
The design of a Master Test Controller for a system-level Embedded
Boundary-Scan Test architecture

Sven-Åke Andersson
Ericsson AB

Stockholm, Sweden
sven-ake.andersson@ericsson.com

Abstract

Boundary scan (IEEE 1194.1) is today implemented in every ASIC and FPGA and
is only used during production test of chips and boards. It is then left unused for the
rest of the product life cycle. That is a waste of resources. Adding an on-board JTAG
tester will change that scenario. Tests can then be run at power-up of the system or
as maintenance tests when the system is up and running. If the test program is
stored on the board, tests can also be run at a repair center. The tester can also be
used when debugging the board in the lab. All tests controlled from the test access
port (TAP) can be executed from the on-board tester.

This paper describes an implementation of an on-board JTAG tester called a Master
Test Controller (MTC). The MTC has been designed as an IP block in an system-on-
chip design. The ASIC is manufactured by IBM in their 80nm CMOS process. The
design takes up no more than 60k gates and can easily be fitted into any ASIC or
FPGA design. The MTC is controlled from an embedded PowerPC microprocessor,
but can easily be adopted to use any type of processor.

To support the programming of the MTC a new JTAG test language (JTL) has been
defined. The test language uses the same syntax as verilog and test programs can
be compiled using a standard verilog simulator. There are 13 tasks that can be used
to build any kind of JTAG test sequence.

1 Introduction

The Master Test Controller (MTC) is a fully IEEE 1149.1 compliant test generator,
that can be used for running JTAG test sequences both on internal logic and external
devices. The test sequence setup is controlled from the on-chip microprocessor, a
PowerPC 440. The MTC and the IBM JTAG Test Controller (JTC) uses a common
standard 5 pin bidirectional testbus plus one extra testpin (TDI_EX). The MTC ena-
ble signal (MTC_ENB) will only be activated when running the MTC in external
mode. In all other cases this bus will look like a standard JTAG bus. After power-up
reset the MTC will be deactivated and can only be activated by the programming in-
terface from the PowerPC microprocessor. The MTC has been implemented in a
SOC design called DBC (Device Board Controller).
1(24)

Figure 1 The Master Test Controller

1.1 Running the MTC

The MTC when activated can be used for running internal JTAG tests on the DBC or
external tests on other JTAG compliant devices on the board or in the system.

The PPC device driver loads compiled test programs into the
MTC_TESTPROGRAM_RAM register array (Figure 8, page 8). The
MTC_TESTGEN reads the test program and executes the different tasks in se-
quence. When the test is running, the relevant TDO data will be recorded by the
MTC_TDO_RECORD block and stored in the MTC_DATA_RAM register array.
When the test has finished the TDO data can be read by the PPC and compared to
expected data. The status register will hold the number of TDO bits recorded.

1.1.1 PPC to MTC data transfer

The MTC exchanges information between the PPC device driver and the MTC using
the On-chip Peripheral Bus (OPB) see Ref. [1].

1.1.2 Interrupt handling

The MTC will generate an interrupt, pulling O_INTERRUPT high when the test has
finished. An interrupt will also be generated after an pause shiftdr has occurred. The
status register should be read after an interrupt to find out the cause of the interrupt.
The interrupt is enabled by setting one bit in the control register.

MTC

D

R

MTC_TCKO
TCK

MTC_TCKI

MTC_ENB

D

R

D

R

R

D

TMS

TRSTZ

TDI

TDO

MTC_TDO_ENB

MTC_TMSO

MTC_TMSI

MTC_TRSTZO

MTC_TRSTZI

MTC_TDIJTC JTC_TDI

JTC_TMS

JTC_TCK

JTC_TRSTZ

JTC_TDO

MTC_TDO

PPC

JTC_TDO_ENB

O
P
B

RMTC_TDI_EX TDI_EX

CE1CE1
2(24)

1.2 MTC Operating Modes

The MTC can be programmed to operate in the following modes:

1.2.1 External test

The MTC can run external tests on other JTAG compliant device on the same board.
You can for example setup and run MBIST to test memories in other ASICs on the
board.

To TDO output from the last device in the JTAG scan chain will be connected to the
TDI_EX pin (Figure 5, page 6).

