

Project DEPLOY
Grant Agreement 214158

“Industrial deployment of advanced system engineering methods for high
productivity and dependability”

DEPLOY Deliverable D23

D9.2 Model Construction Tools and Analysis Tools II

Editor: Carine Pascal (Systerel)

Internal reviewers: Thierry Lecomte (ClearSy), Michael Leuschel (Düsseldorf

University)

Contributors: Nicolas Beauger (Systerel), Jens Bendisposto (Düsseldorf University),

Michael Butler (Southampton University), Andreas Fürst (ETH Zurich), Alexei Iliasov

(Newcastle University), Michael Jastram (Düsseldorf University), Issam Maamria

(Southampton University), Daniel Plagge (Düsseldorf University), Renato Silva

(Southampton University), Laurent Voisin (Systerel)

Public Document

29 January 2010

http://www.deploy-project.eu

Contents

1 Introduction 3

2 General Platform Maintenance 5

3 UML- B Improvements 8

4 ProB Improvements 12

5 Text Editor Plug- In 19

6 Decomposition Support 22

7 Initial Definition of Language Support for Code Generation 25

8 Improvements to Existing Provers 30

9 Rule- based Prover 33

10 Pattern Plug- in 36

11 Flow Plug- in 39

12 Modularisation Plug- in 41

Introduction 3

1 Introduction

The deliverable D23 of the DEPLOY project is split into two parts:

� The Rodin core platform and plug-ins (i.e. the DEPLOY tools).

� This document.

The Rodin platform is available from the SourceForge site ([1]). The tool documentation is

provided within the Event-B wiki ([2]).

This document gives a description of the work that was carried on during the second year

of the DEPLOY project (Feb 2009-Jan 2010), in the course of the WP9 Tooling research and

development work package, and brings new perspectives for the coming year.

In particular, the WP9 partners have strovin to meet the following objectives:

� Improved scalability of the Rodin platform to support industrial deployments, through

GUI enhancements (smart completion, renaming, text editing, etc), decomposition

support and design-pattern management.

� Prover integrity and performance, to enhance the confidence in provers and to enlarge

their proving capabilities. To this aim, the existing provers have been improved and a

new rule-based prover plug-in has been implemented.

� Model animation and testing, to validate Event-B models. More precisely, the ProB or

AnimB plug-ins allow a domain expert to detect errors in a model and ensure the

presence of desired functionalities. Moreover, it is very important for many industrial

applications to be able to completely hide the underlying formal specification.

� Model checking (ProB), to enable users to find sequences of events that prevent safety

properties or proof obligations to be fulfilled.

� UML integration. UML-B provides a diagrammatic, formal modelling notation based on

UML.

� Code generation, to enable complete support for development, from high-level Event-B

models down to executable implementations. An initial definition of language support for

code generation has been put forward.

This document covers the following items: general platform maintenance, UML-B

improvements, ProB improvements, text editor plug-in, decomposition plug-in, initial

definition of language support for code generation, improvements to existing provers,

rule-based prover, pattern plug-in, flow plug-in and modularisation plug-in.

For each of these newly implemented features or improvements, the document is

structured as follows:

� Overview. The involved partners are identified and an overview of the contribution is

given.

� Motivations. The motivations for each tool extension and improvement are expressed.

� Choices / decisions. The decisions (e.g. design decisions) are justified.

� Available documentation. Some pointers to the Event-B wiki or related publications are

listed.

� Planning. A timeline and the current status (as of 29 Jan 2010) is given.

Introduction 4

References

[1] http:/ / sourceforge. net/ project/ showfiles. php?group_id=108850& package_id=181714

[2] http:/ / wiki. event-b. org

General Platform Maintenance 5

2 General Platform Maintenance

2.1. Overview

The purpose of the platform corrective and evolutive maintenance is to address bugs and

feature requests reported either by mail or through the appropriate trackers on

SourceForge.

The noticeable new features in the main platform for the past year are listed below:

� Mathematical Language V2 (releases 1.0 and upper)

The new version of the mathematical language is supported.

See Event-B Mathematical Language [1].

� Theorems everywhere (releases 1.0 and upper)

It is possible to mix theorems and regular predicates in axioms, invariants and guards.

� Auto-completion (releases 1.0 and upper)

When entering a predicate or expression in the Event-B machine / context editor, it is

possible to type C - S p a c e to see a list of possible identifiers that could be entered at

the cursor position.

� Entering mathematical symbols (releases 1.1 and upper)

The Rodin platform provides many more ways to enter mathematical symbols:

- either type the ASCII shortcut (as in previous releases),

- or type the LaTeX command (as defined in style b s y m b),

- or click in the Symbol Table view which displays the symbols graphically,

- or directly enter the Unicode value of the symbol (for advanced users).

See Rodin Keyboard [2].

See the Release Notes [3] and the SourceForge [3] databases (bugs and feature requests) for

details about the previous and upcoming releases of the Rodin platform.

2.2. Motivations

The main evolutions of the Rodin platform are driven by the description of work for the

DEPLOY project and the requirements expressed by industrial WP1 to WP4 partners or by

advanced users during the lifecycle of the project.

Beyond that, any user registered on SourceForge may record any encountered bug on the

Rodin platform or request a new feature, using the dedicated trackers [3]. Depending on the

category, the bug / feature is assigned to the WP9 partner who is in charge of processing it:

Category Partner

AnimB Christophe METAYER

B2LaTeX University of Southampton

Decomposition Systerel

Event-B core Systerel

Event-B interface Systerel

General Platform Maintenance 6

Event-B POG Systerel

Event-B provers Systerel

Event-B static checker Systerel

PRO-B Dusseldorf

Renaming University of Southampton

Requirements Dusseldorf

Rodin platform Systerel

Text editor Dusseldorf

U2B Southampton

The priorities are discussed during the WP9 meetings (bi-weekly management conference

call, WP9 face-to-face meetings during DEPLOY workshops).

2.3. Choices / Decisions

The WP9 partners have agreed on a release policy (see the Rodin Platform Releases [3] wiki

page). In particular:

� A new version of the Rodin platform is released every 3 months.

� The code is frozen during the 2 weeks preceding each release.

� The Eclipse versioning policy is enforced (See Version Numbering [4]).

� A wiki page is dedicated to each release.

The main advantages, for both developers and end-users, are summarized below:

� Information. The wiki page dedicated to each release provides instant information on the

new features and improvements, which may be discussed if necessary.

� Validation. The period of code freeze is more especially devoted to bug fixes, and the

frequency of the stable releases is ensured.

� Integration. A synchronization between the optional plug-ins and other plug-ins is now

possible.

2.4. Available Documentation

The following pages give useful information about the Rodin platform releases:

� Release notes.

See Rodin Platform Releases [5].

More details are provided in the notes distributed with each release (eg. [6]).

� Bugs.

See [7].

� Feature requests.

See [8].

General Platform Maintenance 7

2.5. Planning

The Rodin Platform Releases [3] wiki page lists in particular the upcoming releases and give

the scheduled release dates.

Special efforts will be made on the following topics, which are requested by all users in an

industrial context:

� Mathematical Extensions.

Currently, the operators and basic predicates of the Event-B mathematical language

supported by the Rodin platform are fixed. The purpose is to extend the platform to

support user-defined data types and associated operators, including inductive data

types. Users will then be able to define operators of polymorphic type as well as

parameterised predicate definitions.

� Team-based Development.

The purpose is to perform simultaneous developments.

The Decomposition plug-in [9] gives an answer to this requirement by allowing to cut a

model in sub-models which may be handled independently. In the same manner, the

EMF Compare Editor [10] enables the comparison of machines and contexts: it is a first

step to be able to use the Rodin platform in a team environment by putting a code

repository (e.g., Subversion) underneath it.

In order to understand the problem properly, some usage scenarios for team-based

development [11] and for merging proofs [12] have already been written. Moreover, a

page has been initiated to remember the main requirements (see Teamwork

Requirements [13]). These pages provide a basis for brainstorming and further

developments on the topic.

� Documentation.

The purpose is to continuously increase and improve available documentation on the

Wiki. It may contain requirements, pre-studies (states of the art, proposals,

discussions), technical details (specifications), teaching materials (tutorials), user's

guides, etc. The intended audience may be developers or end-users.

References

[1] http:/ / wiki. event-b. org/ index. php/ Event-B_Mathematical_Language

[2] http:/ / wiki. event-b. org/ index. php/ Rodin_Keyboard

[3] http:/ / wiki. event-b. org/ index. php/ D23_General_Platform_Maintenance#Available_Documentation

[4] http:/ / wiki. eclipse. org/ index. php/ Version_Numbering

[5] http:/ / wiki. event-b. org/ index. php/ Rodin_Platform_Releases

[6] http:/ / sourceforge. net/ project/ shownotes. php?release_id=693928

[7] http:/ / sourceforge. net/ tracker/ ?atid=651669& group_id=108850

[8] http:/ / sourceforge. net/ tracker/ ?group_id=108850& atid=651672

[9] http:/ / wiki. event-b. org/ index. php/ D23_Decomposition

[10] http:/ / wiki. event-b. org/ index. php/ EMF_Compare_Editor_installation

[11] http:/ / wiki. event-b. org/ index. php/ Scenarios_for_Team-based_Development

[12] http:/ / wiki. event-b. org/ index. php/ Scenarios_for_Merging_Proofs

[13] http:/ / wiki. event-b. org/ index. php/ Teamwork_Requirements

UML-B Improvements 8

3 UML- B Improvements

3.1. Overview

This part of the deliverable describes improvements to the UML-B plug-in feature, which is

the responsibility of University of Southampton.

