J2SE, JSP & JavaBeans
Web Demonstration of SWKB Program

Bachelor report presented to
CUI
Geneva University

by

Arnaud Jotterand

Supervisor:
Prof. Stephane Marchand-Maillet

Geneva, October 2005

Abstract

This project is a web application that allows to demonstrate a research group
Viper’s software, the Semantic Web Knowledge Base (SWKB).

The idea of this software is that a collection is annotated with a description
structured using a DEVA model. The SWKB, as a forward chaining rea-
soning engine, then allows rich queries, thanks to the relationships created
between the DEVA-based annotation and an OWL-compliant ontology.

This project is based on the Java technology, Java 2 Platform, Standard
Edition (J2SE). The application uses JSP pages and JavaBeans, and can be
deployed on a Tomcat Server.

11

Contents

Abstract

1 Introduction

2 Description of the project
2.1 The SWKB Program
2.1.1 Principle

2.1.2 Software

2.2 Internet Version

3 Implementation
3.1 J2SE Technology
3.1.1 Java Server Pages
3.1.2 JavaBeans
3.1.3 MVC Architectural Approach

3.2 WebPage

3.2.1 Structure
3.2.2 View and Controller Layer
3.2.3 Model Layer
3.3 Update Manual

4 User Manual

4.1 Application’s Main Page
4.1.1 Select Query
4.1.2 Find Images
4.1.3 Detail Image

4.2 Application’s Other Pages
4.2.1 Details Page

ii

4.2.2 FError Page.
423 HelpPage

4.2.4 Viper's Homepage
5 Conclusion

A Acronyms

Contents

List of Figures

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Tree Structure of the Project 12
Basic situation of the webpage 19
The webpage with the results part 20
The webpage with the details part 21
The details page of the application 22
The error page of the application 22
The help page of the application 23
The link to the Viper’s Homepage 24

Chapter 1

Introduction

Many research groups work around the world, specially in the domain of
computer sciences. It is very important for the scientific community that
all these groups publish their results. The best way actually to distribute
these informations is to publish them on the internet; so is a new information
quickly known from scientifics around the world.

The research group Viper has developed a new software, the Semantic
Web Knowledge Base (SWKB). It is possible to explain the functionalities
of this software with text and screenshots on the website of the research
group. However, the best way to expose the functionalities of this software
is to create an online demonstration of this software, that allows the user
to use the developed software on the internet, directly on the website. This
online demonstration is the goal of this project.

Chapter 2

Description of the project

In this chapter are described the main lines of this project, his purpose, and
the reasons of doing it.

2.1 The SWKB Program

2.1.1 Principle

The research group Viper has developed a program called Semantic Web
Knowledge Base (SWKB). The idea is that a collection is annotated with a
description structured using the DEVA model, defined by the Viper group.
This DEVA model is an annotation container; it is an RDF-compatible ex-
tension of the Dublin Core (DC). It extends the ”"element” field of the DC
into a flexible RDF-based structure. The SWKB, as a forward chaining rea-
soning engine, then allows rich queries, thanks to the relationships created
between the DEVA-based annotation and an OWL-compliant ontology.

2.1.2 Software

The SWKB program allows to search for images in a collection, using rich
queries. A software has been developed by the Viper group to show the fea-
tures of SWKB; this software, written in Java, allows the user to submit a
query (using the DEVA syntax), and to see the images (and their annota-
tions) resulting from this request.

6 Chapter 2. Description of the project

This software is powerful, but presents two disadvantages:

Uneasily accessible This software is written in Java, so it is easily portable.
However, when a user wants to try this software, he has to download it
first; it would be better to directly show the program features without
downloading.

Unfriendly user query select The software proposes a default query (with
DEVA syntax); it is possible to modify this query in order to see differ-
ent results, but the problem is that the user does not know the DEVA
syntax, which is not very instinctive. Without a knowledge of this syn-
tax, the user can only try the default query, and can not really notice
how powerful the SWKB is.

2.2 Internet Version

The best way to expose the program’s features is then to develop an internet
version, which can be accessible directly from the Viper’s website. This
internet version is the subject of this project.

In order to solve the second disadvantage, the internet version should propose
an attractive solution to the problem of the way to select the query; it would
be easy for the user to try different queries and to observe their results,
without any knowledge of the DEVA syntax. The solution is

e to propose different queries expressed in litteral english
e to automatically give the translation in DEVA syntax
e to allow the user to edit then this query expressed in DEVA syntax

Obviously, the internet version has to propose the same functionnalities as
the possibility of posting the images in real size or the possibility of seeing
the corresponding annotations.