In external test mode the DBC can be excluded or included in the JTAG board scan
chain (Figure 6, page 7). If the DBC is excluded the JTC will be kept in test reset
state.

Table 1 MTC operating modes

Mode Config MTC JTC External Testbus

Board test 0 Inactive Active Driven from external tester

MTC external test
(DBC excluded)

1 Active Test-reset-state Driven from MTC

MTC external test
(DBC included)

2 Active Active Driven from MTC

MTC internal test 3 Active Active Disabled

MTC system test
(DBC excluded)

4 Active Test-reset-state Driven from MTC

MTC system test
(DBC included)

5 Active Active Driven from MTC
3(24)

4)
4(2

Figure 2 External Test Operating Mode

1.2.2 Internal test

The MTC can run internal JTAG tests on the DBC ASIC. It is possible to setup and
run MBIST to test memories, read IDCODE, sample boundary scan register and ex-
ecute other JTAG instructions. When the MTC is used in internal mode, the testbus
drivers will be disabled. When the testbus drivers are disabled, by keeping
MTC_ENB low, the pull-down resistor on TRSTZ will hold TRSTZ low and thereby
setting all other JTAG devices on the board in Test-Logic-Reset-State.

MTC

D

R

TCK

D

R

D

R

R

D

TMS

TRSTZ

TDI_EX

TDO

JTC
JTC_TDI

JTC_TMS

JTC_TCK

JTC_TRSTZ

JTC_TDO

PPC

JTC_TDO_ENB

O
P
B

Drivers enabled

Driver enabled

MTC_TDI

MTC_ENB

MTC_TCK

MTC_TMS

MTC_TRSTZ

MTC_TDO

MTC_TDO_ENB

Figure 3 Internal Test Operating Mode

1.2.3 System test

In system test mode the MTC can control other boards in the system. The JTAG scan
chain can include any number of devices on any number of boards (Figure 7, page
7). The limiting factor is the drive capability of the MTC. In system test mode the DBC
can be excluded or included in the JTAG board scan chain. If the DBC is excluded
the JTC will be kept in test reset state.

1.2.4 Board test

In board test mode the MTC is deactivated and all the 5 test signals will connect to
the JTC only. All JTAG compatible devices on the board will be connected into one
scan chain (Figure 4, page 6). An external JTAG tester will drive the JTAG test se-
quences.

MTC

D

R

TCK

D

R

D

R

R

D

TMS

TRSTZ

TDI

TDO

JTC
JTC_TCK

JTC_TMS

JTC_TRSTZ
JTC_TDI

JTC_TDO

PPC

JTC_TDO_ENB

O
P
B

Drivers disabled

Driver disabled

MTC_TDI

MTC_ENB

MTC_TCK

MTC_TMS

MTC_TRSTZ

MTC_TDO

MTC_TDO_ENB
5(24)

Figure 4 Board test setup

Figure 5 MTC external test setup (DBC excluded)

DEVICE 1DBC

DEVICE 2DEVICE 3

TDI
TDO TDI TDO

TDITDOTDI

TDI

TDO
TDO

JTAG

TESTER
TMS

TCK

TRSTZ

DEVICE 1DBC

DEVICE 2DEVICE 3

TDO
TDI TDO

TDITDOTDI

TDI_EX

TDO
TDO

TMS
TCK
TRSTZ

MTC
6(24)

Figure 6 MTC external test setup (DBC included)

Figure 7 MTC system test setup (DBC included)

DEVICE 1DBC

DEVICE 2DEVICE 3

TDI TDO

TDITDOTDI

TDI_EX

TDO
TDO

TMS
TCK
TRSTZ

MTC JTC

DEVICE 1DBC

DEVICE 2DEVICE 3

TDI TDO

TDITDOTDITDO

TDO

TMS

TCK
TRSTZ

MTC JTC
TDI

BOARD1BOARD2
7(24)

1.3 Interface Description

1.3.1 Block Diagram

Figure 8 MTC block diagram

MTC_PROGRAM_RAM

MTC_TESTGEN

MTC_TCKGEN

O
P

B
 in

te
rf

ac
e

IE
E

E
 1

14
9.

