
PR 
NEWS 

[ 
PROgrammer's 
Micro Application 
language 

NUMBER 2 July-September, 1986 

PROMAL 2.1 
WITH SOURCE CODE AVAIIJABLE! 

You read it right! Now you can get 
PROMAL with Source Code! 

By the time you read this, a new, improved 
version 2.1 of PROMAL should be available 
for the Apple lIe, IIc and Commodore 64. But 
the most exciting news about PROMAL 2.1 is 
that, for the first time, you will be able to order 
the complete SOURCE CODE for the 
EXECUTIVE, EDITOR, and GRAPHICS 
TOOLBOX, as well as a complete source 
listing of the Runtime package and library! 

With the source code, you can explore the 
inner workings of the EDITor and 
EXECUTIVE and customize them if you 
wish. Since both these programs are written in 
PROMAL, you can change them with the 
EDITor and re-compile them to personalize 
your program development system! 

Maybe you'd like to change the 
EXECUTIVE's prompt (- - » or choose 
different control keys in the EDITor. With the 
source code, you can! 

There's more good news. Even if you don't 
get the source code, you'll want to take 

advantage of our low-cost upgrade offer for 
owners of earlier PROMAL versions. Here's a 
rundown of some of the new version 2.1 
improvements over version 2.0: 

Apple II 
PROMAL 2.1 

• Full support for /RAM disk. Now you 
can use all that memory (l28K to multi­
megabytes!) in your lIe! 

• PREFIX command now finds volume 
name for any slot/drive. 

• Full support for all path names (including 
'.' in volume name and single character file 
names). 

• Refer to disks by drive or prefix (for 
example, COPY 2: MYFILE.S I: copies 
from drive 2 to 1 without specifying the 
volume name). 0: is /RAM disk! 

• New GETKEY function gets key with 
cursor but without echo to screen. 

• Larger workspace. 
• Improved EXECUTIVE, LOADer. 
• More free memory space. 
• All known bugs fixed. 
• All-new improved manual (not just page 

changes). 
• Source code available (optional). 
• Much more! 

Commodore 64 
PROMAL 2.1 

• DYNODISK revamped for super­
reliability. 

• New GETKEY function gets key with 
cursor but without echo to screen. 

• Improved EXECUTIVE, LOADer. 
• More free memory space. 
• All-new improved manual (not just page 

changes). 
• Source code available (optional). 
• Much more! /colllitllled page J 

IBM PROMAL NOW AVAIIJABLE­
WITH SOURCE CODE 

The long-awaited PROMA1-, system for the 
IBM PC family of computers and true 
compatibles is now available. Complete source 
code for all elements of the system, including 
the Compiler, Editor, and Runtime Package, is 
also available 

The PROMAL Compiler for the IBM 
family runs under DOS 2.0 or higher and 
produces very fast native 8 0 8X machine 
language output. Most programs written in 
Apple or Commodore PROMAL are readily 
portable to the IBM PC, and software is 
provided to transfer files between computers 
using the serial port. 

In addition to the normal PROMAL 
features, the IBM version has a number of 
enhancements including: 
* Direct DOS calls 
* Direct ROM BIOS calls 
* Access to all 640K of memory 
* Direct 1-0 port access 
* DOS command line and Environment 

access 

* In-line machine language code can be 
inserted in PROMAL source code. 
PROMAL programs on the IBM execute 

faster than Turbo Pascal 3.0. The Compiler is 
unbelievably fast, typically processing 4500 
lines a minute on an AT. 

The Editor is very similar to the 
Apple/Commodore version, but scrol1s to 
display lines of over 80 characters. The Editor 

PROMAL 
SOURCE CODE 
PRODUCTS 

generates standard DOS text files. 
The main difference between Apple/ 

Commodore PROMAL and IBM compatible 
PROMAL is the absence of the Executive. 
MS-DOS provides the functions of the 
Executive in the IBM environment. If you are 
not familiar with MS-DOS, don't worry: the 
commands are very similar to the 
EXECUTIVE. /comitllled {Xlge 3 

PROMAL SOllrce Code prodllc/s clirren/ly allailable. 
I 

PR 
NEWS 

[ 
PROgrammer's 
Micro Application 
language 

NUMBER 2 July-September, 1986 

PROMAL 2.1 
WITH SOURCE CODE AVAIIJABLE! 