Thus the main webpage of this project should comport three parts:

1. A part concerning the choice and the editing of the request
2. A part showing the results (found images)

3. A part exposing the details (like the annotations) of a selected image

Chapter 3

Implementation

In this chapter are given a brief overview of the used technologies, a de-
scription of the project’s implementation as well as some tips to update this
application.

3.1 J2SE Technology

This project uses Java 2 Platform technology, in particular the Java Server
Pages and the JavaBeans. Before explaining the project’s implementation, a
brief theorical overview of these two Java technologies is given.

This part is just an overview of these technologies; for more detailed infor-
mation, see [1] and [2], from which this section is strongly inspired.

3.1.1 Java Server Pages

JavaServer Pages (JSP) technology allows the user to easily create web con-
tent that has both static and dynamic components. JSP technology makes
available all the dynamic capabilities of Java Servlet technology but provides
a more natural approach to creating static content.

A JSP page is a text document that contains two types of text:

static data The static content is simply written as if it were a page that

consisted only of that content; it can be expressed in any text-based
format such as HTML, SVG, WML, and XML, but the default format
is HTML. It is possible to use another format, just by adding a page

7

8 Chapter 3. Implementation

directive with the contentType attribute set to the content type; the
purpose of the contentType directive is to allow the browser to correctly
interpret the resulting content.

dynamic content The dynamic content is created by accessing Java pro-
gramming language object properties; it is possible to access a variety
of objects, including JavaBeans components. JSP technology automat-
ically makes some objects available (implicit objects), and it is also pos-
sible to create and access application-specific objects. The implicit ob-
jects are created by the web container and contain information related
to a particular request, page, session, or application. The application-
specific objects allow to encapsulate application behavior in objects;
the main way to use them within a JSP page is to use JavaBeans com-
ponents, that can be set or accessed by JSP standard tags or expression
language.

A JSP page services requests as a servlet; thus, the life cycle and many
of the capabilities of JSP pages (in particular the dynamic aspects) are de-
termined by Java Servlet technology. When a request is mapped to a JSP
page, the web container first checks whether the JSP page’s servlet is older
than the JSP page. If the servlet is older, the web container translates the
JSP page into a servlet class and compiles the class. During the translation
phase each type of data in a JSP page is treated differently: static data are
transformed into a code that will emit the data into the response stream,
and JSP elements are treated separately (for example directives are used to
control how the web container translates and executes the JSP page, custom
tags are converted into calls to the tag handler that implements the custom
tag, ...).

During development, one of the advantages of JSP pages over servlets is that
the build process is performed automatically.

In order to use dynamic content within JSP pages, the preferred mech-
anism is the custom tags. They can be used to perform a wide variety of
dynamic processing tasks, including accessing databases, using enterprise
services such as email and directories, and implementing flow control. The
JavaServer Pages Standard Tag Library (JSTL) encapsulates core functional-
ity common to many JSP applications. Instead of mixing tags from numerous
vendors in JSP applications, JSTL allows to employ a single, standard set

3.1. J2SE Technology 9

of tags. This standardization allows to deploy applications on any JSP con-
tainer supporting JSTL and makes it more likely that the implementation of
the tags is optimized. JSTL has tags such as iterators and conditionals for
handling flow control, tags for manipulating XML documents, internation-
alization tags, tags for accessing databases using SQL, and commonly used
functions.

3.1.2 JavaBeans

The JavaBeans API makes it possible to write component software in the Java
programming language. Components are self-contained, reusable software
units that can be visually composed into composite components, applets,
applications, and servlets using visual application builder tools. JavaBean
components are known as Beans. Components expose their features (for ex-
ample, public methods and events) to builder tools for visual manipulation.
A Bean’s features are exposed because feature names adhere to specific de-
sign patterns. A ”JavaBeans-enabled” builder tool can then examine the
Bean’s patterns, discern its features, and expose those features for visual
manipulation.

Builder tools discover a Bean'’s features (that is, its properties, methods, and
events) by a process known as introspection. Beans support introspection by
adhering to specific rules, known as design patterns, when naming Bean fea-
tures (the Introspector (in the API reference documentation) class examines
Beans for these design patterns to discover Bean features), or by explicitly
providing property, method, and event information with a related Bean In-
formation class. Although Beans are designed to be understood by builder
tools, all key APIs, including support for events, properties, and persistence,
have been designed to be easily read and understood by human programmers
as well.

