
Plone 3 Theming

Create flexible, powerful, and professional themes for
your web site with Plone and basic CSS

Veda Williams

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Plone 3 Theming

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2009

Production Reference: 1100709

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-87-2

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Credits

Author
Veda Williams

Reviewers
Steve McMahon

Denys Mishunov

Acquisition Editor
Rashmi Phadnis

Development Editor
Siddharth Mangarole

Technical Editor
Mithun Sehgal

Indexer
Hemangini Bari

Editorial Team Leader
Abhijeet Deobhakta

Project Team Leader
Lata Basantani

Project Coordinator
Neelkanth Mehta

Proofreader
Angie Butcher

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

About the Author

Veda Williams has worked in software development for more than eighteen
years, and as a Plone themer for three of those years. She currently works for
ONE/Northwest in Seattle, Washington. Veda is an editor for the documentation
section for plone.org, and was an author and the managing editor for
Practical Plone 3.

I would like to thank my colleagues, Andrew Burkhalter, Jon
Baldivieso, David Glick, and Josh Boese for their help in answering
my many questions. I'd also like to thank my reviewers, Steve
McMahon and Denys Mishunov, for their time and attention to
detail. Most of all, I'd like to thank Jamie Bishop and Mark Porcaro
for getting me started with Plone in the first place.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

About the Reviewers

Denys Mishunov is the Plone expert, specializing in Plone themes development
since early 2004. During his Plone career, Denys worked as a freelancer with a lot
of Plone consulting companies, distributed all over the world, and participated in
more than 200 Plone projects by providing services in design and Plone themes
development. Originally working as a freelancer in Ukraine, Denys has established
one of the first Plone 3 projects in the world, Web Couturier, some days before the
official release of Plone 3. The project doesn't exist in its original form any more,
but has provided some, previously commercial, packages as open source products
for the Plone Collective. In 2008, Denys moved to Norway to work with one of the
leading Plone consulting companies Jarn (ex- Plone Solutions).

Steve McMahon is a Plone developer based in Davis, California. He's the creator
of PloneFormGen, and is currently the maintainer for PloneHelpCenter and Plone's
Unified Installer and the OS X Installer. He's serving his second term on the Plone
Foundation Board of Directors.

Steve is a partner in Reid-McMahon, LLC, a Plone consultancy
specializing in non-profits. He is one of the many authors of Practical Plone 3
(http://www.packtpub.com/practical-plone-3-beginners-guide-to-
building-powerful-websites/book).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Table of Contents
Preface 1
Chapter 1: Theming Plone 3: An Overview 7

Background 7
What is Plone, really? 9

Technical overview 11
Books about Plone 11

Theming and other CMS frameworks 12
The evolution of skinning for Plone 14
Summary 16

Chapter 2: Skinner's Toolkit 17
Graphic design tools 17

Adobe Photoshop 18
Adobe Fireworks 20
GIMP 21

Browser add-ons and important notes 21
Internet Explorer 22
Firefox 24

Firefox Web Developer extension 25
Firebug extension 27
YSlow 31
Colorzilla 34

Safari tools 36
Safari Web Inspector 37

Validation tools 38
Text editors 39

TextMate 39
CSS Edit 42
E Text Editor 45
Notepad 46

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Table of Contents

[ii]

WordPad 46
Dreamweaver 46

Summary 47
Chapter 3: Setting up your Development Environment 49

Buildout and you 49
Understanding the terminology 50
Setting up your development environment 54

Subversion for version control 54
Download Plone 56

Macintosh dependencies for the Unified Installer 56
Windows dependencies for the Unified Installer 57
Operating system agnostic dependencies 57

Buildout: The Plone filestructure 58
Summary 61

Chapter 4: Create and Install a Theme Product 63
Generating your theme product using paster 63

Available templates 63
Generating your product 64
Filestructure of a plone3_theme product 66

Adding your theme product to your buildout 69
Starting Zope and installing your product on a Plone site 70

Creating a Plone site 71
Installing your Plone theme 72
Putting your site into debug mode 72

Summary 73
Chapter 5: Making Manual (TTW) Changes or What Not to Do 75

Prerequisites 75
What this chapter will not cover 76
Registering and installing a new theme 76

Register the filesystem directory view 77
Make the directory view available to portal_skins 78
Install your theme product 80
General guidelines during development 80

About a theme product's architecture 81
Changing your site via CMF action categories 82

Document actions category 83
Site actions category 84
Folder buttons category 85
Object category 86

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Table of Contents

[iii]

Object buttons category 86
Portal tabs category 87
User category 87

About GenericSetup 88
Base profile 89
Extension profiles 90
An example extension profile 90
Taking snapshots 92
Export profile 92
Import profile 92

Moving portal_actions configurations into a filesystem product 93
Skin layer customization, the old-fashioned way 95

Using the portal_skins tool 95
Changing base_properties 99

Modifying images using the custom folder 101
Extracting items from the custom folder 102
Using stylesheets and the CSS resource registry tool 103

Common conventions for using stylesheets in Plone 104
Overriding base Plone stylesheets 104
DTML support 105
Location of files and controlling bloat 105

Adding new stylesheets 106
Starting with CSS in the ZMI 107
Creating a theme-specific stylesheet in your filesystem product 108

Working with JavaScripts in your theme product 109
Summary 110

Chapter 6: Working with Zope 3 Components 111
About the architecture 111

Introduction to ZCML 114
Zope 3 browser layers and resources 117
Using images as browser resources 118
Using stylesheets as browser resources 120
Browser pages 121

Create a Python class for our browser page 122
Add the interface for our browser page 123

Registering our browser page 123
Create a page template for our view 124
Write the GenericSetup steps to create the new CMF action category 125
Register the viewlet in your theme product 125
Enable the browser page 126

Summary 126

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Table of Contents

[iv]

Chapter 7: Customizing Viewlets and Portlets 127
Viewlets 127

Class-based versus template-based viewlets 133
Registering viewlets in a viewlet manager 135
Reordering viewlets within a viewlet manager 137

Showing, hiding, and unhiding viewlets within a viewlet manager 139
Overriding a viewlet template 140
Overriding a non-template-based viewlet 142

Portlets 147
Modifying Plone 3 portlets in a theme product 148
Creating a new Zope 3 portlet 150

Add the interface for our browser page 152
Create a page template for our view 152
Write the GenericSetup steps to create the new portlet 153
Write the GenericSetup to create a new CMFAction category and actions 153
Register the portlet in your theme product 154
Enable the portlet 155

Using Classic portlets in a theme product 155
Using portal_view_customizations 157
Summary 159

Chapter 8: Understanding Zope Page Templates and
the Template Attribute Language 161

About ZPT 162
What does TAL look like in practice? 163

About the Template Attribute Language 164
tal:attributes statement 165

Multiple attributes 165
tal:define statement 166

How this works in Plone 166
tal:condition statement 167

How this works in Plone 168
tal:content statement 169

How this works in Plone 169
tal:repeat statement 169

How this works in Plone 170
tal:replace Statement 172

How this works in Plone 172
tal:omit-tag statement 173

How this works in Plone 173
tal:on-error statement 174

How this works in Plone 174
TAL "structure" expression syntax 174

How this works in Plone 175

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Table of Contents

[v]

Order of operations 176
Built-in names in TALES 176
Summary 177

Chapter 9: Creating, Installing, and Tweaking our Theme 179
About the theme 179
Creating a theme product 181
Altering the theme product's structure 183

Renaming the theme 183
Shortening folder names 184
Adjusting how stylesheets and images are used 186

Installing the theme product 188
Adjusting web site content to support the design 191
Summary 196

Chapter 10: General Styling and Templating Changes 197
Modifying the various sections of the page 197

Basic styling 198
Changing the logo 201
Adding a banner image 207
Customizing the portal actions 207
Adjusting the searchbox display 214
Moving the searchbox 218
Adjusting the personal bar 219
Suppressing the top navigation 220
Moving and styling the breadcrumbs 221
Base portlet styling 224
Adjusting the footer and the colophon 225
Altering the navigation 229

Summary 232
Chapter 11: Custom Page Views and Sectional Styling 233

Changing the default home page display 233
Using CSS styles and the visual editor 233
Using a basic page template for a home page view 236
Using Python code to render a home page view 237

Sectional styling 240
Applying Internet Explorer fixes 242
Summary 244

Chapter 12: Add-on Tools and Theming Tips 245
Popular add-on Plone products 245

Enabling drop downs using webcouturier.dropdownmenu 245
Collage 246

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Table of Contents

[vi]

Tableless styling using Plone Tableless 247
CSSManager 247
Products.EasyAsPiIE 248
collective.skinny 249
FS Dump 249
qPloneSkinDump 250
Collection and static portlets 250

Sectional theming 250
themetweaker.themeswitcher 251

Non-Plone-specific products for theming 251
sIFR 252
Rules-based theming 252

Debugging tools and tips 253
GloWorm 253
About tracebacks and Pdb (the Python debugger) 255
Running more than one operating system at a time 255

Summary 256
Chapter 13: Plone and Multimedia 257

Flash integration 257
Embedding Flash and other media in a page 258
Embedding Flash in a page template 262

Plone add-ons for multimedia 263
collective.flowplayer 264
Slideshow Folder 266
Plone4Artists Video 268

Other products to watch out for 271
Plone4ArtistsAudio 271
Plumi 272

Summary 272
Chapter 14: Deploying and Contributing Themes 273

Deploying your theme on a server 273
Maintaining an orderly deployment 274
Documentation 275
Configuration 275
Quality assurance 277

Deploying a theme for public use 279
Summary 280

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Table of Contents

[vii]

Chapter 15: The Future of Theming for Plone 281
Why a new approach? 281
About the future of theming in Plone 282
Is XDV ready for serious deployments? 282

Background and history 282
Choosing the appropriate theming approach 283

Which one should I use? 284
Tools and prerequisites 285
Adding XDV to your Plone instance 285

Platform notes 286
Adding collective.xdv 286
Running buildout 287

Activating XDV 288
Adding the HTML and rule files 288
Enabling the theme transform 289
Testing that everything works 290

How it works 290
The rule file 292
Rules Overview 293

<replace> 293
<append> and <prepend> 294
<copy> 295
<drop> 295

Summary 296
Index 297

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Preface
Themes are among the most powerful features that can be used to customize a
web site, especially in Plone. Using custom themes can help you brand your site
for a particular corporate image; it ensures standards compliance and creates
easily-navigable layouts. But most Plone users still continue to use default themes,
as developing and deploying themes that are flexible and easily maintainable is not
always straightforward.

This book teaches best practices of Plone theme development, focusing on Plone 3. It
provides you with all the information useful for creating a robust and flexible Plone
theme. It also provides a sneak peek into the future of Plone's theming system.

In this book you will learn how to create flexible, powerful, and professional Plone
themes. It is a step-by-step tutorial on how to work with Plone themes. It also
provides a more holistic look at how a real-world theme is constructed. We look
at the tools required for theming a web site. The book covers major topics such as
configuring the development environment, creating a basic theme product, add-on
tools and skinning tricks, integrating multimedia with Plone, and configuring your
site's look and feel through the Zope Management Interface (ZMI). Finally, the book
takes a close look at the thrilling and greatly-simplified future of theming Plone sites.

What this book covers
In Chapter 1, we will take a look at how theming has become more complex with the
newest release of Plone and how this impacts themers. We will also compare other
popular CMS platforms with Plone.

In Chapter 2, we will take a look at the recommended tools that are needed for
theming. We will also take a look at the browser add-ons that are available for
inspecting a web site's CSS, JavaScript, color palette, and more.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Preface

[2]

In Chapter 3, we will configure the development environment. We will also learn
some of the jargon associated with Plone 3 development.

In Chapter 4, we will learn how to create a vanilla theme product and install it.

In Chapter 5, we will learn how to expose a theme product to a filesystem. We will
take a look at the elements that compose the component architecture for a theme
product. We will also learn how the skin layers and through-the-web configuration
work. And finally, we will take a look at how to take many of these changes and
incorporate them in a filesystem product.

In Chapter 6, we will focus on basic Zope 3 components that are involved in
filesystem theme development. We will learn how to use ZCML code to tie together
the Zope 3 components. We will also learn how to use images, stylesheets, and
browser resources and how to write browser views.

In Chapter 7, we will focus on viewlets, viewlet managers, and how to manipulate
them. We will take a look at portlets and how to customize them. Finally, we will
learn how portal_view_customizations can be used to manipulate Zope 3
templates through the Web.

In Chapter 8, we will learn what a Zope Page Templates (ZPT) system is. We will
also take a look at Template Attribute Language (TAL) and learn common TAL
expressions that are used in Plone's templates.

In Chapter 9, we will learn how to create a custom theme product, how to modify the
file structure, how to set up a Plone theme to use mostly skin layers for images and
stylesheets, how to install the theme product, and how to customize the content of
your site to support the design.

In Chapter 10, we will learn how to change the logo, how to modify the
portal_actions on a site, how to modify various viewlets and portlets and the
templates that are used to render a Plone site, and how to do basic CSS styling.

In Chapter 11, we will learn how to create custom home page views, how to do
sectional styling, how to enable and create sectional banners, and how to test our site
against multiple browsers.

In Chapter 12, we will take a look at the popular add-ons, the current state of sub-site
theming, non-Plone products that can be used to alter the site's look and feel, and
Plone-specific debugging tools.

In Chapter 13, we will learn how to embed multimedia into the content of a page and
into a page template. We will also take a look at the Plone-specified add-ons that
provide multimedia support.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Preface

[3]

In Chapter 14, we will take a look at the suggested development environments, theme
deployment workflow, the quality assurance process, and how to contribute to the
Plone theming community by creating publically available themes.

In Chapter 15, we will take a sneak peek into the future of rules-based theming for
Plone. This chapter will feature a complete walk-through of theming a site using the
collective.xdv add-on.

What you need for this book
To run a Plone 3-based web site you need:

Operating system requirements:

• Windows XP or later
• OSX 10.4.x or later
• Linux 2.6.x or later
• Python 2.4 (Plone 3.x series do not work with Python 2.5, 2.6, or 3.0)

On OSX and Linux you need to have development tools (GCC) installed for
installing Plone.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Notice the enabled flag here, and also
notice that it's not necessary to include the .dtml indication in the id field, even
though we will be using DTML."

A block of code is set as follows. (Code and markup preceded and ended with
ellipses, "...", are extracted from the full context of code and/or a larger body of code
and markup. You will also see the occasional use of "[snip]" for the same purpose.
Please reference the downloadable code packet to see the entire work.)

<?xml version="1.0"?>
<object name="portal_css">

<stylesheet title=""
 id="ace.css"
 media="screen" rel="stylesheet" rendering="import"
 cacheable="True" compression="safe" cookable="True"
 enabled="1" expression=""/>
</object>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<?xml version="1.0"?>
<object name="portal_css">

<stylesheet title=""
 id="ace.css"
 media="screen" rel="stylesheet" rendering="import"
 cacheable="True" compression="safe" cookable="True"
 enabled="1" expression=""/>

</object>

Any command-line input or output is written as follows:

./bin/buildout -n

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "WithinWithin
the site_actions category you will find the menu options that correspond to the
top navigation on a default Plone installation. By default, these include Site Map,
Accessibility, Contact, and Site Setup.""

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email to suggest@packtpub.com.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Preface

[5]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/3872_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in the text or the code—we would be grateful if you would report this to us. By
doing so, you can save other readers from frustration and help us improve the
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/support, selecting your book, clicking on
the let us know link, and entering the details of your errata. Once your errata
are verified, your submission will be accepted and the errata added to any list of
existing errata. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Preface

[6]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Theming Plone 3:
An Overview

For those of you who are unfamiliar with Plone or this is your first introduction
to it, Plone is a content management system (CMS). A CMS is a tool that enables
webmasters to manage their web sites' content easily through the web (TTW). Plone
provides additional support by auto-generating navigation elements, making content
searchable, allowing for multilingual content, handling permissions and security,
and much, much more. In comparison to other CMS platforms, Plone is extremely
stable, secure, and is actively working toward increased adoptability.

One of the most common needs with a CMS web site is the ability to change the
look and feel. As with any framework, building a design around a CMS introduces
special challenges. With Plone, the process of separating content from presentation
is not entirely straightforward. By the end of this book, you will have the knowledge
to create your own robust Plone themes and understand where the line is drawn
between content and presentation. Specifically, this book is geared toward web
designers with little or no knowledge of Plone who need to theme a Plone web site.

This chapter will explore the origins of Plone as well as analyze the current state of
theming in Plone.

Background
The origin of Plone is one of community lore. In 1999, founders Alexander Limi and
Alan Runyan had a fortuitous meeting on #zope, the IRC channel dedicated to Zope
development. Zope is the framework upon which Plone is built. The two of them
forged an online friendship based on a mutual love of Zope, Python, and music.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Theming Plone 3: An Overview

[8]

These two men, with too much time on their hands and the encouragement of Paul
Everitt (one of the founders of Zope Corporation), built a CMS named after an
electronica band with questionable musical talent. In the process, they also gathered
a thriving community of people around them. They continue to work in the service
of Plone today and to grow the ranks around them.

The last year or so has brought tremendous change to Plone, as we have moved from
the Zope 2 architecture to the mixed implementation of Zope 2 and Zope 3. Don't
worry too much yet about what this means; suffice it to say that when Plone 3 was
released, the ground shifted underneath the feet of Plone users worldwide. This
shift not only brought a lot of power to the table, but also introduced a lot of fear,
particularly in the hearts of themers. Most of this fear is exaggerated, and this book
aims to quell much of this fear. The theming process for Plone may be complex at
the moment, but it's still possible to generate beautiful, high-impact themes.

Plone is useful for all kinds of web sites, from large enterprise sites to educational
and government sites, and even small environmental sites. I work at an
environmental non-profit named ONE/Northwest. (We hosted the 2006 Plone
Conference in Seattle.) ONE/Northwest has produced almost 200 attractive, high
quality, but generally small Plone sites that empower other environmental groups.
These web sites give our clients the tools they need to reach their audiences and
to hopefully preserve our natural environment. Every day brings new excitement,
revelations, more complex sites, and plenty of ideas on how to improve Plone. As
an open source CMS, it's especially thrilling to be able to contribute ideas and put
efforts that incrementally improve Plone.

For many members of the Plone community, we stay with it because it's all about
contributing and the community. We are a vast and far-flung crowd, yet surprisingly
close-knit. At any given point in time on #plone, the IRC channel for Plone users
on freenode.net, you can be talking simultaneously to the people in Belgium,
South Africa, Australia, Israel, or the United States. Sometimes the community gets
together in person to work, sometimes at conferences, but more often at sprints
(small gatherings geared toward solving a particular problem). People have sprinted
on projects in castles, on archipelagos, on beaches, in the swank offices of Google
Corporation and online, all over the world. The community has proven to be
extremely welcoming, bright, ambitious, and inclusive to those who are willing
to contribute back to the community.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 1

[9]

As a themer, I continue to use and improve Plone because it's a rewarding
platform with which to work, and because I've witnessed the change in the world
it can effect. My personal pet project with Plone is a small non-profit called SafeSafe
Passage that helps to educate, feed, and protect children who work in the garbage that helps to educate, feed, and protect children who work in the garbage
dumps of Guatemala City. With a very simple (and sadly outdated) theme, and a
form-building product called PloneFormGen, Safe Passage has managed to get morePloneFormGen, Safe Passage has managed to get more, Safe Passage has managed to get more
than 900 children sponsored, fed, and in school. It's a small, unassuming site, but
without Plone, we could not have achieved such a tremendous accomplishment.
Plone is a wondrous tool, frustrating at times, but absolutely worth the time spent
and valued by the organizations that use it to manage their content and spread
their message. From the simple theme I built for Safe Passage to the intricate themes
I build now, I've learned that Plone is a deep and sometimes swift river, but not
impossible to cross. The best part is that even as you read this book, work is being
done in the Plone community to ease the pain of theming. This book is one small
step in that direction.

Before we move into the theming portion of this book, let's learn a little more about
Plone and why it might be a good choice for your organization.

What is Plone, really?
The following is an overview of Plone:

Plone is an open source CMS: Plone is a downloadable content management
system that is built on the powerful and free Zope application server. Plone
is easy to set up, extremely flexible, and provides tools for managing the
content of large web sites, extranets, intranets, government and educational
sites, and even social networking sites. Plone is licensed under the GNU
General Public License, the same license used by Linux. This gives you the
right to use Plone without a license fee, and to improve upon the product.
Plone has the tools you need: Plone provides numerous out-of-the-box and
add-on tools that make working with content easier. These include kupu,
the powerful visual editor built into Plone, and PloneFormGen, a tool for
creating quick and easy forms. Plone also includes the ability to integrate
with other open source tools, databases, page compositors, e-commerce
solutions, and more. Plone may not have as many add-ons as frameworks
like Drupal, but you can feel secure in knowing that the popular add-ons for
Plone are generally quite stable and thoroughly vetted by the community.

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Theming Plone 3: An Overview

[10]

Plone is easy to install: You can install Plone by going to http://plone.
org/products/plone and downloading the Plone installer that is the right
option for you. Simply run the installer, follow the README.txt, and you will
have a working content management system in minutes. As of Plone 3.1.2,
Plone is by default installed using a system called buildout, which we will
cover later. It's more complex than WordPress's "Famous 5-Minute Install",
but installing Plone and add-on products is simple once you get used to
the process.
Plone is easy to use: Plone's development team has usability experts who
have made it simple for content managers to add, update, and maintain
content. Plone's UI team is constantly looking for ways to simplify and
improve the end user experience, and founder Alexander Limi is on the
forefront of this charge. I've had the joy of having content managers from
completely different continents grasp the concepts of how to manage content
in Plone without problem, and the average web-savvy user will have the
same experience.
Plone is secure: While the Drupal platform may have much to offer to end
users, as a PHP-based CMS, it has many security problems that Plone does
not have. Plone has had only one security-related patch in the last two years,
whereas Drupal has had several in the last few months. The difference is
that Plone runs on Python, which is markedly safer. Having a secure CMS
is critical, and Plone is clearly the frontrunner here.
Plone provides international support: The Plone interface has more than
35 translations, right-to-left support, and tools such as LinguaPlone for
managing multilingual content.
Plone is compliant: Plone rigorously follows standards for usability
and accessibility, including US Section 508, and the W3C's AAA rating
for accessibility.
Plone is protected: The nonprofit Plone Foundation (http://plone.org/
foundation) was formed in 2004 to promote the use of Plone around the
world and to protect the Plone Intellectual Property and trademarks.
Plone has planned development and supports contributors: The Plone
team development keeps a close eye on the future of Plone, gives considered
thought to new features, and presents a unified front. This is different from
a CMS such as Drupal, which has more sprawl in its development processes,
especially in terms of add-on products. As of this writing, the biggest
developments in Plone include dramatically lowering the bar on theming,
making the page compositing experience much simpler, and enabling
through-the-web creation of content types. Ultimately, the focus for Plone 4
and 5 is on integrators and themers, which is right where the focus needs to
be in order to have an adoptable CMS.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 1

[11]

Upgrades are easy: Upgrades are less frequent, and releases are carefully
coordinated to make the transition easier. For anyone who has suffered a
painful upgrade, you'll appreciate this fact more than anything.

Technical overview
Plone sits on top of the Zope technology stack. Zope is an open source application
server for building content management systems, intranets, portals, and custom
applications. The Zope community consists of hundreds of companies and
thousands of developers all over the world who work on building the platform
and other Zope applications.

Zope and Plone are both written in Python, an easy-to-learn, widely used and
supported open source programming language. The security benefits available
with Python, as well as the cleanliness of code, are great advantages for Plone.

By default, Plone stores its contents in Zope's built-in transactional object database,
the ZODB. There are products and techniques, however, that allow sharing of
information with other sources, such as relational databases, LDAP, and more. WSGI
support is also now available with Plone, which means even greater integration with
other web applications. WSGI is the basis of what makes Deliverance (one of the
possibilities in the future of theming for Plone) possible. Read the last chapter for
more exciting information on Deliverance and collective.xdv.

Plone runs on Windows, Linux, BSD, Mac OS X, UNIX, Solaris, and other platforms.
Double-click installers are available for all platforms. For full information and to
download Plone, see http://plone.org/products/plone.

Books about Plone
Plone currently has approximately 8 books available, several of which are out of
date, but a few of which are extremely helpful. None of the books are specifically
geared towards themers, although sections of each are relevant.

Released in February 2009 is a community-written book, Practical Plone 3,
which is intended for integrators and individuals new to Plone. It contains
several chapters geared towards themers, plus a wealth of other information
for integrators.
Martin Aspeli's developer's guide, Professional Plone Development (2007).
While it is geared towards developers, some of the technical information
in this book is pertinent to themers.

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Theming Plone 3: An Overview

[12]

The defacto Plone book, The Definitive Guide to Plone by Andy McKay. It is
woefully out of date, but is relevant for giving a broad understanding of
Plone and the templating language used by Plone. A rewrite to this book was
released in 2009 and written by Redomino and Andy McKay.
Philipp von Weitershausen published Web Component Development with Zope
3 in 2007. It is a helpful book conceptually, but geared specifically towards
pure Zope 3 development, not Plone.
Plone Live, which had regular updates for years, but is now languishing since
the Plone 3 release. The information it contains is still valid, however.
Content Management with Plone: Handbook for Authors and Editors (available
in English and German, updated for Plone 3). This book is intended for end
users and not generally helpful to themers.
James Cameron Cooper's Building Websites with Plone (2002). Mostly out of
date, and not especially relevant to themers.

Theming and other CMS frameworks
To understand the current state of theming with Plone, it's helpful to examine a rival
content management system's theming story. In this case, we will look at Drupal, a
popular open source CMS that is written in PHP, and touch briefly on WordPress.

Both Plone and Drupal provide online theming manuals. Plone also has additional
quick start documents that explain how to build a theme in Plone 3. These
documents have been integrated into the Plone theming manual and include
practical instructions on how to accomplish common tasks. It is on par with
Drupal's theming manual. As of this writing, both projects have solid theming
documentation, although Drupal's might be organized slightly better.

Drupal may have more theming books than the Plone community, but it's worth
mentioning that the theming documentation for Plone is quite helpful and covers
most use cases. Unlike Drupal, the book you are reading now is the first book
specifically geared toward theming with Plone, but it is the beginning of a trend.
Basically, what this means is that either CMS is a good choice, and Plone has the
documentation ready for new themers.

Another telling point is the availability of open source themes. Interestingly, at one
point, Drupal had the themes.drupal.org site that allowed users to test-drive the
available themes for Drupal. As of Drupal 5.0, the site was abandoned due to the
shortage of volunteers. WordPress also offers a number of add-on themes, though
most of them are geared specifically toward bloggers. Similarly, Plone volunteers are
rapidly putting out new themes on a daily basis, although there isn't a single location
(other than plone.org) where Plone themes can be found.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 1

[13]

This is the most active time for the Plone theming community to date, and the entire
community has taken notice.

More than books, tutorials, and the availability of open source themes, the
actual skinning process is where comparing Plone and Drupal is most critical.
It's generally acknowledged that getting started with skinning in Drupal and
WordPress is easier because users only have to worry about CSS, but once you get
past the initial theme, you have to worry about PHP, which can be spidery and hard
to understand. Conversely, Plone's theming framework is tough at the outset, but
easier, more logical, and sophisticated over the long haul. Both situations present
special challenges.

According to Larry Garfield in #drupal:

I'd say the hardest thing to get used to with Drupal is letting Drupal do things the
Drupal Way rather than trying to force it into your mold. Drupal can bend in all
sorts of weird and exciting ways, if you bend it where it's designed to bend. But if
you try to shoe-horn it into the way you wish it worked rather than the way it does,
you'll waste a lot time needlessly, especially at the theming layer.

The same could be said about Plone, but Plone's problem is less about shoe-horning
and more about having a lot of concepts that need to be understood before the real
progress can be made. Additionally, Plone currently provides more than one method
of accomplishing theming tasks, which can cause confusion. Those various methods
are steadily being unified and simplified, and the goal of this book is to demystify
the complexity of Plone with regards to theming.

Larry Garfield from #drupal followed his previous comment by saying that:

Drupal 6 includes a heavily rewritten theme layer that is a lot nicer to work with.

Plone doesn't currently have an abstracted theming layer, though there are certain
tools that are available to themers that will be discussed in this book. Moreover, the
future of Plone is Deliverance and collective.xdv, non-Plone-specific tools that
will turn the theming process into a nearly CSS-only experience. Deliverance and
collective.xdv will position Plone over with the Drupals and WordPresses of this
world, and with much greater power.

It's worth spending time with Plone, especially once you get a glimpse at
the power under the hood. The real potential is in the value to the content
manager. Heavyweight blogs such as WordPress, or lightweight CMS's such as
Drupal, simply don't offer the necessary flexibility or ease of use, nor do they have
the same level of extensibility. If you can build a Plone theme, you'll appreciate the
real value inherent in Plone, and building a theme doesn't need to be intimidating
once you know where to start.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Theming Plone 3: An Overview

[14]

While there's always going to be the question of which CMS is the most appropriate
for the job, it's clear that Plone has a bright future, and is keeping pace with other
CMS frameworks.

The evolution of skinning for Plone
Plone has always offered a robust base skin from which to start with solid CSS
hooks, and it also has cleanly separated the CSS files that make skinning a fairly
straightforward process. The actual process of working with the skin and CSS is
what has changed dramatically over time and become more complex.

As of Plone 2.0, skinning was most commonly done through the web via the2.0, skinning was most commonly done through the web via the, skinning was most commonly done through the web via the ZMI
or Zope Management Interface. Working TTW via the ZMI resulted in a mixture ofZMI resulted in a mixture of resulted in a mixture of
content and code that could not be easily pulled out of the ZMI. While tools exist that
helped extract skin-related elements from the ZMI, it was still difficult to back up
sites or to preserve the configuration in the event that a site needed to be moved to
another Zope instance.

When Plone 2.1 was released, a tool known as2.1 was released, a tool known as was released, a tool known as DIY Plone Style was introduced that
allowed users to quickly create a skeleton product so that users could work more
easily on the filesystem. Additionally, a system known as GenericSetup was gaining
momentum as a means of exporting settings to a skin product. TTW management
was still possible, though pressure was mounting to move away from working
through the ZMI.

Very little changed for themers in the transition from Plone 2.1 to Plone 2.5.2.1 to Plone 2.5. to Plone 2.5.2.5..
Generally speaking, themers only had to know where to find certain knobs and
switches in the ZMI, modify Plone's default templates, understand the TAL
templating language, and work with CSS to make changes to their sites. While
modification of basic templates is still a legitimate approach for writing templates
and business logic, there is an extra layer of templating involved now, known
loosely as "viewlets" and "portlets", that themers need to know about. Filesystem
development is now the present state of theming. While it may sound daunting to
work on the filesystem, once you get started, it's actually quite liberating.

As of Plone 3, a system known as buildout was introduced as well, and new visual
design and deployment schemes were revealed that enabled developers to create a
repeatable, testable development environment that could be shared across teams. For
themers, this meant learning how to manage a development environment without
necessarily having the programmatic knowledge to do so. Thankfully, Plone's
installers mostly take care of this now.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 1

[15]

In addition, themers not only had to understand the previously mentioned
technologies, but they also had to learn about Zope, including such programmatic
jargon as "multi-adapters", "browser layers", "boilerplate", "ZCML", and
"GenericSetup profiles". Worse, they needed to learn how to work with Python
classes and understand the difference between Zope 2 and Zope 3 templates and2 and Zope 3 templates and and
how to use them in their skin products. The complexity involved in skinning a site
doubled, if not tripled, and the theme development time increased.

The positive side of this was a dramatic increase in the robustness, reusability,
and flexibility of theme components. Once learned, the Plone theming framework
provides tremendous leverage for web-design professionals. And, much of the PloneAnd, much of the Plone
theme framework is unit testable, which is amazing! While there is a lot to know, it's
worth stating that theming for Plone is a challenging but exhilarating experience.
Even better, it has encouraged the Plone community to spend some real time
focusing on the theming needs of the Plone users, meaning that the road forward
will be easier to tread.

It's also important to mention that community resources are available if you have
questions or problems. In particular, themers should be aware of:

The Plone-users email list that can be found at
http://plone.org/support/lists

The Plone forums found at http://plone.org/support/forums
The IRC chat channel that can be accessed at
http://plone.org/support/chat.

You should always feel that no question is too stupid to ask, and someday you might
even be able to answer someone else's questions. It's how most of us have arrived in
the community, and we're always happy to have more contributors.

In the meantime, this book attempts to break down the barriers to Plone 3 theming in
a way that makes it easier for non-programmers to successfully change the look and
feel of their sites. While themers who are accustomed to working with systems such
as WordPress and Drupal may find the learning curve challenging, with some effort,
it is still possible to generate attractive and robust themes. I hope you enjoy the ride.

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Theming Plone 3: An Overview

[16]

Summary
In this chapter, we have learned that:

The current theming story for Plone is challenging for new themers, and has
become even more complex with the newest release of Plone
Plone is on par with other CMS frameworks in terms of the theming story
It is possible to create attractive themes in Plone 3, but it requires extra effort
and some knowledge of programmatic concepts

Next, we will look at the tools necessary for any themer to be productive and then
dive deeper into the actual theming process. Onward!

•

•
•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner's Toolkit
Choosing the right tools for implementing a design in Plone is the most important
step. Fortunately, there are a number of tools available that make the process much
easier. We will cover graphic design tools, browser toolbars and extensions, CSS
validators, text editors, and more.

Graphic design tools
Any serious skinner needs a graphic design tool with certain capabilities in order to
take the design files and assemble them into a finished web site. In particular, layers
and the ability to slice pieces of a design and export those pieces are essential. Layers
allow a themer to hide pieces not needed in a finished CSS theme, such as text that
will eventually become real HTML on a page. Slices, meanwhile, are the pieces of
an overall design that are exported during the layer manipulation process. They are
the images the end user eventually sees on the rendered page. This is different from
cropping, which actually alters the size of the canvas; slices are just pieces of the
overall design, cut with precision, exported, and then manipulated with CSS.

The most commonly used graphic design tools used for web design are Adobe����
Photoshop��, Adobe�� Fireworks�� (formerly Macromedia) tool, and open source��, Adobe�� Fireworks�� (formerly Macromedia) tool, and open source, Adobe�� Fireworks�� (formerly Macromedia) tool, and open source�� Fireworks�� (formerly Macromedia) tool, and open source Fireworks�� (formerly Macromedia) tool, and open source�� (formerly Macromedia) tool, and open source (formerly Macromedia) tool, and open source
tools such as GIMP. It is not generally recommended to use tools such as Adobe����
Illustrator��, Corel Draw and other vector-based packages. Web designs primarily��, Corel Draw and other vector-based packages. Web designs primarily, Corel Draw and other vector-based packages. Web designs primarily
use raster-based media, meaning that raster images are based on pixels and thusaster images are based on pixels and thus
scale with loss of clarity. Conversely, vector-based images can be scaled infinitely
without degrading, but are typically not appropriate for web design.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[18]

Adobe Photoshop
The most popular tool for processing image files is Adobe Photoshop. The files
generated for designs are PSD, or Photoshop Document files. Adobe Photoshop
meets the basic requirements of being able to manipulate the vector and raster
images, layers, and slices, and offers a lot of additional functionality. The ability
to control anti-aliasing and the quality and size of an exported image is essential
in web design, and Adobe Photoshop (also, Adobe Fireworks) is quite powerful
in this respect.

A quick look at the Layers panel illustrates how sections can be grouped together,
moved, or be shown or hidden via the "eyeball" icon.

This show/hide functionality is very important. One situation where this becomes
valuable is when you have a PSD file that indicates graphical buttons with text
over them. For accessibility reasons, you may want to render the text as real
HTML-rendered text, and not as an image. You need to be able to export the
buttons in both their on and off states in order to get a proper rollover effect,
and you need to hide the graphical text in order to do this.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[19]

One site that illustrates this concept is http://greenforall.org. Using AdobeUsing Adobe
Photoshop, the layers where the text appears on the top navigation were hidden,
and just the background on/off images were imported. On the finished web site,
the top menu used the background images and real rendered text.

The other core functionality that Adobe Photoshop offers is the ability to
slice images and export them. The Copper River Watershed Project web site
(http://www.copperriver.org) illustrates how slices might be used. The
original Adobe Photoshop document is here:

If you look closely, you can see a few key slices: the "Go" button next to the search
field has been sliced, as has the Tour Our Watershed map and the gradation on the
top navigation, which will be tiled horizontally. Below the orange navigation is a
long slice that spans from the left-hand shadow over to the right-hand shadow.
This image can be used to tile the length of the page. Additionally, the entire
Information For... box has been sliced; in this case, for the final implementation,
the text overlaying this slice was hidden and replaced with rendered text. If you
look at the finished web site, you can see how these slices were applied.

Photoshop provides a great deal of power, but in general, you may only use about
20% of the power it offers. You can visit http://adobe.com to see the tutorials
on how to use the Adobe Photoshop effectively. Additionally, you may want to
investigate Photoshop Elements; it doesn't allow you to slice images for the Web,
but for the current price of $139.99, it's still a great tool for many web design
activities: http://www.adobe.com/products/photoshopelwin/.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[20]

Adobe Fireworks
I have not used Adobe Fireworks in many years, not since Macromedia was
purchased by Adobe in 2005. At the time, I found the interface a little clumsy at
times, but it did have a basic implementation of layers and slices. Over the past
few years, based on the demos available, it appears that the interface has seen some
great improvements, though it does not have the same power or market share as
Adobe Photoshop has. However, at nearly $400 less than Adobe Photoshop, it's a
great option.

According to the Adobe web site, "Adobe Fireworks CS4 software is used to rapidly
prototype web sites and application interfaces and to create and optimize images for
the Web more quickly and accurately. It is ideal for web designers, web developers,
and visual designers." It differs from Photoshop in that "Adobe Photoshop software
is the industry standard for digital imaging, with a broad array of features and
functionality used by photographers, graphic designers, web designers, and many
other creative professionals. Fireworks is a much more focused tool, with the
features for prototyping vectors and bitmaps for the web and application interfaces."
The real selling point here, though, is integration with Adobe Photoshop, as a design
may be shared between multiple people, each using different graphical programs.

The ability to manipulate the vector and raster images is also important.
Additionally, like Adobe Photoshop, Adobe Fireworks provides the ability to work
with layers and slices, and preserves many of the settings in an Adobe Photoshop
PSD file. It's not as good at compositing and photo manipulation as Photoshop, but is
a lot stronger with text, shapes, and final optimization. Selective JPEG optimization
is also very handy, and allows you to heavily compress the portions of a JPEG while
keeping text legible. Additionally, it's great for generating image maps (not often
used in Plone), rollovers, and other common tricks. Finally, it allows you to view
your work with either Windows or Mac gamma. Gamma correction basically refers
to the ability to correct for differences in how computers (and especially computer
monitors) interpret color values. There are two factors here: the ability to predict
what an image, say a photograph, will look like on another monitor and the ability
to match the colors from different sources on a single page—Adobe Fireworks excels
at both.

While Adobe Fireworks is not as feature-rich as Adobe Photoshop, it is still
an extremely competent tool for slicing and exporting design elements at
implementation time, not to mention more affordable.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[21]

GIMP
GIMP, also known as the GNU Image Manipulation Program, can be downloaded
for free from http://www.gimp.org. It is a freely distributed program for such tasks
as photo retouching, image composition and image authoring, and is covered by the
GNU GPL license. According to the GIMP's web site, it can be used as a simple paint
program, an expert quality photo retouching program, an online batch processing
system, a mass production image renderer, an image format converter, and more.

From the perspective of how it compares to the key aspects of Adobe Photoshop��
and Adobe Fireworks��, it has full support of layers and channels, plug-ins that
allow for the easy addition of new file formats (that is, it can read Adobe Photoshop
or Adobe Fireworks files), and best of all, it is open source.

You can visit http://www.gimp.org/docs/ to download the user manual
for the current release. GIMP also lists several user groups and resources at
http://www.gimp.org/links/ that may be helpful. Even so, the latest releases
are still quite recent, so development is still happening.

For a free solution to the image processing needs, GIMP is an excellent choice, but
weak in terms of the user interface and layer compatibility with Adobe Photoshop.

Browser add-ons and important notes
Now that you have sense of the tools that are available for manipulating design
files and exporting the necessary images for building your web site, let's look at how
browsers affect the web site building process, either through add-on tools or through
sheer bugginess.

It's also worth mentioning that users should reference the A-List of popular browsers
to see which browsers are still considered to be supported by web developers:
http://developer.yahoo.com/yui/articles/gbs/index.html. This can help
to ease the quality assurance load during web site testing.

Many of these A-List browsers come with browser-specific tools that allow you
to inspect your web site to descry the CSS (Cascading Style Sheets) ID and class
selectors, manipulate your CSS on-the-fly, optimize your site, explore color options,
and more. We'll look at the available options for three major browsers: Internet
Explorer, Firefox, and Safari, but you should always be conscious of general browser
penetration statistics so that you know which browsers are still in popular use:
http://en.wikipedia.org/wiki/Usage_share_of_web_browsers.

Now, let's get back to our key browsers.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[22]

Internet Explorer
From a themer's perspective, Internet Explorer is the most finicky browser against
which to implement, as older versions of Internet Explorer followed the W3C's
(World Wide Web Consortium's) standards differently than many other
popular browsers.

According to http://positioniseverything.net, a leading collector of browser
fixes, "All browsers have CSS bugs, and IE leads the pack in this area, but that is not the
end of the story. Microsoft has seen fit to engineer their browser to deliberately violate
the standards in several critical ways. It might just be a misguided attempt to 'make
it simple' for newbie coders, or it might be a cynical ploy to crush the competition,
but in any case it creates huge headaches for those of us who desire to employ CSS
positioning on our pages." While this may be true, many fixes for Internet Explorer
have been identified, and thankfully, IE6, one of the more problematic browsers in
recent years, is finally becoming obsolete. It was replaced by IE7, which was a vast
improvement, but still did not implement the W3C conventions for CSS faithfully. As
of this writing, Internet Explorer 8 was released and showing signs of having finally
made strides toward real compliance to W3C standards.

What this equates to is that web developers tend do their initial browser testing in
browsers that are more compliant; that means doing most upfront testing in Firebug
and Safari, and then rounding out the testing at the end against IE6, IE7, and IE8.
Where possible, it's also important to test against other major browsers and
handheld media.

For testing against Internet Explorer, IE provides a tool called the Web Developer
Toolbar for debugging. It is available for both IE6 and IE7 as an add-on and
can be downloaded here: http://www.microsoft.com/downloads/details.
aspx?FamilyId=E59C3964-672D-4511-BB3E-2D5E1DB91038&displaylang=en.
Web Developer Toolbar will no longer be the tool of choice for IE8, however;
instead use the developer tools included with IE8.

To use the developer tools in IE8, press Shift+F12 or click the
"Developer Tools" icon in the command bar to begin using the tool.

For IE6 and IE7, Web Developer Toolbar provides several features for exploring and
understanding web pages. These features enable you to:

Explore and modify the document object model (DOM) of a web page.
Locate and select the specific elements on a web page.
Selectively disable the Internet Explorer settings.
View HTML object class names, IDs, and details such as link paths, tab index
values, and access keys.

•
•
•
•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[23]

Outline tables, table cells, images, or selected tags.
Validate HTML, CSS, WAI, and RSS web feed links.
Display image dimensions, file sizes, path information, and alternate
(ALT) text.
Immediately resize the browser window to a new resolution.
Selectively clear the browser cache and saved cookies. Choose from all
objects or those associated with a given domain.
Display a fully-featured design ruler to help accurately align and measure
objects on your pages.
Find the style rules used to set specific style values on an element. Right
clicking on a style rule will allow you to trace the rules to a specific CSS file,
if one is found.
View the formatted and syntax colored source of HTML and CSS.

The Developer Toolbar can be popped up within the Internet Explorer browser
window or opened as a separate window.

If you are using a PC to test your sites, VMware, parallels, or a Windows emulator,
you should download the Toolbar from http://go.microsoft.com/fwlink/
?LinkId=125120, install it, and restart IE. You can then click the Developer Toolbar
icon in the command bar to display or hide the Developer Toolbar. Alternately, you
can open the View menu and then use the Explorer Bar menu. In Internet Explorer
7, open the Tools menu and then use Toolbars/Explorer Bars to display or hide the
Developer Toolbar.

•
•
•

•
•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[24]

There are a few caveats here:

The Developer Toolbar icon may not be visible by default. If you do not see
it after restarting Internet Explorer, click the right-facing arrows at the end
of the IE7 command bar to view all the available Toolbar buttons.
Some menu items are unavailable (grayed out) when running Internet
Explorer in Protected Mode on Windows Vista. To use those options,
temporarily turn off Protected Mode or right-click the Internet Explorer
icon in the Programs menu and choose Run as administrator.
In IE6 or in IE7 with tabbed browsing off, using the validation links will
navigate the current window to the validation page. To launch the validation
links in a new window, open the Tools menu, click Internet Options, and
uncheck Reuse windows for launching shortcuts in the Advanced tab, or
use IE7 with tabbed browsing enabled.

Generally, you can use this tool by expanding the left side of the panel displayed
to navigate through your site's structure. It displays CSS IDs and classes in a
hierarchical fashion. On the right-hand side, it displays the properties assigned
to each of those IDs or classes. You can modify those by using the + icon in the
center Attributes section to add a new property and using that to add to or alter
the existing CSS.

As stated before, the left-hand pane allows you to expand and walk through the
structure of your web site. When you refresh, unfortunately, the entire tree closes.
To continue troubleshooting a specific element on the page, you must drill down
to it again or use the "selector" tool. It's somewhat clumsy, but it works and is
invaluable when debugging web pages in Internet Explorer.

Firefox
As of this writing, Firefox 2 and Firefox 3 browsers are both in use, and from a
general perspective, both should be used during debugging, as there are very slight
differences between them (particularly around the sizing of elements on the page).
However, the versions seem to be pretty similar overall, and they both follow the
W3C's web standards quite well.

In addition, Firefox also offers several excellent tools that are helpful to themers.
The first plug-in is the Firefox Web Developer Extension, which is similar to the
IE Toolbar, but a little more robust. We'll also cover Firebug, the coolest kid on the
block for CSS debugging.

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[25]

Firefox Web Developer extension
This open source toolbar can be downloaded from Mozilla's site https://addons.
mozilla.org/en-US/firefox/addons/versions/60, or the developer's personal
web site, http://www.chrispederick.com. For installation information and
support, visit Chris Pederick's web site. Note that all the work on chrispederick.
com is distributed for free under the terms of the GNU General Public License.

This extension adds a menu and a toolbar to the browser with various web developer
tools. It is designed for Firefox, Flock, and Seamonkey, and will run on any platform
that these browsers support, including Windows, Mac OS X, and Linux. The
downside of this toolbar is that it doesn't come with instructions, so to use it
requires some exploration.

After installation, the toolbar displays at the top, where you see the options Disable,
Cookies, CSS, and so on. Choosing Edit CSS from the CSS drop-down menu opens
up a panel that allows you to examine each individual stylesheet.

Key features of this toolbar include:

Disable Cache: This can be done using the Disable drop-down list. It may
slow down your web browser's performance, but you will get more realistic
results. This is probably the most valuable feature of this add-on tool, as it
allows you to make sure that your cache is always clear, and it can be used
selectively from site to site.

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[26]

Images | Display Image Dimensions: This setting can help to diagnose
the minor pixel errors where an image might be pushing against a padding
setting elsewhere in your site.
Information | Display ID and Class Details: This setting is extremely
important, as it can help to quickly illustrate the name of the object you are
trying to style. It can be hard to identify the object you want to work with,
though, as this screenshot indicates:

Display Element Information: This setting is another important setting.
Enabling it allows you to click on any element on your page and gather
details about that element. This is significantly more powerful than the
basic Display ID and Class Details option. All of these details can help to
determine if a current attribute on a tag is causing issues, or if an attribute
assigned to an ancestor might be responsible.

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[27]

Validate CSS/Validate HTML: When you are working with local Plone
instance standard, Validate HTML and Validate CSS will not work, since
the validators are not able to get to your localhost. Deploying to a test server
allows you to validate against your code prior to going live with your web
site, or you can (and should) use the Validate Local CSS and Validate Local
HTML options.
Error and Warning Logs: Clicking on the checkmark or X symbols to
the right of the Options drop-down list gives you the ability to go into
compliance mode, which gives you CSS and JavaScript warning logs when
you click on them.

The Web Developer Extension is a powerful tool, worth using for many tasks (such
as disabling stylesheets to check accessibility), and it's not uncommon to use it in
tandem with the next excellent tool, Firebug.

Firebug extension
Firebug is another open source extension for Firefox that can be downloaded from
Mozilla's web site https://addons.mozilla.org/en-US/firefox/addon/1843, or
http://getfirebug.com/. There is a dedicated team of developers that maintains
the extension, and the documentation is plentiful, so this is a tool that themers can
hopefully count on in the future.

Firebug can be used for both Firefox 2 and Firefox 3, but different versions are
required for each, so pay attention to the installation instructions.

It's worth mentioning that there is a bug in Firebug for Firefox 3 that
causes Firebug to crash if you attempt to edit user stylesheets. For this
reason alone, many individuals choose to do their initial debugging
on Firefox 2. It's hoped that this bug gets fixed soon.

Firebug allows you to edit, debug, and monitor CSS, HTML, and JavaScript
live in any web page. It is similar to the Web Developer Toolbar, but the way
in which it surfaces the CSS on a page and allows you to browse the styling of
ancestors is cleaner. For a list of keyboard shortcuts, you can visit this page:
http://getfirebug.com/keyboard.html.

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[28]

The interface for Firebug looks like this:

The bug icon in the bottom corner of your browser allows you to expand or
minimize the Firebug pane. You can also enable it via the Tools | Firebug |
Open Firebug option in your menu.

The HTML view of this tool is extremely helpful. The left-hand pane allows you to
expand and walk through the structure of your web site, or you can use the Inspect
option. The right-hand pane displays the available CSS, listed in order of precedence.

One great feature of this tool is that you can select an ID or class, and Firebug will
highlight the item you wish to inspect, which can help to diagnose padding or sizing
issues. It also offers a graphical representation of its box model rendering via the
Layout tab.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[29]

In this case, we are inspecting the image on the home page, known here by the
ID features-slot. When we click on this item, the right pane immediately shows
the CSS that is used by that piece of content. In this case, the wec.css file has
direct references to the features-slot, but after that, the nearest closest ancestor
is .documentContent.

While an element is selected, you can click in the right side of the pane and change
the CSS that is active (for example, change the position to absolute), or you can
right-click to add a new property to that page element and type in the details.
Right-clicking also gives you the option to add a new style in the right pane by
choosing New property. The changes you insert will be immediately rendered on
your page, but for these changes to make it into your skin product, you must either
make the changes through the Web or in your filesystem product; Firebug will not
add them to your site's CSS files for you.

Another great feature is that if you refresh your browser while you have selected
an element on the page to clear out your on-the-fly CSS changes, when the page
refreshes, Firebug will reopen to that exact ID or class.

Additionally, using the Inspect/Script combination setting will expose your site's
JavaScript and allow you to step through your code.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[30]

Also helpful is the Network Monitoring tab, seen here, which lets you monitor how
much time is spent when loading a web page. Use the Net tab to see the bar that
shows when a file started and stopped loading relative to all the other files. Network
Monitor breaks up the traffic on a file-by-file basis, so you can see how much time
was spent loading images, JavaScript, HTML, and so forth. You can also see whether
resources were loaded from the browser cache. Expanding each item listed shows
additional HTTP header information. Debug mode in Plone (which we'll discuss in
the future) needs to be OFF in order for this feature to work correctly.

Finally, Firebug provides excellent error reporting, DOM explorer, and lots more.

Generally speaking, Firebug plus Web Developer Toolbar for Firefox are two tools
that are essential for Plone web site development, and it's recommended that these
two tools be in the toolkit of every Plone themer.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[31]

YSlow
Another essential add-on for Firefox is the wonderful YSlow. YSlow analyzes web
pages and tells you why they're slow based on the rules for high performance web
sites, and gives you the information you need to optimize your sites further. YSlow
analyzes any web page and generates a grade for each rule and an overall grade. If a
page can be improved, YSlow lists the specific changes to be made.

To activate it, click on the YSlow icon at the bottom of your browser.

