
N e v e r s t o p t h i n k i n g .

Microcontrol lers

User’s Manual, V 1.6, August 2001

C166S V1 SubSystem
C166S V1 SubS R1

Edition 2001-08

Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 München, Germany

© Infineon Technologies AG 2001.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address
list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

Microcontrol lers

User’s Manual, V 1.6, August 2001

N e v e r s t o p t h i n k i n g .

C166S V1 SubSystem
C166S V1 SubS R1

C166S V1 SubS R1

Revision History: 2001-08 V 1.6

Previous Version: V 1.5

Page Subjects (major changes since last revision)

2-12 Periodic Wake up from Idle or Sleep Mode

2-14 Clock Generation Unit, On-chip Bootstrap Loader

3-80..3-86 Particular Pipeline Effects

6-21 CALLA Instruction description

6-38 EINIT Instruction description

6-52 JMPA Instruction description

6-78 RETI Instruction description

6-91 SRVWDT Instruction description

6-96 TRAP Instruction description

8-1...8-29 RP0H Register

8-1, 8-34 DP3, P3, ODP4, ODP6 Registers

8-22 CLKEN System Clock Enable bit

8-31 External Bus Arbitration

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
ce.cmd@infineon.com

User’s Manual
C166S V1 SubSystem

Table of Contents Page

User’s Manual I-1 V 1.6, 2001-08

1 Introduction . 1-1
1.1 The Members of the 16-bit Microcontroller Family 1-2
1.2 Summary of Basic Features . 1-3

2 System Overview . 2-1
2.1 Basic CPU Concepts and Mega Core . 2-2
2.1.1 High Instruction Bandwidth / Fast Execution . 2-2
2.1.2 High Function 8-bit and 16-bit Arithmetic and Logic Unit 2-3
2.1.3 Extended Bit Processing and Peripheral Control 2-4
2.1.4 Consistent and Optimized Instruction Formats 2-5
2.1.5 Programmable Multiple Priority Interrupt and PEC System 2-6
2.2 The C166S System Resources . 2-7
2.2.1 Memory Areas . 2-7
2.2.2 External Bus Interface . 2-8
2.2.3 The On-chip Peripheral Blocks . 2-8
2.2.3.1 Asynchronous / Synchronous Serial Channel (ASC0) 2-9
2.2.3.2 High Speed Synchronous Serial Channel (SSC0) 2-10
2.2.3.3 General Purpose Timer Unit (GPT12E) . 2-10
2.2.4 Parallel Ports (PPorts) . 2-11
2.2.5 Periodic Wakeup from Idle or Sleep Mode . 2-12
2.2.6 OCDS and JTAG . 2-12
2.2.7 Core Control Block (CCB) . 2-12
2.2.8 Clock Generation Unit (CGU) . 2-14
2.2.9 On-chip Bootstrap Loader. 2-14

3 Central Processing Unit . 3-1
3.1 Register Description Format . 3-3
3.2 CPU Special-Function Registers . 3-5
3.3 Instruction Fetch and Program Flow Control . 3-7
3.3.1 Branch Target Addressing Modes . 3-7
3.3.2 Sequential and Non-Sequential Instruction Flow 3-9
3.3.3 ATOMIC and EXTended Instructions . 3-13
3.3.4 Code Addressing via Code Segment and Instruction Pointer 3-14
3.3.5 The CPU/System Configuration Register SYSCON 3-17
3.4 Interrupt and Exception Execution . 3-18
3.4.1 Interrupt System Structure . 3-19
3.4.2 Interrupt Arbitration . 3-19
3.4.3 Interrupt Vector Table . 3-22
3.4.4 Interrupt Control Functions in the Processor Status Word 3-22
3.4.4.1 Saving the Status during Interrupt Service 3-24
3.4.4.2 Context Switching . 3-24
3.4.5 Traps . 3-26
3.4.5.1 Software Traps . 3-26

User’s Manual
C166S V1 SubSystem

Table of Contents Page

User’s Manual I-2 V 1.6, 2001-08

3.4.5.2 Hardware Traps . 3-26
3.4.6 Peripheral Event Controller . 3-32
3.4.6.1 The PEC Source and Destination Pointers 3-33
3.4.6.2 PEC Control Registers . 3-36
3.4.6.3 Short Transfer Mode . 3-38
3.4.6.4 Long Transfer Mode . 3-39
3.4.6.5 Channel Link Mode for Data Chaining . 3-41
3.4.6.6 PEC Channels Assignment and Arbitration 3-43
3.4.6.7 Programmable End of PEC Interrupt Level 3-44
3.5 Using General-Purpose Registers . 3-46
3.5.1 Context Switch . 3-50
3.6 Data Addressing . 3-52
3.6.1 Short Addressing Modes . 3-52
3.6.2 Long and Indirect Addressing Modes . 3-54
3.6.2.1 Addressing via Data Page Pointer . 3-55
3.6.2.2 DPP Override Mechanism in the C166S . 3-57
3.6.2.3 Long Addressing Mode . 3-58
3.6.2.4 Indirect Addressing Modes . 3-59
3.6.3 The System Stack . 3-61
3.6.3.1 Stack Overflow and Underflow . 3-62
3.6.3.2 Linear Stack . 3-64
3.6.3.3 Circular (Virtual) Stack . 3-65
3.7 Data Processing . 3-68
3.7.1 Data Types . 3-68
3.7.2 Constants . 3-70
3.7.3 The 16-bit Adder/Subtracter, Barrel Shifter

and the 16-bit Logic Unit 3-70
3.7.4 Bit-manipulation Unit . 3-70
3.7.5 Multiply and Divide Unit . 3-72
3.7.6 The Processor Status Word Register (PSW) 3-76
3.8 Instruction Pipeline . 3-80
3.8.1 Particular Pipeline Effects . 3-80
3.8.1.1 General considerations . 3-81
3.8.1.2 Specific cases with core registers . 3-81
3.8.1.3 Common portable solution . 3-86
3.8.2 Instruction State Times . 3-87
3.9 Dedicated CSFRs . 3-89
3.10 Summary of CPU Registers . 3-91
3.10.1 General Purpose Registers . 3-91
3.10.2 Core Special Function Registers Ordered by Name 3-93
3.10.3 Core Special Function Registers ordered by Address 3-94
3.10.4 Register Overview C166S Interrupt and Peripheral Event Controller 3-95

User’s Manual
C166S V1 SubSystem

Table of Contents Page

User’s Manual I-3 V 1.6, 2001-08

4 Memory Organization . 4-1
4.1 Data Organization in Memory . 4-3
4.2 Internal Local Memory Area . 4-4
4.3 DPRAM and SFR-Area . 4-5
4.3.1 Data Memories . 4-5
4.3.2 Special Function Register Areas . 4-5
4.3.3 PEC Source and Destination Pointers . 4-7
4.4 External Memory Space . 4-8
4.4.1 External data accesses . 4-8
4.5 Crossing Memory Boundaries . 4-9
4.6 System Stack . 4-10
4.6.1 Data Organization in General Purpose Registers 4-10
4.7 SFR / ESFR Table . 4-12
4.8 Interrupt Vector Table . 4-43

5 Instruction Set . 5-1
5.1 Short Instruction Summary . 5-1
5.2 Instruction Set Summary . 5-3
5.3 Instruction Opcodes . 5-16
5.4 Instruction Description . 5-21

6 Detailed Instruction Set . 6-1

7 Parallel Ports . 7-1
7.1 Alternate Port Functions . 7-2
7.2 PORT0 . 7-3
7.3 PORT1 . 7-7
7.4 Port 4 . 7-10
7.5 Port 6 . 7-13

8 The External Bus Interface . 8-1
8.1 Single-chip Mode . 8-2
8.2 External Bus Modes . 8-2
8.2.1 Multiplexed Bus Modes . 8-3
8.2.2 Demultiplexed Bus Modes . 8-6
8.2.3 Switching Among the Bus Modes . 8-9
8.3 Programmable Bus Characteristics . 8-16
8.3.1 ALE Length Control . 8-16
8.3.2 Programmable Memory Cycle Time . 8-17
8.3.3 Programmable Memory Tri-State Time . 8-17
8.3.4 Read/Write Signal Delay . 8-18
8.3.5 Early WR . 8-18
8.3.6 READY Controlled Bus Cycles . 8-18
8.4 Controlling the External Bus Controller . 8-21

User’s Manual
C166S V1 SubSystem

Table of Contents Page

User’s Manual I-4 V 1.6, 2001-08

8.5 EBC Idle State . 8-30
8.6 External Bus Arbitration . 8-31
8.7 The XBUS Interface . 8-35
8.7.1 XBUS Access Control . 8-37

9 Watchdog Timer . 9-1
9.1 Operation of the Watchdog Timer . 9-2

10 Asynchronous/Synchronous Serial Interface (ASC) 10-1
10.1 Introduction . 10-1
10.2 Operational Overview . 10-4
10.3 General Operation . 10-5
10.3.1 Asynchronous Operation . 10-9
10.3.1.1 Asynchronous Data Frames . 10-10
10.3.1.2 Asynchronous Transmission . 10-11
10.3.1.3 Asynchronous Reception . 10-12
10.3.2 Synchronous Operation . 10-14
10.3.2.1 Synchronous Transmission . 10-15
10.3.2.2 Synchronous Reception . 10-15
10.3.2.3 Synchronous Timing . 10-15
10.3.3 Baudrate Generation . 10-17
10.3.3.1 Baudrate in Asynchronous Mode . 10-17
10.3.3.2 Baudrate in Synchronous Mode . 10-21
10.3.4 Hardware Error Detection Capabilities . 10-23
10.3.5 Interrupts . 10-23

11 High-Speed Synchronous Serial Interface (SSC) 11-1
11.1 Introduction . 11-1
11.2 General Operation . 11-3
11.2.1 Operating Mode Selection . 11-5
11.2.2 Full-Duplex Operation . 11-10
11.2.3 Half-Duplex Operation . 11-13
11.2.4 Continuous Transfers . 11-14
11.2.5 Baudrate Generation . 11-15
11.2.6 Error Detection Mechanisms . 11-17

12 General Purpose Timer Unit . 12-1
12.1 Introduction . 12-1
12.2 Functional Description of Timer Block 1 . 12-3
12.2.1 Core Timer T3 . 12-5
12.2.2 Auxiliary Timers T2 and T4 . 12-16
12.2.3 Timer Concatenation . 12-21
12.3 Functional Description of Timer Block 2 . 12-26
12.3.1 Core Timer T6 . 12-28

User’s Manual
C166S V1 SubSystem

Table of Contents Page

User’s Manual I-5 V 1.6, 2001-08

12.3.2 Auxiliary Timer T5 . 12-34
12.3.3 Timer Concatenation . 12-38

13 Instruction Index . 13-1

14 Keyword Index . 14-1

User’s Manual
C166S V1 SubSystem

User’s Manual I-6 V 1.6, 2001-08

User’s Manual
C166S V1 SubSystem

Introduction

User’s Manual 1-1 V 1.6, 2001-08

1 Introduction
The rapidly growing area of embedded control applications is representing one of the
most time-critical operating environments for today’s microcontrollers. Complex control
algorithms have to be processed based on a large number of digital as well as analog
input signals, and the appropriate output signals must be generated within a defined
maximum response time. Embedded control applications also are often sensitive to
board space, power consumption, and overall system cost.

Embedded control applications therefore require microcontrollers, which...

• offer a high level of system integration
• eliminate the need for additional peripheral devices and the associated software overhead
• provide system security and fail-safe mechanisms
• provide effective means to control (and reduce) the device’s power consumption.

About this Manual

This manual describes the functionality of the 16-bit microcontroller-subsystem
C166S_R1 of the Infineon C166 Family, the C166S-class.

User’s Manual
C166S V1 SubSystem

Introduction

User’s Manual 1-2 V 1.6, 2001-08

1.1 The Members of the 16-bit Microcontroller Family

The microcontroller-subsystem of the Infineon 16-bit family has been designed to meet
the high performance requirements of real-time embedded control applications. The
architecture of this family has been optimized for high instruction throughput and
minimum response time to external stimuli (interrupts). Intelligent peripheral subsystems
have been integrated to reduce the need for CPU (Central Processing Unit) intervention
to a minimum extent. This also minimizes the need for communication via the external
bus interface. The high flexibility of this architecture allows to serve the diverse and
varying needs of different application areas such as automotive, industrial control, or
data communications.

The core of the 16-bit family has been developed with a modular family concept in mind.
All family members execute an efficient control-optimized instruction set (additional
instructions for members of the second generation). This allows an easy and quick
implementation of new family members with different internal memory sizes and
technologies, different sets of on-chip peripherals and/or different numbers of I/O (Input/
Output) pins.

The Internal Bus Interface (IBI) concept opens a straight forward path for the integration
of application specific peripheral modules in addition to the standard on-chip peripherals
in order to build application specific derivatives.

As programs for embedded control applications become larger, high level languages are
favoured by programmers, because high level language programs are easier to write, to
debug and to maintain.

The 80C166-type microcontrollers were the first generation of the 16-bit controller
family. These devices have established the C166 architecture.

The C165-type and C167-type devices are members of the second generation of this
family. This second generation is even more powerful due to additional instructions for
HLL support, an increased address space, increased internal RAM (Random Access
Memory) and highly efficient management of various resources on the external bus.

The C166S-type devices are members of the third generation of this family. This third
generation is the synthesizable version of the second generation.

Enhanced derivatives of this second/third generation provide additional features like
additional internal high-speed RAM, an integrated CAN-Module (Controller Area
Network), an on-chip PLL (Phase Locked Loop), etc.

Utilizing integration to design efficient systems may require the integration of application
specific peripherals to boost system performance, while minimizing the part count.
These efforts are supported by the so-called Internal Bus Interface, defined for the
Infineon 16-bit microcontrollers (XBus second generation). This Internal Bus Interface is
an internal representation of the External Bus Interface that opens and simplifies the
integration of peripherals by standardizing the required interface.

User’s Manual
C166S V1 SubSystem

Introduction

User’s Manual 1-3 V 1.6, 2001-08

1.2 Summary of Basic Features

The C166S is an improved representative of the Infineon family of full featured 16-bit
single-chip CMOS (Complementary Metal Oxide Silicon) microcontrollers. It combines
high CPU performance with high peripheral functionality.
Several key features contribute to the high performance of the C166S bases subsystem
(the indicated timings refer to a CPU clock of 50 MHz).

High Performance 16-Bit CPU With Four-Stage Pipeline

• 40 ns minimum instruction cycle time, with most instructions executed in 1 cycle
• 200 ns multiplication (16-bit *16-bit), 400 ns division (32-bit/16-bit)
• Multiple high bandwidth internal data buses
• Register based design with multiple variable register banks
• Single cycle context switching support
• 16 MBytes linear address space for code and data (von Neumann architecture)
• System stack cache support with automatic stack overflow/underflow detection

Control Oriented Instruction Set with High Efficiency

• Bit, byte, and word data types
• Flexible and efficient addressing modes for high code density
• Enhanced boolean bit manipulation with direct addressability of 6 Kbits

for peripheral control and user defined flags
• Hardware traps to identify exception conditions during runtime
• HLL support for semaphore operations and efficient data access

External Bus Interface

• Multiplexed or demultiplexed bus configurations
• Segmentation capability and chip slect signal generation
• 8-bit or 16-bit data bus
• Bus cycle characteristics selectable for five programmable address areas

16-Priority-Level Interrupt System

• Up to 112 interrupt nodes with separate interrupt vectors
• 16 priority levels and 4(8) group levels

Up to 16-Channel Peripheral Event Controller (PEC)

• Interrupt driven single cycle data transfer
• Transfer count option (std. CPU interrupt after programmable number of PEC transfers)
• Long Transfer Counter
• Channel Linking
• Eliminates overhead of saving and restoring system state for interrupt requests

User’s Manual
C166S V1 SubSystem

Introduction

User’s Manual 1-4 V 1.6, 2001-08

Intelligent On-chip Peripherals

• General Purpose Timer Unit Timer Block 1:
– fPDBUS+/4 maximum resolution
– 3 independent timers/counters
– Timer/counters can be concatenated
– 4 operation modes (timer, gated timer, counter, incremental)
– Seperate interrupt lines

• General Purpose Timer Unit Timer Block 2:
– fPDBUS+/2 maximum resolution
– 2 independent timers/counters
– Timer/counters can be concatenated
– 3 operation modes (timer, gated timer, counter)
– Extendend capture/reload functions
– Seperate interrupt lines

• Asynchronous/Sychronous Serial Channel (ASC0)
with baud rate generator, parity, framing, and overrun error detection

• High Speed Synchronous Serial Cannel (SSC0)
with baud rate generator, programmable data length and shift direction

• Watchdog Timer with programmable timer events

User’s Manual
C166S V1 SubSystem

Introduction

User’s Manual 1-5 V 1.6, 2001-08

Complete Development Support

For the development tool support of its microcontrollers, Infineon follows a clear third
party concept. Currently around 120 tool suppliers world-wide, ranging from local niche
manufacturers to multinational companies with broad product portfolios, offer powerful
development tools for the Infineon C166/C166S microcontroller families, guaranteeing a
remarkable variety of price-performance classes as well as early availability of high
quality key tools such as compilers, assemblers, simulators, debuggers or in-circuit
emulators.

Infineon incorporates its strategic tool partners very early into the product development
process, making sure embedded system developers get reliable, well-tuned tool
solutions, which help them unleash the power of Infineon microcontrollers in the most
effective way and with the shortest possible learning curve.

The tool environment for the Infineon 16-bit microcontrollers includes the following tools:

• Compilers (C, MODULA2, FORTH)
• Macro-Assemblers, Linkers, Locaters, Library Managers, Format-Converters
• Architectural Simulators
• HLL debuggers
• Real-Time operating systems
• VERILOG chip models
• In-Circuit Emulators (based on bondout or standard chips)
• Plug-In emulators
• Emulation and Clip-Over adapters, production sockets
• Logic Analyzer disassemblers
• Starter Kits
• Evaluation Boards with monitor programs

User’s Manual
C166S V1 SubSystem

Introduction

User’s Manual 1-6 V 1.6, 2001-08

User’s Manual
C166S V1 SubSystem

System Overview

User’s Manual 2-1 V 1.6, 2001-08

2 System Overview
The architecture of the C166S combines the advantages of both RISC (Reduced
Instruction Set Computing) and CISC (Complex Instruction Set Computing) processors
in a very well-balanced way. The sum of the features which are combined results in a
high performance microcontroller, which is the right choice not only for today’s
applications, but also for future engineering challenges. C166S based derivatives does
not only integrate a powerful CPU (Central Processing Unit) core and a set of peripheral
units into one chip, but also connects the units in a very efficient way. One of the four
buses used concurrently on the C166S is the Internal Bus Interface, an internal
representation of the external bus interface. This bus provides a standardized method of
integrating application-specific peripherals to produce derivatives of the standard
C166S. This manual specially describes the C166S Subsystem consists of the CPU,
Interrupt Controller (ITC), Bus Controller (BC), On-Chip Debug Support (OCDS) and
other system specific peripherals and modules. The following figure shows the principles
of a C166S based system.

&&%

Local
Memory

up to 3 kByte
DPRAM

C166S
Subsystem

GPT12E SSC0

PLL

OSC

16

16

32

PDBUS+

PORT and dedicated Pins
0/1/4/6

Clock
Generation

Unit

P
ort

E
xt

er
na

l

B
us

JT
A

G

R
E

S
E

T

�����
�����	

PORT

 BC Config.
Block

External
Bus Interface

Internal

C
O

N
F
IG

N
M

I

Peripheral
....

Local Memory Bus

Peripheral
....

Memory

In
te

rn
al

 B
u
s

In
te

rf
ac

e

Interrupt
Controller

CPU

Interrupt/
PEC

Break
Interface

Trace
Interface

ASC0

WDT
OCDS/
JTAG

PORT

P
ort

P
ort

DPRAM
Interface

RC

PSC

CEG

User’s Manual
C166S V1 SubSystem

System Overview

User’s Manual 2-2 V 1.6, 2001-08

2.1 Basic CPU Concepts and Mega Core

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic
and logic unit (ALU) and dedicated Special Function Registers (SFRs). Additional
hardware is provided for a separate multiply and divide unit, a bit-mask generator and a
barrel shifter.

To meet the demand for greater performance and flexibility, a number of areas has been
optimized in the processor core. Functional blocks in the CPU core are controlled by
signals from the instruction decode logic. These are summarized below, and described
in detail in the following sections:

1) High Instruction Bandwidth / Fast Execution

2) High Function 8-bit and 16-bit Arithmetic and Logic Unit

3) Extended Bit Processing and Peripheral Control

4) High Performance Branch-, Call-, and Loop Processing

5) Consistent and Optimized Instruction Formats

6) Programmable Multiple Priority Interrupt Structure

2.1.1 High Instruction Bandwidth / Fast Execution

Based on the hardware provisions, most of the C166S’s instructions can be executed in
just one machine cycle, which requires 2 CPU clock cycles T1 and T2 (2 * 1/�CPU =
4 TCL). For example, shift and rotate instructions are always processed within one
machine cycle, independent of the number of bits to be shifted.

Branch-, multiply- and divide instructions normally take more than one machine cycle.
These instructions, however, have also been optimized.

A 32-bit / 16-bit division takes 20 CPU clock cycles, a 16-bit * 16-bit multiplication takes
10 CPU clock cycles.

The instruction cycle time has been dramatically reduced through the use of instruction
pipelining. This technique allows the core CPU to process portions of multiple sequential
instruction stages in parallel. The following four stage pipeline provides the optimum
balancing for the CPU core:

FETCH: In this stage, an instruction is fetched from the internal ROM (Read Only
Memory) or RAM (Random Access Memory) or from the external memory, based on the
current Instruction Pointer (IP) value.

DECODE: In this stage, the previously fetched instruction is decoded and the required
operands are fetched.

EXECUTE: In this stage, the specified operation is performed on the previously fetched
operands.

WRITE BACK: In this stage, the result is written to the specified location.

User’s Manual
C166S V1 SubSystem

System Overview

User’s Manual 2-3 V 1.6, 2001-08

If this technique were not used, each instruction would require four machine cycles. This
increased performance allows a greater number of tasks and interrupts to be processed.

Instruction Decoder

Instruction decoding is primarily generated from PLA (Programmable Logic Array)
outputs based on the selected opcode. No microcode is used and each pipeline stage
receives control signals staged in control registers from the decode stage PLAs. Pipeline
holds are primarily caused by waitstates for external memory accesses and cause the
holding of signals in the control registers. Multiple-cycle instructions are performed
through instruction injection and simple internal state machines which modify required
control signals.

2.1.2 High Function 8-bit and 16-bit Arithmetic and Logic Unit

All standard arithmetic and logical operations are performed in a 16-bit ALU. In addition,
for byte operations, signals are provided from bits six and seven of the ALU result to
correctly set the condition flags. Multiple precision arithmetic is provided through a
’CARRY-IN’ signal to the ALU from previously calculated portions of the desired
operation.

Most internal execution blocks have been optimized to perform operations on either 8-
bit or 16-bit quantities. Once the pipeline has been filled, one instruction is completed per
machine cycle, except for multiply and divide. An advanced Booth algorithm has been
incorporated to allow four bits to be multiplied and two bits to be divided per machine
cycle. Thus, these operations use two coupled 16-bit registers, MDL (Multiply Divide
Low Word) and MDH (Multiply Divide High Word), and require four and nine machine
cycles, respectively, to perform a 16-bit by 16-bit (or 32-bit by 16-bit) calculation plus one
machine cycle to setup and adjust the operands and the result. Even these longer
multiply and divide instructions can be interrupted during their execution to allow for very
fast interrupt response. Instructions have also been provided to allow byte packing in
memory while providing sign extension of bytes for word wide arithmetic operations. The
internal bus structure also allows transfers of bytes or words to or from peripherals based
on the peripheral requirements.

A set of consistent flags is automatically updated in the PSW (Program Status Word)
after each arithmetic, logical, shift, or movement operation. These flags allow branching
on specific conditions. Support for both signed and unsigned arithmetic is provided
through user-specifiable branch tests. These flags are also preserved automatically by
the CPU upon entry into an interrupt or trap routine. All targets for branch calculations
are also computed in the central ALU.

A 16-bit barrel shifter provides multiple bit shifts in a single cycle. Rotates and arithmetic
shifts are also supported.

User’s Manual
C166S V1 SubSystem

System Overview

User’s Manual 2-4 V 1.6, 2001-08

2.1.3 Extended Bit Processing and Peripheral Control

A large number of instructions has been dedicated to bit processing. These instructions
provide efficient control and testing of peripherals while enhancing data manipulation.
Unlike other microcontrollers, these instructions provide direct access to two operands
in the bit-addressable space without requiring to move them into temporary flags.

The same logical instructions available for words and bytes are also supported for bits.
This allows the user to compare and modify a control bit for a peripheral in one
instruction. Multiple-bit shift instructions have been included to avoid long instruction
streams of single-bit shift operations. These are also performed in a single machine
cycle.

In addition, bit field instructions have been provided, which allow the modification of
multiple bits from one operand in a single instruction.

High Performance Branch-, Call-, and Loop Processing

Due to the high percentage of branching in controller applications, branch instructions
have been optimized to require one extra machine cycle only when a branch is taken.
This is implemented by precalculating the target address while decoding the instruction.
To decrease loop execution overhead, three enhancements have been provided:

• The first solution provides two cycle branch execution after the first iteration of a loop.
Thus, only one additional machine cycle is lost during the execution of the entire loop. In
loops which fall through upon completion, no additional machine cycles is lost when
exiting the loop. No special instructions are required to perform loops, and loops are
automatically detected during execution of branch instructions.