The JavaBeans API provides a standard format for Java classes. Visual
manipulation tools and other programs can automatically discover informa-
tion about classes that follow this format and can then create and manipulate
the classes without the user having to explicitly write any code. The main
rules for writing Beans are:

e A bean class must have a zero-argument (empty) constructor

e A bean class should have no public instance variables (fields)

10 Chapter 3. Implementation

e Persistent values should be accessed through methods called getXxx
and setXxx (excepted with boolean properties, that use a method called
isXxx)

Although we can use JSP scriptlets or expressions to access arbitrary methods
of a class, standard JSP actions for accessing beans can only make use of
methods that use the getXxx/setXxx or isXxx/setXxx design pattern.

3.1.3 MVC Architectural Approach

There are many different architectural approaches for applications; one of
them is the Model-View-Controler (MVC). The MVC architecture is a widely
used architectural approach for interactive applications that distributes func-
tionality among application objects so as to minimize the degree of coupling
between the objects. To achieve this, it divides applications into three lay-
ers: model, view, and controller. Each layer handles specific tasks and has
responsibilities toward the other layers:

Model The model represents business data, along with business logic or
operations that govern access and modification of this business data.
The model notifies views when it changes and lets the view query the
model about its state. It also lets the controller access application
functionality encapsulated by the model.

View The view renders the contents of a model. It gets data from the
model and specifies how that data should be presented. It updates
data presentation when the model changes. A view also forwards user
input to a controller.

Controller The controller defines application behavior. It dispatches user
requests and selects views for presentation. It interprets user inputs
and maps them into actions to be performed by the model. In a web
application, user inputs are HI'TP GET and POST requests. A con-
troller selects the next view to display based on the user interactions
and the outcome of the model operations.

3.2. WebPage 11

3.2 WebPage

3.2.1 Structure

The Model-View-Controller (MVC) architectural approach is a good ap-
proach to web applications; it allows web designers (who often are not
programmers) to concentrate their work on the View layer, without having
knowledge of how are implemented the other layers (implemented by Java
programmers for example). The structure of this project is inspired from this
architectural approach, but with some modifications. So is this application
composed of two layers: the Model layer, and a layer which joins both View
and Controller layers together. This choice has been made because the ap-
plication was not so big, and the Controller layer was not an important part
of it. However, it was useful (and almost necessary) to divide the application
into two layers, because the SWKB program existed before this application,
and the goal was to reuse the program just as it was to expose it’s function-
alities. The Model layer is then what handles with this program, while the
View-Controller layer concerns the web application.

The contents of the application are the following:

JSP Pages A main page (swkb.jsp) handles with queries and their results,
and can call a page with the details of an image (detail.jsp) or a help
page used as a popup (help.jsp). An error page (error.jsp) is also
defined in order to have a friendly way to indicates errors to the user.

JavaBeans A bean is used to handle with the SWKB program (SwkbBean.java),
another to handle with queries (QueryBean.java), and the third one to
handle with details of a given image (DetailBean.java).

WebDesign Files Some Javascript files, CSS file, image files are used to
give a friendly design to the page.

Deployment Descriptor Element A web.xml file is used as a deployment
descriptor for the application.

In order to build this application, the project contains also a build.xml file
to use with Apache Ant!.
The way of how these files are organised is shown in figure 3.1.

For more details on this tool, see http://ant.apache.org/.

12 Chapter 3. Implementation

+ lib
= rESOLFCES
+ images
- skyles
=] style.css
alertMessage. js
checkBoxes.js
detail.jsp
Error.jsp
help.jsp
helpWwindaw, js
awkh, jsp

By By |y Oy By 0y D

= beans
C! T DetailBean
C! T QueryBean
C! & SwkbBean

[32| build, il

|| web,xml

Figure 3.1. Tree Structure of the Project

3.2.2 View and Controller Layer

The View-Controller layer is implemented using the Java Server Pages tech-
nology. The static part of the JSP pages concerns the design of the webpage,
while the dynamic part is used to update the presentation of the page and
to handle with HTTP GET and POST requests. The pages use also some
Javascript in order to handle with events such as onkeypress or onchange;
these Javascript functions are used to put the query into the textarea without
reloading the page.