YSlow will then grade your web site based on its performance against several
components. Clicking on any rule will take you to the page that contains suggestions
on how to improve in that area. A lower grade on something like "Make fewer HTTP
requests" could possibly be solved by using sprites instead of multiple images on a
page, for example.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[32]

Clicking on the expand arrow next to any rule will give you more specific
information about your web site, such as here, where we clicked on "Add an
Expires Header":

It's interesting to note that the rules are listed in order of priority, and so rules at the
top of the list are weighted more heavily than rules at the bottom of the list when
calculating the overall Performance Grade.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[33]

Clicking on the Stats button gives you an overall look at the statistics of the page;
for example:

The tool can crawl the entire DOM stack and give you an idea of what a user visiting
the site for the very first time would have to download. In this case, we're loading a
lot of images, and those images are primarily responsible for slowing down this site
on the first uncached visit to it.

Clicking on the Components tab shows us all of the items that are loaded when the
page is requested, listed by type.

There is also an option for using a few built-in tools. Clicking on the Tools
drop-down list provides an error log called JSLint, which allows all of the JavaScript
to be analyzed all in one step, as well as a dump of all of the JavaScript and CSS
that is loaded on the page. The Printable View option is used to send the overall
Performance Grade to other members of the team in a more readable fashion.

YSlow is an essential tool, and should always be used during the site
optimization process.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[34]

Colorzilla
Another handy add-on for Firefox is an advanced color picker named ColorZilla,
found at https://addons.mozilla.org/en-US/firefox/addon/271. After
installation, ColorZilla displays in the lower-left Firefox status bar. Clicking on the
color picker icon will allow you to mouse over any pixel in your Firefox window
and display the RGB and Hexadecimal value for that pixel.

You can then take those values and use them in your stylesheets, as necessary. If it
is awkward to select the specific pixel you want, ColorZilla also provides the ability
to zoom into a selection in your window. Right-click on the color picker to access
the Zoom menu and the contents of your browser will enlarge or shrink based on
your selection.

You can automate copying the selected color in either RGB or Hexadecimal format
by turning on the Auto Copy option under the Options menu.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[35]

Additionally, you can capture the entire color palette of that site and save it for
future reference. This can be especially helpful if you are creating a new web site
based on a specific existing color palette. To capture the palette, right-click and select
the Webpage Dom Color Analyzer option. The inspector will display the full palette,
and choosing the Save as colorzilla palette option will save it for future reference.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[36]

To access the palette again, right-click to pull up the menu and choose
Palette Browser.

Selecting the palette will allow you to click on the individual colors in the palette and
get the color values for each of the colors.

For more information on how to use this tool, reference the online help available via
the Help menu option.

Safari tools
Safari doesn't have nearly the kinds of CSS debugging tools that Firefox and IE have,
but running Firefox in tandem with Safari allows skinners to simultaneously do
browser testing while still making use of Firefox's debugging tools.

Safari's greatest strength is that it has a solid, extremely fast rendering engine that
can point to problems with your CSS. For example, I've been able to look at a site
in Firefox and in IE, and both display beautifully, but in Safari, the result might
look like half-rendered garbage. The offending code? A missing semi-colon. Other
browsers might swallow such minor errors, but Safari is diligent enough to render
your code exactly as it is written.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[37]

There is, however, a tool that may allow you to do debugging with Safari: Safari Web
Inspector/WebKit.

Safari Web Inspector
Without going into too much detail here, Safari WebKit is a nightly build of Safari
that has a web inspector enabled by default. Safari 4 has the web inspector built in,
but for Safari 3, it must be enabled via a command in terminal and a restart of Safari:

defaults write com.apple.Safari WebKitDeveloperExtras -bool true

If you choose to run the nightly build, you can get that here:
http://nightly.webkit.org/, but for most themers, it's not necessary.
Enabling the WebKitDeveloperExtras, as explained above, should be sufficient.
For more information, you can read here: http://www.usingmac.com/2007/12/2/
web-inspector-for-safari.

Activate the inspector by right-clicking on any object on a page. You will see an
inspect element option that can open a web inspector window.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[38]

The left pane displays the code for your web site, while the pane on the right side
displays the CSS applied to that particular selection, plus the styles applied to the
ancestors of that item. What's also helpful is the bottom status bar that allows you
to click from one element and upwards through each of the ancestors to inspect their
styles. The inspector gives you all of the relevant CSS information, including your
current place in the markup hierarchy, the final computed style, and a listing of the
other cascading styles.

While it is not possible to modify the computed styles in the right-hand pane, it is
possible to modify the styles in the hierarchy. Making a change and hitting Enter will
automatically make the change in your browser. This is similar to when you make a
change using Firebug works instantly. To reload and undo the changes, reload the
browser (not the inspector window).

Safari provides additional tabs at the top that allow you to see load time, inspect
JavaScripts, utilize a profiler, and work with a database. The first three tabs are
likely the only three you would use for theming a web site.

Overall, it has a clean, stripped-down interface that is a pleasure to use. The only
apparent downside is that it pops the inspector up in a separate window, which
means it requires slightly more real estate.

Validation tools
Having a good graphical editor and a solid set of CSS browser add-ons is a step in
the right direction, but as with any project, the proof is in the finished product.

At the end of every project, any good CSS themer needs to check his/her CSS and
his/her HTML for cleanliness and adherence to the W3C standard. The best resource
here is the official W3C validation web site, known as Jigsaw, which is used by the
Validate Local CSS and Validate Local HTML options available with Firefox's Web
Developer Toolbar.

We'll talk about this more in future chapters, but Plone gives us approximately
20 stylesheets out of the box that you can extend and override by using a stylesheet
named mytheme.css or similar.

This means that when using the Jigsaw service, it's important to fix the
inconsistencies located in mytheme.css, but there isn't much need to worry about
issues in the original Plone stylesheets, which are fairly clean already and the errors
Jigsaw points out are not that significant.

The only real downside of Jigsaw's validator (and pretty much every other validator)
is that it only works on live web sites, and not on web sites being run on localhost.
Hence, be sure to use the "Validate Local" options prior to deployment.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[39]

Text editors
The last key piece to successfully skinning a site is to choose a text editor or CSS
editor that matches your needs and plays well with Plone. We are not talking about
a word processor here, like Microsoft Word or Pages; rather, a text editor is a type
of program used for editing plain text files. Text editors are often provided with
operating systems or software development packages, and can be used to change
configuration files and programming language source code.

We'll look at a few of the more popular text editors that are appropriate for Plone
development and theming.

TextMate
TextMate is a combination of text editor and programming tool that is exclusively for
the Mac, and can be found at http://macromates.com.

One of the key joys of working with TextMate is that it lets you open up an entire file
structure at once to make navigation between related files easier. For Plone, this is
essential. Your average file structure will look something like this:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[40]

Rather than opening the entire buildouts folder, or even the plonetheme.
copperriver folder, generally you only want to open the structure closest to the files
you need in order to keep performance snappy—in this case, mybuildout[rockaway]/
src/plonetheme.copperriver/plonetheme/copperriver/:

As you can see, it opens the entire project in a clean interface with an easily
navigable structure. Without this feature, skinning for Plone would be much
more time-consuming.

TextMate also offers numerous programmer-related tools:

You can open two files at once (or more), and using the diff option you can
compare the files easily
Subversion (svn) support
Ability to search and replace in a project
Regular expression search and replace (grep)
Auto-indent for common actions such as pasting text
Auto-completion of brackets and other characters
Clipboard history

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[41]

Foldable code blocks
Support for more than 50 languages
Numerous key combinations (for example, Apple + T opens a search window
that makes it easy to locate a file)
Themable syntax highlight colors
Visual bookmarks to jump between places in a file
Copy/paste of columns of text
Bundles
And much, much more

The Bundle feature is one of the more interesting aspects of the tool. If you look at
the HTML bundle, for example, it shows a list of common actions that you might
wish to perform in a given document, and on the right, the code that spawns that
action, and the hot-key that activates it.

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[42]

There's even a Zope/Plone TextMate support bundle found at
http://plone.org/products/textmate-support that was developed
by some of Plone's core developers. It enhances TextMate's already existing
support for Python, XML, (X)HTML, CSS, and Restructured Text by adding
features aimed specifically at the modern day Zope and Plone developer.

For the geeks in the audience, the bundle's features include: Doctest support
(restructured text with inline Python syntax and auto-indent of python code), pdb
support (for debugging), ZCML support (no more looking up directives with our
handy and exhaustive snippets), and a ZPT syntax that marries the best of both
worlds (XML strictness with the goodness of TextMate's HTML support). This
bundle plus TextMate's other capabilities make switching to developing for Plone
on a Mac a good idea any day!

As well as assigning a single key equivalent to a bundle item, it is possible to assign a
tab trigger to the item. This is a sequence of text that you enter in the document and
follow it by pressing the tab key. This will remove the sequence entered and then
execute the bundle item. TextMate is full of hot-keys and features in general, yet it's
surprisingly compact. Thankfully, the documentation is thorough.

TextMate is a dream for themers and programmers alike. For those who are still new
at CSS, another tool might be a good place to start, but for power users, TextMate is
the primary tool of choice.

CSS Edit
CSS Edit (not to be confused with CSS Manager, a Plone add-on), is a lovely,
easy-to-use CSS tool for OS X. It can be purchased at http://macrabbit.com/
cssedit for around $30.00.

To get started, click on the Add Site URL button. It allows you to navigate to either
a localhost site or a live site. Next, click on the Inspector button. An inspector pane
pops up that is updated as soon as you click on an element on your page. The
element is also highlighted nicely and shows arrow indicators if you want to
click to expand to the containing object and show the parent's CSS instead.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[43]

Expanding the arrow to the right of the Make A Difference button in the above
screenshot selects the ID globalnav-wrapper, as indicated here and in the top
hierarchy bar.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[44]

If you select one of the styles in the black Applied Styles window, it pops up
a message that asks if you wish to override an existing stylesheet with a local
stylesheet. Answering in the affirmative opens a small CSS editor window where
you can make additional changes, see the immediate effects, and still access the
Applied Styles window/navigator.

In this case, I opted to let it extract all of the CSS from my theme product's main
stylesheet, wec.css. This prevents the issue of having to integrate your changes from
a blank stylesheet into your core stylesheets, though you could optionally do that.

In order to test the functionality of this product, it requires you to
purchase the product if your site has over 2500 characters of code in it.

According to the developers of CSS Edit, it offers real-time styling of absolutely
any web page. Even if your site is powered by a complex database or makes use
of advanced AJAX, you can style and analyze it without the hassle of uploading
or refreshing.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[45]

The Selector Builder lets you describe what elements to style in plain English.
Advanced CSS selectors have a steep learning curve, but with this product there is
help. In the case of some of the more convoluted areas of Plone to style, such as the
navigational structures, this feature is helpful.

You can also take advantage of a feature called CodeSense. Instead of merely
suggesting a list of predefined keywords, it analyzes your stylesheet and behavior
to offer context-sensitive suggestions.

Additionally, you can use the Validation inspector to check your site against
W3C conventions.

Finally, using a Milestones interface, you make big changes without any risk of
losing your work, and still have the option to roll back.

All in all, this is a slick tool. It's a bit pricey, but for people who want a little extra
assistance with their CSS, it's invaluable.

The downside of this tool is actually not the tool itself: it's Plone. For themers who
will be working on the filesystem, you'll quickly learn that Plone's file structure is
scattered, and it's important to be able to access the various pieces and parts quickly;
this tool doesn't provide that flexibility. Ultimately, this tool is best for CSS-only
tasks, not for filesystem development of themes. As Plone development evolves and
the Deliverance and collective.xdv tools for theming (covered in the last chapter)
becomes more of a reality, this tool may have more applicability.

E Text Editor
As a Windows alternative to TextMate, E Text Editor provides much of the same
functionality (http://www.e-texteditor.com/) for a mere $34.95.

It can automate manual work via snippets, and it supports Text Mate bundles. It
gives you access to the full range of UNIX shell tools and lets you extend "e" with
your choice of languages such as Python and Ruby. Moreover, "e" users get the
luxury of a personal revision control system. As with TextMate, you can even open
up a directory full of files all at once, which can be invaluable in Plone development.

As a Windows-based text editor, "e" is an excellent first choice.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Skinner’s Toolkit

[46]

Notepad
As a text pad alternative for Windows users, the Windows default, Notepad will
certainly suffice. Notepad does not support formatting of any kind. If rich text is
copied from a web page and pasted into Notepad, then copied again from Notepad
before being pasted into a destination program, Notepad will have stripped all of
the formatting. This can be very handy when dealing with the HTML that is pasted
into kupu (Plone's visual editor), but it doesn't help much in terms of working with
code in Plone. It doesn't give you shortcuts, bundles, or helpful highlighting, but as a
straight text editor, it does the trick.

As an interesting aside, Notepad does support both left-to-right and right-to-left
based languages, and one can alternate between these viewing formats by pressing
and releasing the arrow key followed by Ctrl+Shift, using the right or left arrow and
shift keys to go to right-to-left format or left-to-right format, respectively.

Notepad can edit files of almost any format; however, it does not treat Unix- or
Mac-style text files correctly, but another text editor, Wordpad, does.

WordPad
A slightly more sophisticated text editor for Windows, WordPad is also a fine choice,
though still lacking in Plone-specific features. WordPad supports Rich Text Format
(RTF), which doesn't help us much, but it does allow files shared between OS X and
Windows to be read correctly. If you're using it solely as a text editor, you'll be fine.

Dreamweaver
Sometimes regarded with a little snobbery, Dreamweaver could hypothetically be
used if no other options exist for Windows or OS X users. Using the code layout
view is really the only part that makes it usable in Plone development. Unfortunately,
Dreamweaver tends to be a bit of a memory hog and can be a little slow. Additionally,
you can't open up a directory containing multiple files, which means it will slow
themers down significantly. In investigating it for this chapter, it was not possible to
open .pt (page template) files using Dreamweaver, which is a deal breaker, as page
templates are certainly part of the theming process. It's not known if this is merely a
configuration error, but several attempts at configuring Dreamweaver to open .pt
files failed.

All in all, Dreamweaver is intended for editing CSS and HTML files, and without
page template support, it has limited use for Plone themers.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 2

[47]

Summary
In this chapter, we have learned:

What graphic design tools are appropriate for theming a web site and why
What browser add-ons are available for helping to debug a web site's CSS,
JavaScript, color palette, and more
How to validate your CSS against W3C conventions
What text editors are appropriate when developing for Plone and why

Now that you have the tools available to approach the skinning process, we will next
address the dependencies needed to run Plone, create a development environment,
generate a base theme product, and get an understanding of the overall file structure
in preparation for making deeper modifications.

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Setting up your Development
Environment

The next steps for skinning effectively are getting your development environment
configured and building the scaffolding for a theme product. It is also important
to learn some of the jargon associated with Plone 3 development so that you can
understand the development environment and how to use it.

Buildout and you
Prior to Plone 3, setting up Plone was fairly straightforward: you installed Plone
and dropped all of your Plone add-on products into a Products directory. Making
modifications meant that you simply edited a template and your changes showed
instantly. While that sounds simple (and for themers, it was), it was not flexible
or repeatable, and resulted in the development of monolithic products that were
difficult to distribute or reuse and could only be used in the context of Plone.

Since Plone 3, the development environment has moved toward a more pluggable
"egg-based" environment. Eggs are a way to package and distribute Python
packages, with certain metadata intact. The Python library that powers the egg
mechanism, setuptools, is able to automatically locate and download dependencies
for eggs that you install. This technology means that it is easier to create shared,
repeatable, and easily-configurable development or staging environments.
The Plone community has also standardized on the buildout system for
managing complex configurations so that they are flexible and repeatable.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Setting up your Development Environment

[50]

While using buildout seems like a lot of overhead for themers (and in fact, it can
seem downright scary), Plone has made it easy by distributing the Plone installers
with buildout by default. Also, theme products are now egg-based, and can be easily
installed just like any other Python package—generally, just by adding a few lines of
code to a configuration file.

We will take advantage of the default buildout generated by Plone, although it is
possible to create buildout environments specific to your own needs separate from
the installer. It's not important to understand everything about buildout, but with a
few key pointers, it's relatively simple for themers to get started. Much of buildout is
documented on plone.org, but the goal in this chapter is to show themers only the
pieces they need to care about.

Understanding the terminology
Before we begin, we need to get a general introduction to some of the terminology
associated with Plone development. Don't worry if the terms sound overly technical;
in many cases, themers do not need to know about these terms in much detail.

Buildout:
A buildout is a self-contained environment where you can manage the dependencies
(including Zope and Plone and any third-party products or libraries you need) and
custom code for your project. Even if you are not planning on writing any custom
code, the buildout approach is an easy way to install Plone in a robust, well-tested
manner. It is documented thoroughly on plone.org and by Jim Fulton of Zope
Corporation at http://buildout.zope.org/. When you install Plone, you are
automatically given a working buildout.

Zope installation:
This is what you get by downloading and compiling Zope, or using one of the binary
Zope installers. Downloading Plone and installing it gives you a Zope installation
with Plone sitting on top of that installation. Zope is the application-server
framework upon which Plone is built. Again, when Plone is installed, Zope
comes with it.

Zope instance:
One Zope installation can support multiple instances, or runnable Zope servers.
Within each instance, you can have many Plone sites. We will let buildout create
and configure a Zope instance for us.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 3

[51]

Instance home:
The Instance home is the path to the current Zope instance, which houses the Zope's
configuration and data files.

Python path:
Plone uses Python, and while Plone is running, the Python interpreter looks for
modules in one or more folders, known as the pythonpath. It is essential that the
interpreter uses the correct Python path. Buildout and Plone's installers set your
pythonpath by default, so you will not normally have to adjust this. This can be an
area of confusion if you have a non-standard setup. If in doubt, ask on the Plone user
lists how to adjust your pythonpath. When Zope is running, it typically includes
the global Python modules making up the standard library, the interpreter's
site-packages/ directory (where third party "global" modules and eggs are
installed), and the Zope instance's home. Buildout generally controls which
additional eggs are loaded.

Python package:
A Python package is a general term describing a redistributable Python module.
At the most basic level, a package is a directory with an __init__.py file and
some Python code.

Zope product:
A Zope product is a special kind of Python package used to extend Zope. In
old versions of Zope, all products were directories inside the special Products
directory of a Zope instance and would have a Python module name beginning
with Products. For example, the core of Plone is a product called CMFPlone,
known in Python as Products.CMFPlone. We will use some of the files in the
CMFPlone product during the skinning process.

Python egg:
As stated before, eggs are a way to package and distribute Python packages.
Eggs contain metadata such as the author's name, email address, and licensing
information, as well as information about dependencies. Plone themes created
using current technology are considered eggs.

Setuptools:
Setuptools is the Python library that powers the egg mechanism. It is able to
automatically sniff out and download dependencies for eggs that you wish to install.
You can read more about eggs at the PEAK web site: http://peak.telecommunity.
com/DevCenter/PythonEggs.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Setting up your Development Environment

[52]

PyPI or the Python Package Index (also known as The Cheese Shop):
Named after a Monty Python sketch, PyPI is a repository that hosts thousands of
Python packages: http://pypi.python.org/pypi. You can browse this if you are
looking for a particular package, and developers can also add their own packages to
this repository. More importantly, buildout and the easy_install script can query
this index to download and install eggs automatically. Many eggs are now also
stored in the Plone Subversion respository, which is set up as a PyPi server.

easy_install:
Easy_install is a console script that can be used to search the PyPi and other
repositories, and then install those packages into the global Python environment.
Generally speaking, we will only rarely use easy_install to install eggs, as
easy_install doesn't give us adequate control over which eggs are active; our
buildout will take care of egg installation.

Namespace package:
Namespaces are a mechanism used by advanced programming languages, such
as Python, to help programmers control complexity and avoid name collisions.
A namespace package is a feature of setuptools that makes it possible to distribute
multiple, separate packages sharing a single top-level namespace. For example,
the packages plone.theme and plone.portlets both share the top-level "plone"
namespace, but they are distributed as separate eggs. When installed, each egg lives
in its own directory (or possibly a compressed archive of that directory). Without
namespace packages, we would have had to distribute one giant Plone package, with
a top-level plone directory containing all possible children, for instance plone/theme
and plone/portlets. Instead, we can break these into manageable eggs.

The following is a screenshot of a Plone buildout that holds eggs, as illustration.
Notice in particular the eggs named plone.app.content, plone.app.layout,
and plone.app.portlets. For themers, these are the three most important parts
of the Plone tree to be concerned with, in addition to the before-mentioned
CMFPlone product.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 3

[53]

PasteScript:
PasteScript is a pluggable command-line front-end that includes commands to
set up package file layouts. Specifically, it allows you to create file layouts for
packages. It is not necessary to install PasteScript, but it is necessary to install
ZopeSkel if your Plone installer does not do this for you (and it does if you are
using the newer installers).

ZopeSkel:
ZopeSkel is a powerful set of PasteScript templates that allows you to use the
paster command to generate common Plone boilerplate and skeleton products.
Don't confuse paster templates with page templates, which we'll talk about later.
Paster templates are not templates you edit, but rather templates that allow you to
create a Python product, such as a theme product.

Paster:
Installing ZopeSkel automatically installs the paster command that uses PasteScript
to create setuptools-based packages, including a skeleton theme product. Using a
simple command, you can create a new theme product in less than a minute.

Now that we've had some introduction to the basic terminology for Plone, let's build
our development environment.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Setting up your Development Environment

[54]

Setting up your development
environment
In order to get set up and start theming, we first must get the development
environment set up. This generally consists of installing Subversion (optional, but
highly recommended), and of course, installing Plone and all of its dependencies.

Subversion for version control
The importance of version control cannot be underestimated in the development
process, especially where teams are concerned. It can also be valuable for a team of
one person, if only to keep your product safe and up-to-date in a central location,
known as a repository. It's not required, but serious themers will find it invaluable.
Subversion is not included by default with a Plone installation.

Subversion is a free/open source version control system originally started by
Collabnet: http://www.collab.net/. It manages files and directories and the
changes made to them, over time. Subversion, often referred to as "svn", allows
you to recover older versions of your data, or examine the history of how your
code changed. In this regard, you can think of a version control system as a sort
of "time machine".

Over the course of a project, it's especially important to check in your product's
changes in stages. In Plone, you generally want to check in your theme product
immediately when you create it, after significant coding is done that does not
adversely affect other Plone products, and at the tail end of your project. You will
likely make numerous small check-ins until all of your code is safe in Subversion.

Hardy command-line users control their svn repositories with svn ... command
lines. But, there are excellent graphical interfaces available for Subversion on every
major platform. Many of these integrate with Explorer (on Windows) or Finder
(on OS X). The Subversion bundle that ties into TextMate makes it extra helpful to
keep your projects in sync.

Generally, if you are not using Leopard (OS X), you will need to install the
Subversion client: http://subversion.tigris.org/getting.html.

Macintosh users who have MacPorts can also install it by typing the following into a
terminal window:

sudo port install subversion

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 3

[55]

MacPorts is an optional tool for Mac OS X that makes installing UNIX
software easy, and can be found here: http://www.macports.org/.
It's wonderful, but should not be needed by most theme-development
level OS X users. We can use it to install GCC, Python, Python
modules, Subversion, and other UNIX-based tools. The MacPorts Plone
kit is extremely out of date, however, and should not be used.

Alternately, Subversion support for OS X users is provided by the XCode tools.
However, it only provides support for Version 1.5 and above, and you need to have
a local version of Subversion that matches the version of your Subversion repository.

Up-to-date copies of XCode are available for free on Apple's developer
site: http://developer.apple.com/tools/xcode/. Downloading
XCode may take several hours, and since it's included on the Tiger and
Leopard distribution disks, it is much faster to just run the installer from
the disks. You're generally going to need XCode no matter what, so it's
best to just go ahead and install it.

Macintosh users who want a tool with a graphical interface may prefer Cornerstone
(http://www.zennaware.com/cornerstone/), a client which is especially helpful
for Subversion newbies. A full version of Subversion is actually baked into the
application, which means that you don't need to install Subversion on Tiger.

If you are running Debian or Ubuntu Linux, use this command to install Subversion:

aptitude install subversion

Windows users, meanwhile, may find the graphical TortoiseSVN client useful:
http://tortoisesvn.tigris.org/.

If you use Fink, then you should install the svn client package:
http://fink.sourceforge.net/pdb/package.php/svn-client.

For information on how to use Subversion and how to create a repository, you can
refer to any number of web sites. You should also keep handy the commonly used
Subversion Reference Card: http://svnbook.red-bean.com/en/1.2/index.html.

If you are creating multiple Plone sites, it's absolutely crucial to use Subversion, and
it's a relief to know that even if your hard drive dies, your code is safe.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Setting up your Development Environment

[56]

Download Plone
The first real step in getting set up is to download and run a Plone binary installer:
http://www.plone.org/products/plone. If you have a newer installation, all
dependencies should be installed by default, your buildout is already bootstrapped
(bootstrapping is a command that makes your buildout usable), and you're readybootstrapping is a command that makes your buildout usable), and you're ready, and you're ready
to start!

As of Plone 3.2, all of the installers are generally consistent, and will3.2, all of the installers are generally consistent, and will of the installers are generally consistent, and will
install most of the dependencies required for each operating system.
That means that much of what you read next about the dependencies
can be largely ignored, but we've included the information here for
your edification.

If you are using an older Plone installation, or you wish to create a standalone
buildout, you will need to create one via the command line, bootstrap it, andbootstrap it, and it, and
possibly install a few dependencies. You can find instructions on this here:
http://plone.org/documentation/tutorial/buildout/creating-a-buildout-
for-your-project.

All of the Plone installers come with buildout since Plone 3.2, while the Unified
Installer for Linux has included buildout since Plone 3.1.

The binary installers have no dependencies at all. They install everything you
need. With 3.2, this includes easy_install, setuptools, ZopeSkel, and all
their dependencies.

The Unified Installer, though, has several dependencies. All of those dependencies
are GNU build tools that are typically present on any Linux, BSD, or Solaris
development box. The dependencies are also fulfilled on OS X by the XCode toolkit.

Anyone using an OS X box for theme or product development should use the OS X
binary installer. You'll benefit from a GUI installer and launcher. For themers, this is
generally what you want.

Anyone installing on an OS X server should probably install XCode and use the
Unified Installer for greater flexibility. You'll also need a custom buildout when
working off of a server.

Macintosh dependencies for the Unified Installer
There is one important dependency when using the Unified Installer that must be
resolved for Macintosh users, but thankfully, this dependency is now handled by
the newer installers, and by XCode:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 3

[57]

GCC (GNU Compiler Collection):

GCC is an integrated distribution of compilers available for several major
programming languages.

Windows dependencies for the Unified Installer
The newer Plone binary installers take care of all of the Windows dependencies,
and you can just install it and go. Note that nobody but a very serious developer
should even consider installing their own GCC, Python, and so on. What they get
from the Plone Windows binary installer is more than adequate for theme- and
product-level development.

However, if you really want to install Plone on Windows without using the
binary installer, there are a few additional things you need to do to satisfy Plone's
dependencies. (Additional information can be found here: http://plone.org/
documentation/how-to/buildout-using-windows-installer.)

If you're using the unified installer, you'll need to get and install the Python Win32
extensions for Python 2.4: http://downloads.sourceforge.net/pywin32/
pywin32-210.win32-py2.4.exe?modtime=1159009237&big_mirror=0.

If you intend to compile Zope yourself, rather than using a binary installer, or if
you ever need to compile an egg with C extensions, you will need the mingw32 or
Visual C compilers. If you use the freely available mingw32, make sure you choose
the "base" and "make" modules at a minimum when the installer asks. By default,
this installs into C:\MingW32. Inside the installation directory, there will be a bin
directory; for example, C:\MingW32\bin. Add this to your system PATH.

Finally, you need to configure Python's distutils package to use the mingw32
compiler. Create a file called distutils.cfg in the directory C:\Python24\Lib\
distutils (presuming Python was installed in C:\Python24, as is the default).
Edit this with Notepad, or "e" (the Windows TextMate clone), and add the following:

[build]
compiler=mingw32

Operating system agnostic dependencies
For most of the following items, you will not need to worry but links and instructions
on how to use them are included, just in case you are using an older installer.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Setting up your Development Environment

[58]

Python 2.4:
Plone depends on Python 2.4.x. Other versions are not compatible. More recent Plone
installers include the correct version of Plone by default. Using the wrong version ofUsing the wrong version of
Python is one of the more common mistakes made by new themers, especially in the
case of Macintosh users, as OS X provides Python 2.5 as the system Python.

PIL (Python Imaging Library):
PIL can be downloaded from PythonWare's site:: http://www.pythonware.com/
products/pil/. The most recent version should be compatible. Plone gives us this
for free.

Wget:
GNU Wget is a free software package for retrieving files using HTTP, HTTPS, and
FTP—the most widely-used Internet protocols. For the next step, you'll need to
download Wget here: http://www.gnu.org/prep/ftp.html.

easy_install:
To install ZopeSkel, you first need to have easy_install on your system. If you
don't, download and run ez_setup.py (http://peak.telecommunity.com/dist/
ez_setup.py); for example:

 $ wget peak.telecommunity.com/dist/ez_setup.py

 $ python ez_setup.py

ZopeSkel:
To install the ZopeSkel egg and its dependencies (including PasteScript), run:

 $ easy_install -U ZopeSkel

This will install the paster command in the place where your Python binaries go.
Keep an eye on the output of easy_install if you can't find it afterwards. If it's not
in your $PATH, you may want to symlink it in there.

Buildout: The Plone filestructure
Now what, you ask? Assuming you've installed Plone using a binary installer, you
now have a buildout-configured version of Plone sitting on your operating system
and you're ready to generate a theme add-on product.

First, though, let's examine the buildout filestructure to see what makes development
environment so special. If you open your buildout, you will see a tree structure
similar to the following. As time goes on, the structure may change slightly:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 3

[59]

Plone
 Python-2.4
 buildout-cache
 eggs
 downloads
 mybuildout/
 bin/
 buildout.cfg
 develop-eggs/
 parts/
 products/
 readme.txt
 src/
 var/
 logs/
 filestorage/
Zope-2.10.7-final-py2.4

Windows users, please note that we'll be using a forward slash to separate
the parts of a file path. Please mentally replace these with backslashes.

This structure has evolved a bit, in that the the eggs/ and downloads/ subdirectories are
moving to a buildout-cache where they may be shared among several instances.
Let's look at the directories provided by buildout:

bin/:
Contains various executables, including the buildout command, and the instance
Zope control script for starting Zope (./bin/instance fg runs your Zope instance
in the foreground for debugging purposes).

parts/:
Contains code and data managed by buildout. In our case, it will include the local
Zope installation, a buildout-managed Zope instance, and Plone's source code. In
general, you should not modify anything in this directory, as buildout may overwrite
your changes.

buildout-cache/eggs/:
Contains eggs that buildout has downloaded. These will be explicitly activated
by the control scripts in the bin/ directory (./bin/buildout, for example). On
occasion, you may wish to add a new egg here, but the average theme-level
developer will never have a need to do so. This folder should be regarded just
like parts/, which will be managed by buildout.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Setting up your Development Environment

[60]

buildout-cache/downloads/:
Contains non-egg downloads, such as the Zope source code archive. You will rarely
use this directory. This folder should be regarded just like parts/, which will be
managed by buildout.

develop-eggs/:
This folder is useful for programmers wishing to do development on eggs. It differs
from the eggs directory, in that it keeps the egg separate until development is
complete. It's generally maintained by buildout.

var/:
Contains the log files (in var/log/) and the file storage ZODB data
(in var/filestorage/Data.fs). This is also where you would put existing
data.fs files if you are skinning around an existing site, migrating a database,
moving an entire site to a new server or instance, or for creating multiple mount
points. We'll cover mount points in a moment. Buildout will never overwrite
these files.

src/:
Initially empty. You can place your own development eggs here and reference
them in buildout.cfg. For theme development, your theme products will go in
the src/ directory.

products/:
This directory is analogous to a Zope instance's Products/ directory (note the
difference in capitalization). Old-style (non-egg-based) Zope 2 products belong here,
not newer theme products. Note that themers will rarely need to use this directory,
but some publicly available themes on plone.org were not built with paster and
might belong in this directory.

The important takeaway here is that:

You will use a terminal window to execute commands in the bin/ directory
to start and stop your Zope instance
You will use the src/ directory as the primary directory in which to work
You may need to make changes to your buildout.cfg file to recognize
data.fs files located in the var/ directory and any new theme products
that you may have added to the src/ directory

Other than that, you really don't need to know a lot about how buildout works.
You just need to know a few basics, which we'll get to in the next chapter.

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 3

[61]

Summary
In this chapter, we have learned:

How buildout fits into the Plone development process
What terminology is commonly used in Plone development
How you can use Subversion to safely store your code in a central,
versioned repository
How to set up your development environment
What the buildout filestructure looks like, and what parts of it are important
to themers

Now that we have our development environment set up, let's create and install a
theme product and get started!

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Create and Install a
Theme Product

The next steps are to learn how to create a vanilla theme product and install it so that
we can begin customizing it.

Generating your theme product using
paster
Now that we have a working buildout and working instance of Plone, we will
generate our skeleton theme product using paster. As mentioned in the previous
chapter, installing Plone gives us paster by default. If you don't get paster by default,
follow the instructions in the previous chapter to install easy_install and ZopeSkel
on your system.

Newer installers will be getting paster under the control of buildout so that paster
is always available at bin/paster (from your instance directory). ZopeSkel will
also be under the control of buildout so that it is updated when buildout is run in
"newest" mode. This means you'll always be able to get the most recent updates to
paster and ZopeSkel.

Available templates
A number of paster templates (not the same as page templates) are available to Plone
developers for developing different types of Plone products, including themes. To
see the available templates, you can run:

$ paster create --list-templates

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Create and Install a Theme Product

[64]

This command will give you an output like the following:

Your output may show different templates than you see here, as new recipes are
created all the time. (The plone3_theme_ootb is a recipe I use internally, as it
tweaks folder names and some of the boilerplate to suit my personal preferences.)
Most themers will want to use the plone3_theme recipe, which is the official Plone
theming recipe.

Generating your product
Navigate to your Plone product via your terminal tool, and drill down to the
directory called src/. Then, type this text into your terminal window:

$ paster create -t plone3_theme

The paster recipe will then ask you a series of questions. You usually want to
accept the defaults here (just hit the Enter key), but not always. We'll see the
reason in a moment.

[bash: /opt] paster create -t plone3_theme
Selected and implied templates:
 ZopeSkel#basic_namespace A project with a namespace package
 ZopeSkel#plone A Plone project
 ZopeSkel#plone3_theme A Theme for Plone 3
Enter project name: My Theme
Variables:
 egg: My_Theme

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 4

[65]

 package: mytheme
 project: My Theme
Enter namespace_package (Namespace package (like plonetheme))
 ['plonetheme']:
Enter package (The package contained namespace package (like example))
 ['example']: mytheme
Enter skinname (The skin selection to be added to 'portal_skins' (like
 'My Theme')) ['']:
Enter skinbase (Name of the skin selection from which the new one will
 be copied) ['Plone Default']:
Enter empty_styles (Override default public stylesheets with empty
 ones?) [True]: False
Enter include_doc (Include in-line documentation in generated code?)
 [False]:
Enter zope2product (Are you creating a Zope 2 Product?) [True]:
Enter version (Version) ['0.1']:
Enter description (One-line description of the package) ['An installable
 theme for Plone 3']:
Enter long_description (Multi-line description (in reST)) ['']:
Enter author (Author name) ['Plone Collective']: Veda Williams
Enter author_email (Author email) ['product-developers
 @lists.plone.org']: veda@onenw.org
Enter keywords (Space-separated keywords/tags) ['web zope plone theme']:
Enter url (URL of homepage) ['http://svn.plone.org/svn/collective/']:
Enter license_name (License name) ['GPL']:
Enter zip_safe (True/False: if the package can be distributed as a .zip
 file) [False]:

A few key points on these questions:

The text in the square brackets is the default answer, and pressing Enter
allows that default to be accepted. Or, you can type the preferred answer
if it is different from the default.
project name corresponds with the name of your theme. This might be your
client's name or the name of the web site for which you are building a theme.
namespace package is usually plonetheme, but you could name it after your
company, if you wish to brand your theme.
package name is usually a short name for your theme, and one word is
generally advisable here, as packages with spaces in their names do not
get correctly picked up by buildout.

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Create and Install a Theme Product

[66]

skinname is frequently several words, with case sensitivity. This is the name
of the theme that you will see when installing it, so make it meaningful.
For version, zope2product, and zip_safe, you should accept the defaults.
One question that requires consideration is empty styles, which determines
whether you wish to override default public styles with blank stylesheets.
While this is a quick way of suppressing stylesheets, it can feel a little less
elegant, a little unusual too. However, it's worth noting that this is the
cleanest way of suppressing stylesheets. If you attempt to suppress
stylesheets by altering the boilerplate code using GenericSetup, it
suppresses them across your entire Plone site, not just within your own
theme product. This means that you can't easily layer themes on top of
each other if one theme product out of them uses the stylesheets mentioned
above and one does not. Again, don't worry too much about this. For new
users to Plone and CSS, you likely want to say False. Or, if you always
prefer to build on top of the stylesheets that Plone provides you, rather
than starting from scratch, you might want to say False. This is purely a
personal preference, though it's worth stating that the Plone's stylesheets
are quite robust.
include_doc determines whether certain documentation will be included
with your product. This can be helpful, especially when you're first getting
used to the theming process.
It's important to type True or False with case sensitivity, otherwise the
default option will be selected.

If you've followed the above instructions, you should now have a vanilla theme
product in your src/ directory that can be installed and customized.

Filestructure of a plone3_theme product
Next is a screenshot of a typical Plone 3 theme, outputted using the plone3_theme
recipe. We'll examine first the filestructure, then look at a few of the relevant files
that define the filestructure.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 4

[67]

Generally speaking, you only need to worry about what is in the folder here called
mynewtheme. The code above is just a standard boilerplate.

There are two folders that have similar purposes here: browser/ and skins/.
The distinction between these two folders is that Zope 3 items go in the browser/
directory, whereas old-school and non-Zope 3 templates go in the skins/ directory.
For a novice themer, that may just sound like a lot of jargon, but to clarify, the
browser/ folder will hold all templates and viewlets that are derived from the
plone.app.layout and plone.app.portlets eggs, as well as any other packages
you may wish to override. We'll talk about this more soon. Items that are derived
from the CMFPlone product will go in the skins/ folder.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Create and Install a Theme Product

[68]

Optionally, if there's a reason to expose images or stylesheets to other products, you
might want to put those items in the browser/ folder. An example might be this:
you have a shopping cart installed, and users want to be able to modify the buttons
or styles to match those buttons and styles to an underlying product's look and
feel each time. However, this is a fairly rare use case. Your images and stylesheets
will normally live in the skins/ directory unless you have a clear reason why they
should not.

The skins/ directory will hold not only images and stylesheets, but also Python,
JavaScripts, and any portlet code that doesn't rely on the component architecture.

In a nutshell, the Zope Component Architecture (ZCA) is a
Python framework for supporting component-based design and
programming. ZCA is about how to create reusable components,
but it does not provide components by itself.
It's not important to know more about this right now, but you can read
"Professional Plone Development", Martin Aspeli, Packt Publishing
or some of the tutorials on plone.org for more information. We'll be
focusing more on the patterns that we'll follow than on the "WHYs"
behind them.

In the event that you need to modify main_template.pt from CMFPlone
(occasionally needed these days), you would place your modified main_template
in the skins/ directory too. Any templates that come from CMFPlone will also go in
this directory.

Another directory that is useful here is the profiles/ directory. This directory will
hold GenericSetup files (XML files that describe the underlying behavior of a skin
product, or site configuration). In other words, this directory holds files that allow
you to register stylesheets, JavaScripts, add/remove tabs, menu items, and more.
It can also hold files that aid in uninstalling a product by describing what the end
result should look like. We'll cover GenericSetup in detail later.

It's important to realize that the structure of your theme product isn't set in stone,
and that's ultimately where the power of Plone becomes evident. When you get used
to modifying ZCML and XML (we'll see more of this later), you'll have the ability
to alter names of folders, remove code from the browser/ directory, rename your
theme, and more.

Do not be afraid to make changes, but always start your Zope in the foreground
when you are making changes to your theme product, to spot any problems in your
boilerplate code. In the case of changes to XML files, you'll also have to remember to
import those files, which we will cover in a bit.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 4

[69]

Let's look now at how to add our theme product to our buildout, so that we can
install it.

Adding your theme product to your
buildout
Our theme is a Python package by default, which means that it is ready to be
"eggified" for easy distribution, but it's not an actual egg yet. An egg is a sort of
hard-boiled Python package. Eggs don't include setup.py or various other parts
of the package. Our theme product, however, does contain these parts.

Since we are still in development, we want to put our new skeleton theme product
into the src/ directory, which is where we originally generated it. Open your
buildout.cfg file located in the root of your buildout.

If you are working with a production buildout, you can optionally
create a new configuration file, called development.cfg, and make
your modifications there. This can help to provide slightly different
setups while in development mode versus production mode. For
example, you wouldn't want PDB (debugger) to be available in a
buildout on a production server, but you might very well want that
to be part of your development buildout.

Open your buildout.cfg file, and make the following modifications in the
develop and eggs and zcml parameters of the [buildout] and [instance]
sections respectively, based on how you answered the questions when you ran
the paster recipe:

[buildout]
develop =
 ... [other eggs here] ...
 src/plonetheme.mytheme
 # this tells buildout that it's a development egg, and that
 # it should find it in the src directory rather than fetching
 # from a repository.
... [other code here] ...

[instance]
eggs =
 ... [other eggs here] ...
 plonetheme.mytheme
 # this tells buildout that you'll be using your theme
 # with Plone.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Create and Install a Theme Product

[70]

zcml =
 ... [other zcml slugs here] ...
 plonetheme.mytheme
 # this tells zope that your product exists

These sections may not follow exactly each other in the buildout.cfg file, so be
careful to add your code in the right place.

Since we have made changes to your buildout, you now need to rebuild your
buildout with the following command for these changes to be read by Zope. You
should be in your buildout's directory when you run this command. It might be
named zinstance or similar, depending on how your buildout is set up. Just make
sure you’re above the bin/ directory.:
./bin/buildout

You may use the following command to run buildout offline, if you don't need any
new, external components—it's a good bit faster:
./bin/buildout -o

Advanced users may optionally want to look into the eggtractor egg
(http://pypi.python.org/pypi/buildout.eggtractor) to cut
down on some of the boilerplate needed in buildout.cfg when adding
new eggs to the src/ directory.
Similarly, in cases where you have modified your ZCML (adding an egg),
you can often avoid rerunning your buildout by including an egg called
plone.reload (http://pypi.python.org/pypi/plone.reload)
in your buildout and going to http://localhost:8080/reload and
choosing the "Reload Code and ZCML" option.
A third egg that helps to developers by consolidating the buildout tree
structure (and thus making code easier to locate) is omelette (http://
pypi.python.org/pypi/collective.recipe.omelette). Follow
the ReadMe files for these eggs to understand how to install them.

Starting Zope and installing your product
on a Plone site
After running your buildout, start your Zope in the foreground (extremely helpful
during development, as it displays errors in your terminal window). All the installer
buildouts will start with bin/plonectl start. It (bin/plonectl fg) will run a
standalone install in foreground, which is useful for debugging.

Type:
./bin/plonectl fg

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 4

[71]

You'll know your Zope is working when you see the phrase, "INFO Zope Ready to
handle requests".

Once Zope is up and running, you can connect to its management interface from
any web browser. We'll assume in this chapter that Zope is running on port 8080,
which is the default. In your browser, go to http://localhost:8080/manage_
main and log in using admin/admin as your username and password. Optionally,
at this point, you can create a new user in the acl_users area of the ZMI (Zope
Management Interface), create a secure password for that username, and assign
manager permissions.

Creating a Plone site
As of Version 3.2, all the installers will create a Plone site by default. If one is not
created, or you wish to create a different one, from the ZMI choose Plone Site from
the Add pop-up list. You should not need to select a profile at this time, although
you could do so if you know that you will be building on top of a policy product
that will control generic settings that you want to repeat from project to project.

Once you add a site, you will be able to navigate to your new site by selecting the
new site and clicking on the View tab. You should see the following result (notice
that default Plone styles are applied):

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Create and Install a Theme Product

[72]

Advanced users may wish to skin against a data.fs file from an existing
site. If so, you will want to create a mount point at the root of your Zope
instance, instead of a standard Plone site. For more information, read this
documentation:
http://www.plope.com/Members/chrism/whatsnew_27.

Installing your Plone theme
To install your theme on a Plone site, go to Site Setup | Add-on Products and
select your theme product, or go to your site in the ZMI, and navigate to portal_
quickinstaller via http://localhost:8080/newsite/portal_quickinstaller/
manage_installProductsForm.

Choose your product from the list of installable products. If you do not see your
theme present, you have not correctly registered it in your buildout.cfg file.

Click on the checkbox next to your theme product and choose Install.

Note that the ZMI quick installer is functionally the same as the Add-on Products
option in the Plone Site Setup panel. The ZMI interface just gives you some
additional options. Choosing an extension profile when creating a new Plone
site is also functionally the same.

Putting your site into debug mode
Before going any further, we will put our site's stylesheets into debug mode. This
allows us to see the changes that you will apply to stylesheets immediately after
reloading a page, without having to restart the Zope server.

This is one of the most common points where new skinners stumble.
Remember to put your site's portal_css into debug mode, but
only while in development, as it will slow down your site.

In order to set portal_css in debug mode, go to the portal_css tool in the ZMI by
pointing your browser to an address that should look like http://localhost:8080/
mysite/portal/css/manage_cssForm.

Then check the Debug | development mode and click the Save button. You can also
access this by drilling down into portal_css through the ZMI.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 4

[73]

You can optionally put your entire Zope in debug mode. This must be configured
programmatically in a file usually located in the etc/ folder of the Zope instance
on the file system. If you are using buildout, debug mode can be set from the
instance part of a buildout configuration file. (Zope debug mode is automatic when
you're running in foreground mode.) It is also probable that you will need to put
your entire Zope instance into debug mode just to theme a web site, and you may
occasionally also need to put your portal_javascripts and portal_kss into
debug mode.

In the future, debug modes may be consolidated and possibly enabled by default, so
stay tuned.

Summary
In this chapter, we have learned:

How to create a theme product
What a theme product's filestructure looks like
How to add a theme product to a buildout
How to start Zope, create a Plone site, and install your theme product
How to enable debug mode to ease theme development

Now that you have a theme installed on your Plone site, we are almost ready to start
skinning it. First, we'll cover some aspects of Plone's inner workings that will shape
the skinning process.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW)
Changes or What Not to Do

You can customize Plone by changing settings through the web (TTW) in the ZMI
(Zope Management Interface), or by making changes to an installable filesystem
product. TTW changes are hard to back up, hard to share, hard to repeat, and
generally tough to work with. In Plone 3, the recommended method of theme
development is on the filesystem, but we'll look at how you can make some
quick-and-dirty changes TTW if needed, and also cover briefly how to bring
those changes back out to the filesystem.

In this chapter, we step through how to make our Zope instance recognize our
theme product, then make minor manual adjustments to a Plone site through the
ZMI. Next, we learn how to get the same changes into our filesystem product by
using GenericSetup profiles and other tools.

Specifically, this chapter involves a tour of how to activate a theme and how to use
skin layers and non-Zope 3 elements to affect the look and feel of your site. The
lessons learned in this chapter should help transition you to filesystem development.

Prerequisites
In order to perform most of the customizations mentioned above, you need
managerial rights to your site, light programming skills, and a little common sense.
For some of the changes, you will need to be comfortable with the concept of Plone
filesystem theme products, as discussed in the previous chapter. Please follow the
steps in the previous chapter to generate a theme product and install it on your
Plone site.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[76]

It will be helpful in some cases to have an understanding of TAL (the Zope Template
Attribute Language) and TALES (Template Attribute Language Expression
Syntax—it's expression syntax, but not critical yet). You can find a good description
on them in The Definitive Guide to Plone (http://plone.org/documentation/books/
definitive_guide_to_plone.pdf), and also in Zope's documentation (http://
www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx)..

We'll also briefly mention ZCML, XML, and Python, but will dig deeper into that later.

What this chapter will not cover
Beyond the realm of theming, there are a number of minor tweaks that integrators
can make to a Plone site, and will likely need to make during the course of theming
a site, but these tasks do not constitute theming, per se. These configurations enable
the theming process, however.

For example, when you add a portlet, the portlet may give you a few options that
allow you to control the look and feel of your portlets (such as including borders,
including a header or a hyperlink, and so on). If you add a navigation portlet and
modify it, or you modify the one that is installed by default, it gives you options
to control whether that navigation displays at the root level, whether it shows all
parents and children, whether to add borders, provide hyperlinks, and so on.
Every portlet is different, of course, and may not provide all of these options.

Additionally, in Site Setup, configuration screens called configlets exist for various
pieces of the Plone UI. These can be adjusted and may affect what displays on your
web site. However, it's rare that most of these configuration changes will ever be
incorporated in a theme product, though certainly it is possible. These tasks are for
integrators, not themers. For more information, refer to Practical Plone 3 (http://www.
packtpub.com/practical-plone-3-beginners-guide-to-building-powerful-
websites/book) to find out how to manage these changes, or refer to the Plone 3 User
Manual (http://plone.org/documentation/manual/plone-3-user-manual).

Hence, this chapter is geared towards changes that are not readily available
to integrators.

Registering and installing a new theme
To see some of these TTW changes, we first need to understand how to get our
theme exposed to our Zope instance as a filesystem product so that it can be
installed on a Plone site.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[77]

Creating a product that overrides a resource in a skin layer requires:

1. Installing paster and ZopeSkel (done in the previous chapter).
2. Running the appropriate paster recipe to generate a filesystem product

(done in the previous chapter using the plone3_theme recipe).
3. Registering it in your buildout (done in the previous chapter).
4. Registering a new filesystem directory view for that product

(done by default).
5. Placing this view in the list of available skin layers by installing

your product (done in the previous chapter).
6. Copying the relevant resources (templates, stylesheets, images, flash files,

and so on) into the new skin layers contained within your filesystem product.
7. Customizing the resource.

Since we have already created a theme product in the previous chapter, added it
to our buildout, and installed it, we will start with Step 4. Note that most of these
steps are taken care of by the boilerplate that is generated for you, but it's worth
looking at the code that handles these steps. Don't worry if you don't understand
everything we cover here; we're going through it to give you an idea of the
architecture of your theme product. Most themers won't need to make changes
to these parts of the generated code.

Register the filesystem directory view
To register this product as a filesystem directory view, or basically provide a hook
into the folders contained within your filesystem product, the __init__.py file in
the root of your filesystem product must be modified so that Plone can see it. This
happens automatically, as long as you answered "yes" to creating a Zope 2 product
when you ran the plone3_theme recipe (and you should).

def initialize(context):
 """Initializer called when used as a Zope 2 product."""

We must ensure that this package is a Zope 2 product. If it is in the magical
Products.* namespace (for example, a traditional product placed in the
Products directory of a Zope instance), then this happens automatically.

If we are using an egg-based product in a different namespace (which is what
the plone3_theme recipe does), we add the following code to the package's
configure.zcml file. This boilerplate is created by default.

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[78]

 xmlns:cmf="http://namespaces.zope.org/cmf"
 i18n_domain="plonetheme.mytheme">

 <five:registerPackage package="." initialize=".initialize" />

 <include package=".browser" />

 <include file="skins.zcml" />
 <include file="profiles.zcml" />

</configure>

Make the directory view available to
portal_skins
We then need to create the directory view, which maps a portion of the filesystem
into the skin layer for the current theme. We do this using a GenericSetup profile,
which we will cover in depth later in this chapter. For now, all you need to know
is that it is human-readable code (XML) that allows you to create steps that
are activated when a product is installed or uninstalled and describes certain
configuration settings.

In this case, installing your product will expose your theme product's configuration
settings to your Zope instance via an extension profile. This is provided via the
default boilerplate in your profiles.zcml file, as follows:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 i18n_domain="plonetheme.mytheme">

 <genericsetup:registerProfile
 name="default"
 title="My Theme"
 directory="profiles/default"
 description='Extension profile for the "My Theme" Plone theme.'
 provides="Products.GenericSetup.interfaces.EXTENSION"
 />

</configure>

Next, we configure the skins.xml file located in the profiles/ directory to create
skin layers, again provided by default when you use the plone3_theme recipe.