1
Te

st
 B

us

TRSTZ

TMS

TDI

MTC_TDO

MTC_TMSO

MTC_TCKO

MTC_TRSTZO

MTC_TDI

JTC_TDI

JTC_TMS

JTC_TCK

JTC_TRSTZ

JTC_TDO

CE1

MTC_CONFIG

MTC_TDO_ENB

JTC_TDO_ENB

MTC_TDI_EX

MTC_ENB

MTC_TRSTZI

MTC_TCKI

MTC_TMSI

TRSTZ

TMS

TDI

TCK

MTC_TDO_RECORD

TDO

MTC_DATA_RAM

CONTROL_REG

STATUS_REG

Test program
storage

Test result

storage

START/STOP/CONT

ADDRESS

DATA

DATA

ADDRESS

READ

STORE

START/STOP

TDO_BITS

EXECUTE_REG

TCK

TCK

64x32

64x32

ENB

RATE_SEL

RESETS

I_RESETS

STATUS

I_CLK

CLK

SYSCLK

RESET

RESET

O_INTERRUPT

DEBUG

DEBUG_REG

LOOP

MTC_OPB_REGS

I_RESETA

RESETAI_OPB_SELECT

I_OPB_RNW

I_OPB_FWXFER

I_OPB_ABUS

I_OPB_DBUS

I_OPB_HWXFER

O_OPB_DBUSEN

O_OPB_XFERACK

O_OPB_FWACK

O_OPB_HWACK

O_OPB_ERR_ACK

O_OPB_TOUTSUP

O_OPB_RETRY

O_OPB_DBUS
8(24)

1.4 Block Description

1.4.1 MTC_OPB_REGS

The MTC_OPB_REGS block has 4 addressable registers and two register arrays.

The control register will be used for setting up the MTC operating mode, before the
test starts (see table 5). The status register keeps track of the MTC status and can
be read at any time. The execute register controls the start, stop, continue after
pause and single stepping of the test program. The debug register can be used when
debugging a failing test. It will hold information about the internal logic of the MTC
that can be of help when trying to isolate the failure.

One register array MTC_TESTPROGRAM_RAM is used for storing the compiled
test program and one other array MTC_DATA_RAM is used for storing the test result.

Table 2. MTC address map

Register name
Register

size

[bits]

OPB type of access

Register

Address

(hex)

MTC_TESTPROGRAM_RAM 64x32 WRITE 000 - 0fc

MTC_DATA_RAM 64x32 READ 100 - 1fc

Control 32 READ/WRITE 200

Status 32 READ 204

Execute 32 READ/WRITE 208

Debug 32 READ 20c

Table 3. Control register description

Bit Bit name Description

0 Config bit 0 Controls the MTC_CONFIG block

1 Config bit 1 (See table 1)

2 Config bit 2

3 Config bit 3

4 TCK clock divide bit 0 Controls MTC_TCKGEN block

5 TCK clock divide bit 1

6 TCK clock divide bit 2

7 Enable TCK Enables TCK clock

8 Single step mode 1 = enabled
9(24)

1.4.2 MTC_TESTGEN

The MTC_TESTGEN block contains the JTAG test generator. The test program will
be read from the MTC_TESTPROGRAM_RAM and executed by the

9 TDO no record Don’t save TDO data during shiftir

10 TDO no record Don’t save TDO data during shiftdr

11 Loop mode 1 = enabled

12 Interrupt enable 1 = enabled

Table 4. Status register description

Bit Bit name Description

0 Busy bit 0 = Test generation stopped. 1 = running

1 Pause bit 0 = not paused, 1 = paused

2 Test finished 1 = test have finished (completed)

6:3 Instruction code (4 bits) Current loaded task

7 Pause in shiftdr 1 = when paused during shift data

13:8 Result RAM address (6 bits) Last address written in TDO recording RAM

25:14 TDO bit counter (12 bits) Counts the number of TDO bits received

31:26 Reserved For future use

Table 5. Execute register description

Bit[7:0] Description

0 Start / stop of MTC

1 Single step MTC (one task)

2 Continue MTC after pause

3 Reset MTC_TESTGEN

Table 3. Control register description

Bit Bit name Description
10(24)