The role of the Controller part is done with conditional tags of the JSP
Standard Tag Library (JSTL). Using the JSTL in a JSP page requires to:

3.2. WebPage 13

e put a page directive in the JSP page that indicates its use

e put the corresponding Tag Library Descriptor (TLD) and JAR files in
the WEB-INF directory

The main page of this web application reloads itself with different request
parameters. Depending on the request parameter, the Controller decides
what actions the Model has to perform:

Empty request parameter The page is accessed without request param-
eter mainly when the user starts the session; the Model layer has then
to dynamically find the different queries available in the file queries.tat
(in order to be displayed by the View layer), and to proceed to the
initialisation of the SWKB program®.

Search request parameter The page is accessed with the search request
parameter when the user clicks on the Find Images’s button; the Model
layer has then to proceed to the research of the images corresponding

to the request written in the textarea!.

Image request parameter The page is accessed with the image request
parameter when the user clicks on a resulting image in order to see its
details; the Model layer has then to dynamically find the annotations
corresponding to the corresponding image!.

The Controller has then to give the user inputs to the Model; the way used
in this application to do so is to work with JavaBeans. The Controller in-
terprets the user inputs and then sets the corresponding properties of the
JavaBeans using JSP tags. Then, when the Controller asks the Model to
perform actions, the JavaBeans can use their own properties that contain
the user inputs. The use of JavaBeans is also an easy way of storing data
that can later be necessary.

The Controller decides also what to display in the page, depending on the
request parameter:

e The alert message should be displayed only if some results are shown;
this is the case when the request parameter is not empty.

!The way to use the SWKB program is explained later, in section 3.2.3, page 14.

14 Chapter 3. Implementation

e The section with the image’s details should be displayed only if the user
has chosen to see them; this is the case when the request parameter is
mmage.

e The results section should be displayed only if the user has already
done a search; this is the case when the request parameter is not empty.

One of the goal of this project was to reduce to a minimum the use of
Java code in the JSP pages. Tag libraries reduce the necessity of embedding
large amounts of Java code in JSP pages by moving the functionality of the
tags into tag implementation classes. This is why, in order to render the
content of the Model, the View part gets data from the Model using tags,
such as JSP tags to get or set properties from JavaBeans, or JSTL tags to
effectuate some loops over collections contained in the JavaBeans.

3.2.3 Model Layer

The Model layer is responsible for handling with the SWKB program, whose
classes are given as .jar files in the lib directory (and also some useful files
such as .owl files). The Java code necessary to use the SWKB program is
totally contained in JavaBeans, in order to avoid Java code in the JSP pages.

The bean SwkbBean.java contains methods to initiate the program and
to do the search for images. The initialisation consists mainly in loading
the annotations contained in the .owl files into the program. In order to do
the search for images corresponding to a given query, the bean has to call
SWKB’s methods with the query that has been stored in a bean’s property
by the Controller. The result of the search is a list of images’ names; this
list is stored in a property of the bean, so that the View can access it (using
JSP tags).

The bean QueryBean.java is used to dynamically list the queries con-
tained in the file queries.tzt, so that the View can display them. When the
Controller asks the Model to find these queries, the bean parses the queries’
file and stores the list of queries in a property of the bean, so that the View

3.3. Update Manual 15

can access it (using JSP tags).

The bean DetailBean.java is used to dynamically find the annotations
of a given image and to create a .owl file with them, so that the View can
display it. When the Controller asks the Model to create this .owl file, the
bean parses the file galapagos_ann.owl in order to find the annotation cor-
responding to the image selected by the user (the name of this image has
been set in the bean property by the Controller). When the annotation is
found, the bean creates a .owl file with it, and stores the name of this file in
a property of the bean, so that the View can access it (using JSP tags).

The whole Model layer is thus contained in JavaBeans, entirely written
in Java (which is easier for handling with a Java program). The JSP pages
do not contain any Java code, so it is easier to update the design of the
page without changing the Model; and reciprocally, it is easy to update the
business logic without modifying the design of the page.

The coupling between logic and design has been reduced to the minimum.

3.3 Update Manual

The application has been developed in order to be relatively easy to update.
It is possible to enrich it with new queries, or with other keywords to check.
It is also possible to work with another images’ database, for example. There
are many possibilities of updating; the idea here is not to list them all, but
just to give some tips for the main possible updates.