A new plug-in feature has been developed to provide animation of UML-B state-machine

diagrams. This feature was developed by University of Southampton.

The longer term development of UML-B relies on an EMF representation of Event-B. The

development of a new EMF Event-B plugin-in feature is also described in this section. This

feature was initially developed by University of Southampton, Heinrich-Heine University,

D�sseldorf and University of Newcastle. It is now mostly maintained and developed by

University of Southampton.

3.2. Motivations

3.2.1. UML-B Support for State machine Refinement

The current version of the UML-B tool has been improved to support the refinement of

state-machines. At the last deliverable, refinement of classes was supported and

state-machine refinement was beginning to be investigated. The investigation has

experimented several notation and methodological alternatives. The design has now been

finalised and an implementation has been achieved. State-machines can be refined by

adding nested state-machines inside states. Some of the transitions in the nested

state-machine do not represent new events but contribute to the refinements of existing

transitions in the parent state-machine. A concept of transition elaboration has been

invented to represent this relationship.

3.2.2. UML-B General Improvements

Many other minor improvements have been made to the UML-B tool including:

� collapsing empty compartments on diagrams,

� improved navigation between diagrams,

� improved properties views,

� ability to order classes and class-types in the output translation,

� support for theorems everywhere (i.e. invariants and axioms can now be designated as

theorems).

3.2.3. UML-B State-machine Animation

This feature was developed in response to a requirement from Siemens Transportation.

Several state-machines can be selected (representing refinements and hierarchical nesting)

for simultaneous animation. The animation relies on Pro-B animation of the corresponding

Event-B models (that have been automatically generated by UML-B). The animated

diagrams show the currently active states and the enabled transitions. Events can be 'fired'

by clicking on the enabled transition. Where the state-machine belongs to a class, instances

of the class can be seen moving from state to state.

UML-B Improvements 9

The screenshot below shows a simple statemachine being animated. Two class instances

are currently active; one models an ATM that is not available (e.g. in maintenance) and the

other is in the process of validating a card. Transitions that are enabled for one or other of

the class instances are emboldened. (The instance to be used when a transition is fired is

selected when the transitions is clicked upon).

 .

A larger screenshot of refined and nested statemachines being animated in parallel is

shown here:

Statemachine Animation Large Screenshot [1]

3.2.4. EMF Framework for Event-B

An EMF (Eclipse Modelling Framework) based representation of Event-B was developed

and made available as a plug-in feature for Rodin. This enables Event-B machines and

contexts to be loaded into EMF based tools. Serialisation (i.e. loading and saving) is

performed via the Rodin API. This feature can be viewed as an enabling technology. Hence

motivation derives from several sources including:

� A Text editor was requested by several industrial and academic partners - A

fully-featured EMF based text editor (Camille) has been developed by D�sseldorf and is

now available.

� Team-working facilities are required by all industrial partners (particularly Bosch and

SSF) - EMF Compare/merge tools are now under investigation to support a

teamworking repository plug-in feature.

� UML-B integration - since UML-B is based on EMF, the development of an EMF

representation of Event-B enables UML-B concepts to be added as extensions.

3.3. Choices / Decisions

3.3.1. UML-B Support for State machine Refinement

The methods and modelling notations for refinement in UML-B were developed by

experimentation using a case study of an ATM. The use of hierarchical nested

state-machines (which were already available in UML-B) as a technique for adding detail in

refinement was quickly adapted by making changes to the meta-model and translation. This

technique was found to be suitable. Some further experimentation was needed in order to

understand the need to link transitions of the nested state-machines with those in their

parent. A concept of elaboration was introduced, whereby an elaborating transition

contributes guards and actions to the event produced from the elaborated parent transition.

Transition splitting (analogous to event splitting in Event-B refinements) is a natural

consequence of refinement of states. An idea to bundle the split transitions in the parent

UML-B Improvements 10

state-machine so that the correspondence with the abstract refined state-machine is more

obvious has not been pursued for now since it would add complication to the tooling.

3.3.2. UML-B State-machine Animation

Initially, we attempted to model the animation state information as an extension to the

UML-B meta-model. We discovered technological difficulties in extending EMF models in

this way. Therefore, we adopted an alternative solution using an independent meta-model

of animation diagrams. These replicate parts of the structure of UML-B but add

meta-properties to model the animation. When a model is to be animated, an animation

model is constructed programmatically to match the UML-B model. Thereafter, the

animation runs independently of UML-B. This has the additional benefit that the diagram

can be simplified and tailored to better suit animation. For example, removing the editing

palette.

3.3.3. EMF Framework for Event-B

The structure of the EMF meta-model for Event-B was studied in great detail. Various

options for sub-packaging the model were tried but it has been found that it is more

convenient for users to keep a simple package structure. Currently this consists of three

packages; a core package containing abstract basis and project level meta-model, a

machine package and a context package. A flexible abstract basis has been derived through

experimentation. The abstract basis consists of an inheritance hierarchy of abstract

meta-classes which provide great flexibility for writing code that deals with the meta-model

in as generic a manner as possible. A driving factor in the design was to support both

project level tools and component level tools. The latter should be able to manipulate a

single machine or context without loading referenced components. This was achieved

customising the EMF proxies (used in references) so that they are calculated lazily (when a

request to resolve is received).

3.4. Available Documentation

UML-B Refinement is described in a paper which was presented at the FM2009 conference

in Eindhoven. It is available here:

Language and Tool Support for Class and State Machine Refinement in UML-B [2]

A tutorial on how to refine state-machines is available on the wiki:

Refinement of Statemachines [3]

State-machine animation is described on the wiki here:

UML-B - Statemachine Animation [4]

It is also available as a short paper here:

Animation of UML-B State-machines [5]

The EMF Framework for Event-B is described on the wiki here:

EMF framework for Event-B [6]

It is also available as a short paper here:

An EMF Framework for Event-B [7]

UML-B Improvements 11

3.5. Planning

UML-B integration:

� Develop extensibility mechanisms for EMF Event-B framework via experimentation with

structured data (records) plug-in.

� Re-engineer UML-B context diagrams as a diagrammatic view of records.

� Re-engineer UML-B package diagram based on EMF Event-B framework.

References

[1] http:/ / wiki. event-b. org/ index. php/ Statemachine_Animation_Large_Screenshot

[2] http:/ / eprints. ecs. soton. ac. uk/ 18268

[3] http:/ / wiki. event-b. org/ index. php/ Refinement_of_Statemachines

[4] http:/ / wiki. event-b. org/ index. php/ UML-B_-_Statemachine_Animation

[5] http:/ / eprints. ecs. soton. ac. uk/ 18261

[6] http:/ / wiki. event-b. org/ index. php/ EMF_framework_for_Event-B

[7] http:/ / eprints. ecs. soton. ac. uk/ 18262

ProB Improvements 12

4 ProB Improvements

4.1. Overview

This part of the deliverable describes improvements of the ProB animation and model

checking plug-in.

The improvements and development of ProB were mainly carried out by University of

D�sseldorf, with some support by the University of Southampton. Furthermore, the work

was driven by requirements of Siemens and SAP; some tool development was also

undertaken by SAP.

New features:

� Multi-level animation and validation.

� B-Motion Studio.

� Disprover Support.

� First steps towards test-case generation.

Improvements:

� Scalability improvements driven by Siemens and SAP applications.

� Using proof information to improve model checking.

Other works:

� First steps towards validation of ProB for usage by Siemens in SIL-4 chain.

� Evaluation against SAT/SMT/BDD-based approaches.

4.2. Motivations

4.2.1. Multi-level Animation and Validation

Thus far ProB only allowed single-level animation, i.e. the animator would animate a single

refinement level in isolation. This meant that ProB was not able to detect a large class of

potential errors in the model:

� A broken gluing invariant.

� An invalid witness.

� Violation of guard strengthening.

� Violation of variant decrease (resp. decrease or stability) for convergent (resp.

anticipated) events.

The new validation algorithm now can animate a range of refinements together. The user

can decide which levels are to be animated together. As such, all of the above errors can

now be detected by ProB. User experience is also improved, as he or she can inspect also

the abstract variables. The new algorithm has been successfully applied to various case

studies, and thus far up to 14 levels have been animated concurrently without problem.

ProB Improvements 13

4.2.2. B-Motion Studio

It is often very important to be able to show a formal model to a domain expert or manager,

not versed in formal methods. For example, only a domain expert will be able to detect

certain mistakes in the formal model. To enable to easily and quickly build graphical

visualisations of Rodin models, we have developed B-Motion Studio. B-Motion Studio comes

with a graphical editor to arrange graphical components and link them with the formal

model. No new programming language has to be learned: the linking is described in B

itself. To run a graphical visualisation, the ProB animator is used.