• The second loop enhancement allows the detection of the end of a table and avoids
the use of two compare instructions embedded in loops. One simply places the lowest
negative number at the end of the specific table, and specifies branching if neither this
value nor the compared value have been found. Otherwise the loop is terminated if either
condition has been met. The terminating condition can then be tested.

• The third loop enhancement provides a more flexible solution than the Decrement and
Skip on Zero instruction which is found in other microcontrollers. Through the use of
Compare and Increment or Decrement instructions, the user can make comparisons to
any value. This allows loop counters to cover any range. This is particularly
advantageous in table searching.

Saving of system state is automatically performed on the internal system stack avoiding
the use of instructions to preserve state upon entry and exit of interrupt or trap routines.
Call instructions push the value of the IP on the system stack, and require the same
execution time as branch instructions.

Instructions have also been provided to support indirect branch and call instructions.
This supports implementation of multiple CASE statement branching in assembler
macros and high level languages.

User’s Manual
C166S V1 SubSystem

System Overview

User’s Manual 2-5 V 1.6, 2001-08

2.1.4 Consistent and Optimized Instruction Formats

To obtain optimum performance in a pipelined design, an instruction set has been
designed which incorporates concepts from Reduced Instruction Set Computing (RISC).
These concepts primarily allow fast decoding of the instructions and operands while
reducing pipeline holds. These concepts, however, do not preclude the use of complex
instructions, which are required by microcontroller users. The following goals were used
to design the instruction set:

1. Provide powerful instructions to perform operations which currently require
sequences of instructions and are frequently used. Avoid transfer into and out of
temporary registers such as accumulators and carry bits. Perform tasks in parallel
such as saving state upon entry into interrupt routines or subroutines.

2. Avoid complex encoding schemes by placing operands in consistent fields for each
instruction. Also avoid complex addressing modes which are not frequently used. This
decreases the instruction decode time while also simplifying the development of
compilers and assemblers.

3. Provide most frequently used instructions with one-word instruction formats. All other
instructions are placed into two-word formats. This allows all instructions to be placed
on word boundaries, which alleviates the need for complex alignment hardware. It
also has the benefit of increasing the range for relative branching instructions.

The high performance offered by the hardware implementation of the CPU can efficiently
be utilized by a programmer via the highly functional C166S instruction set which
includes the following instruction classes:

• Arithmetic Instructions
• Logical Instructions
• Boolean Bit Manipulation Instructions
• Compare and Loop Control Instructions
• Shift and Rotate Instructions
• Prioritize Instruction
• Data Movement Instructions
• System Stack Instructions
• Jump and Call Instructions
• Return Instructions
• System Control Instructions
• Miscellaneous Instructions

Possible operand types are bits, bytes and words. Specific instruction support the
conversion (extension) of bytes to words. A variety of direct, indirect or immediate
addressing modes are provided to specify the required operands.

User’s Manual
C166S V1 SubSystem

System Overview

User’s Manual 2-6 V 1.6, 2001-08

2.1.5 Programmable Multiple Priority Interrupt and PEC System

The following enhancements have been included to allow processing of a large number
of interrupt sources:

1. Peripheral Event Controller (PEC): This processor is used to off-load many interrupt
requests from the CPU. It avoids the overhead of entering and exiting interrupt or trap
routines by performing single-cycle interrupt-driven byte or word data transfers
between any two locations with an optional increment of either the PEC source or the
destination pointer. Just one cycle is ’stolen’ from the current CPU activity to perform
a PEC service.

2. Multiple Priority Interrupt Controller (ITC): This controller allows all interrupts to be
placed at any specified priority. Interrupts may also be grouped, which provides the
user with the ability to prevent similar priority tasks from interrupting each other. For
each of the possible interrupt sources there is a separate control register, which
contains an interrupt request flag, an interrupt enable flag and an interrupt priority
bitfield. Once having been accepted by the CPU, an interrupt service can only be
interrupted by a higher prioritized service request. For standard interrupt processing,
each of the possible interrupt sources has a dedicated vector location.

3. Multiple Register Banks: This feature allows the user to specify up to sixteen general
purpose registers located anywhere in the internal DPRAM (Dual Port RAM). A single
one-machine-cycle instruction allows to switch register banks from one task to
another.

4. Interruptible Multiple Cycle Instructions: Reduced interrupt latency is provided by
allowing multiple-cycle instructions (multiply, divide) to be interruptible.

5. Hardware Traps: The C166S also provides an excellent mechanism to identify and to
process exceptions or error conditions that arise during run-time, so called ’Hardware
Traps’. Hardware traps cause an immediate non-maskable system reaction which is
similar to a standard interrupt service (branching to a dedicated vector table location).
The occurrence of a hardware trap is additionally signified by an individual bit in the
Trap Flag Register (TFR). Except for another higher prioritized trap service being in
progress, a hardware trap will interrupt any current program execution. In turn,
hardware trap services can normally not be interrupted by standard or PEC interrupts.

6. Software Traps: Software interrupts are supported by means of the ’TRAP’ instruction
in combination with an individual trap (interrupt) number.

User’s Manual
C166S V1 SubSystem

System Overview

User’s Manual 2-7 V 1.6, 2001-08

2.2 The C166S System Resources

The C166S based subsystem provides a number of powerful system resources
designed around the CPU. The combination of CPU and these resources results in the
high performance of the members of this controller family.

2.2.1 Memory Areas

The memory space of the C166S is configured in a Von Neumann architecture which
means that code memory, data memory, registers and I/O ports are organized within the
same linear address space which covers up to 16 MBytes. The entire memory space can
be accessed bytewise or wordwise. Particular portions of the on-chip memory have
additionally been made directly bit addressable.

An up to 3 KByte 16-bit wide internal DPRAM provides fast access to General
Purpose Registers (GPRs), user data (variables) and system stack. The DPRAM may
also be used for code. A unique decoding scheme provides flexible user register banks
in the internal memory while optimizing the remaining RAM for user data.

The CPU has an actual register context consisting of up to 16 wordwide and/or bytewide
GPRs at its disposal, which are physically located within the on-chip RAM area. A
Context Pointer (CP) register determines the base address of the active register bank to
be accessed by the CPU at a time. The number of register banks is only restricted by the
available DPRAM space. For easy parameter passing, a register bank may overlap
others.

A system stack is provided as a storage for temporary data. The system stack is also
located within the on-chip RAM area, and it is accessed by the CPU via the stack pointer
(SP) register. Two separate SFRs, STacK OVerflow (STKOV) and STacK UNderflow
(STKUN), are implicitly compared against the stack pointer value upon each stack
access for the detection of a stack overflow or underflow.

Hardware detection of the selected memory space is placed at the internal memory
decoders and allows the user to specify any address directly or indirectly and obtain the
desired data without using temporary registers or special instructions.

For Special Function Registers 1024 Bytes of the address space are reserved. The
standard Special Function Register area (SFR) uses 512 bytes, while the Extended
Special Function Register area (ESFR) uses the other 512 bytes. (E)SFRs are wordwide
registers which are used for controlling and monitoring functions of the different on-chip
units. Unused (E)SFR addresses are reserved for future members of the C166 family
with enhanced functionality.

An optional Local Memory is provided for both code and data storage. This memory
area is connected to the CPU via a 32-bit-wide local memory bus. Program execution
from Local Memory is the fastest of all possible alternatives.

The type of the on-chip Local Memory (Flash/ROM/SRAM/DRAM/none) depends on the
chosen derivative.

User’s Manual
C166S V1 SubSystem

System Overview

User’s Manual 2-8 V 1.6, 2001-08

2.2.2 External Bus Interface

In order to meet the needs of designs where more memory is required than is provided
on chip, up to 16 MBytes of external RAM and/or ROM can be connected to the
microcontroller via its external bus interface. The integrated Bus Controller (BC) allows
to access external memory and/or peripheral resources in a very flexible way.

It can be programmed either to Single Chip Mode when no external memory is required,
or to one of four different external memory access modes, which are as follows:

– 16-/18-/20-/24-bit Addresses, 16-bit Data, Demultiplexed
– 16-/18-/20-/24-bit Addresses, 16-bit Data, Multiplexed
– 16-/18-/20-/24-bit Addresses, 8-bit Data, Multiplexed
– 16-/18-/20-/24-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/
output on PORT0. In the multiplexed bus modes both addresses and data use PORT0
for input/output.

Important timing characteristics of the external bus interface (Memory Cycle Time,
Memory Tri-State Time, Length of ALE, Read Write Delay CS and WR) have been made
programmable to allow the user the adaptation of a wide range of different types of
memories. In addition, different address ranges may be accessed with different bus
characteristics. Up to 5 external CS signals can be generated in order to save external
glue logic. Access to very slow memories is supported via a particular ‘Ready’ function.

For applications which require less than 16 MBytes of external memory space, this
address space can be restricted to 1MByte, 256 kByte or 64 kByte. In this case Port4
outputs four, two or no address (segment) lines at all. It outputs all 8 address, if an
address space of 16 MByte is used.

The on-chip Internal Bus Interface is an internal representation of the external bus and
allows to access integrated application-specific peripherals/modules in the same way as
external components. It provides a defined interface for these customized peripherals.

2.2.3 The On-chip Peripheral Blocks

The C166 Family clearly separates peripherals from the core. This structure permits the
maximum number of operations to be performed in parallel and allows peripherals to be
added or deleted from family members without modifications to the core. These built in
peripherals either allow the CPU to interface with the external world, or provide functions
on-chip that otherwise were to be added externally in the respective system. Each
functional block processes data independently and communicates information over
common buses. Individually selected clock signals are generated for each peripheral.

User’s Manual
C166S V1 SubSystem

System Overview

User’s Manual 2-9 V 1.6, 2001-08

Peripheral Interfaces

The on-chip peripherals generally have two different types of interfaces, an interface to
the CPU and an interface to external hardware. Communication between CPU and
peripherals is performed through Special Function Registers (SFRs) and interrupts.

Each peripheral contains a set of Special Function Registers (SFRs), which control the
functionality of the peripheral and temporarily store intermediate data results. These
SFRs are located either within the standard SFR area (00’FE00H-00’FFFFH) or within
the extended ESFR area (00’F000H-00’F1FFH). Each peripheral has an associated set
of status flags.

Interrupt requests are generated by the peripherals based on specific events which
occur during their operation (e.g. operation complete, error, etc.).

For interfacing with external hardware, specific pins of the parallel ports are used, when
an input or output function has been selected for a peripheral. During this time, the port
pins are controlled by the peripheral (when used as outputs) or by the external hardware
which controls the peripheral (when used as inputs). This is called the 'alternate (input
or output) function' of a port pin, in contrast to its function as a general purpose IO pin.

Peripheral Timing

Internal operation of CPU and peripherals is based on the CPU clock (�CPU). The on-chip
oscillator derives the CPU clock from the crystal or from the external clock signal. The
clock signal (�PDBUS+) which is gated to the peripherals is independent from the clock
signal which feeds the CPU. During Idle mode the CPU’s clock is stopped while the
peripherals continue their operation. Peripheral SFRs may be accessed by the CPU
once per state. When an SFR is written to by software in the same state where it is also
to be modified by the peripheral, the software write operation has priority.

2.2.3.1 Asynchronous / Synchronous Serial Channel (ASC0)

Serial communication with other microcontrollers, processors, terminals or external
peripheral components is provided by a Asynchronous / Synchronous Serial Channel.
The ASC0 supports full-duplex asynchronous communication up to 3.125 MBaud and
half-duplex synchronous communication up to 6.25 MBaud (referred to a PDBUS+ clock
of 50 MHz).

A versatile baud rate generator allows to set up all standard baud rates without
subsystem clock tuning. For transmission, reception, and erroneous reception three
separate interrupt requests are provided.

In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by
a start bit and terminated by one or two stop bits. For multiprocessor communication, a
mechanism to distinguish address from data bytes has been included (8-bit data + wake
up bit mode).

User’s Manual
C166S V1 SubSystem

System Overview

User’s Manual 2-10 V 1.6, 2001-08

In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a
shift clock which is generated by the ASC0.

A loop back option is available for testing purposes.

A number of optional hardware error detection capabilities has been included to increase
the reliability of data transfers. A parity bit can automatically be generated on
transmission or be checked on reception. Framing error detection allows to recognize
data frames with missing stop bits. An overrun error will be generated, if the last
character received has not been read out of the receive buffer register at the time the
reception of a new character is complete.

2.2.3.2 High Speed Synchronous Serial Channel (SSC0)

Serial communication with other microcontrollers, processors, terminals or external
peripheral components is provided by a High-Speed Synchronous Serial Channel.

The SSC0 allows full duplex synchronous communication up to 25 MBaud in master
mode and 12.5 MBaud in slave mode (referred to a PDBUS+ clock of 50 MHz).

A dedicated baud rate generator allows to set up all standard baud rates without
subsystem clock tuning. For transmission, reception, and erroneous reception three
separate interrupt requests are provided.

The SSC0 transmits or receives characters of 2...16 bits length synchronously to a shift
clock which can be generated by the SSC0 (master mode) or by an external master
(slave mode). The SSC0 can start shifting with LSB or with MSB. Fully SPI functionality
is supported. A loop back option is available for testing purposes.

A number of optional hardware error detection capabilities has been included to increase
the reliability of data transfers. A parity bit can automatically be generated on
transmission or be checked on reception. Framing error detection allows to recognize
data frames with missing stop bits. An overrun error will be generated, if the last
character received has not been read out of the receive buffer register at the time the
reception of a new character is complete.

2.2.3.3 General Purpose Timer Unit (GPT12E)

The General Purpose Timer Unit (GPT12E) represents very flexible multifunctional timer
structures which may be used for timing, event counting, pulse width measurement,
pulse generation, frequency multiplication, and other purposes. They incorporate five
16-bit timers that are grouped into the two timer blocks GPT1 and GPT2. Each timer in
each block may operate independently in a number of different modes such as gated
timer or counter mode, or may be concatenated with another timer of the same block.

Block 1 contains 3 timers/counters with a maximum resolution of fPDBUS+/4. The auxiliary
timers of GPT1 may optionally be configured as reload or capture registers for the core
timer.

User’s Manual
C166S V1 SubSystem

System Overview

User’s Manual 2-11 V 1.6, 2001-08

Block 2 contains 2 timers/counters with a maximum resolution of fPDBUS+/2. An
additional CAPREL register supports capture and reload operation with extended
functionality.

The following enumeration summarizes all features to be supported:

• Timer Block 1:
– fPDBUS+/4 maximum resolution
– 3 independent timers/counters.
– Timers/counters can be concatenated.
– 4 operating modes (timer, gated timer, counter, incremental).
– Separate interrupt request lines.

• Timer Block 2:
– fPDBUS+/2 maximum resolution
– 2 independent timers/counters.
– Timers/counters can be concatenated.
– 3 operating modes (timer, gated timer, counter).
– Extended capture/reload functions via 16-bit Capture/Reload register CAPREL.
– Separate interrupt request lines.

2.2.4 Parallel Ports (PPorts)

The C166S V1 SubS R1 provides up to 48 I/O lines which are organized into four input/
output ports. All port lines are bit-addressable and individually (bit-wise) programmable
as inputs or outputs via direction registers. The output driver is disabled when an I/O line
is configured as input. This allows true bidirectional ports which are switched to high
impedance state when configured as inputs.

Further features like output driver control, input characteristic selection, temperature
compensation and output mode selection (open drain or push/pull mode) are not
supported by the subsystem´s port module. However, these features can be easily
added by the product logic, because they are controlling the PADs directly and have no
influence on the port module.

The output drivers´ enable signals are switched asynchronously to inactive level as soon
as a subsystem reset occurs. In this case all pins are configured as inputs.

Most port lines have programmable alternate input or output functions associated with
them.

PORT0 and PORT1 may be used as address and data lines when accessing external
memory, while Port 4 outputs the additional segment address bits A23/19/17...A16 in
applications where segmentation is enabled to access more than 64 kBytes of memory.

Port 6 provides optional bus arbitration signals and chip select signals.

All port lines that are not used for these alternate functions may be used as general
purpose IO lines.

User’s Manual
C166S V1 SubSystem

System Overview

User’s Manual 2-12 V 1.6, 2001-08

2.2.5 Periodic Wakeup from Idle or Sleep Mode

Periodic wakeup from Idle mode or from Sleep mode combines the drastically reduced
power consumption in Idle/Sleep mode (in conjunction with the additional power
management features) with a high level of system availability. External signals and
events can be scanned (at a lower rate) by periodically activating the CPU and selected
peripherals which then return to powersave mode after a short time. This greatly reduces
the system’s average power consumption. Idle/Sleep mode can also be terminated by
external interrupt signals.

2.2.6 OCDS and JTAG

The On-Chip Debug Support (OCDS) provides facilities to the debugger in order to
emulate resources and assists in application program debug. The main features are:

– real time emulation
– extended trigger capability including: instruction pointer events, data events on

address and/or value, external inputs, counters, chaining of events, timers, etc....
– software break support
– break and “break before make” (on IP events only)
– simple monitor mode or JTAG based debugging through instruction injection

The C166S OCDS is controlled by the debugger1) through a set of registers accessible
from the JTAG interface. The OCDS also receives informations (such as IP, data, status)
from the core for monitoring the activity and generating triggers. Finally, the OCDS
interacts with the core through a break interface to suspend program execution, and an
injection interface to allow execution of OCDS generated instructions.

2.2.7 Core Control Block (CCB)

The Core Control Block supports all central control tasks and all subsystem specific
features. The following typical sub-modules are implemented in this unit:

Reset Control (RC)

The reset function is controlled by the reset control unit. The reset block resets the
subsystem itself and provides three reset outputs to reset the complete c166S based
system according to the reset source.

• Hardware Reset:
The system enters the reset state immediately (asynchronous to its clock).

• Software Reset (synchronous to the CPU clock)
• Watchdog Timer Reset (synchronous to the CPU clock)

1) Debugger refers to the tool connected to the emulator, and more specifically to the OCDS via the JTAG and
which manages the emulation/debugging task.

User’s Manual
C166S V1 SubSystem

System Overview

User’s Manual 2-13 V 1.6, 2001-08

Power Saving Control (PSC)

The idle mode, and the power down mode mode are supported by the power saving
control block. Periodic wakeup from Idle mode combines the drastically reduced power
consumption in Idle mode (in conjunction with the additional power management
features) with a high level of system availability. External signals and events can be
scanned (at a lower rate) by periodically activating the CPU and selected peripherals
which then return to powersave mode after a short time. This greatly reduces the
system’s average power consumption.

Clock Enable Generator (CEG)

The clock enable generator module generates the clock enable signals used by the
different clock gates of the subsystem. These clock gates are used for the different clock
domains:

• CPU Clock
• Negative CPU Clock
• Peripheral Clock (PDBUS+ clock)

The CPU clock and the negative CPU clock shows the same frequency. However, both
clocks have a phase shift of 180°. This behavior is used for running the EBC protocol
state machine on two clock edges. Also the protocol of the local memory bus LM66-Bus
is based on two clock edges and needs this two clock domains.

The peripheral bus clock is limited to 50 MHz. For not limiting the core to this frequency
the peripherals are decoupled from the CPU by their own clock domain. The frequency
of the peripheral clock domain is either equal to or half of the CPU clock domain.

For generating all this enable signals, the clock enable generator needs to be supplied
by the double frequency of the CPU.

Watchdog Timer (WDT)

The watchdog timer represents one of the fail-safe mechanisms which have been
implemented to prevent the controller from malfunctioning. However, the watchdog timer
can only detect long term malfunctioning.

The watchdog timer is enabled automatically by setting its enable control line. It is
recommended that any product enables the watchdog timer after internal chip
initialization. The watchdog timer can only be disabled by software in the time interval
until the EINIT (end of initialization) instruction has been executed. Thus, the application
startup code is always monitored. The software has to be designed to service the
watchdog timer before it overflows. If, due to hardware or software related failures, the
software fails to do so, the watchdog timer overflows and generates either an internal
subsystem reset, which is indicated on the subsystem boundary (general signals
interface) for further product related actions, or triggers an interrupt. Which action will be
triggered depends on a new control bit within the WDTCON register.

User’s Manual
C166S V1 SubSystem

System Overview

User’s Manual 2-14 V 1.6, 2001-08

The Watchdog Timer is a 16-bit timer, which counts the PDBUS+ clock divided either by
2, 4, 128 or 256. The high byte of the Watchdog Timer register can be set to a predefined
reload value (stored in WDTREL) in order to allow further variation of the monitored time
interval. Each time it is serviced by the application software, the high byte of the
Watchdog Timer is reloaded. Thus, time intervals between 10 µs and 336 ms (default
after reset) can be monitored (referred to a PDBUS+ clock of 50 MHz).

2.2.8 Clock Generation Unit (CGU)

The C166S clock generation unit generates the system clock based on an oscillator or
crystal input. A programmable on-chip PLL adds a high flexibility on clock generation to
the C166S.

2.2.9 On-chip Bootstrap Loader.

An on-chip bootstrap loader allows to move the start code into internal memories via the
serial or other interfaces.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-1 V 1.6, 2001-08

3 Central Processing Unit
The C166S Central Processing Unit (CPU) represents the synthesizable generation of
the well-known C166 core family. It has many powerful enhancements while remaining
compatible with the C166 family. The new architecture offers a high-performance CPU;
fast and efficient access to different kinds of memories; and efficient integration with
peripheral units.
.

The new core architecture of the C166S results in higher CPU clock frequencies
compared to the C166 full custom cores.

C166S has 5 main units that are listed below. All these units have been optimized to
achieve maximum performance and flexibility.

• High Performance Instruction Fetch Unit (IFU)
– High bandwidth fetch interface
– Instruction FIFO (First In First Out Buffer)
– High-performance branch-, call-, and loop-processing with instruction flow

prediction

• Injection/Exception Handler
– Handling of interrupt requests
– Handling of hardware failures

• Instruction PIPeline (IPIP)

Figure 3-1 CPU architecture

CSP IP

SP
SPSEG

STKOV
STKUN

DPP0
DPP1

DPP3
DPP2

+/-
MDLMDH

Division Unit

ALU

Register Bank

+/-

Zeros

PSW

Ones

TFR

MDC

Barrel-Shifter

Bit-Mask-Gen.

Multiply Unit

 CPU

CP

4-Stage
 Pipeline

DPRAM

data in

data out

R15
R14

R0
R1

GPRs

R15
R14

R0
R1

GPRs

address

Instruction Fetch and Injection/Exception Handler

ADU

up to 3KByte

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-2 V 1.6, 2001-08

– 4-stage execution pipeline

7. Address and Data Unit (ADU)
– 16-bit arithmetic unit for address generation

8. Arithmetic and Logic Unit (ALU)
– 8-bit and 16-bit arithmetic unit
– 16-bit barrel shifter
– Multiplication and division unit
– 8-bit and 16-bit logic unit
– Bit-manipulation unit

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-3 V 1.6, 2001-08

3.1 Register Description Format

The C166S contains a set of Special-Function Registers (SFRs) and Extended Special-
Function Registers (ESFRs) that are described in the respective chapter of this manual.
The example below shows how to interpret the format and notation that are used to
describe SFRs and ESFRs.

A word register looks like this:

A byte register looks like this:

Elements:

REG_NAME Name of this register
bitX Name of bit
bitfieldX Name of bitfield
A16 / A8 Long 16-bit address / Short 8-bit address
SFR/ESFR Register space (SFR or ESFR Register)

(* *) * * Register contents after reset
0/1 : defined value

REG_NAME
Short Description SFR/ESFR(A16H,A8H) Reset value: *****H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 bitfield
A 0 0 bit

C
bit
B

bit
A

r r r r r r rwh r r rw rw rwh

REG_NAME
Short Description SFR/ESFR(A16H,A8H) Reset value: **H

7 6 5 4 3 2 1 0

0 bitfield
A 0 bit

C
bit
B

bit
A

r rwh r rw rw rwh

Field Bits Type Description

bitfieldX [m:n] type Description
value Function off(Default)
value Enable Function 1
... ...

bitX [n] type Description
0 Function off(Default)
1 Enable Function

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-4 V 1.6, 2001-08

U : unchanged [undefined (X) after power up]
Y : defined by reset configuration

[n] n : bit number of bit
[m:n] n : bit number of first bit of the bitfield

m : bit number of last bit of the bitfield

type r : readable by software
w : writable by software
h : writable by hardware

value 0/1 : defined value,
X : undefined,
0 : reserved for future purpose, read access delivers ’0’,

 must not be set to 1

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-5 V 1.6, 2001-08

3.2 CPU Special-Function Registers

The core CPU requires a set of CPU Special-Function Registers (CSFRs) to maintain
the system state information, to control system and bus configuration, and to manage
code memory segmentation and data memory paging. The CPU also uses CSFRs to
access the General-Purpose Registers (GPRs) and the System Stack, to supply the ALU
with register-addressable constants, and to support multiply and divide ALU operations.

The access mechanism for these CSFRs in the CPU core is identical to the access
mechanism for any other SFR. Since all SFRs can be controlled by any instruction that
is capable of addressing the SFR/CSFR memory space, there is no need for special
system control instructions.

However, to ensure proper processor operations, certain restrictions on the user access
to some CSFRs must be applied. For example, the Instruction Pointer (IP) and Code
Segment Pointer (CSP) registers cannot be accessed directly at all. They can only be
changed indirectly via branch instructions.

The Program Status Word (PSW), Stack Pointer (SP), and Multiply/Divide Control
Register (MDC) registers can be modified explicitly by the programmer, and implicitly by
the CPU during normal instruction processing.