<?xml version="1.0"?>
<object name="portal_skins" allow_any="False" cookie_persistence=
 "False" default_skin="My Theme">

 <object name="plonetheme_mytheme_custom_images"

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[79]

 meta_type="Filesystem Directory View"
 directory="plonetheme.mytheme:skins/plonetheme_
 mytheme_custom_images"
 />
 <object name="plonetheme_mytheme_custom_templates"
 meta_type="Filesystem Directory View"
 directory="plonetheme.mytheme:skins/plonetheme_
 mytheme_custom_templates"
 />
 <object name="plonetheme_mytheme_styles"
 meta_type="Filesystem Directory View"
 directory="plonetheme.mytheme:skins/plonetheme_mytheme_styles"
 />

 <skin-path name="My Theme" based-on="Plone Default">
 <layer name="plonetheme_mytheme_custom_images"
 insert-after="custom"/>
 <layer name="plonetheme_mytheme_custom_templates" insert-after=
 "plonetheme_mytheme_custom_images"/>
 <layer name="plonetheme_mytheme_styles" insert-after=
 "plonetheme_mytheme_custom_templates"/>
 </skin-path>

</object>

You can register as many directory views (skin layers) as you wish, and you can
alter the boilerplate to use shortened folder names if you're feeling adventurous
and comfortable with the code located in the filesystem product.

Essentially, what is happening here is that you are creating folders (skin layers) in a
filesystem product and exposing them to Plone via the CMF (Content Management
Framework). Working with the CMF means that you are allowed to customize the
resources within a CMF skin layer in real time on the filesystem or TTW. These
resources are available everywhere, as opposed to within a specific context.

CMF is a set of add-on products for Zope used to build content management
systems. It provides some basic tools for handling metadata, members, and so on,
but is not a content management system itself. Plone is an example of a sophisticated
CMS built using CMF. The new Zope 3 component architecture is layered on top of
the CMF and provides greater extensibility and reusability of resources.

Zope 3 resources, meanwhile, are only fully available to you via the filesystem, and
can be manipulated or reused in various contexts. It's worth stating up front that
if you are dealing with a CMF skin layer item, it is treated differently than a Zope
3 item, and the items live in different places and are treated differently during the
theming process as well.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[80]

Rather than focusing on the logistics of what all of this means, we'll introduce some
patterns that you can follow to get used to the concepts. There are a lot of moving
parts, and it's a wild ride, so hang on.

Install your theme product
Assuming you have followed the instructions from the previous chapter, you have
already installed your Plone theme on your Plone site and put your stylesheets in
debug mode.

If, at this point, your theme product is installed and you can view your site at
http://localhost;8080/mysite (where mysite is the name of the Plone
site you have just created), you are ready to start customizing your theme.

It may help to make a small change to your stylesheets before installing the product
so that you can verify that your theme product did indeed get installed. This can
be accomplished by editing the mytheme.css file found in the skins/plonetheme_
mynewtheme_styles folder in your filesystem product. For example, you may wish
to change the body background color:

body {
background-color:#000;
}

General guidelines during development
At this point, we need to look at the steps needed to make sure changes to your site
can be seen.

Theming a Plone site requires modifying ZCML, XML, TAL, and Python code, in
addition to simple CSS changes, and each change requires a different set of steps
to activate. Specifically, the rules for restarts / reinstalls / imports / refreshes are
as follows:

To be able to see your changes immediately, you should rerun your site
in foreground mode using the ./bin/plonectl fg command, or your
buildout.cfg has to explicitly enable debug mode in the [instance]
section. Without this, you will not see CSS changes immediately even
with portal_css in debug mode.
If you change your CSS, refresh your browser as long as portal_css is in
debug mode (located in the ZMI under http://localhost:8080/mysite/
portal_css/manage_cssForm) and your cache is cleared. Firefox's Web
Developer Toolbar may come in handy here, as it has a "disable cache" flag
that can be set.

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[81]

If you change ZCML, you must restart Zope. You can use the plone.reload
egg to get around full Zope restarts.
If you change GenericSetup (XML), you must reinstall your product or
reimport the necessary step. Importing is safer and gives you more control.
We'll discuss GenericSetup later in this chapter.
If you change Python files in your filesystem product (as opposed to TTW),
you must restart Plone.
If you change Python scripts TTW, you can simply refresh if you are running
your Zope in foreground mode.

Be warned that uninstalling a theme product is generally not an
option, and it can be messy. Uninstallation requires that a theme to
have an uninstall profile written for it, and if the profile is incomplete
(most will be), you will wind up with "leftovers" from your theme that
can be difficult to remove. Similarly, you should be cautious about
reinstalling your product over and over again, as it can have unexpected
consequences and GenericSetup clashes that may be difficult to resolve.

About a theme product's architecture
Next, let's take a look at the pieces that comprise a theme product. The areas in
the shaded boxes are the concepts we will cover in this chapter. In the case of
configuration settings and skin layers (CMF elements), you can make changes
manually TTW or through a filesystem product. In the case of Zope 3 components
and programming languages, changes can generally only be achieved through
filesystem development, with some exceptions that we'll cover in the next chapter.

To make things easier, we're going to look at the items that can be changed easily in
both places first.

Theme Product Component Architecture

Configuration Settings

CMF Action Categories
Generic Setup Profiles
(XML)

Skin Layers

Stylesheets
Javascripts
KSS
Images
Non-Zope 3 Templates

Zope 3 Components

Browser Views
Viewlets
Portlets
Templates:

Python classes and
interfaces:

ZCML configuration files

plone.app.layout
plone.app.portlets
etc.

plone.app.layout
plone.app.portlets
etc.

Programming / Templating
Languages

XML
Python
ZCML
Tal / Metal / Macros

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[82]

Changing your site via CMF action
categories
On your Plone site's home page, you will notice various areas where there are
menu options or buttons. As you can see from the next screenshot, the default Plone
site shows a top navigation area, various links for printing or emailing a page, as
well as menu actions that allow you to cut, paste, or otherwise manipulate the objects
within a folder.

You may also see tabs or widgets that allow you to access the contents of a given
folder, a History area, a Sharing tab, and various tabs on the top for Home, Users,
News, and Events. It may help to log into your new Plone site as we walk through
these items.

Many of these tabs, buttons, and menu objects correspond to actions defined in
http://localhost:8080/mysite/portal_actions/manage (where mysite is the
name of your Plone site) in the ZMI. You must log into your site's ZMI in order to
see the available portal_action categories.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[83]

By default, there are seven CMF action categories. For practical purposes, CMF
action categories are merely categories within which you can alter numerous
buttons, tabs, and menu options on your site. These include the following items:

document_actions

site_actions

folder_buttons

object

object_buttons

portal_tabs

user

To add a new action_category, choose Add CMF Category from the drop-down
list found on the top-right area of the ZMI. Advanced users can add a new action
category to drive something like a portlet with drop-down lists, but generally you
will be adding or altering action items within the existing categories.

Often, all you may want to do is uncheck the Visible? checkbox to hide the items
you do not wish to see or change the logic slightly. To edit an existing CMF action,
simply click on it and alter the necessary properties.

To add a new action within a category, click on the category, and choose Add CMF
Action from the drop-down menu.

Note that you should not delete any of the categories or the actions.
It is safer to simply mark the actions as not visible by un-checking
the Visible? checkbox.

Document actions category
Default document actions include:

rss—displays an RSS button with a link to the aggregated page.
sendto—displays an email button with the logic needed to email the link of
the page to a specified email address.
print—adds a print button and the logic needed to print the page.
addtofavorites—flags an item as a favorite. This option only appears and
works if you have user folders enabled in the security control panel; actual
support for this feature is unknown.

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[84]

full_screen—expands the content area to take up the full screen.
extedit—enables external editing if an editor is specified.

Only the first three are visible, by default.

Site actions category
Within the site_actions category you will find the menu options that correspond
to the top navigation on a default Plone installation. By default, these include Site
Map, Accessibility, Contact, and Site Setup.

If you want to add an additional menu option here, or in another category (for
example, Site Help, which may be available to persons with managerial rights),
you can add a new CMF action. You would specify the Title, Description, i18n
(internationalization) Domain if you wish to use Plone's translation services, and
the URL to which the link would point via a TALES expression.

Next you would specify the URL for an icon to correspond with the action
(if one exists), any specific conditions using a TALES expression, and then select
the permissions required for that action. In this case, a newIn this case, a new Site Help action would
be specified as follows:

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[85]

Folder buttons category
Within the folder_buttons category you will find a listing of all of the buttons
that are available when a user is on the Contents tab of any folder on the site.
These include actions that can be taken against a piece of content, such as Copy,
Cut, Rename, Paste, Delete, and Change State. You will rarely need to customize
these items.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[86]

Object category
This category contains actions that appear as the tabs above the content area when
you are logged into your web site.

This includes the following:

folderContents—provides the logic for displaying the Contents tab itself, not
the view you get when you click on it. For this item and the items next, the
actual views can be either skin layer templates or browser views, and those
are configured elsewhere.
syndication—provides the logic for determining if an object is able to
be syndicated.
content rules—provides the logic for displaying the view for the Rules tab.
local_roles—provides the logic for accessing the Sharing tab.
history—provides the logic for displaying an object's history that you get
when clicking on the History tab.

You will rarely need to modify these category actions.

Object buttons category
Within this category there are actions that define the buttons that are shown in the
Actions drop-down list on the contentActions bar for each content object in the
site. These include Cut, Copy, Paste, Delete, and Rename actions.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[87]

Again, you will rarely need to modify these actions.

Portal tabs category
This category contains a single action that causes a Home tab to display at the top
of a default Plone site. You might see additional items showing next to the Home
tab, but those items can also be controlled by the navigation settings. If you alter the
navigation settings in plone_control_panel to disable Automatically Generate
Tabs, only the tabs defined in the portal_tabs category will display.

In this screenshot, the only true portal_tab action is the Home tab, whereas the
Users, News, and Events tabs are navigational items (content) made available by a
default Plone installation, which are controlled by the Navigation configlet located
in the Site Setup area.

User category
This category contains all of the actions that display in the personal tools area of
your site.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[88]

Many of these items, generally, only display when the user is logged into the site.
Logged out users will also see a login option in this area. Many of these are not
enabled by default.

These actions include:

A link to the logged in user's Member folder (http://localhost:8080/
mysite/dashboard, where mysite is the name of your Plone site)
A "preferences" link (http://localhost:8080/mysite/plone_
memberprefs_panel)
A "login" link (http://localhost:8080/mysite/login_form; disappears
once the user is logged in)
A "logout" link (http://localhost:8080/mysite/logout)
A "join" link (http://localhost:8080/mysite/join_form)
An "undo" link (http://localhost:8080/mysite/undo_form)
An "Add to Favorites" link
A "My Favorites" link

Many of these options are not visible by default. Additional items that might be
useful to add to this area include:

Link to a Site Help section specific to a client
Link to Plone documentation
Link to a Support page

For more information on each of these CMF action categories, read the Plone Theme
Reference manual (http://plone.org/documentation/manual/theme-reference)
or Chapter 7 of "The Definitive Guide to Plone", First Edition, Andy McKay, Apress.

We'll look next at a tool called GenericSetup, extract our portal_actions from the
ZMI using the tool, and then insert those portal_actions into your theme product.

About GenericSetup
GenericSetup is a major step forward in managing Plone site configuration, and
is a core part of how Plone handles its own site creation process. It is easy to get
GenericSetup conflicts because it is sometimes unintuitive (unless XML is your
first language), but it is also very powerful. It's also important to use care to
protect yourself against settings that might have been made through the web.

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[89]

Within the ZMI for your site, click on portal_setup, which is the control panel for
managing your GenericSetup. There are three tabs that are important to point out
here: Import, Export, and Snapshot. We'll look at each of these in turn, but first, let's
get a sense of what GenericSetup is.

GenericSetup introduces the idea of the configuration profile. A profile is essentially
a set of steps defined using XML. Each .xml file defines what happens in one of those
steps. Note the fundamental difference between a profile and an install method:
install methods define a set of steps that must be run to get a result, whereas a profile
actually describes the result itself. If you export all the steps from portal_setup,
you end up with XML defining the steps to get back to a defined state of the site, so it
can feel like it describes an end result. But that's not true in general, particularly not
in the partial profiles that get run when a product is installed.

Practically, all of the various knobs and twiddling that occur in the ZMI can be
exported to the filesystem via XML files. Additionally, this XML can be tweaked
by hand to create an import profile such that when the product is installed or the
GenericSetup profile is imported by hand, the settings will take effect. An example
here is that you might wish to turn on a new portal_tab for your site and have it
display when your filesystem product is installed. If you find that you are doing a lot
of tweaks in the ZMI, GenericSetup may save you some time in terms of getting lots
of settings the way you want them quickly and easily. And, it's not just a timesaver;
it makes it much less likely that you will forget some important part of the site
configuration if you ever have to rebuild the site.

An important point to note about profiles is that there are two types of profiles that
GenericSetup understands.

Base profile
The first type is called a base profile. Base profiles provide the base-level information
that a site needs to be created. Plone's default setup is itself a GenericSetup base
profile. Base profiles contain configuration information such as tools, workflows,
types, and registered plug-ins for some packages. Most people building custom sites
will not need to ever create a base profile, and you should not create or alter your
base profile until you have some practice.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[90]

Extension profiles
Extension profiles are intended to be applied after base profiles. Any number of
extension profiles can be applied to a site, whereas only a single base profile will
ever be applied. Extension profiles are meant to describe new content types, custom
skins, custom workflows, custom tools, and to add configuration to what has already
been set up in a base profile. All of these are additive actions that do not make any
changes to currently existing products. This is an important concept.

Changing configuration in existing tools, modifying content types to respond
to a different workflow, or any other modifications of base profiles, are less safe
actions, and only should be undertaken when you have a solid understanding of
GenericSetup.

An example extension profile
The great thing about GenericSetup is that it's written in a human-readable format
to make edits quick and easy. The profiles typically live in a profiles/ folder in a
filesystem product. Note that your product might have different files listed here:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[91]

The default folder contains all of the information on what knobs and switches need
to be twisted when the product is installed, and the uninstall folder obviously
contains the information on what knobs should be un-twisted when the product is
removed. Remember that the quick_installer takes care of this un-twisting for a
number of things that a product installation normally does, but not everything.

The common examples of files you might see include:

skins.xml: A list of all of the skin paths that should be added to the skins
tool when your site is configured
cssregistry.xml: Contains the information needed to install stylesheets for
a filesystem product
jsregistry.xml: Contains the information needed to install JavaScripts for a
filesystem product
viewlets.xml: Contains ordering / hiding / moving information on
viewlets for a product
portlets.xml: Contains information that defines new portlets or portlet
managers, or modifies existing portlets for a product

If we open the cssregistry.xml file for the above example, a project called ace, we
see the following code:

<?xml version="1.0"?>
<object name="portal_css">

<stylesheet title=""
 id="ace.css"
 media="screen" rel="stylesheet" rendering="import"
 cacheable="True" compression="safe" cookable="True"
 enabled="1" expression=""/>

</object>

In this case, the file states that upon install, a stylesheet called ace.css will be
imported into the CSS registry as a screen type, meaning that it will be accessed
when the site is rendered. The additional information is not necessary to understand
here, but it might be helpful to investigate this topic more deeply as your themes
become more advanced. Essentially, these variables are related to how your
stylesheets are constructed for delivery.

CMFPlone, the default Plone product (now located in your buildout in the
buildout-cache, or within the eggs directory with a version designation such
as Plone-3.3b1-py2.4.egg), also contains a profiles/ directory. Within its
cssregistry.xml file is a much larger listing of XML that defines exactly what CSS
files will be loaded when a base Plone site is installed. This means that since your
site uses base Plone, and has its own profiles, the profiles are additive. This is where
snapshots come in handy.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[92]

Taking snapshots
When working with GenericSetup, it's important to know what your site's profile
looks like before you start making changes. This is especially important if you are
trying to resolve a GenericSetup conflict.

Before making any changes to your site's profile, you should always make a snapshot
of your site that will give you an opportunity to evaluate the XML at various points
in time, using the diff command. It is very important to take a snapshot before
making changes, so that you can backtrack to the original profile if you need to.
Click on the Create a Snapshot button. The site will appear to spin for a while, and
will actually never stop spinning, due to an annoying, but harmless, flaw in this
area. (It's possible that this might be fixed by the time you're reading this.) Wait for
about 30 seconds, then click on the Snapshots tab again, and you will see a snapshot.
You may have better luck doing this with Firefox, due to the fact that Firefox does
not timeout as often. This is due primarily to how your Apache may be configured.
(Firefox is also helpful when re-cataloging your site for this same reason.)

The snapshot that is generated is given a title that is likely not very helpful. Click
on the Snapshots tab again, select the checkbox next to the snapshot, and give it
a more meaningful name. If you make additional changes to your GenericSetup,
either through the filesystem or the ZMI, you can create a second snapshot, export
both profiles to your desktop using the Import/Export button, and then use the
Comparison tab in portal_setup to examine the differences.

Export profile
Occasionally, you just want to know what your current profile looks like for a
select set of items. For example, you might want to know what the profile for your
portal_tabs is. In this case, click on the Export tab. Select the checkbox next to
Action Providers, and click on the Export Selected Steps button. Extract the .tar
file, and you will see a file called actions.xml, which outlines the current state
of affairs for your site. This file may be quite lengthy, so generally, if you want to
make a small change within your profile, remove all of the pieces you don't want,
and insert the pieces you do want in your theme product's actions.xml file, being
careful to escape the lines correctly. Your next step would then be to import your
new changes into your site.

Import profile
Click on the Import tab.. Select your theme product as the default profile
(very important). Then, import the selected steps.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[93]

Once the profile is imported or the product is reinstalled, the new profile steps will
be processed.

The key is to only insert the pieces that are different from the base profile, not rewrite
the entire profile. Be vigilant here, as including more information than you actually
want can cause unexpected behavior when your profile is installed, or more likely
can force you to duplicate and maintain too much of Plone's own base profile.

The point is that it's easy to insert the wrong XML code, and thus to create problems
with your GenericSetup, so be thoughtful as you write this code, and watch for
traceback errors in your terminal window when you import your steps.

Moving portal_actions configurations
into a filesystem product
The best way to understand how to use GenericSetup in practice is to have a
practical example. In this case, assume that through the ZMI we have added
some portal_tabs to our site:

To extract those to the filesystem, it helps to see the necessary syntax first.
Go to portal_setup in the ZMI, click on the Export tab, select the actions
option, and export that selected step. It will export a large file that contains all
of the portal_actions information, not just the information pertaining to the
portal_tabs. In this case, we want to add the following CMF actions to the
portal_tabs area:

BC Heroes

Climate

•
•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[94]

You want to extract only the relevant information from that file into a new file
named actions.xml, to be placed in the profiles/default folder of your
theme product:

<?xml version="1.0"?>
<object name="portal_actions" meta_type="Plone Actions Tool"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n">
 <action-provider name="portal_actions"/>
 <object name="portal_tabs" meta_type="CMF Action Category">
 <property name="title"></property>
 <object name="bc-heroes" meta_type="CMF Action">
 <property name="title">BC Heroes</property>
 <property name="description"></property>
 <property name="url_expr"></property>
 <property name="icon_expr"></property>
 <property name="available_expr"></property>
 <property name="permissions"/>
 <property name="visible">True</property>
 </object>
 <object name="climate" meta_type="CMF Action">
 <property name="title">Climate</property>
 <property name="description"></property>
 <property name="url_expr"></property>
 <property name="icon_expr"></property>
 <property name="available_expr"></property>
 <property name="permissions"/>
 <property name="visible">True</property>
 </object>
 </object>
</object>

That's it! Next time you install your product, those items will be added to your
web site.

However, to minimize the risk involved in installing a product and having your
GenericSetup clash with other GenericSetup steps, it's usually best to go into
portal_setup/manage_snapshots tool and create a snapshot. Then select the
theme product that you're working on, choose the actions option, and import it
into your web site.

The process is the same for all of the other XML files in your theme product.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[95]

Skin layer customization,
the old-fashioned way
In addition to being able to alter many of the basic settings on a site via
portal_actions, users can also modify certain page templates, images,
stylesheets, JavaScripts, and so on through the ZMI. How Plone interprets
these changes depends on the order of what are called "skin layers".

Prior to Plone 3, most customizations performed in the ZMI relied on the concept of
a single, global namespace such that resources for a given product could not easily
be shared between products. The global namespace was also a problem because it
resulted in name conflicts in products. Authors were forced to use convoluted names
in their products, such as pfg_base_edit, which was very "un-Pythonic". This was a
fairly limiting idea but made modifying items fast and easy through the web.

Before Plone 3, Plone used Zope's concept of acquisition (and still does, but not
always). This means that when looking up an identifier, Plone finds the closest
object, property, or method that matches. For example, when looking for a logo
specific to a given section, Plone looks first in the directory for that section, and if it
does not find it, it moves up through the directory hierarchy until it does find one.
You might think of acquisition as providing behaviors by context.

A Zope object can acquire any object or property from any of its parents. That is, if
you have a folder called A, containing two resources (a document called homepage
and another folder called B), then an URL pointing at http://.../A/B/homepage
would work even though B is empty. This is because Zope starts to look for homepage
in B, doesn't find it, and goes back up to A, where it's found. The reality, inevitably, is
more complex than this, but it explains the basis of how skin layers are read. For more
information, read the chapter on acquisition in The Zope Book found at http://docs.
zope.org/zope2/zope2book/source/Acquisition.html.

Using the portal_skins tool
A tool called portal_skins was created to help manage the resources within Plone,
and to control the order of acquisition. If you create a new Plone site and enter the
portal_skins tool located in the ZMI just below the root and click on the Properties
tab, you will see a skin called Plone Default, and next to it a listing of skin layers.
A "skin", often referred to as a "theme", is just an ordered list of skin layers. (Don't
worry about the distinction between skins and themes; there isn't much of one.)

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[96]

The skin layers listed on the Properties tab in the ZMI correspond to folders inside
the portal_skins tool. A skin's appearance depends heavily on the order in which
these skin layers are listed. A new Plone site, with the Plone Default theme installed
(done automatically), is illustrated next:

Plone uses something similar to acquisition to look through this list of skin layers,
giving precedence to the skin layers at the top of a list. If Plone requests a resource
such as logo.jpg, it will look for it in skin layers, starting at the top of the list and
going down until it finds one.

In this example, it will start with the custom skin layer, then move to LanguageTool,
cmfeditions_views, and so on.

The Find tab in this section provides an opportunity to search for a resource within a
selected skin, if desired.

Notice that there is a drop-down list below the skin layers called Default
skin. This area allows you to switch to a different theme product. When
you install your theme, it becomes the default theme.
A first rule of thumb is if your site is ever not finding a resource that
you're expecting to see, confirm that the layer it is contained within is
found in the above list.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[97]

The custom skin layer should always appear at the top of the list of skin layers,
generally followed by skin layers for a theme or product's images, stylesheets, and
templates. This configuration might change in the event that you have a product
installed that you want to override the installed products beneath it; in this case,
the product with the most precedence should be listed at the top.

Skin layers often get out of order when a new product is installed, and
as a result, can cause some confusing behavior to occur, so it is helpful
to monitor this area during product development and especially prior to
going live with a Plone site.

In the next screenshot, a theme product named plonetheme.mytheme has been
installed. Observe the order of the skin layers and the new layers that display:

This theme looks first at the custom skin layer, then at plonetheme_mytheme_
custom_images, plonetheme_mytheme_custom_templates, plonetheme_mytheme_
styles, and then down the list. Items in the custom layer take precedence over all
other resources in the skin layers below it, as long as custom is at the top of the list.
In other words, if you have a logo.jpg that lives within your plonetheme_mytheme_
custom_images folder, and you have a different logo.jpg in the custom folder, the
one in the custom folder will take precedence.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[98]

Most skin layers are provided by filesystem files that are mapped into
portal_skins. The advantage of the custom folder is that it is a normal Zope
folder and its contents may be changed through the web. This can be helpful for
integrators to make quick changes (for example, you want to swap out the logo
with a different colored logo, and want to make that change immediately visible
without having to worry about backing up your theme in Subversion, updating
your server's version of the theme product, restarting your server, and so on).
To make quick changes, all you have to do is to edit that item by first finding the
image in an existing skin layer and then modifying it in the custom folder.

Click on portal_skins again to get to the main page that displays all of the
available filesystem views, which in turn contain pages, templates, and other
resources. To modify one of these resources, locate an item listed there (for example,
plone_images/logo.jpg or plone_templates/main_template), and click on it.
You will then be given the opportunity to customize that item in the custom folder.
This makes a copy of the original in the custom folder, filesystem item provided by
Plone. Removing that item from the custom folder after customizing it means that a
site will use the original, not customized version.

You cannot customize items within their own folders, as they are not folders in the
traditional sense—they are filesystem directory views, or folders that provide a
window into a particular folder on the filesystem. The custom folder, in contrast,
lives in Plone's database, and its contents cannot be found on the filesystem.

The most commonly modified files available from portal_skins include
plone_images/logo.jpg and plone_templates/main_template.pt. These
are considered non-Zope 3 templates. If you don't see the item you want to
customize located in portal_skins, it's likely a Zope 3 style browser layer
element that will most often need to be altered on the filesystem. We will cover
that in the next chapter.

During skin development, the custom folder can be an area of great frustration,
especially if more than one person is working on a given site TTW, instead of on the
filesystem. If you don't see your changes taking place, make sure you are running
your Zope in foreground mode, and check to make sure your portal_css is in
debug mode and that your custom folder is cleaned out (or not conflicting). And, at
the end of a project, you should always clean out your custom folder and extract files
found there into your theme product to keep all components safe on the filesystem
and in Subversion. In the world of Plone 3, this is especially important. To save
yourself pain, it's best to avoid TTW changes in the custom folder completely
and work entirely on the filesystem.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[99]

Changing base_properties
Good web designs typically use a limited color palette and design elements
such as border styles and font styles may appear in several places in a page. In
implementation, this means that a limited set of CSS attributes often appear many
times in a site's stylesheets. However, separately entering those attributes over
and over again in a set of stylesheets would be error prone and make for difficult
maintenance. It would also make it impossible for style elements furnished in
different add-on products to share these attributes.

The CMF's solution to this problem is to share information on commonly-used
attributes in named properties in a Zope property sheet. A property sheet is
basically just a collection of named properties in a single object.

Using a shared property sheet with properties such as borderStyle, stylesheets can
include references by name to those properties, rather than fixed specifications.

Also, any third-party product that needs to use a site's common border style can do
the same thing, dramatically increasing the likelihood that a third-party's add-on will
fit in with your site.

The actual name of the base property sheet on the filesystem is base_properties.
props, and it can be found in parts/plone/CMFPlone/skins/plone_styles. It can
also be found in the ZMI in portal_skins/plone_styles. A quick examination of
this file shows that it contains information like this:

plone_skin:string=Plone Default

logoName:string=logo.jpg

fontFamily:string="Lucida Grande", Verdana, Lucida, Helvetica, Arial,
 sans-serif
fontBaseSize:string=69%
fontColor:string=Black
fontSmallSize:string=90%

backgroundColor:string=White

linkColor:string=#436976
linkActiveColor:string=Red
linkVisitedColor:string=Purple

borderWidth:string=1px
borderStyle:string=solid
borderStyleAnnotations:string=solid

globalBorderColor:string=#8cacbb
globalBackgroundColor:string=#dee7ec
globalFontColor:string=#436976

[snip]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[100]

The goal of this file is to provide default settings that can then be accessed by
stylesheets at large by using variables. For example, the public.css stylesheet
contains certain declarations, such as:

.documentContent p a:visited {
 color: &dtml-linkVisitedColor;;
 background-color: transparent;
}

This means that the color of the anchor tag within the paragraph after being
visited will correspond to the &dtml-linkVisitedColor; value defined in the
base_properties file.

Properties are inserted using an HTML-named entity format that you've seen
before in code, such as the specification for a non-breaking space.
The dtml- part means that such attributes are to be expanded by the DTML
(Dynamic Template Markup Language) engine. The base_properties are
enabled in two ways. First, the stylesheet you are using must have a second
extension of .dtml; for example, mystylesheet.css.dtml—this marks it for
DTML processing. Second, it must additionally contain DTML code that connects
it to the property sheet:

/*
 <dtml-with base_properties> (do not remove this)
 <dtml-call "REQUEST.set('portal_url', portal_url())"> (not this
 either)
*/

/* YOUR CSS RULES START HERE */

/* YOUR CSS RULES STOP HERE */

/* </dtml-with> */

The real advantage of using base_properties is that it's easy to make global
changes to your site.

The important point to note here is that when extracting the base_properties file
from the custom folder, make sure the file is named correctly (base_properties.
props) and that you cut-paste the relevant values into place, one at a time.
The base_properties.props file should be placed in your theme product in
skins/plonetheme_mytheme_styles.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[101]

Modifying images using the
custom folder
You can modify Plone-provided images (such as the logo.jpg provided with
Plone) by going to the portal_skins folder, choosing the appropriate images
skin layer (often plone_images), locating the desired image, and then selecting
the Customize option.

You can also add new images to the custom folder and use CSS to style with those
images. Eventually, those images will need to be extracted (using File | Save As) to
your theme product's images folder. These images are not the same thing as content
that will eventually end up on your site; they are specifically images that are used to
build your theme.

One image that is considered "special" in Plone is the logo.jpg image. The
viewlet that controls the logo references the base_properties code that looks for
a file named logo.jpg. If you want to use a logo.gif image, you have to modify
base_properties to look for a file with the .gif extension. If you wish, you can
modify the viewlet for the logo to use different logic. We'll look at our options here
in Chapters 6 and 7, and explore how to modify page templates to make the logo
viewlet work differently, if you wish.

For now, try to override the standard Plone logo through the web. To do this
through the ZMI, go to the custom folder and choose Add image from the
drop-down list. Now upload the image named logo.jpg. Refresh your site to
see the new logo, and clear your cache if necessary.

This isn't a good practice, but you could, in fact, upload a .gif or .png file, name
it logo.jpg, and it would work. That's because Zope and Plone don't determine
the MIME type of a ZODB object from its filename extension. When you upload an
image, Zope determines its MIME type and stores that as a property of the object.
That information is used to determine the MIME headers, which are sent to the
browser when the image is requested.

On the other hand, the skin layer resources that we put on the filesystem as part of a
theme product do need to have the conventional filename extensions. The file system
is not an object database, and there's no good way to determine the type of a binary
file, except via its filename extension (.jpg, .gif, .png, .pdf, and so on).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[102]

Extracting items from the custom folder
Remember that anything located in the skins/ directory can be modified through
the web via portal_skins and that any of these items ultimately belong in your
skins/ directory in your filesystem product. This includes images, stylesheets,
JavaScript files, page templates from CMFPlone (found in portal_skins), and
Python scripts.

Assuming you have customized items inside of your Plone site, you can extract these
items and add them to your theme product in a couple of different ways. Optionally,
you can go to the custom folder, open each individual file, and cut-paste it into your
theme product's skins folder.

To move images into your theme product, copy them from your custom folder (or
right-click and choose Save As) and put them in plonetheme/mytheme/skins/
plonetheme_mytheme_custom_images. If you test this with a file named
logo.jpg (with the custom folder cleaned out) and refresh your site, you
should see your new logo.

In addition to moving images into your filesystem product, you will often be
moving standard page templates. Give them a filename with an extension of .pt
so that Zope will recognize them as templates. In this case, you only need to copy
the file into your skins/plonetheme_mytheme_custom_templates folder and save
it with the appropriate extension. These items will appear in the portal_skins
without the .pt extension.

In some cases, there may need to be a .metadata file associated with that page
template. This is not usually necessary with simple templates, CSS, JavaScript,
or image resources. It usually becomes crucial to supply extra information when
working with .cpt (controller page template) files, which are used when validation
on a page template is required. An example here would be a page template for
a form that can be submitted, where the page template needs to know if success
or failure was achieved when the form is submitted. The .metadata file contains
important information that ensures that the form can submit completely, and thus
should be preserved in your filesystem product.

Similarly, you may be working with standard Python scripts, or you may be working
with .cpy (controller Python scripts), that involve validation. Again, the .metadata
file should be captured in addition to the Python script itself. In the case of Python
scripts, you should also be careful to extract the information that generally precedes
the Python script: this includes the name of file, the context, and so on. An example is
the following script:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[103]

Script (Python) "getDateConstraintsForSearchResults"
##bind container=container
##bind context=context
##bind namespace=
##bind script=script
##bind subpath=traverse_subpath
##parameters=
##title=
##
if not hasattr(request, "start") or not hasattr(request, "end"):
 return []
else:
 start = request.start['query'][0]
 end = request.end['query'][0]
 format= "%a, %b %d, %Y"
 start = start.strftime(format)
 end = end.strftime(format)
 if start == end:
 return {
 'start': start,
 'end': ''
 }
 else:
 return {
 'start': start,
 'end': end,
 }

If you don't know the format in which Python scripts and other scripts should be
extracted, you can optionally extract files from your custom folder by using the FS
Dump Plone product (http://plone.org/products/fsdump). This tool is helpful
for exporting any contents from the custom folder to your own machine, not just
from Python scripts. It can be especially useful if you are exporting a lot of items,
but not images.

Using stylesheets and the CSS resource
registry tool
Now that we know how to manipulate the menus and tabs on our site, and to
modify images and page templates in our custom folder, we will look at how to add
extra stylesheets or JavaScripts. The principles here also apply to KSS files, which we
will not cover here. Advanced users may also have need of KSS stylesheets (Kinetic
Style Sheets) for managing AJAX-like behavior, but we will not cover this or jQuery
in this book.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[104]

A special tool was created to manage CSS stylesheets, JavaScripts, and KSS
stylesheets called Resource Registries (http://plone.org/documentation/
tutorial/working-with-resourceregistries), which consists of portal_css,
portal_javascripts, and portal_kss in the ZMI. These registries give the option
of consolidating multiple style or JavaScript files into a single cached file, which
causes them to load faster when a site is in production. Putting your portal_css
or portal_javascripts into debug mode turns off this merging.

Resource Registries solve an important problem: how do we develop our style
and JavaScript sources in a granular way (in which each source does only what it
needs to do) without creating a proliferation of downloads to the browser, which
has a terrible performance impact? In addition to merging sources, so that the
browser sees fewer downloads, these registries also provide cache control and
compression services.

Resource Registries also allow you to add, reorder, and enable or disable CSS or
JavaScript files at the click of a button. Reordering of resource files is important
in determining how your product renders, in much the same way that skin layer
orders are important.

You can optionally provide conditional statements for these files; for example, "only
use this stylesheet if you are in the home page section" or "only use this stylesheet if
the user has certain permissions."

For advanced information on what these registries do, refer to the ReadMe
file provided with the Resource Registries product that ships with Plone:
http://plone.org/products/resourceregistries.

Common conventions for using stylesheets
in Plone
Note that some of the information in this section is somewhat subjective, but also
greatly debated by the Plone theming community. As a result, there may be a bit of
flux in this area in the future, and room for interpretation.

When a new Plone theme product is created using paster, you are given the option to
override Plone stylesheets if desired.

Overriding base Plone stylesheets
When a new Plone theme product is created using paster, you are given the option to
override Plone stylesheets if desired.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[105]

As someone who has themed more than 100 Plone sites, I recommend that you
always choose "False" and not override the Plone stylesheets. This is a personal
preference, but it means that some of the CSS that controls layouts deep in the guts
of Plone are styled adequately and you don't need to restyle those more delicate bits.

If you do prefer to rewrite your CSS from scratch, instead of building on top of
Plone's default stylesheets, stick with the empty stylesheets. It may not seem elegant,
but it is the most correct way to override stylesheets. You may have noticed that you
can disable stylesheets in the CSS registry or via the "enable" flag in cssregistry.
xml (found in your stylesheet). If you intend to layer more than one product on
top of a Plone site, you likely do not want to disable your stylesheets through the
registries, as those registries will affect all of the products layered on top. If you
know that you will not be laying stylesheets from multiple products on top of a
Plone site, it's probably safe to disable the stylesheets through the registries.

DTML support
The plone3_theme (at the time of this writing) also generates a main.css stylesheet
located in the browser folder of your theme product. While this may technically
work, it's not the most practical way to handle stylesheets. The stylesheet should be
named main.css.dtml or, preferably, mytheme.css.dtml It's important to provide
support for DTML, though it's optional for advanced users. It's also a best practice
to name your stylesheet after your theme product, to distinguish it from other
theme products and reduce the possibility of name-collision errors.

Location of files and controlling bloat
The theme recipe's placement of a stylesheet file in the browser folder was meant to
fit it into the Zope 3 component architecture, enabling plug-in replacement. Speaking
for myself, those benefits don't justify the complexity of use, and I remove the
stylesheets and images folders from the browser folder, remove the boilerplate that
supports this, and store all of my stylesheets, images, and so on in my skins folder.
The only pieces that I keep in my browser folder are Zope 3-related components
(viewlets, portlets, and so on), which we'll cover later.

However, if you do want your stylesheets in your browser layer, they should
be directly in the browser/ folder and not in a subfolder beneath that. This is
because if you want to customize one item within a folder, you must customize
them all. It's best to register your resources one at a time, not in a nested hierarchy.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[106]

The behavior of the plone3_theme recipe may change in the future, but has not
occurred because the community wanted to make sure that existing documentation
did not fall out of date. The key here is that you can modify your boilerplate if
need be, and feel confident that the documentation will reflect the truth of what
the plone3_theme recipe generates.

Ultimately, your options here are to:

Use the functionality from the plone3_theme (not a problem, but complicates
some of the code you'll need to write and means that you'll have to pull the
stylesheets and images out of their subfolders and fix some of the boilerplate
to reflect this)
Ignore it and work in the skins/ directory anyways (leaves bloat)
Remove it (takes a while, but slims down your theme)
Write your own recipe that gives you a theme customized to
your specifications

Adding new stylesheets
If you look at a default Plone site's portal_css registry, you can see some of the
more important features:

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[107]

Note the checkbox on the left that allows you to turn the stylesheet on or off, the
conditional field that accepts a Python statement, and the CSS Media field that tells
you the media for which the stylesheet should apply, which is usually empty or
all. Other possible values are screen, print, and so on. If you scroll down the list,
you should see all of the default Plone stylesheets listed. You also see up/down
arrows that allow you to order the items in the list. The stylesheet that takes the
most precedence should appear at the bottom of the list, generally ploneCustom.
css, which is typically used when you want to modify items TTW without delving
into the main stylesheet being used for your theme. This is typically the file that
you use to add temporary styles that will later be integrated into a site-specific
stylesheet (such as mytheme.css). By default, it is empty. It can be found in
portal_skins/plone_styles.

Starting with CSS in the ZMI
After you add a stylesheet to your site via the custom folder, you must then tell
Plone that it exists. In this example, we'll add a stylesheet named sections.css,
and add some code to tell Plone that we are looking at the home page, so that we can
style it differently than the other sections of the site. This is a slightly advanced topic,
but a common use case.

1. First of all, we want to open a stylesheet from CMFPlone, the product that
is "base Plone", so that we can get the appropriate formatting, specifically
DTML support. Go to your buildout, drill down to parts/plone/CMFPlone/
skins/plone_styles/, and open ploneCustom.css.

2. Copy the formatting that provides DTML support. Then, go to the custom
folder, and add a DTML Method to this folder, using the drop-down list
(not a file, and so on).

3. Name it sections.css, choose add and edit, and add the following code.
The key portion you'll need is this:

 /* <dtml-with base_properties> (do not remove this :) */
 /* <dtml-call "REQUEST.set('portal_url', portal_url())"> (not this
 either :) */

 /* DELETE THIS LINE AND PUT YOUR CUSTOM STUFF HERE */

 .section-front-page #visual-portal-wrapper {
 background-color:#000;
 }

 /* </dtml-with> */

Just so you can tell if your stylesheet is getting picked up, we're adding a
temporary style here that looks at the shortname of the home page.
(This corresponds to the URL http://www.mysite.com/front-page.)

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[108]

4. Next, we have to add the stylesheet to the registry itself. Go to portal_css,
and add a new stylesheet:

If you now visit the home page of your site and refresh the page, you should see
the background color of the home page changes to black. Navigating elsewhere in
the site will set the background color back to white. If you do not see your changes,
remember to turn on debug mode in portal_css. You wouldn't ordinarily add a
stylesheet through the web, but clearly it is possible.

The corollary to doing this is to create a stylesheet in your filesystem product, which
we'll do next.

Creating a theme-specific stylesheet in your
filesystem product
Since the plone3_theme recipe does not generate a stylesheet for your skins/
plonetheme_mytheme_custom_styles folder, you should create one in that location
and enable DTML support as indicated by the previous code. You should also name
your stylesheet in a meaningful way; that is, mytheme.css.dtml. It helps to name
your CSS after your theme product or client name, to avoid confusion.

Next, open your profiles/cssregistry.xml file. We will add support for this new
file by including the following code:

<?xml version="1.0"?>
<object name="portal_css">
<stylesheet title=""
 id="mytheme.css"
 media="screen" rel="stylesheet" rendering="import"
 cacheable="True" compression="safe" cookable="True"
 enabled="1" expression=""/>
</object>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 5

[109]

Notice the enabled flag here, and also notice that it's not necessary to include the
.dtml indication in the id field, even though we will be using DTML.

If you wish to disable the use of the stylesheets and the images folders in the
browser folder, remove the following code from cssregistry.xml. (You can tell
that you are dealing with a browser layer file by the ++resource++ designation.)

<stylesheet title=""
 id="++resource++plonetheme.testtheme.stylesheets/main.css"
 media="screen" rel="stylesheet" rendering="import"
 cacheable="True" compression="safe" cookable="True"
 enabled="1" expression=""/>

You will also want to remove the images and stylesheets folders from the browser
folder if you're disabling browser layer support for these items.

Next, open the browser/configure.zcml file, and remove the following code:
<!-- Zope 3 browser resources -->

 <!-- Resource directory for images -->
 <browser:resourceDirectory
 name="plonetheme.mytheme.images"
 directory="images"
 layer=".interfaces.IThemeSpecific"
 />

 <!-- Resource directory for stylesheets -->
 <browser:resourceDirectory
 name="plonetheme.mytheme.stylesheets"
 directory="stylesheets"
 layer=".interfaces.IThemeSpecific"
 />

When you install your product or you import settings pertaining to the CSS registry,
it will automatically add any new stylesheets to the CSS registry in the ZMI and
disable any, if desired. You'll also need to restart your Zope instance, as we have
changed our ZCML code.

Working with JavaScripts in your theme
product
JavaScripts work similar to CSS stylesheets, with a few key differences. If you
add a file to the custom folder, it must be of type "file". To add it to your registry
through the web, go to portal_javascripts and add it there. Again, you may
need to enable debug mode to see your JavaScript changes. Once again, this is
not the advisable way of adding JavaScripts, and you will typically do this on
the filesystem instead.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Making Manual (TTW) Changes or What Not to Do

[110]

To add a JavaScript to your filesystem product, add code like this to your profiles/
jsregistry.xml file:

<?xml version="1.0"?>
<object name="portal_javascripts">
 <javascript cacheable="True" compression="none" cookable="True"
 enabled="True" expression="" id="sifr.js" inline="False"/>
</object>

You can either add this script file to your skins/plonetheme_mytheme_custom_
templates folder, or you can create a folder that specifically holds JavaScripts and
modify the boilerplate as needed. The boilerplate code available for supporting
images and stylesheets in the browser space is not provided for JavaScripts,
so there is no need to modify additional code.

Again, you can start by adding JavaScript to the ZMI first, or you can start by adding
it to your theme product from the start. It is generally easier to start with a filesystem
product from the very beginning, and is by far the recommended path.

Summary
In this chapter, we have learned:

What elements comprise the component architecture for a theme product
How to make minor adjustments to a Plone site through the ZMI andmake minor adjustments to a Plone site through the ZMI and
portal_actions and extract those changes into a filesystem product using
Generic Setup
How skin layers work and how acquisition affects images and page templates
How to work with images and page templates in the custom folder and on
the filesystem
How to work with stylesheets and JavaScripts in the custom folder and on
the filesystem

The real message of this chapter I am trying to communicate is that through-the-
web development is evil, and it should not be used if you can help it. If you do
TTW development of any kind, you should always bring your changes out to the
filesystem, and wash your hands twice when you're done.

Now, using what you have learned in this chapter, you should next be able to learn
about Zope 3 components and how they differ from skin layer objects. At this point,
you are ready to move away from changes made through the web and focus only on
filesystem development.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Working with Zope 3
Components

This chapter is probably the most technically challenging chapter that you'll read
in this book, but read it with the objective of getting a basic understanding of Zope
3 and the moving parts you'll need to know about. You'll generally need to only
understand where to find the pieces you require, where to put them, and how to
tie them together, and that will come after this introduction to the general concepts.

As part of this chapter, we'll cover how images, stylesheets, and templates can be
exposed as Zope 3 browser resources, instead of being used as "old school" skin
layers, as discussed in the previous chapter. We'll also cover some of the jargon-y
terms that you'll need to know about but not understand in depth.

About the architecture
Prior to Plone 2.5, Plone was built on top of the powerful, but relatively inflexible,
Zope 2 architecture. As Plone evolved, more flexible Zope 3 technologies became
necessary, but a full transition was impractical. In order to remain compatible with
earlier versions of Plone and provide a migration path, it was important to provide
a bridge between these two versions. You might have heard the name "Five",
which is a product that helped bridge the gap between Zope 2 and Zope 3 (2+3=5)
by backporting Zope 3 capabilities to Zope 2. Five is now baked into Plone, and is
the basis of the Plone 3 architecture. What this means is that Plone runs on
Zope 2, but uses some of the features provided by Zope 3, and thus is not a
pure Zope 3 implementation.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Working with Zope 3 Components

[112]

Zope 2 plus CMF (the Content Management Framework) is best described as a
framework that uses skin layers and acquisition to produce results. If you know
some of the concepts of object-oriented programming, you might think of acquisition
as a framework in which behavior can be inherited from context as well as class
ancestry. Pure Zope 3 uses explicit acquisition plus the concept of adapters or
reusable components.

The name "Zope 3" is unfortunate, because it implies that Zope 3 is the successor to
Zope 2. While this may have been the original intention, Zope 3 has become more
of a component toolkit than a standalone application server. All of this component
toolkit is built into the latest versions of Zope 2. It is very uncommon for applications
to be built on a 100% Zope 3 architecture.

Let's now take a look at the most common Zope 2 and Zope 3 components and
programming languages (highlighted in gray) that come into play when theming
a web site:

Theme Product Component Architecture

Configuration Settings

Generic Setup Profiles
(XML)

Skin Layers

CMF Action Categories

Stylesheets
Images
Page Templates

Javascripts
KSS

Zope 3 Components

Browser Pages
Viewlets
Portlets
Page Templates
Adapters and interfaces
Images
Stylesheets

Programming / Templating
Languages

Python
ZCML
XML
Tal / Metal / Macros

The components we're primarily concerned with when theming are viewlets,
templates, browser pages, adapters, and interfaces. In the case of images,
stylesheets, and page templates, these can be either Zope 3 elements or skin layer
elements. Specifically, we are going to focus on the Zope 3 components, since we
covered skin layers in the last chapter.

Let's talk briefly about what these items are. Viewlets are typically regarded as the
"furniture" on a page—breadcrumbs, logo, footer, and so on. Portlets, meanwhile,
are the pieces that render in either the right or left column of your site; for instance
a login box, news, events, or the calendar. They're similar to viewlets, but handled
slightly differently behind the scenes. You can add more viewlet or portlet managers
(containers) if you need to, which allows you to move items into areas of the page
that you wouldn't ordinarily be able to do. Viewlets and portlets will be covered in
more detail in the next chapter.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 6

[113]

Page templates are the pieces of code with the extension .pt that generate HTML
that is then outputted to the browser when the page is rendered. Page templates are
typically driven by a combination of Python and TAL.

Next, a browser page can be defined as a component that can be found during URL
traversal and that can usually render itself. For example, it might be something like a
home page view that is accessible via the following URL: http://localhost:8080/
mysite/@@homepage-view or http://localhost:8080/mysite/homepage-view.
Typically, it contains a page template that is backed by a Python class. Since you
generally don't want to be running un-trusted code over the Internet, you should
instead use a browser page to work with classes that may be protected or have
other security issues. The code within the browser page is not subject to the same
restrictions as restricted Python in a template or a Python script.

Interfaces describe the methods and attributes that an object provides. They
describe what a component can do, but not how. Adapters provide ways to adapt
the behavior of an object to a new interface. A browser layer, meanwhile, is just a
marker interface that is applied to the request upon traversal. A Zope 3 browser
resource is a multi-adapter on the context and the request, and when the request
is marked with a particular interface, the component architecture may find a more
specific adapter in a view registered for that particular layer. A marker interface is
simply a flag that says, "I have a special purpose". Views, and so on, attach to that
flagged item and respond appropriately when they are called. Marker interfaces
don't explicitly provide any functionality; they just provide a hook to functionality
defined elsewhere.

What this means is that you can customize items in a Plone theme and override
other items that would normally take precedence by assigning them to your theme
product. Moreover, you can be very specific about how these items are applied in
your theme. This is referred to as exposing items to the browser layer, but you can
think of it as a different way of overriding or using resources in Plone other than as
skin layer items.

In Plone, there are two main ways of enabling a custom browser layer interface. The
first is to use the mechanism of plone.theme, often referred to as IThemeSpecific.
This package, which ships with Plone by default, allows us to link a browser layer
with a particular theme (skin) in portal_skins (not to be confused with a skin
layer). When a theme is installed in portal_skins as the default theme, the layer is
in effect. This is useful for products that install a whole new theme in Plone. It's sort
of like applying a name tag to your theme product.

Other types of Plone products make use of a plone.browserlayer package, which
is similar to plone.theme and allows layer installation to be additive. Themes do not
have this functionality.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Working with Zope 3 Components

[114]

The IThemeSpecific interface mentioned above is provided with a Plone theme
product by default through plone.theme and located in your interfaces.py file
found in plonetheme.mytheme/browser/:

from plone.theme.interfaces import IDefaultPloneLayer

class IThemeSpecific(IDefaultPloneLayer):
 """Marker interface that defines a Zope 3 browser layer.
 """

What the previous code says is that the interface IThemeSpecific is based on an
interface named IDefaultPloneLayer (defined in another section of the Zope/Plone
stack), and is able to use all of the functionality that IDefaultPloneLayer provides.

In practice, what this means is that when you tell your theme product to use
IThemeSpecific for a given component, that component's code only affects your
current theme product. This is a very important step, as not including this interface
definition could cause your theme product to step on other themes registered in
your Zope instance. It's important to always use the IThemeSpecific directive when
specifying browser resources, except when you are writing a package that needs to
be used by more than one web site, such as a diagnostic utility. We'll see how this
works momentarily.

All of the components mentioned above are glued together using a combination
of Python, XML, ZCML, and TAL (Plone's templating language). We will get a
brief introduction to ZCML here, and a formal introduction to XML and TAL in
upcoming chapters.

Introduction to ZCML
Zope 3 knows how to find an adapter only if you tell it about the available adapters.
In our case, adapters are components, such as viewlets, portlets, and other resources,
that we wish to customize. We do this using ZCML, the Zope Configuration
Markup Language.

ZCML is an XML dialect that is used to configure many aspects of Zope 3 code, such
as permissions and component registration. You can do what ZCML does in Python
code as well, but typically it's more convenient to use ZCML because it allows you to
separate your logic from your configuration.

Many ZCML directives are stored in files named configure.zcml, which may
themselves include other files. Three configure.zcml files are provided by default
in a given theme product, one in the root of your plonetheme.mytheme/ folder, one
in your mytheme/ folder, and one in your browser/ folder.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 6

[115]

The configure.zcml file found in your theme product's root contains only the
following code:

<include package="plonetheme.mytheme" />

In other words, it is telling Zope that a package named plonetheme.mytheme exists
and can be "picked up" and used.

An example configure.zcml file in the plonetheme.mytheme/plonetheme/
mytheme folder for a Plone theme looks like this:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:cmf="http://namespaces.zope.org/cmf"
 i18n_domain="plonetheme.mytheme">

 <five:registerPackage package="." initialize=".initialize" />

 <include package=".browser" />

 <include file="skins.zcml" />
 <include file="profiles.zcml" />

</configure>

All this code means is that your theme product uses a few different XML
namespaces (zope, five, cmf), defines a domain for applying internationalization
(i18n translation hooks), registers your package with Zope (Five), connects to your
browser/ folder and two files named skins.zcml and profiles.zcml. You'll rarely
need to modify this file.