MTC_TESTGEN test generator. The test program is built from a number of tasks that
will operate on different JTAG registers. All tasks in the test program will be executed
in sequence and the test execution will stop when the "End of task" instruction is ex-
ecuted or a stop signal is sent to MTC_TESTGEN. Task comes in two formats. Task
format 1, 2 and 3 are used for tasks that do not use any TDI data, and task format 4
for all tasks that use TDI data. Figure 9 shows the tap controller states supported by
the test generator. The shaded states are not supported and will never be entered.
Dotted lines shows state transitions not supported.
The MTC_TESTGEN block performs a reclocking of the TMS, TDI and TRSTZ sig-
nals to provide save timing margins. The negative edge of the TCK clock is used as
the reclocking clock.

Table 6. MTC_TESTGEN task format 1

Bit 31 Bit 30 Bits [29:4] Bits [3:0]

1 0 Not used Instruction code

Table 7. MTC_TESTGEN task format 2

Bit 31 Bit 30 Bits [29:16] Bits [15:4] Bits [3:0]

1 0 Not used Number of TCK cycles (12 bits used) Instruction code

Table 8. MTC_TESTGEN task format 3

Bit 31 Bit 30 Bits [29:4] Bits [3:0]

1 0 Number of TCK cycles (26 bits used) Instruction code

Table 9. MTC_TESTGEN task format 4

Bit 31 Bit 30
Bits

[29:28]
Bits [27:16] Bits [15:4] Bits [3:0]

1 1 Not used Number of shift data Number of shift instruction Instruction code

0 1 TDI test data

0 1 TDI data

0 0 Last TDI data (bit 30 = 0)
11(24)

4

4

4

4

4

4

4

4

4

4

4

4

4

Table 10. MTC_TESTGEN Instruction Codes

Value Description Task format

’b0000 No operation 1

’b0001 Generate test reset 1 (TSTSZ low for x TCK cycles) 2

’b0010 Generate test reset 2 (TMS high for x TCK cycles) 2

’b0011 Load JTAG instruction register 4

’b0100 Load JTAG data register 4

’b0101 Load JTAG instruction register and read/write data register 4

’b0110 Load JTAG data register and load JTAG instruction register 4

’b0111 Load JTAG data register and pause in pause-dr 4

’b1000 Load JTAG data register (continue from pause-dr) 4

’b1001 Load JTAG data register (continue from pause-dr and stop in pause-dr) 4

’b1010 Wait in Run-Test-Idle state a number of TCK cycles 3

’b1011 Pause in Run-Test-Idle state 1

’b1100 End of test 1

Table 11. MTC_TESTGEN Instruction Register (task format 2)

Bit Description

3:0 Instructions Code (see above)

15:4 Number of TCK cycles

29:16 Not used

30 0 = no more words of data follows for this task

31 1 = instruction word

Table 12. MTC_TESTGEN Instruction Register (task format 4)

Bit Description

3:0 Instructions Code (see above)

15:4 Number of bits to load instruction
12(24)

Figure 9 TAPC flow chart supported by MTC_TESTGEN

1.4.3 MTC_TDO_RECORD

The MTC_TDO_RECORD block is used as a recorder for TDO data. The TDO data
will be saved when in shiftir or shiftdr state in the MTC_TESTGEN block. The saving
of TDO data is enabled from the control register. The TDO data will be stored into a
32 bit register, right justified. When the 32 bit register has been filled it will be saved
in the MTC_DATA_RAM register array.

27:16 Number of bits to load of TDI data

29:28 Not used

30 1 = more words of data follows for this task

31 1 = instruction word

Table 12. MTC_TESTGEN Instruction Register (task format 4)

Bit Description

Test-Logic-Reset

Run-Test-Idle Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

1

0

1

1

1

0

1

0

0

0

0

1

0

1

1

0

0

111
0

0

1

11

1

0

0

13(24)

1.4.4 MTC_TCKGEN

The MTC_TCKGEN block generates the TCK clock to be used as the JTAG test
clock. The TCK clock frequency can be programmed to six different frequencies.
With the SYS_CLK running at 48MHz the maximum TCK clock frequency will be
12MHz an the minimum clock frequency will be 750 kHz. The TCK clock can be
turned on or off from the programming interface using a bit in the control register.