Note: Note that any explicit write request (via software) to a (C)SFR supersedes a
simultaneous modification by hardware of the same register.

Note: All (C)SFRs may be accessed word-wise, or byte-wise (some of them even
bitwise). Reading bytes from word (C)SFRs is a non-critical operation. Any write
operation to a single byte of an (C)SFR clears the non-addressed complementary
byte within the specified (C)SFR.
Non-implemented (reserved) (C)SFR-Bits cannot be modified, and will always
supply a read value of 0. Non-implemented (C)SFR will always supply a read
value of FFFFH.

Programming Hints

Access to SFRs
All SFRs reside in dedicated page of the memory space. The following addressing
mechanisms allow to access the (C)SFRs:

• indirect or direct addressing with 16-bit (mem) addresses must guarantee that the
used data page pointer (DPP0...DPP3) selects data page 3.

• accesses via the Peripheral Event Controller (PEC) use the SRCPx and DSTPx
pointers instead of the data page pointers.

• short 8-bit (reg) addresses to the standard SFR area do not use the data page
pointers but directly access the registers within this 512 Byte area.

• short 8-bit (reg) addresses to the extended ESFR area require switching to the 512
Byte extended SFR area. This is done via the EXTension instructions EXTR,
EXTP(R), EXTS(R).

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-6 V 1.6, 2001-08

Byte write operations to word wide SFRs via indirect or direct 16-bit (mem) addressing
or byte transfers via the PEC force zeros in the non-addressed byte. Byte write
operations via short 8-bit (reg) addressing can only access the low byte of an SFR and
force zeros in the high byte. It is therefore recommended, to use the bit field instructions
(BFLDL and BFLDH) to write to any number of bits in either byte of an SFR without
disturbing the non-addressed byte and the unselected bits.

Reserved Bits
Some of the bits which are contained in the C166S’s SFRs are marked as Reserved.
User software should never write 1s to reserved bits. These bits are currently not
implemented and may be used in future products to invoke new functions. In this case,
the active state for these functions will be 1, and the inactive state will be 0. Therefore
writing only 0s to reserved locations provides portability of the current software to future
devices. After read accesses reserved bits should be ignored or masked out.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-7 V 1.6, 2001-08

3.3 Instruction Fetch and Program Flow Control

The C166S can fetch on average one 32-bit or two 16-bit instructions via the 32-bit wide
Local Memory Bus (LM-Bus) every machine cycle (which equals two clock cycles T1 and
T2) to provide a continuous instruction flow. The instructions can be fetched via this new
internal LM-Bus from the internal local memories (ROM, FLASH, OTP, SRAM, DRAM)
every clock cycle. A waitstate mechanism allows the CPU to adapt to different kind of
memories. For example, this mechanism can be used to:

• Access slower memories
• Generate a power ramp up phase for flash modules
• Stall a DRAM access during the refresh cycles.

Note: Additionally, the LM-Bus provides 16-bit read and write data accesses with and
without waitstates to the internal local memory. Furthermore, read protection is
provided by the CPU to protect the internal local memories against illegal data
accesses.

3.3.1 Branch Target Addressing Modes

The target address and the segment of jump or call instructions can be specified by
several addressing modes. The IP register may be updated using relative, absolute, or
indirect modes. The CSP register can be updated only by using an absolute value. A
special mode is provided to address the interrupt and trap jump vector table, which
resides in the lowest portion of the code segment 0.

caddr: Specifies an absolute 16-bit code address within the current segment.
Branches MAY NOT be taken to odd code addresses. Therefore, the least
significant bit of caddr must always contain a 0 or a hardware trap will occur.

rel: This mnemonic represents an 8-bit signed word offset address relative to the
current IP contents, which point to the instruction after the branch instruction.
Depending on the offset address range, both forward (rel= 00H to 7FH) and
backward (rel= 80H to FFH) branches are possible. The branch instruction
itself is repeatedly executed, when rel = -1 (FFH) for a word-sized branch

Table 3-1 Branch Target Addressing Modes

Mnemonic Target Address Target Segment Valid Address Range

caddr (IP) = caddr - caddr = 0000H...FFFEH

rel (IP) = (IP) + 2*rel
(IP) = (IP) + 2*(rel+1)

-
-

rel = 00H...7FH
rel = 80H...FFH

[Rw] (IP) = (Rw) - Rw w = 0...15

seg - (CSP) = seg seg = 0...255(3)

#trap7 (IP) = 0000H + 4*trap7 (CSP) = 0000H trap7 = 00H...7FH

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-8 V 1.6, 2001-08

instruction, or rel = -2 (FEH) for a double-word-sized branch instruction.

[Rw]: In this case, the 16-bit branch target instruction address is determined indi-
rectly by the contents of a word GPR. In contrast to indirect data addresses,
indirectly-specified code addresses are NOT calculated via additional pointer
registers (eg. DPP registers). Branches MAY NOT be taken to odd code
addresses. Therefore, the least significant bit of the address pointer GPR
must always contain a 0 or a hardware trap would occur.

seg: Specifies an absolute code segment number. The C166S supports 256 differ-
ent code segments, so only the 8 lower bits (respectively) of the ’seg’ operand
value are used to update the CSP register.

#trap7: Specifies a particular interrupt or trap number for branching to the correspond-
ing interrupt or trap service routine via a jump vector table. Trap numbers from
00H to 7FH can be specified to access any double-word code location within
the address range 00’0000H-00’01FCH in code segment 0 (i.e., the interrupt
jump vector table).
For the association of trap numbers with the corresponding interrupt or trap
sources, please refer to Section 3.4 “Interrupt and Trap Functions”.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-9 V 1.6, 2001-08

3.3.2 Sequential and Non-Sequential Instruction Flow

Since passing through one pipeline stage takes at least one machine cycle (which
equals two clock cycles T1 and T2), any isolated instruction takes at least four machine
cycles to be completed. Pipelining, however, allows parallel (i.e., simultaneous)
processing of up to four instructions. Therefore, most instructions will seem to be
processed during one machine cycle as soon as the pipeline has been filled once after
reset.

Pipelining increases the average instruction throughput. In this manual, any execution
time specification always refers to the average instruction execution time due to
pipelined parallel processing.

The execution time of a sequential and non-sequential instruction flow is mainly given by
the instruction fetch from different kind of memories (number of waitstates).

The following pipeline diagram (Table 3-2) shows the continuous execution of
instruction under the assumption of a fast Local Memory (0/1 waitstate).

The fetch stage fetches instructions from the Local Memory (LM) via the 32-bit LM-Bus.
If 16-bit instructions are fetched from the LM-Bus, instructions can be buffered in the 3-
word FIFO. The fetch stage always prefetches instructions. If the buffer is filled with
instructions, LM-Bus accesses are stopped until the fetched instructions can be loaded
into the buffer again.

Table 3-2 Sequential instruction execution (local memory, 0/1 waitstate)

Clock Cycle T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

FETCH In In+1 In+2 In+3 In+4 In+6

DECODE In-1 In In+1 In+2 In+3 In+4

EXECUTE In-2 In-1 In In+1 In+2 In+3

WRITE BACK In-3 In-2 In-1 In In+1 In+2

Machine Cycle Tm Tm+1 Tm+2 Tm+3 Tm+4 Tm+5

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-10 V 1.6, 2001-08

Table 3-3 shows the standard unconditional branch (branch taken) instruction pipeline,
assuming a fast local memory (0/1 waitstates)..

In case of a branch to a 32-bit target instruction, which is not aligned to a 32-bit address,
one additional machine cycle (T1,T2) is required.

Table 3-4 shows a standard conditional branch (branch taken) instruction pipeline,
assuming a fast local memory (0/1 waitstates).

Table 3-3 Unconditional branches (LM-Bus, 0/1 waitstate)

Clock Cycle T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

LM-Address Ia_t

LM-Data 32bit Id_t Id_t

FETCH In In+1==
branch

It It+1 It+2

DECODE In-1 In In+1==
branch

- It It+1

EXECUTE In-2 In-1 In In+1==
branch

- It

WRITE BACK In-3 In-2 In-1 In In+1==
branch

-

Machine Cycle Tm Tm+1 Tm+2 Tm+3 Tm+4 Tm+5

Table 3-4 Conditional branches (LM-Bus, 0/1 waitstate)

Clock Cycle T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

Address Ia_t

Data 32bit Id_t Id_t

FETCH In In+1==
branch

(In+2) It It+1

DECODE In-1 In In+1==
branch

In+1==
branch

- It

EXECUTE In-2 In-1 In In+1==

branch

In+1==

branch

-

WRITE BACK In-3 In-2 In-1 In In+1==

branch

In+1==

branch

Machine Cycle Tm Tm+1 Tm+2 Tm+3 Tm+4 Tm+5

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-11 V 1.6, 2001-08

Cache Jump Instruction Processing

The C166S incorporates a jump cache to optimize conditional jumps, which are
processed repeatedly within a loop. Whenever a jump on cache is taken, the extra time
to fetch the branch target instruction can be saved and thus the corresponding cache
jump instruction in most cases takes only one (unconditional branch) or two (conditional
branch) machine cycles.

This performance is achieved by the following mechanism: Whenever a cache jump
instruction passes through the decode stage of the pipeline for the first time (and provided
that the jump condition is met), the jump target instruction is fetched as usual, causing a
time delay of one machine cycle. In contrast to standard branch instructions, however, the
target instruction of a cache jump instruction (JMPA, JMPR, JB, JBC, JNB, JNBS) is
additionally stored in the cache after having been fetched.

After each subsequent execution of the same cache jump instruction, the jump target
instruction is not fetched from program memory but taken from the cache and
immediately injected into the fetch/decode stage of the pipeline (see table below
Table 3-5).

A time-saving jump on cache is always taken after the second and any subsequent
occurrences of the same cache jump instruction, unless an instruction that has the
fundamental capability of changing the CSP register contents (JMPS, CALLS, RETS,
TRAP, RETI), or any standard interrupt has been processed during the period of time
between two following occurrences of the same cache jump instruction.

Table 3-5 shows a standard unconditional branch (branch taken and target cached)
instruction pipeline, assuming a fast local memory (0/1 waitstates). .

Table 3-5 Unconditional cached branches (LM-Bus, 0/1 waitstate)

Clock Cycle T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

LM-Address Ia_t+1

LM-Data 32bit Id_t+1 Id_t+1

FETCH In In+1==

branch

It It+1 It+2 It+3

DECODE In-1 In In+1==
branch

It It+1 It+2

EXECUTE In-2 In-1 In In+1==
branch

It It+1

WRITE BACK In-3 In-2 In-1 In In+1==
branch

It

Machine Cycle Tm Tm+1 Tm+2 Tm+3 Tm+4 Tm+5

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-12 V 1.6, 2001-08

Table 3-6 shows a standard conditional branch (branch taken and target cached)
instruction pipeline, assuming a fast local memory (0/1 waitstates).

Table 3-6 Conditional cached branches (LM-Bus, 0/1 waitstate)

Clock Cycle T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

Address Ia_t+1

Data 32bit Id_t+1 Id_t+1

FETCH In In+1==
branch

(In+2) It It+1 It+2

DECODE In-1 In In+1==
branch

In+1==
branch

It It+1

EXECUTE In-2 In-1 In In+1==
branch

In+1==
branch

It

WRITE BACK In-3 In-2 In-1 In In+1==
branch

In+1==
branch

Machine Cycle Tm Tm+1 Tm+2 Tm+3 Tm+4 Tm+5

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-13 V 1.6, 2001-08

3.3.3 ATOMIC and EXTended Instructions

ATOMIC and EXTended instructions (ATOMIC, EXTR, EXTP, EXTS, EXTPR, EXTSR)
disable the standard and PEC interrupts and class A traps until the completion of the next
sequence of instructions. The number of instructions in the sequence may vary from 1
to 4. The instruction number is coded in the 2-bit constant field #irang2 and takes values
from 0 to 3. The EXTended instructions additionally change the addressing mechanism
during this sequence (see instruction description).

ATOMIC and EXTended instructions become active immediately, so no additional NOP
instructions are required. All instructions requiring multiple cycles or hold states for
execution are considered as one instruction. ATOMIC and EXTended instructions can
be used with any instruction type.

Note: If a class B trap interrupt occurs during an ATOMIC or EXTended sequence, then
the sequence is terminated, an interrupt lock is removed, and the standard
condition is restored before the trap routine is executed. The remaining
instructions of the terminated sequence that are executed after returning from the
trap routine will run under standard conditions.

Note: Certain precautions are required when using nested ATOMIC and EXTended
instructions. There is only one counter to control the length of the sequence, i.e.,
issuing an ATOMIC or EXTended instruction within a sequence will reload the
counter with the value of the new instruction.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-14 V 1.6, 2001-08

3.3.4 Code Addressing via Code Segment and Instruction Pointer

The C166S provides a total addressable memory space of 16 MBytes. This address
space is arranged as 256 segments of 64 KBytes each. A dedicated 24-bit code address
pointer is used to access the memories for instruction fetches. This pointer has two parts:
An 8-bit Code Segment Pointer (CSP), and a 16-bit offset Instruction Pointer (IP). The
concatenation of the CSP and IP results directly in a correct 24-bit physical memory
address.

CSP 015 IP

023

0
00’0000H

1
01’0000H

254
FE’0000H

255
FF’0000H

Memory organized in segments

Figure 3-2 Addressing via the Code Segment- and Instruction Pointers

segment offset

0 1578

1516

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-15 V 1.6, 2001-08

The Instruction Pointer IP

This register determines the 16-bit intra-segment address of the currently fetched
instruction within the code segment selected by the CSP register. The IP register is not
mapped into the C166S’s address space, and thus it is not directly accessible by the
programmer. The IP can be modified indirectly by return instructions via the stack. The
IP register is updated implicitly by the C166S for branch instructions and after instruction
fetch operations.

The Code Segment Pointer CSP

This non-bit-addressable register selects the code segment being used at run-time to
access instructions. The lower 8 bits of register CSP select one of up 256 segments of
64 KBytes each, while the higher 8 bits are reserved for future use.

IP
Instruction Pointer (----H,--H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IP 0

(r)(w)h r

Field Bits Type Description

IP [15:1] rwh Specifies the intra-segment offset from which the
current instruction is to be fetched; IP refers to the
current segment <SEGNR>.

0 [0] r IP is always word-aligned

CSP
Code Segment Pointer SFR(FE08H,04H) Reset value: 000x1)

H

1) The reset value of the bitfield segnr[1:0] is product-specific. With an alternate boot mode feature, the code
execution can be started at different segments after reset.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 SEGNR

r r r r r r r r r(w)h

Field Bits Type Description

SEGNR [7:0] rwh Specifies the code segment from which the current
instruction is to be fetched

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-16 V 1.6, 2001-08

The actual code memory address is generated by direct extension of the 16-bit contents
of the IP register by the lower byte of the CSP register, as shown in Figure 3-2.

There are two modes: Segmented and non-segmented. The mode is selected with the
SGTDIS bit in the SYSCON register. After reset, the segmented mode is selected.

Note: For summary of the SYSCON register please refer to Section 3.3.5.

Segmented Mode
The CSP register can be only read and may not be written by data operations. The CSP
is modified either directly by the JMPS and CALLS instructions, or indirectly via the stack
by the RETS and RETI instructions. Upon the acceptance of an interrupt or the execution
of a software TRAP instruction, the CSP register is automatically loaded with the
segment address of the vector location.

Non-Segmented Mode

In the non-segmented mode, the CSP is fixed to segment 0. It is no longer possible to
modify the CSP either directly by the JMPS or CALLS instructions, or indirectly via the
stack by the RETS (RETI) instruction. For non-segmented memory mode, the contents
of this register are not significant, because all code accesses are restricted automatically
to segment 0.

Note: When segmentation is disabled, the IP value is used directly as the 16-bit address.

SYSCON
System Control Register SFR (FF12H / 89H) (Reset value: 0xx0H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STKSZ ROM
S1

SGT
DIS

ROM
EN

SYS
CON9

SYS
CON8

SYS
CON7

SYS
CON6

SYS
CON5

SYS
CON4

SYS
CON3

SYS
CON2

SYS
CON1

SYS
CON0

rw rw rw rwh rwh rwh rwh rwh rwh rwh rwh rwh rwh rwh

Field Bits Type Description

SGTDIS 11 rw Segmentation Disable/Enable Control
0 Segmentation enabled (CSP is saved/restored

during interrupt entry/exit)
1 Segmentation disabled (Only IP is saved/restored)

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-17 V 1.6, 2001-08

3.3.5 The CPU/System Configuration Register SYSCON

This register is used to configure the C166S. It is bit-addressable and provides general
system configuration and control functions. The reset value of register SYSCON
depends on the state of the configuration inputs during reset.

Note: The CPU SYSCON bits cannot be changed after execution of the EINIT
instruction.

SYSCON
System Control Register SFR (FF12H / 89H) (Reset value: 0xx0H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STKSZ ROM
S1

SGTD
IS

ROM
EN

SYS
CON9

SYS
CON8

SYS
CON7

SYS
CON6

SYS
CON5

SYS
CON4

SYS
CON3

SYS
CON2

SYS
CON1

SYS
CON0

rw rw rw rwh rwh rwh rwh rwh rwh rwh rwh rwh rwh rwh

Field Bits Type Description

SYSCON0
.....
SYSCON9

0
....
9

rwh SYStem CONfiguration

ROMEN 10 rwh Internal ROM ENable (Set according to pin EA during
reset)
0 Internal local memory disabled: Accesses to the
Local memory area use the external bus
1 Internal local memory enabled

SGTDIS 11 rw SeGmenTation DISable/enable control
0 Segmentation enabled (CSP is saved/restored

during interrupt entry/exit)
1 Segmentation disabled (Only IP is saved/restored)

ROMS1 12 rw Internal local memory mapping
0 Internal local memory area mapped to segment 0

(00’0000H...00’7FFFH)
1 Internal Local Memory area mapped to segment 1

(01’0000H...01’7FFFH)

STKSZ [15:13] rw System STacK SiZe
Selects the size of the system stack (in the internal
DPRAM) from 32 to 1536 words

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-18 V 1.6, 2001-08

3.4 Interrupt and Exception Execution

An Interrupt and Exception Handler is responsible for managing all system and core
exceptions. There are four different kinds of exceptions that are executed in a similar
way:

• Interrupts generated by the InTerrupt Controller (ITC)
• DMA transfers issued by the Peripheral Event Controller (PEC).
• Software traps caused by the TRAP instruction
• Hardware traps issued by faults or specific system states

Normal Interrupt Processing

The CPU temporarily suspends the current program execution and branches to an
Interrupt Service Routine (ISR) in order to service an interrupt-requesting device. The
current program status [Instruction Pointer (IP), Processor Status Word (PSW), and in
segmentation mode, the Code Segment Pointer (CSP)] is saved on the internal system
stack. A prioritization scheme with 16 priority levels and with 4/8 sub-levels (4/8 group
levels) specifies the order of multiple interrupt-request handling. The maximum number
of interrupt requests is 112 (configured in steps of 16), wherein the lowest priority level
is reserved for the CPU and cannot be used for interrupts.

Software and Hardware Traps

Trap functions are activated in response to special conditions that occur during the
execution of instructions. A trap can also be caused externally by the Non-Maskable
Interrupt (NMI) pin. Several hardware trap functions are provided for handling erroneous
conditions and exceptions that arise during the program execution. Hardware traps
always have highest priority and cause immediate system reaction. The software trap
function is invoked by the TRAP instruction, which generates a software interrupt for a
specified interrupt vector. For all types of traps, the current program status is saved in
the system stack.

Interrupt Processing via the Peripheral Event Controller

A faster alternative to normal interrupt processing is servicing an interrupt requesting
device by the C166S's integrated PEC. Triggered by an interrupt request, the PEC
performs a single-word or byte data transfer between any two memory locations through
one of up to 16 programmable PEC service channels. During a PEC transfer, the normal
program execution of the CPU is halted. No internal program status information needs
to be saved. The same prioritization scheme is used for PEC service as for normal
interrupt processing.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-19 V 1.6, 2001-08

3.4.1 Interrupt System Structure

The C166S provides up to 112 separate interrupt nodes that may be assigned to 128
arbitration priority levels with 16 interrupt priority groups and 4/8 priorities inside each
group. In order to support modular and consistent software design techniques, most
sources of an interrupt or PEC request are supplied with a separate interrupt control
register and interrupt vector. The control register contains an interrupt request flag,
Interrupt Enable (IE) bit, and interrupt priority of the associated source. Each source
request is activated by one specific event, depending on the selected operating mode of
the respective device. In some cases, the multi-source interrupt nodes are incorporated
for efficient use of system resources. These nodes can be activated by several source
requests.

The C166S provides a vectored interrupt system. This system reserves specific vector
locations in the memory space for the reset, trap, and interrupt service functions.
Whenever a request occurs, the CPU branches to the location that is associated with the
respective interrupt source. The reserved vector locations build a jump table in the
C166S’s address space.

The arbitration winner is sent to the CPU together with its priority level and action
request. The CPU triggers the corresponding action, which depends on the required
functionality (normal interrupt, PEC etc.) of the arbitration winner.

An action request will be accepted by the CPU if the requesting source has a higher
priority than the current CPU priority level, and if interrupts are globally enabled. If the
requesting source has a lower (or equal) interrupt level priority, then the requested
interrupt stays pending.

3.4.2 Interrupt Arbitration

The C166S interrupt arbitration system can handle interrupt requests from up to 112
sources. Interrupt requests may be triggered either by the C166S peripherals or by
external inputs. The “End of PEC” interrupt for supporting enhanced PEC functionality is
connected internally to one of the interrupt request lines.

The arbitration process starts by an enabled interrupt request and stays active for as
long as interrupt request is pending. If nothing is pending then the arbitration logic
switches to the idle state to save power.

Each interrupt request line is controlled by its interrupt control register xxIC (here and
below, ’xx’ stands for the mnemonic of the respective interrupt source). An interrupt
request event sets the interrupt request flag to 1 in the corresponding interrupt control
register (bit xxIC.xxIR). The interrupt request can also be triggered by the software if the
program sets the respective interrupt request bit. This feature is used by operating
systems.

If the request bit has been set and this interrupt request is enabled by the IE bit of the
same control register (bit xxIC.xxIE), then an arbitration cycle starts on the next clock

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-20 V 1.6, 2001-08

cycle. However, if an arbitration cycle is currently in progress, the new interrupt request
will be delayed till the next arbitration cycle. If an interrupt request (or PEC request) is
accepted by the core, the respective interrupt request flag is cleared automatically.

All interrupt requests that are pending at the beginning of a new arbitration cycle are
considered simultaneously. Within the arbitration cycle, the arbitration is independent of
the actual request time.

C166S uses a two-stage interrupt prioritization scheme for interrupt arbitration, as shown
in Figure 3-3.

Figure 3-3 Interrupt Arbitration

The first arbitration stage compares up to 128 priority levels of interrupt request lines.
The priority level of each request consists of Interrupt priority LeVeL (ILVL) and Group
priority LeVeL (GLVL). An interrupt priority level is programmed for each interrupt
request line by the 4-bit bitfield ILVL of the respective xxIC register. The group priority
level is programmed for each interrupt request line by the 2-bit bitfield GLVL and the
group extension bit xxGP of the register xxIC.

Note: All interrupt request sources that are enabled and programmed to the same ILVL
must have different group priority levels. Otherwise, an incorrect interrupt vector
may be generated.

In the second arbitration stage, the priority level of the first-stage winner is compared
with the priority of the current CPU task. An action request will be accepted by the CPU
if the requesting source has a higher priority level than the current CPU priority level (bits
ILVL of the PSW register), and if interrupts are enabled globally by the global IEN flag in

C166S CPU

Internal Interrupt/PEC Handler

Interrupt
Request

Lines
irq0

irq1

irq2

irq112

Arbitration

Arbitration
Control

(Interrupt
Control

Registers)

3eripheral
(vent

&ontroller
(PEC)

Arbitr.

Winner

PEC
Control

(PEC
Control

Registers)

irq0IC

irq1IC

irq112IC

PECC0

PECC1

PECC15

EOP

INT ��

EOPIC

PECISNC

End of PEC Interrupt (EOPINT) is connected to one of the interrupt request lines.
Therefore, only up to 111 interrupt lines are available for peripheral request
handling.

��

irqxirq111

PEC Pointer

SRCP0

SRCP1

SRCP15

DSTP0

DSTP1

DSTP15

PECSN0

PECSN1

PECSN15

TRAP

IEN

EPEC

Internal Priorization

ILVL

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-21 V 1.6, 2001-08

PSW. The CPU denies all requests in case of a cleared IEN flag. If the requester has a
lower or equal priority level than current CPU task, the request stays pending.

Note: Priority level 0000B is the default level of the CPU. Therefore, a request on ILVL
0000B will be arbitrated, but the CPU will never accept an action request on this
level. However, every enabled interrupt request (including all denied interrupt
requests - also priority level 0000B requests) triggers a CPU wake-up from idle
state independent of the setting of the global interrupt enable bit PSW.IEN.

Note: The first 16 trap numbers are reserved for the CPU traps. The first usable interrupt
trap number starts with 10H . Therefore, the number of interrupt nodes is limited to
112.