4.2.3. Test-Case Generation

During deployment in the SAP workpackage it became clear that test-case generation from

the Event-B models is required for success. In this task, we have developed a first algorithm

for test-case generation, which ensures complete transition coverage of a high-level model,

and translates the test-cases into traces of a refined model, so that the tests can be run on

the "real" system. Optimisations, to reduce the length and number of test cases, as well as

to minimise race conditions, have been implemented.

4.2.4. Scalability, Application by Siemens and Validation

We tackled a case study in WP2, which centres on the San Juan metro system installed by

Siemens. The control software was developed and formally proven with B. However, the

development contains certain assumptions about the actual rail network topology which

have to be validated separately in order to ensure safe operation. For this task, Siemens has

developed custom proof rules for AtelierB. AtelierB, however, was unable to deal with about

80 properties of the deployment (running out of memory). These properties thus had to be

validated by hand at great expense (and they need to be revalidated whenever the rail

network infrastructure changes).

The motivation then was to try and use ProB for this task. This required a considerable

amount of work on improving the scalability of the ProB kernel, to be able to deal with large

sets and relations. The ProB parser and type checker also had to be re-developed to be able

to deal with large industrial specifications.

The case study was a success: ProB was able to validate all of the about 300 properties of

the San Juan deployment, detecting exactly the same faults automatically in around 17

minutes that were manually uncovered in about one man-month.

This leads to the next task: the issue of validating ProB, so that it can be integrated into the

SIL4 development chain at Siemens.

4.2.5. Proof Directed Model Checking

In order to improve the performance and scalability of animation and model checking with

ProB, we want to make use of the proof information available in an integrated platform

such as Rodin. In particular, we can use the information about which POs have already

been discharged to simplify the task of the model checker and to guide the order in which it

evaluates states.

Our first implementation has shown significant reduction of the model checking effort for

industrial applications. It uses proof information obtained from Rodin to remove invariants

ProB Improvements 14

that are proven to hold. Actually, if unproven(e) is the unproven part of the invariant for

event e, and a state is reachable via events e and f, we only need to check the intersection

of unproven(e) and unproven(f) (see Jens Bendisposto, Michael Leuschel. Proof Assisted

Model Checking for B. ICFEM 2009. [1]).

4.2.6. SAT/SMT/Kodkod

In this subtask we investigate alternate approaches to validate high-level B models using

techniques and tools based on BDDs, SAT-solving and SMT-solving. The overall motivation

is to improve the scalability of the animator and model checker.

When searching for variable values that satisfy a certain predicate, experience showed that

ProB performs best when some values are already known, as in finding state transitions

where all values of the previous state are known. When looking for constants that satisfy

the axioms or when trying to find counterexamples for proof obligations (see next Disprover

paragraph), SAT resp. SMT solving techniques look very promising to support ProB's

constraint solving approach.

4.2.7. Disprover

In order to help the user, we wanted to make it possible to apply ProB to individual proof

obligations. In some cases, this enables proving a sequent by exhaustive case analysis. Also,

if ProB finds a counterexample, the user gets important feedback: the proof obligation

cannot be discharged, along with a reason why.

4.3. Choices / Decisions

One important choice for ProB is to use the same constraint solving kernel and interpreter

for B, Event-B and Z. This decision, allows us to maintain a tool capable of animating and

model checking these three formalisms. It also gives us a much wider range of test cases.

For example, most of the regression tests of ProB come in the form of B machines (Rodin

archives are much "cumbersome" as a basis of regression tests: they need to be upgraded

and imported into workspaces). This choice also enabled us to achieve the successful

deployment of ProB in WP2, where the use of classical B was mandatory.

Concerning the inclusion of SMT, SAT, BDD techniques into ProB, no decision has been

taken yet. We are still investigating the possibilities.

Concerning B-Motion Studio, we decided not to use Flash (we had an earlier prototype

using Flash). We wanted a tool that can be easily used and installed into Rodin. We also

wanted a tool that can be used without having to learn a new programming language

(Action Script).

ProB Improvements 15

4.4. Available Documentation

4.4.1. User Manual

ProB User Manual [2]

4.4.2. Published Papers

Below is a list of published papers, along with an abstract.

4.4.2.1. Improved Kernel to deal with large sets and relations

In this part we describe the successful application of the ProB validation tool on an

industrial case study. The case study centres on the San Juan metro system installed by

Siemens. The control software was developed and formally proven with B. However, the

development contains certain assumptions about the actual rail network topology which

have to be validated separately in order to ensure safe operation. For this task, Siemens has

developed custom proof rules for AtelierB. AtelierB, however, was unable to deal with about

80 properties of the deployment (running out of memory). These properties thus had to be

validated by hand at great expense (and they need to be revalidated whenever the rail

network infrastructure changes). In this paper we show how we were able to use ProB to

validate all of the about 300 properties of the San Juan deployment, detecting exactly the

same faults automatically in around 17 minutes that were manually uncovered in about one

man-month. This achievement required the extension of the ProB kernel for large sets as

well as an improved constraint propagation phase. We also outline some of the effort and

features that were required in moving from a tool capable of dealing with medium-sized

examples towards a tool able to deal with actual industrial specifications. Notably, a new

parser and type checker had to be developed. We also touch upon the issue of validating

ProB, so that it can be integrated into the SIL4 development chain at Siemens

Michael Leuschel, J�r�me Falampin, Fabian Fritz, Daniel Plagge. Automated Property

Verification for Large Scale B Models, FM'2009. [3]

4.4.2.2. Multi-Level Animation and Validation

We provide a detailed description of refinement in Event-B, both as a contribution in itself

and as a foundation for the approach to simultaneous animation of multiple levels of

refinement that we propose. We present an algorithm for simultaneous multi-level

animation of refinement, and show how it can be used to detect a variety of errors that

occur frequently when using refinement. The algorithm has been implemented in ProB and

we applied it to several case studies, showing that multi-level animation is tractable also on

larger models.

Stefan Hallerstede, Michael Leuschel, Daniel Plagge. Refinement-Animation for Event-B ---

Towards a Method of Validation. ABZ'2010 [4]

See also Stefan Hallerstede, Michael Leuschel. How to Explain Mistakes. TFM'09. [5]

ProB Improvements 16

4.4.2.3. Test Case Generation

Choreography models describe the communication protocols between services. Testing of

service choreographies is an important task for the quality assurance of service-based

systems as used e.g. in the context of service-oriented architectures (SOA). The formal

modelling of service choreographies enables a model-based integration testing (MBIT)

approach. We present MBIT methods for our service choreography modeling approach

called Message Choreography Models (MCM). For the model-based testing of service

choreographies, MCMs are translated into Event-B models and used as input for our test

generator which uses the model checker ProB.

Sebastian Wieczorek, Vitaly Kozyura, Andreas Roth, Michael Leuschel, Jens Bendisposto,

Daniel Plagge, Ina Schieferdecker. Applying Model Checking to Generate Model-based

Integration Tests from Choreography Models. TESTCOM/FATES 2009. [6]

4.4.2.4. Proof-Directed Model Checking

With the aid of the ProB plug-in, the Rodin Platform provides an integrated environment for

editing, proving, animating and model checking Event-B models. This is of considerable

benefit to the modeller, as it allows him to switch between the various tools to validate,

debug and improve his or her models. The crucial idea of this paper is that the integrated

platform also provides benefits to the tool developer, i.e. it allows easy access to

information from other tools. Indeed, there has been considerable interest in combining

model checking, proving and testing. In previous work we have already shown how a model

checker can be used to complement the Event-B proving environment, by acting as a

disprover. In this paper we show how the prover can help to improve the efficiency of the

animator and model checker.

Jens Bendisposto, Michael Leuschel. Proof Assisted Model Checking for B. ICFEM 2009. [1]

4.4.2.5. Debugging Tricky Proof Obligations with the ProB Disprover

While a large number of proof obligations can be discharged automatically by tools such as

the Rodin platform, a considerable number still have to be proven interactively. In this

paper, we describe a disprover plug-in for Rodin that utilizes ProB to automatically find

counterexamples for a given problematic proof obligation. In case the disprover finds a

counterexample, the user can directly investigate the source of the problem, as pinpointed

by the counterexample. We also discuss under which circumstances our plug-in can be used

as a prover, i.e. when the absence of a counterexample actually is a proof of the proof

obligation.

Olivier Ligot, Jens Bendisposto, Michael Leuschel. Debugging Event-B Models using the

ProB Disprover Plug-in. AFADL 2007. [7]

4.4.2.6. Inspection of Alternate Approaches

ProB is a model checker for high-level B and Event-B models based on constraint-solving. In

this paper we investigate alternate approaches for validating high-level B models using

techniques and tools based on using BDDs, SAT-solving and SMT-solving. In particular, we

examine whether ProB can be complemented or even supplanted by using one of the tools

BDDBDDB, Kodkod or SAL.

