	Figure 7-8. Good and Bad Inputs and Outputs
	Figure 7-9. Good Wiring in a Simple Block Diagram
	Figure 7-10. Example of How Data Acquisition VIs Use Error Clusters
	Figure 7-11. Example of How to Use an Error Cluster
	Figure 7-12. Well-Placed Front Panel and Block Diagram
	Figure 8-1. VI Metrics Tool Dialog Box
	Figure 8-2. Block Diagram with Eight Nodes
	Figure 9-1. Documentation Tool Dialog Box
	Figure 10-1. Compare VI Hierarchies
	Figure 10-2. Differences Window
	Figure 10-3. Block Diagram Difference
	Figure 10-4. Compare VIs Dialog Box
	Figure 10-5. Comparison Progress Dialog Box
	Figure 10-6. SCC Compare Files Dialog Box
	Figure 11-1. G SCC Tools Can Work with Built-In and Third-Party Systems
	Figure 11-2. SCC Administration Dialog Box
	Figure 11-3. Administer Builtin System Dialog Box
	Figure 11-4. SCC Edit Platform List Dialog Box
	Figure 11-5. SCC Local Configuration Dialog Box
	Figure 11-6. SCC Project Dialog Box
	Figure 11-7. Edit Project File List Dialog Box
	Figure 11-8. Edit Extra Files Dialog Box
	Figure 11-9. Edit Project Group Dialog Box
	Figure 11-10. SCC Retrieve Files Dialog Box
	Figure 11-11. SCC File Properties Dialog Box
	Figure 11-12. SCC Check Files Out Dialog Box
	Figure 11-13. SCC Check Files In Dialog Box
	Figure 11-14. Edit Change Comments Dialog Box
	Figure 11-15. SCC Advanced Dialog Box
	Figure 11-16. SCC Reports Dialog Box for Built-in SCC System
	Figure 11-17. SCC Edit File Platforms Dialog Box

	Tables
	Table 2-1. Risk Exposure Analysis Example
	Table 7-1. Examples of Font Styles and When to Use Each