All interrupt control registers are organized identically. The lower 8 bits of an interrupt
control register contain the complete interrupt control and status information of the
associated source, which is required during one round of prioritization (arbitration cycle).
The upper 8 bits of the respective register are reserved. All interrupt control registers are
bit-addressable, and all bits can be read or written via software. Therefore, each interrupt
source can be programmed or modified with just one instruction. When reading the
interrupt control registers with instructions that operate with word data types, the upper
8 bits (15...8) will return zeros. Zeros should always be written to these bit positions. The
layout of the interrupt control registers shown below is applicable to all xxIC registers.

xxIC
Interrupt Control Register bSFR(xxxxH,xxH) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 xxGP xxIR xxIE ILVL GLVL

r r r r r r r rw rwh rw rw rw

Field Bits Type Description

xxGP [8] rw Group Priority Extension
Defines the value of high-order group level bit

xxIR1) [7] rwh Interrupt Request Flag
0 No request pending
1 This source has raised an interrupt request

xxIE [6] rw Interrupt Enable Control Bit
(individually enables/disables a specific source)
0 Interrupt request is disabled
1 Interrupt request is enabled

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-22 V 1.6, 2001-08

The arbitration scheme allows nesting of up to 15 ISRs of different priority levels (level 0
cannot be used; see note above).

Note: When no interrupt request is active, arbitration is stopped to reduce power
consumption.

3.4.3 Interrupt Vector Table

The C166S has a vectored interrupt system. This system reserves the specific vector
locations in the memory space for the reset, trap, and interrupt service functions.
Whenever a request occurs, the CPU branches to the location that is associated with the
respective interrupt source. This vector position directly identifies the source that caused
the request.

Note: The Class B hardware traps all share the same interrupt vector. The status flags
in the Trap Flag Register (TFR) are used to determine which exception caused the
trap. For details, see Section 3.4.5.2 “Hardware Traps”.

The reserved vector locations are assembled into a jump table that is located in the
C166S’s address space. The jump table contains the appropriate jump instructions that
transfer control to the interrupt or trap service routines. These routines may be located
anywhere within the address space. The vector table is located at the bottom in segment
0 of the address space. Each entry occupies 2 words to provide space for long jumps,
except for the reset vector and the hardware trap vectors, which occupy 4 or 8 words.

Each vector location has an offset address to the segment base address (00’0000H) of
the vector table. The offset address can be calculated easily. The offset is the trap
number shifted by 2.

3.4.4 Interrupt Control Functions in the Processor Status Word

The PSW is divided functionally into 2 parts. The lower byte of the PSW represents the
arithmetic status of the CPU; the upper byte of the PSW controls the interrupt system of
the C166S.

ILVL [5:2] rw Interrupt Priority Level
FH Highest priority level
... ...
0H Lowest priority level

GLVL [1:0] rw Group Priority Level
Defines the internal order for simultaneous
requests of the same priority.

1) Bit xxIR supports bit-protection

Field Bits Type Description

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-23 V 1.6, 2001-08

Note: For a summary of the PSW register, please refer to Section 3.7.6

CPU Priority ILVL defines the current level for the CPU operation, i.e., this bit field
reflects the priority level of the routine currently being executed. When the CPU enters
an ISR, this bitfield is set to the priority level of the request that is being serviced. The
previous PSW is saved in the system stack before entering the ISR. To be serviced, any
interrupt request must have a higher priority level than the current CPU priority level. Any
request of the same or a lower level will not be acknowledged. The current CPU priority
level may be adjusted via software to select interrupt request sources that can be
serviced.

PEC transfers do not really interrupt the CPU, but rather “steal” some CPU cycles, so
PEC services do not influence the ILVL field in the PSW.

Hardware traps set the CPU level to the maximum priority (i.e., 15). Therefore, no
interrupt or PEC requests will be acknowledged while an exception trap service routine
is executed.

The TRAP instruction does not change the CPU level, so software trap service routines
may be interrupted by higher-level requests.

Interrupt ENable flag IEN globally enables or disables interrupts and PEC operations.
When IEN is cleared, no new interrupt requests are accepted by the CPU after IEN was
set to 0. However, the requests that have already entered the pipeline will be completed.
If IEN is set to 1, all interrupt sources are globally enabled.

Note: To generate requests, interrupt sources must be also enabled by the IEN bits in
their associated control registers.

Note: Traps are non-maskable and, therefore, they are not controlled by the IEN bit.

PSW
Processor Status Word SFR(FF10H,88H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ILVL IEN PSW
S1 0 0 0 USR0 MUL

IP E Z V C N

rwh rw rwh r r r rw rwh rwh rwh rwh rwh rwh

Field Bits Type Description

ILVL [15:12] rwh CPU Priority Level
0H Lowest Priority
... ...
FH Highest Priority

IEN [11] rw Interrupt/PEC Enable Flag (globally)
0 Interrupt/PEC requests are disabled
1 Interrupt/PEC requests are enabled

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-24 V 1.6, 2001-08

3.4.4.1 Saving the Status during Interrupt Service

Before an operating system or ITC can actually service a task switch request or interrupt,
the CPU must save the current task status. The C166S saves the CPU status (PSW)
along with the return address in the system stack. The return address defines the point
where the execution of the interrupted task is to be resumed after returning from the
service routine. This return address is specified by the IP and, in the case of a
segmented memory mode, also by the CSP. Bit SGTDIS in the SYSCON register
defines which mode is used and, therefore, controls how the return address is stored.

In the case of non-segmented mode, the system stack stores the PSW first and then the
IP. In the segmented mode, PSW is followed by CSP and the IP. This order optimizes
the use of the system stack if segmentation is disabled.

The CPU priority field (ILVL in PSW) is updated with the priority of the interrupt request
that is to be serviced, so the CPU now executes on the new level.
.

After accepting an interrupt request, the C166S sends an acknowledgement to the ITC
that the requested interrupt is being serviced. The vector associated with the requesting
source is loaded into the IP and CSP, and the first instruction of the service routine is
fetched. All other CPU resources such as data page pointers and the context pointer are
not affected.

When the CPU returns from the ISR [RETurn from Interrupt (RETI) is executed], the
status information is “popped” from the system stack in reverse order. The status
information contents depend on the SGTDIS bit value.

3.4.4.2 Context Switching

An ISR usually saves all the registers it uses on the stack, and restores them before
returning. The more registers a routine uses, the more time is wasted by saving and
restoring.

Figure 3-4 Task Status saved on the System Stack

--
--
--

SP

1. System Stack before
Interrupt Entry

--
IP

PSW
SP

2. System Stack after
Interrupt Entry
(Unsegmented)

IP
CSP
PSW

SP

3. System Stack after
Interrupt Entry
(Segmented)

Status of
Interrupted Task

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-25 V 1.6, 2001-08

The C166S makes it possible to switch the complete register bank of CPU registers
(GPRs) with a single instruction, so the service routine executes within its own separate
context. The instruction “SCXT CP, #New_Bank” pushes the contents of the Context
Pointer (CP) into the system stack and loads the CP with the immediate value
“New_Bank”. The new CP value sets a new register bank. The service routine may now
use its own registers. This register bank is preserved when the service routine is
terminated, i.e., its contents are available for the next call. Before returning (RETI), the
previous CP is simply popped from the system stack, which returns the registers to the
original register bank.

Note: Resources that are used by the interrupting program must eventually be saved
Pointers (DPP) and the registers of the multiply and divide unit.

Note: The first instruction following the SCXT CP,... instruction must not use a GPR.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-26 V 1.6, 2001-08

3.4.5 Traps

3.4.5.1 Software Traps

The TRAP instruction is used to cause a software call to an ISR. The trap number that
is specified in the operand field of the trap instruction determines which vector location
of the vector table will be used.

The TRAP instruction’s effect is similar to that of an interrupt request that uses the same
vector. PSW, CSP (in segmentation mode), and IP are pushed into the system stack and
then a jump is taken to the specified vector location. When a software trap is executed,
the CSP for the trap service routine is loaded with segment address 0. No Interrupt
Request flags are affected by the TRAP instruction. The ISR called by a TRAP
instruction must be terminated with a RETI instruction to ensure correct operation.

Note: The CPU priority level is not modified by the TRAP instruction, so the service
routine is executed with the same priority level as the interrupt task. Therefore, the
service routine entered by the TRAP instruction can be interrupted by other traps
or by higher priority interrupts, other than when triggered by a real hardware event.

3.4.5.2 Hardware Traps

Hardware traps are issued by faults or specific system states that occur during runtime
(not identified at assembly time). The C166S distinguishes eight different hardware trap
functions. When a hardware trap condition has been detected, the CPU branches to the
trap vector location for the respective trap condition. The instruction that caused the trap
event is either completed or canceled before the trap-handling routine is entered.

Hardware traps are not-maskable and always have a higher priority than any other CPU
task. If several hardware trap conditions are detected within the same machine cycle, the
highest-priority trap is serviced. In the case of a hardware trap, the injection unit injects
a TRAP instruction into the pipeline. The TRAP instruction performs the following
actions:

• Push PSW, CSP (in segmented mode) and IP onto the system stack
• Set CPU level in the PSW register to the highest possible priority level, which disables

all interrupts and DMA transfers
• Branch to the trap vector location specified by the trap number of the trap condition

The eight hardware functions of the C166S are divided in two Classes.

Class A traps are:

– External NMIs
– Stack overflow
– Stack underflow

These traps share the same trap priority, but have an individual vector address.

Class B traps are:

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-27 V 1.6, 2001-08

– Undefined opcode
– Protection fault
– Illegal word operand access
– Illegal instruction access
– Illegal external bus access

The Class B traps share the same interrupt node and interrupt vector. The bit-
addressable Trap Flag Register (TFR) allows a trap service routine to identify the trap
that caused the exception.

The Trap Flag Register TFR

Each trap function is indicated by a separate request flag. When a hardware trap occurs,
the corresponding request flag in register TFR is set to 1.

TFR
Trap Flag Register SFR(FFACH,D6H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NMI STK
OF

STK
UF 0 0 0 0 0 UND

OPC 0 0 0 PRT
FLT

ILL
OPA

ILL
INA

ILL
BUS

rwh rwh rwh r r r r r rwh r r r rwh rwh rwh rwh

Field Bits Type Description

NMI1) [15] rwh Non-Maskable Interrupt flag
0 No non-maskable interrupt detected
1 Non-maskable interrupt detected

STKOF1) [14] rwh STacK OverFlow flag
0 No stack overflow event detected
1 Stack overflow event detected

STKUF1) [13] rwh STacK UnderFlow flag
0 No stack underflow event detected
1 Stack underflow event detected

UNDOPC1) [7] rwh UNDefined OPCode
0 No undefined opcode event detected
1 Undefined opcode event detected

PRTFLT1) [3] rwh PRoTection FauLT
0 No protection fault event detected
1 Protection fault event detected

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-28 V 1.6, 2001-08

Note: The trap service routine must clear the respective trap flag. Otherwise, a new trap
will be requested after exiting the service routine. Setting a trap request flag by
software causes the same effects as if it had been set by hardware.

The reset functions (hardware, software, watchdog) may be also regarded as a type of
trap. Reset functions have the highest trap priority (trap priority IV). The Debug trap has
the second-highest trap priority (trap priority III), followed by the third-highest trap priority
traps, Class A traps (trap priority II), and then by Class B traps (trap priority I). So the
Debug trap can interrupt a Class A and B trap and a Class A trap can interrupt a Class
B trap. The Debug trap is a special kind of interrupt-service channel for debug purposes
whose priority lies between the Class A trap and the reset function. This allows the
debugger to interrupt hardware traps and hardware interrupts

ILLOPA1) [2] rwh ILLegal word OPerand Access
0 No illegal word operand access event
detected
1 Ilegal word operand access event detected

ILLINA1) [1] rwh ILLegal INstruction Access
0 No illegal instruction access detected
1 A branch to an odd address has been
attempt.

ILLBUS [0] rwh ILLegal External BUS Access
0 No illegal external bus access detected
1 An external access has been attempted with
no bus defined.

1) This bit supports bit protection

Exception Condition Trap
Flag

Trap
Vector

Trap
Number

Trap
Priority

Reset Functions:
Hardware Reset
Software Reset
Watchdog Timer Overflow

RESET
RESET
RESET

00H
00H
00H

IV
IV
IV

Debug Trap DEBUG DEBTRAP 08H III

Field Bits Type Description

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-29 V 1.6, 2001-08

Class A Trap

Class A traps are generated by the high-priority system NMI or by special CPU events
such as a software break, or a stack overflow or underflow event. Class A traps are not
used to indicate hardware failures. After a Class A event, a dedicated service routine is
called to react to the events. Each Class A trap has its own vector location in the vector
table. After finishing the service routine, the remainder of the instruction flow must be
executed correctly. This explains why Class A traps cannot interrupt atomic/extend
sequences.

In case of an atomic/extend sequence, the execution continues until sequence
completion. Upon completion, the IP of the instruction following the last executed one is
pushed onto the stack.

If more than one Class A trap occurs at a same time, they are prioritized internally. The
NMI trap has the highest priority, and the stack underflow trap has the lowest.

Note: When two different Class A traps occur simultaneously, both trap flags are set.
The trap with the higher priority is executed. After return from the service routine,
the IP is popped from the stack and immediately pushed again because of the
other pending Class A trap (unless the second trap flag in TFR has been cleared
by the first trap service routine).

External NMI Trap (NMI)

Whenever a high-to-low transition on the dedicated NMI is detected, the NMI flag in
register TFR is set, and the CPU will enter the NMI trap routine. The IP value pushed on
the system stack is the address of the instruction following the one after which normal
processing was interrupted by the NMI trap.

Note: The NMI is sampled with every CPU clock cycle to detect transitions.

Class A Hardware Traps:
Non-Maskable Interrupt
STacK OverFlow
STacK UnderFlow
SOFTware BReaK

NMI
STKOF
STKUF
SOFTBRK

NMITRAP
STOTRAP
STUTRAP
SBRKTRAP

02H
04H
06H
08H

II.3
II.2
II.1
II.0

Class B Hardware Traps:
UNDefined OPCode
PRoTection FauLT
ILLegal word Operand Access
ILLegal INstruction Access
ILLegal external BUS access

UNDOPC
PRTFLT
ILLOPA
ILLINA
ILLBUS

BTRAP
BTRAP
BTRAP
BTRAP
BTRAP

0AH
0AH
0AH
0AH
0AH

I
I
I
I
I

Exception Condition Trap
Flag

Trap
Vector

Trap
Number

Trap
Priority

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-30 V 1.6, 2001-08

STacK OverFlow Trap (STKOF)

Whenever the stack pointer SP is decremented to a value less than the value in the stack
overflow register STKOV, the STKOF flag in register TFR is set and the CPU will enter
the stack overflow trap routine. Which IP value will be pushed onto the system stack
depends on which operation caused the decrement of the SP. When an implicit
decrement of the SP is made through a push or call instruction, or upon interrupt or trap
entry, the IP value pushed is the address of the following instruction. When the SP is
decremented by a subtract instruction, the IP value pushed represents the address of
the first or second instruction after the instruction following the subtract instruction.

For recovery from stack overflow, there must be enough excess space on the stack for
saving the current system state (PSW; IP; and, in segmented mode, the CSP) twice.
Otherwise, a system reset should be generated.

STacK UnderFlow Trap (STKUF)

Whenever the stack pointer is incremented to a value greater than the value in the stack
underflow register STKUN, the STKUF flag is set in register TFR and the CPU will enter
the stack underflow trap routine. Again, which IP value will be pushed onto the system
stack depends on which operation caused the increment of the SP. When an implicit
increment of the SP is made through a POP or return instruction, the IP value pushed is
the address of the following instruction. When the SP is incremented by an add
instruction, the pushed IP value represents the address of the first or second instruction
after the instruction following the add instruction.

Class B Trap

Class B traps are generated by unrecoverable hardware failures. In case of hardware
failure, the CPU must immediately start a failure service routine. Class B traps can
interrupt an atomic/extend sequence. After finishing a Class B service routine, the
interrupted instruction flow cannot be restored.

Note: If a Class A trap and a Class B occur simultaneously, both trap flags are set. If
this occurs during execution of an atomic/extend sequence, then the presence of
the Class B trap breaks the protection of atomic/extend operations, and the Class
A trap will be executed immediately without waiting for the sequence completion.
After return from the service routine, the IP is popped from the system stack and
immediately pushed again because of the other pending Class B trap. In this
situation, the interrupted instruction flow cannot be restored.

All Class B traps have the same trap priority (trap priority I). When several Class B traps
are active at the same time, the corresponding flags in the TFR are set, and the trap
service routine is entered. Since all Class B traps have the same vector, the priority of
service of Class B that occur simultaneously is determined by the software in the trap
service routine.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-31 V 1.6, 2001-08

During the execution of a Class A trap service routine, any Class B trap will not be
serviced until the Class A trap service routine is exited with a RETI instruction. In this
case, the Class B trap condition is stored in the TFR but the IP value of the instruction
that caused this trap will be lost.

UNDefined OPCode Trap (UNDOPC)

When the instruction currently decoded by the CPU does not contain a valid C166S
opcode, the UNDOPC flag is set in the TFR, and the CPU enters the undefined opcode
trap routine. The IP value pushed onto the system stack is the address of the instruction
that caused the trap.

This can be used to emulate unimplemented instructions. The trap service routine can
examine the faulting instruction to decode operands for unimplemented opcodes based
on the stacked IP. In order to resume processing, the stacked IP value must be
incremented by the size of the undefined instruction, which is determined by the user,

before a RETI instruction is executed.

PRoTection FauLT Trap (PRTFLT)

DISWDT, EINIT, IDLE, PWRDN, SRST, and SRVWDT are protected instructions.
Whenever one protected instruction is executed and the protection is broken, the
PRTFLT flag in register TFR is set and the CPU enters the protection fault trap routine.
The IP value pushed onto the system stack for the protection fault trap is the address of
the instruction that caused the trap.

ILLegal word OPerand Access Trap (ILLOPA)

Whenever a word operand read or write access is attempted to an odd byte address, the
ILLOPA flag in register TFR is set, and the CPU enters the illegal word operand access
trap routine. The IP value pushed onto the system stack is the address of the instruction
following the one that caused the trap.

ILLegal INstruction Access Trap (ILLINA)

Whenever a branch is made to an odd byte address, the ILLINA flag in register TFR is
set and the CPU enters the illegal instruction access trap routine. The IP value pushed
onto the system stack is the illegal odd target address of the branch instruction.

ILLegal external BUS access Trap (ILLBUS)

Whenever the CPU requests an external instruction fetch or a data read or a data write,
and no external bus configuration has been specified, the ILLBUS flag in register TFR is
set and the CPU enters the illegal bus access trap routine. The IP value pushed onto the
system stack is the address of the instruction following the one that caused the trap.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-32 V 1.6, 2001-08

3.4.6 Peripheral Event Controller

The Peripheral Event Controller (PEC) “decides” which CPU action is required to
manage an interrupt request. It may be either normal interrupt service, or fast data
transfer between two memory locations. The C166S PEC controls up to sixteen1) fast
data transfer channels.

If a normal interrupt is requested, the CPU temporarily suspends the current program
execution and branches to an Interrupt Service Routine (ISR). The current program
status and context must be preserved.

If a PEC channel is selected for servicing an interrupt request, a single word or byte data
transfer between any two memory locations is to be performed. During a PEC transfer,
the normal program execution of the CPU is halted for just 1 machine cycles. No internal
program status information needs to be saved. The PEC transfer is the fastest possible
interrupt response. In many cases, a PEC transfer is sufficient to service the peripheral
request (serial channels, for example).

The PEC channels can perform the following actions:

• Byte or word transfer
• Continuous data transfer
• PEC channel-specific interrupt request upon data transfer completion; or for all

channels a common End of PEC (EOP) interrupt for enhanced handling
• Automatic increment of source or destination pointers
• Channel linking of two PEC channels

Note: PEC transfer is executed if its priority level is higher than current CPU priority level.

1) The number of PEC channels depends on the configuration of the product. Please refer to the product User
Manual.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-33 V 1.6, 2001-08

3.4.6.1 The PEC Source and Destination Pointers

The PEC channels’ source and destination pointers specify the locations between which
the data is to be moved. All pointers are 24 bits wide. The 24-bit source address is stored
in the internal DPRAM location SRCPx (lower 16 bits of address) and in the low byte of
register PECSNx (highest 8 address bits).

Figure 3-5 PEC Pointer Address Handling

The 24-bit destination address is stored in the DPRAM location DSTPx (lower 16 bits of
address) and in the high byte of register PECSNx (highest 8 address bits). Only the lower
16 bits of the PEC address pointers (segment offset) can be modified (incremented) by
the PEC transfer mechanism. The highest 8 bits, which represent the segment number,
are not modified by hardware. Therefore, the PEC pointers may be incremented within
the address space of one segment and may not cross the segment border. If the offset
address pointer has a value of FFFFH in the case of byte transfers (BWT = 1) or FFFEH
in the case of word transfers (BWT = 0), the next increment will lead to an overflow. No
explicit error event is generated by the system in case of address pointer(s) overflow;
therefore, the user must prevent this condition from occurring.

015

SRCSNx DSTSNx

PECSNx

015

DSTPx

DSTPx

015

SRCPx

SRCPx

0

Source Pointer

23 0

Destination Pointer

23

Segment Address Segment Offset Segment Address Segment Offset

�����������

16 15 16 15

8 7

x = 15...0, depending on PEC channel number

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-34 V 1.6, 2001-08

Note: If a word data transfer is selected for a specific PEC channel (i.e. BWT = 0), the
respective source and destination pointers must both contain a valid word address
that points to an even byte boundary. Otherwise, the Illegal Word Access trap will
be invoked when this channel is used.

Table 3-7 DPRAM Addresses of PEC Source and Destination Pointer

 SRCPx
PEC Source Pointer DPRAM(H,H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRCPx

rwh

Field Bits Type Description

SRCPx [15:0] rwh Source Pointer Address of Channel x
Source Address bits 15-0

 DSTPx
PEC Destination Pointer DPRAM(H,H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DSTPx

rwh

Field Bits Type Description

DSTPx [15:0] rwh Destination Pointer Address of Channel x
Destination Address bits 15-0

Pointer Address Pointer Address Pointer Address Pointer Address

DSTP7 00’FCFEH SRCP7 00’FCFCH DSTP11 00’FCDEH SRCP11 00’FCDCH

DSTP6 00’FCFAH SRCP6 00’FCF8H DSTP10 00’FCDAH SRCP10 00’FCD8H

DSTP5 00’FCF6H SRCP5 00’FCF4H DSTP9 00’FCD6H SRCP9 00’FCD4H

DSTP4 00’FCF2H SRCP4 00’FCF0H DSTP8 00’FCD2H SRCP8 00’FCD0H

DSTP3 00’FCEEH SRCP3 00’FCECH DSTP15 00’FCCEH SRCP15 00’FCCCH

DSTP2 00’FCEAH SRCP2 00’FCE8H DSTP14 00’FCCAH SRCP14 00’FCC8H

DSTP1 00’FCE6H SRCP1 00’FCE4H DSTP13 00’FCC6H SRCP13 00’FCC4H

DSTP0 00’FCE2H SRCP0 00’FCE0H DSTP12 00’FCC2H SRCP12 00’FCC0H

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-35 V 1.6, 2001-08

 PECSNx
PEC Segment Pointer SFR(H,H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DSTSNx SRCSNx

rw rw

Field Bits Type Description

DSTSNx [15:8] rw Destination Pointer Segment Address of Channel
x
Destination Address bits 23-16

SRCSNx [7:0] rw Source Pointer Segment Address of Channel x
Source Address bits 23-16

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-36 V 1.6, 2001-08

3.4.6.2 PEC Control Registers

Each PEC channel is controlled by the respective PEC channel Control register (PECCx)
and a set of source and destination pointers (SRCPx, DSTPx and PECSNx), where “x”
stands for the PEC channel number. The PECCx registers control the arbitration priority
level assigned to the PEC channels and specifies the action to be performed.

 PECCx
PEC Channel Control Register SFR(H,H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PT EOP
INT PLEV CL INC BWT COUNT

rw rw rw rw rw rw rwh

Field Bits Type Description

PT [15] rw Transfer Mode1)

0 Short Transfer Mode
1 Long Transfer Mode

EOPINT [14] rw End of PEC Interrupt Selection2)

0 EOP interrupt with the same level as the
PEC transfer is triggered
1 EOP interrupt is serviced by a separate
interrupt node with programmable interrupt level
(EOPIC) and interrupt sharing control register
(PECISNC)

PLEV [13:12] rw PEC Level Selection3)

This bitfield controls the PEC channel assignment
to an arbitration priority level.
(see section below)

CL [11] rw Channel Link Control
0 PEC channels work independently
1 Pairs of channels are linked together

INC [10:9] rw Increment Control
(Modification of source and destination pointer
after PEC transfer)
00 No modification
01 Increment of destination pointer DSTPx
by 1 (BWT = 1) or by 2 (BWT = 0)
10 Increment of source pointer SRCPx
by 1 (BWT = 1) or by 2 (BWT = 0)
11 Reserved

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-37 V 1.6, 2001-08

The Byte/Word Transfer bit (BWT) of the PECCx register selects whether a byte or a
word is to be moved during a PEC service cycle, and defines an increment step size for
the pointer(s) to be modified.

The Increment Control Field (INC) of the PECCx register defines when either one or
both of the PEC pointers have to be incremented after the PEC transfer. If the pointers
are not to be modified (INC=00B), the respective channel will always move data from the
same source to the same destination.