You read it right! Now you can get 
PROMAL with Source Code! 

By the time you read this, a new, improved 
version 2.1 of PROMAL should be available 
for the Apple lIe, IIc and Commodore 64. But 
the most exciting news about PROMAL 2.1 is 
that, for the first time, you will be able to order 
the complete SOURCE CODE for the 
EXECUTIVE, EDITOR, and GRAPHICS 
TOOLBOX, as well as a complete source 
listing of the Runtime package and library! 

With the source code, you can explore the 
inner workings of the EDITor and 
EXECUTIVE and customize them if you 
wish. Since both these programs are written in 
PROMAL, you can change them with the 
EDITor and re-compile them to personalize 
your program development system! 

Maybe you'd like to change the 
EXECUTIVE's prompt (- - » or choose 
different control keys in the EDITor. With the 
source code, you can! 

There's more good news. Even if you don't 
get the source code, you'll want to take 

advantage of our low-cost upgrade offer for 
owners of earlier PROMAL versions. Here's a 
rundown of some of the new version 2.1 
improvements over version 2.0: 

Apple II 
PROMAL 2.1 

• Full support for /RAM disk. Now you 
can use all that memory (l28K to multi­
megabytes!) in your lIe! 

• PREFIX command now finds volume 
name for any slot/drive. 

• Full support for all path names (including 
'.' in volume name and single character file 
names). 

• Refer to disks by drive or prefix (for 
example, COPY 2: MYFILE.S I: copies 
from drive 2 to 1 without specifying the 
volume name). 0: is /RAM disk! 

• New GETKEY function gets key with 
cursor but without echo to screen. 

• Larger workspace. 
• Improved EXECUTIVE, LOADer. 
• More free memory space. 
• All known bugs fixed. 
• All-new improved manual (not just page 

changes). 
• Source code available (optional). 
• Much more! 

Commodore 64 
PROMAL 2.1 

• DYNODISK revamped for super­
reliability. 

• New GETKEY function gets key with 
cursor but without echo to screen. 

• Improved EXECUTIVE, LOADer. 
• More free memory space. 
• All-new improved manual (not just page 

changes). 
• Source code available (optional). 
• Much more! /colllitllled page J 

IBM PROMAL NOW AVAIIJABLE­
WITH SOURCE CODE 

The long-awaited PROMA1-, system for the 
IBM PC family of computers and true 
compatibles is now available. Complete source 
code for all elements of the system, including 
the Compiler, Editor, and Runtime Package, is 
also available 

The PROMAL Compiler for the IBM 
family runs under DOS 2.0 or higher and 
produces very fast native 8 0 8X machine 
language output. Most programs written in 
Apple or Commodore PROMAL are readily 
portable to the IBM PC, and software is 
provided to transfer files between computers 
using the serial port. 

In addition to the normal PROMAL 
features, the IBM version has a number of 
enhancements including: 
* Direct DOS calls 
* Direct ROM BIOS calls 
* Access to all 640K of memory 
* Direct 1-0 port access 
* DOS command line and Environment 

access 

* In-line machine language code can be 
inserted in PROMAL source code. 
PROMAL programs on the IBM execute 

faster than Turbo Pascal 3.0. The Compiler is 
unbelievably fast, typically processing 4500 
lines a minute on an AT. 