1.4.5 MTC_CONFIG

The MTC_CONFIG block will be used to setup the different operating modes of the
MTC. The config register will be written from the PPC with the selected operating
mode and will control the connections of signals between the MTC and the JTC and
the JTAG test port.

2 Writing test programs for MTC

The MTC will use a test program stored in the test program memory, to run the actual
JTAG testing. This program consists of a number of tasks, that will perform the test-
ing of the JTAG logic in the DBC, other ASICs on the board or in the system.

2.1 Compiling the test program

Before the test program can be loaded to the test program memory, it must be com-
piled into a binary format (32 bit words). This can be done in many different ways,
but a simple solution is to use the verilog simulator to generate the compiled code.
Every task is implemented as a verilog task and for every test program a verilog test-
case using the tasks are constructed (see Appendix). Running the verilog simulator
with the testcase will generate the compiled code. The compiled code will be stored
in a load module file, ready to be loaded to the PPC program memory.

2.2 Load module description

After compilation of the test program, a load module will be generated. (see table be-
low). The mask data will be calculated from the expected data. When the expected
data is "0" or "1" the mask data will be set to "1". When the expected data is "x" the
mask data will be set to "0".

Table 13. TCK programmable clock frequencies

RATE_SEL TCK clock frequency Actual clock frequency [MHz]

0 SYS_CLK/4 12

1 SYS_CLK/8 6

2 SYS_CLK/16 3

3 SYS_CLK/32 1.5

4 SYS_CLK/64 0.75
14(24)

Table 14. Load module

Address Content (32 bit word)

0 Load module identification

1 Load module size (number of words)

2 TDO recording mode

3 Number of TDO bits expected

4 Number of TCK cycles to complete the test

5 Address to test program (Start_test_program)

6 Test program size (number of words)

7 Address to expected data (Start_expected_data)

8 Expected data size (number of words)

9 Address to mask data (Start_mask_data)

10 Mask data size (number of words)

Start_test_program: Compiled test program

Start_expected_data: Expected data

Start_mask_data: Mask data

(0 = mask)
15(24)

2.3 JTAG Test Language (JTL)

The following 13 tasks should be sufficient for all kinds of JTAG tests that will be
needed. All tasks except for the test reset tasks will start from the Run-Test-Idle state
and return to the Run-Test-Idle state when finished.

2.3.1 TestResetKeepingTrstzLow

Generate a test reset by keeping TRSTZ low for a specified number of TCK clock
cycles.

Syntax :

TestResetKeepingTrstzLow(TCK_cycles);

TCK_cycles is an integer between 1 and 4095

2.3.2 TestResetKeepingTmsHigh

Generate a test reset by keeping TMS high for a specified number of TCK clock cy-
cles.

Syntax :

TestResetKeepingTmsHigh(TCK_cycles);

TCK_cycles is an integer between 5 and 4095

2.3.3 LoadInstructionRegister

Load JTAG instructions into all instruction registers in the scan chain.

Syntax :

LoadInstructionRegister(instruction_length,instruction_code);

instruction_length is an integer between 1 and 4095
instruction_code is a verilog register value with maximum 4095 bits

Examples:
20’b10101101110111110000;
64’h123456789abcde0;
{10’b1111111111,5’00000}; (concatenation)

2.3.4 LoadDataRegister

Load data into all data registers in the scan chain.

Syntax : LoadDataRegister(data_length,data_content);

data_length is an integer between 1 and 4095
data_content is a verilog register value with maximum 4095 bits

2.3.5 LoadDataRegisterPause

Load data into all data registers in the scan chain. Pause in Pause-Dr state when
finished. This way a new testprogram can be loaded. The new testprogram must
start with LoadDataRegisterContinue.

Syntax : LoadDataRegisterPause(data_length,data_content);
16(24)

data_length is an integer between 1 and 4095
data_content is a verilog register value with maximum 4095 bits

2.3.6 LoadDataRegisterContinue

Load data into all data registers in the scan chain. Used after the loading has been
paused. Will continue from the Pause-Dr state.