BWT [8] rw Byte / Word Transfer Selection
0 Transfer a word
1 Transfer a byte

COUNT [7:0] rwh PEC Transfer Count4)

Counts PEC transfers and influences the
channel´s action

1) The long transfer mode is an optional mode. If the product does not support the long transfer mode for this
specific PEC channel, the PT-bit is hardwired to zero. See Section 3.4.6.3 and Section 3.4.6.4

2) See Section 3.4.6.7
3) See Section 3.4.6.6
4) See Section 3.4.6.3

Field Bits Type Description

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-38 V 1.6, 2001-08

3.4.6.3 Short Transfer Mode

If the short transfer mode is enabled by the PT flag (PT = 0) in the PEC control register
PECCx, the PEC Transfer Count Field (COUNT) of the PECCx controls directly the
action of the respective PEC channel. The contents of the bitfield COUNT may specify
a certain number of PEC transfers, unlimited transfers, or no PEC service at all.

a) If the PEC transfer counter (COUNT) value is set to 00H, the normal interrupt
requests are processed instead of PEC data transfers, and the corresponding PEC
channel remains idle.

b) Continuous data transfers are selected by setting the bitfield COUNT to FFH. In this
case, COUNT is not decremented by the transfers, and the respective PEC channel
can serve unlimited number of PEC requests until it is modified by the program.

c) If the bitfield COUNT is set to service a specified number of requests by the
respective PEC channel, it is decremented with each PEC transfer, and the request
flag is cleared to indicate that the request has been serviced. When COUNT
reaches 00H it activates the ISR that has the same priority level (EOPINT = 0), or
triggers the EOP ISR with a different priority level (EOPINT = 1). When COUNT is
decremented from 01H to 00H after a data transfer, the request flag will be cleared
if EOPINT is set to 1. If EOPINT is 0, the request flag will not be cleared and another
interrupt request will be generated on the same priority level. The respective PEC
channel remains idle, and the associated ISR is activated instead of PEC transfer,
because COUNT contains the 00H value.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-39 V 1.6, 2001-08

3.4.6.4 Long Transfer Mode1)

If the long transfer mode is enabled by the PT flag (PT = 1) in the PEC control register
PECCx, the PEC Transfer Count Field (COUNT2) of the PECXCx register directly
controls the action of the respective PEC channel.

The long transfer mode is only available for PEC channels with an even PEC number.

Note: The channel link mode is independent of the long transfer mode. Both modes can
be combined.

Note: The PEC Transfer Count Field (COUNT) of the PECCx register must be set to
zero.

Note: Crossing of segment boundaries is not checked during data transfers with long
transfer count, and is not supported. A wrap around occurs when reaching the
segment boundary .

The contents of the bitfield COUNT2 may specify a certain number of PEC transfers or
no PEC service at all. The 16-bit transfer counter permits servicing up to 65536 byte
transfers or up to 32768 word transfers.

a) If the PEC transfer counter COUNT2 value is set to 0000H , the normal interrupt
requests are processed instead of PEC data transfers, and the corresponding PEC
channel remains idle.

b) If the bitfield COUNT2 is set to service a specified number of requests by the
respective PEC channel, it is decremented with each PEC transfer and the request
flag is cleared to indicate that the request has been serviced. When COUNT2
reaches 0000H, it activates the ISR that has the same priority level (EOPINT = 0),
or triggers the EOP ISR with a different priority level (EOPINT = 1). When COUNT2
is decremented from 0001H to 0000H after a data transfer, the request flag will be

1) The long transfer mode is an optional mode for PEC channels with an even number. Please refer to the product
User Manual.

PEC Extended Count Register
PECXC0/2/4/6 SFR (H,H) (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COUNT2

rwh

Field Bits Type Description

COUNT2 [15:0] rwh PEC Extended (Long) Transfer Count
PEC transfer count extension (see table below)

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-40 V 1.6, 2001-08

cleared if EOPINT is set to 1. If EOPINT is 0, the request flag will not be cleared
and another interrupt request will be generated on the same priority level. The
respective PEC channel remains idle and the associated interrupt service routine is
activated instead of PEC transfer, because COUNT2 contains the 0000H value.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-41 V 1.6, 2001-08

3.4.6.5 Channel Link Mode for Data Chaining

Channel linking, if enabled, links two channels together to serve the data transfer
requests of one peripheral. The whole data transfer (for example a message) is divided
into separately-controlled block transfers. The two PEC channels that are linked together
handle chained block transfers alternately with one another. At the end of a data block
transfer controlled by one PEC channel, the other (linked) PEC channel is started
automatically to continue the transfer with the next data block. Channel linking and data
(block) chaining are supported within pairs of PEC channels (channels 0&1, 2&3, 4&5
etc.). Each data block is controlled by one PEC channel of the channel pair.

Channel linking is enabled if the Channel Link (CL) control bits of both PEC channels
are set to 1 in their PECCx registers . The data transfer of linked channels must always
be started always with the even numbered channel of the channel pair.

If in channel link mode the channel’s data block is completely transferred, the PEC
service request processing is automatically switched to the other PEC channel of the
pair. CL of the previously active PEC channel is then reset.

Every channel toggle is indicated to CPU by means of an EOP interrupt. This makes it
possible to set up multiple buffers for PEC transfers by changing pointer and count
values of one channel while the other channel is active. Inside the EOP interrupt, the
Channel Link Control bit CL must be set again before the channel is reactivated or the
channel link mode is finished.This EOP interrupt is requested, indicated, and enabled in
the respective PEC Interrupt Subnode Control Register (PECISNC or PECXISNC).

Thus, all EOP interrupts are controlled with the one EOP interrupt control register EOPIC
and therefore with the same interrupt priority level. This service request node requests
the CPU in case of one or more pending EOP interrupt requests if the respective enable
control bit(s) are set in the according subnode control register and in the interrupt control
register EOPIC.

If CL of the previous PEC channel is set to zero and the count field (COUNT=0 or
COUNT2=0, dependent on the mode) of the active channel is zero as well, the whole
data transfer is finished and the channel link interrupt represents a termination interrupt,
the End of PEC interrupt.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-42 V 1.6, 2001-08

The channel link feature is supported for all PEC channels, including the new PEC
channels 8-15. The following table shows the channels that can be linked together and
the channel numbers required to start transfers via linked channels.

The two PEC control registers of a pair are linked to one interrupt control register,
whereby in this IC register only the even-numbered PEC channel is indicated with the
priority/group bits.

Table 3-8 PEC Channels That Can Be Linked Together

Linked PEC Channels Linked
PEC
Start

Channel

Linked PEC Channels Linked
PEC
Start

Channel

PEC
Channel

A

PEC
Channel

B

PEC
Channel

A

PEC
Channel

B

channel 0 channel 1 channel 0 channel 8 channel 9 channel 8

channel 2 channel 3 channel 2 channel 10 channel 11 channel 10

channel 4 channel 5 channel 4 channel 12 channel 13 channel 12

channel 6 channel 7 channel 6 channel 14 channel 15 channel 14

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-43 V 1.6, 2001-08

3.4.6.6 PEC Channels Assignment and Arbitration

The PEC channels can be assigned to arbitration priority levels. All requests with
interrupt priority levels 8 to 15 can be associated with the PEC functionality (up to a total
of sixteen PEC channels). The following formula shows how to program the bitfield
PECCx.PLEV to set up a link to a certain interrupt priority level and a group priority level.

PEC channel: x = (x.3,x.2,x.1,x.0)
linked to
Interrupt priority level: (1, ~PLEV.1, ~PLEV.0, x.2)
Group priority level: (x.3, x.1, x.0) [3-1]

The following table lists all possible combinations:

All interrupt requests that are not assigned to a PEC channel go directly to the interrupt
handler.

Table 3-9 PEC interrupt level control with PLEV bits in PECCx registers

Priority Level PEC Channel Selection (x)

Interrupt Level
ILVL3-0

Group Level
xxGP, GLVL1,0

PLEV[1,0]=
00

PLEV[1,0] =
01

PLEV[1,0] =
10

PLEV[1,0] =
11

15 7-4 15-12 - - -

15 3-0 7-4 - - -

14 7-4 11-8 - - -

14 3-0 3-0 - - -

13 7-4 - 15-12 - -

13 3-0 - 7-4 - -

12 7-4 - 11-8 - -

12 3-0 - 3-0 - -

11 7-4 - - 15-12 -

11 3-0 - - 7-4 -

10 7-4 - - 11-8 -

10 3-0 - - 3-0 -

9 7-4 - - - 15-12

9 3-0 - - - 7-4

8 7-4 - - - 11-8

8 3-0 - - - 3-0

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-44 V 1.6, 2001-08

3.4.6.7 Programmable End of PEC Interrupt Level

The programmable EOP interrupt supports PEC transfers, which need a high priority
level for the transfer request, and which do not need the same priority level for the
termination interrupt. One dedicated service request node with a programmable interrupt
level is shared among all PEC channels. This service request node is controlled by the
EOPIC interrupt control register.

The Register PECISNC and PECXISN contain flags of the EOP interrupt node. This
node is used when the enhanced End of PEC interrupt feature is invoked and control bit
EOPINT is set to 1 in the corresponding PECCx.

EOPIC
Interrupt Control Register bSFR(xxxxH,xxH)1) Reset value: 0000H

1) The EOPIC register is assigned to one of the 64 interrupt control registers. The assignment is product specific.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 xxGP EOP
IR

EOP
IE ILVL GLVL

r r r r r r r rw rwh rw rw rw

Field Bits Type Description

xxGP [8] rw Group Priority Extension
Defines the value of high order group level bit

EOPIR1)

1) Bit xxIR supports bit-protection

[7] rwh Interrupt Request Flag
0 No request pending
1 his source has raised an interrupt request

EOPIE [6] rw Interrupt Enable Control Bit
0 Interrupt request is disabled
1 Interrupt request is enabled

ILVL [5:2] rw Interrupt Priority Level
FH Highest priority level
... ...
0H Lowest priority level

GLVL [1:0] rw Group Priority Level
3H Highest priority level
... ...
0H Lowest priority leve

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-45 V 1.6, 2001-08

PECISNC
PEC Interrupt Sub Node Control SFR(H,H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C7IR C7IE C6IR C6IE C5IR C5IE C4IR C4IE C3IR C3IE C2IR C2IE C1IR C1IE C0IR C0IE

rwh rw rwh rw rwh rw rwh rw rwh rw rwh rw rwh rw rwh rw

PECXISNC
PEC Interrupt Sub Node Control SFR(H,H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C15
IR

C15
IE

C14
IR

C14
IE

C13
IR

C13
IE

C12
IR

C12
IE

C11
IR

C11
IE

C10
IR

C10
IE

C9
IR

C9
IE

C8
IR

C8
IE

rwh rw rwh rw rwh rw rwh rw rwh rw rwh rw rwh rw rwh rw

Field Bits Type Description

CxIR 15, 13,
11, 9,
7, 5, 3,
1

rwh Interrupt Sub Node Request Flag of PEC Channel
x 1) 2)

0 No special EOP interrupt request is pending
for PEC channel x
1 PEC channel x has raised an EOP interrupt
request

CxIE 14, 12,
10, 8,
6, 4, 2,
0

rw Interrupt Sub Node Enable Control Bit
of PEC Channel x 1) 3)

(individually enables/disables a specific source)
0 EOP interrupt request of PEC channel x is
disabled
1 EOP interrupt request of PEC channel x is
enabled

1) x = 15...0
2) NOTE:

The EOP sub-node interrupt request flags are not cleared by hardware when entering the ISR (interrupt has
been accepted by the CPU), unlike the interrupt request flags of the interrupt nodes (request flags xxIC.xxIR).
The ISR has to check the request flags and to clear them before executing the RETI instruction.

3) It is recommended that you clear an interrupt request flag (CxIR) before setting the respective enable flag
(CxIE). Otherwise, pending former requests will immediately trigger an interrupt request after setting the
enable bit.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-46 V 1.6, 2001-08

3.5 Using General-Purpose Registers

The C166S uses several banks of 16 dedicated General Purpose Registers (GPRs) R0,
R1, R2... R15 that can be accessed in one CPU cycle. The GPRs are the working
registers of the Arithmetic and Logic Units (ALU) and may also serve as address pointers
in indirect addressing modes.

Several banks of GPRs are memory-mapped. The banks of these GPRs are located in
the DPRAM. One bank uses a block of 16 consecutive words. A Context Pointer (CP)
register determines the base address of the currently selected bank.

The C166S can switch the complete GPR bank with a single instruction for time-critical
tasks. After switching, the new task is executed within its own separate context.

There are 3 different ways to access the GPRs:

Short 4-bit GPR addresses (mnemonic: Rw or Rb) specify an address relative to the
memory location pointed to by the contents of the CP register, i.e., the base of contents
of the current register bank. Both byte-wise and word-wise GPR accesses are possible.
The short 4-bit GPR address is logically added to the contents of register CP if a byte
(Rb) GPR address is specified, or multiplied by two and then added to CP if a word (Rw)
GPR address is specified (see Figure 3-7).

(CP)+2
(CP)

(CP)+30
(CP)+28

…

Internal DPRAM

 015

16-Bit Context Pointer

Figure 3-6 Register Bank Selection via Register CP

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-47 V 1.6, 2001-08

Note: If GPRs are used as indirect address pointers, they are always accessed word-
wise.

For some instructions, only the first 4 GPRs (R0, R1, R2 and R3) can be used as indirect
address pointers. These GPRs are specified via short 2-bit GPR addresses. The
physical address calculation is identical to the one for the short 4-bit GPR addresses.

Short 8-bit register addresses (mnemonic: reg or bitoff) within a range from F0H to FFH
interpret the four least-significant bits as a short 4-bit GPR address, while the four most
significant bits are ignored. The physical GPR address is calculated in a similar fashion
as the short 4-bit GPR addresses. For single-bit GPR accesses, the GPR’s word address
is calculated in the same way. The accessed bit position within the word is specified by
a separate additional 4-bit value.

24-Bit memory addresses within a range from (CP)+0 to (CP)+30 can be used to
access GPRs directly. Both byte and word GPR accesses are possible. The 24-bit
memory address is generated according to the rules for long- and indirect-addressing
modes (Section 3.6.2).

1 011

Figure 3-7 Implicit CP Use by logical Short GPR Addressing Modes

1111 4-Bit GPR
Address

*2

+

Internal
Core-RAM

GPRs

For byte GPR
accesses

12-Bit Context Pointer

Specified by reg or bitoff

Must be within
the internal Core-
RAM area

*1 For word GPR
accesses

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-48 V 1.6, 2001-08

Note: The first 8 GPRs (R7...R0) may also be accessed byte-wise.

Note: Writing to a GPR byte does not affect the other byte of the same GPR.

Table 3-10 Addressing modes to Access Word-GPRs

Name Physical
Address

8-Bit
Address

4-Bit
Address

Description Reset
Value

R0 (CP)+0 F0H 0H General-Purpose word Register R0 UUUUH

R1 (CP)+2 F1H 1H General-Purpose word Register R1 UUUUH

R2 (CP)+4 F2H 2H General-Purpose word Register R2 UUUUH

R3 (CP)+6 F3H 3H General-Purpose word Register R3 UUUUH

R4 (CP)+8 F4H 4H General-Purpose word Register R4 UUUUH

R5 (CP)+10 F5H 5H General-Purpose word Register R5 UUUUH

R6 (CP)+12 F6H 6H General-Purpose word Register R6 UUUUH

R7 (CP)+14 F7H 7H General-Purpose word Register R7 UUUUH

R8 (CP)+16 F8H 8H General-Purpose word Register R8 UUUUH

R9 (CP)+18 F9H 9H General-Purpose word Register R9 UUUUH

R10 (CP)+20 FAH AH General-Purpose word Register R10 UUUUH

R11 (CP)+22 FBH BH General-Purpose word Register R11 UUUUH

R12 (CP)+24 FCH CH General-Purpose word Register R12 UUUUH

R13 (CP)+26 FDH DH General-Purpose word Register R13 UUUUH

R14 (CP)+28 FEH EH General-Purpose word Register R14 UUUUH

R15 (CP)+30 FFH FH General-Purpose word Register R15 UUUUH

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-49 V 1.6, 2001-08

Each half of the byte-wise accessible registers has a special name (see table below).

Table 3-11 Addressing modes to access Byte-GPRs

Name Physical
Address

8-Bit
Address

4-Bit
Address

Description Reset
Value

RL0 (CP)+0 F0H 0H General-Purpose byte Register RL0 UUH

RH0 (CP)+1 F1H 1H General-Purpose byte Register RL1 UUH

RL1 (CP)+2 F2H 2H General-Purpose byte Register RL2 UUH

RH1 (CP)+3 F3H 3H General-Purpose byte Register RL3 UUH

RL2 (CP)+4 F4H 4H General-Purpose byte Register RL4 UUH

RH2 (CP)+5 F5H 5H General-Purpose byte Register RL5 UUH

RL3 (CP)+6 F6H 6H General-Purpose byte Register RL6 UUH

RH3 (CP)+7 F7H 7H General-Purpose byte Register RL7 UUH

RL4 (CP)+8 F8H 8H General-Purpose byte Register RL8 UUH

RH4 (CP)+9 F9H 9H General-Purpose byte Register RL9 UUH

RL5 (CP)+10 FAH AH General-Purpose byte Register RL10 UUH

RH5 (CP)+11 FBH BH General-Purpose byte Register RL11 UUH

RL6 (CP)+12 FCH CH General-Purpose byte Register RL12 UUH

RH6 (CP)+13 FDH DH General-Purpose byte Register RL13 UUH

RL7 (CP)+14 FEH EH General-Purpose byte Register RL14 UUH

RH7 (CP)+15 FFH FH General-Purpose byte Register RL15 UUH

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-50 V 1.6, 2001-08

3.5.1 Context Switch

An Interrupt Service Routine (ISR) or a task scheduler of an operating system usually
saves the contents of all used registers into the stack, and restores them before
returning. The more registers a routine uses, the more time is wasted by saving and
restoring.

The contents of the register bank are switched by changing the base address of the
memory-mapped GPR bank. The base address is given by the contents of the Context
Pointer (CP) register.

 The Context Pointer

The CP register is not bit-addressable. It can be updated via any instruction capable of
modifying SFRs.

Note: It is the user’s responsibility to ensure that the physical GPR address specified via
CP register plus short GPR address must always be an RAM location. If this
condition is not met, unexpected results may occur. Do not set CP below the
DPRAM start address.

Note: Due to the internal instruction pipeline, a new CP value cannot be used for GPR
address calculations for the instruction immediately following the instruction
updating the CP register.

CP
Context Pointer SFR(FE10H,08H) Reset value: FC00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 CP 0

r r r r rw r

Field Bits Type Description

1 [15:12] r CP always points in the DPRAM

CP [11:1] rw Modifiable portion of register CP
Specifies the (word) base address of the current
memory-mapped register bank.

Note: When writing a value to register CP with
bits CP[11:9] = 000, bits CP[11:10] are
set to 11 by hardware.

0 [0] r CP is always word-aligned

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-51 V 1.6, 2001-08

The C166S switches the complete memory-mapped GPR bank with a single instruction.
After switching, the service routine executes within its own separate context.

The instruction SCXT CP, #New_Bank pushes the value of the current context pointer
(CP) into the system stack and loads CP with the immediate value New_Bank, which
selects a new register bank. The service routine may now use its own registers. This
memory register bank is preserved when the service routine terminates, i.e. its contents
are available on the next call. Before returning from the service routine (RETI), the
previous CP is simply popped from the system stack, which returns the registers to the
original bank.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-52 V 1.6, 2001-08

3.6 Data Addressing

The C166S provides a lot of powerful addressing modes for word-wise, byte-wise and
bitwise data accesses (short, long, indirect). The different addressing modes use
different formats and have different scopes.

The following major tasks are performed:

• Address generation using short-, long- and indirect-addressing modes
• Data paging or overwriting mechanism
• System stack handling

3.6.1 Short Addressing Modes

All of these addressing modes use an implicit base offset address to specify a 24-bit
physical address. Short addressing modes allow access to the GPRs, SFRs, or bit-
addressable memory space:

Physical Address = Base Address + ∆ * Short Address

Note: ∆ is 1 for byte-wise GPRs, ∆ is 2 for word-wise GPRs.

Rw, Rb: Specifies direct access to any GPR in the currently active context. Both Rw
and Rb require 4 bits in the instruction format. The base address of the global
register bank is determined by the contents of register CP. Rw specifies a 4-bit
word GPR address relative to the base address (CP), while Rb specifies a 4-
bit byte GPR address relative to the base address (CP).

Table 3-12 Short addressing modes

Mnemonic Physical Address Short Address
Range

Scope of Access

Rw (CP) + 2*Rw or local Rw = 0...15 GPRs(Word)

Rb (CP) + 1*Rb or local Rb = 0...15 GPRs(Byte)

reg 00’FE00H+ 2*reg
00’F000H+ 2*reg
(CP)+ 2*(reg∧ 0FH)
(CP)+ 1*(reg∧ 0FH)

reg = 00H...EFH
reg = 00H...EFH
reg = F0H...FFH
reg = F0H...FFH

SFRs (Word, Low byte)
ESFRs(Word, Low byte)
GPRs(Word)
GPRs(Bytes)

bitoff 00’FD00H+ 2*bitoff
00’FF00H+ 2*(bitoff∧ 7FH)
00’F100H+ 2*(bitoff∧ 7FH)
(CP) + 2*(bitoff∧ 0FH)

bitoff = 00H...7FH
bitoff = 80H...EFH
bitoff = 80H...EFH
bitoff = F0H...FFH

DPRAMBit word offset
SFR Bit word offset
ESFRBit word offset
GPR Bit word offset

bitaddr Word offset as with bitoff.
immediate bit position.

bitoff = 00H...FFH
bitpos= 0...15

Any single bit

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-53 V 1.6, 2001-08

reg: Specifies direct access to any (E)SFR or GPR in the currently active context.
The reg value requires 8 bits in the instruction format. Short reg addresses in
the range from 00H to EFH always specify (E)SFRs. In that case, the factor ∆
equals 2, and the base address is 00’FE00H for the standard SFR area or
00’F000H for the extended ESFR area. The reg accesses to the ESFR area
require a preceding EXT*R instruction to switch the base address. Depending
on the opcode, either the total word (for word operations) or the low byte (for
byte operations) of an SFR can be addressed via reg. Note that the high byte
of an SFR cannot be accessed via the reg addressing mode. Short reg
addresses in the range from F0H to FFH always specify GPRs. In that case,
only the lower 4bits of reg are significant for physical address generation and,
therefore, the address calculation is identical to the address generation proc-
ess described for the Rb and Rw addressing modes.

bitoff: Specifies direct access to any word in the bit-addressable memory space. The
bitoff value requires 8 bits in the instruction format. Depending on the speci-
fied bitoff range, different base addresses are used to generate physical
addresses: Short bitoff addresses in the range from 00H to 7FH use 00’FD00H
as a base address to specify the 128 highest DPRAM word locations in the
range from 00’FD00Hh to 00’FDFEH. Short bitoff addresses in the range from
80H to EFH use base address 00’FF00H to specify the internal SFR word loca-
tions in the range from 00’FF00H to 00’FFDEH or base address 00’F100H to
specify the internal ESFR word locations in the range from 00’F100H to
00’F1DEH. The bitoff accesses to the ESFR area require a preceding EXT*R
instruction to switch the base address. For short bitoff addresses from F0H to
FFH, only the lowest four bits are used to generate the address of the selected
word GPR.

bitaddr: Any bit address is specified by a word address within the bit-addressable
memory space (see bitoff), and by a bit position (bitpos) within that word.
Therefore, bitaddr requires 12 bits in the instruction format.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-54 V 1.6, 2001-08

3.6.2 Long and Indirect Addressing Modes

These addressing modes use one of the 4 DPP registers to specify a 24-bit address. Any
word or byte data within the entire address space can be accessed with these modes.
Any long or indirect 16-bit address contains two parts that have different meanings. Bits
13-0 specify a 14-bit data page offset, while bits 15-14 specify the Data Page Pointer
(DPP) (1 of 4) register, which is used to generate the full 24-bit address (see figure
below).

The C166S also supports an override mechanism for the DPP addressing scheme
[EXTP(R) and EXTS(R) instructions].

Figure 3-8 Interpretation of a 16-bit Long Address

Note: Word accesses on odd byte addresses are not executed. A hardware trap will be
triggered.

0

15 14 13
16-bit Long Address

DPP0
DPP1
DPP2
DPP3

14-bit page offset

24-bit Physical Address

9

1323

0

0

14

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-55 V 1.6, 2001-08

3.6.2.1 Addressing via Data Page Pointer

The 4 non-bit-addressable DPP registers select up to 4 different data pages. The lower
10 bits of each DPP register select one of the 1024 possible 16-KByte data pages, while
the upper 6 bits are reserved for the future use. The DPP registers provide access to the
entire memory space in 16-KByte pages.

The DPP registers are used implicitly whenever data accesses to any memory location
are made via indirect or direct long 16-bit addressing modes (except for override
accesses via EXTended instructions and PEC data transfers).

Data paging is performed by concatenating the lower 14 bits of an indirect or direct long
16-bit address with the contents of the DDP register selected by the upper 2 bits of the
16-bit address. The contents of the selected DPP register specify one of the 1024
possible data pages. This data page base address together with the 14-bit page offset
forms the physical 24-bit address.

After reset, the DPP registers select data pages 3-0 within segment 0. If the user does
not want to use any data paging, no further action is required.

09 DPP

015 14
16-Bit Data Address

023 15 14

00’0000H

01’0000H

FE’0000H

FF’0000H

Memory

Figure 3-9 Addressing via the Data Page Pointer

DPP3 - 11

DPP2 - 10

DPP1 - 01

DPP0 - 00

selects DPP

Segment Segment offset

Page Page offset

0

254

x

255

1

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-56 V 1.6, 2001-08

Note: In a non-segmented memory mode, the whole DPP register is still used for the
calculation of the physical 24-bit address.

A DPP register can be updated via any instruction that is capable of modifying an SFR.