ProB Improvements 17

Daniel Plagge, Michael Leuschel, Ilya Lopatkin, Alexander Romanovsk. SAL, Kodkod, and

BDDs for Validation of B Models. Lessons and Outlook. AFM'09. [8]

4.4.2.7. Validation of ProB

Symmetry reduction is a model checking technique that can help to alleviate the problem of

state space explosion, by preventing redundant state space exploration. In previous work,

we have developed three effective approaches to symmetry reduction for B that have been

implemented into the ProB model checker, and we have proved the soundness of our state

symmetries. However, it is also important to show that our techniques are sound with

respect to standard model checking, at the algorithmic level. In this paper, we present a

retrospective B development that addresses this issue through a series of B refinements.

This work also demonstrates the valuable insights into a system that can be gained through

formal modelling.

Edd Turner, Michael Butler, Michael Leuschel. A Refinement-Based Correctness Proof of

Symmetry Reduced Model Checking. ABZ'2010. [9]

4.4.2.8. B-Motion Studio

B-Motion Studio provides a way to quickly generate domain specific visualisations for a

formal model, enabling domain experts and managers to understand and validate the

model. We also believe that our tool will be of use when teaching formal methods, both

during lectures as a way to motivate students to write their own formal models.

Lukas Ladenberger, Jens Bendisposto, Michael Leuschel. Visualising Event-B models with

B-Motion Studio. FMICS'2009. [10]

4.5. Planning

In future, it is planned to work on the following topics:

4.5.3. Model-based Testing

� Directed model checking to achieve coverage (DEPLOY extension; flow graphs).

� Integrate algorithm into Rodin.

� Make algorithm more generic.

� Top-down multi-level animation.

� Move from prototype to real product.

ProB Improvements 18

4.5.4. B-Motion Studio

� Experiment with existing Flash animation and B model of ClearSy.

� Improve usability, more widgets.

4.5.5. Validation of ProB

� Test coverage analysis for Prolog code.

� Validation document to be delivered to Siemens.

4.5.6. Scalability

� More experiments with SAT, SMT, BDD techniques.

� Integration of Kodkod into ProB to solve complicated predicates over first order relations

and simple sets.

� Adaption of ProB for the upcoming mathematical extensions. Indeed, for the moment the

Rodin user is often required to model basic datatypes (records, sequences,...) or

operators (transitive closure) herself. This is a big challenge to the animator, which does

not know that the constants and variables of the machine (e.g. injective functions) are

"simply" meant to model quite basic datatypes. With the introduction of mathematical

extensions for records, transitive closure, ... this hurdle will be overcome.

4.5.7. Usability

� Feedback errors found by ProB into the PO view (as red icons).

� Improve disprover, detect when it is a decision procedure.

� Allow the user to easier inspect elements of the animated model: the cause of errors, why

events are not enabled, etc.

� Further improvements to the GUI: 2-D Viewer, better multi-level animation view.

References

[1] http:/ / www. stups. uni-duesseldorf. de/ ~leuschel/ publication_detail. php?id=253

[2] http:/ / asap0. cs. uni-duesseldorf. de/ trac/ prob/ wiki/

[3] http:/ / www. stups. uni-duesseldorf. de/ ~leuschel/ publication_detail. php?id=248

[4] http:/ / www. stups. uni-duesseldorf. de/ ~leuschel/ publication_detail. php?id=256

[5] http:/ / www. springerlink. com/ content/ 282p2316x7165588/

[6] http:/ / www. stups. uni-duesseldorf. de/ ~leuschel/ publication_detail. php?id=252

[7] http:/ / www. stups. uni-duesseldorf. de/ publications_detail. php?id=219

[8] http:/ / www. stups. uni-duesseldorf. de/ ~leuschel/ publication_detail. php?id=249

[9] http:/ / www. stups. uni-duesseldorf. de/ ~leuschel/ publication_detail. php?id=257

[10] http:/ / www. stups. uni-duesseldorf. de/ ~leuschel/ publication_detail. php?id=258

Text Editor Plug-In 19

5 Text Editor Plug- In

5.1. Overview

This part of the deliverable describes the Camille text editor plug-in.

5.2. Motivations

A number of frameworks for text editors are available, but EMF (Eclipse Modeling

Framework Project [1]) was quickly identified as the target candidate, in combination with

TEF (Textual Editing Framework), which is based on EMF. The framework seamlessly

integrates into Eclipse. It is already proven within Rodin, as it is the foundation of UML-B.

It is extensible - contributors of other plug-ins will be able to extend the text editor as well.

And last, a proof-of-concept prototype had been put together very quickly.

Rodin has done away with a textual representation of the formal models. Indeed, events,

theorems, axioms, etc. are stored in the Rodin database, and there is no classical text file to

edit the models. The models are directly manipulated by a structural form-based editor.

During the lifetime of the Rodin and DEPLOY projects it became increasingly apparent that

the current structural editor was not able to cope with some industrial needs. Functions

that are taken for granted in an editor - unstructured copy & paste or printing, just to name

a few - were missing or only partially functional.

As an Event-B model consists of text, users were requesting a text editor, which would

allow them to apply their already present text editing skills. As text editing is a

well-understood problem, a variety of frameworks were available to implement one. These

frameworks typically provide a wide range of standard features "for free", and typically

provide extension points for extendability with additional features. The development team

selected the Eclipse Modeling Framework (EMF), for the reasons outlined below.

The wide adoption of the text editor confirms that good decisions have been made. Besides

standard text editing features as cut & paste, unlimited undo and redo, line numbering and

many more, many Rodin-specific features had been implemented. The text editor supports

syntax and semantic highlighting, code completion, templates, an outline view, quick

navigation and many more.

5.3. Choices / Decisions

One important design consideration was to be able to re-use the Rodin formula syntax and

parser. This was deemed vital for keeping up with future evolutions of the platform, e.g. the

mathematical extensions will introduce new operators. As such, the grammar had to be

carefully designed to be able to parse the structure of an Event-B model independently of

the content of the predicates, expressions and actions. In other words, the structural parser

detects the structure of the model and sends the formula content to the Rodin parser.

There is a very important limitation of the editor; while it can cope with changes of the

mathematical language, it is not able to automatically deal with changes to the model�s

structure. If we need to add information to the structure of a model itself, such as

information on decomposition or flows it is necessary to modify the parser�s grammar and

recompile it. There is to our best knowledge only one tool for the Eclipse framework that

Text Editor Plug-In 20

allows modification of the grammar during runtime. In theory, the features of TEF [2]

perfectly fit our needs and indeed Alexei Iliasov developed in 2008 a prototype based on

TEF. However there were a number of things that convinced us to not use it. First of all, the

framework is released under the GNU Public License which is legally not compatible with

the Eclipse Public License used in Rodin. Second, the parser RunCC used in TEF has some

issues related to handling parse errors. Because the project did not make progress for three

years it is very unlikely that these problems will be fixed by the creators of the parser.

Extending RunCC could solve this problem but it does not seem to be feasible without

major effort and resources. The grammar used to generate Camille�s parser is close to

EBNF, so we think that it is not too difficult for plug-in developers to contribute to the

grammar but one has to be careful to not restrict the current language, i.e. we can only add

optional syntax elements to the grammar, otherwise we break older models. However, this

does not mean that we cannot have new mandatory elements, it only means that it has to be

checked by the underlying model instead of the parser.

We also considered the BE4 Framework [3] as well as Eclipse XText [4]; an early version of

Camille was indeed based on BE4 and it still contains some of its basic concepts. The main

reason to not use BE4 was that editors for EMF models are less strongly based on files than

editors for other languages. The EMF framework has its own notification system for

changes in models. These change notifications may be caused by file changes. In addition,

changes to the model coming from other plug-ins may trigger notifications too. This means

that a text editor needs to react, i.e. to run its compiling respectively updating processes

according to these changes. Therefore a build process which is based on files as BE4 offers

is rather unsuitable. XText was also considered and is a reasonable alternative to our

approach. At the time we started developing Camille, the XText framework was not

released and it was not clear if and when certain features are included. Also the API was

not stable at that time. In contrast to our solution, XText has the advantage that it creates

the parser from the EMF model.

The most challenging technical part was the synchronisation with the Rodin database,

particularly in the presence of other tools concurrently manipulating the same model. To

achieve this, we created a new abstraction of the Rodin database as an EMF (Eclipse

Modelling Framework Project [1]) data model. It allows us to work with Event-B models

independently of the persistence strategy. In addition we can use EMF standard

technologies for manipulating, comparing and merging of Event-B models.

The fit between the database model and the text representation posed a number of

challenges. Users must be able to edit both in the text editor and the structural editor.

However, the text editor provides much more freedom in formatting than the structural

editor. The current implementation keeps the formatting of the user intact, unless changes

through the structural editor are made. Also, comments cannot be placed anywhere, which

is unintuitive in a text environment. This is due to the fact that the database allows

comments only in certain places. Some constraints on permitted characters in labels and

identifiers had to be made. In all these instances, meaningful error messages guide the

user, and the editor attempts to be as unobtrusive as possible.