The Editor is very similar to the 
Apple/Commodore version, but scrol1s to 
display lines of over 80 characters. The Editor 

PROMAL 
SOURCE CODE 
PRODUCTS 

generates standard DOS text files. 
The main difference between Apple/ 

Commodore PROMAL and IBM compatible 
PROMAL is the absence of the Executive. 
MS-DOS provides the functions of the 
Executive in the IBM environment. If you are 
not familiar with MS-DOS, don't worry: the 
commands are very similar to the 
EXECUTIVE. /comitllled {Xlge 3 

PROMAL SOllrce Code prodllc/s clirren/ly allailable. 
I 



The 
Last 
Word 

Dear Friends: 

Are we crazy or what to be selling source 
code? Anytime you do something no one else 
has done you do feel a little strange. Frankly, 
we decided that if multitudes of you 

programmers are going to convert to using 
PROMAL you need more "gcxxlies" than just 
the elegance and performance of PROMAL 
alone. After all, you do have to learn a new 
language, and that takes real commitment. 

So we decided to include the best of all 
possible "gcxxlies" in our PROMAL product 
line-source code. Now you can see hundreds 
of examples of PROMAL coding techniques 
by reading the source. That should make 
mastering the hmguage even easier. Plus, you 
can customize the Executive or Editor to suit 
your personal needs perfectly. You can even 
use Runtime source package to make 
enhancements or extentions to the system. 

You can now have total control of your 
programming environment - because your 
friends at SMA are just a little crazy. 

by Bruce Carbrey, SMA, Inc. 

COMP-UTING-GREATEST- INTEGER-
There are a number of applications where you 
need to compute the greatest integer of a real 
number, such as rounding or finding only the 
decimal part of a number. This function is 
called INT in Pascal and many BASIC dialects; 
C programmers know it as FLOORO. For 
positive arguments less than 65536.0, 
FLOOR(X) can be simulated in PROMAL 
using 

(X: +): • 

which casts X to an integer and back to a real. 
For values outside this range, however, we 
need a more general function. For example: 

P'LOOR(-3.8) 
P'LOOR(100000.89) 

I should return -4 . 0 
I should return 100000.0 

The FLOOR function is included in version 
2.1 of PROMAL, but owners of earlier 
versions can use the code shown at right. 

Space does not permit a detailed explanation of 
the workings of FLOOR, but the concept is to 
compute the binary exponent from the internal 
floating point representation and zero all bits to 
the right of the implied binary point in the 
mantissa. 0 

2 

FUNC REAL FLOOR; (Val) 
Return (real) largest integer less than or equal 

; to the (real) argument. 
ARG REAL VAL Argument 
REAL NEW VAL Result 
WORD I Loop counter 
BYTE EXP ; 8 bit exponent 
OWN BYTE TEMP[6] 
DATA BYTE MASK[]=$FF,$FE,$FC,$F8,$C0,$E0,$C0,$80 
BEGIN 
IF VAL ( 1.0 AND VAL) -1.0 

IF VAL >= ill. 
RETURN 0. 

RETURN -1. 
BLKMOV #VAL,TEMP,6 
EXP=TEMP@( «1 + (TEMP[l] 
IF EXP > = 39 

>= $8ill) -$7F ; expo 

RETURN VAL 
EXP=39-EXP 

Keep all bits of mantissa 
# Bits of mantissa to clear 

1=5 
WHILE EXP }= 8 ;Can clear whole byte? 

TEMP [IJ =ill 
EXP=EXP-8 
I = 1-1 

TEMP[I]=MASK[EXP:+] AND TEMP[I] ;Clear bits 
BLKMOV TEMP,#NEWVAL,6 
I F VAL ( ill. 

IF NEWVAL () VAL ;Not already an integer? 
NEWVAL = NEWVAL - 1. 

RETURN NEWVAL 
END 

The 
Last 
Word 

Dear Friends: 

Are we crazy or what to be selling source 
code? Anytime you do something no one else 
has done you do feel a little strange. Frankly, 
we decided that if multitudes of you 

programmers are going to convert to using 
PROMAL you need more "gcxxlies" than just 
the elegance and performance of PROMAL 
alone. After all, you do have to learn a new 
language, and that takes real commitment. 