Note: Due to the internal instruction pipeline, a new DPP value is not usable for the
operand address calculation of the instruction immediately following the
instruction updating the DPPx register.

DPP0
Data Page Pointer 0 SFR(FE00H,00H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 DPP0PN

r r r r r r rw

DPP1
Data Page Pointer 1 SFR(FE02H,01H) Reset value: 0001H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 DPP1PN

r r r r r r rw

DPP2
Data Page Pointer 2 SFR(FE04H,02H) Reset value: 0002H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 DPP2PN

r r r r r r rw

DPP3
Data Page Pointer 3 SFR(FE06H,03H) Reset value: 0003H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 DPP3PN

r r r r r r rw

Field Bits Type Description

DPPxPN [9:0] rw Data Page Number of DPP
Specifies the data page selected via DPP.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-57 V 1.6, 2001-08

3.6.2.2 DPP Override Mechanism in the C166S

The C166S provides an override mechanism to temporarily bypass the DPP addressing
scheme.

The EXTP(R) and EXTS(R) instructions override this addressing mechanism. Instruction
EXTP(R) replaces the contents of the DPP register, while instruction EXTS(R)
concatenates the complete 16-bit long address with the specified segment base
address. The overriding page or segment may be specified directly as a constant (#pag,
#seg) or via a word GPR (Rw).

Figure 3-10 Overriding the DPP Mechanism

015 14 13
16-bit Long Address

#pag 14-bit page offset

24-bit Physical Address

015
16-bit Long Address

#seg 16-bit segment offset

24-bit Physical Address

EXTP(R):

EXTS(R):

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-58 V 1.6, 2001-08

3.6.2.3 Long Addressing Mode

The long addressing mode uses a 16-bit constant value encoded in the instruction format
which specifies the data page offset and the DPP.

The long addressing mode is referred to by the mnemonic mem.

Note: The long addressing mode may be used with the DPP overriding mechanism
(EXTP(R) and EXTS(R)).

Table 3-13 Long addressing mode

Mnemonic Physical Address Scope of Access

mem (DPP0)|| mem∧ 3FFFH
(DPP1)|| mem∧ 3FFFH
(DPP2)|| mem∧ 3FFFH
(DPP3)|| mem∧ 3FFFH

any word or byte

mem pag || mem∧ 3FFFH any word or byte

mem seg || mem any word or byte

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-59 V 1.6, 2001-08

3.6.2.4 Indirect Addressing Modes

These addressing modes can be considered as a combination of short and long
addressing modes. This means that a long 16-bit address is provided indirectly by the
contents of a word GPR that is specified directly by a short 4-bit address (Rw = 0 to 15).
There are indirect addressing modes which add a constant value to the GPR contents
before the long 16-bit address is calculated. Other indirect addressing modes can
decrement or increment the indirect address pointers (GPR contents) by 2 or 1 (referring
to words or bytes).

In each case, one of the four DPP registers is used to specify physical 24-bit addresses.
Any word or byte data within the entire memory space can be addressed indirectly.

Note: Indirect addressing may be used with the DPP overriding mechanism (EXTP(R)
and EXTS(R)).

Some instructions use only the lowest 4-word GPRs (R3-R0) as indirect address
pointers, which are then specified via short 2-bit addresses.

Physical addresses are generated from indirect address pointers using the following
algorithm:

1) Calculate the physical address of the word GPR, which is used as indirect
address pointer, using the specified short address (Rw) and

 GPR Address = (CP) + 2 * Short Address

2) If required, pre-decrement indirect address pointer (-Rw) by the data-type-
dependent value (∆=1 for byte operations, ∆=2 for word operations) before the
long 16-bit address is generated:

(GPR Address) = (GPR Address) - ∆ ; [optional step!]

3) Calculate the long 16-bit address by adding a constant value (Rw+const16 if
selected) to the contents of the indirect address pointer:

Long Address = (GPR Pointer) + Constant ; [+Constant is optional]

4) Calculate the physical 24-bit address using the resulting long address and the
corresponding DPP register contents (see long mem addressing modes).

Physical Address = (DPPi) + Page offset

5) If required, post-in/decrement indirect address pointers (‘Rw±’) by the data-
type-dependent value (∆=1 for byte operations, ∆=2 for word operations).

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-60 V 1.6, 2001-08

(GPR Pointer) = (GPR Pointer) ± ∆; [optional step!]

The following indirect addressing modes are provided:

Table 3-14 Indirect addressing modes

Mnemonic Particularities

[Rw] Most instructions accept any GPR (R15...R0) as indirect address
pointer. Some instructions accept only the lower four GPRs (R3...R0).

[Rw+] The specified indirect address pointer is automatically post-incremented
by 2 or 1 (for word or byte data operations) after the access.

[-Rw] The specified indirect address pointer is automatically pre-decremented
by 2 or 1 (for word or byte data operations) before the access.

[Rw+#data16] The specified 16-bit constant is added to the indirect address pointer
before the long address is calculated.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-61 V 1.6, 2001-08

3.6.3 The System Stack

A system stack is provided to store return vectors, segment pointers, and processor
status for procedures and interrupt routines.

The internal system stack can also be used to store data temporarily, or pass it between
subroutines or tasks. Instructions are provided to push or pop registers on/from the
system stack. However, in most cases, the register banking scheme provides the best
performance for passing data between multiple tasks.

Note: The system stack allows the storage of words only. Bytes must either be
converted to words or the “unwanted” other byte must be disregarded.
Register SP can be loaded only with even byte addresses (The LSB of SP is
always 0).

The Stack Pointer (SP) addresses the stack within the DPRAM area.

 The Stack Pointer Register

The non-bit-addressable Stack Pointer (SP) register is used to point to the Top Of the
System (TOS) stack. The SP register is pre-decremented whenever data is to be pushed
onto the stack, and it is post-incremented whenever data is to be popped from the stack.
Therefore, the system stack grows from higher toward lower memory locations.

Since the Least Significant Bit (LSB) of register SP is tied to 0, and bits 15-12 are tied to
1 by hardware, the SP register can contain values only from F000H to FFFEH. This
allows access to a physical stack within the DPRAM of the C166S. A virtual stack
(usually bigger) can be implemented via software. This mechanism is supported by
registers STKOV and STKUN (see descriptions below (Section 3.6.3.1).

The SP register can be updated via any instruction that is capable of modifying a 16-bit
SFR.

Note: Due to the internal instruction pipeline, a POP or RETurn instruction must not
immediately follow an instruction updating the SP register.

SP
Stack Pointer SFR(FE12H,09H) Reset value: FC00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111 SP 0

r rwh r

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-62 V 1.6, 2001-08

3.6.3.1 Stack Overflow and Underflow

Detection of stack overflow/underflow is supported by two registers, STKOV (STacK
OVerflow pointer) and STKUN (STacK UNderflow pointer). Specific system traps (Stack
Overflow trap, Stack Underflow trap) will be entered whenever the SP reaches either
boundary specified in these registers.

In many cases, the user will place a Software ReSeT instruction (SRST) into the stack
underflow and overflow trap service routines. This is an easy approach that does not
require special programming. However, this approach assumes that the defined internal
stack is sufficient for the current software, and that exceeding its upper or lower
boundary represents a fatal error (see Linear Stack).

It is also possible to use the stack underflow and stack overflow traps to cache portions
of a larger external stack. Only the portion of the system stack currently being used is
placed into the internal memory, thus allowing a greater portion of the internal RAM to
be used for program, data, or register banking. This approach assumes no error but
requires a set of control routines (see Circular Stack).

 The STacK OVerflow Pointer Register STKOV

This non-bit-addressable STKOV pointer register is compared to the SP register after
each operation that pushes data onto the system stack (e.g., PUSH and CALL
instructions or interrupts), and after each substraction from the SP register. If the
contents of the SP register is less than the contents of the STKOV pointer register, a
stack overflow trap will occur.

Field Bits Type Description

1111 [15:12] r Fixed at 1111

SP [11:1] rwh Modifiable portion of register SP
Specifies the top of the system stack.

0 [0] r Fixed at 0

STKOV
STacK OVerflow Pointer SFR(FE14H,0AH) Reset value: FA00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111 STKOV 0

r rw r

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-63 V 1.6, 2001-08

STKOV can be updated via any instruction that is capable of modifying an SFR.

Note: When a value is MOVED into the stack pointer, NO check against the overflow/
registers is performed.

• Fatal error indication treats the stack overflow as a system error and executes
associated trap service routine. Under these circumstances, data in the bottom of the
stack may have been overwritten by the status information stacked upon servicing the
stack overflow trap.

• Automatic system stack flushing allows the system stack to be used as a “Stack
Cache” for a bigger external user stack. In this case, STKOV should be initialized to a
value that represents the desired lowest Top Of Stack (TOS) address plus an offset
based on the selected maximum stack size. This offset considers the worst case that
will occur when a stack overflow condition is detected just during entry into an ISR, or
during an ATOMIC/EXTend sequence. Under these conditions, additional stack word
locations are required to push IP, PSW, and CSP for both the ISR and the hardware
trap service routine.

 The STacK UNderflow Pointer Register STKUN

STKUN is a non-bit-addressable register that is compared to the SP register after each
operation that pops data from the system stack (e.g. POP and RET instructions), and
after each addition to the SP register. If the content of the SP register is greater than the
the content of STKUN, a stack underflow hardware trap will occur.

Since the LSB of STKUN is tied to 0 and bits 15 through 12 are tied to 1 by hardware,
STKUN register can only contain values from F000H to FFFEH.

Field Bits Type Description

1111 [15:12] r Fixed at 1111

STKOV [11:1] rw Modifiable portion of register STKOV
Specifies the segment offset address of the
lower limit of the system stack.

0 [0] r Fixed at ’0’

STKUN
STacK UNderflow Pointer SFR(FE16H,0BH) Reset value: FC00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111 STKUN 0

r rw r

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-64 V 1.6, 2001-08

STKUN can be updated via any instruction capable of modifying an SFR.

Note: When a value is MOVED into the stack pointer, NO check against the overflow/
registers is performed.

• Fatal error indication treats the stack underflow as a system error and executes
associated trap service routine.

• Automatic system stack refilling allows the system stack to be used as a “Stack
Cache” for a bigger external user stack. In this case, STKUN should be initialized to a
value that represents the desired highest Bottom of Stack address.

Scope of Stack Limit Control

The stack limit control by the register pair STKOV and STKUN detects cases where SP
is moved outside the defined stack area either by ADD or SUB instructions, or by PUSH
or POP operations (explicit or implicit, e.g., CALL or RET instructions).

This control mechanism is not triggered and no stack trap is generated when:

• the stack pointer SP is directly updated via MOV instructions, or
• the limits of the stack area (STKOV, STKUN) are changed so that SP is outside the

new limits.

3.6.3.2 Linear Stack

The C166S offers a linear stack option (STKSZ = 111B) in which the system stack may
use the complete DPRAM area. This provides a large system stack without requiring
procedures to handle data transfers for a circular stack. However, this method also
leaves less RAM space for variables or code. The DPRAM area that may be consumed
by the system stack is defined via the STKUN and STKOV pointers. The underflow and
overflow traps in this case serve for fatal error detection only.

For the linear stack option, all modifiable bits of register SP are used to access the
physical stack. Although the stack pointer may cover addresses from 00’F000H up to
00’FFFEH, the (physical) system stack must be located within the DPRAM and therefore
may only use the address range 00’F600H to 00’FDFEH. It is the user’s responsibility to
restrict the system stack to the DPRAM range.

Field Bits Type Description

1111 [15:12] r Fixed at 1111

STKUN [11:1] rw Modifiable portion of register STKUN
Specifies the segment offset address of the
upper limit of the system stack.

0 [0] r Fixed at 0

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-65 V 1.6, 2001-08

Note: Stack accesses below the DPRAM area (ESFR space and reserved area) and
within address range 00’FE00H and 00’FFFEH (SFR space) will have
unpredictable results.

3.6.3.3 Circular (Virtual) Stack

This basic technique allows pushing until the overflow boundary of the internal stack is
reached. At this point, a portion of the stacked data must be saved into external memory
to create space for further stack pushes. This is called “stack flushing”. When executing
a number of return or pop instructions, the upper boundary (since the stack empties
upward to higher memory locations) is reached. The entries that have been previously
saved in external memory must now be restored. This is called “stack filling”. Because
procedure call instructions do not continue to nest infinitely and call and return
instructions alternate, flushing and filling normally occurs very infrequently. If this is not
true for a given program environment, this technique should not be used because of the
overhead of flushing and filling.

The basic mechanism is the transformation of the addresses of a virtual stack area
controlled via SP, STKOV, and STKUN to a defined physical stack area within the
DPRAM via hardware. This virtual stack area covers all possible locations that SP can
point to, i.e. 00’F000H through 00’FFFEH. STKOV and STKUN accept the same 4-KByte
address range. The size of the physical stack area within the DPRAM that is used for
standard stack operations is defined via bitfield STKSZ in register SYSCON (see below).

Table 3-15 Circular Stack Address Transformation

STKSZ Stack Size
(Words)

DPRAM Addresses (Words)
of Physical Stack

Significant Bits
of Stack Ptr. SP

0 0 0 B 256 00’FBFEH-00’FA00H (Default after Reset) SP.8-SP.0

0 0 1 B 128 00’FBFEH-00’FB00H SP.7-SP.0

0 1 0 B 64 00’FBFEH-00’FB80H SP.6-SP.0

0 1 1 B 32 00’FBFEH-00’FBC0H SP.5-SP.0

1 0 0 B 512 00’FBFEH-00’F800H (not for 1KByte
DPRAM)

SP.9-SP.0

1 0 1 B --- Reserved. Do not use this combination. ---

1 1 0 B --- Reserved. Do not use this combination. ---

1 1 1 B 1024 00’FDFEH-00’FX00H (Note: No circular stack)
00’FX00H represents the lower DPRAM limit,
i.e.
1 KB: 00’FA00H, 2 KB: 00’F600H,
3 KB: 00’F200H

SP.11...SP.0

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-66 V 1.6, 2001-08

The virtual stack addresses are transformed to physical stack addresses by
concatenating the significant bits of SP (see table Table 3-15) with the complementary
most significant bits of the upper limit of the physical stack area (00’FBFEH). This
transformation is done via hardware (see figure Figure 3-11).

The reset values (STKOV=FA00H, STKUN=FC00H, SP=FC00H, STKSZ=000B) map the
virtual stack area directly to the physical stack area, and allow using the internal system
stack without any changes, provided that the 256-word area is not exceeded.

Figure 3-11 Physical Stack Address Generation

The following example demonstrates the circular stack mechanism that is also an effect
of this virtual stack mapping: First, register R1 is pushed onto the lowest physical stack
location according to the selected maximum stack size. The next instruction will push
register R2 onto the highest physical stack location, although the SP is decremented by
2 as for the previous push operation.

MOV SP, #0F802H ;Set SP before last entry...
;...of physical stack of 256 words

... ;(SP)=F802H: Physical stack addr.=FA02H
PUSH R1 ;(SP)=F800H: Physical stack addr.=FA00H
PUSH R2 ;(SP)=F7FEH: Physical stack addr.=FBFEH

The effect of the address transformation is that the physical stack addresses wrap
around from the end of the defined area to its beginning. When flushing and filling the

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

FBFEH

FB80H

FB80H

FBFEH

FB7EH

FBFEH

FBFEH

64 words 256 words

F800H 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

FA00H

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

FBFEH

F7FEH

FBFEH

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

<SP>

<SP>

Phys.A.

Phys.A.

Stack Size

After PUSH After PUSH

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-67 V 1.6, 2001-08

internal stack, this circular stack mechanism only requires moving that portion of stack
data that is to be re-used (i.e. the upper part of the defined stack area) instead of the
whole stack area. Stack data that remain in the lower part of the internal stack need not
be moved by the distance of the space being flushed or filled, as the stack pointer
automatically wraps around to the beginning of the freed part of the stack area.

Note: This circular stack technique is applicable for stack sizes of 32 to 512 words
(STKSZ = 000B to 100B). It does not work with option STKSZ = 111B, which uses
the complete DPRAM for system stack; in this case, the address transformation
mechanism is deactivated.

When a boundary is reached, the stack underflow or overflow trap is entered. Inside the
trap handler a predetermined portion of the internal stack is moved to or from the external
stack. The amount of data transferred is determined by the average stack space required
by routines and the frequency of calls, traps, interrupts, and returns. In most cases, this
will be approximately 1/4 to 1/10 the size of the internal stack. Once the transfer is
complete, the boundary pointers are updated to reflect the newly allocated space on the
internal stack. Thus, the user is free to write code without concern for the internal stack
limits. Only the execution time required by the trap routines affects user programs.

The following procedure initializes the controller for usage of the circular stack
mechanism:

1. Specify the size of the physical system stack area within the DPRAM (bitfield STKSZ
in register SYSCON).

2. Define two pointers that specify the upper and lower boundary of the external stack.
These values are then tested in the stack underflow and overflow trap routines when
moving data.

3. Set STKOV to the limit of the defined internal stack area plus six words (for the
reserved space to store two interrupt entries).

The internal stack will now fill until the overflow pointer is reached. After entry into the
overflow trap procedure, the top of the stack will be copied to the external memory. The
internal pointers will then be modified to reflect the newly-allocated space. After exiting
the trap procedure, the internal stack will wrap around to the top of the internal stack, and
continue to grow until the new value of the stack overflow pointer is reached.

When the underflow pointer is reached, while the stack is emptied, the bottom of stack
is reloaded from the external memory, and the internal pointers are adjusted accordingly.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-68 V 1.6, 2001-08

3.7 Data Processing

All standard arithmetic, shift, and logical operations are performed in the 16-bit
Arithmetic and Logic Unit (ALU). In addition to the standard ALU, the ALU of the C166S
includes bit manipulation, and a multiply-and-divide unit. Most internal execution blocks
have been optimized to perform operations on either 8-bit or 16-bit numbers. Once the
pipeline has been filled, most instructions are completed in one machine cycle.

The status flags are automatically updated in the PSW register (see Section 3.7.6) after
each ALU operation. These flags allow branching upon specific conditions. Support of
both signed and unsigned arithmetic is provided by the user-selectable branch test. The
status flags are also preserved automatically by the CPU upon entry into an interrupt or
trap routine.

3.7.1 Data Types

The C166S supports operations on boolean/bit, bit string, character, and integer data
types. Most instructions operate with specific data types, while others are useful for
manipulating several data types.

The C166S data formats support all ANSI C data types. In addition, some C compilers
support new types that allow the efficient use of the bit-manipulation instructions in
embedded control applications.

The C166S directly supports the following data formats:

Table 3-16 CPU data formats

CPU data format Size (bytes) Range

BIT 1 bit 0 or 1

BYTE 1 0 to 255U or
-128 to +127

WORD 2 0 to 65535U or
-32768 to +32767

Table 3-17 ANSI C data types

ANSI C data types Size (bytes) Range CPU data format

bit 1bit 0 or 1 BIT

sfrbit 1bit 0 or 1 BIT

esfrbit 1bit 0 or 1 BIT

signed char 1 -128 to +127 BYTE

unsigned char 1 0 to 255U BYTE

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-69 V 1.6, 2001-08

sfr 1 0 to 65535U WORD

esfr 1 0 to 65535U WORD

signed short 2 -32768 to +32767 WORD

unsigned short 2 0 to 65535U WORD

bitword 2 0 to 65535U WORD or BIT

signed int 2 -32768 to +32767 WORD

unsigned int 2 0 to 65535U WORD

signed long 4 -2147483648 to
+2147483647

Not directly supported

unsigned long 4 0 to 4294967295UL Not directly supported

float 4 +/-1,176E-38 to
+/-3,402E+38

Not directly supported

double 8 +/- 2,225E-308 to
+/- 1,797E+308

Not directly supported

long double 8 +/- 2,225E-308 to
+/- 1,797E+308

Not directly supported

near pointer 2 16/14bits
depending on
memory model

WORD

far pointer 4 14bits (16k) in any
page

Not directly supported

huge pointer 4 24bits (16M) Not directly supported

shuge pointer 4 24bits (16M), but
arithmetic is done
16-bit wide

Not directly supported

Table 3-17 ANSI C data types

ANSI C data types Size (bytes) Range CPU data format

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-70 V 1.6, 2001-08

3.7.2 Constants

In addition to the powerful addressing modes the C166S instruction set also supports
word-wide or byte-wide immediate constants. For an optimum utilization of the available
code storage, these constants are represented in the instruction formats by either 3, 4,
8 or 16 bits. The short constants are always zero-extended, while the long constants are
truncated if necessary to match the data format required for the particular operation (see
table below):

Note: Immediate constants are always signified by a leading #.

3.7.3 The 16-bit Adder/Subtracter, Barrel Shifter
and the 16-bit Logic Unit

All standard arithmetic and logical operations are performed by a 16-bit ALU. In case of
byte operations signals from bits six and seven of the ALU result are used to control the
condition flags. Multiple precision arithmetic is supported by a CARRY-IN signal to the
ALU from previously calculated portions of the desired operation.

A 16-bit barrel shifter provides multiple bit shifts in a single machine cycle. Rotations and
arithmetic shifts are also supported.

3.7.4 Bit-manipulation Unit

The C166S offers a large number of instructions for bit processing. The special bit-
manipulation unit was implemented for this purpose. The bit-manipulation instructions
are for efficient control and testing of peripherals. Unlike other microcontrollers, the
C166S has instructions that provide direct access to two operands in the bit-addressable
space without requiring them to be moved into temporary locations.

The same logical instructions that are available for words and bytes can also be used for
bits. The user can compare and modify a control bit for a peripheral in one instruction.
Multiple-bit shift instructions have been included to avoid long instruction streams of
single bit shift operations. These instructions require a single machine cycle. In addition,
bit field instructions are able to modify multiple bits of one operand in a single instruction.

Table 3-18 Constant formats

Mnemonic Word Operation Byte Operation

#data3 0000H + data3 00H + data3

#data4 0000H + data4 00H + data4

#data8 0000H + data8 data8

#data16 data16 data16 ∧ FFH

#mask 0000H + mask mask

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-71 V 1.6, 2001-08

All instructions that manipulate single bits or bit groups internally use a read-modify-write
sequence that accesses the whole word, which contains the specified bit(s).

This method has several consequences:

• Bits can only be modified within the internal address areas, i.e. DPRAM and SFRs.
External locations cannot be used with bit instructions. The upper 256 bytes of the
SFR area, the ESFR area, and the DPRAM are bit-addressable (see “Memory
Organization” Chapter 4), i.e., those register bits located within the respective
sections can be manipulated directly using bit instructions. The other SFRs must be
accessed byte- or word-wise.

Note: All GPRs are bit-addressable independent of the allocation of the register bank via
the context pointer CP. Even GPRs which are allocated to not bit-addressable
RAM locations provide this feature.

• The read-modify-write approach may be critical with hardware-effected bits. In these
cases, the hardware may change specific bits while the read-modify-write operation is
in progress, where the write back would overwrite the new bit value generated by the
hardware. The solution is either to use the implemented hardware protection (see
below) or through special programming (see “Particular Pipeline Effects”
Section 3.8).

Protected bits are not changed during the read-modify-write sequence, i.e., when
hardware sets an interrupt request flag between the read and the write of the read-
modify-write sequence, for example. The hardware protection logic guarantees that only
the intended bit(s) is/are affected by the write-back operation.

Note: If a conflict occurs between a bit manipulation generated by hardware and an
intended software access, the software access has priority and determines the
final value of the bit.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-72 V 1.6, 2001-08

3.7.5 Multiply and Divide Unit

The C166S has a separated multiply-and-divide unit. The multiplication is executed
within five machine cycles, while a division takes 20 machine cycles. The multiply-and-
divide process is interruptible by an interrupt that has a higher priority level than the
current CPU level.

 The Multiply/Divide High Word Register (MDH)

The non-bit-addressable Multiply/Divide High word register contains the high word of the
32-bit Multiply/Divide (MD) register, which is used by the CPU when it performs a
multiplication or a division using implicit addressing (DIV, DIVL, DIVLU, DIVU, MUL,
MULU). After an implicitly-addressed multiplication, this register represents the high-
order 16 bits of the 32-bit result. For long divisions, MDH must be loaded with the high-
order 16 bits of the 32-bit dividend before the division has started. After any division,
MDH represents the 16-bit remainder.

Whenever this register is updated via software, the Multiply/Divide Register In Use
(MDRIU) flag in the Multiply/Divide Control (MDC) register is set to 1’

When a multiplication or division is interrupted before its completion and when a new
multiply or divide operation is to be performed within the Interrupt Service Routine (ISR),
the contents of MDH must be saved along with the contents of registers MDL and MDC
to avoid erroneous results.

 The Multiply/Divide Low Word Register (MDL)

The non-bit-addressable Multiply/Divide Low word register contains the low word of the
32-bit multiply/divide MD register which is used by the CPU when it performs a
multiplication or a division using implicit addressing (DIV, DIVL, DIVLU, DIVU, MUL,
MULU). After a multiplication, this register represents the low-order 16 bits of the 32-bit
result. For long divisions, the MDL register must be loaded with the low-order 16 bits of

MDH
Multiply/Divide High Word SFR(FE0CH,06H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MDH

rwh

Field Bits Type Description

MDH [15:0] rwh High part of MD
The high order 16 bits of the 32-bit multiply and
divide register MD.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-73 V 1.6, 2001-08

the 32-bit dividend before the division has started. After any division, MDL represents the
16-bit quotient.

Whenever this register is updated via software, the MDRIU flag in the MDC register is
set to 1. The MDRIU flag is cleared whenever the MDL register is read via software.