Meanwhile, the default configure.zcml file found in your theme product's
browser/ folder looks something like the following:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 i18n_domain="plonetheme.test">

 <!-- 'test theme' Zope 3 browser layer -->
 <interface
 interface=".interfaces.IThemeSpecific"
 type="zope.publisher.interfaces.browser.IBrowserSkinType"
 name="test theme"
 />

 <!-- Viewlets registration -->
 <!-- Zope 3 browser resources -->

 <!-- Resource directory for images -->

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Working with Zope 3 Components

[116]

 <browser:resourceDirectory
 name="plonetheme.test.images"
 directory="images"
 layer=".interfaces.IThemeSpecific"
 />

 <!-- Resource directory for stylesheets -->
 <browser:resourceDirectory
 name="plonetheme.test.stylesheets"
 directory="stylesheets"
 layer=".interfaces.IThemeSpecific"
 />

</configure>

This code basically just tells Plone that it knows its identity (IThemeSpecific),
and that it knows that images and stylesheets are browser resources and thus live
in directories within the browser/ folder. This particular configure.zcml file is
where most of the magic will happen when you customize Zope 3-styled resources.
For example, if you want to move the various bits (viewlets and portlets) that
comprise your theme around on the page, you would do that through ZCML in
this particular file.

A default plonetheme product also contains ZCML in files such as profiles.zcml
and skins.zcml. The profiles.zcml file provides the hooks Zope needs to read the
GenericSetup files located in the profiles/default/ folder.

The skins.zcml file, meanwhile, is the file where you define the names of the
filesystem folders that will hold your CSS, images, JavaScripts, and templates.
These folders are skin layer folders, which means the items contained within these
folders will be customizable through the ZMI (Zope Management Interface) via the
portal_skins tool and the custom folder.

If you are generating your theme product in the Products namespace, a configure.
zcml file in your product directory (Products/myproduct/configure.zcml) will
be picked up automatically. However, packages in other namespaces (such as
the plonetheme namespace) need to have a ZCML slug added as well. A slug is
merely a ZCML line that includes another file. Plone 3.3 is scheduled to remove
this requirement by allowing Python packages to signal that they have Zope 3
component configuration, but we'll include the following code in case you're running
a slightly older version of Plone. In terms of theme and other product development,
it means writing one less annoying line of code.

If you recall from Chapter 3 where we configured our buildout.cfg so that we could
install our skin product, you'll remember that we added code similar to what you see
next. In this code, the "slug" is the line below the ZCML directive:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 6

[117]

Reference any eggs you are developing here, one per line
e.g.: develop = src/my.package
develop =
 src/plonetheme.mytheme

If you want Zope to know about any additional eggs, list them here.
This should include any development eggs you listed in develop-eggs
above.
e.g. eggs = ${buildout:eggs} ${plone:eggs} my.package
eggs =
 ${buildout:eggs}
 ${plone:eggs}
 plonetheme.mytheme

If you want to register ZCML slugs for any packages, list them here.
e.g. zcml = my.package my.other.package
zcml =
 plonetheme.mytheme

Assuming these lines are in place in your buildout.cfg file, when you next run
your buildout (and you must for these changes to be recognized) and restart Zope,
it should automatically make your theme product available for installation in
portal_quickinstaller, located in the ZMI in your Plone site. And for lucky
individuals working with Plone 3.3 and above, or for anyone using buildout.
eggtractor, you won't have to worry about this slug at all.

As you can see, ZCML is a human-readable language that merely registers items so
that Zope can see them. There's no magic involved here, just a lot of hand-shaking.

Zope 3 browser layers and resources
The idea of a single, global namespace with customization possible by ID only has
been supplanted in Zope 3 by the notion of named resources being registered for a
context type. This means that the HTML that renders when a view called @@view is
invoked on a page may be different from the HTML that is rendered when the same
view is invoked on a folder or other content object. (The @@ designation looks like a
pair of eyeballs, hence a view.) You do not have to use the @@view designation if you
do not wish to—it's really just a visual cue. This same view may also be registered for
a browser layer.

A Zope 3 browser layer is similar in purpose to a CMF skin layer, but is implemented
differently. Technically speaking, a skin layer is a simple container of templates and
resources, whereas a browser layer is a marker interface that is applied to the request
upon traversal through the object database. In a sense, a browser layer "contains"
browser resources, though it's not really a container. Views (and templates, browser
resources, viewlets, and portlet renderers, which are all special types of views) can

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Working with Zope 3 Components

[118]

be registered to this layer as browser resources. An example of a browser resource is
a special page view that can be used on the home page and optionally in important
sections of your Plone site. A browser resource could also be a CSS file, or even an
image, that can be used in various areas of your site depending on the context.

The browser layer technology allows you to use bits and pieces of your code in more
than one context and keeps your ZCML registrations from applying to all of the
Plone sites on a given instance via IThemeSpecific declarations. If not for browser
layer support, a logo image that is registered as a browser resource might show up
for all of the sites on a given Zope instance, which would be a bad thing.

Using images as browser resources
For the purposes of most themes, images will not be browser resources, but instead
will be used as standard skin layer components as described previously. However,
we will cover this in the interest of explaining that it is possible to expose images to
the browser layer, if desired.

Zope 3 allows browser resources, notably images and stylesheets, to be registered
under a special namespace. For example, if you register an image resource in your
browser/ folder with the name myimage.gif, the browser resource would be
addressable as http://yoursite.com/++resource++myimage.gif. This serves to
get the resource out of the flat, global namespace.

Like all Zope 3 browser components, browser resources are registered with a ZCML
directive in the browser namespace that, among other things, takes a layer attribute.
The layer should resolve to an interface. The browser/images/ folder is a Zope 3
resource directory acting as a repository for images, and its declaration is located in
browser/configure.zcml.cfg:

 <!-- Resource directory for images -->
 <browser:resourceDirectory
 name="plonetheme.mytheme.images"
 directory="images"
 layer=".interfaces.IThemeSpecific"
 />

An image placed in this directory (for example, logo.png) can be accessed from this
relative URL:

++resource++plonetheme.mytheme.images/logo.png

It is best to register each of these resources separately, not in a folder, if you want
to override them via ZCML directives. The only way to override a resource in a
resource directory is to override the entire directory (all elements have to be copied
over). Instead, you could simply register them like this:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 6

[119]

<browser:resource
 name="myimage.png"
 image="myimage.png"
 />

Notice that it is referred to as a resource and not a resourceDirectory.

Then you could address your image as http://yoursite.com/
++resource++myimage.png. Assuming this image was defined as a browser
resource somewhere other than within our theme product (such as in another
Python package), if we wanted to modify this image, we could customize it for the
IThemeSpecific layer. With a custom image called new_myimage.png in our own
browser/ directory, we would add the following in browser/configure.zcml:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 i18n_domain="example.customization">

 <browser:resource
 name="myimage.png"
 image="new_myimage.png"
 layer=".interfaces.IThemeSpecific"
 />

</configure>

Without the layer attribute, we would get a configuration conflict with the original
++resource++myimage.png definition.

Similarly, a new Zope 3 browser resource is declared like this in browser/
configure.zcml:

 <browser:resource
 name="logo.png"
 file="logo.png"
 layer=".interfaces.IThemeSpecific"
 />

This image can be accessed from this relative URL:

++resource++logo.png

Note also that images registered as Zope 3 browser resources don't have all the
attributes that Zope 2 image objects have (that is, the title property and the tag()
and get_size() methods), which is unfortunate.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Working with Zope 3 Components

[120]

This means that if you want the html tag of your image to be auto-generated (this
is the case by default for the logo), you should store it in a directory that is located
in the skins/ folder of your package. Customizing or overriding images that are
originally accessed from the portal_skins tool (for example, Plone default logo and
icons) can be done inside of the ZMI via the portal_skins (Zope 2 way) tool, or in
your theme product's skins/ folder, which is the preferred way. There is no known
way to alter images declared as Zope 3 browser resources via the ZMI.

In other words, images listed in the browser/images/ folder cannot be customized
via portal_skins, as these images are not considered skin layer elements. To
override them, the images must be added to your browser/images/ folder and be
given a new name and IThemeSpecific designation in configure.zcml file.

The takeaway here is that for the purposes of this book, we will be treating images as
skin layer elements, but there is a more Zope 3 way of working with them, if desired.
The limitations involved in using them as Zope 3 resources outweigh the benefit, in
my opinion.

Using stylesheets as browser resources
Like images, for most themes, stylesheets will not be browser resources, but instead
will be used as standard skin layer components as described previously. However,
we will cover this in the interest of explaining that it is possible to expose stylesheets
to the browser layer if desired.

A stylesheet that is listed in the browser/stylesheets/ folder, (for example, main.
css) can be accessed from this relative URL:

++resource++plonetheme.mytheme.stylesheets/main.css

It might be better to register each of these stylesheet resources separately if you want
to override them via ZCML directives, rather than registering the folder containing
the resources. Again, the only way to override a resource in a resource directory is to
override the entire directory (all elements have to be copied over).

A stylesheet is declared as a Zope 3 browser resource like this in browser/
configure.zcml:

 <browser:resource
 name="main.css"
 file="stylesheets/main.css"
 layer=".interfaces.IThemeSpecific"
 />

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 6

[121]

The stylesheet can be accessed from this relative URL:

++resource++main.css

Stylesheets registered as Zope 3 resources might be flagged as not found in the
portal_css tool in the ZMI, if the layer they are registered for doesn't match the
default skin set in portal_skins. This can be confusing, but it must be considered
as a minor bug in the CSS registry, instead of a lack in the way Zope 3 resources are
handled in Zope 2.

It is possible to interpret DTML from a Zope 3 resource view. However, if you
need to use DTML for setting values in a stylesheet (the same way as default Plone
stylesheets, where values are read from base_properties.props), it is much easier
to store it in a directory that is located in the skins/ folder of your package as a
skin layer.

Customizing/overriding stylesheets that are originally accessed from the
portal_skins tool in the ZMI (for example, Plone default stylesheets) can be
done inside that tool. There is no known way to do it with Zope 3 browser
resources using the portal_skins tool.

The takeaway here is that for the purposes of this book, we will be treating stylesheets
as skin layer elements, rather than treating them as Zope 3 browser resources.

Browser pages
Creating custom views for a web site is a common request. In Plone 2.x, this was
handled primarily via skin layers, but in Plone 3, we often create these as browser
layer resources. In fact, the browser layer has been available and in use since Plone
2.5. The key change is that more of the templates have been moved to the browser
layer in Plone 3 and thus can't be overridden on the skin layer. Also, all of the CMF
skins, including templates such as main_template.pt, are still usable in Plone 3.

It is possible to customize browser pages either through the ZMI or through
the filesystem, but you are limited to what you can change through the web.
Additionally, you can't add new browser views through the web, so overall it's
advisable to make changes to browser views via the filesystem and steer clear of
the ZMI.

Next, we will create a simple browser view in a filesystem theme product called
"test" that creates a new navigational structure that outputs the contents of a new
portal_actions CMF category. To create a simple browser view, we will need:

A Python class to hold the code for our View component (optional)
A page template file that will hold the HTML and TAL

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Working with Zope 3 Components

[122]

ZCML code to register our browser page with Zope
An interface
Some GenericSetup code to create the new action category

Create a Python class for our browser page
The purpose of a template language like TAL is to handle presentation of content.
Ideally, any serious logic is handled separately, via a real programming language.
Python is the perfect programming language!

Let's start with our Python class. We'll create a new file named audiences.py in
our browser/ folder, and will insert the following code, which outputs text from
our portal_actions and uses a page template called audiences.pt.

from zope.component import getMultiAdapter
from zope import schema
from zope.formlib import form
from zope.interface import implements

from plone.portlets.interfaces import IPortletDataProvider

from Products.Five.browser.pagetemplatefile import
 ViewPageTemplateFile

class IAudienceNavigationPortlet(IPortletDataProvider):
 portlet_title = schema.TextLine(title=u"Title for the portlet",
 default=u"Information for:", required=True)

def audiences(self):
 """Return obj with attributes:
 - id
 - url
 - title
 - description
 - selected (str: 'selected' or 'unselected')
 """
 audiences = []
 current_url = self.context.absolute_url()
 for action in self._data():
 audiences.append({
 "id": action['id'],
 "url": action['url'],
 "title": action['title'],
 "selected": current_url.startswith(action['url']) and
 'selected' or 'unselected',
 "description": action['description'],
 })
 return audiences

def header(self):

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 6

[123]

 return self.data.portlet_title

class Renderer(base.Renderer):
 render = ViewPageTemplateFile('audiences.pt')

Add the interface for our browser page
In our theme product in browser/interfaces.py, we need to insert the
following code:

from plone.theme.interfaces import IDefaultPloneLayer

class IThemeSpecific(IDefaultPloneLayer):
 """Marker interface that defines a Zope 3 browser layer.
 """

class IAudienceNavigationLayer(IDefaultPloneLayer):
 """Marker interface that defines a Zope 3 browser layer.
 """

Registering our browser page
Next, we register our browser page in our browser/configure.zcml file:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser=http://namespaces.zope.org/browser
 xmlns:plone="http://namespaces.plone.org/plone"
 i18n_domain="plonetheme.test">

 <!-- 'test theme' Zope 3 browser layer -->
 <interface
 interface=".interfaces.IThemeSpecific"
 type="zope.publisher.interfaces.browser.IBrowserSkinType"
 name="test theme"
 />

 <!-- Browser views -->
 <browser:page
 for="*"
 name="audiencenavigation"
 class=".audiences.IAudienceNavigationPortlet"
 layer=".interfaces.IThemeSpecific"
 permission="zope2.View"
 />

 <!-- Viewlets registration -->
 <!-- Zope 3 browser resources -->

</configure>

One way to customize this resource is to provide an override for a more specific
(or different) context. The "*" context is the most general. (Under the hood, this
means zope.interface.Interface, or everything.) In this case, it means that this
is a generic view that can be applied to any interface.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Working with Zope 3 Components

[124]

The browser:page directive attributes can be explained further:

for: Registers the page for a specific interface
name: This is what your view is called in the URL
class: The Python class that attaches to your page template
template: The page template that renders your view
permission: The permission required to access your view
layer: The layer where the package is registered, usually IThemeSpecific

The code also tells us that we are using the IAudienceNavigationPortlet class
defined in our audiences.py file. We could have disambiguated it further by using
the @@ designation before the name, which would have made it clear that we are
looking at a view and not, for example, a content item or a skin layer template.

We can either use a skin layer template named audiences.pt (not shown here) that
traverses to the view as context/@@audiencenavigation and then calls methods on
it, or we can use a class-based view (audiences.py) that pulls in the template via its
render attribute and refers to the view instance as view.

Lastly, the browser page is made available only to our current theme product via the
IThemeSpecific layer designation.

Create a page template for our view
Next, we want to create a page template using TAL and HTML (and a tiny snippet
of Python) to render these items. We will call it audiences.pt and place it in our
browser/ folder. Notice that it iterates over a series of "audience-items" to output
an unordered list.

 <dt class="audiences-header" tal:content="view/header">
 Information for...</dt>

 <li class="audiences-item"
 tal:repeat="audience view/audiences">
 <a tal:attributes="class string:${audience/selected}
 audience-${audience/id};
 href audience/url;
 title audience/description"
 tal:content="audience/title">
 Link Name

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 6

[125]

Write the GenericSetup steps to create the new
CMF action category
Next, we need to create a file called actions.xml and place that in our theme
product's profiles/default folder. We will populate it with the following code:

<?xml version="1.0"?>
<object name="portal_actions" meta_type="Plone Actions Tool"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n">

 <object name="audience_navigation" meta_type="CMF Action
 Category" purge="False">
 <property name="title">Audience Navigation</property>

 <object name="example" meta_type="CMF Action">
 <property name="title">Example Audience</property>
 <property name="description">
 The description of the audience is available on
 mouseover in the audience navigation viewlet.
 </property>
 <property name="url_expr">string:${globals_view
 /navigationRootUrl}/example</property>
 <property name="icon_expr"></property>
 <property name="available_expr"></property>
 <property name="permissions">
 <element value="View"/>
 </property>
 <property name="visible">True</property>
 </object>

 </object>

</object>

When we install our theme product, this CMF action category should automatically
be created, as well as a sample action that will render.

Register the viewlet in your theme product
In your theme product's configure.zcml file, located at mybuildout/source/
plonetheme.test/plonetheme/test/browser/configure.zcml, we need to
add a few lines so that our viewlet is registered with Zope:

<!-- Browser views -->
 <browser:page
 for="*"
 name="audiencenavigation"
 class=".audiences.AudienceViewlet"

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Working with Zope 3 Components

[126]

 template="audiences.pt"
 layer=".interfaces.IThemeSpecific"
 permission="zope2.View"
 />

Then, restart Zope so that it can read those lines of code:

./bin/instance fg

Enable the browser page
Finally, to expose the viewlet to your Plone site, you should install the theme
product. You can then call your view and see the sample action rendered in your
web browser by going to the URL: http://localhost:8080/myplonesite/@@
audiencenavigation or http://localhost:8080/myplonesite/
audiencenavigation.

Presto! We now have a custom browser page that outputs the contents of our new
CMF action category.

Summary
In this chapter, we have learned:

What Zope 3 components are involved in filesystem theme development
About interfaces and adapters
How to use ZCML code to tie together Zope 3 components
How to use images and stylesheets and browser resources
How to write a basic browser page and register it in our theme

In the next chapter, we will look at how to customize viewlets and portlets, the key
components that are used when customizing a web site's look and feel.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and
Portlets

In addition to the Zope 3 resources covered earlier, we have two very special
browser resources known as viewlets and portlets. These components are at the
heart of the theming process, and are the most commonly modified elements.

In this chapter, we will explain how to:

Inspect viewlets using the @@manage-viewlets tool
Modify viewlets and portlets programmatically
Modify these components through the portal_view_customizations tool
through the web.

Viewlets
In this section, we will gain an introduction to viewlets, the snippets of reusable
functionality that comprise a Plone page. Items such as breadcrumbs, the logo, the
personal bar, and many other items visible on a Plone page are viewlets.

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[128]

In the following screenshot, you will see a number of unique snippets, or viewlets,
that have been labeled:

The following is the list of the viewlets displayed in the previous screenshot and
their formal names in the Plone namespace. This list is by no means complete, as you
may only see certain viewlets in specific situations, such as on a custom page view or
the Contents tab of a folder.

Logo (1): plone.logo
Global sections (2): plone.global_sections
Breadcrumbs (3): plone.path_bar
Navigation (4): portlets.Navigation
Content views (5): plone.contentviews
Byline (6): plone.belowcontenttitle.documentbyline
History (7): plone.belowcontentbody.contenthistory
Footer (8): plone.footer
Colophon (9): plone.colophon
Utility navigation/site actions (10): plone.site_actions
Searchbox (11): plone.searchbox
Personal bar (12): plone.personal_bar
Contact actions (13): plone.contentactions
Document actions (14): plone.abovecontenttitle.documentactions

•

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[129]

Don't worry too much about what really drives these viewlets; the objective here is to
understand where elements can be found and organized, where to put items you are
modifying, and patterns to follow to successfully modify your viewlets.

In Plone, viewlets are not looked up directly. In order to be able to organize viewlets
with maximum flexibility, they are aggregated using viewlet managers. A viewlet
manager is also a Zope 3 content provider, and these managers render the viewlets
that are registered for them. Viewlet managers are typically given charge of
presenting their assigned viewlets in a particular section of a page.

Viewlets are technically considered browser views, but they are more commonly
referred to as viewlets, because they encapsulate smaller bits of code. They are a type
of content provider, meaning they are components of a page that render small pieces
of HTML code.

Most viewlets were formerly implemented in Plone 2.x as page templates (skin layer
objects) that needed the boilerplate as well in the form of slots and macros. They
are now browser layer resources so that they are more reusable. This means that
boilerplate code is needed to hook them up.

In Plone 3, viewlets may be comprised of the following:

Page templates
Classes
Page templates combined with classes

Let's now look at how these viewlets are pulled into Plone's templates. This happens
in a file known as main_template, located in your buildout in buildout-cache/
eggs/Plone-[version].egg/Products/CMFPlone/skins/plone_templates/,
or in the ZMI inside of your Plone site in portal_skins/plone_templates/.

In the past, moving elements around on a page involved making changes to the
main_template.pt and working with lengthy TAL (templating) statements.
This often produced upgrade problems and messy code. In Plone 2.5, for example,
the following code controlled the rendering of the portal_header section in
main_template.pt:

<div id="portal-top" i18n:domain="plone">

 <div id="portal-header">
 <p class="hiddenStructure">
 <a accesskey="2" tal:attributes="href string:${current_
page_url}#documentContent" i18n:translate="label_skiptocontent">Skip
to content.
 <a accesskey="6" tal:attributes="href string:${current_
page_url}#portlet-navigation-tree" i18n:translate="label_
skiptonavigation">Skip to navigation

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[130]

 </p>

 <div metal:use-macro="here/global_siteactions
 /macros/site_actions">
 Site-wide actions (Contact, Sitemap, Help, Style
 Switcher etc)
 </div>

 <div metal:use-macro="here/global_searchbox
 /macros/quick_search">
 The quicksearch box, normally placed at the top right
 </div>

 <a metal:use-macro="here/global_logo
 /macros/portal_logo">
 The portal logo, linked to the portal root

 <div metal:use-macro="here/global_skinswitcher
 /macros/skin_tabs">
 The skin switcher tabs. Based on which role you have,
 you get a selection of skins that you can switch between
 </div>

 <div metal:use-macro="here/global_sections
 /macros/portal_tabs">
 The global sections tabs. (Welcome, News etc)
 </div>
 </div>

 <div metal:use-macro="here/global_personalbar
 /macros/personal_bar">
 The personal bar. (log in, logout etc...)
 </div>

 <div metal:use-macro="here/global_pathbar
 /macros/path_bar">
 The breadcrumb navigation ("you are here")
 </div>
 </div>

In Plone 3, if you look at the main_template.pt found in your buildout's
buildout-cache/eggs/Plone-[version].egg/Products/CMFPlone/skins/
plone_templates/ folder, you will see that the code that controls the
portal_header mentioned above has now been rewritten to be much slimmer:

<div id="portal-top" i18n:domain="plone">
 <div tal:replace="structure provider:plone.portaltop" />
</div>

The main_template.pt file also contains other similar structures that represent other
areas of Plone's layout.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[131]

In other words, the main_template.pt in Plone 3 does not show the actual viewlets.
Rather, the provider TALES expression above is a Zope 3 expression that looks up
a content provider from a page template. In this case, the viewlet manager content
provider is named plone.portaltop.

To see the full list of default viewlets contained within these viewlet managers, open
the file named configure.zcml, located in your buildout at buildout-cache/eggs/
plone.app.layout[version]/plone/app/layout/configure.zcml. This file,
which is written in ZCML, lists out all of the viewlets and viewlet managers that
ship with Plone, along with their formal names.

The code looks something like this:

<!-- Register viewlet managers - used in plone's main_template -->
<browser:viewletManager
 name="plone.portaltop"
 provides=".interfaces.IPortalTop"
 permission="zope2.View"
 class="plone.app.viewletmanager.manager.OrderedViewletManager"
 />

<!-- Define some viewlets -->
<!-- The portal header -->
 <browser:viewlet
 name="plone.header"
 manager=".interfaces.IPortalTop"
 template="portal_header.pt"
 permission="zope2.View"
 />

Notice the difference between the browser:viewletManager and browser:
viewlet definition and the OrderedViewletManager class used by the viewlet
managers. In the above example, the IPortalTop manager is a viewlet manager
that renders the contents of any viewlets controlled by that manager, using the class
OrderedViewletManager.

It's not really important to understand exactly what OrderedViewletManager
does, except to realize that it outputs the viewlets contained within a given viewlet
manager in a specific order. The OrderedViewletManager class is used by all viewlet
managers in Plone, therefore all of the viewlet managers behave the same way. They
are merely containers that hold the viewlets.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[132]

Meanwhile, the plone.header viewlet listed above is managed by the viewlet
manager that implements the IPortalTop interface, outputs the HTML found in
portal_header.pt, and is available to anyone with the View permission.

We can see which viewlets are assigned to which viewlet managers through the web,
using a special interface, often referred to as @@manage-viewlets. You may see this
view in action at: http://localhost:8080/Plone/@@manage-viewlets or another
URL, where Plone is the name of your Plone site. The next screenshot demonstrates
what the @@manage-viewlets view looks like:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[133]

This interface can be used for quickly identifying where a viewlet is assigned, and
from a TTW perspective, you can use the show and hide links to display or suppress
certain viewlets, as we'll discuss later. It's cleaner to do this through the filesystem,
though. This screen loses value as your theme is built out, because your theme's
rendered CSS often obscures the information you are trying to see. The UI issue
is likely something that will be fixed in a future version of Plone. Moreover, your
theme product's GenericSetup may override any changes made through the web.

Now that we understand how viewlets are aggregated and how we can look at this
aggregation through the web, let's look at what we need to know in order to modify
a viewlet.

Class-based versus template-based viewlets
Think of viewlets and viewlet managers as an organization (your site). Within the
organization, there are numerous departments (viewlet managers), and numerous
staff members (viewlets) within these departments. For a staff member to be moved
from one department (viewlet manager) to another (promoted, or perhaps even
fired), paperwork (ZCML, XML, and sometimes Python code) must be filled out.

The first step to modifying viewlets is to locate them and figure out if they are
class-based or template-based. This is a great oversimplification, but will help you
get used to the patterns needed to do basic modifications. In reality, all viewlets
have classes. If it's not specified in ZCML, it means that it is using the inherited
(default) class. It just means that the viewlets don't need any supporting logic
from a derived class.

Likewise, a viewlet can have both a class and a template specification. In that case,
the specified template is used for rendering, and the template can access the class
logic. Browser pages typically work this way.

For shorthand, though, what we are calling class-based viewlets above are simply
viewlets that don't have ZCML-specified templates. They may use a template they
get from somewhere else, or they may render some other way. Similarly, what we
call template-based viewlets are deriving from the inherited class, but there isn't a
class defined in plone.app.layout for these viewlets.

As explained above, inside of your buildout you should see an
buildout-cache/eggs/ directory. Within that directory, you should find
an egg named plone.app.layout, with a version number attached. If you
drill into that folder, you will find most of the pieces and parts that make up
Plone's interface.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[134]

Open the default Plone configure.zcml file located in yourbuildout/buildout-
cache/eggs/plone.app.layout/plone/app/layout/viewlets. Here is what the
default configure.zcml file says about the logo viewlet, for example:

<!-- The logo -->
 <browser:viewlet
 name="plone.logo"
 manager=".interfaces.IPortalHeader"
 class=".common.LogoViewlet"
 permission="zope2.View"
 />

The code tells us that the Plone logo, formally called plone.logo, is managed by
the IPortalHeader viewlet manager, its class is LogoViewlet, and the logo is
available to all users with the View permission. If we look in the plone.app.layout.
viewlets directory, we also see a file named logo.pt, which is the page template
used for rendering the logo. Even though there is the logo.pt file involved, because
a class is specified in configure.zcml, the plone.logo viewlet can be thought of as
class-based. This is a good example of a viewlet that uses a class and a template, but
is still considered class-based because the derived class takes responsibility for the
rendering details.

Conversely, if we look at the portal header code, we'll see that it does not have a class
declaration, and that it instead specifies a template. This means that all of its logic is
contained in that template, and that it can be thought of as template-based. In reality,
though, it is using an inherited class.

<!-- The portal header -->
 <browser:viewlet
 name="plone.header"
 manager=".interfaces.IPortalTop"
 template="portal_header.pt"
 permission="zope2.View"
 />

The important thing to understand here is that when modifying viewlets, we first
need to know if they are class-based (using a derived class) or not in order to know
how to treat them, and we have to explicitly look at the code in configure.zcml to
verify if there is an associated page template or not.

Other vital information is found in common.py, located in yourbuildout/buildout-
cache/eggs/plone.app.layout[some version number]/plone/app/layout/
viewlets/common.py. This file contains many of the Python classes used by the
viewlets with class declarations. (Other viewlets can be found in eggs directories
such as plone.app.content.) Obviously, viewlets that are template-based do not
use this file.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[135]

This file is located in your buildout at buildout-cache/eggs/plone.app.layout/
plone/app/layout/viewlets/common.py. Search the file for the word "logo" and it
gives us the following information:

class LogoViewlet(ViewletBase):
 render = ViewPageTemplateFile('logo.pt')

 def update(self):
 portal_state = getMultiAdapter((self.context, self.request),
 name=u'plone_portal_state')

 self.navigation_root_url = portal_state.navigation_root_url()

 portal = portal_state.portal()
 logoName = portal.restrictedTraverse
 ('base_properties').logoName

 self.logo_tag = portal.restrictedTraverse(logoName).tag()

 self.portal_title = portal_state.portal_title()

For many of the default viewlets, we don't want to change the Python code that
renders our viewlet; we only want to change the template that outputs the viewlet.
Here, we only need to understand that the class name is LogoViewlet, and that a
page template named logo.pt renders the viewlet. It's rare that we'd want to modify
the LogoViewlet class, especially for non-coders, but it is fairly likely that we'd want
to alter what HTML appears in logo.pt.

Now that we can distinguish between the types of viewlets, we'll examine how these
viewlets are registered in a theme product.

Registering viewlets in a viewlet manager
As we saw earlier, viewlets are aggregated into viewlet managers. We can register
viewlets with managers by modifying the configure.zcml file located in our theme
product, similar to how this happens in the plone.app.layout configure.zcml
file located at yourbuildout/buildout-cache/eggs/plone.app.layout/plone/
app/layout/viewlets/configure.zcml.

In our sample theme, we want to register the plone.personalbar viewlet with
the plone.portalfooter viewlet manager in our theme product, so that the
login/logout links and other options here are listed at the bottom of the Plone
page. The plone.app.layout configure.zcml file tells us this:

<!-- The personal bar -->
 <browser:viewlet
 name="plone.personal_bar"
 manager=".interfaces.IPortalTop"
 class=".common.PersonalBarViewlet"
 permission="zope2.View"
 />

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[136]

If you look inside the yourbuildout/buildout-cache/eggs/plone.app.layout/
plone/app/layout/viewlets/ directory, you will also see a page template called
personal_bar.pt. We don't need to modify the output for that page template for
now, so we can ignore this for the moment. All we're concerned with here is telling
the plone.portalFooter to see the personal bar.

We copy-paste the following code into our own theme product's configure.
zcml file, located at plonetheme.yourtheme/plonetheme/yourtheme/browser/
configure.zcml, and modify it as shown:

<!-- The personal bar -->
 <browser:viewlet
 name="plone.personal_bar"
 manager="plone.app.layout.viewlets.interfaces.IPortalFooter"
 class="plone.app.layout.viewlets.common.PersonalBarViewlet"
 layer=".interfaces.IThemeSpecific"
 permission="zope2.View"
 />

Notice the dot-delimited path back to the plone.app.viewlets IPortalFooter
viewlet manager. We do this because we are not modifying the behavior of the viewlet
manager itself, and we're happy to use what the interface provides us by default.

The next line for the class declaration means that the viewlet's class is exactly as
before; we're just providing the full dot-delimited path back to the original class.

Finally, we include our layer definition for IThemeSpecific, so that our changes
only affect the current theme product. Remember, this line is crucial to making sure
that your theme product does not step on other themes in the same Zope instance.

As a quick side note, if we opted to subclass the viewlet's Python code, the code
might look something like this:

<!-- The personal bar -->
 <browser:viewlet
 name="plone.personal_bar"
 manager="plone.app.layout.viewlets.interfaces.IPortalFooter"
 class=".viewlets.PersonalBarViewlet"
 layer=".interfaces.IThemeSpecific"
 permission="zope2.View"
 />

This means that our theme will provide a PersonalBarViewlet class, probably
the one that has been subclassed from plone.app.layout.viewlets.common.
PersonalBarViewlet, then modified in your theme product's viewlets.py file,
located in the browser/ folder. For the purposes of this section, we're not going to
worry about this just yet. Here, all we want to do is assign the viewlet to a different
viewlet manager, not change the behavior or any template that might be associated
with the viewlet.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[137]

Also, if you were working with a template-only viewlet here, you could skip the
class line above. Always rely on what plone.app.layout's configure.zcml file
gives you to learn what you need to modify.

With this code in place (assuming you did not try to subclass the
PersonalBarViewlet), the personal bar should appear in the footer once you
restart your Zope instance or use the plone.reload (http://pypi.python.org/
pypi/plone.reload) egg to reload your modified ZCML code. To restart your
Zope instance, simply shut it down and restart it in your terminal using the
following command:
./bin/instance fg

Starting your Zope in the foreground gives you the opportunity to run it in debug
mode, so that you can troubleshoot errors, but once you close your terminal, the
instance immediately terminates.

It's worth noting that using the fg command starts your Zope instance in the
foreground. In a production scenario, you would start your Zope instance
(and leave it running) by using the following command:
./bin/plonectl start

Starting your Zope in the foreground gives you the opportunity to run it in debug
mode, so that you can troubleshoot errors, but once you close your terminal, the
instance immediately terminates.

Reordering viewlets within a viewlet manager
We already know that Plone orders viewlets within viewlet managers, and we've
looked at how we can reassign viewlets to different viewlet managers. Now, we want
to look at how we might reorder a viewlet within its current (default) viewlet manager.

You can find Plone's default viewlet ordering mechanism in your buildout in
Plone's baseline product, CMFPlone, located in the GenericSetup XML file at
buildout-cache/eggs/Plone-[version].egg/Products/CMFPlone/profiles/

default/viewlets.xml:

<?xml version="1.0"?>
<object>
 <order manager="plone.portaltop" skinname="Plone Default">
 <viewlet name="plone.header" />
 <viewlet name="plone.personal_bar" />
 <viewlet name="plone.app.i18n.locales.languageselector" />
 <viewlet name="plone.path_bar" />
 </order>
 <order manager="plone.portalheader" skinname="Plone Default">

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[138]

 <viewlet name="plone.skip_links" />
 <viewlet name="plone.site_actions" />
 <viewlet name="plone.searchbox" />
 <viewlet name="plone.logo" />
 <viewlet name="plone.global_sections" />
 </order>
 <order manager="plone.contentviews" skinname="Plone Default">
 <viewlet name="plone.contentviews" />
 <viewlet name="plone.contentactions" />
 </order>
 <order manager="plone.portalfooter" skinname="Plone Default">
 <viewlet name="plone.footer" />
 <viewlet name="plone.colophon" />
 </order>
</object>

As you can see, the viewlets are all grouped by manager; for example,
plone.portaltop, plone.portalheader, plone.contentviews, and
plone.portalfooter. Generally speaking, most Plone 3 themes are based
off of this default configuration, and build onto it or deviate from it, as needed.

It's important to point out that ordering a viewlet is not the same thing as registering
a viewlet for a viewlet manager. Ordering is handled via a GenericSetup profile,
whereas registering is handled via ZCML configuration. So, by modifying the code
in our theme product's viewlets.xml, we can order the items on a Plone page, but
actual registration of a browser resource happens in configure.zcml, as described
above, and the configure.zcml file is ultimately the file that tells Plone what
viewlet manager a viewlet belongs to.

In this example, we want to move the logo viewlet above the searchbox within the
plone.portalheader viewlet manager. We are not trying to display or order the
logo in a new viewlet manager. CMFPlone's default viewlets.xml configuration
for the portalheader viewlet manager looks like this:

<?xml version="1.0"?>
<order manager="plone.portalheader" skinname="Plone Default">
 <viewlet name="plone.skip_links" />
 <viewlet name="plone.site_actions" />
 <viewlet name="plone.searchbox" />
 <viewlet name="plone.logo" />
 <viewlet name="plone.global_sections" />
 </order>
</object>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[139]

In our own theme product, plonetheme.yourtheme/profiles/viewlets.xml, you
would insert the following code, where yourtheme is your Plone theme product's
skin name. It's vital to distinguish it from Plone Default.

<?xml version="1.0"?>
<object>
<order manager="plone.portalheader" skinname="yourtheme" based-
 on="Plone Default">
 <viewlet name="plone.logo" insert-before="plone.searchbox" />
</object>

As you can see, we're not grabbing the entire contents of CMFPlone's viewlets.xml,
we're only using the parts we need. Optionally, if we wanted an element to appear
after a given viewlet, we could specify insert-after="" instead.

Ordering of viewlets can be a touchy thing, so beware.
Sometimes it works, sometimes it doesn't. Sometimes TTW changes
to the ordering of viewlets can interfere with our XML. This is a known
issue that is currently being worked on, and will likely be fixed by the
time this book is published.

Showing, hiding, and unhiding viewlets within a
viewlet manager
Let's now look at how to show viewlets in a different viewlet manager and hide
unwanted viewlets that we've overridden.

Let's assume that we're going to move plone.personal_bar to the footer area and
suppress that viewlet from the plone.portaltop viewlet manager. The idea is that
if you are going to move a viewlet to a new location, Plone will still think (thanks to
the CMFPlone viewlets.xml default configuration) that the viewlet is meant to be
shown in its original location. Thus, we must issue directives to show the viewlet in
one place and suppress it in the first location, or else it will display twice.

CMFPlone's viewlets.xml tells us the following:

<?xml version="1.0"?>
<order manager="plone.portaltop" skinname="Plone Default">
 <viewlet name="plone.header" />
 <viewlet name="plone.personal_bar" />
 <viewlet name="plone.app.i18n.locales.languageselector" />
 <viewlet name="plone.path_bar" />
 </order>
<order manager="plone.portalfooter" skinname="Plone Default">
 <viewlet name="plone.footer" />

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[140]

 <viewlet name="plone.colophon" />
 </order>
</object>
[snip]

In our own theme product's profiles/viewlets.xml, we would alter the code to
look like this, where yourtheme is your theme product's skin name, as defined in the
profiles.zcml file.

<?xml version="1.0"?>
<order manager="plone.portalfooter" skinname="yourtheme" based-
 on="Plone Default">
 <viewlet name="plone.personal_bar" />
</order>
<hidden manager="plone.portaltop" skinname="yourtheme">
 <viewlet name="plone.personal_bar" />
</hidden>
</object>

As you can see, we first want to show the viewlet in the new viewlet manager,
using the order manager syntax. Then we want to suppress the original viewlet that
was registered for plone.portaltop through Plone Default, using the hidden
manager syntax.

It's worth stating that unhiding viewlets through GenericSetup is an awkward process,
and it's generally easier to just unhide a viewlet using @@manage-viewlets. There is
GenericSetup code that can allow you to do it via code, and if you have the luxury to
work only on the filesystem without using @@manage-viewlets, you should.

Next, let's look at how we can override viewlets, both in terms of their behavior and
their appearance.

Overriding a viewlet template
As we saw earlier, viewlets can be regarded as either template-based or class-based,
although as mentioned, that's really an oversimplification. In this section, we'll look
at how we can modify a so-called template-based viewlet that technically inherits
from a default class not specified in plone.app.layout. We will not be moving the
viewlet to a new section; we're only going to modify its appearance.

For example, let's assume that we want to modify the portal header area to include
some additional information about our site. If we open configure.zcml, located at
yourbuildout/buildout-cache/eggs/plone.app.layout/plone/app/layout/
viewlets/configure.zcml, you can see the following code:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[141]

<!-- The portal header -->
 <browser:viewlet
 name="plone.header"
 manager=".interfaces.IPortalTop"
 template="portal_header.pt"
 permission="zope2.View"
 />

We want to copy this code to our theme product's configure.zcml, located at
plonetheme.yourtheme/plonetheme/yourtheme/browser/configure.zcml.
Next, we modify it to indicate that we want to apply changes to a new page
template (this is optional), and that we want these changes to only affect our
current theme product:

<!-- The portal header -->
 <browser:viewlet
 name="plone.header"
 manager="plone.app.layout.viewlets.interfaces.IPortalTop"
 template="mynewportal_header.pt"
 layer=".interfaces.IThemeSpecific"
 permission="zope2.View"
 />

Note that we've also given the full dot-delimited path to IPortalTop, because w're
not in the same Python package.

Next, we need to locate the portal_header.pt page template in yourbuildout/
buildout-cache/eggs/plone.app.layout/plone/app/layout/viewlets/ and
copy it into our theme product's browser/ folder.

Then, we rename the page template to call it mynewportal_header.pt, if you
changed its name in your theme product's configure.zcml file. Generally, you only
need to rename your page template if the actual behavior of the template changes
in a way that implies that its functionality has changed significantly, if, for instance,
you alter your logo viewlet to include additional, unrelated pieces of functionality.

In this case, we will alter the page template code only slightly, to include some
code that pulls in the name of your web site, such as the portal title (rendered via
a viewlet manager):

<h1 tal:content="view/portal_title">
 Title of the portal
</h1>
<div id="portal-header">
 <div tal:replace="structure provider:plone.portalheader" />
</div>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[142]

We have not moved or reordered this viewlet, so there is no need to touch our theme
product's viewlets.xml file. If you restart your Zope instance, the viewlet should
now show the title of your web site in the portal header area.

Next, we look at how to modify a class-based viewlet (technically a viewlet that
derives from a subclass located in plone.app.layout).

Overriding a non-template-based viewlet
Modifying viewlets that use a derived class involves some extra manipulation of
code, because here we are also looking at how we might modify the behavior of a
viewlet, as defined in its derived Python class. In this section, we'll look at modifying
the breadcrumbs so that they use a different divider between the crumbs.

If we open the configure.zcml file in yourbuildout/buildout-cache/eggs/
plone.app.layout/plone/app/layout/viewlets/, you can see the following code:

<!-- The breadcrumbs -->
 <browser:viewlet
 name="plone.path_bar"
 manager=".interfaces.IPortalTop"
 class=".common.PathBarViewlet"
 permission="zope2.View"
 />

The class declaration here is what tells us that we are working with a template that
is defined within a class. We want to copy-paste this code into our theme product's
configure.zcml file, located at plonetheme.yourtheme/plonetheme/yourtheme/
browser/configure.zcml, and modify it as follows:

<!-- The breadcrumbs -->
 <browser:viewlet
 name="plone.path_bar"
 manager="plone.app.layout.viewlets.interfaces.IPortalTop"
 class=".viewlets.PathBarViewlet"
 layer=".interfaces.IThemeSpecific"
 permission="zope2.View"
 />

Optionally, you could name your viewlet something like:

name="mytheme.path_bar"

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[143]

This can often help if you know that you will have project managers or other
administrative types modifying viewlets through portal_view_customizations
in the ZMI, as it makes it easy to spot the viewlet, but it's also a good thing to do
because once you've modified it, it's no longer the original plone.whatever viewlet.
Changing the name means that you will have to perform an extra step, which we will
cover at the end of this section. For the purposes of this example, we will change the
name of the viewlet to mytheme.path_bar.

Notice that in the above code, we provided a dot-delimited path back to the original
viewlet manager's interface. Also, we specify the IThemeSpecific layer in order
to keep our changes from affecting any other themes on our Zope instance. Most
importantly, we change the class declaration to reference the viewlets.py file,
located in our theme product at plonetheme.yourtheme/plonetheme/yourtheme/
browser/viewlets.py.

Before we subclass our viewlet, let's make a small change to the page template that
renders the viewlet. The original template, path_bar.pt, located in yourbuildout/
buildout-cache/eggs/plone.app.layout/plone/app/layout/viewlets/, looks
like the following:

<div id="portal-breadcrumbs" i18n:domain="plone">

 <span id="breadcrumbs-you-are-here" i18n:translate=
 "you_are_here">You are here:
 <a i18n:translate="tabs_home" tal:attributes="href
 view/navigation_root_url">Home
 <span tal:condition="view/breadcrumbs"
 class="breadcrumbSeparator">
 <tal:ltr condition="not: view/is_rtl">→</tal:ltr>
 <tal:rtl condition="view/is_rtl">»</tal:rtl>

 <span tal:repeat="crumb view/breadcrumbs" tal:attributes="dir
 python:view.is_rtl and 'rtl' or 'ltr'">
 <tal:last tal:define="is_last repeat/crumb/end">
 <a href="#"
 tal:omit-tag="not: crumb/absolute_url"
 tal:condition="python:not is_last"
 tal:attributes="href crumb/absolute_url"
 tal:content="crumb/Title">
 crumb

 <span class="breadcrumbSeparator" tal:condition="not:
 is_last">
 <tal:ltr condition="not: view/is_rtl">
 →</tal:ltr>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[144]

 <tal:rtl condition="view/is_rtl">»</tal:rtl>

 <span tal:condition="is_last"tal:content=
 "crumb/Title">crumb
 </tal:last>

</div>

We will replace the Unicode characters → (right arrow) with »
(right angle quote), as follows:

<div id="portal-breadcrumbs" i18n:domain="plone">

 <span id="breadcrumbs-you-are-here" i18n:translate=
 "you_are_here">You are here:
 <a i18n:translate="tabs_home" tal:attributes="href
 view/navigation_root_url">Home
 <span tal:condition="view/breadcrumbs"
 class="breadcrumbSeparator">
 »

 <span tal:repeat="crumb view/breadcrumbs"tal:attributes="dir
 python:view.is_rtl and 'rtl' or 'ltr'">
 <tal:last tal:define="is_last repeat/crumb/end">
 <a href="#"
 tal:omit-tag="not: crumb/absolute_url"
 tal:condition="python:not is_last"
 tal:attributes="href crumb/absolute_url"
 tal:content="crumb/Title">
 crumb

 <tal:ltr condition="not: view/is_rtl">→</tal:ltr>
 <tal:rtl condition="view/is_rtl">»</tal:rtl>

 <span tal:condition="is_last" tal:content=
 "crumb/Title">crumb
 </tal:last>

</div>

Save this page template as path_bar.pt, or perhaps yourtheme_path_bar.pt,
depending on if it's important to you that the name should change.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[145]

Then, we want to look at the Python class that controls the path bar. The common.py
file in the viewlets directory, located at yourbuildout/buildout-cache/
eggs/plone.app.layout/plone/app/layout/viewlets/, gives us the
following information:

class PathBarViewlet(ViewletBase):
 index = ViewPageTemplateFile('path_bar.pt')

 def update(self):
 portal_state = getMultiAdapter((self.context, self.request),
 name=u'plone_portal_state')

 self.navigation_root_url = portal_state.navigation_root_url()

 self.is_rtl = portal_state.is_rtl()

 breadcrumbs_view = getMultiAdapter((self.context,
 self.request), name='breadcrumbs_view')
 self.breadcrumbs = breadcrumbs_view.breadcrumbs()

The important piece here is to see that the PathBarViewlet is derived from a class
called ViewletBase, and that it uses a page template named path_bar.pt. We are
going to subclass it.

Inside of your theme product's viewlets.py, located at yourbuildout/src/
plonetheme.yourtheme/plonetheme/yourtheme/browser/viewlets.py, we will
add the following code:

from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
from plone.app.layout.viewlets import common

class PathBarViewlet(common.PathBarViewlet):
 """A custom version of the path bar class
 """
 index = ViewPageTemplateFile('new_path_bar.pt')

The first line here is just a bit of boilerplate code that you don't need to memorize;
just refer back to it when you need it. The second line, however, is needed to call
in the classes that common.py provides, including PathBarViewlet. If you really
want to be Pythonic, instead of importing common, you would import only the
PathBarViewlet, using this line:

from plone.app.layout.viewlets import PathBarViewlet

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[146]

Next, we need to subclass the PathBarViewlet class from plone.app.layout.
common. Subclassing means that we inherit all its behavior in our class. We are really
just creating a special case of plone.app.layout's PathBarViewlet to make a
minor behavior change. As a result, the new class declaration becomes:

class PathBarViewlet(common.PathBarViewlet):

Don't be confused by the fact that both of these viewlet classes have the
name PathBarViewlet. In fact, the original is plone.app.layout.common.
PathBarViewlet, and our new derived class is plonetheme.yourtheme.browser.
viewlets.PathBarViewlet. They occupy different Python name spaces.

As a best practice, it helps to document your change with a docstring, in the event
that you need to introspect your code later; for example:

"""A custom version of the path bar class
"""

Finally, we change the name of the page template that the class uses to render
the code. In this case, we are pointing to the page template we just modified and
renamed—new_path_bar.pt.

If you're not accustomed to Python programming, don't worry. This is as complex as
most subclassing gets. Follow the pattern, and you will get the same results, over and
over again. However, if you are adept at Python programming, you could optionally
alter your new Python class to behave differently. This is an advanced topic that will
not be covered here.

Lastly, since we have created a new viewlet, we also need to register it in our
GenericSetup profile, located in our theme product at yourbuildout/src/
plonetheme.yourtheme/plonetheme/yourtheme/profiles/viewlets.xml, as
follows—where yourtheme is the name of your skin, and mytheme.path_bar is the
name of your viewlet. Notice that we also hide the default Plone path bar so that we
do not have two path bars appearing on our site.

<?xml version="1.0"?>
<object>
<order manager="plone.portaltop" skinname="yourtheme" based-on="Plone
 Default">
 <viewlet name="mytheme.path_bar" />
 </order>
<hidden manager="plone.portaltop" skinname="yourtheme">
 <viewlet name="plone.path_bar" />
 </hidden>
</object>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[147]

You could even position the elements using insert-before="" or insert-
after="", if you wanted to.

Since we have modified our ZCML code (.zcml files), and we have modified
our GenericSetup profiles (viewlets.xml), we not only need to restart our Zope
instance, but we also need to reinstall our product (okay, but only during early
development) or reimport our viewlets.xml profile through the ZMI (safer option)
because we have changed our XML profile.

To import the profile, log into the ZMI and go to portal_setup. Click on the Import
tab at the top, then choose the name of your theme product. Select the viewlets step
found on the page, and choose Import Selected Step. Your viewlet changes should
now be registered and appear if you refresh your page.

Portlets
In this section we will cover some of the basic concepts associated with portlet
manipulation. Generally speaking, portlets are similar to viewlets in terms of their
basic functionality. They render a portion of a page under control of a manager that
maintains order.

As of Plone 3, portlets can be designated to appear in either the left column or the
right column, formerly known as left_slots and right_slots, but they cannot yet
display elsewhere in a site's structure without additional code. This is a limitation
that Plone hopes to overcome.

You can adjust the portlet settings on a given folder or page using the @@manage-
portlets page, accessible via the manage portlets links in the right or left columns
of your site. See the Plone Users Manual (http://plone.org/documentation/
manual/plone-3-user-manual) for more information on how to configure portlets
on your site. Most importantly, you can define portlets at your site root that can
cascade throughout your site's structure, or you can block parent portlets for a given
section. Optionally, you can also manage portlets by the group that a user falls in or
by the content type involved.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[148]

There are several key differences between portlets and viewlets. With portlets,
a portlet is always registered in ZCML with renderer= declaration pointing at a
renderer class. That class has a render method in Python that returns the HTML
for the portlet. Frequently, this is just a ViewPageTemplateFile that parses a
template from the filesystem. For example, the default News portlet is described in a
package commonly known as plone.app.portlets, and found in yourbuildout/
buildout-cache/eggs/plone.app.portlets/plone/app/portlets/portlets/

configure.zcml, as follows:

<plone:portlet
 name="portlets.News"
 interface=".news.INewsPortlet"
 assignment=".news.Assignment"
 renderer=".news.Renderer"
 addview=".news.AddForm"
 editview=".news.EditForm"
 />

In addition to a renderer class, add and edit declarations
are also specified to support the portlet manager's portlet
add/configure functionality.

The renderer class code returns the output that comes from news.pt, also located
in yourbuildout/buildout-cache/eggs/plone.app.portlets/plone/app/
portlets/portlets/configure.zcml. We can verify that it uses news.pt if we
look at the news.py file located in this folder:

class Renderer(base.Renderer):
 _template = ViewPageTemplateFile('news.pt')

As you can see, in Plone 3, more than one file is involved in the rendering of a portlet.
Usually, it's just a matter of walking around the plone.app.portlets tree to find
the important pieces that give you the information you need: configure.zcml, an
associated .py file, and occasionally an associated .pt file, as defined in the .py file.

Modifying Plone 3 portlets in a theme product
If we wish to modify only the rendering (and not the adding or editing) of a
Plone 3 portlet, the portletRenderer ZCML directive is used to replace the render
method on an existing portlet renderer class with a ViewPageTemplateFile
associated with a different template on the filesystem. Portlets are rendered by the
portletRenderer directive using ZCML, written as <plone:portletRenderer />.
The portletRenderer directive can register either a custom version of the whole
Renderer() class (with class="") or it can register a custom template only
(template="") for a given portlet.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[149]

For example, in this theme product's browser/configure.zcml file, we see:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 xmlns:plone="http://namespaces.plone.org/plone"
 i18n_domain="plonetheme.audubonportland">
 <!-- overriding the portlets -->

 <include package="plone.app.portlets" />

 <plone:portletRenderer
 portlet="plone.app.portlets.portlets.events.IEventsPortlet"
 template="events.pt"
 layer=".interfaces.IThemeSpecific"
 />

We must explicitly include the plone.app.portlets package in ZCML
processing—before we attempt to override any portlets—because we are now
using the portletRenderer directive.