So we decided to include the best of all 
possible "gcxxlies" in our PROMAL product 
line-source code. Now you can see hundreds 
of examples of PROMAL coding techniques 
by reading the source. That should make 
mastering the hmguage even easier. Plus, you 
can customize the Executive or Editor to suit 
your personal needs perfectly. You can even 
use Runtime source package to make 
enhancements or extentions to the system. 

You can now have total control of your 
programming environment - because your 
friends at SMA are just a little crazy. 

by Bruce Carbrey, SMA, Inc. 

COMP-UTING-GREATEST- INTEGER-
There are a number of applications where you 
need to compute the greatest integer of a real 
number, such as rounding or finding only the 
decimal part of a number. This function is 
called INT in Pascal and many BASIC dialects; 
C programmers know it as FLOORO. For 
positive arguments less than 65536.0, 
FLOOR(X) can be simulated in PROMAL 
using 

(X: +): • 

which casts X to an integer and back to a real. 
For values outside this range, however, we 
need a more general function. For example: 

P'LOOR(-3.8) 
P'LOOR(100000.89) 

I should return -4 . 0 
I should return 100000.0 

The FLOOR function is included in version 
2.1 of PROMAL, but owners of earlier 
versions can use the code shown at right. 

Space does not permit a detailed explanation of 
the workings of FLOOR, but the concept is to 
compute the binary exponent from the internal 
floating point representation and zero all bits to 
the right of the implied binary point in the 
mantissa. 0 

2 

FUNC REAL FLOOR; (Val) 
Return (real) largest integer less than or equal 

; to the (real) argument. 
ARG REAL VAL Argument 
REAL NEW VAL Result 
WORD I Loop counter 
BYTE EXP ; 8 bit exponent 
OWN BYTE TEMP[6] 
DATA BYTE MASK[]=$FF,$FE,$FC,$F8,$C0,$E0,$C0,$80 
BEGIN 
IF VAL ( 1.0 AND VAL) -1.0 

IF VAL >= ill. 
RETURN 0. 

RETURN -1. 
BLKMOV #VAL,TEMP,6 
EXP=TEMP@( «1 + (TEMP[l] 
IF EXP > = 39 

>= $8ill) -$7F ; expo 

RETURN VAL 
EXP=39-EXP 

Keep all bits of mantissa 
# Bits of mantissa to clear 

1=5 
WHILE EXP }= 8 ;Can clear whole byte? 

TEMP [IJ =ill 
EXP=EXP-8 
I = 1-1 

TEMP[I]=MASK[EXP:+] AND TEMP[I] ;Clear bits 
BLKMOV TEMP,#NEWVAL,6 
I F VAL ( ill. 

IF NEWVAL () VAL ;Not already an integer? 
NEWVAL = NEWVAL - 1. 

RETURN NEWVAL 
END 



IBM !from page I 

Source Code Available 
Sour~ code is available as an option, 

allowing you to explore the inner workings of 
PROMAL or to "customize" the system to 
your personal taste. The EDITOR and 
COMPILER are written in PROMAL (of 
course), so you can customize them if you wish 
by simply editing and re-compiling. The 
Runtime Package source consists of about 
9,000 lines of 808X assembly language which 
can be assembled with the Microsoft assembler 
(MASM). 

An all-new 250 page manual is included 
along with numerous demo programs 
including a simple data base management 
program, interrupt-driven communications 

programs, and a windowing demo. The 
windowing program includes routines you can 
use to generate menus, control video attributes 
(color, reverse video, etc.) and create 
professional looking screen displays. 

The current release of the IBM PROMAL 
compiler is Version 1.9, which directly 
generates executable programs (.EXE files) of 
up to 64K of program plus 64K of data. 
Purchasers will receive a free upgrade to 
version 2.1 in the Fall, which supports 
unlimited code size, separately compiled 
modules and is compatible with the MicrOsoft 
Linker and symbolic debuggers. 

If you write scientific or engineering 
applications, you'll be pleased to know that the 
8087 floating point coprocessor is· fully 
supported in version 2.1 for fast, double­
precision arithmetic. Standard PROMAL 6-
byte floating point arithmetic is also included. 