When a multiplication or division is interrupted before its completion and when a new
multiply or divide operation is to be performed within the ISR, the contents of MDL must
be saved along with the contents of registers MDH and MDC to avoid erroneous results.

 The Multiply/Divide Control Register (MDC)

The bit-addressable 16-bit Multiply/Divide Control register is implicitly used by the CPU,
when it performs a multiplication or a division. It is used to store the required control
information for the corresponding multiply or divide operation. MDC is updated by
hardware during each single cycle of a multiply or divide instruction.

MDL
Multiply/Divide Low Word SFR(FE0EH,07H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MDL

rwh

Field Bits Type Description

MDL [15:0] rwh Low part of MD
The low order 16 bits of the 32-bit multiply and
divide register MD.

MDC
Multiply/Divide Control SFR(FF0EH,87H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 !! !! !! MDR
IU !! !! !! !!

r r r r r r r r rwh rwh rwh rwh rwh rwh rwh rwh

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-74 V 1.6, 2001-08

When a division or multiplication was interrupted before its completion and the multiply/
divide unit is required, the MDC register must first be saved along with registers MDH
and MDL (to be able to restart the interrupted operation later), and then it must be
cleared for the new calculation. After completion of the new division or multiplication, the
state of the interrupted multiply or divide operation must be restored.

The MDRIU flag is the only portion of the MDC register that might be of interest for the
user. The remaining portions of the MDC register are reserved for dedicated use by the
hardware, and should never be modified by the user other than described above.
Otherwise, correct continuation of an interrupted multiply or divide operation cannot be
guaranteed.

Multiplication or division is performed simply by specifying the correct (signed or
unsigned) version of the multiply or divide instruction. The result is then stored in register
MD. The overflow flag (V) is set if the result of a multiply or divide instruction is greater
than 16 bits. This flag can be used to determine whether both word halves must be
transferred from register MD. The high portion of MD (MDH) must be moved into the
register file or memory first, in order to ensure that the MDRIU flag reflects the correct
state.

The following instruction sequence performs an unsigned 16-by-16-bit multiplication:

SAVE:
JNB MDRIU, START ;Test if MD was in use.
SCXT MDC, #0010H ;Save and clear control register,

;leaving MDRIU set
;(only required for interrupted
;multiply/divide instructions)

BSET SAVED ;Indicate the save operation
PUSH MDH ;Save previous MD contents...
PUSH MDL ;...on system stack
START:
MULU R1, R2 ;Multiply 16·16 unsigned, Sets MDRIU

Field Bits Type Description

MDRIU [4] rwh Multiply/Divide Register In Use
0: Cleared when register MDL is read via
software.
1: Set when register MDL or MDH is written
via software, or when a multiply or divide
instruction is executed.

!! [7],[6],
[5],[3],
[2],[1],
[0]

rwh Internal Machine Status
The multiply/divide unit uses these bits to control
internal operations. Never modify these bits
without saving and restoring register MDC

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-75 V 1.6, 2001-08

JMPR cc_NV, COPYL ;Test for only 16-bit result
MOV R3, MDH ;Move high portion of MD
COPYL:
MOV R4, MDL ;Move low portion of MD, Clears MDRIU
RESTORE:
JNB SAVED, DONE ;Test if MD registers were saved
POP MDL ;Restore registers
POP MDH
POP MDC
BCLR SAVED ;Multiplication is completed,

;program continues
DONE: ...

The above save sequence and the restore sequence after COPYL are required only if
the current routine could have interrupted a previous routine that contained a MUL or DIV
instruction. Register MDC is also saved because it is possible that a previous routine’s
Multiply or Divide instruction was interrupted while in progress. In this case, the
information about how to restart the instruction is contained in this register. Register
MDC must be cleared to be initialized correctly for a subsequent multiplication or
division. The old MDC contents must be popped from the stack before the RETI
instruction is executed.

For a division, the user must first move the dividend into the MD register. If a 16/16-bit
division is specified, only the low portion of MD must be loaded. The result is also stored
in MD. The low portion (MDL) contains the integer result of the division, while the high
portion (MDH) contains the remainder.

The following instruction sequence performs a 32-by-16-bit division:

MOV MDH, R1 ;Move dividend to MD register. Sets MDRIU
MOV MDL, R2 ;Move low portion to MD
DIV R3 ;Divide 32/16 signed, R3 holds divisor
JMPR cc_V, ERROR ;Test for divide overflow
MOV R3, MDH ;Move remainder to R3
MOV R4, MDL ;Move integer result to R4. Clears MDRIU

Whenever a multiply or divide instruction is interrupted while in progress, the address of
the interrupted instruction is pushed onto the stack and the MULIP flag in the PSW of the
interrupting routine is set. When the interrupt routine is exited with the RETI instruction,
this bit is tested implicitly before the old PSW is popped from the stack. If MULIP = 1, the
multiply/divide instruction is re-read from the location popped from the stack (return
address) and will be completed after the RETI instruction has been executed.

Note: The MULIP flag is part of the context of the interrupted task. When the
interrupting routine does not return to the interrupted task (e.g. scheduler switches
to another task), MULIP must be set or cleared according to the context of the task
that is switched to.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-76 V 1.6, 2001-08

3.7.6 The Processor Status Word Register (PSW)

The bit-addressable Processor Status Word register reflects the current status of the
microcontroller. Two groups of bits represent the current ALU status and the current
CPU interrupt status. One separate bit (USR0) within PSW is provided as a general-
purpose flag.

PSW
Processor Status Word SFR(FF10H,88H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ILVL IEN S1 0 0 0 USR0 MUL
IP E Z V C N

rwh rw rw r r r rw rwh rwh rwh rwh rwh rwh

Field Bits Type Description

ILVL [15:12] rwh CPU Priority LeVeL
0H Lowest priority
... ...
FH Highest priority

IEN [11] rw Interrupt/PEC ENable Bit (globally)
0 Interrupt/PEC requests are disabled
1 Interrupt/PEC requests are enabled

S1 [10] rw Reserved for system

USR0 [6] rwh General Purpose Flag
May be used by application

MULIP [5] r MULtiplication/division In Progress
0 No multiplication/division in process
1 Multiplication/division has been
interrupted

E [4] rwh End of table Flag
0 Source operand is neither 8000h nor 80h
1 Source operand is 8000h or 80h

Z [3] rwh Zero Flag
0 ALU result is not zero
1 ALU result is zero

V [2] rwh OVerflow Flag
0 No overflow produced
0 Overflow produced

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-77 V 1.6, 2001-08

ALU Status (N, C, V, Z, E, MULIP)

The condition flags (N, C, V, Z, E) within the PSW indicate the ALU status resulting from
the ALU operation last performed. They are set by the majority of instructions according
to specific rules depending on the ALU operation or data movement.

After execution of an instruction that explicitly updates PSW, the condition flags may no
longer represent an actual CPU status. An explicit write operation to PSW supersedes
the condition flag values that are implicitly generated by the CPU. An explicit read access
to PSW returns the value of PSW after execution of the previous instruction.

Note: After reset, all of the ALU status bits are cleared.

• N-Flag: For the majority of ALU operations, the N-flag is set to 1 if the most significant
bit of the result contains a 1. Otherwise, it is cleared. In the case of integer operations,
the N-flag can be interpreted as the sign bit of the result (negative: N=1, positive: N=0).
Negative numbers are always represented as the 2's complement of the
corresponding positive number. The range of signed numbers extends from –8000H
to +7FFFH for the word data type, or from –80H to +7FH for the byte data type. For
Boolean bit operations with only one operand, the N-flag represents the previous state
of the specified bit. For Boolean bit operations with two operands, the N-flag
represents the logical XORing of the two specified bits.

• C-Flag: After an addition, the C-flag indicates that a “carry” from the most significant
bit of the specified word or byte data type has been generated. After a subtraction or
a comparison, the C-flag indicates a “borrow,” which represents the logical negation
of a carry for the addition. This means that the C-flag is set to 1 if no carry from the
Most Significant Bit (MSB) of the specified word or byte data type has been generated
during a subtraction. Subtraction is performed by the ALU as a 2's-complement
addition. The C-flag is cleared when this complement addition caused a carry.
The C-flag is always cleared for logical, multiply and divide ALU operations, because
these operations can not cause a carry flag to be set.
For shift and rotate operations, the C-flag represents the value of the bit shifted out
last. If a shift count of zero is specified, the C-flag will be cleared. The C-flag is also
cleared for a prioritize operation because a 1 is never shifted out of the MSB during
the normalization of an operand.

C [1] rwh Carry Flag
0 No carry/borrow bit produced
1 Carry/borrow bit produced

N [0] rwh Negative Result
0 ALU result is not negative
1 ALU result is negative

Field Bits Type Description

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-78 V 1.6, 2001-08

For Boolean bit operations with only one operand, the C-flag is always cleared. For
Boolean bit operations with two operands, the C-flag represents the logical ANDing of
the two specified bits.

• V-Flag: The addition, subtraction, and 2's complement operations set the V-flag to 1
if the result exceeds the range of 16-bit signed numbers for word operations (–8000H
to +7FFFH), or 8-bit signed numbers for byte operations (–80H to +7FH). Otherwise,
the V-flag is cleared. The result of an integer addition, integer subtraction, or 2's
complement operation is not valid if the V-flag indicates an arithmetic overflow.
For multiplication and division, the V-flag is set to 1 if the result can not be represented
in a word data type; otherwise, it is cleared. A division by zero will always cause an
overflow. Unlike the division result, the result of multiplication is valid regardless of V-
flag value.
Since logical ALU operations cannot produce an invalid result, the V-flag is cleared by
these operations.
The V-flag is also used as a “sticky bit” for rotate-right and shift-right operations. By
only using the C-flag, a rounding error caused by a shift-right operation can be
estimated as up to one half of the LSB of the result. In conjunction with the V-flag, the
C-flag allows the rounding error to be evaluated with a finer resolution (see table
below).
For Boolean bit operations with only one operand, the V-flag is always cleared. For
Boolean bit operations with two operands, the V-flag represents the logical ORing of
the two specified bits.

• Z-Flag: The Z-flag is normally set to 1 if the result of an ALU operation equals zero;
otherwise it is cleared.
For addition and subtraction with carry, the Z-flag is set to 1 only if the Z-flag already
contains a 1 as a result of a previous operation, and if the result of the current ALU
operation equals zero. This mechanism supports multiple precision calculations.
For Boolean bit operations with only one operand, the Z-flag represents the logical
negation of the previous state of the specified bit. For Boolean bit operations with two
operands, the Z-flag represents the logical NORing of the two specified bits. For the
prioritize operation, the Z-flag indicates whether or not the second operand was zero.

• E-Flag: End of table flag. The E-flag can be altered by instructions that perform ALU
or data movement operations. The E-flag is cleared by those instructions that can not

Table 3-19 Shift Right Rounding Error Evaluation

C-Flag V-Flag Rounding Error Quantity

0
0
1
1

0
1
0
1

No rounding error
0 < Rounding error < 1/2 LSB

Rounding error = 1/2 LSB
Rounding error > 1/2 LSB

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-79 V 1.6, 2001-08

be reasonably used for table search operations. In all other cases, the E-flag value
depends on the value of the source operand to signify whether or not the end of a
search table is reached. If the value of the source operand of an instruction equals the
lowest negative number that depends on the data format of the corresponding
instruction (8000H for the word data type, or 80H for the byte data type), the E-flag is
set to 1; otherwise it is cleared.

• MULIP-Flag: The MULIP-flag will be set to 1 by hardware upon the entrance into an
ISR when a multiply or divide ALU operation was interrupted before completion.
Depending on the state of the MULIP bit, the hardware decides whether a multiplication
or division must be continued or not after the end of an interrupt service. The MULIP bit
is overwritten with the contents of the stacked MULIP-flag when RETurn-from-Interrupt-
instruction (RETI) is executed. This normally means that the MULIP-flag is cleared again
after that.

Note: The MULIP flag is a part of the task environment. When the ISR does not return
to the interrupted multiply/divide instruction (e.g. in case of a task scheduler that
switches between independent tasks), the MULIP flag must be saved as part of
the task environment and must be updated accordingly for the new task before this
task is entered.

CPU Interrupt Status (IEN, ILVL)

The Interrupt ENable (IEN) bit makes it possible to enable (IEN=1) or disable (IEN=0)
interrupts globally. The four-bit LeVeL field (ILVL) specifies the priority of the current
CPU activity. The priority level is updated by hardware upon entry into an ISR, but it can
also be modified via software to prevent other interrupts from being acknowledged. If an
priority level 15 has been assigned to the CPU, it has the highest possible priority, and
thus the current CPU operation cannot be interrupted except by hardware traps or
external non-maskable interrupts. For details, please refer to Section 3.4 “Interrupt and
Trap Functions” .

After reset, all interrupts are disabled globally, and the lowest priority (ILVL=0) is
assigned to the initial CPU activity.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-80 V 1.6, 2001-08

3.8 Instruction Pipeline

The instruction pipeline of the C166S partitions instruction processing into four stages.
Each of these has a separate task:

1st –>FETCH: In this stage, the instruction selected by the Instruction Pointer (IP) and
the Code Segment Pointer (CSP) is fetched from either the internal local memory,
DPRAM, or external memory.

2nd –>DECODE: In this stage, the instructions are decoded and, if required, the
operand addresses are calculated and the respective operands are fetched. For all
instructions that implicitly access the system stack, the SP register is either decremented
or incremented, as specified. For branch instructions, the IP and the CSP are updated
with the desired branch target address (provided that the branch is taken).

3rd –>EXECUTE: In this stage, an operation is performed on the previously fetched
operands in the ALU. Additionally, the condition flags in the PSW register are updated
as specified by the instruction. All explicit writes to the SFR memory space, and all auto-
increment or auto-decrement writes to GPRs used as indirect address pointers, are
performed during the execute stage of the instruction.

4th –>WRITE BACK: In this stage, all external operands and the remaining operands
within the DPRAM space are written back.

A particularity of the C166S are the so-called “injected instructions.” These injected
instructions are generated internally by the machine to provide the time needed to
process instructions that cannot be processed within one machine cycle. They are
automatically injected into the decode stage of the pipeline, and then they pass through
the remaining stages like every standard instruction. Program interrupts are performed
by means of injected instructions, too. Although these internally injected instructions will
not be noticed in reality, they are introduced here to ease the explanation of the pipeline
in the following.

3.8.1 Particular Pipeline Effects

Since up to 4 different instructions are processed simultaneously, additional hardware
has been included in the C166S to prevent a loss of performance when dealing with all
causal dependencies on instructions in different pipeline stages. This extra hardware
resolves most of the possible conflicts (e.g. multiple usage of buses) in a time-optimized
way, preventing the pipeline dependencies from becoming noticeable to the user in most
cases. However, in some rare cases, attention from the programmer is required
specifically because the C166S is a pipelined machine.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-81 V 1.6, 2001-08

3.8.1.1 General considerations

Due to pipeline, Read operation, performed by next instruction, can takes place before
a Write operation, performed by the earlier instruction. While this fact can lead to some
general problems, an extra CPU hardware - the forwarding mechanism - deals with the
operand read/write addresses, and also controls the pipeline when needed. Especially,
if there are sequential write and read operations on the same address, the read is hold
until write is executed. Thus in most cases the pipeline behavior is resolved and made
transparent. So the user is assured, that after writing to a location, next read from the
same location will return the correct result.

However, there are write operations, which are changing some important parameters of
the system: configuration, data pages, stack location, register banks etc. If they are not
followed by a read from the same address, the CPU will not recognize the need of
holding the pipeline while write is finished. So, the effect of this operation will not be seen
immediately within next instruction.

After writing to a memory location (MEMLOC), non-critical instruction(s) must follow,
before the first instruction, which will be affected by that write operation:

In :Writing to MEMLOC
In+1 :Non-critical instruction(s) ;MEMLOC still holds the old value

:....
In+d :Any instruction ;new MEMLOC-VALUE is already effective

Non-critical instruction means instruction, which execution does not depend on the
writing to MEMLOC. The most “non-critical” is NOP instruction, as doing nothing. The
programmer has to be always aware not to place some critical instruction within that gap
of one (or more) machine cycles, while the write operation still has no effect. Also, the
delays caused by pipeline conflicts can be used for other instructions in order to optimize
performance.

3.8.1.2 Specific cases with core registers

When writing to an internal core register, the time needed before the new value becomes
effective depends only on the pipeline. This time is usually one, as exception two
machine cycles, what means one or two non-critical instructions to be executed. Below
are described some specific situations when changing important system registers.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-82 V 1.6, 2001-08

• Address Pointer Updating

Indirect addressing modes use a GPR value to generate the address of the source and/
or destination operand. If this GPR is updated explicitly by the preceding instruction, one
NOP instruction is automatically inserted.

In :ADD R0,#0002h ;increment address pointer GPR 0
Iinject:NOP ;automatically injected NOP
In+1 :MOV R2,[R0] ;use GPR 0 for indirect addressing

To improve performance, an instruction not using this new GPR as a destination operand
can be inserted between an explicit GPR-changing and a subsequent instruction using
an indirect addressing mode.

In :ADD R0,#0002h ;increment address pointer GPR 0
In+1 :.... ;must not be an instruction updating GPR 0
In+2 :MOV R2,[R0] ;use GPR 0 for indirect addressing

• Context Pointer Updating

An instruction that calculates a physical GPR operand address via the CP register is
incapable of using a new CP value that is to be updated by the preceding instruction.
Thus, to make sure that the new CP value is used, at least two instructions must be
inserted between an instruction that changes the CP and a subsequent instruction that
uses the GPR, as shown in the following example:

In :SCXT CP,#0FC00h ;select a new context
In+1 :.... ;must not be an instruction using a GPR
In+2 :.... ;must not be an instruction using a GPR
In+3 :MOV R0,#dataX ;write to GPR 0 in the new context

• Data Page Pointer Updating

An instruction that calculates a physical operand address via a particular DPPn (n=0
to n=3) register is not capable of using a new DPPn register value that is to be updated
by the preceding instruction. Thus, to make sure that the new DPPn register value is
used, at least one instruction must be inserted between a DPPn-changing instruction
and a subsequent instruction that implicitly uses DPPn via a long or indirect addressing
mode, as shown in the following example:

In :MOV DPP0,#4 ;select data page 4 via DPP0
In+1 :.... ;must not be an instruction using DPP0
In+2 :MOV DPP0:0000H,R1;move contents of R1 to address location 01’0000H

;(in data page 4) supposed segment. is enabled

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-83 V 1.6, 2001-08

• Explicit Stack Pointer Updating

Neither the RET nor POP instruction is capable of correctly using a new SP register
value, which is to be updated by an immediately preceding instruction. Thus, in order to
use the new SP register value without erroneously performed stack accesses, at least
one instruction must be inserted between an instruction that explicitly writes to SP, and
any of the afore mentioned subsequent instructions that implicitly use the SP, as shown
in the following example:

In :MOV SP,#0FA40H ;select a new top of stack
In+1 :.... ;must not be an instruction popping operands

;from the system stack
In+2 :POP R0 ;pop word value from new top of stack into R0

Furthermore none of the RETI, RETS or RETP instructions are capable of correctly using
a new SP register value, which is to be updated by one or both of the two immediately
preceding instructions. Thus, in order to use the new SP register value without
erroneously performed stack accesses, at least two instructions must be inserted
between an instruction that explicitly writes to SP, and any of the afore mentioned
subsequent instructions that implicitly use the SP, as shown in the following example:

In :MOV SP,#0FA40H ;select a new top of stack
In+1 :.... ;must not be an instruction popping operands

;from the system stack
In+2 :.... ;must not be an instruction popping operands

;from the system stack
In+3 :RETP R0 ;return from subroutine and pop word value from

;new top of stack into R0

Most of the potential conflicts, if a change of SP value is immediately followed by a
writing to the stack (instructions PUSH, CALL, SCXT, TRAP) are solved internally by
CPU logic. The only exceptions are CALLS and PCALL instructions, which require one
preceding instruction not using updated SP, as shown below:

In :MOV SP,#0FA40H ;select a new top of stack
In+1 :.... ;must not be an instruction using

;the new address of system stack
In+2 :PCALL R3,sub_addr ;push R3 value and return address at the new

;top of stack and call subroutine

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-84 V 1.6, 2001-08

• Controlling Interrupts

Software modifications (implicit or explicit) of the PSW are done in the execute phase of
instructions. In order to maintain fast interrupt responses, however, the current interrupt
prioritization round does not consider these changes, i.e., an interrupt request may be
acknowledged after the instruction that disables interrupts via IEN or ILVL, or after the
following instructions. Therefore, time-critical instruction sequences should not begin
directly after the instruction disabling interrupts, as shown in the following examples:

INTERRUPTS_OFF:
BCLR IEN ;globally disable interrupts
<Instr non-crit> ;non-critical instruction
<Instr 1st-crit> ;begin of uninterruptable critical sequence
. . .
<Instr last-crit> ;end of uninterruptable critical sequence
INTERRUPTS_ON:
BSET IEN ;globally re-enable interrupts

CRITICAL_SEQUENCE:
ATOMIC #3 ;immediately block interrupts
BCLR IEN ;globally disable interrupts
. . . ;here is the uninterruptable sequence
BSET IEN ;globally re-enable interrupts

Note: The described delay of 1 instruction also applies for enabling the interrupt system;
i.e., no interrupt requests are acknowledged until the instruction following the
enabling instruction.

• External Memory Access Sequences

The effect described here will only become noticeable when watching the external
memory access sequences on the external bus (e.g., by means of a logic analyzer).
Different pipeline stages can simultaneously put a request on the External Bus Controller
(EBC). The sequence of instructions processed by the CPU may diverge from the
sequence of the corresponding external memory accesses performed by the EBC, due
to the predefined priority of external memory accesses:

1. Write data
2. Fetch code
3. Read data

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-85 V 1.6, 2001-08

• Initialization of Port Pins

Modifications of the direction of port pins (input or output) become effective only after the
instruction following the modifying instruction. As bit instructions (BSET, BCLR) use
internal read-modify-write sequences accessing the whole port, instructions modifying
the port direction should be followed by an instruction that does not access the same port
(see example below).

PORT_INIT_WRONG:
BSET DP3.13 ;change direction of P3.13 to output
BSET P3.9 ;P3.13 is still input,

;rd-mod-wr reads pin P3.13
PORT_INIT_RIGHT:
BSET DP3.13 ;change direction of P3.13 to output
NOP ;any instruction not accessing port 3
BSET P3.9 ;P3.13 is now output,

;rd-mod-wr reads P3.13’s output latch

• Changing the System Configuration

The instruction following an instruction that changes the system configuration via register
SYSCON (e.g. the mapping of the internal local memory, segmentation, stack size)
cannot use the new resources (e.g. local memory or stack). In these cases, an
instruction that does not access these resources should be inserted. Code accesses to
the new local memory area are only possible after an absolute branch to this area.

Note: As a rule, instructions that change local memory mapping should be executed
from DPRAM or external memory.

• BUSCON/ADDRSEL

The instruction following an instruction that changes the properties of an external
address area cannot access operands within the new area. In these cases, an instruction
that does not access this address area should be inserted. Code accesses to the new
address area should be made after an absolute branch to this area.

Note: As a rule, instructions that change external bus properties should not be executed
from the external memory area.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-86 V 1.6, 2001-08

3.8.1.3 Common portable solution

When writing to an external memory location, the time needed before the new value
becomes effective depends also on the overall system performance. In general more
extra cycle(s) will be needed in case of lower peripheral bus speed to cover the delay
additionally caused. Special attention has to be paid, when writing to external SFRs,
such as peripheral control registers, which have effect over the system behavior - for
example enabling/disabling transfer, interrupts etc.

To assure that the critical write operation has been completed, before making use of it,
it is recommended next to make a read operation on the same memory location. The
reasons are:

• the CPU will recognize the need of holding pipeline while the write operation is
completed;

• as reading from the same location, execution-time scales in respect to bus speed. So
there is no need to think about how fast that bus is and one instruction is enough in all
cases, to assure effectiveness of that write for the next instructions.

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-87 V 1.6, 2001-08

3.8.2 Instruction State Times

Instruction pipelining usually reduces the average instruction processing time (typically
within a range of 1-4 machine cycles). However, there are some rare cases, where a
particular pipeline situation causes the processing time for a single instruction to be
extended either by a half or by one machine cycle. Although this additional time
represents only a tiny part of the total program execution time, it might be of interest to
avoid these pipeline-caused time delays in time-critical program modules.

The time to execute an instruction depends on where the instruction is fetched from, and
where possible operands are read from or written to. The fastest processing mode of the
C166S is to execute a program fetched from the internal code memory. In that case,
most of the instructions can be processed within just one machine cycle, which is also
the general minimum execution time.

All external memory accesses are performed by the EBC, which works in parallel with
the CPU. This section summarizes execution times.

The table below shows the minimum execution times required to process an instruction
fetched from the internal local memory, the DPRAM, or external memory. These
execution times apply to most instructions except some of the branches, the
multiplication, the division, and a special move instruction. In case of internal local
memory program execution, the execution time does not depend on the instruction
length except for some special branch situations. The numbers in the table are in units
of CPU clock cycles, and assume no waitstates.

Execution from the DPRAM provides flexibility in terms of loadable and modifiable code.
The execution time from external memory depends strongly on the selected bus mode
and the programming of the bus cycles (waitstates).

Table 3-20 Minimum Execution Times

Instruction Fetch Word Operand Access

Memory Area Word
Instruction

Doubleword
Instruction

Read from Write to

Internal local memory 11)

1) Minimum execution time for instruction fetch and operand accesses. Nevertheless the minimum execution
time of an instruction remains 2 clock cycles (one machine cycle).