If we are editing only the rendering of an existing portlet, we use the
<plone:portletRenderer /> syntax, but if we are creating a
new portlet, we use the standard <plone:portlet /> syntax at the
beginning of our ZCML declaration.

This code tells us that we are using the portletRenderer directive to indicate
that we are using the default Python code that renders the portlet (hence the dot-
delimited patch back to IEventsPortlet), we are altering the portlet to refer to a
local template named events.pt, and our modifications will only affect the current
theme product.

We then need to copy events.pt to our filesystem product's browser/ folder, along
with any associated metadata files. You don't need to copy events.py, but you will
need to subclass it. You could optionally put your portlets in a portlets/ folder, but
that is optional and requires some extra boilerplate. See the plone.app.portlets
package for more information.

Assuming we want to change the name of the page template to mytheme_events.pt,
we now define a new portlet renderer for our new layer.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[150]

Instead of using a custom template, we could use a whole new renderer class. In this
case, we can use identical renderer class code, but change the name of the template
it renders. If we refer back to plone.app.portlets.portlets, and take the code
for the events.py renderer and alter it to point to mytheme_events.pt, we have
the following code:

class Renderer(base.Renderer):

 _template = ViewPageTemplateFile('mytheme_events.pt')

 def __init__(self, *args):
 base.Renderer.__init__(self, *args)

 portal_state = getMultiAdapter((self.context, self.request),
 name=u'plone_portal_state')
 self.portal_url = portal_state.portal_url()
 self.portal = portal_state.portal()

 self.have_events_folder = 'events' in self.portal.objectIds()

[snip]

In our configure.zcml, it is also possible to use the for attribute to customize for a
particular type of context, or the view attribute to customize for a particular view, as
with viewlets. Note that only plone:portletRenderer understands for and view,
plone:portlet does not.

From the perspective of a filesystem-based product, if you have created a new Plone
3 portlet (not modified off of a default Plone 3 portlet) and it appears in the browser
directory for your product, that portlet will automatically be available via the add
new portlet in the @@manage-portlets drop-down list once you refresh your page
(or restart your Zope instance if you need to).

Creating a new Zope 3 portlet
Let's look briefly at how to create a new Zope 3 portlet. In the interest of reinforcing
concepts and doing a bit of compare/contrast, we're going to recreate the browser
page we saw in the previous chapter as a Zope 3 portlet.

First, (in a fresh Plone theme product) we create a new file named audiences.py in
our browser/ folder and insert the following code. This code will output text and
images from various locations inside of our Plone site, and will use a page template
called audiences.pt. Notice that it is using the Renderer class here, and the
memoize package to cache the return value of the function:

from zope.component import getMultiAdapter
from zope import schema
from zope.formlib import form
from zope.interface import implements

from plone.app.portlets.portlets import base

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[151]

from plone.memoize.instance import memoize
from plone.portlets.interfaces import IPortletDataProvider

from Products.Five.browser.pagetemplatefile import
 ViewPageTemplateFile

class IAudienceNavigationPortlet(IPortletDataProvider):

 portlet_title = schema.TextLine(title=u"Title for the portlet",
 default=u"Information for:",
 required=True)

class Assignment(base.Assignment):
 implements(IAudienceNavigationPortlet)

 def __init__(self, portlet_title=""):
 self.portlet_title = portlet_title

 @property
 def title(self):
 return u"Audience Navigation"

class Renderer(base.Renderer):

 render = ViewPageTemplateFile('audiences.pt')

 @property
 def available(self):
 return len(self._data()) > 0

 def audiences(self):
 """Return obj with attributes:
 - id
 - url
 - title
 - description
 - selected (str: 'selected' or 'unselected')
 """
 audiences = []
 current_url = self.context.absolute_url()
 for action in self._data():
 audiences.append({
 "id": action['id'],
 "url": action['url'],
 "title": action['title'],
 "selected": current_url.startswith(action['url']) and
 'selected' or 'unselected',
 "description": action['description'],
 })
 return audiences

 def header(self):
 return self.data.portlet_title

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[152]

 # By using the @memoize decorator, the return value of the
function will
 # be cached. Thus, calling it again does not result in another
query.
 # See the plone.memoize package for more.
 @memoize
 def _data(self):
 context_state = getMultiAdapter((self.context, self.request),
 name=u'plone_context_state')
 return context_state.actions().get('audience_navigation',
 None)

class AddForm(base.AddForm):
 form_fields = form.Fields(IAudienceNavigationPortlet)
 label = u"Add Audience Navigation portlet"
 description = u'This portlet displays the audiences that have
 been entered into the portal_actions tool'

 def create(self, data):
 assignment = Assignment()
 form.applyChanges(assignment, self.form_fields, data)
 return assignment

class EditForm(base.EditForm):
 form_fields = form.Fields(IAudienceNavigationPortlet)
 label = u"Edit Audience Navigation portlet"
 description = u'This portlet displays the audiences that have
 been entered into the portal_actions tool'

Add the interface for our browser page
In our theme product in browser/interfaces.py, we need to insert the
following code:

from plone.theme.interfaces import IDefaultPloneLayer

class IAudienceNavigationLayer(IDefaultPloneLayer):
 """Marker interface that defines a Zope 3 browser layer.
 """

Create a page template for our view
Next, we want to create a page template using TAL and HTML (and a tiny snippet
of Python) to render these items. We will call it audiences.pt and place it in our
browser/ folder. Notice that it iterates over a series of "audience-items" to output
an unordered list.

<dl class="portlet portlet-audience-navigation">

 <dt class="portletHeader" tal:content="view/header">Information
 for...</dt>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[153]

 <dd class="portletItem"
 tal:repeat="audience view/audiences">
 <a tal:attributes="class string:${audience/selected}
 audience-${audience/id};
 href audience/url;
 title audience/description"
 tal:content="audience/title">
 Link Name

 </dd>

 <dd class="portletFooter">
 </dd>

</dl>

Write the GenericSetup steps to create the
new portlet
Next, we need to create a file called portlets.xml and place that in our theme
product's profiles/default folder. We will populate it with the following code:

<?xml version="1.0"?>
<portlets>

 <portlet
 addview="onenw.audiencenavigation.AudienceNavigation"
 title="Audience Navigation"
 description="This portlet displays the site's audiences."
 />

</portlets>

When we install our theme product, this portlet should automatically be available for
installation via the @@manage-portlets tool.

Write the GenericSetup to create a new CMFAction
category and actions
We add the following code to our theme product's portlets.xml file:

<?xml version="1.0"?>
<object name="portal_actions" meta_type="Plone Actions Tool"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n">

 <object name="audience_navigation" meta_type="CMF Action
 Category" purge="False">
 <property name="title">Audience Navigation</property>

 <object name="example" meta_type="CMF Action">

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[154]

 <property name="title">Example Audience</property>
 <property name="description">
 The description of the audience is available on
 mouseover in the audience navigation portlet.
 </property>
 <property name="url_expr">string:${globals_view/
 navigationRootUrl}/example</property>
 <property name="icon_expr"></property>
 <property name="available_expr"></property>
 <property name="permissions">
 <element value="View"/>
 </property>
 <property name="visible">True</property>
 </object>

 </object>

</object>

When we install our theme product, this CMF action category should automatically
be created, as well as a sample action.

Register the portlet in your theme product
Next, we register our portlet in our browser/configure.zcml file:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser=http://namespaces.zope.org/browser
 xmlns:plone="http://namespaces.plone.org/plone"
 i18n_domain="plonetheme.audience">

<include package="plone.browserlayer" />

<genericsetup:registerProfile
 name="default"
 title="Sample Audience Navigation Portlet"
 directory="profiles/default"
 description=Sample Audience Navigation Portlet''
 provides="Products.GenericSetup.interfaces.EXTENSION"
 />

 <interface
 interface=".interfaces.IAudienceNavigationLayer"
 type="zope.publisher.interfaces.browser.IBrowserSkinType"
 name=""
 />

 <include package="plone.app.portlets" />

 <plone:portlet
 name="sample.audiencenavigation.AudienceNavigation"
 interface=".audiences.IAudienceNavigationPortlet"
 assignment=".audiences.Assignment"

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[155]

 renderer=".audiences.Renderer"
 addview=".audiences.AddForm"
 editview=".audiences.EditForm"
 />

</configure>

Notice that we have to include the plone.app.portlets package in order to create
or modify a portlet.

Next, restart Zope so that it can read those lines of code:

./bin/instance fg

Enable the portlet
Finally, to expose the portlet to your Plone site, you should install the theme
product. You can then verify that it works by going to the following URL:
http://localhost:8080/myplonesite/@@manage-portlets. In the drop-down
list on this view, you should see an Audiences portlet listed. Add the new portlet,
and when you visit the home page, you should have a new portlet listing the
contents of the new CMF action category.

Using Classic portlets in a theme product
Optionally, you can create a Classic portlet. Classic portlets can be distinguished
from newer portlets by the fact that they are portlets that behave exactly like former
Plone 2.x portlets. Thus, they do not require boilerplate code to make them work.
In other words, a Classic portlet is typically just a self-contained page template,
whereas newer Zope 3-styled portlets contain more hooks that allow you to do
more "fancy" stuff, such as live reconfiguration.

If you create a Classic portlet, it will live in your theme product's skins/templates
directory (not in the browser space). This is optional, of course. To install it on
your site, you must add that portlet as a Classic portlet via @@manage-portlets.
If your portlet is named my_portlet.pt, then add it using the syntax my_portlet
(corresponding to the name of the page template you are using). It is important
that you do not add the .pt extension when using @@manage-portlets to add
Classic portlets.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[156]

An example of a Classic portlet is the following we_do.pt, which calls a
portal_action CMF category named we_do that contains portal_actions
within it that drive the user to a given URL. (Make sure you create the category
and a few actions within it. Also make sure you add a title and description to each
portal_action.) Here is an example of one of those portal_actions:

The portlet simply renders these portal_actions as a drop-down list, within a basic
portlet structure (header, footer, portletItem CSS classes).

<html xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 i18n:domain="plone">

<body>

<tal:portlet
 metal:define-macro="portlet"
 define="actions actions/we_do|nothing;"
 condition="actions">
<dl class="portlet"
 id="portlet-we-do">
 <dt class="portletHeader"><a tal:attributes="href
 string:$portal_url/get-involved">Our Approach
 </dt>

 <dd class="portletItem"
 tal:repeat="action actions">
 <a tal:attributes="href action/url"
 tal:content="action/title">
 [Action Name]

 <span class="description"
 tal:content="action/description">[Action's

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[157]

 Description. To be hidden with CSS where unneeded.]
 </dd>

</dl>

</tal:portlet>

</body>
</html>

That's all there is to a Classic portlet!

Don't be afraid of "Classic" portlets just because of the name. They're an entirely
appropriate solution for any situation that doesn't require significant Python logic
or configurability within the portlet manager interface. Think of them as "simple" or
"quick" portlets, if the word "Classic" has a negative connotation.

As a final note, there are two portlet-related packages that were not bundled with
Plone 3.0, but as of 3.1 are part of the core. These packages are plone.portlet.
static and plone.portlet.collection. They're configurable portlets that allow
for the display of static text or a list of the contents of a collection. Customizing
these portlets is the same as customizing any other Zope 3 portlet.

Using portal_view_customizations
Now that we have examined the various Zope 3 components that comprise a theme
product, we now need to look at what pieces can be modified through the ZMI.
Remember that we are treating stylesheets and images as skin layer objects, so they
can be modified the way we discussed in Chapter 5, Making Manual (TTW) Changes or
What Not to Do.

As for other components, the short answer is that the following can be customized
through the ZMI: any templates that come from the plone.app.layout and plone.
app.portlets directories, and any browser layer templates that might be in your
theme product.

These templates can be customized through the ZMI using a tool known
as portal_view_customizations. This tool is accessible using a URL like
the following:

http://localhost:8080/testsite/portal_view_customizations/

registrations.html

Specifically, you will want to scroll down on this page to get to the section called
zope.interface.Interface.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Customizing Viewlets and Portlets

[158]

It is important to note that prior to Plone 3.1.4,
the portal_view_customizations tool was broken,
but can now be used for TTW customizations. Most serious themers
do not use portal_view_customizations, as it is not easy to
extract those changes to the filesystem. It should be regarded as
 a place for short-term modifications only and avoided at all costs.

You can only modify templates belonging to existing browser resources in this tool;
you cannot add new browser resources, nor can you modify the Python classes used
by these viewlets. Adding new resources must be done first on the filesystem, so
that the appropriate ZCML configurations can be defined. As a result, this tool has
limited use.

The portal.view.customizations tool was obviously designed by programmers,
not skinners, and has a user interface that only a programmer could love. But take a
moment to figure it out, and you'll find that it does work.

In the next screenshot, you see all of the browser resources available in a given Zope
instance, and the grey text explains which theme product each resource belongs to.
This makes it possible for you to know which one you're editing.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 7

[159]

Some of the elements listed here have customized names, such as ace.path_bar
or bullitt.colophon, which are specific to two themes contained in this
particular Zope instance. This naming convention is optional, and can only be
done on the filesystem.

If your integrators are making changes using this tool, you should always check
this area prior to checking in changes to your filesystem product. To extract code
from this section, go to portal_view_customizations in the ZMI, and locate the
item you wish to extract (look for items highlighted in yellow). Click on the item,
and cut-paste it into the appropriate page template in your theme product. If this
is a new modification to a page template that is not specifically written for your
theme, you'll also need to write the boilerplate to hook the page template up to
your theme product.

For now, just understand that this area provides an TTW means by which you can
make quick fixes to viewlets and other Zope 3 templates, but it's a fairly limited tool
and not all pieces that comprise a theme product are represented here, due to the
complexities of Zope. We're not going to cover this specifically, as it'll make sense
once you understand the broader scheme of how to do filesystem development.

Summary
In this chapter, we have learned about:

Viewlets, viewlet managers, and @@manage-viewlets
Portlets and basic portlet customization techniques
Extracting changes from portal_view_customizations to a
filesystem product

You should now have all of the major tools that you need to create a theme product.
In the next chapter, we'll walk through a real-world theme product to see all of the
moving parts in action.

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Understanding Zope Page
Templates and the Template

Attribute Language
Plone uses a page templating mechanism known as Zope Page Templates (ZPT).
ZPT, in turn, uses a language known as the Template Attribute Language (TAL).
ZPT also uses a language called Macro Extensions, known as METAL, which is
outside of the scope of this chapter.

In this chapter, we'll cover the theory of TAL's basic constructs and see how a
real Plone site might output dynamic content using these expressions. For the
definitive information on Zope Page Templating, please refer to The Zope Book:
http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/ZPT.stx.

The objective of using a templating language is to output dynamic content while
minimizing the amount of code in page templates. Ideally, templating languages
should play nicely with tools that designers might use to theme around a web site.
In other words, a tool like Dreamweaver should ignore code, even if it cannot output
the dynamic results. An extra benefit is that if some basic best practices are followed,
designers should know what output is expected, even if they don't understand the
templating language itself.

Plone's page templating language, TAL, does all of these things.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Understanding Zope Page Templates and the Template Attribute Language

[162]

About ZPT
ZPT is an invention of Zope Corporation, and is based on XHTML, which is
HTML that conforms to stricter XML standards. XHTML requires code to be
well formed (for example, , , and so on), and it requires
that code to be properly nested and always in lowercase form. XHTML also allows
you to create different sets of markup tags for new purposes. For example, you
can create blocks of code, using a syntax such as <tal:block></tal:block> or
<metal:block></metal:block>, to create better structured page templates.
CMFPlone's main_template.pt is a good example of this code in action, though
it can also be found in any .zpt or .pt file.

The goal of TAL is to be a templating language that allows for "round-trip"
collaboration by themers and programmers. A designer may create a template, as
he/she creates a normal XHTML document, using placeholder text. The designer
may then pass it to a programmer or themer who knows TAL attributes and can
make it dynamic. Then, the template can go back to the designer for refinement.
At every step, it's valid XHTML and plays well with web editors and validators.

XHTML contains tags, including:

body

p

div

table

a

img

Almost all tags in XHTML have attributes, such as id, class, and title.
An attribute can be thought of as a characteristic that an object knows about
itself. For example, you would never say <body src="">, but you would say
.

This is where attributes come into play in Zope Page Template. TAL simply allows
us to add attributes to XHTML objects, such as those listed above. These attributes
are all in a special XML namespace, so they do not interfere with other markup, and
are ignored by validators. In order to retain one hundred-percent XML compatibility,
you will need to specify the necessary namespaces you need, such as:

<html xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal">

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 8

[163]

It might be helpful to look at some of the standard Plone page templates to see
what other namespaces might come into play, but these are the two main ones
you will see.

What does TAL look like in practice?
As mentioned before, TAL is found in any .zpt or .pt file, such as in CMFPlone's
page templates and in templates associated with viewlets and portlets. The easiest
way to understand what TAL looks like is to see an example.

The following expression renders a bit of dynamic content that may not be
immediately obvious:

<p tal:content="string:Yes, we can!">Barack Obama's campaign
 slogan</p>

The output becomes:

<p>Yes, we can!</p>

In other words, "Barack Obama's campaign slogan" is a placeholder for dynamic
content—something that you might see if you view this code in Dreamweaver—but
the final output is the string expression. Unlike other languages, such as PHP,
ColdFusion, or ASP, it's not what's inside of the tag that is important, it's what the
tags do that is important.

Let's look at this in the context of Plone. One of the first page templates most themers
are confronted with is the logo.pt page template. As we discussed in the previous
chapters, the logo is a viewlet, found in the plone.app.layout package. If we open
the logo.pt page template found in that package, we see the following code:

<a metal:define-macro="portal_logo"
 id="portal-logo"
 accesskey="1"
 tal:attributes="href view/navigation_root_url"
 i18n:domain="plone">
 <img src="logo.jpg" alt=""
 tal:replace="structure view/logo_tag" />

At first blush, this can be a bit intimidating, but let's break it down. Clearly, we
see that there is an href tag wrapped around an image. Unlike a standard a tag,
however, we see:

tal:attributes="href view/navigation_root_url"

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Understanding Zope Page Templates and the Template Attribute Language

[164]

The tal: tag indicates that what follows is in the TAL namespace and meant to be
handled by the TAL parser. This particular fragment will create or replace the href
attribute of the current tag with the one pointing to the navigation_root_url, or
the index page of your site. This navigation_root_url is known as an attribute
of the view object, better understood as a characteristic of a page in the context of
the current request. These characteristics might require some experience to divine,
but over time, you will become more comfortable finding these attributes and using
them in your TAL constructs.

The next piece to look at here is the image src attribute. The TAL expression is
as follows:

tal:replace="structure view/logo_tag"

To a user new to Plone, it's not obvious what's happening here. All we know at this
point is that the logo gets rendered by completely replacing the current tag. In fact,
the view's logo_tag comes from the browser view class implementation of plone.
app.layout.viewlets.LogoViewlet. If we read that viewlet code, we'd discover
that it's using the logoName property from our base_properties.props stylesheet:

logoName:string=logo.jpg

Clearly, this is a pretty indirect way of rendering a logo. The purpose of all this
indirection is to make it possible for you to change the logo graphic via a property
sheet. In later chapters we'll look at other options available to you to customize
your logo.

For now, just understand that the Python class that controls the logo is what tells the
logo.pt page template what object to render, and that we are using TAL to pull in
that object.

Since the logo isn't necessarily the easiest place to start in terms of understanding
TAL constructs, let's look at some of the more basic ways in which TAL might
be used.

About the Template Attribute Language
TAL is a concise language, and is not hard to follow once you understand the basic
statements and what they do:

tal:attributes—dynamically change element attributes
tal:define—define variables
tal:condition—test conditions
tal:content—replace the content of an element

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 8

[165]

tal:repeat—iterate over a sequence
tal:replace—replace the content of an element, and remove the element
leaving the content
tal:omit-tag—the same as tal:content, but also removes the wrapping
tag on which the statement is applied
tal:on-error—handle errors

We will walk through these expressions in greater detail, and also look at how the
structure expression syntax (TALES) can be used.

tal:attributes statement
First, let's look at an example of a tal:attributes expression that is used for img
src or href to change a class:

<img src="doesn't matter because it will be subbed out dynamically"
 tal:attributes="src string:http://google.com/logo.jpg"
/>

In this example, the src attribute is being assigned the string
http://google.com/logo.jpg, which is the image that will render.

Multiple attributes
In this example, we have more than one attribute and separate them via semi-colons:

 <img src="doesn't matter because it will be subbed out
 dynamically"
 tal:attributes="src string:http://google.com/logo.jpg;
 alt string:Google's Logo;
 width string:40px;" />

Not including the semi-colons will cause a traceback error and the page will
not render.

Nothing dynamic is really happening in these examples; we're just pulling in an
image src that is explicitly defined right in our page template.

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Understanding Zope Page Templates and the Template Attribute Language

[166]

tal:define statement
This type of expression defines a variable that we can use later in our page templates.
If you recall, we mentioned that XHTML forces us to use well-formed pages with
correct nesting. Using tal:define, we can define a variable that is within the scope
specific to a part of a page, but not usable outside of that scope.

For example, here we see a simple variable definition:

<p tal:define="myvariable string:hello world!">This text is just a
 placeholder.</p>

We're not doing anything with myvariable, but note that it is only in-scope within
the <p>...</p> tags.

Compare this to the following tal:define expressions:

<p tal:define="myvariable string:hello">This text is just a
 placeholder.</p>
<p tal:attributes="class myvariable">We want this to show up. Will
 it?</p>

In this second example, it is not possible to assign the class named myvariable to
myvariable defined in the first <p>...</p> tag, as myvariable is only within scope
in the first paragraph (unless it is defined elsewhere in the XHTML tree hierarchy).
An error would occur in this case.

How this works in Plone
If you are going to use tal:define, you need to make sure you use it in your page
template in a way that respects the scope of a defined variable. For example, the
following is a sample "testimonial" portlet that defines a variable named source
at the top that can be used throughout the entire page template, if desired:

<dl class="portlet portletTestimonial"
 i18n:domain="plone"
 tal:define="source view/getSource">
 <dt class="portletHeader">

 </dt>
 <dd class="portletItem">
 Text
 Testimonial Body
 </tal:body>
 </dd>
 ...
</dl>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 8

[167]

If this variable was defined in the <dt> tag, it would not be usable inside <dd
class="portletItem">, as it would be out of scope and only available inside
the <dt>...</dt> tags.

tal:condition statement
A conditional is one of the first concepts you learn in programming. It allows you
to test if something is, or is not, true, and act upon the result of that condition. For
example, "If it's hot out, we'll go swimming. If it's not, we'll stay home." We use the
tal:define expression as follows to tell us if the condition will be true or false.

<div tal:define="blazing_hot python:False">
 <p tal:condition="blazing_hot">We'll go swimming</p>
 <p tal:condition="not:blazing_hot">We'll stay home.</p>
</div>

In this example, the variable blazing_hot will evaluate as false, because we are
expressly setting the Python Boolean value for false. In Python, any string that's not
empty, such as "", will evaluate to true! Empty tuples, lists, and dictionaries (as well
as strings—(,), [], {}), the number 0, the Boolean False, and the value None, all will
resolve to false. As a result, the final output is We'll stay home..

In the following statement, the tal:define sets the variable blazing_hot to resolve
as true:

<div tal:define="blazing_hot python:True">
 <p tal:condition="blazing_hot">We'll go swimming</p>
 <p tal:condition="not:blazing_hot">We'll stay home.</p>
</div>

Hence, the statement resolves to We'll go swimming.

In the following variation, the tal:define statement has set the variable to evaluate
to nothing.

<div tal:define="blazing_hot nothing">
 <p tal:condition="blazing_hot">We'll go swimming</p>
 <p tal:condition="not:blazing_hot">We'll stay home.</p>
</div>

In TALES, nothing is a reserved word for null, which is always false. It's the same
as None in Python.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Understanding Zope Page Templates and the Template Attribute Language

[168]

How this works in Plone
An easy example of how a conditional works in Plone is in path_bar.pt, located in
plone.app.viewlets:

 <tal:ltr condition="not: view/is_rtl">→</tal:ltr>
 <tal:rtl condition="view/is_rtl">»</tal:rtl>

This conditional states that, depending on if you are reading right to left or left to
right, you will get a different type of arrow indicator.

Another example of how a conditional might be used in Plone is in site_actions.
pt, which is also found in plone.app.layout. This page template has a condition
that states that if any site_actions (defined in portal_actions through the ZMI)
are visible, it will render them in an unordered list and assign attributes (id, i18n
hooks, href attribute) to each site_action's list item anchor tag.

<ul id="portal-siteactions"
 tal:define="accesskeys python: {'sitemap' : '3', 'accessibility'
 : '0', 'contact' : '9'};"
 tal:condition="view/site_actions"
 i18n:domain="plone">

 <li tal:repeat="saction view/site_actions"
 tal:attributes="id string:siteaction-${saction/id}"><a
 href=""
 tal:define="title saction/title;
 id saction/id;
 accesskey python: accesskeys.get(id, '');"
 i18n:attributes="title"
 i18n:translate=""
 tal:content="title"
 tal:attributes="href saction/url;
 title title;
 accesskey accesskey;"
 >Site action

If there are no visible site_actions defined in the ZMI in portal_actions, nothing
will render, as the condition resolves to false.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 8

[169]

tal:content statement
Next, we look at the tal:content expression. In our first example, we see that our
tal:content expression outputs the value of the variable myvariable inside the
current tag, replacing the current contents. Let's take this expression:

<p tal:define="myvariable string:hello world!">This text will render
 <strong tal:content="myvariable">This is invisible!
</p>

It, in turn, becomes:

<p>This text will render hello world!</p>

How this works in Plone
A simple example of a tal:content expression would also be:

<title tal:content="here/title">Page Title</title>

Where here/title is grabbing the Title attribute off of the object you are currently
on and populating the <title /> tag with that value dynamically. The actual words
"Page Title" will not render—it's just a placeholder. This would be a useful construct
in cases like the navigation.pt (navigation portlet) file, found in plone.app.
portlets, where we want to be able to specify the title of the navigation portlet in
our theme product in a way that it could be customized by the end user:

<a href="#"
 class="tile"
 tal:condition="view/title"
 tal:attributes="href string:${root/absolute_url}/sitemap"
 tal:content="view/title">Navigation

This code ensures that if we manage our portlet via http://www.mysite.com/@@
manage-portlets, we can specify a title on the fly.

tal:repeat statement
In the case of tal:repeat, the code is looped through and an action is performed on
each object within the repeat sequence.

<ul tal:define="staffers python:('jonb','david','veda','josh',)">
 <li tal:content="staffer" tal:repeat="staffer staffers">
 Staffer

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Understanding Zope Page Templates and the Template Attribute Language

[170]

The above tal:repeat statement loops over all staffers defined within a Python
tuple, and creates an ... tag for each staffer. The repeat continues
until no more objects are found within the Python list, at which point we close the
unordered list.

How this works in Plone
The page template sections.pt (found in plone.app.viewlets) attaches a unique
id to each item found in the portal_actions/portal_tabs CMF action category in
the ZMI. Additionally, depending on if the tab is selected or not, it will apply a CSS
class of selected or plain. For this example, the code has been modified slightly to
render in a table instead of as an unordered list:

<tal:tabs tal:condition="view/portal_tabs"
 i18n:domain="plone">
 <h5 class="hiddenStructure" i18n:translate="heading_sections">
 Sections</h5>

<div id="tabWrapper">
 <table id="portal-globalnav-table">
 <tr>

<tal:tabs tal:repeat="tab view/portal_tabs">
 <td tal:attributes="id string:portaltab-${tab/id}-
 table;
 class python:view.selected_portal_tab==tab['id']
 and 'selected' or 'plain'">
 <a href=""
 tal:content="tab/name"
 tal:attributes="href tab/url;
 title tab/description|nothing">
 Tab Name

 </td>
 </tal:tabs>
 </tr>
 </table>
 </div>
</tal:tabs>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 8

[171]

The rendered code would look something like the following, depending on the ids of
the portal_tabs:

<div id="tabWrapper">
 <table id="portal-globalnav-table">
 <tr>
 <td id="portaltab-climate-and-energy-table"
 class="selected">
 <a href="http://akcenter.org/climate-energy"
 title="">Climate and Energy
 </td>
 <td id="portaltab-wildlands-and-rivers-table"
 class="plain">
 <a href="http://akcenter.org/wildland-rivers"
 title="">Wildland and Rivers
 </td>
 <td id="portaltab-oceans-and-marine-life-table"
 class="plain">
 <a href="http://akcenter.org/oceans-marine"
 title="">Oceans and Marine Life
 </td>
 </tr>
 </table>
</div>

As you can see, it's rendered as a series of <td></td> tags with unique IDs that can
be styled using CSS. Notice that the Climate and Energy tab is marked as selected,
as it is the tab we are currently on. That class allows us to style that tab differently,
if desired. We often use tal:repeat for generating unordered or ordered lists, but
certainly, it could be used in other scenarios. It's not uncommon to see it used in
conjunction with built-in methods to specify odd, even, start, and end states to aid
in styling.

Did you notice the <tal:tabs ...> ... </tal:tabs> tag in the example above?
When you use a <tal:block> or <tal:anything> tag, the tag itself, along with
the closing tag, will be completely removed in the output. You may use this type of
construct for defines and repeats if it clarifies your code, as explained earlier.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Understanding Zope Page Templates and the Template Attribute Language

[172]

tal:replace Statement
Typically, this expression is used when you don't want the whole tag and its
contents—not just the contents—to be replaced. A basic example is here:

<p tal:define="myvariable string:hello world!">Spacestation here...
 This is invisible!
</p>

When this code renders, it becomes:

<p> Spacestation here... hello world!</p>

In other words, the tal:replace expression supplants the entire
statement and fills it in with the value assigned to myvariable. This helps you avoid
cluttering your output with semantically meaningless tags that you've used just to
mark dynamic replacements.

How this works in Plone
An example of when this might be used in Plone is in CMFPlone/skins/plone_
templates/main_template.pt. In this template, you will find several lines like this:

<div id="portal-top" i18n:domain="plone">
 <div tal:replace="structure provider:plone.portaltop" />
</div>

This code states that within the id named #portal-top, we want to replace a
<div /> with the contents of whatever provider:plone.portaltop gives us. This
provider is actually the viewlet manager that controls the area known as plone.
portaltop (more on this in a bit). If we look at our viewlets.xml (located in
CMFPlone/profiles/default) file, we will see that, in a default Plone site,
the above statement in main_template.pt will replace the entire <div /> with
the rendered contents of the viewlets that are specified in the setup profile for
plone.portaltop, specifically:

<order manager="plone.portaltop" skinname="Plone Default">
 <viewlet name="plone.header" />
 <viewlet name="plone.personal_bar" />
 <viewlet name="plone.app.i18n.locales.languageselector" />
 <viewlet name="plone.path_bar" />
 </order>

The tal:replace expression is used because we don't have a need to retain the
<div /> wrapper in order to see the output of these viewlets.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 8

[173]

tal:omit-tag statement
To leave the contents of a tag in place while omitting the surrounding start and end
tag, we can use the omit-tag statement. If its expression evaluates to a false value,
then normal processing of the element continues. If the expression evaluates to a true
value, or there is no expression, the statement tag is replaced with its contents. For
these purposes, the value nothing is false, which has the same effect as returning a
false value.

For example:

<b tal:omit-tag="python:True">Omit expression is True
<b tal:omit-tag="python:False">Omit expression is False
<b tal:omit-tag="">Omit expression is BLANK

The first line of code would render the first statement without bold tags, the second
would render with bold tags, and the third would render without bold tags.

How this works in Plone
In Plone, you will often see the tal:omit-tag statement used in i18n scenarios
(internationalization), but you can also see it in the breadcrumbs viewlet:

<span tal:repeat="crumb view/breadcrumbs"
 tal:attributes="dir python:view.is_rtl and 'rtl' or 'ltr'">
 <tal:last tal:define="is_last repeat/crumb/end">
 <a href="#"
 tal:omit-tag="not: crumb/absolute_url"
 tal:condition="python:not is_last"
 tal:attributes="href crumb/absolute_url"
 tal:content="crumb/Title">
 crumb

 ...
 </tal:last>

This code basically tells us that a breadcrumb's Title will be wrapped with an href
tag if an URL exists, assuming that it's not the last item in the list of breadcrumbs. If
there is no URL, then it will be rendered without the href tag.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Understanding Zope Page Templates and the Template Attribute Language

[174]

tal:on-error statement
You can provide error handling for your document using the tal:on-error
statement. When a TAL statement produces an error, the TAL interpreter searches
for an on-error statement on the same element, then on the enclosing element, and
so forth. The first on-error found is invoked. It is treated as a content statement,
because it causes the content of the tag to be replaced, but it's triggered only when an
error occurs. In this example, if the following tal:content statement fails, the words
This is not the homepage will be rendered:

<p tal:content="here/homepage"
 tal:on-error="string:This is not the homepage">This is the
 homepage</p>

How this works in Plone
While it isn't used often, tal:on-error can be used to great advantage. In
portlets_fetcher.pt, found in 3.x versions of the CMFPlone product, it is used to
alert Plone users to problems with portlets:

<metal:block tal:repeat="slot sl">
 <tal:dontcrash tal:on-error="structure python:context.plone_
log('Error %s on %s while rendering portlet %s'%(error.type, error.
value, slot[0])) or
 '<div class=\'error\
'>Error %s on %s: %s</div>' % (error.type, slot[0], error.
value)"
 tal:define="pathexpr python:slot[0];
 usemacro python:slot[1];">
[snip]
 </tal:dontcrash>
 </metal:block>

If Plone attempts to render portlets and there is a problem, it will output the text
"Error while rendering portlet". This means that Plone swallows the error gracefully,
instead of rendering a traceback error.

TAL "structure" expression syntax
As we saw earlier, when all of the tal:content and tal:replace expressions
above were interpreted and turned into output, something extra was happening. The
TALES engine was scanning strings for HTML's reserved characters (such as <, > and
&) and replacing them with HTML entities. This is great for two reasons:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 8

[175]

It makes it easier for you to not have to worry about it yourself
It gives you a safety net against certain kinds of cross-site scripting attacks

But, what if you want to insert some actual HTML code? The escaping would
defeat you.

If we use the structure keyword in a TALES expression, it will render written
HTML as actual HTML. (Note that structure is not the same as a TAL attribute, it's
actually part of the TAL syntax.) For example:

<p tal:content="structure string:hello" />

Becomes:

<p>hello</p>

This may even be a bit trickier. You may use the following to get the same result:

<p tal:content="structure string:hello" />

TAL will translate the key HTML entities in a structure expression. Why bother?
Because the first version will confuse many HTML editors and validators.

How this works in Plone
The structure expression syntax can be very useful when we attempt to control
image display. One example of how we use the structure expression is inside of
our newsitem_view.pt page template, located in CMFPlone/skins/plone_content:

<div class="newsImageContainer"
 tal:condition="here/image_mini|nothing">
 <a href="#"
 tal:attributes="href string:$here_url/image/
 image_view_fullscreen"
 id="parent-fieldname-image">
 <img tal:replace="structure python: here.tag(scale=
 'mini', css_class='newsImage')" src="" alt="" />

</div>

The python:here.tag(...) fragment will render an entire image tag, complete
with width and height attributes. The structure syntax allows us to insert it
without having it HTML escaped.

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Understanding Zope Page Templates and the Template Attribute Language

[176]

Order of operations
In TAL, the logic in which operations occur is fairly intuitive. It generally occurs in
the following order:

define

condition

repeat

content or replace
attributes

omit-tag

Think of it this way: you can't attach an attribute value that hasn't yet been defined
or proven to exist. As you get used to how page templates are constructed, you'll see
that they follow this general order of operations.

Built-in names in TALES
The following is a list of the names that are always available to TALES expressions
in Zope, and which you may often see in your page templates. These are considered
reserved words. You can read more about these here: http://wiki.zope.org/ZPT/
TALESSpecification13.

nothing—a special value used to represent a non-value (for example, void,
None, Nil, NULL).
default—a special name for the contents (data) of a tag. This is usually only
used in tricky bits of code.
options—the keyword arguments passed to a template. These are generally
available when a template is called from methods and scripts, rather than
from the Web.
repeat—the repeat variables. See the tal:repeat documentation.
attrs—a dictionary containing the initial values of the attributes of the
current statement tag. This is Uncommon.
here or context—the object to which the template is being applied.
container—the folder in which the template is located.
template—the template itself.
request—the publishing request object, which includes form data, query
strings, and typical web server HTTP variables.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 8

[177]

user—the authenticated user object.
modules—a collection through which Python modules and packages can
be accessed. Only modules that are approved by the Zope security policy
can be accessed.

The names root, here, container, template, request, user, and modules are
optional names supported by Zope, but are not required by the TALES standard.
This list is presented with the purpose of not diving in too deep, but with the
objective of showing where some of these words fit in if you happen to see them in
your page templates. Most of these, with the exception of here and request, should
be used only lightly in your templates.

It's possible to write extremely complex logic in TAL/TALES—but it's a bad idea.
Remember that the purpose of a templating language is to separate logic from
presentation. Use TAL and TALES to set conditions for presentation and for dynamic
replacement. Move your programming and logic into Python and Python scripts so
that you can keep your templates simple and readable/maintainable by designers.
After all, if you're intermixing complex logic and presentation, you're going to get a
kind of spidery mess that's typical of PHP or ASP.

Summary
In this chapter, we have learned:

What the Zope Page Templating system is
That the Templating Attribute Language (TAL) is used by Zope and follows
the rules of XHTML
What the common TAL expressions are
How these TAL expressions manifest themselves in CMFPlone's page
templates and in templates that render viewlets and portlets

As we move forward, we will take these lessons and apply them to an actual theme
product. Let's take a closer look at a real-world theme product now.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Creating, Installing, and
Tweaking our Theme

Now that we have a basic introduction to the machinery that makes themes possible,
we are going to use these concepts to dissect an actual theme product.

We will first inspect a few structural changes and install them, and then finally
examine the various components and skin layer items that have been changed, one
at a time. Where restarting Zope or rerunning your buildout would be required, this
will be noted.

About the theme
This theme and its design are available for personal and professional use to
anyone, and can be freely modified. You can (and should) download the files from
https://svn.plone.org/svn/collective/plonetheme.guria/trunk using the
following command:

svn co https://svn.plone.org/svn/collective/plonetheme.guria/trunk
plonetheme.guria

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Creating, Installing, and Tweaking our Theme

[180]

Note the space between the words trunk and plonetheme.guria. This theme is
intended for installation on Plone 3 web sites. The finished theme should look like
the following, but we have work to do to make this happen:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 9

[181]

This theme was created by me, for use by a charity group in India, called Guria
(http://www.guriaindia.org), dedicated to ending human trafficking and
prostitution. The finished site is currently in development, and is generously hosted
free of charge by the talented folks at Six Feet Up (sixfeetup.com). Additionally,
most of the code and lessons learned come courtesy of similar themes created by
the staff at ONE/Northwest in Seattle, Washington.

The design for this theme was created with the assumption that most of the tasks
described in previous chapters would need to be present in this theme. In fact, the
only task not covered here is the creation of a new viewlet manager. Creation of
viewlet managers is discussed at http://plone.org/documentation/how-to/
adding-portlet-managers and http://plone.org/documentation/manual/
theme-reference/elements/viewletmanager/override.

Creating a theme product
Using the lessons learned from Chapter 3, Setting up Your Development Environment, I
created a theme product named plonetheme.guria, using the command line syntax
paster create –t plone3_theme, while we were located in the src/ directory of our
buildout, as seen next:

[bash: /opt/mybuildout/src] paster create -t plone3_theme
 plonetheme.guria
Selected and implied templates:
 ZopeSkel#basic_namespace A project with a namespace package
 ZopeSkel#plone A Plone project
 ZopeSkel#plone3_theme A Theme for Plone 3.0

Variables:
 egg: plonetheme.guria
 package: plonethemeguria
 project: plonetheme.guria
Enter namespace_package (Namespace package (like plonetheme))
 ['plonetheme']:
Enter package (The package contained namespace package (like
 example)) ['example']: guria
Enter skinname (The skin selection to be added to 'portal_skins' (like
'My Theme')) ['']: Guria Theme for the Plone Theming Book
Enter skinbase (Name of the skin selection from which the new one
 will be copied) ['Plone Default']:
Enter empty_styles (Override default public stylesheets with empty
 ones?) [True]: False
Enter include_doc (Include in-line documentation in generated code?)
 [False]:
Enter zope2product (Are you creating a Zope 2 Product?) [True]:
Enter version (Version) ['0.1']:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Creating, Installing, and Tweaking our Theme

[182]

Enter description (One-line description of the package) ['An
 installable theme for Plone 3.0']:
Enter long_description (Multi-line description (in reST)) ['']:
Enter author (Author name) ['Plone Collective']: Veda Williams
Enter author_email (Author email) ['product-developers@lists.
 plone.org']: email@email.com
Enter keywords (Space-separated keywords/tags) ['web zope plone
 theme']:
Enter url (URL of homepage) ['http://svn.plone.org/svn/collective/']:
Enter license_name (License name) ['GPL']:
Enter zip_safe (True/False: if the package can be distributed as a
 .zip file) [False]:
Creating template basic_namespace
Creating directory ./plonetheme.guria
[snip]

You may wish to generate a new Plone theme product yourself, so that you can
compare and contrast the differences between the Guria theme and a vanilla
Plone theme.

Notice that the full name of the theme is plonetheme.guria, and where an item
shows as blank, it defaults to the example value in that step. In other words, the
namespace package defaults to plonetheme, because there was no reason to change
it. The skinname is set to a single lowercase word out of stylistic preference. It's
important to also note that you should not use hyphens or spaces in your theme
names, as they will not be recognized by your buildout.

We've chosen not to override Plone's default stylesheets, and instead, we want to
build on top of Plone's default (and excellent!) stylesheets. I prefer this method mostly
because the layout needed for Plone's Contents view and other complex structural
pieces are already taken care of by Plone's base stylesheets. It's easier than trying to
rebuild those from scratch every time, but this is merely a personal preference.

Following the creation of the theme, we register the theme product in our
buildout.cfg, using the following syntax:

[buildout]
 ...
develop =
 src/plonetheme.guria
...
[instance]
eggs =
 plonetheme.guria
...
zcml =
 plonetheme.guria
...

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 9

[183]

If we were using the eggtractor egg, there would be no need to add these lines of
code to our buildout.cfg; all we would need to do is rebuild our buildout and it
would automatically recognize the new egg. eggtractor can be found at http://
pypi.python.org/pypi/buildout.eggtractor, and is documented thoroughly.

Assuming we are not using eggtractor, we must rebuild our buildout, as we have
altered ZCML code and added a new egg:

[bash: /opt/mybuildout/src/] ./bin/buildout

This would be a good time to check your vanilla theme product into Subversion, so
that you can track back to the original version, if needed. However, since this is an
existing theme, there is no need to do so.

For the purposes of following along, it might be best if you do not yet
install the theme. We want to make some changes first. However, we
will point out some caveats along the way, in case you installed the
theme prematurely.

Altering the theme product's structure
Several modifications have been made to the theme product's structure to shorten
folder names and change the default behavior. Again, this is mostly a personal
preference. Let's take a look at these changes and how they were achieved.

Renaming the theme
In our theme product, you will see a file named profiles.zcml, located at
mybuildout/src/plonetheme.guria/plonetheme/guria/profiles.zcml.
The code looks like this:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 i18n_domain="plonetheme.guria">

 <genericsetup:registerProfile
 name="default"
 title="Guria Theme for the Plone Theming Book"
 directory="profiles/default"
 description='Extension profile for the "Guria Theme for the
 Plone Theming Book" Plone theme.'
 provides="Products.GenericSetup.interfaces.EXTENSION"
 />

</configure>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Creating, Installing, and Tweaking our Theme

[184]

If you named your theme in a way that was less descriptive, you could alter the title.
Naming your theme product properly is important, because you may have different
types of products used for a given web site—for example, a policy product for
content that might be used in tandem with your theme product. This text is what
you see in the portal_quickinstaller at http://localhost:8080/mysite/
portal_quickinstaller/manage_installProductsForm, where mysite is the
name of your Plone site. You can also see this name if you install your theme
product via Site Setup | Add-on Products, found at http://localhost:8080/
mysite/prefs_install_products_form.

If you change your XML here, and your theme product is already installed, you'll
need to start (or restart) your Zope instance, using:

[bash: /opt/mybuildout] ./bin/instance fg

Shortening folder names
Next, we look at the folder structure of our theme product. The standard Plone
3 theme produces folders with names like plonetheme_guria_custom_images,
plonetheme_guria_custom_templates, and plonetheme_guria_styles. While
there is nothing wrong with keeping this structure, it can be cumbersome to type or
tab through (especially when checking items into Subversion). However, you might
want to keep the existing folder names to help you distinguish which items of base
Plone you modified. This can make migrations easier. If you choose this route, you
probably want to create additional folders for non-base-Plone items. I personally
prefer the shorter folder names and don't worry too much about the migration issues.

In the case of this theme product, I opted to make the folder names shorter.
First, I altered the names of the folders in the skins/ folder to guria_images,
guria_styles, and guria_templates.

Then, in the theme, go to mybuildout/plonetheme.guria/plonetheme/guria/
skins.zcml. The code in this file is altered to appear as follows:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:cmf="http://namespaces.zope.org/cmf"
 i18n_domain="plonetheme.guria">

 <!-- File System Directory Views registration -->
 <cmf:registerDirectory
 name="guria_images"/>
 <cmf:registerDirectory
 name="guria_templates"/>
 <cmf:registerDirectory
 name="guria_styles"/>

</configure>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 9

[185]

One more step is required here. In plonetheme.guria/plonetheme/guria/
profiles/default/skins.xml, the code is changed to read as follows:

<?xml version="1.0"?>
<object name="portal_skins" allow_any="False"
 cookie_persistence="False"
 default_skin=" Guria Theme for the Plone Theming Book ">

 <object name="guria_images"
 meta_type="Filesystem Directory View"
 directory="plonetheme.guria:skins/guria_images"/>
 <object name="guria_templates"
 meta_type="Filesystem Directory View"
 directory="plonetheme.guria:skins/guria_templates"/>
 <object name="guria_styles"
 meta_type="Filesystem Directory View"
 directory="plonetheme.guria:skins/guria_styles"/>

 <skin-path name=" Guria Theme for the Plone Theming Book " based-
 on="Plone Default">
 <layer name="guria_images"
 insert-after="custom"/>
 <layer name="guria_templates"
 insert-after="guria_images"/>
 <layer name="guria_styles"
 insert-after="guria_templates"/>
 </skin-path>

</object>

Basically, the steps are the following:

1. Rename the folders on the filesystem.
2. Modify the skins.zcml file to change the name of the filesystem directory

view (what you see in the portal_skins/properties area of the ZMI).
3. Modify the skins.xml file in the profiles/default folder to match. This

alters the basic profile of your theme product.

If you wanted to add additional folders and filesystem directory views here
(a scripts/ folder, for example), you'd just add code by following the conventions
given to you in these files and then create additional folders.

Making changes to the ZCML file means that you would need to do a restart of your
Zope instance.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Creating, Installing, and Tweaking our Theme

[186]

If you installed your theme product before making the changes to
the skin layer names, you might want to inspect the skin layers at
http://localhost:8080/mysite/ portal_skins/manage_
propertiesForm, to make sure that the correct skin layers are listed.
You might even need to reimport the "skins tool" step via portal_setup
at http://localhost:8080/mysite/portal_setup/manage_
importSteps. Make sure you choose the correct profile first by choosing
your theme product's name from the drop-down list at the top of the
import page. The theme product's name is the same name as you find in
your profiles.zcml file.

Adjusting how stylesheets and images
are used
Next, we remove some of the default behavior given to us by the plone3_theme
recipe. In a vanilla theme product, folders named images/ and stylesheets/ are
inserted into the plonetheme.guria/plonetheme/guria/browser/ directory.
Additionally, a file named main.css is included in the stylesheets/ directory.

I chose not to place the theme's images or stylesheets in the browser/ directory, as
this is generally unnecessary for most themes. Advanced programmers may wish to
expose these items to the browser layer, but this is generally a personal choice and
carries with it additional consequences as described in Chapter 6, Working with Zope
3 Components.

I deleted the folders mentioned above, as well as the main.css file. Then, I opened
the file named configure.zcml, located at plonetheme.guria/plonetheme/guria/
browser/, and removed all of the following boilerplate text:

<!-- Viewlets registration -->
 <!-- Zope 3 browser resources -->

 <!-- Resource directory for images -->
 <browser:resourceDirectory
 name="plonetheme.guria.images"
 directory="images"
 layer=".interfaces.IThemeSpecific"
 />

 <!-- Resource directory for stylesheets -->
 <browser:resourceDirectory
 name="plonetheme.guria.stylesheets"
 directory="stylesheets"
 layer=".interfaces.IThemeSpecific"
 />

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 9

[187]

I then removed the highlighted code below from plonetheme.guria/plonetheme/
guria/profiles/default/cssregistry.xml:

<stylesheet title=""
 id="++resource++plonetheme.guria.stylesheets/main.css"
 media="screen" rel="stylesheet" rendering="import"
 cacheable="True" compression="safe" cookable="True"
 enabled="1" expression=""/>

And replaced it with the following:

<stylesheet title=""
 id="guria.css"
 media="screen" rel="stylesheet" rendering="import"
 cacheable="True" compression="safe" cookable="True"
 enabled="1" expression=""/>

This, in effect, tells our theme product that we will be using a stylesheet named
guria.css (or more correctly, guria.css.dtml, as we'll see in a moment). This
stylesheet does not yet exist, so we have to create it.

I wanted the option of making use of the DTML behavior provided by Plone, so that
I could use certain base properties provided to us via the base_properties.props
file (also located in our skins/guria_styles/ folder). DTML essentially allows us
to use property-sheet variables and apply changes on a more global scale. The easiest
way to create this new stylesheet is to go to your mybuildout/buildout-cache/
eggs/Plone[some version number]/Products/CMFPlone/skins/plone_styles/
ploneCustom.css and copy the contents of that file into a new stylesheet (named
guria.css.dtml) in your theme's guria_styles/ folder (located in the skins/
directory at mybuildout/plonetheme.guria/plonetheme/guria/skins/guria_
styles). The important bits of code you want are as follows:

/* <dtml-with base_properties> (do not remove this :) */
/* <dtml-call "REQUEST.set('portal_url', portal_url())"> (not this
 either :) */

/* DELETE THIS LINE AND PUT YOUR CUSTOM STUFF HERE */

/* </dtml-with> */

Again, we would need to restart our Zope at this point, as we have modified
our ZCML.

If we had already installed our theme product, we'd also have to import
our cssregistry.xml file via portal_setup in the ZMI, to capture
the new GenericSetup profile settings. However, we have not yet installed
the product, so we do not need to worry about this.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Creating, Installing, and Tweaking our Theme

[188]

Installing the theme product
Now that we've looked a few of the changes we've made to distinguish our theme
product from a default Plone theme, let's go ahead and install it. Some of you may
already have installed your theme product, and that's okay.

Go to your Zope instance (for example, http://localhost:8080/manage_main),
and choose Plone Site from the drop-down list on the top right. Or, you can
go to this URL: http://localhost:8080/manage_addProduct/CMFPlone/
addPloneSite.

You will then see the following screen. For the purposes of this chapter, we are
calling our Plone site mysite. Make sure you add a description for your Plone site,
as we'll need that later.

There are three ways to install your theme product:

You could optionally choose the theme product from the Extension Profiles
list (as seen in the previous screenshot)
We could proceed to the portal_quickinstaller tool, located in the
ZMI at http://localhost:8080/mysite/portal_quickinstaller/
manage_installProductsForm

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 9

[189]

We could go to Site Setup | Add-on Products at
http://localhost:8080/mysite/prefs_install_products_form

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Creating, Installing, and Tweaking our Theme

[190]

Let's select the extension profile named Guria Theme for the Plone Theming Book
and click the Install button.