SOURCE CODE: 
WHAT'S IN IT FOR YOU? 
As you can see, we're pretty excited about 

being able to make the source code for the 
PROMAL system available to you. But it may 
not be obvious to you what the benefits are of 
having the source code available. Also, you 
may not be sure which source code you need, if 
any. Let's try to answer these questions. 

There are lots of things you can do with the 
source code. depending on your needs, but here 
are a few. 

First of all, the source code to the EDITor 
and EXECUTIVE provide a wealth of useful 
programming examples written in PROMAL. 
There's no better way to improve PROMAL 
programming than by studying some real 
programs. For example, by examining the 
EXECUTIVE you can leam how the COPY 
command works or how command line 
arguments are processed. 

Secondly, you can make minor changes to 
the system to suit your own taste. For example, 
suppose you don't care for the EXECUTIVE's 
"- - 'i' prompt, and would like to change it to 
say "EXEC:". All you would have to do is 
EDIT EXEC.S and use the FIND command 
to locate "-- 'j', which you would fmd defmed 
as follows: 

OATA WORD SYSPROHPT = "'00- - ) .. ; Couland prOMpt 

Just edit this line to read 

DATA WORD SYSPROHPT '" • \ODEXEC: .. ; Co."and pro.pt 

and save the file. Then just compile 
EXECUTIVE, and the next time your boot 
your system, you will be greeted with your 
custom prompt! 

Of course not all changes are this simple, and 
there are limits to how much you can add 
without using too much memory, but there are 
lots of things you can do to customize the 
EXECUTIVE or EDITOR. 

What About the 
Runtime Listing? 

What is the Runtime Package/Library 
Listing, and why would you want it? 

First of all, to make effective use of the 
Runtime source listing, you'll need at least 
Some familiarity with assembly language 
programming, because the runtime package 
consists of over 10,000 lines of assembly 
language statements. It contains all the library 
functions and procedures (PUT, GETL, 
GETBLKF, LOAD, OUTPUT, etc.), plus the 
floating point arithmetic routines, error 
handling (runtime errors, ABORT, etc.) and, at 
the core, the instructions which actually 
execute your program. 

Armed with the Runtime listing, you can 
create simple patches to the system to change 
the way things work. For example, suppose 
you wanted to have some key other than 
CTRL-B perform the prior-line-recall function. 
By examining the listing of the GETL, 
EDLINE, or INLINE routines, you will see 
that you need to change the value of a variable 
called BKEYBT which is defined on line 1146 
(for example) of the listing like this: 

1146 10 10 02 BKEYBT ,BYTE '02 ;CtrI/B=backtrack 

This tells you that this variable is at address 
$1010 and its value is $02 (the ASCII code for 
CTRL-B). To change it to say, CTRL-R, you 
could simply patch address $1010 to $12. You 
could do this right from the EXECUTIVE or 
in a JOB file with: 

SET 1010 12 

or from within a program with: 
EXT BYTE BKEYBT AT .1010 

BKEYBT a .12 
Experienced programmers will be able to 

make sophisticated changes in the way the 
system works with the aid of the Runtime 
listing. 

A new 32 bit integer data type has been added, 
too. 

Version 2.1 also supports the optional 
Graphics Toolbox for CGA, EGA, and 
compatible video adapters. The graphics 
toolbox makes it a snap to produce fast full 
color graphics displays. Routines are also 
provided for controlling a mouse (Microsoft 
Mouse, Mouse Systems, etc.). 

PROMAL is designed to run on the IBM 
PC family of computers (pC, XT, Jr, AT etc.) 
or true compatibles (Compaq, AT&T 6300, 
Tandy 1000, etc.), with at least one floppy disk 
and 192K of memory. IBM compatible 
PROMAL is available only in the Developer's 
version, which means you can generate stand­
alone programs and distribute them as you see 
fit without any royalty payments. 

Please see the order form for complete 
pricing information. 0 

So What Do 
You Need to Buy? 