Syntax : LoadDataRegisterPause(data_length,data_content);

data_length is an integer between 1 and 4095
data_content is a verilog register value with maximum 4095 bits

2.3.7 LoadDataRegisterAgain

Load data into all data registers in the scan chain. Used after the loading has been
paused. Will continue from the Pause-Dr state and will stop in pause-dr.

Syntax : LoadDataRegisterAgain(data_length,data_content);

data_length is an integer between 1 and 4095
data_content is a verilog register value with maximum 4095 bits

2.3.8 LoadInstructionAndData

Load JTAG instructions into all instruction registers in the scan chain and thereafter
load all selected data registers without going to Run-Test-Idle state in between
loads.

Syntax :

LoadInstructionAndData (instruction_length, instruction_code, data_length,
data_content);

instruction_length is an integer between 1 and 4095
instruction_code a verilog register value with maximum 4095 bits
data_length is an integer between 1 and 4095
data_content is a verilog register value with maximum 4095 bits

2.3.9 LoadDataAndInstruction

Load all selected data registers and thereafter load JTAG instructions into all instruc-
tion registers in the scan chain without going to Run-Test-Idle state in between loads.

Syntax :

LoadDataAndInstruction (instruction_length, instruction_code, data_length,
data_content);

instruction_length is an integer between 1 and 4095
instruction_code a verilog register value with maximum 4095 bits
data_length is an integer between 1 and 4095
data_content is a verilog register value with maximum 4095 bits

2.3.10 WaitInRunTestIdle

Generate a wait in Run-Test-Idle state for a specified number of TCK clock cycles.

Syntax :

WaitInRunTestIdle(TCK_cycles);
17(24)

TCK_cycles is an integer between 1 and 67108863

2.3.11 PauseInRunTestIdle

Generate a pause in Run-Test-Idle state until the continue bit is set in the execute
register.

Syntax :

PauseInRunTestIdle;

2.3.12 EndOfTest

The EndOfTest task should be the last task in the test program. When encountered
it generates an interrupt by setting the O_INTERRRUPT signal high if the interrupt
enable bit is set

Syntax :

EndOfTest;

2.3.13 NoOperation

The NoOperation task can be inserted anywhere in the test program. It will generate
a few TCK clock cycles and the test generator will stay in Run-Test-Idle mode.

Syntax :

NoOperation;

2.4 Auxiliary tasks

The following task will only put data into the load module file. See Load Module de-
scription for more information about the data format.

2.4.1 LoadModuleIdentity

Stores information about the design, the testcase in the first word in the load module.

Syntax :

LoadModuleIdentity (design_identity,testcase_identity,testcase_revision);

design_identy is an integer between 0 and 1023
testcase_identity is an integer between 0 and 1023
testcase_revision is an integer between 0 and 4095

2.4.2 SetTdoRecordingMode

Stores information about the TDO recording mode of the MTC. The corresponding
recording mode must be programmed in the control register setup.

Syntax : SetTdoRecordingMode(Mode);

Mode Recording

0 Record TDO data during instruction and data shift

1 Record TDO data during data shift only

2 Record TDO data during instruction shift only
18(24)

3 No TDO data recorded.

2.4.3 SetExpectedData

Use the SetExpectedData task to specify the expected TDO data after every instruc-
tion that will generate a TDO output.

Syntax : SetExpectedData(number_of_bits,expected_data);

number_of_bits is an integer between 1 and 4095
expected_data is a verilog register value with maximum 4095 bits.
"x" can be used to specify not known or don’t care data bits.

3 Operating the MTC

When the test program is loaded the MTC can be activated. Perform the following
steps to run a JTAG test using the MTC.

3.1 Setup the MTC

Load the config register to set the TCK clock rate, enable TCK, disable saving of
TDO data, enable/disable single step mode and loop mode.

3.1.1 Starting the MTC

Write to the execute register with the start bit set (bit 0).

3.1.2 Stopping the MTC

Write to the execute register with the start bit cleared (bit 0). This will also clear the
interrupt if set.