At this point, we should also put our site's portal_css in debug mode, so that we
can see any CSS changes instantly. You should not leave a production site in debug
mode, as it can negatively impact performance. You can reach the portal_css area
at http://localhost:8080/mysite/portal_css/manage_cssForm. Simply select
the Debug/development mode checkbox and press Save. The Save button may
appear at the bottom of the page:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 9

[191]

Now, if you visit your site's home page, you should see the installed product as seen
next, but we need to do a few things to make it look fully formed.

Adjusting web site content to support
the design
As we can see, the installed theme does not exactly match the look of the first
screenshot of this chapter. Many CSS styles are in place, but the searchbox is in the
wrong location, and there is a calendar portlet present. You may also notice that
breadcrumbs are not present, as they are suppressed using CSS styles. Additionally,
the center page content is not yet populated.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Creating, Installing, and Tweaking our Theme

[192]

To make the site look more realistic, we need to adjust our viewlets, as well as add
and suppress some content and portlets on the web site to support the design.

First, let's adjust the viewlets on the site by going to http://localhost:8081/
mysite/@@manage-viewlets. We have to do this because the Guria theme does
not use ordering to organize the viewlets. At the time that the theme was created,
ordering was not functional, but should be now. Using the up arrow, next to the
searchbox with the orange "Go" button, you can move the viewlet directly below
the viewlet called ViewletManager: plone.portaltop (plone.app.layout.
viewlets.interfaces.IPortalTop):

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 9

[193]

This should move the searchbox into the proper location.

Next, we want to add five new folders. To do so, use the Add menu located on the
home page, and choose the Folder option. You should create some sub-navigation
items (pages or folders are easiest) for at least one of these sections to see the styling
of sub-navigation items. Make sure you publish each of these items.

Once we have added a few folders, we need to adjust the settings of the navigation
portlet. Click on the Manage portlets link on the bottom-right of the screen while on
the home page, or go to http://localhost:8080/mysite/@@manage-portlets.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Creating, Installing, and Tweaking our Theme

[194]

The navigation portlet has been added to the site by default. Click on the Navigation
portlet link. You will see the following screen:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 9

[195]

Give the portlet a name and set the start level to 0. This will allow the navigation
portlet to show on the home page. Choose Save, and then on the main @@manage-
portlets screen, we want to remove the right-hand portlets. As you can see, these
include review List, News, Events, and calendar:

Click on the X next to each item to remove each portlet, then click on the Plone logo
to return to the home page. You should see the left-hand navigation portlet and no
portlets on the right-hand side of the page. This gives us what we need to finish
building out our design.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Creating, Installing, and Tweaking our Theme

[196]

The Guria theme was intended to use the homepage_view page template, as seen in
the theme product's skins/guria_templates folder. This view requires the creation
of a folder in the root of the site, called homepage, plus several pages (or collections)
named slot1, slot2, and slot3. You can optionally create these too if you want to
use this particular view.

The alternate view, homepage2_view, also located in the skins/guria_templates
folder, requires the creation of a folder named homesection (slightly different from
the homepage_view example, just to show the difference between the two views),
plus the creation of several pages (not collections) named r1c1 and r1c2. Make
sure these names are the shortnames, not just the title of the pages.

Summary
In this chapter, we have learned how to:

Create a custom theme product
Modify the file structure
Set up a Plone theme to use mostly skin layers for images and stylesheets
Install the theme product
Customize the content of your site to support the design

Next, we will look at how to do basic CSS styling, alter the logo, modify
portal_actions, and work with viewlets and portlets.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and
Templating Changes

Now that our theme product is installed, and we've got our Plone site ready to
support the theme, we'll start looking at how the various components and skin
layer items were changed, one at a time. Specifically, we'll look at basic styling
and modification of viewlets and portlets.

Modifying the various sections of the page
In order to make many of the changes to our themes take effect, we should make
sure that our theme product's configure.zcml file (not the browser/configure.
zcml file) contains the following lines:

<include package=".browser" />
<include file="skins.zcml" />
<include file="profiles.zcml" />

These lines tell our theme product that it should respect any changes made to our
profiles.zcml file (where our theme product's profile is registered with Zope),
and also within the browser/ folder, where many of our viewlets and page template
changes will occur. These lines are added to the theme product by paster by default.
It also tells our theme product to respect any filesystem directory views defined
in skins.zcml.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[198]

Basic styling
As you can see by installing the theme, there is already some basic styling in
place. Let's take a look at this styling. First, I set a few base properties in our theme
product's base_properties.props file, located at mybuildout/plonetheme.guria/
plonetheme/guria/skins/guria_styles:

title:string=guria's color, font, logo and border defaults

plone_skin:string=guria

logoName:string=logo.gif

fontFamily:string="Lucida Grande", Verdana, Lucida, Helvetica, Arial,
 sans-serif
fontBaseSize:string=69%
fontColor:string=Black
fontSmallSize:string=85%

backgroundColor:string=#56492e

linkColor:string=#2e5256
linkActiveColor:string=Red
linkVisitedColor:string=Purple

borderWidth:string=1px
borderStyle:string=solid
borderStyleAnnotations:string=dashed

globalBorderColor:string=#79715f
globalBackgroundColor:string=#ffefca
globalFontColor:string=#79715f

headingFontFamily:string="Lucida Grande", Verdana, Lucida, Helvetica,
 Arial, sans-serif

contentViewBorderColor:string=#79715f
contentViewBackgroundColor:string=#ffefca
contentViewFontColor:string=#79715f

inputFontColor:string=Black

textTransform:string=lowercase

evenRowBackgroundColor:string=transparent
oddRowBackgroundColor:string=transparent

notifyBorderColor:string=#ffa500
notifyBackgroundColor:string=#ffce7b

discreetColor:string=#76797c
helpBackgroundColor:string=#ffffe1

portalMinWidth:string=70em
columnOneWidth:string= 195px
columnTwoWidth:string=195px

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[199]

If you compare this against a fresh base_properties.props file (found in
mybuildout/parts/plone/CMFPlone/plone_styles/ folder), you'll notice that the
logo here points to a .gif file and a few backgrounds, border colors, and link colors
have been adjusted, the background color has been adjusted, and column widths
have been specified. This gives us some global settings to start with.

Then, I made a few changes in the guria.css.dtml stylesheet to control the basic
framework of the page, using DTML syntax, as needed:

/*
 This file is based on the ploneCustom.css.dtml file shipped with
 Plone.

 <dtml-with base_properties> (do not remove this)
 <dtml-call "REQUEST.set('portal_url', portal_url())"> (not this
 either)
*/

/* YOUR CSS RULES START HERE */

#visual-portal-wrapper {
 width:733px;
 padding:10px;
 background-color:#fff;
 margin:60px auto auto auto;
}

h1 {
 background: &dtml-backgroundColor;;
 color:#fff;
 padding:5px;
}

h2 {
 border-bottom:1px dotted #56492e;
}

.documentContent {
 padding:0em .25em .25em .25em !important;
 background-color:#fff;
}

.documentActions li {
 background-color:#fff;
}

legend {
 background-color:transparent;
}

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[200]

We have a brown background for our site, but not because we have defined it in our
stylesheet. Instead, we are relying on Plone's default styling found in CMFPlone's
base.css and base_properties.props files:

body {
 font: &dtml-fontBaseSize; <dtml-var fontFamily>;
 background-color: &dtml-backgroundColor;;
 color: &dtml-fontColor;;
 margin: 0;
 padding: 0;
}

The code that we did add in our stylesheet above sets the width of the wrapper
around the content of the site and gives it some basic padding and margin settings.
The auto settings for the margin-left and margin-right properties center the web
site in the browser.

I also did some minor styling to the h1 header to give it a brown background color
and white text, plus some padding. I added a dotted border below the h2 heading,
and lastly, I added some padding around the content in the center of the page
and a white background color. I use the !important declaration to override the
!important declaration found in Plone's default public.css stylesheet located
at mybuildout/parts/plone/CMFPlone/skins/plone_styles. I made the
background color behind the document actions (print, email) white as well, and
disabled the background color for "legend" areas, because they were picking up
the dark brown color of the background.

I then adjusted the columns a bit to control the padding, margins, and
background colors for #portal-column-one (the left column), #portal-column-two
(the right column), and #portal-column-content (the middle column). #portal-
column-one and #portal-column-two both pick up the widths defined in
base_properties.props:

/****** COLUMNS *******/

#portal-columns {
 margin-top:5px;
 padding:5px;
 background-color:#fff;
}

#portal-column-one {
 background-color:#9d8d6b;
}

#portal-column-one .visualPadding {
 padding:0em 0em 0em 0em;

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[201]

}

#portal-column-two {
 background-color:#fff;
}

#portal-column-two .visualPadding {
 padding:0em;
}

#portal-column-content {
 padding:0em;
}

Here we are just establishing some basic padding, background-colors, and
default widths.

The first column should be the width of the logo, or 195 pixels. Although we do not
have a second column visible, because we removed the right-hand column in the
previous chapter, we can set a default width in case we choose to add right-hand
portlets at a later time. Rather than doing this in our stylesheet, we can do this in
our base properties file, as seen here:

columnOneWidth:string=195px
columnTwoWidth:string=195px

This design does not lend itself well to having right-hand portlets, as
it is quite skinny and specifically designed for a 600x800 aspect ratio
(appropriate for web sites in countries where viewers may not have
newer monitors). If you want to add right-hand portlets, you might want
to consider increasing the width of the #visual-portal-wrapper, the
header image, and the images that will appear in the center of the page).

We now have some basic styling in place, and it's time to move onto the other visual
elements on the page.

Changing the logo
One of the most common tasks users want to accomplish is changing the logo on
their site. In this case, we want to alter the logo image and also add the description
of our site to the viewlet.

First, to alter the logo image, I took the simplest approach and modified base_
properties.props to look for a file named logo.gif located at mybuildout/
plonetheme.guria/plonetheme/guria/skins/guria_images. If the image
exists, we're good to go.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[202]

However, it's worth knowing how the logo machinery works, because it can be a
bit intimidating. If we look at the viewlet's class that renders the logo (located in
mybuildout/buildout-cache/eggs/plone.app.layout[some version number]/
plone/app/layout/common.py), it reads as follows:

class LogoViewlet(ViewletBase):
 index = ViewPageTemplateFile('logo.pt')

 def update(self):
 super(LogoViewlet, self).update()

 self.navigation_root_url = self.portal_state.navigation_
 root_url()

 portal = self.portal_state.portal()
 logoName = portal.restrictedTraverse('base_properties').
 logoName
 self.logo_tag = portal.restrictedTraverse(logoName).tag()

 self.portal_title = self.portal_state.portal_title()

This code tells us that Plone is looking at a page template named logo.pt, which
in turn fetches logoName from the base_properties.props file. Based on that
information, it looks up logoName in the object database and generates something
called a logoName and a logo_tag attribute that will contain the actual img tag for
the image, complete with height and width attributes. The actual image file is found
through restrictedTraverse, which is a security-conscious (that is, restricted) way
of finding something in the object database. When you encounter this in code, you
may generally assume that the object is being sought in a skin layer, which is indeed
where the image belongs.

If we then look at the logo.pt file shipped with plone.app.layout, we see that it
reads as follows:

<a metal:define-macro="portal_logo"
 id="portal-logo"
 accesskey="1"
 tal:attributes="href view/navigation_root_url"
 i18n:domain="plone">
 <img src="logo.jpg" alt=""
 tal:replace="structure view/logo_tag" />

At first blush, it looks as though it's actually looking for a file named logo.jpg, but
that's not the case. Instead, the TAL statement here is doing a tal:replace and
rendering the view's logo_tag attribute. We know from the above code that this
contains the img tag for the image. In other words, it's looking for whatever image is
specified in base_properties.props. In our case, this is logo.gif, and that logo.
gif lives in our theme product at mybuildout/plonetheme.guria/plonetheme/
guria/skins/guria_images.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[203]

If we look even deeper at the CMFPlone product, at mybuildout/parts/plone/
CMFPlone/skins/plone_images, you'll see that there is already a logo.jpg in our
skin layer. This means that all we need to do is have a correctly sized logo.gif in
our theme product's guria_images/ folder to override that image, and we're done.

In order to add the description of our site to the logo viewlet, however, we need
to customize the viewlet. Based on our investigation above, we know that we are
working with a class-based viewlet. If we look in configure.zcml, located at
mybuildout/buildout-cache/eggs/plone.app.layout[some version number]/
plone/app/layout/viewlets, and search for "logo", we find the following code:

<!-- The logo -->
 <browser:viewlet
 name="plone.logo"
 manager=".interfaces.IPortalHeader"
 class=".common.LogoViewlet"
 permission="zope2.View"
 />

The most important thing to note is that no template is specified in the ZCML. We
are working with a class-based viewlet, and we'll need to override the class itself to
change the way it's rendered.

Next, we take the above code and insert it into our theme product's configure.zcml
file, located at mybuildout/src/plonetheme.guria/plonetheme/guria/browser,
below the viewlets registration. We adjust the code like this:

<!-- Viewlets registration -->

 <!-- The logo -->
 <browser:viewlet
 name="plone.logo"
 manager="plone.app.layout.viewlets.interfaces.IPortalHeader"
 class=".viewlets.LogoViewlet"
 permission="zope2.View"
 layer=".interfaces.IThemeSpecific"
 />

In this case, we are providing a dot-delimited path back to the original
IPortalHeader viewlet manager provided by plone.app.layout. We do this
because we are not moving anything, and the default behavior suits us.

You could rename the viewlet here to something like mytheme.logo,
if you wanted to be very explicit about indicating that the viewlet
is now different from the original viewlet, but that's ultimately a
personal preference.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[204]

Next, we adjust the class path so that it points to a Python class in our own
viewlets.py file, here designated as .viewlets.LogoViewlet. Note that since this
starts with a dot, it's relative to the directory containing the ZCML file. We have not
yet added this class to our theme product (subclassed it from the original, actually),
so let's do that now.

In common.py, which we opened above, search for "logo". We want to borrow only
the first two lines of the code, which tell us the name of the LogoViewlet class and
the page template we want to use:

class LogoViewlet(ViewletBase):
 index = ViewPageTemplateFile('logo.pt')

We will paste this into our viewlets.py file and make a few alterations. First, it's
important to realize that our theme product doesn't know anything about something
called ViewletBase, but that's okay, because we will be changing that.

We then make sure the following two lines are present at the top of our
viewlets.py file:

from Products.Five.browser.pagetemplatefile import
 ViewPageTemplateFile
from plone.app.layout.viewlets import common

The first line is already provided, but the second line we need to add. This line tells
our theme product that it knows about the file named common.py that ships with
plone.app.viewlets. We could be more Pythonic and just import the LogoViewlet
from common, but since we'll be making other viewlet changes in our theme product,
it's just as easy to import all of common.

Now, we adjust the code for our LogoViewlet class to look like this:

from Products.Five.browser.pagetemplatefile import
ViewPageTemplateFile
from plone.app.layout.viewlets import common

class LogoViewlet(common.LogoViewlet):
 """Alter the logo to include the description of our website
 """
 def render(self):
 return self.index()
 index = ViewPageTemplateFile('logo.pt')

By doing this, we are subclassing the LogoViewlet class defined in common.py. Our
subclass will automatically do everything the LogoViewlet parent class does, except
where we override the parent by telling it to look for a page template known as
logo.pt. You may remember that the original LogoViewlet class also used

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[205]

logo.pt—but there's a big difference this time. Because the new class is inside
our theme product, it will find our version of logo.pt, rather than the template in
plone.app.layout. We also include a docstring here to explain what we're trying
to achieve.

This documentation on plone.org shows slightly different syntax
when subclassing a viewlet: http://plone.org/documentation/
tutorial/customizing-main-template-viewlets/
overriding-a-class-viewlet. We've used the code seen above to
ensure backwards compatibility with all 3.x Plone sites, but you could use
the simplified code if you're not concerned with backwards compatibility.

Based on our modifications to configure.zcml, our theme product knows to look in
our browser/ directory for this logo.pt file.

Next, we copy the logo.pt file from plone.app.layout into our theme product's
browser/ folder. We want to modify this logo.pt file slightly to add an extra HTML
tag that will contain the description of our web site, as seen here:

<a metal:define-macro="portal_logo"
 id="portal-logo"
 accesskey="1"
 tal:attributes="href view/navigation_root_url"
 i18n:domain="plone">
 <img src="logo.jpg" alt=""
 tal:replace="structure view/logo_tag" />

<span class="description" tal:define="portal context/@@plone_portal_
state/portal" tal:content="portal/Description" />

So now, if we restart our Zope to make our ZCML changes take effect and look at the
code on our home page using Firebug, we can see that the logo viewlet now displays
the description of our web site (assuming one has been specified), in addition to the
logo image. We can then position it as follows:

.description {
 color:#fff;
 position:absolute;
 top:155px;
 left:10px;
 font-size:140%;
}

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[206]

We might as well define some basic styles for the #portal-logo id and the image it
contains in our guria_styles/guria.css.dtml stylesheet:

/****** HEADER AREA *******/

#portal-logo {
 height:180px;
 width:190px;
 background-color:#94582e;
 float:left;
}

#portal-logo img {
 margin:115px 0em 0em 0em;
 float:left;
}

All we are doing is positioning the image, defining a height, width, and
background color for the logo's <a> tags (see logo.pt), and doing some
additional positioning.

As we've observed, we can modify the logo.pt file to render differently—either
to include additional information, or even to modify how the theme product
finds the logo image. For example, we could easily modify the logo.pt to look
specifically in our theme product for an image and bypass the logo image defined
in base_properties.props. This could be accomplished with the following code:

<a metal:define-macro="portal_logo1"
 id="portal-logo1"
 accesskey="1"
 tal:attributes="href view/navigation_root_url"
 i18n:domain="plone">

 <img src="" tal:define="img nocall:context/my_logo.gif"
 tal:attributes="src img/absolute_url"
 tal:on-error="nothing"
 alt="background image"/>

Be warned that this approach may or may not work in Internet
Explorer. I personally have not had issues with it, but there
have been reports to the contrary.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[207]

Adding a banner image
If you examine the original design, you'll see that we also want to have a header
image in the top area of our site (the daisies). An easy way to add a banner is to
apply it to an existing data structure. In our case, we're going to apply it to the
#portal-header id given to us by the portal_header.pt viewlet. We can find this
CSS hook by viewing the source on our site.

All we need to do is describe the properties that define that id in our guria_styles/
guria.css.dtml stylesheet:

#portal-header {
 background-image:url(&dtml-portal_url;/homepage_banner.jpg);
 background-position:bottom right;
 background-repeat:no-repeat;
 height:176px;
 width:733px;
 position:relative;
 padding-top:3px;
}

This code assigns a background image named homepage_banner.jpg to the
#portal-header id (the image can be found in our theme product's guria_images/
folder), assigns a default width and height, makes sure that the image doesn't repeat,
and positions it.

We'll look at how you can assign different header images to different areas of your
site in a few moments.

Customizing the portal actions
The portal actions are the links at the top of the page, specifically Site Map,
Accessibility, Contact, and Site Setup. These links are added to the site via
portal_actions, found at http://localhost:8080/mysite/portal_actions/
site_actions/manage_main in the ZMI. Plone already gives you a few of these
when a site is created, but you can also control them through the ZMI or through
your filesystem-based theme product.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[208]

If you wished to make certain that additional items could be added to the
portal_actions area of the page when a theme is installed, you could add a
file named actions.xml to the theme product's profiles/ directory located at
mybuildout/src/plonetheme.guria/plonetheme/guria/profiles/default/.
The code might contain information such as the following:

<object name="site_actions" meta_type="CMF Action Category">

 <object name="library" meta_type="CMF Action"
 i18n:domain="plone">
 <property name="title" i18n:translate="">Library</property>
 <property name="description" i18n:translate=""></property>
 <property
 name="url_expr">string:${portal_url}/library</property>
 <property name="icon_expr"></property>
 <property name="available_expr"></property>
 <property name="permissions">
 <element value="View"/>
 </property>
 <property name="visible">True</property>
 </object>

 <object name="pressroom" meta_type="CMF Action"
 i18n:domain="plone">
 <property name="title" i18n:translate="">Pressroom</property>
 <property name="description" i18n:translate=""></property>
 <property
 name="url_expr">string:${portal_url}/pressroom</property>
 <property name="icon_expr"></property>
 <property name="available_expr"></property>
 <property name="permissions">
 <element value="View"/>
 </property>
 <property name="visible">True</property>
 </object>

 </object>

If you were uncertain of the format to follow, you can go to the portal_setup area,
located at http://localhost:8080/mysite/portal_setup/manage_exportSteps
(available via the Export tab at the top). Choose the Action Providers option, and
click on the Export button.

The Guria theme does not use GenericSetup to manage the site actions options, as
this is a distributed theme. Instead, users are required to manage the items in this
area manually via the portal_actions area of the ZMI, or to modify the theme
product further as described above. Let's style the default site actions that ship
with Plone:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[209]

/**** SITE ACTIONS ****/

#portal-siteactions {
 background-color:#56492e;
 padding:5px 0em;
 text-align:right;
 position:absolute;
 width:534px;
 margin-left:199px;
 margin-top:-1px;
}

* html #portal-siteactions {
 margin-left:5px;
 margin-top:0px;
}

*+html #portal-siteactions {
 margin-left:9px;
 margin-top:0px;
}

#portal-siteactions li {
 border:none;
}

#portal-siteactions li a {
 color:#fff;
 border-width:0px 1px 0px 0px;
 border-style:solid;
 border-color:#fff;
 padding-right:15px;
 padding-left:15px;
 text-transform:uppercase;
}

#portal-siteactions li.last-action a {
 border-width:0;
}

#portal-siteactions li a:hover {
 border-width:0px 1px 0px 0px;
 border-color:#fff;
 background-color:transparent;
}

#portal-siteactions li.last-action a:hover {
 border-width:0;
}

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[210]

The #portal-siteactions spans the width of the page, and therefore we need
to set a background color for the entire container. Some additional padding is also
necessary, and the items are set to align to the right of the page. Each individual list
item link is set to have a one-pixel, solid, white border on the right side. They also
have padding and are set to display in all uppercase.

To fix an Internet Explorer 6 problem with positioning, we insert this hack:

* html #portal-siteactions {
 margin-left:5px;
 margin-top:0px;
}

And for IE7, we inserted the following hack:

*+html #portal-siteactions {
 margin-left:9px;
 margin-top:0px;
}

When the user hovers over each item, the above settings remain, but the color of each
link changes. This color is controlled by Plone's public.css file, which relies on the
use of DTML and base properties:

#portal-siteactions li a:hover {
 background-color: &dtml-globalBackgroundColor;;
 color: &dtml-globalFontColor;;

 border: &dtml-borderWidth; &dtml-borderStyle; &dtml-
 globalBorderColor;;
}

We only override the items we don't want from Plone's public.css file, specifically
the background-color and the border properties. We don't need to respecify the
pieces we want to keep.

You'll also notice in the Guria theme's CSS that there is a rule that mentions a
last action:

#portal-siteactions li.last-action a:hover {
 border-width:0;
}

Plone, by default, does not provide a hook to sniff out what the last item in the list is.
This means that we need to customize the viewlet that renders these site actions.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[211]

If you wanted to suppress a border on the last item in the list of site
actions using CSS (each list item has a unique CSS id), you could. In sites
where some site actions are only visible to logged-in users, when a user
logs in, more items are added to the site actions area, and the suppressed
right-hand border is often assigned only to the last item in the list that is
seen in logged-out state. This can appear sloppy.
It is best to assume that the site actions will be in flux, and that we will
never know the CSS id of the last item in the list. However, we will
always know that one item will always be the last item with a class of
.last-action, and can style it appropriately.

To customize the viewlet to make this behavior more bullet-proof, open common.py
and configure.zcml found at mybuildout/buildout-cache/eggs/plone.app.
layout[some version number]/plone/app/layout/viewlets.

Searching for "siteactions" or "site actions" in configure.zcml yields the
following code:

<!-- The site actions -->
 <browser:viewlet
 name="plone.site_actions"
 manager=".interfaces.IPortalHeader"
 class=".common.SiteActionsViewlet"
 permission="zope2.View"
 />

This tells us that we are working with a class-based viewlet. We copy this code
into the theme product's browser/configure.zcml file located at mybuildout/
plonetheme.guria/plonetheme/guria/browser/. We then modify it like this:

<!-- The site actions -->
 <browser:viewlet
 name="plone.site_actions"
 manager="plone.app.layout.viewlets.interfaces.IPortalHeader"

 class=".viewlets.SiteActionsViewlet"

 template="site_actions.pt"

 layer=".interfaces.IThemeSpecific"

 permission="zope2.View"
 />

This code provides a dot-delimited path back to the original viewlet manager
provided by plone.app.layout, because we don't want to move it on the page.
It looks at plone.app.viewlet's original SiteActionsViewlet class, and at
a locally-defined site_actions.pt. It is specific to the current theme via the
IThemeSpecific declaration.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[212]

Again, you could rename the viewlet to something like mytheme.site_
actions if you wanted to, just make sure that all of your code matches
up to that name and modify viewlets.xml if you need to.

If we open the original site_actions.pt file, found in the plone.app.layout
package, we can see the following code:

<ul id="portal-siteactions"
 tal:define="accesskeys python: {'sitemap' : '3', 'accessibility'
 : '0', 'contact' : '9'};"
 tal:condition="view/site_actions"
 i18n:domain="plone">

 <li tal:repeat="saction view/site_actions"
 tal:attributes="id string:siteaction-${saction/id}"><a
 href=""
 tal:define="title saction/title;
 id saction/id;
 accesskey python: accesskeys.get(id, '');"
 i18n:attributes="title"
 i18n:translate=""
 tal:content="title"
 tal:attributes="href saction/url;
 title title;
 accesskey accesskey;"
 >Site action

As you can see, there is no code here that assigns a CSS selector to the last item in the
list. We therefore need to copy this template to our browser/ folder and modify the
code as follows:

<ul id="portal-siteactions"
 tal:define="accesskeys python: {'sitemap' : '3', 'accessibility'
 : '0', 'contact' : '9'};"
 tal:condition="view/site_actions"
 i18n:domain="plone">

 <tal:loop tal:repeat="saction view/site_actions">
 <li tal:define="first python: repeat['saction'].start and 'first-
 action' or '';

 last python: repeat['saction'].end and 'last-
 action' or '';

 position python: first or last or 'plain';"

 tal:attributes="id string:siteaction-${saction/id};

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[213]

 class position">
<a href=""

 tal:define="title saction/title;
 id saction/id;
 accesskey python: accesskeys.get(id, '');"
 i18n:attributes="title"
 i18n:translate=""
 tal:content="title"
 tal:attributes="href saction/url;
 title title;
 accesskey accesskey;"
 >Site action
 </tal:loop>

This code gives us class selector hooks for the first or the last item in the list, and
allows us to declare CSS to not show a border on the right side of the last item,
like this:

#portal-siteactions li.last-action a:hover {
 border-width:0;
}

The rendered HTML will look something like this, with the CSS selectors in place:

<ul id="portal-siteactions">

 <li id="siteaction-sitemap" class="first-action"><a
 href="http://localhost:8081/themingbook/sitemap"
 accesskey="3" title="Site Map">Site Map

 <li id="siteaction-accessibility" class="plain"><a
 href="http://localhost:8081/themingbook/accessibility-info"
 accesskey="0" title="Accessibility">Accessibility

 <li id="siteaction-contact" class="plain"><a
 href="http://localhost:8081/themingbook/contact-info"
 accesskey="9" title="Contact">Contact

 <li id="siteaction-plone_setup" class="last-action"><a
 href="http://localhost:8081/themingbook/plone_control_panel"
 accesskey="" title="Site Setup">Site Setup

Even if the first/last/plain code seems a bit tricky, it establishes a pattern that you'll
find very useful any time you need CSS selectors applied to the beginning and/or
end of a set of repeated elements. You may want to read the template code again to
see how this might be applied in other scenarios.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[214]

Adjusting the searchbox display
Next, we want to adjust the look and feel of the searchbox. Plone, by default, gives
us a "search only in this section" option that is useful but may not lend itself well to
a design. We provide some basic styling and positioning to the searchbox and also
suppress the "search by section" feature:

/****** SEARCHBOX ******/

#portal-searchbox {
 position:relative;
 z-index:20;
 opacity:1;
 padding:0px 0px 0px 5px;
 margin-right:0px;
 margin-top:-40px;
 float:right;
}

.searchSection {
 display:none;
}

input.searchButton {
 background-color:transparent;
 background-image:none;
 border:0;
 padding:1px;
}

#searchGadget {
 padding:3px 0px;
}

We then apply some light styling to the livesearch drop-down menu to give it a
white background color and no borders:

.LSIEFix {
 background-color:#fff;
}

.LSRow {
 border:0px;
}

legend#livesearchLegend {
 background-color:#fff;
}

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[215]

As seen above, we also disabled the background "magnifying glass" image on the
search button that Plone usually gives us (input.searchButton), and instead do
not use a background image at all. Additionally, we removed the background color
and the border around that button, plus a little padding. We want to render an actual
image as the search button. To do so, we must modify the viewlet that renders the
searchbox. By now, you should be beginning to get familiar with the procedure: find
the ZCML for the viewlet and find the Python class code and template. Then, copy
them to our theme product, and modify each to fit our requirements.

Open configure.zcml and common.py found in mybuildout/buildout-cache/
eggs/plone.app.layout[some version number]/plone/app/layout/. The
configure.zcml file gives us the following code:

<!-- The search box -->
 <browser:viewlet
 name="plone.searchbox"
 manager=".interfaces.IPortalHeader"
 class=".common.SearchBoxViewlet"
 permission="zope2.View"
 />

Again, this tells us that we are working with a class-based viewlet. We copy this text
into our theme product's browser/configure.zcml file, located at plonetheme.
guria/plonetheme/guria/browser/, and modify it as follows:

<!-- The search box -->
 <browser:viewlet
 name="plone.searchbox"
 manager="plone.app.layout.viewlets.interfaces.IPortalTop"

 class=".viewlets.SearchBoxViewlet"

 permission="zope2.View"
 layer=".interfaces.IThemeSpecific"

 />

This modified markup for the template provides a dot-delimited path back to a
different viewlet manager so that we can move the viewlet. It looks at our theme
product's viewlets.py file and is specific to the current theme product.

Next, we copy the first two lines of the code for plone.searchbox from common.py
into our theme product's viewlets.py:

class SearchBoxViewlet(ViewletBase):

 index = ViewPageTemplateFile('searchbox.pt')

 def update(self):
 super(SearchBoxViewlet, self).update()

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[216]

 context_state = getMultiAdapter((self.context, self.request),
 name=u'plone_context_state')

 props = getToolByName(self.context, 'portal_properties')
 livesearch = props.site_properties.getProperty
 ('enable_livesearch', False)
 if livesearch:
 self.search_input_id = "searchGadget"
 else:
 self.search_input_id = ""

 folder = context_state.folder()
 self.folder_path = '/'.join(folder.getPhysicalPath())

We then adjust the code in our viewlets.py file as follows:

class SearchBoxViewlet(common.SearchBoxViewlet):
 """Customizing the searchbox to use the locally defined page
 template
 """
 def render(self):
 return self.index()
 index = ViewPageTemplateFile('searchbox.pt')

Again, we are merely subclassing the viewlet and telling it to look at our
locally-defined searchbox.pt, found in the theme product's browser/ folder.

The modified markup for the template is as follows:

<div id="portal-searchbox"
 i18n:domain="plone">
 <form name="searchform"
 action="search"
 tal:attributes="action string:${view/site_url}/search">

 <label for="searchGadget" class="hiddenStructure"
 i18n:translate="text_search">Search Site</label>

 <div class="LSBox">

 <!-- shorten the width of the search box -->

 <input name="SearchableText"
 type="text"
 size="14"
 value=""
 title="Search Site"
 accesskey="4"
 i18n:attributes="title title_search_site;"
 tal:attributes="value request/SearchableText|nothing;

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[217]

 id view/search_input_id"
 class="inputLabel" />

 <!-- use an actual search button instead of an input field -->

 <!-- <input class="searchButton"
 type="submit"
 value="Search"
 i18n:attributes="value label_search;" /> -->

 <input type="image"
 class="searchButton"
 name="submit"
 alt="submit"
 value="Search"
 tal:attributes="src string:${view/portal_url}
 /search_btn.gif;" />

<!-- this bit will be hidden with CSS -->
 <div class="searchSection">
 <input id="searchbox_currentfolder_only"
 class="noborder"
 type="checkbox"
 name="path"
 tal:attributes="value view/folder_path"
 />
 <label for="searchbox_currentfolder_only"
 i18n:translate="label_searchbox_currentfolder_only"
 style="cursor: pointer">
 only in current section
 </label>
 </div>
<!-- end hiding -->

 <div class="LSResult" id="LSResult" style=""><div
 class="LSShadow" id="LSShadow"></div></div>
 </div>
 </form>

 <div id="portal-advanced-search"
 class="hiddenStructure">
 <a href="#"
 tal:attributes="href string:${view/site_url}/search_form"
 i18n:translate="label_advanced_search"
 accesskey="5">
 Advanced Search…

 </div>

</div>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[218]

In other words, we are removing the default behavior that renders an input field
and are instead rendering an actual search button named search_btn.gif. This
image is located in our theme product's skins/guria_images folder.

Moving the searchbox
But wait! There's more. If we double back to our theme product's configure.zcml
and look at the viewlet manager specified, we see that the searchbox is now assigned
to the IPortalTop viewlet manager:

<!-- The search box -->
 <browser:viewlet
 name="plone.searchbox"
 manager="plone.app.layout.viewlets.interfaces.IPortalTop"
 class=".viewlets.SearchBoxViewlet"
 permission="zope2.View"
 layer=".interfaces.IThemeSpecific"
 />

Default Plone renders the search button in the IPortalHeader viewlet manager, but
we want the search button slightly higher than normal. Perhaps we could accomplish
this with pure CSS, but it's just as easy to move the viewlet to a different manager.
This means that we must now move the existing plone.searchbox viewlet within
our theme product's viewlets.xml file located at mybuildout/plonetheme.guria/
plonetheme/guria/profiles/default:

<?xml version="1.0"?>
<object>
 <order manager="plone.portaltop" skinname="Guria Theme for the
 Plone Theming Book" based-on="Plone Default">
 <viewlet name="plone.searchbox" />
 <viewlet name="plone.personal_bar" />
 </order>
 <order manager="plone.contentviews" skinname="Guria Theme for the
 Plone Theming Book" based-on="Plone Default">
 <viewlet name="plone.path_bar" />
 </order>
 <hidden manager="plone.portaltop" skinname="Guria Theme for the
 Plone Theming Book">
 <viewlet name="plone.path_bar" />
 </hidden>
 <hidden manager="plone.portalheader" skinname="Guria Theme for the
 Plone Theming Book">
 <viewlet name="plone.searchbox" />
 <viewlet name="plone.global_sections" />
 </hidden>
</object>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[219]

At the same time, we must also hide the default searchbox viewlet provided by
Plone. Notice how the new viewlet is assigned to the skinname Guria Theme for the
Plone Theming Book and the hidden viewlet is hidden also from the Guria Theme
for the Plone Theming Book skinname. This skinname comes from the profiles.
zcml file in our theme. The format is like this because we are extending base Plone,
and we don't want to remove any of the power from Plone Default.

There are other viewlets that have been manipulated here in viewlets.xml, and
we'll get to those momentarily.

It's worth noting that "insert-before" or "insert-after" syntax may not work
(this is fixed in later versions of Plone 3.x), and you might have to reorder
the viewlets by hand using the @@manage-viewlets tool: http://
localhost:8081/mysite/@@manage-viewlets. We're not going to
worry about ordering of viewlets in this case.
Moreover, there is some jeopardy in moving viewlets into the
IPortalTop viewlet manager. The point of keeping viewlets in
IPortalHeader is that we have "Skip to Content" and "Skip to
Navigation" links that have to be at the top of the page when viewed in a
text or voice browser, for accessibility reasons. If we move any viewlet to
IPortalTop and place it above IPortalHeader, those useful links are
not at the topmost part of the page. This, in turn, weakens the accessibility
of the Plone site. It might make more sense to create a new viewlet
manager directly below IPortalTop.

If we want to see our changes take effect, we must either install the theme on a
fresh Plone site, or we can import the viewlets.xml GenericSetup step via
portal_setup in the ZMI, making sure we select our theme as the profile:
http://localhost:8081/mysite/portal_setup/manage_importSteps.
We'll also need to restart our Zope instance because we altered configure.zcml.
Reinstalling the theme product is not advised.

Adjusting the personal bar
Next, we look at the personal bar. This is the bar that lists the login/logout links and
also displays the user icon with a link to a Preferences panel. We want to adjust the
location of this bar. We don't really need to move it to a new viewlet manager; we
only want to move it so that it appears below the searchbox.

Again, due to accessibility reasons, this may not be the best thing to do. It
might make more sense to move the personal bar to the footer area where
it is less likely to interfere with the look and feel of the site, but that's a
task for another day.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[220]

To do so, we make a quick adjustment in our theme product's profiles/default/
viewlets.xml file:

<?xml version="1.0"?>
<object>
 <order manager="plone.portaltop" skinname="Guria Theme for the
 Plone Theming Book" based-on="Plone Default">
 <viewlet name="plone.searchbox" />
 <viewlet name="plone.personal_bar" />
 </order>
...
</object>

All we do is tell our viewlet to appear after the searchbox. We would then import our
viewlets.xml file in site_setup in the ZMI after making this change.

Additionally, we add a bit of CSS code to support the layout of the personal bar:

/**** PERSONAL TOOLS ****/

#portal-personaltools {
 clear:both;
}

All we want is to make sure that the personal bar continues to stretch across the
width of the page and does not get stepped on by other elements on the page. A
visual "clear" gives us this.

Suppressing the top navigation
Now we want to examine the top navigation. Normally on a Plone site, you see
top-level tabs that can be used to focus the navigation. Additionally, installing a
product called webcouturier.dropdownmenu (http://plone.org/products/
webcouturier-dropdownmenu/) can enhance this navigation code. Installing it
immediately provides drop-down navigation that can be styled via CSS. If you have
already customized the global navigation viewlet, this may not work out of the box,
and you'll have to subclass from the webcouturier.dropdownmenu viewlet.

In our case, we want to suppress the top navigation entirely. We could do this via
CSS, or we could remove it entirely by suppressing the viewlet itself. In the Guria
theme product, we suppress it via our viewlets.xml file located at mybuildout/
src/plonetheme.guria/plonetheme/guria/profiles.zcml:

<?xml version="1.0"?>
<object>
...
 <hidden manager="plone.portalheader" skinname="Guria Theme for the
 Plone Theming Book" >

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[221]

 <viewlet name="plone.searchbox" />
 <viewlet name="plone.global_sections" />
 </hidden>
</object>

Again, this change would require importing the "viewlets" GenericSetup step via
portal_setup.

Moving and styling the breadcrumbs
Next, let's look at the breadcrumbs. By default, Plone displays the breadcrumbs
above the three columns that comprise the left, right, and middle content areas. In
our case, we want to move these breadcrumbs directly above the center content,
above the tabs available for logged-in and permissioned users for managing content
(Contents, Edit, and so on.).

We know that we need to move the viewlet in our viewlets.xml file:

<?xml version="1.0"?>
<object>
...
 <order manager="plone.contentviews" skinname=" Guria Theme for the
 Plone Theming Book" based-on="Plone Default">
 <viewlet name="plone.path_bar" />
 </order>
 <hidden manager="plone.portaltop" skinname="Guria Theme for the
 Plone Theming Book" >
 <viewlet name="plone.path_bar" />
 </hidden>
...
</object>

The viewlet manager known as plone.contentviews displays directly above
the center content. We can use @@manage-viewlets to verify this, if necessary:
http://localhost:8080/mysite/@@manage-viewlets.

Next, we need to see if we are dealing with a class-based or template-based viewlet.
Open common.py and configure.zcml file in plone.app.layout, located at
mybuildout/buildout-cache/eggs/plone.app.layout[some version number]/
plone/app/layout/. Searching for "pathbar" in configure.zcml gives us:

<!-- The breadcrumbs -->
 <browser:viewlet
 name="plone.path_bar"
 manager=".interfaces.IPortalTop"
 class=".common.PathBarViewlet"
 permission="zope2.View"
 />

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[222]

This tells us that we are working with a class-based viewlet. We copy this code into
our theme product's browser/configure.zcml file and modify it as follows:

<!-- The breadcrumbs -->
 <browser:viewlet
 name="plone.path_bar"
 manager="plone.app.layout.viewlets.interfaces.IContentViews"

 class=".viewlets.PathBarViewlet"

 permission="zope2.View"
 layer=".interfaces.IThemeSpecific"

 />

Notice that we are providing a dot-delimited path back to the IContentViews
manager (not to the IPortalTop viewlet manager normally used in base Plone).
Additionally, we want to subclass the PathBarViewlet class, because we want
to alter the divider normally seen between breadcrumbs to make them more
visually appealing.

We copy the following two lines from plone.app.layout's common.py into our
theme product's browser/viewlets.py file:

class PathBarViewlet(ViewletBase):
 index = ViewPageTemplateFile('path_bar.pt')

We then modify the lines as follows:

class PathBarViewlet(common.PathBarViewlet):
 """Moving to a new viewlet manager and adjusting the dividers
 """
 def render(self):
 return self.index()
 index = ViewPageTemplateFile('path_bar.pt')

Next, we copy the path_bar.pt file, found in plone.app.layout, to our browser/
folder and alter it to use » instead of → and « instead of ←.

<div id="portal-breadcrumbs"
 i18n:domain="plone">

 <span id="breadcrumbs-you-are-here" i18n:translate=
 "you_are_here">You are here:
 <a i18n:translate="tabs_home" tal:attributes="href
 view/navigation_root_url">Home
 <span tal:condition="view/breadcrumbs"
 class="breadcrumbSeparator">
 <tal:ltr condition="not: view/is_rtl">»</tal:ltr>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[223]

 <tal:rtl condition="view/is_rtl">«</tal:rtl>

 <span tal:repeat="crumb view/breadcrumbs"
 tal:attributes="dir python:view.is_rtl and 'rtl' or 'ltr'">
 <tal:last tal:define="is_last repeat/crumb/end">
 <a href="#"
 tal:omit-tag="not: crumb/absolute_url"
 tal:condition="python:not is_last"
 tal:attributes="href crumb/absolute_url"
 tal:content="crumb/Title">
 crumb

 <span class="breadcrumbSeparator" tal:condition="not:
 is_last">
 <tal:ltr condition="not: view/is_rtl">
 »</tal:ltr>
 <tal:rtl condition="view/is_rtl">«</tal:rtl>

 <span tal:condition="is_last"
 tal:content="crumb/Title">crumb
 </tal:last>

</div>

We then need to do some basic styling of the breadcrumbs:

/**** BREADCRUMBS ****/

#portal-breadcrumbs {
 border-bottom:none;
 text-transform:capitalize;
 padding-left:1em;
}

.section-front-page #portal-breadcrumbs {
 display:none;
}

We remove the border that normally displays below the breadcrumbs, capitalize
them, and add a little padding. We also suppress them from the home page using the
hook that Plone gives us using the shortname of the page. In this case, the CSS hook
is .section-front-page. While this shortname can be a little brittle, most Plone sites use
front-page as the default home page shortname. It's generally sufficient to advise
site administrators not to change this shortname in order to keep the CSS styling
intact. For more information on this, you can look at the discussion on sectional
styling in the next chapter.

Because we changed ZCML, we need to restart Plone, and because we altered the
viewlets.xml file, we also need to import the "viewlets" step using portal_setup
in the ZMI.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[224]

Base portlet styling
Now we need to look at what a portlet might look like. We can add a couple
of test portlets to the left column using http://localhost:8080/mysite/@@
manage-portlets. Most portlets in Plone follow some basic styling—they have a
.portletHeader, a .portletItem, a .portletFooter, and so on. This means that
we can write some basic CSS to handle the display of these items:

/**** BASE PORTLET STYLES ****/

.portlet {
 border:none;
 background-color:#bcb29c;
 margin-bottom:0em;
 margin-top:0px;
}

.portlet a {
 color:#fff !important;
}

.portletHeader {
 background-color:#807554 !important;
 border:none;
 text-transform:uppercase;
 color:#fff;
 padding:.5em .5em .5em 1em;
}

.portletHeader a {
 background-color:#807554;
 border:none;
 text-transform:uppercase;
 color:#fff;
}

.managedPortlet .portletHeader, .managedPortlet .portletHeader a {
 color:#000;
}

.portletHeader a {
 color:#fff;
}

.portletFooter {
 border:none;
}

.portletItem {
 background-color:none;
 border:none;
}

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[225]

Much of this code can be grabbed from CMFPlone's portlets.css stylesheet,
located at mybuildout/buildout-cache/eggs/Plone[some version number]/
Products/CMFPlone/skins/plone_styles. We only override some of the borders,
adjust some background colors and font colors, and adjust the padding. We also
have to force the link color in order to override an !important declaration in Plone's
portlets.css file. Similarly, we have to force the color of the header to override
another !important declaration on the .portletHeader.

The most important thing to be aware of here is that some .portletHeader elements
have an anchor tag contained within them, and those anchor tags might accidentally
pick up a font color defined by base properties. It's important to write code to
support that possible scenario, as we've done here.

Adjusting the footer and the colophon
Now we can also do some basic adjustment to the footer and the colophon. Based on
the design, we see that the footer and the colophon are contained within a box with
a brown background-color, and that the elements are in approximately the same
location as they would be in a default Plone site. We need to add a wrapper around
these elements to create that brown container.

One of the easiest ways to accomplish this is to modify the main_template.pt
found in CMFPlone at mybuildout/buildout-cache/eggs/Plone[some version
number]/Products/CMFPlone/skins/plone_templates. You could certainly create
a new viewlet manager if you wished, and thereby minimize upgrade issues that
might involve changes to the main_template.pt, but you should not be afraid of
modifying main_template.pt.

Viewlet managers are explained at http://plone.org/
documentation/how-to/adding-portlet-managers and
http://plone.org/documentation/manual/theme-reference/
elements/viewletmanager/override.

For now, we're just going to modify main_template.pt by adding the wrapper.
First, we need to copy the file from CMFPlone and put it into our theme product's
skins/guria_templates folder:

<!-- wrapping the footer and colophon so we can apply a bg color they
 will share -->

<div id="footer-colophon-wrapper">
 <div tal:replace="structure provider:plone.portalfooter" />
</div>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[226]

The world doesn't revolve around viewlets, but it's certainly the core of theming.
In the past, most changes to web sites involved modifying main_template.pt or
templates such as document_view.pt, and that's still perfectly legal. Hypothetically,
though, we could insert anything into the main_template.pt, including TAL
statements or basic XHTML, as we've done here.

We next need to do a bit of CSS styling, taking care to make sure the anchor tags also
receive some special attention:

/**** FOOTER AND COLOPHON AREA ****/

#footer-colophon-wrapper {
 background-color:#56492e;
 width:733px;
 height:60px;
 margin-top:5px;
}

#portal-footer {
 color:#cccc99;
 width:40%;
 text-align:left;
 float:left;
 background-color:transparent;
 border:0;
 padding-left:1em;
 margin-top:1em;
}

#portal-footer a {
 color:#cccc99 !important;
 text-decoration:underline;
}

#portal-colophon {
 color:#cccc99;
 text-align:right;
 width:40%;
 float:right;
 padding-right:1em;
 margin-top:1em;
}

#portal-colophon a {
 color:#cccc99 !important;
 text-decoration:underline;
}

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[227]

This code defines a background color for the wrapper element, plus a width, height,
and some padding. Then, we alter some of the Plone's default styling of the footer
and colophon to remove background colors and borders, then define widths for each
of those items and position them next to each other. Finally, they are assigned colors
and underlines for anchor tags.

However, there is more to be done. We want to customize the footer and colophon
to contain some custom text. Open the configure.zcml file, located in plone.app.
layout at mybuildout/buildout-cache/eggs/plone.app.layout[some version
number]/plone/app/layout/, and search for "footer" and "colophon". The code is
as follows:

<!-- Footer -->
 <browser:viewlet
 name="plone.footer"
 for="*"
 manager=".interfaces.IPortalFooter"
 template="footer.pt"
 permission="zope.Public"
 />

 <!-- Colophon -->
 <browser:viewlet
 name="plone.colophon"
 for="*"
 manager=".interfaces.IPortalFooter"
 template="colophon.pt"
 permission="zope.Public"
 />

We copy this code into our theme product's browser/configure.zcml file, located
at plonetheme.guria/plonetheme/guria/browser/, and modify it as follows:

<browser:viewlet
 name="plone.footer"
 manager="plone.app.layout.viewlets.interfaces.IPortalFooter"
 layer=".interfaces.IThemeSpecific"
 template="footer.pt"
 permission="zope2.View"
 />

 <browser:viewlet
 name="plone.colophon"
 manager="plone.app.layout.viewlets.interfaces.IPortalFooter"
 layer=".interfaces.IThemeSpecific"
 template="colophon.pt"
 permission="zope2.View"
 />

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[228]

For both of these elements, we provide a dot-delimited path back to the
IPortalFooter viewlet manager. We don't need to move these items, so it's fine to
leave them assigned to IPortalFooter. We also notice that neither of these viewlets
is class-based, and hence they list the footer.pt and colophon.pt page templates.
That means we don't need to do anything to viewlets.py. We also use the
IThemeSpecific designation here to apply our changes to this theme product only.

Next, we copy the footer.pt and colophon.pt files, found in plone.app.layout,
into our theme product's browser/ folder. We then modify the footer.pt as follows:

<div class="vcard"
 id="portal-footer"
 metal:define-macro="portal_footer"
 i18n:domain="plone">

 <tal:comment tal:condition="nothing">
 Use hCard formatting for contact info.
 </tal:comment>

 <div class="fn org hiddenStructure"
 i18n:translate="footer_txt_org_name">
 ORGANIZATION'S NAME GOES HERE!!! It will be hidden by CSS;
 we need it
 only for hCard compliance. This should be filled in if you
 use this theme for your site.
 </div>

 <div class="adr">
 <span class="street-address"
 i18n:translate="footer_txt_addr">123 Street
 Road,
 <span class="extended-address"
 i18n:translate="footer_txt_ext_addr">Suite 321,
 <span class="locality"
 i18n:translate="footer_txt_city">Springfield,
 <span class="region"
 i18n:translate="footer_txt_province">OR
 <span class="postal-code"
 i18n:translate="footer_txt_postal_code">12345
 </div>

 <span class="tel"
 i18n:translate="footer_txt_phone">(503) 555-8272 :

 <span tal:replace="structure python:here.
 spamProtect('info@enviro-group.org')">
 [spam protected email addr]

</div>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[229]

There's a lot of geek-speak in the original template, so we want to reduce both that
and some of the visual noise.

As for the colophon, we modify it as follows:
<tal:comment tal:condition="nothing">
 Removing everything to tone down the nerdyness a notch. Altered
 the colophon to also show a copyright.
</tal:comment>

<div id="portal-colophon" metal:define-macro="colophon"
 i18n:domain="onenorthwest">

 <span i18n:translate="txt_powered_by_plone" id="powered-by-
 plone">
 powered by

 <a href="http://plone.org"
 i18n:attributes="title title_this_site_is_plone"
 title="This website is built on the Plone Content
 Management System. Click to learn more.">Plone

 Copyright 2009

</div>

It's considered good to the Plone open source community to keep the Plone branding
for viral marketing of Plone, and we also keep the copyright.

That's all we need to do here. We've changed ZCML, so we need to restart our Zope
instance after this step.

Altering the navigation
Next we need to do some basic styling of the navigation. It's wise at this point to drill
down a bit into the navigation on the site so that we can see how the sub navigation
will appear. We don't need to modify the behavior of the navigation, so we'll focus
only on the CSS styling. Most of this styling can be grabbed from CMFPlone's
navtree.css, located at mybuildout/part/plone/CMFPlone/skins/plone_
styles, and adjusted as necessary.