Add queries If we want to enrich the application with new queries, we just
have to add them in the file queries.tzt with the same syntax and the
same punctuation (this is important because the parsing of the file is
made by following the used rules); the bean will dynamicly add them
to the list of queries.

Add keywords as checkboxes If we want to enrich the application with
new keywords to check, we just have to add them in the main JSP page
swkb.jsp, following the same rules as for the others; these rules are: to
call the same Javascript function for the event and to give the keyword

16 Chapter 3. Implementation

as name of this checkbox. The Javascript function can then directly
work with this new checkbox!.

Add images in the database Now, the images treated by the SWKB pro-
gram are located in the path images/galapagos of the application®. If
we want to add images to this directory, there is nothing else to do, ex-
cept verifying that these images are listed in the .owl files galapagos.owl
and galapagos_ann.owl, so that SWKB can work with them; the web
application will find these images without any problem. However, if
we want to work with images that we put in another directory, we will
have to modify the path used in the JSP pages to find the images: in
the file swkb.jsp in both the details (line 159) and results (line 178)
parts, and in the file detail.jsp (line 42).

Use another database It is possible to use an other database than the
galapagos database with this application, but we have to be careful.
The methods used to communicate with the SWKB program, in the
file SwkbBean.java, indicate paths to the galapagos’ database; they
have to be modified for an other database. The parsings of files used in
both QueryBean.java and DetailBean.java depend on how each file is
written; in the case we use other files to use an other database, we have
to modify these parsings in order to conform to the new files. However,
the JSP pages do not have to change, because the database is related
to the Model layer only.

The data files used by the SWKB program (and also with this web ap-
plication), such as queries.txt or the .owl files, situated in the [ib directory
of the project, are put in the WEB-INF /classes directory of the application,
so that the beans can access them?®. If we need to add such files to the ap-
plication, we should modify the build.xml file in order to put also these new
files into the WEB-INF /classes directory (target build).

IThe Javascript functions consider that there are 4 following inputs after the check-
boxes (1 textarea and the 3 buttons), and one before the checkboxes (the select input).
If we add some inputs before or after the checkboxes, we have to update the limits of the
"for’ loops in the both Javascript functions situated in file checkBoxes.js.

2This path correspond to the path within the builded application; in the project (not
builded), the directory images is situated in the directory resources.

3The beans use the code getClass().getClassLoader().getResourceAsStream("nameOfTheFile”)
to dynamically find the path of this directory on the server.

3.3. Update Manual 17

The .owl files created by the application to get the annotations of a given
image (annotationX.owl) are stored in the main directory of the application
in order to be displayed by the JSP pages. In order to avoid huge amount of
such files on the server, the server should erase them periodicly.

These are just some possible updates. It is not possible to list here all the
different updates, but the author remains available for any question regarding
any update of this application.

Chapter 4

User Manual

In this chapter are given instructions on how to use the application.

4.1 Application’s Main Page

4.1.1 Select Query

When we arrive on the webpage, we can see something similar to figure 4.1.
We have then to select a query in order to see the features of the SWKB
program. This can be done by two ways:

Selecting a predefined query There are some predefined queries listed in
a select box (see figure 4.1). We can here select one of them by clicking
on the chosen query; the corresponding DEVA query will appear in the
textarea (see figure 4.1). The idea is here to ask SWKB for images
corresponding to the selected query.

Selecting keywords There are some keywords displayed as checkboxes (see
figure 4.1). When one or many of these keywords are checked, a DEVA
query formed with these keywords appears in the textarea (see figure
4.1). The idea is here to ask SWKB for images whose annotation
contains the checked keywords.

These two ways are exclusive; when we choose to check a keyword after se-
lecting a query, for example, the DEVA query is replaced by the query formed
by the keyword. In both ways, it is possible at any time to reset what has
been done, simply by clicking the Reset button (see figure 4.1).

18

4.1. Application’s Main Page 19

Once the query selected (and put into the textarea), it is possible to edit
it manually before doing the search. However, we have here to follow the
DEVA syntax; if not, the SWKB will not understand the query and the re-
sults will not be very interesting.

The figure 4.1 represents the basic situation of the webpage. Later, other
parts can be displayed, but the part concerning the query will stay as ex-
plained above. The only difference is that a message can appear explaining
that the query has been modified, and that shall not correspond to the parts
displayed below any more. At any time, we can select another query just by
proceeding as explained above.