3.1.3 Resetting the MTC

Write to the execute register with the reset bit set (bit 3). The TCK clock must be run-
ning for reset to fully reset the MTC.

3.1.4 Looping the MTC

When the loop mode is enabled the MTC test will stay in a loop until the start bit or
loop mode bit is cleared.

3.2 Test result comparison

When the test has been stopped the result memory can be read and compared
against expected data. Read the status register bits [31:20] to find out how many bits
of TDO data that have been stored. Use the following sequence to find out if an error
has occurred:

loop (i = 0; i < ExpectedDataSize; i++) {

 errors[i] = (TestResult[i] xor ExpectedData[i]) and MaskData[i]; }

If the error array contains a "1" an error has occurred.
19(24)

4 Writing a software driver for MTC

The MTC must operate in a number of testing application. The software driver must
be written to support all these application (Table 15., page 21). The tests will be of
two kinds, automated tests and debug tests. For every test application a test set will
be generated. When a test application is listed as destructive it will destroy the func-
tional setup of the board.

4.1 Test sets

A test set is a set of test programs (load modules), that will be executed in sequence.
Every test application can have its own test set or share test set with another appli-
cation. A test set is a list of addresses to the test programs used (Figure 10, page
20). All test sets and load modules should be stored in a flash memory on the board.
This way the board will carry all its test application even when removed from the sys-
tem at a repair center.

Figure 10 Flush memory data storage

Test set 1 (Board test)

Test set 2 (Lab test)

Test set 3 (Start-up test)

Test set 4 (Maintenance test)

Test set 5 (Repair center test)

Load Module 1

Load Module 2

Load Module 3

Load Module 4

Load module 1 identity

Start address

Load module 3 identity

Start address

Load module 4 identity

Start address

End of test set
20(24)

A

B

L

S

M

F

R

Sho

TSE

RU

LO

RE

TC

MO

SPE

SST

TD

LO

INT

STA
4.2 Automated test

An automated test will run all tests in sequence after a start signal is issued. The test
result from the first test will be compared to expected data, and if there is an error
the test will stop and report the error. If there is no error the next test will start and if
no errors are reported, this will go on until all tests have been run. The end of test
set word (= all zeros) signals the end of the test set.

4.3 Debug test

When used in debug mode the MTC will be controlled from a terminal. Debug com-
mands will be issued to control the MTC behaviour. All debug commands that are
needed are listed in (Table 16., page 21)

Table 15. MTC test applications

pplication Description Mode Destructive

oard test Used during production testing of the board Automated Yes

ab test Used during debugging of the board in the lab Debug Yes

tart-up test Used when powering up the system Automated Yes

aintenance test Used when the system is up and running Automated No

ault isolation Used during fault isolation in the system Debug Yes

epair center test Used in the board repair center Automated, debug Yes

Table 16. Debug command

rt command Description Arguments Register affected

T Select test set 1..N None

N Run complete test set 1..N None

AD Load test program (Load module) 1..N None

SET Reset MTC None All

K Enable or disable TCK clock ENB DIS Control_reg[7]

DE Select MTC operating mode BOARD INT EXTI EXTE
SYSI SYSE

Control_reg[3:0]

ED Set TCK clock speed 4 8 16 32 64 Control_reg[6:4]

EP Enable or disable single step mode ENB DIS Control_reg[8]

OREC Set TDO recording mode ALL INSTR DATA NONE Control_reg[10:9]

OP Enable or disable loop mode ENB DIS Control_reg[11]

Enable or disable interrupt ENB DIS Control_reg[12]

TUS Read status register None Status_reg
21(24)

DE

CO

STA

STO

STE

CO

RE

CO

Sho
5 Conclusions

The design of the MTC shows that a JTAG tester can easily be fitted into a system-
on-chip design. Having a JTAG tester on the board will open up many new testing
opportunities during the whole product life cycle. The definition of a simple JTAG test
language (JTL) that can be used for writing all kind of JTAG tests will make the pro-
gramming of MTC an easy task. The debugging features can be used in the lab to
help the board designer in the prototype testing. New test features can be added and
controlled from the MTC. The possibilities are infinite.

Acknowledgement

I would like to thank Gunnar Carlsson and Tom Stadler for their support and techni-
cal assistance during the MTC design phase.