Text Editor Plug-In 21

5.4. Available Documentation

5.4.1. Online Documentation

� Text Editor Wiki Page [5]

� EBNF Syntax for the Textual Representation [6]

5.4.2. Papers

� A Semantics-Aware Text Editor for Event-B. Fabian Fritz. Master's Thesis. 2009 [7]

� Developing Camille, a Text Editor for Rodin. Jens Bendisposto, Fabian Fritz and Michael

Leuschel. 2009. (to appear in WS-TBFM 2010)

5.5. Planning

The Text Editor needs to be extended to support new attributes (e.g. stemming from the

upcoming decomposition plug-in) and the upcoming mathematical extensions.

Users have expressed the desire to be able to insert comments everywhere. It is unclear

whether this can be achieved without a major refactoring of the Rodin Database.

References

[1] http:/ / www. eclipse. org/ modeling/ emf/

[2] http:/ / www2. informatik. hu-berlin. de/ sam/ meta-tools/ tef/ index. html

[3] http:/ / www. stups. uni-duesseldorf. de/ thesis_detail. php?id=12

[4] http:/ / www. eclipse. org/ Xtext/

[5] http:/ / wiki. event-b. org/ index. php/ Text_Editor

[6] http:/ / wiki. event-b. org/ index. php/ TextEditor_EBNF

[7] http:/ / www. stups. uni-duesseldorf. de/ thesis_detail. php?id=20

Decomposition Support 22

6 Decomposition Support

6.1. Overview

The Event-B model decomposition is a new feature in the Rodin platform.

Two methods have been identified in the DEPLOY project for model decomposition: the

shared variable decomposition (or A-style decomposition), and the shared event

decomposition (or B-style decomposition). They both answer to the same requirement,

namely the possibility to decompose a model � into several independent sub-models

�.

Academic (ETH Zurich, University of Southampton) and industrial (Systerel) partners were

involved in the specification and development of model decomposition. Systerel, which

could have useful discussions with Jean-Raymond Abrial on the topic, was more especially

responsible for the A-style decomposition. The University of Southampton, where Michael

Butler is professor, was in charge of the B-style decomposition.

6.2. Motivations

One of the most important feature of the Event-B approach is the possibility to introduce

additional details such as new events and data during refinement steps.

Therefore, the re�nement process entails an increasing complexity of a model, where one

has to deal with a growing number of events, state variables, and consequently proof

obligations. This is well illustrated in the Event build-up slide of the Wright presentation

during the Rodin Workshop 2009.

See Experiences with a Quite Big Event-B Model [1].

The purpose of the Event-B model decomposition is precisely to give a way to address such

a difficulty, by cutting a large model � into smaller sub-models �. The

sub-models can then be refined separately and more comfortably than the whole. The

constraint that shall be satisfied by the decomposition is that these refined models might be

recomposed into a whole model � in a way that guarantees that � refines �.

The model decomposition leads to some interesting benefits:

� Design/architectural decision. It applies in particular when it is noticed that it is not

necessary to consider the whole model for a given refinement step, because only a few

events and variables are involved instead.

� Complexity management. In other words, it alleviates the complexity by splitting the

proof obligations over the sub-models.

� Team development. More precisely, it gives a way for several developers to share the

parts of a decomposed model, and to work independently and possibly in parallel on

them.

Note that the possibility of team development is among the current priorities for all

industrial partners. The model decomposition is a first answer to this issue.

Decomposition Support 23

6.3. Choices / Decisions

The main decision concerning the implementation of the Event-B model decomposition in

the Rodin platform is to make available both decomposition styles (shared variables and

shared events) through one single plug-in. These approaches are indeed complementary

and the end-user may take advantage of the former or of the latter, depending on the

model, e.g., the shared variables approach seems more suitable when modelling parallel

system and the shared events approach seems more suitable when modelling

message-passing distributed systems.

Choices, either related to the plug-in core or to the plug-in graphical user interface, have

been made with the following constraints in mind:

� Planning. Some options, such as using the Graphical Modelling Framework for the

decomposition visualization, or outsourcing the context decomposition, have not been

explored (at least in the first instance), mainly because of time constraints (in the

DEPLOY description of work, the decomposition support is planned for end of 2009).

� Easy-to-use (however not simplistic) tool. It applies on the one hand to the tool

implementation (decomposition wizard, configuration file to replay the decomposition)

and on the other hand to the tool documentation (the purpose of the user's guide is to

provide useful information for beginners and for more advanced users, in particular

through a Tips and Tricks section).

� Modularity and consistency. In particular, the developments have not been performed in

the Event-B core. Instead the Eclipse extension mechanisms have been used to keep the

plug-in independent (e.g., the static checker, the proof obligation generator and the

editor have been extended).

� Performance. The decomposition tool should perform in reasonable time and memory,

compared to other Rodin plug-ins.

� Recursivity. It must be possible to decompose a previously decomposed model.

Other technical decisions are justified in the specification wiki pages.

6.4. Available Documentation

The following wiki pages have been respectively written for developers and end-users to

document the Event-B model decomposition:

� Event model decomposition specification.

See Event Model Decomposition [2].

� Decomposition plug-in user's guide.

See Decomposition Plug-in User Guide [3].

Decomposition Support 24

6.5. Planning

The decomposition plug-in has been available since release 1.2 of the platform (initial

version).

A further version allowing to edit an existing decomposition configuration is planned with

release 1.3 of the platform.

See Rodin Platform 1.2 Release Notes [4] and Decomposition Release History [5].

References

[1] http:/ / wiki. event-b. org/ index. php/ Image:Steve_Wright_Quite_Big_Model_Presentation. pdf

[2] http:/ / wiki. event-b. org/ index. php/ Event_Model_Decomposition

[3] http:/ / wiki. event-b. org/ index. php/ Decomposition_Plug-in_User_Guide

[4] http:/ / wiki. event-b. org/ index. php/ Rodin_Platform_1. 2_Release_Notes

[5] http:/ / wiki. event-b. org/ index. php/ Decomposition_Release_History

Initial Definition of Language Support for Code Generation 25

7 Initial Definition of Language
Support for Code Generation

7.1. Overview and Motivation

Code generation is an important part of the formal engineering tool chain that will enable

complete support for development from high-level models down to executable

implementations. Work has commenced on the development of support for code generation

from Event-B models. This is a new line of work for DEPLOY that was not identified in the

original Description of Work for the project. During the first year of the project, as the

Deployment Partners gained experience with deployment of formal modelling, it became

clear that having support for generation of code from refined Event-B models would be an

important factor in ensuring eventual deployment of the DEPLOY approach within their

organisations. This is especially true for Bosch and Space Systems Finland (SSF). During

the DEPLOY re-focus at Month 18, it was decided to introduce a code generation task into a

revised workplan and devote resources to this task.

After receiving more detailed requirements from Bosch and SSF, it became clear we should

focus our efforts on supporting the generation of code for typical real-time embedded

control software. In essence, this involves programs structured as tasks running

concurrently such as supported by the Ada tasking model. The individual tasks are

sequential programs and tasks share state variables via some form of monitor mechanism.

For real-time control, both periodic and aperiodic task should be supported; tasks should

have priorities to ensure appropriate responsiveness of the control software.

For the DEPLOY pilots, it is regarded as sufficient to support construction of programs with

a fixed number of tasks and a fixed number of shared variables � no dynamic creation of

processes or objects is required. It is not our intention to develop a fully-fledged

industrial-strength code generation framework within the lifetime of the DEPLOY project.

Instead an aim is to develop a sufficient framework to act as a proof-of-concept to enable

code generation for the Bosch and SSF pilots. A further aim is to gain practical experience

with a prototype code generation framework that will serve as a basis for future R&D on a

scalable code generation framework. The code generation work is being lead by

Southampton with initial input from Newcastle.

7.2. Choices / Decisions

Three candidate approaches have been posited as follows:

� Enrich Event-B with explicit algorithmic structures for use in later refinement stages and

use these explicit structures to guide code generation.

� Synthesise sequential and concurrent code from existing low-level Event-B models.

� Exploit the code generation facilities of Atelier-B for �classical� B.

Approach 3 will be important for STS in WP2 as it will enable integration of Rodin with the

existing development process in STS with AtelierB and some effort will be devoted to this.

However, this approach will not address the needs of all the deployments because of the

overhead involved in having to use AtelierB alongside Rodin as well as the lack of support

for concurrent code generation in AtelierB. Supporting Approach 2 has the attraction that

Initial Definition of Language Support for Code Generation 26

developers can remain within the uniform language framework of Event-B. However, it is

not clear that we can meet the real-time performance guarantees required for embedded

systems with this approach within the lifetime of the DEPLOY project.

While we will pursue some exploration of this approach, we will focus most effort on

Approach 1 as this will enable existing techniques for real-time programming to be

incorporated in later stages of development. Language support for explicit sequential and

concurrent programs will be defined to enable construction of code-oriented models at low

levels of refinement. We refer to this form of Event-B as task-oriented. A code generation

framework will be developed to enable automated generation of C and Ada subsets suitable

for real-time embedded systems from code-oriented models. A refinement-based proof

method for code-oriented models will be defined and incorporated into the Rodin toolset.