Select Box
CheckBoxes
Select arequest
0 A i 0 . TextArea
Or select keywords to search in the documents: Ll t rortoise Reset Button
O nest O water O wings
Find Images

Top of the Page

Internet Version by Arnaud Jotterand

Figure 4.1. Basic situation of the webpage

4.1.2 Find Images

Once the query selected and/or edited, we are ready to execute the research
for the corresponding images using the SWKB program; to do so, we just

20 Chapter 4. User Manual

have to click on the Find Images button. The results will appear below, and
we can find (see figure 4.2) :

e The number of found images

e The images themselves

" Demo of SWKB program

Selecting Request
Select arequest v

O tree O giant O tortoise Number of Find |mages

Or select keywords to search in the documents:
O nest O water O wings

(subject deva:subject (and {subject deva:element (subject rdf:type
gal:Tortoise)) (subject deva:element (subject rdf:type
gal:Rocks))))

Found Images: 6

Resulting Images

Top of the Page

Internet Version by Arnaud Jotterand

Figure 4.2. The webpage with the results part

4.1.3 Detail Image

All the resulting images are displayed in the results part of the webpage;
it is possible to have many images, so there are just displayed without any
detail. If we want to see the details of a given image, we just have to click
on this image, and the details will appear in the details part of the webpage,
situated between the query and results parts. We can find (see figure 4.3) :

e The image itself

4.2. Application’s Other Pages 21

e Its annotations in .owl file format

" Demo of SWKB program

Selecting Request
Selecta request v
[m] O gi m}
Or select keywords to search in the documents; — Do — 9ient - tortoise
O nest O water O wings

(subject deva:subject (and (subject deva:element (subject rdf:type

gal:Tortoise)) (subject deva:element (subject rdf:type
gal:Rocks)))) Find Images

Image Details

- <deva:Document rdf: about="file://C/projetsigala/galapagos/103010_jpg">
- <deva:subject>
- <deva: Subject rdf:ID="subject 103010">
- <deva:element>

Image |tse|f - <deva:Flement rdf:TD="¢lement1.103010">
<rdf:type
/ rdf:resowrce="httpiwiper.umge. chigalapagos#Dome Shaped GiantTortoise ">
- <gal:hasAction>

<gal: Walking rdf:ID="action1.103010"/>
<fgal:hasAction>
<rdf:type rdf:iresource="http /fviper unige. ch/galapagos#MainSubject/>
<fdeva:Element>
<fdeva:element>

Image’s Annotations - <deva:element> -

cdarrnTlavnane w6 TN—"alamantd 1020100

Found Images: 6

Figure 4.3. The webpage with the details part

4.2 Application’s Other Pages

4.2.1 Details Page

Once an image is selected and displayed with its details in the details part of
the main webpage, we can display these informations in a new window (for
printing for example) simply by clicking on the image situated next to the
annotations. We will have something like figure 4.4.

4.2.2 FError Page

Normally it should not happen, but it is possible that an error occurs. In
this case, we will see a page similar to figure 4.5. From here, we can return

22 Chapter 4. User Manual

¥ Demo of SWKB program

Image Information

Ce fichier XML ne semble pas avoir d'information de style associé avec ui L'arbre du document est montré ci-dessous.

- <deva:Document rdf: about="fle #/Clprojets/gala/galapages/103010 jpg">
- cdeva:subject>
- <deva: Subject rdf- ID="subject 103010">
- <deva:element>
- <deva:Element rdf:- ID="clement1 103010">
<xdf:type rdf:resource="http:/viper unige. ch/galapago#DomeShapedGiantTortoise")>
- <gabhasAction>
<gal: Walking rdf: ID="action] 103010%>
<lgal-hasAction>
<xdf:type rdf:ves hitpffviper,unige. clgal T
<fdeva:Flement>
<fdeva:element>
- <deva:element>
- <deva:Element rdf:- ID="clement2. 103010">
<xdf:type rdf:resource="hitp fviper unige. chigalapagos#Rocks'f>
<rdf:type rdf:resource="http:/fviper. unige chigalapagos#Background'f>
<fdeva:Element>
<fdeva:element>
<ideva:Subject>
<ldevassubject>
<vdfs:label>giant dome-shaped tortoise rocks<rdfs:label>
<rdfs: comment>Giant Dome -Shaped Tortoise Walking<frdfs: c orment>
<fdeva:Document>

Top of the Page

Internet Varsion by Arnaud Jotterand

Figure 4.4. The details page of the application

to the main page by clicking the link envisaged for this purpose (see figure
4.5).