1. First, we apply a background color that is different from what is specified in
the base portlet styling, and we suppress the portlet header:
.portletNavigationTree {

 padding: 0;

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[230]

 background-color:#9d8d6b;
}

.portletNavigationTree .portletHeader {
 display:none;
}

2. Next, we focus on the individual items in the menu and alter the padding
and margins. We also remove all but the bottom border and apply a color to
the hyperlinks using an !important declaration. Then, we make all of the
hyperlinks uppercase.
.navTreeItem {
 padding: 0;
 margin: 0;
}

.navTreeItem a,
dd.portletItem .navTreeItem a {
 border-width:0px 0px 1px 0px;
 border-bottom: 1px solid #bbaf98;
 padding-top: 0.25em;
 padding-bottom: 0.25em;
 color:#fff6ab !important;
 text-transform:uppercase;
}

3. For the hover states, we want the links to turn white. We also have to remove
borders around the hyperlinks, as Plone applies these by default. If you see
your text jumping around when you drag mouse over it, and you can't figure
out where that jumping is coming from, it's usually related to borders that
are the same color as the background color.
.navTreeItem a:hover,
dd.portletItem .navTreeItem a:hover {
 background-color:transparent;
 color: #fff !important;
 border-width:0px 0px 1px 0px;
 border-bottom: 1px solid #bbaf98;
}

4. Next, we look at the currently selected item styling. We don't want a
background color, so we remove that. We again remove the borders that are
given to us by base Plone, and we want the hyperlinks to be white:
li.navTreeItem a.navTreeCurrentItem {
 background-color: transparent;
 border-width:0px 0px 1px 0px !important;

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 10

[231]

 border-bottom: 1px solid #bbaf98 !important;
 color:#fff !important;
}

5. Finally, we look at the sub navigation and make those items uppercase:
ul.navTree .navTreeLevel1 a {
 text-transform:uppercase !important;
}

Looking at the navtree.css file provided by CMFPlone will give you a sense of all
of the different things that could be styled. Generally, this boils down to the overall
portlet styling (header, footer, and so on), individual link items, link items in hover
state, and sub navigation. The CSS here can be a little convoluted, so you may find
yourself fighting with it.

At this point, if you install the theme, it should look something like this (don't forget
to reorder your viewlets by hand if you need to). However, since we disabled the
right-hand portlets earlier in the chapter, what you see might be slightly different:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

General Styling and Templating Changes

[232]

Summary
In this chapter, we have learned how to:

Change the logo
Modify the portal_actions on a site
Modify various viewlets and portlets and the templates that are used to
render a Plone site
Do basic CSS styling

You should now have a real-world understanding of viewlets, portlets, and CSS and
how they tie together. Next, we will look at how we can make even deeper changes
to the structure of a page using sectional styling, page template adjustments,
and more.

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Custom Page Views and
Sectional Styling

Now that we have seen how basic theming is accomplished, we'll take a closer
look at how we can adjust the look and feel of a home page view. This can be
accomplished in a variety of ways, some of which involve simple CSS and others
which require more knowledge of page templating and Python code. We'll also
look at sectional styling and wrap up our theme's development with some
browser testing.

Changing the default home page display
The Guria theme product ships with a few different examples of how you could
modify your home page layout. It is important to note that not all of the CSS
has been written to support all of these different views. The intention for final
implementation was to use the homepage_view method (not homepage2_view), and
styling for the former's look and feel is completely in place. The homepage2_view
styling is only partially complete. Look in the theme product's guria_templates
folder to see these two templates.

Using CSS styles and the visual editor
Let us look first at the simplest way to customize your home page: using CSS styles
inside of the visual editor to create a different look and feel. We can accomplish this
either by doing some small, simple coding in our CSS stylesheets, or we can add
this code to our theme product via a kupu.xml (or similar) GenericSetup file in our
theme product's profiles/ directory. Kupu is the current visual editor for Plone,
and may be replaced by another editor in the future. The principles here should be
the same, even if the official editor changes.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Custom Page Views and Sectional Styling

[234]

If you want to see a GenericSetup implementation in action, download Denys
Mishunov's excellent webcouturier.hosting.theme at: http://plone.org/
products/webcouturier-hosting-theme/. This theme is also a great example
of the Plone 3 theming best practices.

In our case, we're going to go the simpler, more manual route and not use the
GenericSetup method. We're also going to repurpose some of the CSS from the
webcouturier theme.

1. First, we want to insert some CSS into our theme product's guria.css to
create additional styles that can be inserted into a Plone page:
/**** KUPU STYLES FOR HOMEPAGE TABLE ****/

/** we also need to configure kupu in the site setup area **/

.homeTable {
 width: 100%;
 margin-bottom: 0.5em;
 border-spacing: 5px;
 border-collapse: separate;
}

.homeTable th {
 padding: 0.7em 0.8em;
 font-size: 1.2em;
 color: #fff;
 text-align: left;
 background-color: #7d7564;
}

.homeTable th a {
 color: #fff;
}

.homeTable td {
 padding: 0.5em 0 0;
 border-top: 3px solid #ccc;
 font-size: 0.9em;
 vertical-align:top;
}

.homeTable td a {
 text-decoration: underline;
 border: 0;
}
.homeTable ul {
 padding: 0.5em 0.7em 1em 1em;
}

.homeTable tbody tr td ul li {
 margin:0;
}

.homeTable ul li a,

.homeTable ul li a:hover,

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 11

[235]

.homeTable ul li a:visited {
 color: &dtml-fontColor;;
}

.homeTable p {
 margin: 0;
 padding: 0.5em 0.3em 0.3em 2.5em;
}

p.orangeText {
 color:#cd8c04;
}

2. Then, we add these styles to the visual editor. On our web site, go to the
visual editor's configlet, found at http://localhost:8080/mysite/
kupu_library_tool/kupu_config. At the bottom of the page is a
Styles box where you can insert new styles that you want to provide to
your site's content administrators. We will insert the following styles:
homeTable|Table with brown headers in the Tables area and Orange
Text|p|orangeText in the Styles area. Then press Save.

Now, if we go to our home page (or any page) and edit it, we'll see the Orange Text
option available in the Styles drop-down list, and if we add a table, the Table with
brown headers option will also be available. The other styles that have been defined
will also be exposed to our theme as children of the .homeTable style, but those
items do not need to be added to the visual editor.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Custom Page Views and Sectional Styling

[236]

In this way, we can alter the default styling of a page's contents and create the
illusion that more sophisticated code is at work.

Using a basic page template for a home
page view
Now let's look at the page template named homepage2_view.pt, located at
mybuildout/plonetheme.guria/plonetheme/guria/skins/guria_templates.
(We'll look at homepage_view.pt in a bit.)

We copied two files from mybuildout/buildout-cache/eggs/Plone[some
version number]/Products/CMFPlone/skins/plone_templates into our
theme product to create these new files: document_view.pt and document_view.
pt.metadata. We then renamed them as homepage2_view.pt and homepage2_
view.pt.metadata and altered the name of the title in the .metadata file:

[default]
title=Second Homepage View

To the homepage2_view.pt file we then added the following custom code directly
below the plone.belowcontenttitle provider:

<div tal:replace="structure provider:plone.belowcontenttitle" />

<!-- insert some custom code here to pull in the contents of some
 pages -->
<!-- the pages must be have shortnames of r1c1 and r1c2 -->
<tbody>
<table id="homepage-table">
 <tr>
 <td tal:define="r1c1 nocall:portal/homesection/r1c1" tal:on-
 error="nothing">
 <th tal:content="structure r1c1/Title">Column One -
 Change this in homepage2_view</th>
 <div tal:replace="structure r1c1/getText" />
 </td>
 <td tal:define="r1c2 nocall:portal/homesection/r1c2" tal:on-
 error="nothing">
 <th tal:content="structure r1c2/Title">Column Two -
 Change this in homepage2_view</th>
 <div tal:replace="structure r1c2/getText" />
 </td>
 </tr>
</table>
</tbody>
<!-- end custom code -->

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 11

[237]

All this code does is pull in the contents of two pages named r1c1 (symbolizing row
1, column 1) and r1c2 (row 1, column 2). These two page objects need to be created
in a folder on your Plone site named homesection. If an object is not found, an error
will not be raised.

In this way, we can do some light customizations to a page to adjust the layout.
Additional rows and columns could be added with distinct styles. Just make sure
that their shortnames correspond accordingly.

To use this template:

1. We need to go into the ZMI to portal_types/Document (Page) and
add homepage2_view as an available view method for documents:
http://localhost:8080/mysite/portal_types/Document/manage_
propertiesForm.

2. Then, from the home page (or whatever page you want to apply this
view to), choose Second Homepage View from the Display drop-down
list. It may be necessary to access the home page by selecting it via the
Contents tab.

It's also not uncommon to customize the page template that provides the view of a
collection. This file is named atct_topic_view.pt, and is located at mybuildout/
buildout-cache/eggs/Products.ATContentTypes[some version number]/
Products/ATContentTypes/skins/ATContentTypes/. We will not cover
modification of a collection view, as it is very similar to modifying a document view,
but you should know that at this point, knowledge of Python and advanced TAL
becomes very helpful.

Using Python code to render a home
page view
The next example is pretty dense, and is provided only to show an alternate solution.
It's similar to the example where you want to pull in the content of a page or other
object, but this one also allows you to pull in images and collections and limit the
number of items they return. It also uses memoize, a Python function decorator for
caching the values of functions and methods. This might be of interest to the geeks
in the crowd.

It is recommended at this point that if you have not downloaded the theme, you
definitely do so and walk through the code yourself. I'll explain in theory how it's
hooked up and how it works, but we're not going to go in too deep here.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Custom Page Views and Sectional Styling

[238]

Like the view described above, we copied CMFPlone's default document_view.
pt and document_view.pt.metadata into our theme product's skins/guria_
templates folder, renamed them to homepage_view.pt and homepage_view.
pt.metadata, and altered the .metadata file to read as follows:

[default]
title=Homepage View

Next, let's look at some of the code the homepage_view.pt contains. This page
template contains a table with three columns, each of which is populated with the
contents of a page and an image that is pulled in from a specific location. Let's look
at part of the first column's XHTML:

<td id="home-cell-one"
 tal:define="items hp_view/getSlot1Items"
 tal:condition="items">
 <div class="cell-wrapper">
 <th class="hiddenStructure">Column One</th><span
 class="col1">

 <img tal:define="img hp_view/getSlot1Image"
 tal:condition="img"
 tal:attributes="src img"
 class="slot1image"
 height="68"
 width="167" />

 <div class="folder-listing"
 tal:repeat="item items">
...

We see code like items hp_view/getSlot1Items. This implies that there is a
view somewhere that has a function named getSlot1Items. If we look closer at
interfaces.py, located at mybuildout/plonetheme.guria/plonetheme/guria/
browser/interfaces.py, we see that the following code matches up to what we see
in the homepage_view.pt page template.

class IHomepage(Interface):
 """Browser view for homepage logic"""
...

def getSlot1Image(self):
 """Returns an absolute url for the image to appear in the
 first slot"""
 return self._getSlotImage(1)

 @memoize
 def getSlot1Items(self):

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 11

[239]

 """Return the first 3 content items for the first slot. We're
assuming that a Collection lives at the path /homepage/slot1; we'll
return its first three items.
 """
 return self._getSlotItems(1)

We still need to figure out where the hp_view is defined and hooked up to our
theme. In the same browser/ folder, look at configure.zcml:

<!-- Browser views -->
 <browser:page
 for="*"
 name="hp_view"
 class=".homepage.Homepage"
 layer=".interfaces.IThemeSpecific"
 permission="zope2.View"
 />

This is where we tell our theme product to use this hp_view in the current theme.
We then need to look and see where the logic is for the interface described in
interfaces.py. That is contained in the file named homepage.py (see the dot-
delimited class mentioned in configure.zcml). Here we see explanation of some
basic logic and also the code associated with getSlot1Image and getSlot1Items.

Even if you are not a programmer (and I am not), you can see that the way this code
works is that your Plone site needs to have a folder added to it named Homepage. The
three slots that are part of the home page return the following items:

homepage/images/slot1.jpg

homepage/images/slot2.jpg

homepage/images/slot3.jpg

And the first three items returned by collections are created at:

/homepage/slot1

/homepage/slot2

/homepage/slot3

Where slot1, slot2, and slot3 are the shortnames of the collections.

As with the previously discussed home page view, to make this available for
selection, you must go to the ZMI and add homepage_view to the available views
for Document (Page): http://localhost:8080/mysite/portal_types/Document/
manage_propertiesForm. Then, from the home page (or whatever page you want
to apply this view to), choose Homepage View from the Display drop-down list.
Again, you may have to access the home page's default page via the Contents tab.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Custom Page Views and Sectional Styling

[240]

Clearly, there are a number of ways in which to modify the look and feel of page,
even if you are not a programmer. If you are a programmer, the sky is the limit!

Next, we'll look at how we can change the look and feel of our Plone site from
section to section.

Sectional styling
Here we will learn how to do sectional styling using a CSS hook that Plone gives
us for free. This type of sectional styling is not used in our theme product, except to
suppress the breadcrumbs from the home page, but we discuss it here as a prelude to
the advanced topic of sectional banners that follows it.

The body tag in CMFPlone's main_template has an HTML class attribute that
allows you to theme different sections of the site with different styles. All you do is
use the prefix of section- and then the shortname of the item in the root folder. In
main_template.pt there is a script that generates, on the fly, a class for each section
of the site. The script is called getSectionFromURL:

<body tal:attributes="class string:${here/getSectionFromURL}
 template-${template/id};
 dir python:test(isRTL, ‘rtl', ‘ltr')">

 The rendered HTML it creates looks like:

<body class="section-news section-news-aggregator template-
 folder_summary_view"
 dir="ltr">
 <div id="visual-portal-wrapper">
...

What this in effect tells us is that we are in the news folder, which contains an object
with a shortname of aggregator (the default collection object that pulls in news
items). Using CSS, we can hook onto the .section-news class.

In your stylesheets, prefix the style you want to be different for that section with
.section-foldername, replacing foldername with the id or shortname of the folder
in question. For example, this code would change the background image for the
News section of your site:

.section-news {
background-image: url(&dtml-portal_url;/gradient2.png);
background-repeat:repeat-x;

}

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 11

[241]

Here are a few additional examples of how it might be used. First, we assign a
property to the global elements, such as body, and then we assign properties to
the section-specific element to differentiate it:

body { background-image:
url(gradient.png);

}

/* this is specific to a section with a shortname of foo */
body.section-foo {
background-image: url(gradient2.png);

}
#visual-portal-wrapper {

background-color:#000;
}
/* this is specific to a section with a shortname of foo */
.section-foo #visual-portal-wrapper {

background: white;
margin: auto;
width: 883px;
position: relative;

}
#portal-logo {

margin: 1em;
background-image: url(logo.jpg);
background-repeat: no-repeat;

}
/* this is specific to a section with a shortname of foo */
.section-foo #portal-logo {

margin: 1em;
background-image: url(logo-foo.gif);
background-repeat: no-repeat;

}

.section-front-page #portal-breadcrumbs {
 display:none;
}

In the code above, we added section-specific code for the body, #visual-portal-
wrapper, and #portal-logo areas. This type of pattern can be used in an almost
infinite number of ways.

The only issue to consider here is that if you change the shortname of your section,
your styling will break. Users should be educated to not change shortnames unless
they know what they are doing.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Custom Page Views and Sectional Styling

[242]

As we've seen, you can write CSS that alters the logo on a section-by-section basis.
You might also want to have a different banner image in each section. To do so, you
could use TAL instead to alter your page template to look for an image based on
your current context:

<img width="125"
 tal:replace="structure nocall:context/banner.jpg|default" />

In this case, you would not want an image named banner.jpg to be inside of your
theme product, as it would conflict with the images named banner.jpg that you
insert into the various sections of your Plone site as content

The disadvantage to this method is that the images will be considered content,
and thus will not be cacheable without extra work. However, it would give site
maintainers more control over the look and feel of their site.

There are certainly other options available; these two are just the most common.

Applying Internet Explorer fixes
Now that we've wrapped up all of the templating work on our theme and the bulk of
our CSS, we should test the site against other browsers.

As a Mac user, my tool of choice is VMWare Fusion (http://www.vmware.com/
download/fusion/), but Windows users can use Windows Virtual PC (http://www.
microsoft.com/windows/virtual-pc/). As of this writing, I typically test first
against Safari (WebKit), Firefox 2 (Mac and PC), then Firefox 3 (Mac and PC),
then Internet Explorer 6, IE7, then IE8, in that order. If I have time, I also test
against Opera. If you have multimedia devices, you might wish to test against
them as well. This means setting up several virtual machines, which can be very
resource intensive.

There are a couple of ways of adding browser-related fixes to your theme product.
You could certainly add to the Plone stylesheet (IEFixes.css), you could create
stylesheets for each individual browser you're patching, or you could do them inline
in your theme's main stylesheet. For my purposes, I tend to insert them directly into
my main stylesheet so that I don't have to hop between stylesheets. This is just a
personal preference.

The CSS for this theme product was pretty solid in Firefox and Safari, so here I am
going to focus primarily on IE6 and IE7.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 11

[243]

The searchbox frequently shows up with scrollbars around it (and here it does
again), as though it doesn't fit quite right. A simple fix to the code addresses that
issue in IE6:

* html #portal-searchbox {
 overflow:visible !important;
}

I also put an !important declaration in there, as it didn't want to take effect at first.
Other than that and the #portal-siteactions fix mentioned earlier, IE6 appears to
behave nicely.

IE7 also appears to behave well, and there is no need to adjust the searchbox.
However, in the event that we do need to make fixes to the CSS, the syntax for
the fix would look like this:

*+html #portal-searchbox {
 insert CSS here
}

Again, we made a fix to the #portal-siteactions for IE7, as seen in the code
listed earlier:

*+html #portal-siteactions {
 margin-left:9px;
 margin-top:0px;
}

It's worth stating that IE8 tends to be pretty standards compliant, so you should try
to write your CSS cleanly to appease it. Moreover, there are not CSS hacks available
to you, so writing clean code is the best solution. However, if you find that you are
having problems (or you have old sites you don't want to spend time reworking
with), you may want to tell your sites to behave as though they were being viewed
in IE7. This can be done using an Apache tweak, explained here: http://blogs.
msdn.com/hanuk/archive/2008/08/28/apache-httpd-configuration-for-ie7-
standard-mode-rendering-in-ie8.aspx.

At this point, we've covered most of the basics involved in theming a site, and a few
extras as well. Now that our site is browser compliant, we're officially done here!

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Custom Page Views and Sectional Styling

[244]

Summary
In this chapter, we have learned how to:

Create custom home page views, from simple to complex
Do sectional styling
Enable and create sectional banners
Test our site against multiple browsers

Skinning is a complex, but rewarding affair, and understanding the various ways
in which you can make changes is the first step towards making educated decisions
about how you would implement a design. Next, we will look at additional tools,
product, and skinning tricks that can help you be more effective and creative during
the skinning process.

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Add-on Tools and
Theming Tips

Now that we've looked at how to build a Plone theme, we'll take a look at some
Plone products that can be used to make your web site even more impactful and
manageable. We'll also briefly cover some useful tips to be aware of when theming
a Plone site.

Popular add-on Plone products
One of the best things about open source development is the proliferation of
products to solve common use cases. Plone themers are fortunate to have a solid
set of tools available to them to solve these use cases.

Enabling drop downs using webcouturier.
dropdownmenu
As most themers know, a lot of clients desire drop-down menus. In the past, this
required coding HTML strings and the use of a product by Quintagroup named
qPloneDropDownMenu. This product is still the recommended drop-down menu
product for Plone 2.5x, but for 3.x, the real star is Denys Mishunov's product,
webcouturier.dropdownmenu.

The joy of this product is that you install it, and it works instantly. The product
works by subclassing the globalsections viewlet via the following code, found in
the browser/configure.zcml file of the webcouturier.dropdownmenu product:

<!-- Override global sections viewlet -->
 <browser:viewlet
 name="plone.global_sections"

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Add-on Tools and Theming Tips

[246]

 manager="plone.app.layout.viewlets.interfaces.IPortalHeader"
 class=".dropdown.DropdownMenuViewlet"
 layer=".interfaces.IDropdownSpecific"
 permission="zope2.View"
 />

In the event that you've already customized your globalsections viewlet, you
will have to subclass the DropdownMenuViewlet class in the webcouturier.
dropdownmenu product.

Unlike older drop-down menu products, webcouturier.dropdownmenu does not
require any ongoing maintenance or manual adjustment of URLs. It is controlled
by the navigation settings found in the Site Setup area, so you can control what
types of items display in the navigation. The product also provides some basic CSS
styling that can be easily adjusted in your own theme product, if desired. It can be
downloaded here:

http://plone.org/products/webcouturier-dropdownmenu/

Collage
Another helpful Plone product is Malthe Borch's Collage. Collage allows you to
create a grid containing rows and columns, and within those columns you can pull
in the contents of other objects—a folder, a page, a collection, or even an image.
Using this mechanism, you can create a complex page layout without knowing
any programming.

Until very recently, Collage did not have hooks that allowed it to be styled using
CSS, and it did not respect different views. For example, if you created a special
mysection_view.pt (same as a homepage_view), and you assigned that view to
your page, Collage would default to the original document_view. This behavior has
now been altered so that CSS hooks are available and different views are respected.
This is a huge win for sites that are heavily styled and need to maintain consistency.

I suggest that when using Collage, you do not create your objects within the Collage
itself; you should instead create the objects in your normal Plone content tree, and
pull those items in as aliases. The reason for suggesting this is that it is not possible
to access the contents of a Collage via the standard folder_contents view that is
normally possible in a folder. Hence, if you need to move that content to another
area of your site, you cannot. This also invites some jeopardy when migrating to a
new version of Plone.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 12

[247]

It's worth mentioning that Collage will not become part of core Plone in the future,
as the mechanism for organizing blocks of content on a page in the future will be
accomplished via a new drag-and-drop mechanism. The lead programmer for
Collage has stated, however, that there will be a migration path, but the reality of
this is unknown.

Finally, the usability of the Collage product is a bit clunky, but with some common
sense, it's easy to use and can be a quite powerful layout tool for Plone 3. It can be
downloaded here: http://plone.org/products/collage.

Tableless styling using Plone Tableless
A popular product for CSS purists is Simon Kaeser's plone.tableless. Plone's
default main_template is created using tables, which many themers do not wish to
use. To get a tableless version of Plone's main_template, simply install this product;
make sure your site's portal_css is in debug mode, and test the following code:

#portal-column-one {float:right;}
#portal-column-two {float:left;}

If you're able to switch the position of these two columns, the product works and
you can style in full tableless mode.

There are a few issues with Plone and tableless layouts that are unrelated to this
product, but in general it works. As of this writing, the product was not tested
against some of the newer browsers. It can be downloaded here: http://plone.
org/products/plone-tableless/.

CSSManager
End users often want to have some control over basic modifications to their
site—background color, link colors, and so on. The WebLion Group from Penn
State University created CSSManager, a product that gives a simple, through the
web interface to let users change the colors, borders, site logo, and other visual
characteristics of their Plone site. Essentially, it uses the DTML variables defined in
the base_properties.props file available within Plone.

The product can be downloaded here: http://plone.org/products/cssmanager.
To use it, install the product, go to your site's Site Setup area, and find the configlet
for this tool, and try changing a few options.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Add-on Tools and Theming Tips

[248]

The CSSManager tool will supersede a theme product's base_properties if the
CSSManager skin layer is above the theme product's skin layers in portal_skins/
properties in the ZMI. If uninstalled, your settings can still be found in the custom
folder for your Plone site via this URL: http://localhost:8080/mysite/portal_
skins/custom/base_properties/manage_propertiesForm. So you can feel
confident removing it if you no longer need it.

Products.EasyAsPiIE
Until IE7, there was no fully native support for PNG alpha channel transparency in
Internet Explorer. However, since IE5.5, there has been some support in the form of
a proprietary filter called AlphaImageLoader. Internet Explorer filters can be applied
directly in your CSS (for both inline and background images), or by setting the same
CSS property with JavaScript.

Unfortunately, there's no CSS property called filter in the W3C CSS spec. It's
a proprietary extension added by Microsoft that could potentially cause other
browsers to reject your entire CSS rule.

Also, AlphaImageLoader does not magically add full PNG transparency support
so that a PNG in the page will just start working. Instead, when applied to an
element in the page, it draws a new rendering surface in the same space that element
occupies and loads a PNG into it. If that sounds weird, it is. However, by and large
the result is that PNGs with an alpha channel can be accommodated.

The WebLion Group's Products.EasyAsPiIE product uses this filter approach to
handle transparent PNGs with IE6. All it does is enable JavaScript written by Angus
Turnbull: http://www.twinhelix.com.

You can download it from here: http://plone.org/products/products-
easyaspiie/ and follow the installation instructions.

Optionally, if you choose not to use this product, you can also just export to PNG8
format, instead of PNG24, to get around IE6 problems, and of course there are a
lot of alternative solutions out there as well. You can read more about PNGs here:
http://www.sitepoint.com/blogs/2007/09/18/png8-the-clear-winner/.
Both Photoshop and Fireworks can export to PNG8, though other graphical
programs may not.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 12

[249]

collective.skinny
Another Plone product that has surfaced is Daniel Nouri's collective.skinny,
which can be downloaded from http://plone.org/products/collective-
skinny/. This product is an example implementation of a separate, public-facing
skin that abstracts away some of the complexity of the theming process. According
to the product page, it's been described as being vastly easier than skinning Plone
the conventional way, but it also has a few drawbacks. For example, you can't
use it for community sites where people other than your site editors log in and
modify content. It's also a little confusing from my perspective, but it's a product
adventurous themers might pay attention to.

It's probable that Deliverance and collective.xdv (the future of theming for Plone)
will make this product obsolete, as Deliverance removes a lot of complexity and
makes theming accessible to individuals who don't even know what Plone is. For
more information on Deliverance and collective.xdv, please read the final chapter
of this book.

FS Dump
For themers who started their skin creation through the web or who have content
they wish to extract from the ZMI, FS Dump is an excellent tool. To use it, download
the product from http://www.plone.org/products/fsdump and follow the
installation instructions. This is a product that lives in the Products namespace, so
it is not installed like egg-based products. The product page doesn't indicate that it
works on Plone 3, but the last time I tried it on a Plone 3 site, it worked.

Once installed, use the Add drop-down menu, found at http://www.mysite.com/
manage_main, and create a Dumper instance in a folder (or product) that contains the
TTW code to be dumped. This tool appears to work best when trying to dump items
from the custom/ folder, though, hypothetically, it should work for any other folder
in the ZMI.

Next, supply an absolute path to a directory on the filesystem in which the dumper
is to create the files, for example /opt. (Note that the user for whom Zope is running
needs write access to this directory.)

Click the Change and Dump button to do the dump to the indicated directory,
and then copy the dumped files into your theme product's skins/ folder in the
appropriate locations.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Add-on Tools and Theming Tips

[250]

qPloneSkinDump
Another popular dumper product is known as Plone Skin Dump (qPloneSkinDump)
by Quintagroup. Plone Skin Dump allows users to create a Plone product in the
Products namespace by exporting the custom/ folder. It creates an old-school Plone
theme product for you, but it does not provide the plonetheme-type of product.
The product has not been tested against Plone 3, so it may not be the best option.
Moreover, at the time this chapter was written, it was not possible to download the
product from its SourceForge repository.

In the event you wish to try this product, you can find it here: http://plone.org/
products/plone-skin-dump. Again, it is in the Products namespace, so all you
need to do is drop it in your buildout's products/ folder. You can then follow the
directions posted on the product page. It's a bit more complicated than FS Dump,
but obviously it does a bit more.

Collection and static portlets
While portlets are not add-on products, they are tools that can greatly enhance the
impact of your site and worth mentioning.

Default Plone provides collection and static portlets that can be added on any page
by clicking on the Manage Portlets link on your site. These portlets provide great
power and can be styled using CSS. A collection portlet, for example, can be set to
display random contents fitting certain criteria—maybe a randomized spotlight
content type tagged with a special keyword. This keeps the look and feel of a site
fresh and gives some power to the end user.

These portlets have the same structure as other portlets, so they will use any default
styling that may be applied.

Sectional theming
As discussed earlier, a very common need for Plone users is the ability to create sub
sites, sectional theming, and URL-based theme switching.

We already looked at how to do sectional theming by using the CSS hooks provided
by Plone using shortnames. Another option is sectional theming via the use of
Apache's mod_proxy and Zope rewrite rules. This approach will not be covered here
due to its complexity, but tutorials on how this can be accomplished can be found at
http://www.plone.org/documentation.

To make sectional theming even easier, a product named themetweaker.
themeswitcher was written.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 12

[251]

themetweaker.themeswitcher
This product is another gem written by the great folks at WebLion. It is described
as a product for switching themes on folders (only those with the IATFolder
interface as of this writing) in Plone. It works only with theme products that are
registered as a browser layer, which is not a concept we will cover here. Browser
layer declaration is a more programming-oriented process and is described in
"Professional Plone Development", Martin Aspeli, Packt Publishing and at http://
plone.org/documentation/tutorial/customization-for-developers/
browser-layers.

The themetweaker.themeswitcher product has several dependencies that are
described in the product's README file, along with basic installation instructions.
It can be installed using the instructions found here: https://weblion.psu.edu/
trac/weblion/wiki/ThemeSwitcher.

If you install the product using the ZMI's portal_quickinstaller, it gives you an
actions tab on your folders in the content area of the page. Assuming you install it
via portal_quickinstaller, each folder will have a ThemeSwitcher tab that will
bring up the switcher form. Here you will be able to choose from a list of installed
themes that use browser layer to register themselves. To determine if the theme is
registered as a browser layer, look to see if the theme contains a browserlayer.xml
file; if it does, chances are it is registered as a browser layer.

If you do not install the product via portal_quickinstaller, you will need to
manually type the switcher form path (for example, http://localhost:8080/
plonesite/folder1/switcherform), because the actions tabs have not been
installed. This is likely behavior that will be fixed as the product evolves.

The WebLion team is actively trying to solve issues around sub site theming, as
explained here: https://weblion.psu.edu/trac/weblion/wiki/SubsiteTheming.
Also, be aware that the themes that are installed using this package should have an
uninstall routine, as explained here: https://weblion.psu.edu/trac/weblion/
wiki/PloneThreeThemeUninstallProfile. Otherwise, you will not be able to
uninstall your themes.

As a caveat, I have not used this product personally, as I use other methods of doing
sectional theming, so any questions should be directed to the WebLion team.

Non-Plone-specific products for theming
Plone theming obviously has some community tools that have been created to make
the theming process easier, but it's also possible to incorporate some advanced
technologies. The following are a couple of non-Plone-specific products that can
be used to alter the look and feel of your site.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Add-on Tools and Theming Tips

[252]

sIFR
sIFR (Scalable Inman Flash Replacement) is a technology that allows you to
replace text elements on screen with Flash equivalents. It is explained in depth
at http://wiki.novemberborn.net/sifr3/, and can be seen in action at
http://www.dogwoodinitiative.org (see the portlet header elements).

The idea is to use fonts that are embedded within a Flash file and render those on a
web page instead of standard text. The process is actually quite simple, but has some
delicate syntax that can be a bit painful to get right. It's best to follow the source code
found in the official demo (http://dev.novemberborn.net/sifr3/beta2/demo/),
and to refer to the discussion forum if you have questions (http://discuss.
joyent.com/viewforum.php?id=20).

Rules-based theming
The final chapter of this book will address specifically what rules-based theming is,
but what you need to know here is that some flavor of Deliverance or collective.
xdv will be the de facto standard for theming in the future. In fact, it even works
now, with some effort and understanding. Plone.org was even redesigned using
collective.xdv, with obvious success.

Basically, rules-based theming reduces the process of theming to mere CSS—no
fancy viewlet work, no understanding of Zope 2 versus Zope 3 technologies, CMF,
and so on. It may introduce more complexity in other ways (themers will need to
learn XSLT, for instance), but that remains to be seen.

Best of all? It's not just for Plone. It's available to any technologies that use WSGI
(Web Server Gateway Interface) or have an XSLT processor available. WSGI is
a specification for web servers and application servers to communicate with web
applications (though it can also be used for more than that). It is a Python standard
described in depth at http://www.python.org/dev/peps/pep-0333/. You can also
read more about Apache's mod_xslt at http://www.mod-xslt2.com/.

Read the last chapter to get a better understanding of how this changes the Plone
theming landscape.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 12

[253]

Debugging tools and tips
While add-on tools are great for enhancing a web site, debugging tools are
also very handy. In this section, we'll look at a Plone product that helps with
introspection, and we'll also learn about tracebacks and ways to effectively
conduct browser testing.

GloWorm
A commonly mentioned Plone add-on is the helpful GloWorm, written by the
WebLion team. It can be downloaded from here: http://plone.org/products/
gloworm. GloWorm is an inspection tool that can be useful when doing theming,
because it helps you to sniff out different elements on a page. For newer Plone
themers in particular, this is a very handy tool.

It provides information such as:

Archetypes field information
TAL statements (tal:defines, tal:attributes, tal:content,
tal:condition)
Viewlet registration information
Inline editing of viewlet templates
Viewlet manager information
Reordering of viewlets
Show/hide viewlets
Tree-structured view of all viewlet managers and viewlets included in a page

The dependencies are outlined on the product page mentioned before, along with
installation instructions.

Once installed, an inspect this page link will appear in the document actions section
of content objects on your site. Clicking this link will open up a panel at the bottom
of the page, which is the GloWorm Inspector Panel. (You may also open this
inspector by appending @@inspect to the current page's URL.)

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Add-on Tools and Theming Tips

[254]

You can click a viewlet's name to inspect it. From the inspection panel, you can
then customize the template by clicking on the Customize button. In the viewlet
inspection view, you can also click the viewlet manager name to inspect that viewlet
manager and to reorder viewlets. Here is a sample screenshot of GloWorm in action:

The only real limitation to this product is that the actions performed using this tool
cannot be extracted out to the filesystem. You're essentially making customizations
using the portal_view_customizations tool and by altering GenericSetup TTW,
neither of which are easily extracted out. This is less a limitation of the product, and
more due to the nature of Plone. In time, GloWorm may become an integral part
of theming, though that remains to be seen. The version current at the time of this
writing has some instability, but it's a product worth watching.

For a demo of this product, visit this web page: http://weblion.psu.edu/news/
gloworm-1.0-screencast. For more information, you may wish to follow the
WebLion Group's blog (http://weblion.psu.edu/news/), or visit their IRC
chatroom (#weblion).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 12

[255]

About tracebacks and Pdb
(the Python debugger)
A Python "traceback" is a detailed error message that is generated when an error
occurs in executing Python code. Since Plone, running atop Zope, is a Python
application, most Plone errors will generate a Python traceback.

To find the traceback, check your event.log log file or go into the error log panel
in the ZMI. Alternatively, use the ZMI to check the error log object in your Plone
instance. Or, if you're running your Zope instance in foreground mode, you'll see it
in your terminal window.

A traceback will be included with nearly all error entries. A traceback will look
something like this: Traceback (innermost last): ... AttributeError:
adapters. They can be very long. The most useful information is generally at the
end. In time, you'll learn to read these errors and debug your code accordingly,
even though at first they may seem a bit intimidating.

If you are requesting help on #plone (IRC) or on the plone-users list, you
should try to include a traceback log entry with the report. (For #plone,
don't forget to always paste your error to http://paste.plone.org
and not into the IRC window.)

For the programmers in the crowd, you may also find it useful to use Pdb to step
through your errors, as described here: http://plone.org/documentation/
tutorial/debugging-tips-and-tricks-a-real-life-example/using-pdb/.
Pdb is a Python debugger that allows you to set a trace point in your code, so that
you can step through errors. This slideshow by David Glick contains information
on Pdb and other troubleshooting methods as well: http://www.slideshare.
net/davisagli/when-good-code-goes-bad-tools-and-techniques-for-
troubleshooting-plone-presentation (see slide 30).

Running more than one operating system
at a time
As discussed in the chapter (Chapter 10) on tools for theming, virtual machines
have turned out to be rather handy for testing against different versions of Internet
Explorer. The two most popular products for doing this on Mac are VMware and
Parallels, though there are others available for Mac and PC.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Add-on Tools and Theming Tips

[256]

You will need a couple of instances set up with the desired operating system
installed. Each instance could have a different version of Internet Explorer installed,
and at this point in time, IE6, IE7, and IE8 are the recommended versions to install.
For IE6 and IE7, you should also install the IE Developer Toolbar, which can be
found at Microsoft.com. For IE8, the toolbar is built in. Of course, for Firefox,
you should install Firebug (getfirebug.com) and the Web Developer Toolbar
(https://addons.mozilla.org/en-US/firefox/addon/60).

Some minor differences exist between Mac and PC users' versions of Firefox 3, and
it's still a good idea to test against Firefox 2, so you may want to install different
versions of Firefox as well. Rather than creating new instances for Firefox 2 and 3, it's
easier just to piggyback them on top of the existing Internet Explorer instances. You
can then tweak your CSS until it works well on Firefox 2 and 3, then Safari, then any
other browsers you want to support.

The only downside of using virtual machines is that they can be resource hogs, but
they are essential to doing proper testing.

Summary
In this chapter, we have learned about:

Popular add-on Plone products for changing your site's look and feel
Possible options for sub site theming
Non-Plone products that can be used to alter your site's look and feel
Tools that can be helpful when debugging your themes

You should now have a basic idea of some of the tools that can be used to enhance
your site and others that can help you during development. We'll look next at how
we can incorporate media into our theme products, both on the theme side and on
the end user/site administrator side.

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Plone and Multimedia
Now that you know how to customize the look and feel of your web site, let's look at
the window-dressing that can really make your web site look more professional and
more interactive: multimedia.

In this chapter we will show you how to integrate tools such a Flash, slideshows,
YouTube videos, and more into your page. We will also explore some Plone-specific
products that enhance Plone's handling of audio and video. In this chapter, we will
not cover JavaScript or KSS, a client-side framework for implementing rich user
interfaces with AJAX functionality, but those with interest in these areas should
look into some of the tutorials on plone.org.

Flash integration
Incorporating Flash in a Plone site is a not entirely a straightforward process, but
is actually quite simple once you know how to do it. There are two options here:
embed Flash into your content or embed Flash into a page template.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Plone and Multimedia

[258]

Embedding Flash and other media in a page
YouTube and other multimedia sites provide the HTML code necessary to embed a
video on your own web site. This code can be inserted into the visual editor's HTML
view, as seen here:

In this case, we'll look at the code provided by a YouTube video:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 13

[259]

The code we're concerned with here is the Embed code shown on YouTube:

<object width="425" height="344"><param name="movie"
value="http://www.youtube.com/v/-0Sd0Rf_yu0&hl=en&fs=1"></
param><param name="allowFullScreen" value="true"></param><param
name="allowscriptaccess" value="always"></param><embed src="http://
www.youtube.com/v/-0Sd0Rf_yu0&hl=en&fs=1" type="application/x-
shockwave-flash" allowscriptaccess="always" allowfullscreen="true"
width="425" height="344"></embed></object>

To do so:

Inside of this code, you'll see blocks with words such as object, param, and embed.
These tags are normally filtered out by safe-html filter inside of Plone, but we can tell
Plone to respect those tags and not filter our HTML code.

1. We go to Site Setup for our Plone site and click on the Visual Editor
configlet. Then, click on the Toolbar tab and enable the checkbox next to
Embed tab in External link drawer (not shown in the following screenshot,
scroll down to the option):

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Plone and Multimedia

[260]

2. Next, scroll down to the bottom of the screen and click Save. Then, go to the
Site Setup | HTML Filtering configlet:

On this panel, remove object and embed from the Nasty Tags list. Also
remove object and param from the Stripped Tags list. Finally, add embed
to the Custom Tags list and scroll to the bottom of the screen and click the
Save button.

3. With these changes made, you should be able to click the External Link
button on the visual editor while on a page where you wish to embed the
video. Then, click on the now-visible Embed external object tab. This will
let you paste in a chunk of embedding code from YouTube, Flickr, or
other services:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 13

[261]

Just that easily, you too can embed multimedia into your pages, and you can
disregard the warning at the bottom of the dialog box.

Security Considerations
There is a reason why object and embed tags are marked by default as
"nasty". They may be used to launch attacks on other users, in particular
other users that may be logged in and have privileges on your site. If you
have untrusted users adding or editing content on your site, you should
probably not allow their use.

In the future, it is hoped that transforms will be put into place, which will mean that
you do not need to manipulate the visual editor or HTML filter settings in order to
insert multimedia—the work is being done in this area.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Plone and Multimedia

[262]

Embedding Flash in a page template
The second, and more programmatic, way to build media into your web site is to
embed it in a page template. This is generally reserved for situations where the
media is an integral part of the design—for example a block of Flash that might be
embedded into the header of your web site's home page—or cases where security
concerns prevent turning off safe-html filtering.

You generally will not want to embed media into your site's main_template, as
every page uses that main_template and the media will be reloaded each time you
navigate to a different page. More likely, you will want to embed your media into a
homepage_view.pt file or some other alternate document_view. In the case of this
site, http://www.resource-media.org/, the homepage_view.pt displays a large
block of Flash video framed by navigation:

If we then examine the code in its homepage_view.pt (based off of CMFPlone's
default document_view, found in mybuildout/parts/plone/CMFPlone/skins/
plone_content/), we can see that the Flash is embedded directly into the content
area of the view:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 13

[263]

 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 lang="en"
 metal:use-macro="here/main_template/macros/master"
 i18n:domain="plone">
<body>

<metal:content fill-slot="content">
 <tal:content-macro metal:define-macro="content"
 tal:define="dummy python:request.set
 (‘disable_border',1)">

 <object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/
swflash.cab#version=9,0,0,0" width="667" height="451" id="flash-intro"
align="middle">

 <param name="allowScriptAccess" value="sameDomain" />

 <param name="allowFullScreen" value="false" />

 <param name="wmode" value="transparent" />

 <param name="movie" value="intro.swf" /><param name="quality"
value="high" /><param name="bgcolor" value="#a8ac69" /> <embed
src="intro.swf" quality="high" bgcolor="#a8ac69" width="667"
height="451" name="intro" align="middle" allowScriptAccess="sameDo
main" allowFullScreen="false" type="application/x-shockwave-flash"
wmode="transparent" pluginspage="http://www.macromedia.com/go/
getflashplayer" />

 </object>

 <div tal:replace="structure provider:plone.belowcontent" />

 </tal:content-macro>
</metal:content>

</body>
</html>

Meanwhile, the intro.swf file lives in the portal_skins/resourcemedia_images
folder, just like any other skin layer element. This means that if you are working
on the filesystem, the file would go in mybuildout/src/plonetheme.mytheme/
plonetheme/mytheme/skins/mytheme_images/ or similar.

In this fashion, you can easily insert multimedia into a page template.

Plone add-ons for multimedia
Now that we understand the basics of how to insert multimedia code into our site,
let's look at a few add-ons that can be used to add visual interest and extra metadata.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Plone and Multimedia

[264]

collective.flowplayer
Written by the talented Martin Aspeli, this tool is a lightweight Plone integration
layer for Flowplayer, a great, GPL'd Flash-based player for FLV (Flash Video)
and MP3 (audio) files. More information on Flowplayer can be found at
http://flowplayer.org/, and the product can be downloaded from
http://pypi.python.org/pypi/collective.flowplayer.

The integration is nearly seamless. You can upload a FLV or MP3 file as a standard
file object, and from that you get a video player. There's no special content type, and
no complex configuration involved:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 13

[265]

Other features include the following:

It works with ZODB blob files
You get playlists for folders or collections
You can put videos in portlets
You can put video content into your content pages, with Kupu integration

Flowplayer is highly configurable. The collective.flowplayer package exposes
almost its entire configuration through a property sheet in portal_properties,
allowing you to do things such as applying a custom watermark or a default
splash image:

There's also some nice jQuery code available, which means that you can write pretty
simple markup and get graceful degradation for your video content.

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Plone and Multimedia

[266]

Slideshow Folder
Slideshow Folder provides a simple, elegant animated slideshow for Plone. It can be
downloaded from http://plone.org/products/slideshowfolder. Written by Jon
Baldivieso, David Glick, and Johnpaul Burbank, it gives integrators an easy-to-use
slideshow tool:

Slideshow Folder integrates the Slideshow 2 JavaScript class into Plone, and is a
powerful, feature-rich, and easy-to-customize slideshow library.

Slideshow Folder offers the following features:

Animated slideshows with configurable transitions
Navigation thumbnails
Image captions
Intelligent preloading of images to save bandwidth

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 13

[267]

A play/pause/forward/reverse slideshow controller
Looping and random-order slideshows
Optional support for "lightbox" style image pop ups
Look and feel completely customizable via CSS

Once installed, each folder and collection in your site will have a new option in
its Actions drop-down menu; simply choose the Make Slideshow option. That
will select a slideshow view for that folder and give you a new slideshow settings
configuration tab. As soon as there are published images in the folder, you'll see
the slideshow.

Collections rely on the criteria that you put in them to render the images
for the slideshow. Non-images are ignored. That means that workflow
restrictions are based solely on your collection's criteria.

To change the slideshow's settings, see the new slideshow settings tab on the folder:

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Plone and Multimedia

[268]

Each image's description will be used for its caption. Additionally, each slideshow
will have a disable slideshow option in the Actions drop-down menu. This will
revert it to being a normal folder (or collection), including deleting any slideshow
settings. (It will not delete any content, though.)

For information on limitations and ways to customize this add-on, you can visit
http://plone.org/products/slideshowfolder.You can also view the demo
video there.

All in all, it's a lightweight, easy-to-use product that provides an attractive slideshow
for end users, and well worth checking out.

Plone4Artists Video
The most commonly recognized Plone multimedia products were created by a team
of individuals known as Plone4Artists, specifically by Nate Aune and Rocky Burt.
Plone4Artists is described as an initiative to assemble a Plone products bundle with
features commonly required for artist community web sites. These features include
enhanced audio, video, and other multimedia management.

Plone4Artists Video is an add-on product for Plone that lets you add videos to your
Plone site. It supports the uploading of video files, or embedding of videos, that are
already hosted on popular video sharing sites, such as YouTube and Google Video.

Essentially, you upload a video file using the default Plone File type via the Add
menu on your Plone site. Plone4Artists Video then subtypes that file in order to
display it in ways that are appropriate to video. Because Plone4Artists Video does
not add new kinds of content types, it makes it easier to upgrade your Plone site in
the future.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 13

[269]

If you edit a video file that has been uploaded to your site, you will see that there
are additional fields available to you than you would normally see. You can add
formatted text and a thumbnail image that people can see when the video is
not playing:

Users can also rate videos via the Content Ratings tool that ships with Plone4Artists
Video. They can also leave comments, if desired.

Plone4Artists Video turns regular folders into video containers. You can enable
this by going to the Subtypes drop-down on the folder containing your videos and
choose Video Container. This, in turn, changes the look and feel of the folder so
that it can display multiple video files in a way that is appropriate and can be
browsed easily.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Plone and Multimedia

[270]

Collections can also be turned into video containers. Simply create a collection and
specify the criteria to pull in the files of type File and any additional criteria, and
save it. Then, use the Subtypes drop-down list and choose Video Container.

Video podcasting is also an option, and is provided with Plone4Artists Video by
default. To subscribe to a video podcast, copy the link to the RSS feed that is located
on the video container or collection. Go to your preferred music software and choose
to subscribe to the podcast, and the latest video is downloaded automatically. Users
can even subscribe to a feed of video links using a third-party RSS aggregator, such
as Bloglines or Google Reader.

Plone4Artists Video also makes it possible to link to remote files, so that you can
reduce the load on your disk space or bandwidth. For example, if you wish to
display a video from YouTube, blip.tv, or Google Video on your site, you can! You
can copy the URL for that item, create a new "link" object in your Plone site, and
paste that URL into the link object. The video displays automatically in the site,
along with Content Ratings information, the URL, and the author of the video.
(The author's name must be added by hand in Plone.)

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 13

[271]

Plone4ArtistsVideo is supported by Plone 3, and is always evolving.
For more information, and to see any dependencies, visit this URL:
http://www.plone.org/products/plone4artistsvideo.

Other products to watch out for
Developing for an open source means that add-on products are always a moving
target as new versions of Plone are released. However, this does not mean that
products that don't yet support the latest version do not have value. These products
include some of the Plone4Artists offerings, as well as one called Plumi.

Plone4ArtistsAudio
Plone4ArtistsAudio is a product that allows you to upload audio, extract metadata,
create podcasts, store the files on the filesystem, and to even assign Creative
Commons licenses. In more programmatic terms, what it does is allows you to
upload a normal Plone "file" object to your Plone site. Plone4ArtistsAudio will
detect it as an MP3 or Ogg file and "decorate" it with metadata.

As of this writing, support for Plone 3 is experimental, but there is word
of a buildout-based setup that does work. Interested parties should
contact the Plone4Artists team about audio support for Plone 3.

Plone4ArtistsAudio can also sniff out any additional metadata that may already be
attached to the MP3 file, such as artist name, album name, or artwork. Once the file
is uploaded, it is automatically displayed along with the associated metadata. If we
edit the audio file in Plone, any changes are automatically written directly to the
audio file.

The audio file can then be listened to right on the page, in a pop-up player. It can be
streamed, or it can be downloaded to your hard drive.

Plone4ArtistsAudio also provides functionality similar to the Video Container
folder, except this time it's an Audio Container. Select Activate Audio from the
Actions drop-down menu in your Plone site to see a more informative display.
Available on that view is a button that allows you to listen to all of the audio in
the folder, as well as a podcasting button.

This same behavior is also available to collections in Plone. Simply create a collection
whose criteria pulls in items whose MIME type is audio/mpeg and any other desired
metadata. Then, activate the audio via the Actions drop-down menu.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Plone and Multimedia

[272]

Plone4ArtistsAudio works together with Plone's blob file product to support external
storage of audio data. This keeps your data.fs nice and slim. After the blob file
product is installed on your site, you add your audio files to your Plone site as blob
file objects via the Add drop-down menu. Rather than writing those audio files to
your data.fs, they are instead written to the filesystem.

Plone4ArtistsAudio also works together with the ContentLicensing product to make
it easy to add Creative Commons or other licensing to your audio files.

To download Plone4ArtistsAudio, visit http://www.plone.org/products/
plone4artistsaudio.

The Plone4Artists group has many other add-on products that may be of interest,
and you should always check to make sure that they will work with your version of
Plone. For more information on their entire suite of products and for screencasts, you
can visit http://plone4artists.org/.

Plumi
Plumi is a free video-sharing Content Management System (CMS) based on Plone
and produced by the EngageMedia collective: http://engagemedia.org/. Plumi
enables you to create your own sophisticated video-sharing site. By adding it to
an existing Plone instance, you can quickly have a wide array of functionality to
facilitate video distribution and community creation.

As of this writing, Plumi was not yet supported by Plone 3, but for future updates,
you may wish to check out http://blog.plumi.org.

Summary
In this chapter, we have learned:

How to embed multimedia into the content of a page
How to embed multimedia into a page template
About Plone-specific add-ons that provide multimedia support
About Plone multimedia products to watch out for

These tools should allow you to easily add some extra "bling" and interactivity to
your site. Next, we will look at how to deploy a Plone theme for a client, and how
to give back to the Plone theming community.

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Deploying and
Contributing Themes

We have covered most of the major pieces involved in creating a theme product. As
we've seen, this can be a complex and delicate process at times, and there are a lot of
moving parts involved.

This chapter will cover the steps and best practices involved in deploying your
theme on a server as well as the process for releasing your theme "into the wild"
for other people to enjoy and install on their Plone web sites.

Deploying your theme on a server
We're not going to cover hosting here, as that falls under the sysadmin umbrella,
but refer to http://www.plone.net, or #plone, for ideas on hosting companies.
We're also going to skip over some more system-administration-type tasks and
focus instead on the theming aspect of taking a site live.

The typical process for creating a theme involves the following:

1. Create a Subversion repository to hold your theme product.
2. Create a theme product using the paster recipe.
3. Add the theme product to the repository.
4. Add a development site's data.fs to your local instance. (This is only

for client-specific web sites where the site structure will affect the design
implementation. If you can theme a vanilla Plone site while keeping in
mind the use cases that need to be solved, you should.)

5. Theme locally and test as you go.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Deploying and Contributing Themes

[274]

6. Check the theme into Subversion. This is actually an incremental process,
something you do as you go from stage to stage during the theming process,
while being careful not to check in broken code. The objective here is to be
able to roll back to an earlier version, if needed.

7. Install the theme onto the web site and do final configuration.
8. Take the site live.

Let's look now at the work involved in testing and actually deploying the theme.

Maintaining an orderly deployment
Generally speaking, anything we do locally to configure our theme needs to get
reproduced on the finished live site.

You could, for example, keep a running list of any manual changes you've made and
make the same changes manually twice, which can be a time-consuming process.
This typically should only be for the addition of content, manipulation of viewlets, or
enabling and applying a custom view. Obviously, it is not ideal to do many manual
modifications, but it's good to keep a record of them so that you can apply them
when the time is right.