An important requirement is that the code generation framework be amenable to extension

and tailoring for specific needs. Rather than hard-wiring the code generation rules into the

tool, we will aim to support a declarative rule-based approach to defining translation from

task-oriented Event-B to a target implementation language. The translation should be

tailorable by modifying or extending the declarative translation rules. We will explore the

use of a model-based transformation framework such as ATL or ETL for this purpose.

Rather than fixing on a specific set of implementation-level data types, we will exploit the

mathematical extension facility being developed for Rodin to enable a flexible approach to

defining implementation-level data structures. For example, arrays could be supported by

defining a new theory of arrays. This theory would define array declarations and operators

along with an appropriate set of proof rules for arrays to enable reasoning. Appropriate

declarative rules would then be defined to translate array declarations and expressions to

appropriate code in the target language.

7.3. Tasking Language

The Event-B tasking language will support the following sequential and concurrent

algorithmic constructs:

Behaviour Algorithmic Construct

Sequence ;

Branching if

Iteration while

Task/Thread/Process task

Shared variables machine

A task-oriented model will be definable using the following abstract syntax

Task :=

task Name

variables Variables

invariants Invariants

begin TaskBody end

TaskBody :=

Initial Definition of Language Support for Code Generation 27

Event

� TaskBody ; TaskBody

� if Guard� TaskBody [] � [] Guard� TaskBody fi

� do Guard� TaskBody [] � [] Guard� TaskBody od

The sequence, branching and iteration constructs correspond to their imperative

counterparts. The task construct provides a means to specify the actions of interleaving,

concurrent executions. A task may be implemented by an Ada task, or a thread in C. A task,

in isolation, is a sequential program with clearly identified atomic steps, and each step

corresponding to an atomic event.

The standard machine construct provides the mechanism for sharing data between the

executing tasks. The interaction between a task and a machine can be represented

synchronized event composition as currently supported by the synchronised-event plug-in.

The generated implementation will need to ensure that a task has mutually exclusive access

to the variables represented in the machine. This is provided by a machine�s atomic events.

A machine representing shared variables may be implemented by an Ada protected object,

or in C by an explicit Mutex variable and appropriate lock acquisition.

To facilitate real-time programming constructs, we introduce the notion of task type, task

period, and task priority.

Task :=

task Name

tasktype periodic(p) � triggered � repeating � oneshot

priority n

...

A tasktype is used to indicate the scheduling requirements for the required activity. It is

typically the case in real-time systems that the required activity involves some repeating

behaviour, this can be a continuously repeating loop, or one that repeats at a

predetermined time interval. We introduce repeating and periodic tasktypes. The periodic

task is parameterised by a time value. Activity can also be initiated by externally generated

interrupts, which may arise from some user action or from the hardware itself. To

accommodate this we introduce the triggered tasktype. The last type of activity that we

consider is the one-shot task; where some activity is performed and not repeated. To

facilitate this we add the oneshot tasktype. In some cases it may be useful to delay a task

for a period of time; we introduce a delay to the TaskBody to facilitate this. It may be

decided that, during a program�s execution, some of the activities should take precedence

over some others. We introduce priority which allows a developer to assign a numerical

value indicating the precedence for scheduling. We adopt the convention that higher

priority activities have a greater value, and this corresponds to the Ada convention.

Initial Definition of Language Support for Code Generation 28

7.4. Methodological Support

As previously outlined, the atomic steps of a sequential task will be syntactically explicit.

This is in order to facilitate a direct mapping of task steps with events of an abstract

machine. The development approach that we plan to support fits with the general

refinement approach of Event-B in that explicit tasking will be introduced as part of a

refinement step. A common approach to specifying a problem is to represent some desired

outcome as a single abstract atomic event. Common patterns of refinement of such abstract

events found in existing Event-B developments are as follows:

1. Choice refinement: Event E is refined to E1 [] E2 []� [] En, where each Ei refines E

2. Sequential refinement: Event E is refined to E1 ; E2 ; � En, where some Ei refines E and

the other Ej refine skip.

3. Loop refinement: Event E is refined to E1 ; do E2 od ; E3, where E3 refines E and E1 and

E2 refine skip.

These patterns motivate a simpler subset of the tasking language as follows

TaskBody :=

Event

� TaskBody ; TaskBody

� if Event [] � [] Event fi

� do Event endwith Event

od

Initially we will support refinement to this subset by providing special

structure-introduction refinement rules in the manner of the refinement calculus. We will

also develop support for a generalisation of this set of rules in which the abstract model

consists of a group of atomic events, with each event representing a different possible

outcome. An example use of such a group would be to have an event to represent the

normal behaviour of some system feature and a separate event to represent the error

behaviour of the feature.

The above rules prevent the immediate introduction of nested tasking structures such as

nested loops. Following the approach found in the refinement calculus and common

practice in Event-B refinements, such nested structures may be introduced through further

refinement steps. For example, to introduce a nested loop, the outer loop is first introduced

and the inner loop is introduced in a subsequent refinement step. We will explore

generalising the refinement support for tasks to support nesting through refinement along

these lines.

Initial Definition of Language Support for Code Generation 29

7.5. Timescales

We refer to the tasking language outlined above as Version V1. Our planned timescales for

further work on code generation are as follows:

� June 2010: demonstrator tool for language V1.

� June 2010: initial support for user defined datatypes (mathematical extensions).

� From June to October 2010: experimentation with and assessment of the demonstrator

tool on the WP1 and WP3 pilots leading to feedback on V1 and the tool.

� Jan 2011: algorithmic language definition V2.

� June 2011: prototype tool for V2.

� From June to October 2011: experimentation with and assessment of the V2 tool on the

WP1 and WP3 pilots.

Improvements to Existing Provers 30

8 Improvements to Existing Provers

8.1. Overview

Proving is at the core of the Rodin methodology. Therefore, it was no surprise that both

industrial and academic users reported a lot of feedback on this topic. This feedback was

provided either by mail or though the SourceForge trackers.

Based on this feedback, several actions were taken to improve the existing tooling for both

automated and interactive proving. Some consisted in improving existing tools, while others

needed a full design and development of new tools (especially for visualizing and managing

proofs). Finally, an extension of the proving framework API as been realised to allow for the

development of new plug-ins (such as the rule based prover).

Systerel has been in charge of existing prover improvements, with support from ETH

Zurich. The evolution of the API has been designed in close collaboration with University of

Southampton.

8.2. Motivations

The motivations for improvements to existing provers can be summarized as follows:

� Reducing proving time and effort.

New proof rules, both manual and automatic (e.g.., One point rule [1], arithmetic

rules), have been added to discharge more proof obligations more easily.

� Reflecting corrections in prover implementations.

The reasoners [2] are versioned. A reasoner implementation may indeed evolve in time

(bug fixes, modifications of the behaviour, etc), even after the old implementation has

been used to prove a model. This may lead to potential issues when trying to reuse or

replay proofs serialized by the old reasoner implementation. Such problems are solved

through the reasoner versioning mechanism.

� Reducing proof storage space.

Big proof files are difficult to handle, on the one hand by the Rodin platform (slow

access), and on the other hand by users (project sharing).

The proof purging [3] and proof simplifying [4] mechanisms have been implemented to

address this issue.

� Facilitating manual proof review or reuse.

The proof skeleton view [5] allows to quickly browse through a proof. : Moreover, the

provided copy/paste feature makes it possible to reuse a stored proof into a new proof.

� Improving prover API.

The tactic provider API [6] has been made more flexible to facilitate tactic

contributions.

Improvements to Existing Provers 31

8.3. Choices / Decisions

The proving API one year ago asked that available proof commands would be completely

determined statically (at application startup). This decision had to be revised to allow for

dynamically contributed proof commands. This change was required not only for regular

rules where several options could be considered based on available hypotheses, but also for

plugging in the rule based prover, developed by University of Southampton. This API

extension was fully designed and discussed through the Rodin wiki.

See New Tactic Providers [6].

Following to the detection of incorrect proof rules implemented in the tool, a complete

review of all proof rules and their implementation has been carried out. Moreover, a review

procedure has been defined to lower the risk that such glitches happen again in the future.

Also, the decision to develop a rule based prover (where rules must be formally proved

before being used) will provide greater confidence in the correctness of the prover.

In the current setting, proof files can grow very large (in the order of tens of megabytes).

This is partly caused by the usage of the Rodin database mechanism for storing proofs in

XML files. At the last DEPLOY workshop (October 2009), several other options have been

discussed to reduce this memory footprint. This issue is beging further investigated.

8.4. Available Documentation

The following pages give useful information about prover improvements:

� Prover Rules

See Inference Rules [7].

See All Rewrite Rules [8].

� Proof Skeleton View

See Proof Skeleton View [5].

� Proof Purger

See Proof Purger Interface [3].

� Prover API evolution

See New Tactic Providers [6].

� Versioned Reasoners

See Versioned Reasoners [2].

8.5. Planning

The above mentioned improvements were made available since release 1.1 of the platform:

Rodin Platform 1.1 Release Notes [9]

In the third year of DEPLOY, most effort in the proving area will be put into:

- Better management of well-definedness conditions.