Demo of SWKB program

Error

An error has occured. Please retry!

Link to the Mainpage

Return to the Main Page

Internet Version by Arnaud Jotterand

Figure 4.5. The error page of the application

4.2. Application’s Other Pages 23

4.2.3 Help Page

The use of this application is quite easy and intuitive. However, we can find
help at any time simply by clicking the Help button situated in the query
part; then a pop-up window similar to figure 4.6 will appear, containing all
the information needed. This window can be closed simply by clicking the
link envisaged for this purpose (see figure 4.6).

3" Demo of SWKB program

Help

Instructions of use
Link to Close the Window

Close the wWindow

Internet Version by Arnaud Jotterand

Figure 4.6. The help page of the application

4.2.4 Viper’s Homepage

This application is a demonstration of a program developed by the Viper
research group; it can be interesting or useful to visit the homepage of Viper.
Thus, in every webpage of this application we can find a link to the Viper’s
Homepage; this link is the Viper logo situated in the top-left corner (see
figure 4.7).

24

Chapter 4. User Manual

Selecting Request
Select a request [v]

O tree O giant O tortoise

Or select keywords to search in the documents:
nest [J water (J wings

Top of the Page

Internet Version by Arnaud Jotterand

Figure 4.7. The link to the Viper’s Homepage

Chapter 5

Conclusion

The goal of this project was to implement an internet version of a program
developed by Viper research group. This goal has been reached, and even
more, because the internet version contains some extra features in order to
better show the power of this tool.

This project was also a good opportunity to use and be at ease with
powerful technologies of Java 2 Platform, such as the JSP pages or the Jav-
aBeans. It was also very interesting to convert a Java program to its internet
version, because we can remark the advantages and disadvantages of each
way of implementation; some things are easy to implement in one version,
but can bring many problems in the other version.

The main encountered difficulties were in relation with the structure of
the application rather than with the implementation itself. The necessary
code was quite easy to write; there is no complicated algorithm to implement
in such a web application. However, there were many little things to be aware
of, such as the paths to the files or the place to put specific lines of code in
the files; we can spend a lot of time searching for a bug in the code, whereas
the problem is related to the location of the files.

In conclusion, I would like to personally thank my supervisor, Professor
Stephane Marchand-Maillet, whom it was a pleasure to work with.

25

Appendix A

Acronyms

SWKB Semantic Web Knowledge Base
J2SE Java 2 Platform, Standard Edition
JSP JavaServer Pages

JSTL JSP Standard Tag Library

TLD Tag Library Descriptor

MVC Model-View-Controller

API Application Programming Interface
JAR Java Archive

CSS Cascading Style Sheets

HTTP HyperText Transfer Protocol
HTML HyperText Markup Language
XML Extensible Markup Language
SVG Scalable Vector Graphics

WML Wireless Markup Language

SQL Structured Query Language

26

Bibliography

Stephanie Bodoff Debbie Bode Carson lan Evans Dale Green Kim Haase
Eric Jendrock Eric Armstrong, Jennifer Ball. The j2ee 1.4 tutorial. 2005.

Marty Hall. Core servlets & java server pages. 2000.

Javaserver pages standard tag library 1.1 tag reference. URL: http://
java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html.

Coding java servlets, includes java server pages. URL: http://www.
vipan.com/htdocs/usefulservlets.html.

Peter Harrison & Ian McFarland. Tomcat par la pratique. 2003.
Hans Bergsten. Javaserver pages. 2001.

Phil Hanna. Guide du developpeur: Java servlets et jsp. 2002.

27

http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html
http://www.vipan.com/htdocs/usefulservlets.html
http://www.vipan.com/htdocs/usefulservlets.html

	Abstract
	Introduction
	Description of the project
	The SWKB Program
	Principle
	Software

	Internet Version

	Implementation
	J2SE Technology
	Java Server Pages
	JavaBeans
	MVC Architectural Approach

	WebPage
	Structure
	View and Controller Layer
	Model Layer

	Update Manual

	User Manual
	Application's Main Page
	Select Query
	Find Images
	Detail Image

	Application's Other Pages
	Details Page
	Error Page
	Help Page
	Viper's Homepage

	Conclusion
	Acronyms