It is generally recommended that all functionality that can be handled within the
theme product be done there in order to avoid rework. Your work environment
might dictate how appropriate that is, however. For example, in my office, Project
Managers typically manage areas such as the portal_actions or site_actions
by hand through the ZMI. So as an implementer, I do not build these areas into my
theme product's GenericSetup, but I certainly could if I needed to.

One way to keep things in sync is to have a development instance where clients can
work on their content and where the theme can be simultaneously deployed and
tested. Then, the data.fs from that instance can be copied over to the production
instance. This ensures that all manual changes made on the development instance
get carried over instantly. This process works well, because it means that you can feel
certain that everything is ready to go with the theme and the content at the moment
the site goes live. You can create a single buildout to achieve this end, containing a
base configuration, a development configuration, and a production configuration,
for example. This is usually an appropriate solution for clients who already have an
existing web site or who are undergoing a migration.

In the event that a client is managing his/her content on the production site and not
on the development instance, moving the data.fs in this case is not a good idea, as
it might result in serious data loss. In this case, minimal manual configuration and
a theme product containing all configuration settings via Generic Setup is generally
the way to go.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 14

[275]

Clearly, there's more than one way to deploy a theme product. And just because
everything works on your local site does not mean there will be a smooth transition
to the development server. So it's important to be prepared.

Documentation
As part of taking a site live, it's not uncommon that you'll need to do a little
documentation, especially with respect to high-end web sites. This might be
documentation for you or for your development team, such as any special business
rules or custom functionality, that is convoluted enough to warrant writing it down.
Also, if the person maintaining the site is not the person who built it, it might not be
immediately obvious where the content lives or how to modify it, and it will save
time on future refresher trainings to write it down.

Another way to make future maintenance or migration easier for your development
team is to document the actual code as you work on it, especially if there is
something particularly unusual about it. For example, a docstring in the viewlets.
py file can help to indicate why a viewlet was modified, or a comment in a page
template can explain how that template differs from a default Plone template.

If you're deploying your theme for public consumption, you'll also need to document
any dependencies, such as any add-on products, that may have been used during
development of your theme (such as the Plone Tableless product). This can also be
handled in the setup.py file or by configuring a buildout accordingly.

You should also make sure you create an install.txt file to distribute along
with your theme. You should not assume that anyone downloading your theme
product will know how to install a theme, or that he/she will have the buildout.
eggtractor extension installed to make the process easier. This theme has excellent
documentation, and is a good example to follow: http://plone.org/products/
webcouturier-hosting-theme/.

Configuration
Before doing anything, you should always take a snapshot of the development site
using portal_setup in the ZMI. This gives you the opportunity to track backwards
to a working version if something goes wrong during the go-live process.

The next step, then, is to install the theme product on the instance that will be the
production site. Next, you can add any necessary content that is needed to support
the design. As part of content creation, you will also have to add any new views to
portal_types. Once you've added these views, remember to activate those custom
views on the development site using the Display drop-down menu.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Deploying and Contributing Themes

[276]

You might need to make changes in the portal_actions area as well, depending
on your work processes. Typically, you want the portal_actions and other similar
pieces to be the part of your theme product in order to avoid rework, but you may
choose to make these changes manually.

Thanks to a bug in GenericSetup (now fixed), the ordering of viewlets doesn't always
happen consistently. A viewlet that is in the wrong place can look like a CSS error.
So it helps to compare the order of viewlets on the production site against your local
instance, using @@manage-viewlets, before attempting any CSS fixes. GenericSetup
can be a touchy thing to work with, and sometimes it's just faster to make a few
changes by hand, instead of trying to sort through your viewlets.xml, and make it
work as desired. Or, you can export the viewlets.xml step from your working local
version and include the relevant bits in your theme product. Ordering of viewlets for
themes should be handled through the code as much as possible.

In addition, for publicly available themes, make sure that it is backwards compatible
for all versions of Plone 3. This really only affects how you subclass your viewlets
in viewlets.py, as discussed in Chapter 7, Customizing Viewlets and Portlets, and at
http://plone.org/documentation/tutorial/customizing-main-template-
viewlets/overriding-a-class-viewlet.

Another fairly time-consuming task can be portlet configuration. This is technically a
content-related issue, but you should verify that all the portlets on the site are styled
correctly, and also that static and collection portlets display as expected.

It's not uncommon (especially in a team scenario) for products to be installed after
the theme product. This, in turn, can affect how the site displays. In this case,
you should always check the order of the skin layers in portal_skins. You will
generally want to make the theme product's layers appear just below custom in the
portal_skins | Properties tab.

You should also check the order of your JavaScript and CSS files and make sure that
they are being found by your theme. Again, this can affect the display of your site.
You can check this by visiting the portal_javascripts and portal_css areas. If
a file is not found, a yellow box will display a warning.

Finally, remember to check your theme into Subversion and then clean out the
custom folder and portal_view_customizations in the ZMI, rolling any of those
files into your theme product, if necessary. If more than one person is working on
the site, or if you're dealing with a migration scenario, you may get a little out of
sync here, so it's always best to be careful when rolling these items into your theme
product. This may involve doing a "diff" comparison of an item in the custom folder
to the files in your theme product to see where differences occur. Also, be careful of
accidentally rolling older files into the theme product and overwriting your newer
code, particularly in the case of migrations.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 14

[277]

Quality assurance
Not surprisingly, the most time-consuming part of working on a theme is often the
browser testing stage. While it's not possible to test against all browsers, it's good
to follow the "A-List" recommendations found here: http://developer.yahoo.
com/yui/articles/gbs/index.html. The use of VMware or Parallels and the
proper browser add-ons (such as YSlow) is essential here. You may also choose
to test against new media, such as iPhones and BlackBerries. Emulators (http://
iphonetester.com) can be used, but they are not nearly as reliable as the real thing.
Browser testing is typically done a few days prior to go-live in order to allow enough
time to fix errors.

Another aspect of quality assurance involves testing the site's look and feel. This
might include:

Testing the areas of the site you might not visit often
Testing the section-specific styling
Verifying that any styles that need to be added to the visual editor are
indeed added
Verifying that viewlets are in the correct order, and that extra viewlets do not
bleed through from other themes
Checking that accessibility is taken into consideration
Writing and testing the uninstall process

Let's look at these items in more detail.

The areas of the site where you would not ordinarily look include areas such
as the Site Map, Site Setup, the login page, or @@manage-viewlets. These
pages are generated differently than most content on a Plone site, and their
look and feel may not match the rest of the site, depending on your CSS.
Section-specific CSS is also something to watch out for, and you should make
sure that shortnames have not been altered, as this might negatively impact
section-specific styling. In addition, the Related Items pop-up window
should be checked to verify that the text is readable. On dark backgrounds, it
can be hard to read, so you may wish to style that window to have a lighter
background color. This window can be found on the Categorization button
you see when you edit a piece of content, and the class is .popup.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Deploying and Contributing Themes

[278]

Another easy-to-forget task is to verify that any styles that need to be added
to the visual editor are indeed added via Site Setup, or that this is addressed
via a kupu.xml (or similar) file in your theme's profiles/default directory.
Feel free to check out this theme for an example on what the .xml file might
look like: http://plone.org/products/webcouturier-hosting-theme/.
You may even want to put comments in your CSS file as a reminder to set
these styles up for the end user.
It's not always necessary to test how a web site prints out, as typically Plone
defaults to suppressing the left and right columns in print mode. However, if
there are viewlets that you want suppressed that Plone doesn't know about
by default, you should print out a page and make sure it looks acceptable.
In cases where you are working on something like a magazine or newspaper
web site, this is especially critical. You can adjust print.css.dtml if
there are elements that need to be hidden. You may also wish to test the
presentation mode that is available in Plone, although it's rarely used.
After you've finished configuring the ordering of your viewlets, you should
also verify that you do not see any stray viewlets when you install your
theme product. This may mean visiting other sites on your development
instance. If you do see stray viewlets, this is typically related to a Plone
theme bleeding into your site due to a missing IThemeSpecific designation.
You should double-check your theme's configure.zcml files to make sure
that your theme has IThemeSpecific designated where necessary.
Accessibility is also a concern, and you should test enlarged and decreased
fonts to make sure that the site is still readable. This is a tough area,
especially with sites that are very delicately constructed, but wherever
you can support accessibility, you should.
Although we haven't covered this, you should probably make sure that
your theme product has provided an uninstall routine. These are not widely
documented, and depending on your internal processes, this may not even be
needed. You can find information on uninstall routines here: http://plone.
org/documentation/tutorial/customizing-main-template-viewlets/
reordering-and-hiding-viewlets/ and here: https://weblion.psu.
edu/trac/weblion/wiki/PloneThreeThemeUninstallProfile.

As you can see, there are a lot of pieces involved in deploying and testing an
installed theme, and you should do due diligence during the go-live process.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 14

[279]

Deploying a theme for public use
A great number of individuals in the Plone community have graciously created
themes for use by other people. The process for distributing these themes is fairly
simple. It is important that the quality assurance process described above is
followed, especially in terms of documenting dependencies, the installation
process, and any content that needs to be created to support a theme.

You should store your theme product in Plone's "collective" SVN repository. To gain
access to the repository, visit http://plone.org/documentation/manual/plone-
developer-reference/overview/contributing. You can also find information on
the Subversion commands you will need at http://plone.org/documentation/
how-to/svn-import-to-plone-collective-unix/. Also, you should upload
release versions of your theme product to the Python Package Index, PyPI. See the
instructions at http://pypi.python.org/pypi for more information.

Then, you'll need to add your product to http://www.plone.org by doing
the following:

1. Go to http://plone.org/products, and make sure you are logged in.
2. Click Add new project.
3. Enter the details for your theme, and make sure you select Visual themes as

your category.
4. Make sure you include screenshots or thumbnails, where requested.
5. Save the form, and submit the project for approval. This is to prevent

people from creating bogus projects. You can then add your files once it
has been approved.

Plone welcomes any contributions to the theming community, and we hope
that you will help other users by creating and adding your own themes to
http://www.plone.org.

If you wish to contribute theming work for Plone itself, you'll need to use
Plone's SVN repository, and will need to sign the contributor agreement
(http://plone.org/documentation/manual/plone-developer-
reference/overview/contributing) to release rights to the
Plone Foundation.

You can find numerous free themes on oswd.org or on other free templating sites.
Please note that these are just straight CSS templates, they are not Plone themes.
You may want to make sure your theme does not already exist on plone.org by
familiarizing yourself with the currently available themes.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Deploying and Contributing Themes

[280]

Summary
In this chapter, we have learned:

About a suggested development environment and a theme
deployment workflow
About last minute configuration concerns
About the quality assurance process and where to look for
potential problems
How to contribute to the Plone theming community by creating publicly
available themes

In the next chapter, Alexander Limi will discuss the future of rules-based theming
for Plone.

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

The Future of Theming
for Plone

In this chapter, Alexander Limi gives us a sneak peek into the future of rules-based
theming for Plone. This chapter will feature a complete walk-through of theming a
site using the collective.xdv add-on.

Why a new approach?
The current approach to theming (also known as "skinning") the Plone sites
(Plone 1.0 to 3.x) has been steadily evolving over a number of years, and is
powerful, but somewhat complex.

As with most software, the reason for this complexity is usually a side effect of the
evolution of the product—adding more functionality and more flexibility to meet the
needs of power users, while still retaining the same approach to the problem space.

For Plone, the current theming approach has served us well for the last 8 years, but
we realized it was time to reevaluate how theming was done, as it's such an integral
part of managing a Plone site.

The main goals for a new approach were:

No requirement for the people doing the theming to know anything about
Plone or Python.
Use standard tools and libraries whenever they are available.
Reduce the number of concepts you have to learn in order to get started.
When requiring you to learn something new, let it be a standard solution that
is useful even outside of the Plone world.

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

The Future of Theming for Plone

[282]

Try to stay as close to the HTML and CSS mindset as possible, as the people
doing theming are usually the same people who write the HTML code for
the design.
Make it possible to apply an existing HTML/CSS design to a Plone site while
keeping the original markup, instead of having to redo the design in a way
that makes Plone happy.
Let the theme work standalone, without introducing any additional markup.
It should look like a standard HTML page with CSS, JS, and images.

About the future of theming in Plone
For the upcoming versions of Plone, we are ninety-nine percent sure that we'll use a
variant of what is described here. It will probably change slightly in how it integrates
into the product and what knobs are available to deploy a theme in a standard way,
but the fundamental approach will be the same.

What we are offering you with the collective.xdv package is a way to make use
of the likely future standard of theming today. We'll keep this document updated as
Plone progresses with newer versions, and if you're reading this documentation in
a book or another printed version, always check at http://plone.org/theming to
view the latest version of this document.

Is XDV ready for serious deployments?
Currently, the plone.org web site itself is using XDV for its theme—so it's
battle-tested and ready for serious, high-traffic sites.

Background and history
Before starting, let us explain briefly the history of XDV, and the reason it exists.

When people talk about this new approach to theming, they will often refer to
the general approach as Deliverance-based. The original Deliverance project
(http://deliverance.openplans.org) was started by Paul Everitt (http://
pauleveritt.wordpress.com) a long time ago, and was further enhanced by
Ian Bicking (http://www.ianbicking.org), who is its current maintainer.

Along the way, Deliverance got more powerful and expanded beyond the initial
goals, and started handling cases that were not included in the original scope.

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 15

[283]

Long story short, a new implementation of the same basic approach was started,
called XDV. This is a stripped-down, pure XSLT implementation of the Deliverance
concept, and can be compiled down and used directly inside a web server such
as Apache, IIS, or nginx (pronounced "Engine X") as a standard XSLT transform,
without any extra software running.

This does not mean that XDV is somehow better than the original Deliverance
implementation, or that it makes it obsolete—they are different tools with slightly
different goals, sharing the same basic approach. We'll get to an overview of which
approach is appropriate for what cases in a moment.

The final piece of this puzzle is the add-on called collective.xdv (http://pypi.
python.org/pypi/collective.xdv), which takes XDV and packages it up to make
it very convenient for use with Plone.

The "collective" namespace is a common pattern in Plone add-ons. It
denotes software that is managed collectively by the Plone community,
and not necessarily by the Plone Foundation.

Why do you need to know all this? It's useful to keep in mind that you can carry
across what you learn in using collective.xdv to the Deliverance project, should
you need to do that at a later point. The basic syntax and approach is largely the
same, although the details of the implementation can differ slightly.

Choosing the appropriate theming approach
You have several alternatives when it comes to theming Plone at this point. Let's look
at what makes them different.

Product Package:

Pros:
The ultimate in flexibility and control.
More flexibility when it comes to theming the select parts of a
site or sub sites.

Cons:
More complex, requires a passing familiarity with ZCML
and Python.
Less upgrade-resistant, as templates change.
Shipping your own templates will get you out of sync with the
main product.

•

°

°

•

°

°

°

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

The Future of Theming for Plone

[284]

collective.xdv

Pros:
Can be compiled down to XSLT transforms that run as part of
the web server process, so you don't need a separate proxy or
WSGI setup (http://www.wsgi.org/wsgi). This also means a
slight performance advantage over Deliverance.
Easy to bootstrap with Plone.

Cons:
Uses XPath selectors instead of the more familiar CSS selectors
(not a big deal as you may fear, since we can use Firebug to
make it create the XPath expressions for us, as we'll see later).

Deliverance

Pros compared to XDV:
Standalone, can be used without Plone to theme other sites
and systems.
Supports a more familiar CSS syntax in addition to XPath.

Cons compared to xdv:
Less integrated with Plone, requires you to understand more of
the ecosystem and setup.
Uses its own non-standard (but CSS-like) syntax, can't be
deployed inside a web server process.

Which one should I use?
A general rule-of-thumb to help you decide what approach to choose:

Use the add-on/product approach—when you need extreme granularity
of control, and are willing to learn some Python and ZCML to get what
you want.
Use XDV—when you'd like to keep the theme separate from the code,
and want a reusable theme approach that can potentially be deployed as
part of the web server process. And when you don't want to worry about
most of the "plumbing", and are comfortable using best practices from the
Plone community.

•

°

°

•

°

•

°

°

•

°

°

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 15

[285]

Use Deliverance—when you have advanced theming needs, including
the ability to apply the same theme to multiple frameworks/web apps in
addition to Plone, and are willing to set up a proxy or WSGI pipeline to
make it happen.

Of course, reality is always a bit more complicated—you can apply an XDV-based
theme to non-Plone setups too, if you know what you're doing.

The important part to know is that you can move between XDV and Deliverance
pretty easily, so starting out with collective.xdv is likely to be a great start, even
if you end up using Deliverance later.

Tools and prerequisites
Before we get started, make sure you have the following software available:

The latest version of Plone (Plone 3.3 or newer for the best experience).
The latest version of Firefox (available for all platforms—
http://www.getfirefox.com/).
The Firebug add-on for Firefox (http://getfirebug.com).
Your text editor of choice.
Access to the terminal or command line on the system you are working on.
A network connection (to make sure buildout can download its packages)—
you can work around this by downloading the packages separately if you
don't have a network connection, but it's outside of the scope of this tutorial.
Consult the buildout documentation if you need to download offline
packages: http://www.buildout.org.

And again: if you're reading this in printed form, make sure you check the online
version at http://plone.org/theming for the latest version recommendations,
as versions and buildout dependency URLs may change slightly over time.

Got everything set up? Great, let's get down to business!

Adding XDV to your Plone instance
The first step is to add collective.xdv to our Plone setup.

We will assume that you have a passing familiarity with Plone's configuration/build
system, buildout (http://www.buildout.org/)—if not, don't worry, it should be
pretty simple to follow along even if you don't. I also assume that you already have
Plone and Firefox with Firebug installed. You may also find this tutorial helpful:
http://plone.org/documentation/tutorial/buildout.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

The Future of Theming for Plone

[286]

About the setup: Setting up XDV takes some grunt work, because it has
some slightly unusual dependencies. When this solution ships with Plone
itself, this will of course already be handled for you. So bear with us
through the install instructions, and rest safe in the knowledge that this
will be much easier in the future. It's the price you pay for being on the
forefront of technology, but we can promise you that it will be worth it!

Platform notes
As we don't know whether you'll be on Linux, Mac OS X, or Windows, we have to
assume that you know how to get to the command prompt or the terminal on your
platform, and know how to find your Plone instances and its associated files. In the
command line examples that follow, we'll use the Linux and Mac OS X convention
of slashes (— / —) for directories, and use backslash (— \ —) instead, if you're on
Windows. The $ marker indicates the command prompt; if you're on Windows,
it'll be a > instead. You're not supposed to type that character; it's just an indicator
that there's a new command being entered.

With that out of the way, let's get started!

Adding collective.xdv
1. Locate the file buildout.cfg in the root of your Plone instance directory

on the file system, and open it in a text editor. Locate the section that looks
like this:
extends = http://dist.plone.org/release/3.3/versions.cfg

extends = versions.cfg

versions = versions

It may also have a URL in the extends section, similar to the commented-out
first line, depending on whether you pull the Plone configuration from the
network or locally.

2. To add collective.xdv to our setup, we need some slightly different
versions of a couple of the packages, so we extend the base configuration
with a version list from the Good-Py service. Change this part of the
configuration so that it looks like this:
extends = versions.cfg

 http://good-py.appspot.com/release/collective.xdv/1.0

versions = versions

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 15

[287]

Good-Py is a web application hosted on Google App Engine that
aims to help manage known-good version sets of Python packages
(http://good-py.appspot.com/).

What happens here is that the dependency list for collective.xdv specifies
some new versions for you via the Good-Py URL. This way, you don't have
to worry about getting the right versions, as buildout will handle it for you.

3. The next step is to add the actual collective.xdv add-on to the eggs
section of buildout.cfg. Look for the section that looks like this:
eggs =

 Plone

This section might have additional lines if you have other add-ons already
installed. Just add the collective.xdv on a separate line, like this:
eggs =

 Plone

 collective.xdv

Running buildout
Once you have added these lines to your configuration file, it's time to run buildout
so that the system can add and set up collective.xdv for you. Go to the command
line, and from the root of your Plone instance (in your buildout/ directory), run
buildout like this:

$ bin/buildout

You will see output similar to this:

Getting distribution for 'collective.xdv==1.0'.

Got collective.xdv 1.0.

Getting distribution for 'dv.xdvserver'.

Got dv.xdvserver 1.0b4.

Getting distribution for 'plone.postpublicationhook'.

Got plone.postpublicationhook 1.0rc1.

Getting distribution for 'plone.app.registry'.

Got plone.app.registry 1.0a1.

Getting distribution for 'plone.synchronize'.

Got plone.synchronize 1.0b1.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

The Future of Theming for Plone

[288]

If you get errors when doing this instead of the above output, please
contact the Plone support forums to get more help with your specific
setup (http://plone.org/support). There might be some issues,
especially if you're on Mac OS X. We have been working on fixing the
Mac situation for a while, and it should be fixed by the time you read this,
but if it isn't, let us know!

If everything went according to plan, we now have collective.xdv installed. It's
time to start Plone and activate it for our site!

Activating XDV
Now that we have added XDV to our setup, it's time to activate it for our specific
Plone site.

1. Make sure Plone was (re)started, and log in as an administrator.
2. Go to Site Setup | Add-On Products and install collective.xdv.
3. Once it is installed, go to Site Setup and make sure there is a new control

panel called Theme Transform.

The Theme Transform control panel has a number of settings that we'll make use of
in a minute, but first we will create a simple HTML file and some transform rules to
get started.

Adding the HTML and rule files
Let's create a dedicated directory in your instance where you can keep your
theme files:

1. Navigate to your instance directory.
2. Create a directory called themes.

Never put anything in the parts, eggs, or develop-eggs directories,
as buildout considers these private, and may potentially wipe them
when updating your setup.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 15

[289]

3. Inside the themes/ directory, create the following two files using your text
editor:

theme.html:

<html>
<head>
 <title>xdv example</title>
</head>
<body>

 <h1>The simplest possible example of xdv transforms</h1>
 <p id="my-content-area">This body text will be replaced.</p>

</body>
</html>

rules.xml:

<rules xmlns="http://openplans.org/deliverance">

 <!-- Copy over the contents of the page body -->
 <replace content='//*[@id="content"]'
 theme='//*[@id="my-content-area"]' />

</rules>

Believe it or not, that's a complete—although very basic—Plone theme using XDV!

We now have an HTML file that forms the base of our design, as well as a rules file
that does the transform. All we have left to do is tell Plone about the paths for the
theme and rule files and enable the transform.

Enabling the theme transform
Let's go back to the Theme Transform Plone control panel:

The settings you need to care about right now are:

Enabled: Turns the XDV theme transformation on or off. Switch this to "on".
Domains: Specifies which domains get the theme transforms applied. You
can view your theme during development via localhost:8080. The one
thing to note here is that 127.0.0.1 (essentially the same as localhost) will
never have a theme applied as a safety net, so you can always get back to
your site even if an error while developing your theme transform makes it
unusable. There is a default value of localhost:8080 here; adjust if your
setup is different, but usually the default value is fine.

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

The Future of Theming for Plone

[290]

The next two values are where it gets interesting:

Theme template: A file path or URL pointing to the theme file. This is just a
static HTML file. Add theme/theme.html here. It's relative to your instance
directory, no need for the full path.
Rules file: The filesystem path to the rules XML file. Add
theme/rules.xml here.

Ignore the rest of the form values for now, and press Save.

Testing that everything works
Now, let's go to the front page of your Plone site via localhost:8080/yoursite and
see what happened. Admire your beautiful, un-styled HTML page with the content
from Plone inserted into it. It should look something like the following:

Not particularly visually exciting, is it? But what you have just set up is a very, very
powerful way to theme Plone sites that makes it possible to use any pre-existing
design with a Plone backend. The reason this is exciting is that you're using your
own HTML and CSS, not modifying Plone's HTML and CSS.

Next, let's step back a bit and explain how it all fits together.

How it works
Let's look at a high-level overview of what is going on in XDV (and Deliverance).

The way XDV works is simple, but since it might take a little tweaking to the mental
model you're used to if you have done theming in Plone (or other systems), it's worth
an explanation.

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 15

[291]

The main difference is that you're not touching the templates and HTML from Plone
itself at all. Instead, you create the layout and design you want in standalone HTML
and CSS files, and then map parts of the content that comes out of Plone into your
existing HTML.

This means that you can create as complex (or simple) designs as you want, and let
Plone supply the content.

This also means that you can write your own from-scratch HTML and CSS, but
also map various Plone elements to wherever you want in your own design. Plone
knows nothing about what happens "on the way out"; it just renders a page as it
usually does.

Here is a more visual way to look at it. You can see how the Plone output is mapped
into a totally different template and design:

This makes for a much more robust approach to theming, because as long as Plone
keeps its HTML classes and IDs the same from one version to the next, your theme
will automatically work even in a new version of Plone. And if it has changed, it's
a relatively simple operation to update the theme—just locate the new name, and
replace it in the rule file.

Let's take a closer look at the rule file.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

The Future of Theming for Plone

[292]

The rule file
Central to the way content makes its way from your Plone site into your theme is the
rule file.

Let's look at your simple rules.xml file again:

<rules xmlns="http://openplans.org/deliverance">

 <!-- Copy over the contents of the page body -->
 <replace content='//*[@id="content"]'
 theme='//*[@id="my-content-area"]' />

</rules>

Ignoring the preamble <rules> and the comment, there's one single instruction here.
So what does it do?

1. It looks at the Plone side of things ("content"), and locates the part of the
HTML that has id="content".

2. It then replaces the part of your theme's HTML that has id="my-content-
area" with the content it got from Plone.

The syntax (inside the content and the theme attributes) can be a bit intimidating—
luckily, we have great tools to make it very easy to get this right. The syntax is
called XPath, and is a standard for addressing nodes in the DOM. It's also directly
supported in Firebug. A full treatment of how Firebug works is outside the scope
of this tutorial, but if you have done any web design in the past, you have probably
used it. If not, head over to the Firebug web site (http://getfirebug.com/) to learn
more—they have documentation and screencasts showing you how to use it.

I will show you a screenshot of the part we're interested in. However, when you're
looking at the Plone source code using Firebug, locate the content area as shown
next, and right-click the node:

As you can see, there's a way to copy any HTML node and get its XPath expression.
When you paste what's now on your clipboard, you will see:

//*[@id="content"]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 15

[293]

…and that's the XPath expression that uniquely identifies that part of the page! You
probably recognize this from our original rules.xml file. That's the node you're
looking for in the Plone source, and you use the same approach to find the node
you want to replace in your theme.html.

You don't have to teach yourself XPath, just arm yourself with Firebug, and make
use of its built-in support for these expressions.

Deliverance has implemented support for CSS-like syntax—that is,
#content instead of //*[@id="content"]—which is certainly easier
to remember. The XPath-based syntax works equally well in both XDV
and Deliverance, though.

Let's go over the available rules next.

Rules Overview
Luckily, what goes in the rule file is very simple—there are only four types of rules,
and you'll get the hang of them quickly. The rules are:

Replace
Append/prepend
Copy
Drop

Let's look at what they do and show some real-world examples of how they are used.

<replace>
It replaces an element in the theme with content from the site.

Real-world examples
A useful thing to do is to carry over the <title> and <base> tags from Plone, so
the theme will have the right page titles and work correctly when you do operations
on folders:

<replace content='/html/head/title'
 theme='/html/head/title' />

<replace content='/html/head/base'
 theme='/html/head/base' />

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

The Future of Theming for Plone

[294]

The XPath expressions are actually pretty straightforward when you know exactly
where the elements are. You'll get used to the most common variations after using
Firebug's Copy XPath a few times.

Also note how the entire specified tag is replaced, nothing from the theme
file remains.

Another common example is making the content of a page from Plone appear in
the theme:

<replace content='//*[@id="content"]'
 theme='//*[@id="my-content"]' />

<append> and <prepend>
They add the content from the site to the theme, either before or after the
specified element.

Real-world examples
Adding the Plone-created CSS and JS in addition to the ones already in the theme:

<append content='/html/head/script'
 theme='/html/head' />

<append content='/html/head/style'
 theme='/html/head' />

Notice how we take all of the <script> and <style> tags from Plone, and
append them after the current content of the head tag in the theme. This way,
you can let Plone manage some of your CSS and JS if you want—useful for
conditional includes.

Another example is carrying over the id and class attributes on the body tag, since
these are useful for styling on a per-page basis, and the visual editor uses them too:

<prepend content="/html/body/@class"
 theme="/html/body" />

<prepend content="/html/body/@id"
 theme="/html/body" />

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Chapter 15

[295]

A final example that illustrates the <append> usage. Imagine that we only have one
sidebar in the Plone site, but have two columns, and we want both to appear inside
the sidebar:

<append content='//*[@id="portal-column-one"]/div'
 theme='//*[@id="sidebar"]' />

<append content='//*[@id="portal-column-two"]/div'
 theme='//*[@id="sidebar"]' />

This way, the second rule doesn't overwrite the first. It appends the second column, so
both appear inside the id="sidebar" node.

<copy>
It copies HTML nodes from the Plone side of things and inserts them inside a tag on
the theme side:

<copy content='//*[@id="portal-globalnav"]/li'
 theme='//*[@id="main-nav"]' />

Notice how this one gets every element inside the node with id="portal-
globalnav" in Plone, and makes a copy inside the node that has id="main-nav"
in the theme.

<drop>
It removes the specified element if it exists. This one is a bit different than the others,
as it only has a content= value, and it only makes sense to drop an element from the
Plone side.

Real-world example
Getting rid of the icon inside the "user-name" node:

<drop content='//*[@id="user-name"]/img' />

Since there is no id directly on this image, we just drop any inside the
"user-name" id.

That's actually everything you need to know, now the next steps are up to you!

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

The Future of Theming for Plone

[296]

Summary
You now have a new way to make themes for Plone, where do you go from here?

The best way to learn is by doing, so your next step should be to take one of your
existing designs and map Plone into it.

If you don't have any themes yourself, a great site for free designs is oswd.org
(Open Source Web Design). Here are some great themes you can download to get
you started:

Invention (http://www.oswd.org/design/preview/id/3293)
Bitter Sweet (http://www.oswd.org/design/preview/id/3569)
Nonzero (http://www.oswd.org/design/preview/id/3560)
Transparentia (http://www.oswd.org/design/preview/id/3515)

Remember that if any of these themes are missing ids for easy mapping in the rule
file, just add them in the HTML.

Have fun with your new-found theming superpowers!

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Index
Symbols
<append> rule

about 294
Real-world examples 294

<copy> rule 295
<drop> rule

about 295
Real-world example 295

<prepend> rule
about 294
Real-world examples 294

<replace> rule
about 293
Real-world examples 293

A
add-on Plone products

about 245
Collage 246
collection portlet 250
collective.skinny 249
CSSManager 247
drop downs, enabling webcouturier.drop-

downmenu used 245, 246
FS Dump 249
Products.EasyAsPiIE 248
qPloneSkinDump 250
static portlet 250
tableless styling, Plone Tableless used 247

Adobe Fireworks
about 20
features 20

Adobe Photoshop
about 18

features 18, 19
images, slicing 19
layers panel 18
show/hide functionality 18

B
base_properties

about 99
advantage 100

browser layer 113
browser pages

about 113, 121
customizing 121
directive attributes 124
enabling 126
GenericSetup steps, writing 125
new CMF action category, creating 125
page template, creating 124
Python class, creating 122, 123
registering 123
simple browser view, creating 121
viewlet, registering in theme product 125

browser resources
about 118
images, overriding 120
images, using as 118-120
registering, with ZCML 118
stylesheet, customizing 121
stylesheet, declaring 120
stylesheets, using as 120, 121

browsers
about 21
Firefox 24
Internet Explorer 22
Safari tools 36

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

[298]

buildout
about 14, 50
overview 49

buildout filestructure
about 58
directories 59

buildout filestructure, directories
bin/ 59
buildout-cache/downloads/ 60
buildout-cache/eggs/ 59
develop-eggs/ 60
parts/ 59
products/ 60
src/ 60
var/ 60

C
Cascading Style Sheets. See CSS
cheese shop. See Python Package Index
classic portlets

about 155
using, in theme product 155-157

CMF action categories
folder buttons category 85

CMFPlone 91
CodeSense 45
Collage 246
collection portlet 250
collective.flowplayer

about 264
features 264, 265

collective.skinny 249
collective.xdv

adding, to Plone setup 285
collective.xdv add-on 281
Colorzilla

about 34
features 34
palette, accessing 36
palette, capturing 35

common conventions, for using stylesheets
about 104
base Plone stylesheets, overriding 105
bloat, controlling 105, 106
DTML support 105
file locations 105

CSS 21
CSS, Plone site

styling 229
CSS Edit

about 42
CodeSense 45
features 44
Milestones interface 45
Selector Builder 45
starting 42
Validation inspector 45

CSSManager 247
CSS styling 229
custom browser layer interface

about 113
enabling ways 113
plone.browserlayer package 114
plone.theme mechanism 113

custom theme product
creating 181, 182
folders, adding 193
installing 188-191
installing ways 188
structure, altering 183
viewlets, customizing 192
web site content, customizing 191-195

custom theme product structure
folder names, shortening 184, 185
images, adjusting 186, 187
stylesheets, adjusting 186, 187
theme, renaming 183, 184

D
debugging tools

about 253
GloWorm 253
Pdb 255
traceback 255

default home page display, changing
basic page template, using for home page

view 236, 237
CSS styles, used 233-235
home page view, rendering 237
Pyhton code, using for home page view

rendering 237-239
visual editor, used 233-235

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

[299]

Deliverance
about 252

deployment, Plone theme for public use 279
deployment, Plone theme on server

about 273
configuration 275, 276
documentation 275
orderly deployment, maintaining 274
quality assurance 277

development environment, setting up
buildout filestructure 58
Plone, downloading 56
Subversion 54

DIY Plone Style 14
document object model (DOM) 22
Domain Specific Languages. See DSLs
Dreamweaver 46
DTML 100

E
easy_install 52
eggs 49
E Text Editor 45
export profile 92
extension profiles

cssregistry.xml 91
jsregistry.xml 91
portlets.xml 91
skins.xml 91
viewlets.xml 91

F
Firebug extension

about 27
downloading 27
features 27-30
interface 28

Firefox
about 24
Colorzilla 34
Firebug extension 27
Firefox Web Developer Extension 25
YSlow 31

Firefox Web Developer Extension
about 25
downloading 25

features 25
Firefox Web Developer Extension, features

disable cache 25
display element information 26
error and warning logs 27
images | display image dimensions 26
information | display ID and class details

26
validate CSS/validate HTML 27

Flash integration
about 257
Flash, embedding in page 258-261
Flash, embedding in page template 262, 263
YouTube video code 258

folder buttons category 85
FS Dump 249

G
GCC 57
GenericSetup

about 14
export profile 92
import profile 92, 93
snapshots, generating 92
snapshots, taking 92

GIMP
about 21
features 21

GloWorm
about 253
features 253, 254

GNU Image Manipulation Program. See
GIMP

graphicdesign tools
about 17
Adobe Fireworks 20
Adobe Photoshop 18
GIMP 21

Guria theme. See Plone theme

I
images

modifying, custom folder used 101
import profile 92, 93
Instance home 51
interfaces 113

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

[300]

Internet Explorer
about 22
IE6 22
IE7 22
IE8 22
Web Developer Toolbar 22

Internet Explorer fixes
applying to theme 242, 243

items
extracting, from custom folder 102, 103

J
JavaScript

adding, to filesystem product 110
working with, in theme product 109

Jigsaw’s validator 38
JSLint 33

K
KSS 104
Kupu 233

L
layer attribute 118
logo, Plone site

changing 201

M
Macintosh 54
MacPorts 55
marker interface 113
Milestones interface 45

N
Namespace package 52
new stylesheets, adding

CSS, starting in Zope 107
theme-specific stylesheet, creating in

filesystem product 108, 109
non-Plone-specific products

about 251
Deliverance 252
sIFR 252

Notepad
about 46
features 46

O
operating system agnostic dependencies

easy_install 58
PIL 58
Python 2.4 58
Wget 58

P
P4ArtistsAudio

about 271
features 271, 272
web site, for downloading 272

P4Artists Video
about 268
features 268-270

page sections
modifying 197

page sections, modifying
banner image, adding 207
base portlet, styling 224, 225
basic styling 198-201
breadcrumbs, moving 221, 223
breadcrumbs, styling 221, 223
colophon, adjusting 225-229
footer, adjusting 225-229
logo, changing 201-206
navigation, altering 229, 231
personal bar, adjusting 219
portal actions, customizing 207-213
searchbox, moving 218, 219
searchbox display, adjusting 214-218
top navigation, suppressing 220

page templates 113
paster 53
paster templates 63
PasteScript 53
Pdb

features 255
Plone

about 7
advantages 8

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

[301]

background 7, 8
books 11
browser add-ons 21
buildout 49
development environment, setting up 54
downloading 56
features 7-10
graphic design tools 17
installing 56
new stylesheets, adding 106, 107
overview 9
skinning, evolution 14
technical overview 11
text editors 39
themes 12
theming 12
validation tools 38

Plone, downloading
Macintosh dependencies, for Unified

Installer 56
operating system agnostic dependencies 57
Windows dependencies, for Unified

Installer 57
Plone 3 portlets

modifying, in theme product 148, 149
Plone add-ons

about 264
collective.flowplayer 264
P4ArtistsAudio 271
P4Artists Video 268
Plumi 272
slideshow folder 266

Plone architecture
about 111
Zope 2 components 112
Zope 3 components 112

Plone development
terminology 50

Plone development environment.
See development environment

Plone site
Flash, integrating with 257
multimedia code, inserting 263
testing, against browsers 242

Plone theme
about 179, 181
default home page display, changing 233

deploying, for public use 279
deploying, on server 273
Internet Explorer fixes, applying 242
page sections, modifying 197
sectional styling 240
theme product, creating 181, 182
theme product, installing 188
theme product structure, altering 183
web site contents, customizing 191

Plone theming
approach, selecting 284
approaches 283
future 282
goals, new approach 281
new approach 281
prerequisites 285
tools 285

Plone theming manual 12
Plumi

about 271, 272
features 272

portal-skins tool
about 95
custom skin layer 96, 97
custom skin layer, advantages 98

portal_actions configurations
moving into filesytem product 93, 94

portal_view_customizations
about 157, 158
using 157-159

portal actions, Plone site
customizing 207

portlets
about 147, 148
classic portlets, using in theme product 155
configuring 147
Plone 3 portlets, modifying in theme

product 148
Zope 3 portlet, creating 150-152

portlets, Plone site
customizing 224

prerequisites, Plone theming 285
Products.EasyAsPiIE 248
property sheet 99
PyPI. See Python Package Index
Python egg 51
Python package 51

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

[302]

Python Package Index 52
Python path 51
Python traceback. See traceback

Q
qPloneSkinDump 250
Quintagroup 245

R
Resource Registries

about 104
features 104

rule file 292
ruleflow. See Drools Flow
rules

<append> 294
<copy> 295
<drop> 295
<prepend> 294
<replace> 293
about 293
overview 293

S
Safari tools

about 36
Safari Web Inspector 37

Safari Web Inspector
about 37
activating 37
features 38
WebKitDeveloperExtras, enabling 37

Safari WebKit. See Safari Web Inspector
Scalable Inman Flash Replacement.

See sIFR
sectional styling 240, 241
sectional theming 250
Selector Builder 45
setuptools 49, 51
sIFR 252
skin layer customization

about 95
base_properties, changing 99, 100
portal-skins tool, using 95, 96

skinning, Plone
about 14
buildout 14
DIY Plone Style tool, used 14
via, ZMI 14

slideshow folder
about 266
features 266
settings, changing 267

static portlet 250
structure expression

about 174
working 175

Subversion
about 54
features 54, 55

T
TAL

about 164
goal 162
operations 176
structure expression 174
tal:condition statement 167
tal:content statement 169
tal:define statement 166
tal:omit-tag statement 173
tal:on-error statement 174
tal:repeat statement 169
tal:replace Statement 172
tal:ttributes statement 165

tal:attributes statement
about 165
multiple attributes 165

tal:condition statement
about 167
working 168

tal:content statement
about 169
working 169

tal:define statement
about 166
working, in Plone 166, 167

TALES expressions
built-in names 176

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

[303]

TALES expressions, built-in names
attrs 176
container 176
default 176
here or context 176
modules 177
nothing 176
options 176
repeat 176
request 176
template 176
user 177

tal:omit-tag statement
about 173
working 173

tal:on-error statement
about 174
working 174

tal:repeat statement
about 169
working 170, 171

tal:replace statement
about 172
working 172

technical overview, Plone
about 11
WSGI support 11

templates, Plone site
customizing 225

terminology, Plone development
about 50
buildout 50
easy_install 52
Instance home 51
Namespace package 52
paster 53
PasteScript 53
Python egg 51
Python package 51
Python Package Index 52
Python path 51
setuptools 51
Zope installation 50
Zope instance 50
Zope product 51

ZopeSkel 53
text editors

about 39
CSS Edit 42
Dreamweaver 46
E Text Editor 45
Notepad 46
TextMate 39
WordPad 46

TextMate
about 39
Bundle feature 41
features 39-42
programmer-related tools 40, 41
Zope/Plone TextMate support bundle 42

theme product
adding, to buildout 69, 70
generating, paster used 63
installing on Plone site 71
JavaScript, adding 110
JavaScript, working with 109
plone3_theme product filestructure 66-68

theme product, generating
paster templates 63, 64
Plone product, generating 64, 65

theme product, installing on Plone site
Plone site, creating 71
Plone theme, installing 72
site, putting in debug mode 72

themetweaker.themeswitcher 251
theming approaches

about 283
collective.xdv 284
collective.xdv, cons 284
collective.xdv, pros 284
deliverance 284
deliverance, cons 284
deliverance, pros 284
product package 283
product package, cons 283
product package, pros 283

tools, Plone theming 285
traceback

about 255
features 255

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

[304]

V
Validation inspector 45
validation tools

about 38
Jigsaw’s validator 38

vanilla theme product
creating 63

version control 54
viewlet managers 129
viewlets

about 112, 127, 129
bread crumbs 128
class-based versus template-based viewlets

133-135
class-based viewlets 133
classes 129
colophon 129
contact actions 128
content views 128
document actions 128
footer 128
hiding, within viewlet manager 139, 140
navigation 128
non-template-based viewlet, overriding

142-146
page templates 129
Page templates combined with classes 129
personal bar 128
pulling, into Plone templates 129, 130
registering, in viewlet manager 135-137
reordering, within viewlet manager

137-139
searchbox 128
showing, within viewlet manager 139, 140
site actions 128
template-based viewlets 133
unhiding, within viewlet manager 139, 140
utility navigation 128
viewlet template, overriding 140, 141

viewlets, Plone site
customizing 211

W
webcouturier.dropdownmenu 246
Web Developer Toolbar

about 22

features 22, 23
warnings 24

WebKitDeveloperExtras 37
WordPad

about 46
features 46
RTF, supporting 46

WSGI 252

X
XCode 55
XDV

about 282, 283
activating 288
adding, to Plone instance 285
history 282
testing 290
working 290, 291

XDV, activating
HTML, adding 288, 289
rule files, adding 288, 289
theme transform, enabling 289

XDV, adding to Plone setup
about 285
buildout, running 287
collective.xdv, adding 286, 287
platform notes 286

Y
YSlow

about 31
activating 31
features 31, 32

Z
ZCML

about 114-117
introducing 114

ZCML slug 116
ZMI 116
Zope

about 7
starting 70

Zope/Plone TextMate support bundle 42

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

[305]

Zope 3 browser layer 117, 118
Zope 3 components

about 112
adapter 112
browser pages 112
interfaces 112
templates 112
viewlets 112

Zope 3 portlet
creating 150
enabling 155
GenericSetup steps, writing to create

CMFAction category 153, 154

GenericSetup steps, writing to create new
portlet 153

interface, adding for browser 152
page template, creating 152
registering, in theme product 154, 155

Zope Configuration Markup Language.
See ZCML

Zope installation 50
Zope instance 50
Zope Page Templates. See ZPT
Zope product 51
ZopeSkel 53
ZPT 161, 162

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Thank you for buying
Plone 3 Theming

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Plone 3 Theming, Packt will have given some of the money
received to the Plone project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Practical Plone 3
ISBN: 978-1-847191-78-6 Paperback: 592 pages

A Beginner's Guide to Building Powerful Websites

1. Get a Plone-based website up and running
quickly without dealing with code

2. Beginner's guide with easy-to-follow
instructions and screenshots

3. Learn how to make the best use of Plone's out-
of-the-box features

4. Customize security, look-and-feel, and many
other aspects of Plone

Professional Plone Development
ISBN: 978-1-847191-98-4 Paperback: 420 pages

Building robust, content-centric web applications
with Plone 3, an open source Content Management
System

1. Plone development fundamentals

2. Customizing Plone

3. Developing new functionality

4. Real-world deployments

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

Building Websites with Plone
ISBN: 1-904811-02-7 Paperback: 416 pages

An in-depth and comprehensive guide to the Plone
content management system

1. A comprehensive guide for Plone website
administrators and developers

2. Design, build, and manage content rich
websites using Plone

3. Extend Plone’s skins and content types

4. Customize, secure, and optimize Plone websites

Expert Python Programming
ISBN: 978-1-847194-94-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1. Learn Python development best practices from
an expert, with detailed coverage of naming
and coding conventions

2. Apply object-oriented principles, design
patterns, and advanced syntax tricks

3. Manage your code with distributed
version control

4. Profile and optimize your code

5. Proactive test-driven development and
continuous integration

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Download at Boykma.Com

	Cover
	Table of Contents
	Preface
	Chapter 1: Theming Plone 3: An Overview
	Background
	What is Plone, really?
	Technical overview
	Books about Plone

	Theming and other CMS frameworks
	The evolution of skinning for Plone
	Summary

	Chapter 2: Skinner's Toolkit
	Graphic design tools
	Adobe Photoshop
	Adobe Fireworks
	GIMP

	Browser add-ons and important notes
	Internet Explorer
	Firefox
	Firefox Web Developer extension
	Firebug extension
	YSlow
	Colorzilla

	Safari tools
	Safari Web Inspector

	Validation tools
	Text editors
	TextMate
	CSS Edit
	E Text Editor
	Notepad
	WordPad
	Dreamweaver

	Summary

	Chapter 3: Setting up your Development Environment
	Buildout and you
	Understanding the terminology
	Setting up your development environment
	Subversion for version control
	Download Plone
	Macintosh dependencies for the Unified Installer
	Windows dependencies for the Unified Installer
	Operating system agnostic dependencies

	Buildout: The Plone filestructure

	Summary

	Chapter 4: Create and Install a Theme Product
	Generating your theme product using paster
	Available templates
	Generating your product
	Filestructure of a plone3_theme product

	Adding your theme product to your buildout
	Starting Zope and installing your product on a Plone site
	Creating a Plone site
	Installing your Plone theme
	Putting your site into debug mode

	Summary

	Chapter 5: Making Manual (TTW) Changes or What Not to Do
	Prerequisites
	What this chapter will not cover
	Registering and installing a new theme
	Register the filesystem directory view
	Make the directory view available to portal_skins
	Install your theme product
	General guidelines during development

	About a theme product's architecture
	Changing your site via CMF action categories
	Document actions category
	Site actions category
	Folder buttons category
	Object category
	Object buttons category
	Portal tabs category
	User category

	About GenericSetup
	Base profile
	Extension profiles
	An example extension profile
	Taking snapshots
	Export profile
	Import profile

	Moving portal_actions configurations into a filesystem product
	Skin layer customization, the old-fashioned way
	Using the portal_skins tool
	Changing base_properties

	Modifying images using the custom folder
	Extracting items from the custom folder
	Using stylesheets and the CSS resource registry tool
	Common conventions for using stylesheets in Plone
	Overriding base Plone stylesheets
	DTML support
	Location of files and controlling bloat

	Adding new stylesheets
	Starting with CSS in the ZMI
	Creating a theme-specific stylesheet in your filesystem product

	Working with JavaScripts in your theme product
	Summary

	Chapter 6: Working with Zope 3 Components
	About the architecture
	Introduction to ZCML
	Zope 3 browser layers and resources
	Using images as browser resources
	Using stylesheets as browser resources
	Browser pages
	Create a Python class for our browser page

	Add the interface for our browser page
	Registering our browser page
	Create a page template for our view
	Write the GenericSetup steps to create the new CMF action category
	Register the viewlet in your theme product
	Enable the browser page

	Summary

	Chapter 7: Customizing Viewlets and Portlets
	Viewlets
	Class-based versus template-based viewlets
	Registering viewlets in a viewlet manager
	Reordering viewlets within a viewlet manager
	Showing, hiding, and unhiding viewlets within a viewlet manager
	Overriding a viewlet template
	Overriding a non-template-based viewlet

	Portlets
	Modifying Plone 3 portlets in a theme product
	Creating a new Zope 3 portlet
	Add the interface for our browser page
	Create a page template for our view
	Write the GenericSetup steps to create the new portlet
	Write the GenericSetup to create a new CMFAction category and actions
	Register the portlet in your theme product
	Enable the portlet

	Using Classic portlets in a theme product

	Using portal_view_customizations
	Summary

	Chapter 8: Understanding Zope Page Templates and the Template Attribute Language
	About ZPT
	What does TAL look like in practice?

	About the Template Attribute Language
	tal:attributes statement
	Multiple attributes

	tal:define statement
	How this works in Plone

	tal:condition statement
	How this works in Plone

	tal:content statement
	How this works in Plone

	tal:repeat statement
	How this works in Plone

	tal:replace Statement
	How this works in Plone

	tal:omit-tag statement
	How this works in Plone

	tal:on-error statement
	How this works in Plone

	TAL "structure" expression syntax
	How this works in Plone

	Order of operations
	Built-in names in TALES
	Summary

	Chapter 9: Creating, Installing, and Tweaking our Theme
	About the theme
	Creating a theme product
	Altering the theme product's structure
	Renaming the theme
	Shortening folder names
	Adjusting how stylesheets and images are used

	Installing the theme product
	Adjusting web site content to support the design
	Summary

	Chapter 10: General Styling and Templating Changes
	Modifying the various sections of the page
	Basic styling
	Changing the logo
	Adding a banner image
	Customizing the portal actions
	Adjusting the searchbox display
	Moving the searchbox
	Adjusting the personal bar
	Suppressing the top navigation
	Moving and styling the breadcrumbs
	Base portlet styling
	Adjusting the footer and the colophon
	Altering the navigation

	Summary

	Chapter 11: Custom Page Views and Sectional Styling
	Changing the default home page display
	Using CSS styles and the visual editor
	Using a basic page template for a home page view
	Using Python code to render a home page view

	Sectional styling
	Applying Internet Explorer fixes
	Summary

	Chapter 12: Add-on Tools and Theming Tips
	Popular add-on Plone products
	Enabling drop downs using webcouturier.dropdownmenu
	Collage
	Tableless styling using Plone Tableless
	CSSManager
	Products.EasyAsPiIE
	collective.skinny
	FS Dump
	qPloneSkinDump
	Collection and static portlets

	Sectional theming
	themetweaker.themeswitcher

	Non-Plone specific products for theming
	sIFR
	Rules-based theming

	Debugging tools and tips
	GloWorm
	About tracebacks and Pdb (the Python debugger)
	Running more than one operating system at a time

	Summary

	Chapter 13: Plone and Multimedia
	Flash integration
	Embedding Flash and other media in a page
	Embedding Flash in a page template

	Plone add-ons for multimedia
	collective.flowplayer
	Slideshow Folder
	Plone4Artists Video

	Other products to watch out for
	Plone4ArtistsAudio
	Plumi

	Summary

	Chapter 14: Deploying and Contributing Themes
	Deploying your theme on a server
	Maintaining an orderly deployment
	Documentation
	Configuration
	Quality assurance

	Deploying a theme for public use
	Summary

	Chapter 15: The Future of Theming for Plone
	Why a new approach?
	About the future of theming in Plone
	Is XDV ready for serious deployments?
	Background and history
	Choosing the appropriate theming approach
	Which one should I use?

	Tools and prerequisites
	Adding XDV to your Plone instance
	Platform notes
	Adding collective.xdv
	Running buildout

	Activating XDV
	Adding the HTML and rule files
	Enabling the theme transform
	Testing that everything works

	How it works
	The rule file
	Rules Overview
	<replace>
	<append> and <prepend>
	<copy>
	<drop>

	Summary

	Index