- Improvement to the rule based prover.

- Bridging the gap with external SMT solvers.

- Supporting mathematical extensions in proofs.

Improvements to Existing Provers 32

References

[1] http:/ / www. cs. cmu. edu/ afs/ cs/ academic/ class/ 15671-f95/ www/ handouts/ proof/ node1. html

[2] http:/ / wiki. event-b. org/ index. php/ Versioned_Reasoners

[3] http:/ / wiki. event-b. org/ index. php/ Proof_Purger_Interface

[4] http:/ / wiki. event-b. org/ index. php/ Proof_Simplification

[5] http:/ / wiki. event-b. org/ index. php/ Proof_Skeleton_View

[6] http:/ / wiki. event-b. org/ index. php/ New_Tactic_Providers

[7] http:/ / wiki. event-b. org/ index. php/ Inference_Rules

[8] http:/ / wiki. event-b. org/ index. php/ All_Rewrite_Rules

[9] http:/ / wiki. event-b. org/ index. php/ Rodin_Platform_1. 1_Release_Notes

Rule-based Prover 33

9 Rule- based Prover

9.1. Overview

The rule-based prover plug-in offers a uniform mechanism to define and validate proof rules

which can then be used in proofs.

The rule-based prover plug-in has two important components:

� Theory construct, where rules are defined and validated by means of proof obligations.

Defining a rule includes stating whether it should be applied automatically, interactively

or both.

� Prover extension, which is responsible for checking what rules are applicable and

applying them.

The plug-in supports the definition and validation of rewrite rules. It is expected that the

plug-in will also support defining inference rules.

The University of Southampton was responsible for the development of the rule-based

prover.

9.2. Motivations

Extensibility is a major concern for theorem provers. The Rodin proving infrastructure

offers an extensible mechanism where proof rules can be added and external provers can

be plugged-in. However, it has the following limitations:

� In order to add a new proof rule, it is required to implement a rule schema (i.e. a

reasoner) and a wrapper tactic. Therefore, a certain level of competence with the Java

programming language as well as knowledge of Rodin architecture is necessary.

� After a new rule is added, soundness of the prover augmented with the new rule has to

be established. It is not clear how this can be achieved at the level of Java code.

The rule-based prover is an attempt to address the aforementioned limitations in a uniform

and effective fashion. It is uniform because it offers the user (we shall call a theory

developer) the possibility to develop and validate theories in a similar way to developing

and validating models. It is also effective since it relieves the theory developer from writing

Java code, and covers most of the rewrite rules available in [8]

The advantages of the rule-based prover include:

� The rule-based prover unifies the way automatic and interactive rules are defined since

this is literally specified by two toggle buttons.

� The addition and validation of new proof rules brings a degree of meta-reasoning to

Rodin, and removes the need for Java code when adding rules.

� The theory construct provide a platform where prover extensions and (in the future)

language extensions can be specified.

� Carefully checked library of rules can be provided.

Rule-based Prover 34

9.3. Choices/Decisions

The main decisions that had to be made regarding the rule-based prover include the

following:

� Whether to use contexts as a vehicle to define rules.

� What kind of rules should the theory cover first.

� How the meta-variables within rules are recognised (automatic type inference or not).

The following key points summarise the different decisions/choices that have been made:

� Contexts describe the static properties of models, and they are used to parameterise

machines. Adding the capability of defining proof rules within contexts would allow the

co-existence of modelling elements and meta-logical elements with no clear relationship

between the two. This may require significant changes to the core architecture, and will

unnecessarily overload the functionality of contexts with elements not directly relevant to

modelling. As such, a clear separation of modelling and meta-reasoning was adopted.

This resulted in a theory construct that acts as a placeholder for prover extensions.

� Rodin has a collection of rewrite and inference rules. Most inference rules as found in [7]

require predicate variables to be defined. This is not the case for most rewrite rules as

found in [8].

Since predicate variables were not available when the development started, it was

decided to cover rewrite rules first.

� Rules are defined using metavariables each of which must have a type. To facilitate static

and type checking, metavariables must be defined in a theory before they can be used.

The definition includes an identifier name and a type.

� Deciding whether a rule should be applied automatically is not straightforward.

Therefore, this is left to the theory developer. Each new rule can be tagged automatic

(can be applied automatically), interactive (available in interactive proofs) or both.

9.4. Available Documentation

There is a dedicated wiki page covering the plug-in functionality:

� Rule-based Prover [1]

9.4.1. Papers & Technical Reports

� Issam Maamria, Michael Butler, Andrew Edmunds, and Abdolbaghi Rezazadeh. On an

Extensible Rule-based Prover for Event-B, ABZ'2010. [2]

� Issam Maamria, Michael Butler, Andrew Edmunds, and Abdolbaghi Rezazadeh. On an

Extensible Rule-based Prover for Event-B, Technical Report. [3]

Rule-based Prover 35

9.5. Planning

The rule-based prover plug-in is available as an external plug-in for Rodin release 1.1 and

above.

See Rodin Platform 1.1 Release_Notes [9] and Rodin Platform 1.2 Release_Notes [4].

References

[1] http:/ / wiki. event-b. org/ index. php/ Rule-based_Prover_Plug-in

[2] http:/ / eprints. ecs. soton. ac. uk/ 18269/

[3] http:/ / eprints. ecs. soton. ac. uk/ 18273/

Pattern Plug-in 36

10 Pattern Plug- in

10.1. Overview

The pattern plug-in enables an Event-B developer to make advantage of former models and

their refinements.

A refinement can also be seen as the solution to the problem encountered in the

abstraction. One can make use of such a solution if the solved problem appears in the

current development. Instead of solving the problem again we directly use the already

known solution. Certainly, we have to show that our current problem (or at least part of it)

is the same as the solved problem.

We refer to such a reusable model containing a certain solution to a problem as a pattern.

Since these patterns are just regular models every model can be a pattern in principle.

There is only a limit in terms of usability that correlates with the specificity of the model

(solved problem).

As mentioned above, the problem at hand (or at least part of it) has to be similar to the

pattern we want to use. To ensure this similarity the developer has to match the pattern

with the problem at hand. After a successful matching of the models (problems) the

refinement (solution) of the pattern can be incorporated into the problem at hand. This

leads to a refinement of this model that is correct by construction. In other words, a new

refinement of the problem at hand can be generated which includes the achievements of

the pattern and is correct without proving any proof obligation.

10.2. Motivations

The idea of patterns and their usage is described in every detail in the Master Thesis

"Design Patterns in Event-B and Their Tool Support� [1]. This approach follows the earlier

proposal of Jean-Raymond Abrial and Thai Son Hoang stated in the paper "Using Design

Patterns in Formal Methods: An Event-B Approach" [2].

There are two main motivations to use patterns.

� Reusing solutions to problems:

Usually there is more than one solution to a problem. But not every solution is of equal

quality. There are solutions that are especially easy, elegant or short. For a lot of

problems there is a best practice to solve it. Having a pattern consisting in this "best"

solution one does not have to bother finding it ever again.

� Reusing proofs:

As mentioned above, the pattern approach is able to generate a refinement that is

correct by construction. This is possible because the construction of the refinement

leads to the same proof obligations as in the pattern. Since they are proved in the

pattern there is no need do the same proof steps in the current development again.

Reusing proofs, especially manual discharged proof obligations, saves a lot of time for

the developer. The drawback reflects in the effort to match the pattern with the

problem before a refinement can be generated. But this effort can be minimised by a

tool that does as many steps as possible automatically or at least supports the

developer wherever user interaction is required.

Pattern Plug-in 37

Case studies showed also another motivation to have such a tool. Using the pattern

approach without tool support, especially the generation of the refinement, is time

consuming and error prone. In this last step in the whole procedure, basically two machines

are merged by copying and pasting elements. This often leads to name clashes where a

developer can easily loose track. Having a tool checking for possible name clashes in

advance can avoid a lot of confusion.

10.3. Choices / Decisions

� To support the developer and guide him through the whole pattern process, we designed

a plug-in providing a graphical wizard that consists in several pages, one for each major

step.

� It was desired to have direct access to the pattern plug-in in form of an API in addition to

the wizard. This enables other Rodin developers to use the pattern plug-in

programmatically. For this, the first version of the plug-in was revised by having the

generation apart from the pure graphical interface.

� In order to speed up the process, all required Event-B element of the involved machines

are collected in a central data object. Certain elements are contained in more than one

list dependent to their attributes (e.g. a matched and renamed event).

� The correctness of the matching, which is checking the syntactical equality of the

matched elements (guards, actions) is left to the developer for the moment. The

automation of this was postponed to a later version as it appears to us as a minor point.

� As the pattern plug-in is in a pre-release phase, there is an option to generate the proof

obligation in order to control the generation.

10.4. Available Documentation

Besides the documents mentioned above focusing on the theory there also exists a wiki

page that is more tool related.

See Pattern [3] for a short overview of the idea of patterns in Event-B and stepwise

instructions for both developers interested in using the wizard and those more thrilled

by APIs.

10.5. Planning

The pattern tool is available as an external plug-in for Rodin release 1.1 and above.