If you're a commercial software developer, 
you'll definitely want to get the Developer's 
"Package Deal" (see order form). If you're 
familiar with assembly language, but don't 
plan on selling stand-alone software, then 
you'll probably want to get the End User's 
package deal. If you don't understand assembly 
language and don't intend to learn, then you 
might just want to get the source for the 
individual EDITOR and/or EXECUTIVE 
for your system. Either way, we think you'll 
find the PROMAL source code an invaluable 
asset in your collection of programming tools. 
PROMAL 2.1 Ifrom page I 

About The 
Source Code 

For the first time, we are offering the 
complete source code for the PROMAL 2.1 
EXECUTIVE and EDITOR, as well as a 
listing of the Runtime package. 

The source code is supplied on disk as 
. PROMAL programs you can EDIT and 

COMPILE. For advanced programmers, a 
complete, commented, assembled source 
listing of the runtime package and library is 
available. This listing has about 800K bytes on 
six or seven disks (depending on your system), 
including an alphabetized cross reference map. 
You can print or display all or parts of the listing 
for a ready reference. 

The source code for the SGD (screen 
graphics drivers) section of the Graphics 
Toolbox is also available as a 6502 assembly 
language ftle and assembled listing on disk. 

Each source code package includes a brief 
Theory of Operation manual on disk as well as 
the source ftles. 

Please see the order blank for pricing 
information for PROMAL 2.1 and the 
optional source code. 

We are also considering making a cross­
development package available which would 
run on the IBM PC and allow PROMAL 
compilation for the Apple/Commodore 
(including the ability to compile the compilers 
and assemble the 6502 runtime/ library). If you 
are interested, please call and let Peter or Bruce 
~ow. 0 

3 

IBM !from page I 

Source Code Available 
Sour~ code is available as an option, 

allowing you to explore the inner workings of 
PROMAL or to "customize" the system to 
your personal taste. The EDITOR and 
COMPILER are written in PROMAL (of 
course), so you can customize them if you wish 
by simply editing and re-compiling. The 
Runtime Package source consists of about 
9,000 lines of 808X assembly language which 
can be assembled with the Microsoft assembler 
(MASM). 

An all-new 250 page manual is included 
along with numerous demo programs 
including a simple data base management 
program, interrupt-driven communications 

programs, and a windowing demo. The 
windowing program includes routines you can 
use to generate menus, control video attributes 
(color, reverse video, etc.) and create 
professional looking screen displays. 

The current release of the IBM PROMAL 
compiler is Version 1.9, which directly 
generates executable programs (.EXE files) of 
up to 64K of program plus 64K of data. 
Purchasers will receive a free upgrade to 
version 2.1 in the Fall, which supports 
unlimited code size, separately compiled 
modules and is compatible with the MicrOsoft 
Linker and symbolic debuggers. 

If you write scientific or engineering 
applications, you'll be pleased to know that the 
8087 floating point coprocessor is· fully 
supported in version 2.1 for fast, double­
precision arithmetic. Standard PROMAL 6-
byte floating point arithmetic is also included. 

SOURCE CODE: 
WHAT'S IN IT FOR YOU? 
As you can see, we're pretty excited about 

being able to make the source code for the 
PROMAL system available to you. But it may 
not be obvious to you what the benefits are of 
having the source code available. Also, you 
may not be sure which source code you need, if 
any. Let's try to answer these questions. 

There are lots of things you can do with the 
source code. depending on your needs, but here 
are a few. 

First of all, the source code to the EDITor 
and EXECUTIVE provide a wealth of useful 
programming examples written in PROMAL. 
There's no better way to improve PROMAL 
programming than by studying some real 
programs. For example, by examining the 
EXECUTIVE you can leam how the COPY 
command works or how command line 
arguments are processed. 