References

[1] IBM On-Chip Peripheral Bus Architecture Specifications v 2.1

[2] IEEE Std 1149.1-1990 with supplements IEEE 1149.1a-1993 and IEEE

1149.1b-1994

[3] PPC440x6 Embedded Processor Core User’s Manual IBM SA14-2758-01

BUG Read debug register None Debug_reg

NTROL Read control register None Control_reg

RT Start MTC None Execute_reg[0]

P Stop MTC None Execute_reg[0]

P Single step MTC test program None Execute_reg[1]

NT Continue MTC execution after pause None Execute_reg[2]

SULT Read TDO recording RAM None

MPARE Compare TDO recorded to expected data

Table 16. Debug command

rt command Description Arguments Register affected
22(24)

Appendix A

Test program example 1

Read identification code from the IDCODE register. Load the IDCODE instruction
and shift out the 32 bit identification code.

parameter INSTRUCTION_LENGTH = 4;
parameter DATA_LENGTH = 32;
parameter IDCODE = 4’b0010;
parameter ALL_TDO_DATA = 2’b0;
parameter DEVICE_IDCODE = 32’h14012049;

SetTdoRecordingMode(ALL_TDO_DATA);
TestResetKeepingTrstzLow (10);
LoadInstruction (INSTRUCTION_LENGTH,IDCODE);
SetExpectedData(INSTRUCTION_LENGTH,4’b0001);
ReadWriteDataRegister (DATA_LENGTH,32’h0);
SetExpectedData(DATA_LENGTH,DEVICE_IDCODE);
EndOfTestProgram;

Test program example 2

Setup and run a MBIST test. Load the MBIST_ENABLE instruction and enable all 8
MBISTs. Load the RUNBIST instruction to start the MBISTs. Wait in Run-Test-Idle
state until the test has finished. Load the instruction MBIST_RESULT. Read the re-
sult by shifting out the date from the MBIST_RESULT data register. Expect all bits
set to one.

parameter INSTRUCTION_LENGTH = 4;
parameter DATA_LENGTH = 8;
parameter TDO_SHIFTDR = 2’b01;
parameter MBIST_ENABLE = 4’b0100;
parameter MBIST_RESULT = 4’b0101;
parameter RUNBIST = 4’b0110;
parameter MBIST_RUNTIME = 1000000;

SetTdoRecordingMode(TDO_SHIFTDR);
TestResetKeepingTrstzLow (10);
LoadInstruction (INSTRUCTION_LENGTH,MBIST_ENABLE);
ReadWriteDataRegister (DATA_LENGTH,8’b11111111);
SetExpectedData(DATA_LENGTH,8’bxxxxxxxx);
LoadInstruction (INSTRUCTION_LENGTH,RUNBIST);
WaitInRunTestIdle (MBIST_RUNTIME);
LoadInstruction (INSTRUCTION_LENGTH,MBIST_RESULT);
ReadWriteDataRegister(DATA_LENGTH,8’b00000000);
SetExpectedData((DATA_LENGTH,8’b11111111);
EndOfTestProgram;
23(24)

Test program example 3

Setup a test to sample the inputs on device 3 in the board scan chain.

parameter INSTRUCTION_LENGTH = 4;
parameter BOUNDARY_SCAN_LENGTH = 8;
parameter TDO_SHIFTDR = 2’b01;
parameter SAMPLE = 4’b0011;
parameter BYPASS = 4’b1111;

SetTdoRecordingMode(TDO_SHIFTDR);
TestResetKeepingTrstzLow (10);
LoadInstruction (4 * INSTRUCTION_LENGTH,
{BYPASS,BYPASS,SAMPLE,BYPASS});
ReadWriteDataRegister (1+1+BOUNDARY_SCAN_LENGTH+1,11’b0);
SetExpectedData (1+1+BOUNDARY_SCAN_LENGTH+1,11’bxx0110xxxxx);
EndOfTestProgram;

BYPASS BYPASS

BYPASS

TDI

TDO

0
1
1
0

DEVICE 1 DEVICE 2

DEVICE 3DEVICE 4
24(24)