See Rodin Platform 1.1 Release Notes [9] and Rodin Platform 1.2 Release_Notes [4].

The current version of the pattern plug-in covers the following functionalities:

� Interactive guidance for matching the variables.

� Interactive guidance for matching the events and their parameters, guards and actions.

� Collecting the seen contexts in order to enable the user to match the carrier sets and

constants.

� Checking for name clashes and proposing possible renaming.

� Detection of disappearing variables that have to be replaced.

� Detection of disappearing parameters that have to be replaced.

� Generation of the new machine file.

Pattern Plug-in 38

Desired functionalities that are missing in the current version:

� Automated syntactical check of the matched elements.

� Automated extraction of the glueing invariants to find the replacement for disappearing

variables.

� Automated extraction of the witnesses to find the replacement for disappearing

parameters.

The current version has been passed to interested partners for evaluation. The date for the

missing functionalities being implemented in the plug-in will depend on the responses of

the evaluators and their need of having those functionalities available.

References

[1] http:/ / e-collection. ethbib. ethz. ch/ view/ eth:41612

[2] http:/ / www. springerlink. com/ content/ d088h53531x7226j

[3] http:/ / wiki. event-b. org/ index. php/ Pattern

Flow Plug-in 39

11 Flow Plug- in

11.1. Overview

Event-B, being an event systems formalism, does not have a mechanism to explicitly define

event ordering. Although event guards may express any desired event ordering, the ability

to have a summary of possible event flows in a concise and compact form is useful for many

tasks, for example, code generation and connecting with other formalisms. The flows

plug-in addresses one aspect of event ordering: it allows a modeller to specify and prove

that a given sequence of events does not contradict a given machine specification. More

precisely, if we were to execute a machine step-by-step following our prescribed sequence

of events we would not discover divergences and deadlocks not already present in the

original machine. In other words, the constraint on event ordering must be such that the

overall specification is an Event-B refinement of the original model. Importantly, this means

that all the desired model properties proved before are preserved.

Sequential composition of events may be expressed in a number of ways:

� Event immediately follows another event; no other events may take place between the

composed events.

� Event eventually follows an event; thus, although there is an interference from other

events, it is guaranteed that the second is eventually enabled.

� Event may follow an event; this is the weakest form of connection when we only say that

it may be the case that the second event follows the first event; it may happen, however,

that some other event interferes and the second event is delayed or is even not enabled

ever.

Although the last case may seem the least appealing, it is the one that forms the basis of

the Flows plug-in. The primary reason to offer such a weak guarantee is proof effort

required for stronger types of connectives.

11.2. Motivations

There are a number of reasons to consider an extension of Event-B with an event ordering

mechanism:

� For some problems the information about event ordering is an essential part of

requirements; it comes as a natural expectation to be able to adequately reproduce these

in a model.

� Explicit control flow may help in proving properties related to event ordering.

� Sequential code generation requires some form of control flow information.

� Since event ordering could restrict the non-determinism in event selection, model

checking is likely to be more efficient for a composition of a machine with event ordering

information.

� A potential for a visual presentation based on control flow information.

� Bridging the gap between high-level workflow and architectural languages, and Event-B.

It is also hoped that the plug-in would improve readability of larger models: currently they

are simply a long list of events with nothing except comments to provide any structuring

clues.

Flow Plug-in 40

11.3. Choices / Decisions

The primary functionality of the plug-in is the generation of additional proof obligations.

Rodin model builder automatically invokes the static checker and the proof obligations

generator of the plug-in and the proof obligations related to flow appear in the list of the

model proof obligations.

One of the lessons learned with an initial plug-in prototype was that a CSP-like language

notation is not the best way to express event ordering as not all users are familiar with

process algebraic notations. It was decided to use graphical editor to allow a visual layout

of flow diagrams. This, in our view, is a more intuitive way of specifying event ordering. To

realise this, we have relied on GMF - an Eclipse library to manipulate EMF models using

graphical editors.

11.4. Available Documentation

There is a wiki [1] page summarising proof obligation involved in proving machine/flow

consistency.

11.5. Planning

The plug-in is available since the release 1.2 of the platform.

References

[1] http:/ / wiki. event-b. org/ index. php/ Flows

Modularisation Plug-in 41

12 Modularisation Plug- in

12.1. Overview

The Modularisation plug-in realises a support to structure Event-B developments into

modules. The objective is to achieve better structuring of models and proofs while also

providing a facility for model reuse. It is expected that the structuring approach realised in

the plug-in would complement the functionality A/B-style decomposition plug-in.

The module concept is very close to the notion of Event-B development (a refinement tree

of Event-B machines). However, unlike a conventional development, a module is equipped

with an interface. An interface defines the conditions on the way a module may be

incorporated into another development (that is, another module). The plug-in follows an

approach where an interface is characterised by a list of operations specifying the services

provided by the module. An integration of a module into a main development is

accomplished by referring operations from Event-B machine actions using an intuitive

procedure call notation.

The plug-in was developed in Newcastle University in cooperation with Abo Academy and

Space Systems Finland.

12.2. Motivations

There are several conceptual approaches to decomposition. To contrast our proposal, let us

consider some of them.

One approach to decomposition is to identify a general theory that, once formally

formulated, would contribute to the main development. For instance, a model realising a

stack-based interpreter could be simplified by considering the stack concept in isolation,

constructing a general theory of stacks and then reusing the results in the main

development. Thus, an imported theory of stack contributes axioms and theorems assisting

in reasoning about stacks.

Decomposition may also be achieved by splitting a system into a number of parts and then

proceeding with independent development of each part. At some point, the model parts are

recomposed to construct an overall final model. This decomposition style relies on the

monotonicity of refinement in Event-B although some further constraints must be satisfied

to ensure the validity of a recomposed model. A-style and B-style decompositions fit into

this class.

Finally, decomposition may be realised by hierarchical structuring where some part of an

overall system functionality is encapsulated in a self-contained modelling unit embedded

into another unit. The distinctive characteristic of this style is that recomposition of model

parts happens at the same point where model is decomposed.

The Modularisation plug-in realises the latter approach. The procedure call concept is used

to accomplish single point composition/decomposition. There are a number of reasons to try

to split a development into modules. Some of them are:

� Structuring large specifications: it is difficult to read and edit a large model; there is also

a limit to the size of a model that the platform may handle comfortably and thus

decomposition is an absolute necessity for large scale developments.

Modularisation Plug-in 42

� Decomposing proof effort: splitting helps to split verification effort. It also helps to reuse

proofs: it is not unusual to return back in refinement chain and partially redo abstract

models. Normally, this would invalidate most proofs in the dependent components. Model

structuring helps to localise the effect of such changes.

� Team development: large models may only be developed by a (often distributed)

developers team.

� Model reuse: modules may be exchanged and reused in different projects. The notion of

interface make it easier to integrate a module in a new context.

� Connection to library components.

� Code generation/legacy code.

12.3. Choices / Decisions

The primary objective in the tool design was to provide a simple to use tool that could be

used by a non-expert modeller. Of course, close integration with the core platform

functionality was paramount.

� We have decided that there is a need for a new type of Event-B component: interface. A

decomposition based on explicit interface (rather than on an implicit one, such as in

A-style decomposition) facilitates the reuse of modules and makes it easier to provide a

rich management infrastructure.

� We have had to decide whether to make module integration more explicit and flexible or

hide details under syntactic sugar and thus achieve better model readability. We have

decided that model readability should take priority over everything else. However, while

model representation becomes more compact, it does not make proofs easier.

� During the initial experiments we have identified a need for multiple module

instantiation. This allows a modeller to use several copies of the same module using a

qualifier prefix to distinguish objects imported from the modules.

� One crucial point was to realise modularisation support in such a way that structuring

may be recursively applied within modules. Indeed, a module implementation (module

body) is a machine and thus it is self-similar to a caller context that is a machine.

� For the current version, we have not implemented the generation of enabledness

condition logically required for module implementation. This condition, in some form,

should be present in the platform core.

12.4. Available Documentation

There is a dedicated wiki page covering the plug-in functionality. Also, we are working on

further documentation and tutorial.

� Plug-in wiki [1]

� Plug-in tutorial [2]

� Installation guide [3]

Two small-scale examples are available:

� [4] - A model of queue based on two ticket machine module instantiations (very basic).

� [5] - Two doors sluice controller specification that is decomposed into a number of

independent developments (few first steps only).

Modularisation Plug-in 43

12.5. Planning

The plug-in is available since the release 1.1 of the platform. See the Modularisation Plug-in

Release Notes [6].

References

[1] http:/ / wiki. event-b. org/ index. php/ Modularisation_Plug-in

[2] http:/ / wiki. event-b. org/ index. php/ Modularisation_Plug-in_Tutorial

[3] http:/ / wiki. event-b. org/ index. php/ Modularisation_Plug-in_Installation_Instructions

[4] http:/ / iliasov. org/ modplugin/ ticketmachine. zip

[5] http:/ / iliasov. org/ modplugin/ doors. zip

[6] http:/ / wiki. event-b. org/ index. php/ Modularisation_Plug-in_Release_Notes