Secondly, you can make minor changes to 
the system to suit your own taste. For example, 
suppose you don't care for the EXECUTIVE's 
"- - 'i' prompt, and would like to change it to 
say "EXEC:". All you would have to do is 
EDIT EXEC.S and use the FIND command 
to locate "-- 'j', which you would fmd defmed 
as follows: 

OATA WORD SYSPROHPT = "'00- - ) .. ; Couland prOMpt 

Just edit this line to read 

DATA WORD SYSPROHPT '" • \ODEXEC: .. ; Co."and pro.pt 

and save the file. Then just compile 
EXECUTIVE, and the next time your boot 
your system, you will be greeted with your 
custom prompt! 

Of course not all changes are this simple, and 
there are limits to how much you can add 
without using too much memory, but there are 
lots of things you can do to customize the 
EXECUTIVE or EDITOR. 

What About the 
Runtime Listing? 

What is the Runtime Package/Library 
Listing, and why would you want it? 

First of all, to make effective use of the 
Runtime source listing, you'll need at least 
Some familiarity with assembly language 
programming, because the runtime package 
consists of over 10,000 lines of assembly 
language statements. It contains all the library 
functions and procedures (PUT, GETL, 
GETBLKF, LOAD, OUTPUT, etc.), plus the 
floating point arithmetic routines, error 
handling (runtime errors, ABORT, etc.) and, at 
the core, the instructions which actually 
execute your program. 

Armed with the Runtime listing, you can 
create simple patches to the system to change 
the way things work. For example, suppose 
you wanted to have some key other than 
CTRL-B perform the prior-line-recall function. 
By examining the listing of the GETL, 
EDLINE, or INLINE routines, you will see 
that you need to change the value of a variable 
called BKEYBT which is defined on line 1146 
(for example) of the listing like this: 

1146 10 10 02 BKEYBT ,BYTE '02 ;CtrI/B=backtrack 

This tells you that this variable is at address 
$1010 and its value is $02 (the ASCII code for 
CTRL-B). To change it to say, CTRL-R, you 
could simply patch address $1010 to $12. You 
could do this right from the EXECUTIVE or 
in a JOB file with: 

SET 1010 12 

or from within a program with: 
EXT BYTE BKEYBT AT .1010 

BKEYBT a .12 
Experienced programmers will be able to 

make sophisticated changes in the way the 
system works with the aid of the Runtime 
listing. 

A new 32 bit integer data type has been added, 
too. 

Version 2.1 also supports the optional 
Graphics Toolbox for CGA, EGA, and 
compatible video adapters. The graphics 
toolbox makes it a snap to produce fast full 
color graphics displays. Routines are also 
provided for controlling a mouse (Microsoft 
Mouse, Mouse Systems, etc.). 

PROMAL is designed to run on the IBM 
PC family of computers (pC, XT, Jr, AT etc.) 
or true compatibles (Compaq, AT&T 6300, 
Tandy 1000, etc.), with at least one floppy disk 
and 192K of memory. IBM compatible 
PROMAL is available only in the Developer's 
version, which means you can generate stand­
alone programs and distribute them as you see 
fit without any royalty payments. 

Please see the order form for complete 
pricing information. 0 

So What Do 
You Need to Buy? 

If you're a commercial software developer, 
you'll definitely want to get the Developer's 
"Package Deal" (see order form). If you're 
familiar with assembly language, but don't 
plan on selling stand-alone software, then 
you'll probably want to get the End User's 
package deal. If you don't understand assembly 
language and don't intend to learn, then you 
might just want to get the source for the 
individual EDITOR and/or EXECUTIVE 
for your system. Either way, we think you'll 
find the PROMAL source code an invaluable 
asset in your collection of programming tools. 
PROMAL 2.1 Ifrom page I 

About The 
Source Code 

For the first time, we are offering the 
complete source code for the PROMAL 2.1 
EXECUTIVE and EDITOR, as well as a 
listing of the Runtime package. 

The source code is supplied on disk as 
. PROMAL programs you can EDIT and 

COMPILE. For advanced programmers, a 
complete, commented, assembled source 
listing of the runtime package and library is 
available. This listing has about 800K bytes on 
six or seven disks (depending on your system), 
including an alphabetized cross reference map. 
You can print or display all or parts of the listing 
for a ready reference. 

The source code for the SGD (screen 
graphics drivers) section of the Graphics 
Toolbox is also available as a 6502 assembly 
language ftle and assembled listing on disk. 

Each source code package includes a brief 
Theory of Operation manual on disk as well as 
the source ftles. 

Please see the order blank for pricing 
information for PROMAL 2.1 and the 
optional source code. 

We are also considering making a cross­
development package available which would 
run on the IBM PC and allow PROMAL 
compilation for the Apple/Commodore 
(including the ability to compile the compilers 
and assemble the 6502 runtime/ library). If you 
are interested, please call and let Peter or Bruce 
~ow. 0 

3 



Don't Forget The Public Domain Disks! 
The first two Public Domain Disks for 

Apple and Commodore are still available. We 
have received several donations for our next 
Disk and we'll have a new one out very soon. 
ATTENTION APPLE DEVELOPERS: 
We're a little short on public domain 
contributions for the Apple, so get yours to us 
ASAP! 

These are contributions by users. You can 
freely use or copy them, SUBJECT ONLY TO 
ANY RESTRICTIONS IMPOSED BY THE 
PROGRAM AUTHOR. 

SMA serves as a clearing house for the 
PPDL (PROMAL Public Domain Library). 
We do not endorse or support the programs. 
Don't even think of calling or writing us about 
PPDL problems. 

All programs are written in PROMAL and 
supplied in both source and compiled form. 
Most have documentation files supplied by the 
author. A few have no documentation, but are 
easily understood by a look at the source code. 
Hardcopy documentation is provided where 
necessary. 
Disk #1 for the Commodore: 
Contents: 
1. Macro assembler, by C. Martens 
2. Disassembler, by Steve Vermeulen 
3. Disk Fixer program, by A. Ryan 

Includes a twenty-page manual describing 
Commodore disk structures and how to 
change them using the disk fixer. 

P-R·OM·A-L 

o.~ 

6 

The delivered product cOnsists of a disk and 9. "Dumb terminal" emulation routine, and 
summary of contents, plus the Disk Fixer demo, by Steve Vermeulen 
documentation in hardcopy form. 10. KOALA touchpad support, by Erik 
Disk #2 for the Commodore: Vigmostad 
Contents: 11 . Counter of word occurrences in a file, by 
1. Document Formatter Program, by David Erik Vigmostad 

Long 12. File lister for RS-232 printer, by Erik 
A powerful and well established method Vigmostad 
of word processing using a maually The delivered product consists of a disk and 
created file containing text and formatting summary of contents, plus the Document 
commands for such things as margins and Formatter documentation. 
page size, paragraphs and "absolute" lines Disk #1 for the Apple: 
of text, underlining, page headers and Contents: 
footers and page numbering. The file is fed 1. Macro assembler, by C. Martens 
into the document formatter program 2. Disassembler, by Steve Vermeulen 
which produces a printer-ready result. A 3. Printer control issuer, by Julia 
file is included which, when fed through Christianson 
the document formatter, produces the 15- 4. PROMAL source file lister, by Garth 
page user's manual which is also supplied Ingram 
in hardcopy form. 

2. Screen creator, by Rev. Mike Cargill 5. Counter of word occurrences in a file, by 
3. Printer control issuer, by Julia Erik Vigmostad 

Christianson The delivered product consists of a disk and 
4. PROMAL source file lister, by Garth summary of contents. 

Ingram Disk #2 for the Apple: 
5. Screen creator, by W.A. Marsh Contents: 
6. Graphics routines and demo, by Roger 1. Document formatter program, by David 

Norrod Long. It is described above under "ITlSk 
7. Lister that includes time and date stamp, #2 for the Commodore", item 1. 

by Michael T. Veach The delivered product consists of a disk and 
8. C64-to-Tandy PC2 data exchange summary of contents, plus the documentation 

program, by Steve Vermeulen in hardcopy form. 0 
-~ - --~ 