11) 11) 11)

DPRAM 11) 2 11) 11)

16-bit demux bus 2 4 2 2

16-bit mux bus 3 6 3 3

8-bit demux bus 4 8 4 4

8-bit mux bus 6 12 6 6

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-88 V 1.6, 2001-08

The operand and instruction accesses listed below can extend the execution time of an
instruction:

• Internal Local Memory operand accesses (same for byte and word operand accesses)
• DPRAM operand reads via indirect addressing modes
• Internal SFR operand reads immediately after writing
• External operand reads
• External operand writes
• Jumps to non-aligned double word instructions in the internal local memory space
• Testing branch conditions immediately after PSW writes

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-89 V 1.6, 2001-08

3.9 Dedicated CSFRs

The Constant Zeros Register ZEROS

All bits of this bit-addressable register are fixed at 0 by hardware. This register is read-
only. Register ZEROS can be used as a register-addressable constant of all zeros for bit
manipulation or mask generation. It can be accessed via any instruction capable of
accessing an SFR.

The Constant Ones Register ONES

All bits of this bit-addressable register are fixed at 1 by hardware. This register is read-
only. Register ONES can be used as a register-addressable constant of all ones for bit
manipulation or mask generation. It can be accessed via any instruction which is capable
of accessing an SFR.

Zeros
Constant Zeros Register SFR(FF1CH,8EH) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r r r r r r r r r r r r r r r r

Field Bits Type Description

0 [all] r Fixed at Zero

ONES
Constant Ones Register SFR(FF1EH,8FH) Reset value: FFFFH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r r r r r r r r r r r r r r r r

Field Bits Type Description

1 [all] r Fixed at 1

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-90 V 1.6, 2001-08

CPU Identification register CPUID

This 16-bit register contains the module and revision number of the implemented C166S
module.

CPUID
CPU Identification Register ESFR(F00CH,E-06H) Reset value: 04??H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPUREVNO CPUMODNO

r r

Field Bits Type Description

CPUREVNO [15:8] r Module Number
04H C166S core module number

CPUMODNO [7:0] r Version Number
Version Number, starts with 01H and is
incremented with every new core version

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-91 V 1.6, 2001-08

3.10 Summary of CPU Registers

This section summarizes all registers in the C166S. There are two kind of registers, the
General Purpose Registers (GPR) and the CPU-Special Function Registers (CSFR).
The GPRs are the working registers of the arithmetic and logic operations and may be
also used as address pointers indirect addressing modes. The CSFRs are the control
registers of the C166S.

For easy reference, the CSFRs are listed in this section by address (to identify a register
at a given. address) and by name (to find an address of a specific register).

3.10.1 General Purpose Registers

The GPRs are the working registers of the C166S. All GPRs are bit addressable.

The first 8 GPRs (R7...R0) may be also accessed byte-wise. Unlike SFRs, writing to a
GPR byte does not affect another byte of the GPR.

Table 3-21 Addressing modes to access Word-GPRs

Name Physical
Address

8-Bit
Address

4-Bit
Address

Description Reset
Value

R0 (CP)+0 F0H 0H General-Purpose word Register R0 UUUUH

R1 (CP)+2 F1H 1H General-Purpose word Register R1 UUUUH

R2 (CP)+4 F2H 2H General-Purpose word Register R2 UUUUH

R3 (CP)+6 F3H 3H General-Purpose word Register R3 UUUUH

R4 (CP)+8 F4H 4H General-Purpose word Register R4 UUUUH

R5 (CP)+10 F5H 5H General-Purpose word Register R5 UUUUH

R6 (CP)+12 F6H 6H General-Purpose word Register R6 UUUUH

R7 (CP)+14 F7H 7H General-Purpose word Register R7 UUUUH

R8 (CP)+16 F8H 8H General-Purpose word Register R8 UUUUH

R9 (CP)+18 F9H 9H General-Purpose word Register R9 UUUUH

R10 (CP)+20 FAH AH General-Purpose word Register R10 UUUUH

R11 (CP)+22 FBH BH General-Purpose word Register R11 UUUUH

R12 (CP)+24 FCH CH General-Purpose word Register R12 UUUUH

R13 (CP)+26 FDH DH General-Purpose word Register R13 UUUUH

R14 (CP)+28 FEH EH General-Purpose word Register R14 UUUUH

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-92 V 1.6, 2001-08

The following byte-wise accessible registers have special names. .

Table 3-22 Addressing modes to access Byte-GPRs

Name Physical
Address

8-Bit
Address

4-Bit
Address

Description Reset
Value

RL0 (CP)+0 F0H 0H General-Purpose byte Register RL0 UUH

RH0 (CP)+1 F1H 1H General-Purpose byte Register RL1 UUH

RL1 (CP)+2 F2H 2H General-Purpose byte Register RL2 UUH

RH1 (CP)+3 F3H 3H General-Purpose byte Register RL3 UUH

RL2 (CP)+4 F4H 4H General-Purpose byte Register RL4 UUH

RH2 (CP)+5 F5H 5H General-Purpose byte Register RL5 UUH

RL3 (CP)+6 F6H 6H General-Purpose byte Register RL6 UUH

RH3 (CP)+7 F7H 7H General-Purpose byte Register RL7 UUH

RL4 (CP)+8 F8H 8H General-Purpose byte Register RL8 UUH

RH4 (CP)+9 F9H 9H General-Purpose byte Register RL9 UUH

RL5 (CP)+10 FAH AH General-Purpose byte Register RL10 UUH

RH5 (CP)+11 FBH BH General-Purpose byte Register RL11 UUH

RL6 (CP)+12 FCH CH General-Purpose byte Register RL12 UUH

RH6 (CP)+13 FDH DH General-Purpose byte Register RL13 UUH

RL7 (CP)+14 FEH EH General-Purpose byte Register RL14 UUH

RH7 (CP)+15 FFH FH General-Purpose byte Register RL15 UUH

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-93 V 1.6, 2001-08

3.10.2 Core Special Function Registers Ordered by Name

The following table lists all CSFRs in alphabetical order. Bit-addressable CSFRs are
marked with the letter “b” in column “Name”.
CSFRs within the Extended CSFR-Space (ECSFRs) are marked with the letter “E” in
column “8-Bit Address”.

Name Physical
Address

8-Bit
Address

Description Reset
Value

CP FE10H 08H Context Pointer FC00H

CPUID F00CH E-06H CPU Identification Register 04YYH
1)

1) YY: defined by implemented CPU version

CSP FE08H 04H Code Segment Pointer
(8 bits, not directly writable)

0000H

DPP0 FE00H 00H Data Page Pointer 0 (10 bits) 0000H

DPP1 FE02H 01H Data Page Pointer 1 (10 bits) 0001H

DPP2 FE04H 02H Data Page Pointer 2 (10 bits) 0002H

DPP3 FE06H 03H Data Page Pointer 3 (10 bits) 0003H

MDCb FF0EH 87H Multiply Divide Control Register 0000H

MDH FE0CH 06H Multiply Divide High Word 0000H

MDL FE0EH 07H Multiply Divide Low Word 0000H

ONESb FF1EH 8FH Constant Value 1’s Register (read only) FFFFH

PSWb FF10H 88H Program Status Word 0000H

SP FE12H 09H Stack Pointer FC00H

STKOV FE14H 0AH Stack Overflow Register FA00H

STKUN FE16H 0BH Stack Underflow Register FC00H

SYSCON FF12H 89H System/CPU Control Register YYYYH
2)

2) YYYY: defined by reset and system configuration

TFRb FFACH D6H Trap Flag Register 0000H

ZEROSb FF1CH 8EH Constant Value 0’s Register (read only) 0000H

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-94 V 1.6, 2001-08

3.10.3 Core Special Function Registers ordered by Address

The following table lists all CSFRs which are implemented in the C166S ordered by their
physical address. Bit-addressable CSFRs are marked with the letter “b” in column
“Name”.
CSFRs within the Extended SFR-Space (ESFRs) are marked with the letter “E” in
column “8-Bit Address”.

Name Physical
Address

8-Bit
Address

Description Reset
Value

CPUID F00CH E-06H CPU Identification Register 04YYH
1)

1) YY: defined by implemented CPU version

DPP0 FE00H 00H Data Page Pointer 0 (10 bits) 0000H

DPP1 FE02H 01H Data Page Pointer 1 (10 bits) 0001H

DPP2 FE04H 02H Data Page Pointer 2 (10 bits) 0002H

DPP3 FE06H 03H Data Page Pointer 3 (10 bits) 0003H

CSP FE08H 04H Code Segment Pointer
(8 bits, not directly writable)

0000H

MDH FE0CH 06H Multiply Divide High Word 0000H

MDL FE0EH 07H Multiply Divide Low Word 0000H

CP FE10H 08H Context Pointer FC00H

SP FE12H 09H Stack Pointer FC00H

STKOV FE14H 0AH Stack Overflow Register FA00H

STKUN FE16H 0BH Stack Underflow Register FC00H

MDCb FF0EH 87H Multiply Divide Control Register 0000H

PSWb FF10H 88H Program Status Word 0000H

SYSCON FF12H 89H System/CPU Control Register YYYYH
2)

2) YYYY: defined by reset and system configuration

ZEROSb FF1CH 8EH Constant Value 0’s Register (read only) 0000H

ONESb FF1EH 8FH Constant Value 1’s Register (read only) FFFFH

TFRb FFACH D6H Trap Flag Register 0000H

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-95 V 1.6, 2001-08

3.10.4 Register Overview C166S Interrupt and Peripheral Event
Controller

The following table lists all xSFRs which are implemented in the C166S Interrupt and
Peripheral Event Controller.

Table 3-23 Register Overview - C166S Interrupt and Peripheral Event Controller

Register Name Register Description Module Block

PECSN0 PEC Pointer 0 Segment Address Reg. PEC Pointer

PECSN1 PEC Pointer 1 Segment Address Reg. PEC Pointer

PECSN... PEC Pointer ... Segment Address Reg. PEC Pointer

PECSN7 PEC Pointer 7 Segment Address Reg. PEC Pointer

PECSN81) PEC Pointer 8 Segment Address Reg. PEC Pointer

PECSN...1) PEC Pointer ... Segment Address Reg. PEC Pointer

PECSN151) PEC Pointer 15 Segment Address Reg. PEC Pointer

PECC0 PEC Channel 0 Control Register PEC Control

PECC... PEC Channel ... Control Register PEC Control

PECC7 PEC Channel 7 Control Register PEC Control

PECC81) PEC Channel 8 Control Register PEC Control

PECC...1) PEC Channel ... Control Register PEC Control

PECC151) PEC Channel 15 Control Register PEC Control

IRQ0IC1)

1) The implementation and assignment of these Interrupt/PEC Control Register is product specific.

Interrupt 0 Control Register Arbitration Control

...

IRQ63IC1) Interrupt 63 Control Register Arbitration Control

IRQ64IC1) Interrupt 64 Control Register Arbitration Control

IRQ65IC1) Interrupt 65 Control Register Arbitration Control

...

IRQ111IC1) Interrupt 111 Control Register Arbitration Control

User’s Manual
C166S V1 SubSystem

Central Processing Unit

User’s Manual 3-96 V 1.6, 2001-08

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-1 V 1.6, 2001-08

4 Memory Organization
The memory space of the C166S has a “Von Neumann” architecture. This means that
code and data are accessed within the same linear address space. All of the physically
separated memory areas, including internal ROM/FLASH/DRAM (where integrated),
DPRAM, the internal Special Function Register (SFR) and Extended Special Function
Register (ESFR) areas, and external memory are mapped into one common address
space.

Figure 4-1 C166S Address Space Overview

254...129

255

00’0000H
0

127

128

64

4

3

2

1

FF’FFFFH

80’0000H

Total Address Space

01’FFFFH

16 MByte, Segments 255...0

00’0000H

01’FFFFH

Segments 1 and 0

01’0000H

S
eg

m
en

t 0
S

eg
m

en
t 1

Internal

Area

64 + 64 KByte

01’8000H

126...65

63

5

9

8

7

6

11

10

62...12

40’0000H

0A’FFFFH

08’0000H

255...2

Data Page 3

Alternate
Local Memory

Area

Data Page 2

16
M

B
yt

e
E

xt
er

na
l A

dd
re

ss
in

g
C

ap
ab

ili
ty

04’FFFFH

Local Memory

Begin of
Local Memory
above 32KB

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-2 V 1.6, 2001-08

The C166S has a total addressable memory space of 16 MBytes. This address space is
arranged as 256 segments of 64 KBytes each, and each segment is again subdivided
into four data pages of 16 KBytes each (see Figure 4-1).

Most internal memory areas are mirrored into segment 0, the system segment. The
upper 4 KBytes of segment 0 (00’F000H-00’FFFFH) are the SFRs and ESFRs and the
DPRAM areas. The lower 32 KByte of segment 0 (00’0000H-00’7FFFH) may be
occupied by a part of the on-chip program memory and is called the internal Local
Memory (LM) area. This LM area can be remapped to segment 1 (01’0000H-01’7FFFH)
to enable external memory access in the lower half of segment 0, or the internal LM may
be disabled completely.

Code and data may be stored in any part of the internal memory areas except for the
SFR blocks, which may be used for control/data, but not for instructions.

Note: Accesses to the internal LM area on devices without LM will produce
unpredictable results.

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-3 V 1.6, 2001-08

4.1 Data Organization in Memory

Bytes are stored at even or odd byte addresses. Words are stored in ascending memory
locations with the low byte at an even byte address, followed by the high byte at the next
odd byte address. Instruction double-words are stored in ascending memory locations
as two subsequent words, without any restrictions (non-aligned). Single bits are always
stored in the specified bit position at a word address. The memory and registers store
data and instructions in little-endian byte order (the least significant bytes are at lower
addresses) The byte ordering is illustrated in Figure 4-2. Bit position 0 is the least
significant bit of the byte at an even byte address, and bit position 15 is the most
significant bit of the byte at the next odd byte address. Bit addressing is supported for a
part of the SFRs, a part of the DPRAM and for the General-Purpose Registers (GPRs).

Note: Byte units forming a single word must always be stored within the same physical
(internal, external, ROM, RAM) and organizational (page, segment) memory area.

Figure 4-2 Storage of Words, Byte and Bits in a Byte Organized Memory

º

Double Word (Low

Double Word

Double Word (Third)

Double Word (High

Word (Low Byte)

Word (High Byte)

Byte

Byte

067

1 1 8… Bits …
… Bits …

º

xxxx’xxxFH

xxxx’xxx0H

xxxx’xxx1H

xxxx’xxx2H

xxxx’xxx3H

xxxx’xxx4H

xxxx’xxx5H

xxxx’xxx6H

xxxx’xxx7H

xxxx’xxx8H

xxxx’xxx9H

xxxx’xxxAH

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-4 V 1.6, 2001-08

4.2 Internal Local Memory Area

The C166S reserves an address area of variable size (depending on the device
configuration) for on-chip Local Memory (LM). The internal LM can be ROM, SRAM,
flash or DRAM.

The internal LM may be enabled, disabled or mapped into segment 0 or segment 1
under software control.

Internal LM accesses are enabled or disabled globally via bit ROMEN in the SYSCON
register. This bit is set during reset according to the level on external pin EA, or may be
altered via software. If enabled, the internal lower 32K of LM area occupies the lower
32 KByte of either segment 0 or segment 1. This mapping is controlled by bit ROMS1 in
register SYSCON.

Note: The size of the internal LM area may be independent of the size of the actual
implemented LM. Devices with less than 32 KBytes of LM or with no LM at all will
have this 32-KByte area occupied if the LM is enabled. Devices with a larger LM
provide the mapping option only for the internal LM area.

Devices with an LM size above 32 KByte expand the LM area from the middle of
segment 1, i.e., starting at address 01’8000H.

The internal LM can be used for both code (instructions) and data (constants, tables,
etc.) storage.

Code fetches are always made on even byte addresses. The highest possible code
storage location in the internal LM is either xx’xxFEH for single word instructions, or
xx’xxFCH for double word instructions. The respective location must contain a branch
instruction (unconditional), because sequential boundary crossing from internal LM to
external memory is not supported and causes erroneous results.

Any word and byte data read accesses may use the indirect or long 16-bit addressing
modes. There is no short-addressing mode for the LM operands. Any word data access
is made to an even byte address. Any double-word access is made to a modulo-4
address (even-word address). The highest possible word data storage location in the LM
is xxxx’xxFEH; the highest double-word location is xxxx’xxFCH.

The internal LM is not provided for single-bit storage, and therefore it is not bit-
addressable.

Note: The x in the locations above depend on the available internal LM.

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-5 V 1.6, 2001-08

4.3 DPRAM and SFR-Area

The C166S differentiates between the internal data memory (DPRAM) and the internal
peripheral areas. The DPRAM and the SFR areas are located within data page 3, and
provide fast accesses using one dedicated Data Page Pointer (DPP) (see Figure 4-3).

Note: Code accesses are not possible from the SFR areas.

4.3.1 Data Memories

The DPRAM is a volatile memory available mainly for data storage. It serves for:

– GPR banks
– Variable and other data storage
– System and user stacks
– PEC source and destination pointers

A 3-KByte memory area (00‘F200H-00’FE00H) is reserved for the DPRAM. The upper
256 Bytes of the DPRAM (00’FD00H-00’FDFFH) and the GPRs of the current bank are
provided for single-bit storage, and thus they are bit addressable (see shaded blocks in
Figure 4-3). Any word and byte data in the DPRAM can be accessed via indirect or long
16-bit addressing modes if the selected DPP register points to data page 3. Any word
data access is made on an even byte address. The highest possible word data storage
location in the DPRAM is 00’FDFEH.

The highest possible code storage location in the DPRAM is either 00’FDFEH for single-
word instructions, or 00’FDFCH for double-word instructions (but this is the bit-
addressable area, which should not be used for code). The respective location must
contain a branch instruction (unconditional), because sequential boundary crossing from
DPRAM to the SFR area is not supported and causes erroneous results.

4.3.2 Special Function Register Areas

The functions of the CPU, the bus interface, the I/O ports, and the on-chip peripherals of
the C166S are controlled via a number of SFRs. These SFRs are arranged within two
512-Byte areas. The first register block, the SFR area, is located in the 512 Bytes above
the DPRAM (00’FFFFH-00’FE00H). The second register block, the ESFR area, is located
in the 512 Bytes below the DPRAM (00’F1FFH-00’F000H).

SFRs can be addressed via indirect and long 16-bit addressing modes. Using an 8-bit
offset together with an implicit base address makes it possible to address word SFRs
and their respective low bytes. However, this does not work for the respective high bytes.

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-6 V 1.6, 2001-08

Figure 4-3 DPRAM and SFR Areas

Note: High-byte accesses of SFRs using the 8-bit offset addressing mode are not
possible.

Note: Writing to any byte of an SFR causes the non-addressed complementary byte to
be cleared.

Note: GPRs can be accessed using the 8-bit offset addressing mode, but the GPRs are
not mapped into the SFR and ESFR memory area. Using the corresponding long
address instead of a GPR access executes an internal peripheral bus access.

The upper half of each register block is bit-addressable, so the respective control/status
bits can be modified directly, or checked using bit addressing.

00’4000H

00’8000H

00’C000H

Data Page 0

Data Page 1

Data Page 2

Data Page 3

00’F000H

00’FFFFH
RAM / SFR

Area

System Segment 0
64KByte

Internal
Program

00´0000H

00’E000H

00’FFFFH

00’FE00H

00’F200H

00’F000H

00’FD00H

SFR
Area

ESFR
Area

DPRAM

DPRAM

Memory

External

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-7 V 1.6, 2001-08

When accessing registers in the ESFR area using 8-bit addresses or direct bit
addressing, the EXTend Register (EXTR) instruction is required before accessing
registers in the ESFR area, in order to switch the short-addressing mechanism from the
standard SFR area to the ESFR area. This is not required for 16-bit and indirect
addresses. The GPRs R15...R0 are duplicated, i.e., they are accessible within both
register blocks via short 2-, 4- or 8-bit addresses without switching.

Example 1:

EXTR #4 ;Switch to ESFR area for the next 4 instructions
MOV ODP2, #data16 ;ODP2 (ESFR register) uses 8-bit reg addressing
BFLDL DP6, #mask, #data8 ;DP6 (ESFR register) bit addressing for bit fields
BSET DP6.7 ;DP6 (ESFR register) bit addressing for single bits
MOV T8REL, R1 ;T8REL uses 16-bit address, R1 is duplicated…

;…and also accessible via the ESFR mode
;(EXTR is not required for this access)

;------- ;------------------- ;The scope of the EXTR #4 instruction ends here!
MOV T8REL, R1 ;T8REL uses 16-bit address, R1 is duplicated…

;…and does not require switching

In order to minimize the switching of SFR banks, the ESFR area holds registers that are
mainly required for initialization and mode selection. Registers that need to be accessed
frequently are allocated to the standard SFR area, wherever possible.

Note: The tools are equipped to monitor accesses to the ESFR area and will
automatically insert EXTR instructions, switch the SFR bank address, or issue a
warning in case of missing or excessive EXTR instructions.

4.3.3 PEC Source and Destination Pointers

The 16 (24/32) word locations for the 8 (12/16) PEC channels in the DPRAM from
00’FCE0h (00’FCD0h/00’FCC0h) to 00’FCFEh (just below the bit-addressable section)
are provided as source and destination address pointers for data transfers on the PEC
channels. Each channel uses a pair of pointers stored in two subsequent word locations
with the SouRCe Pointer (SRCPx) on the lower and the DeSTination Pointer (DSTPx)
on the higher word address.

Whenever a PEC data transfer is performed, the pair of SRCPx and DSTPx selected by
the specified PEC channel number is accessed independent of the current DPP register
contents; also, the locations referred to by these pointers are accessed independently of
the current DPP register contents. If a PEC channel is not used, the corresponding
pointer location area is available and can be used for word or byte data storage or for
instructions.

For more details about use of SRCPx and DSTPx for PEC data transfer, see “Interrupt
and Exception Execution” Section 3.4.

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-8 V 1.6, 2001-08

4.4 External Memory Space

The C166S CPU can use an address space of up to 16 MBytes. Only parts of this
address space are occupied by the internal LM, DPRAM and the IO/SFR area. All
addresses not used for this kind of on-chip memory or for registers may reference
external memory locations. This external memory space is accessed via the Bus
Controller (BC).

The BC is the bus-bridge between the C166S CPU and the external/internal bus
interfaces. The external bus interface allows access to external (off-chip) peripherals and
additional off-chip volatile and non-volatile memories. The external bus interface may
further limit the amount of addressable off-chip memory. The internal bus interface
provides an internal system bus that allows the on-chip integration of customer-specific
peripherals, volatile and non-volatile memories. The availability of the internal and
external bus interfaces depends on the functionality of the integrated BC.

4.4.1 External data accesses

External word and byte data can be accessed only via indirect or long 16-bit addressing
modes using one of the four DPP registers. There is no short-addressing mode for
external operands. Any word data access is made to an even byte address, and double-
word accesses to modulo-4 byte addresses (even word address).

External memory is not provided for single-bit storage and therefore it is not bit-
addressable.

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-9 V 1.6, 2001-08

4.5 Crossing Memory Boundaries

The address space of the C166S CPU is divided implicitly into equally-sized blocks of
different granularity and into logical memory areas. Crossing the boundaries between
these blocks (code or data) or areas requires special attention to ensure that the
controller executes the desired operations.

Memory Areas are partitions of the address space that represent different kinds of
memory (if provided at all). These memory areas are the DPRAM, the internal IO, the
internal LM (if available), and the external memory.

Accessing subsequent data locations that belong to different memory areas is not fully
supported, and may therefore lead to erroneous results. There is no problem if the
memory boundaries are word-aligned. However, when executing code, the different
memory areas (internal memory areas and external memory) must be switched explicitly
via branch instructions. Sequential boundary crossing is not supported and may lead to
erroneous results.

Segments are contiguous 64-KByte blocks. They are referenced via the Code Segment
Pointer (CSP) for code fetches, and via an explicit segment number for data accesses
overriding the standard DPP scheme.
During code fetching, segments are not changed automatically, but rather must be
switched explicitly. The instructions JMPS, CALLS and RETS will do this. Larger
sequential programs make sure that the highest used code location of a segment
contains an unconditional branch instruction to the next following segment, to prevent
the prefetcher from trying to leave the current segment.

Data Pages are contiguous 16-KByte blocks. They are referenced via the Data Page
Pointers DPP3...0 and via an explicit data page number for data accesses overriding the
standard DPP scheme. Each DPP register can select one of the possible 1024 data
pages. The DPP register that is used for the current access is selected via the two upper
bits of the 16-bit data address. Subsequent 16-bit data addresses that cross the 16-
KByte data page boundaries will use different data page pointers, while the physical
locations need not be contiguous within memory.

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-10 V 1.6, 2001-08

4.6 System Stack

The system stack must be defined within the DPRAM. The size of the system stack is
controlled by bitfield STKSZ in register SYSCON (see table below).

For all system stack operations, the stack memory is accessed via the Stack Pointer
(SP). The system stack implementation in the C166S is from high to low memory. The
system stack grows downward as it is filled. The SP register is decremented first each
time data is pushed on the system stack, and incremented after each time the data is
pulled from the system stack. Only word accesses are supported to the system stack.

The SP points to the address of the latest system stack entry, rather than to the next
available system stack address.

A STacK OVerflow (STKOV) register and a STacK UNderflow (STKUN) register are
provided to control the lower and upper limits of the selected stack area. These two stack
boundary registers can be used not only for protection against data destruction, but also
to implement a circular stack with hardware-supported system stack flushing and filling
(except for option STKSZ=111).

4.6.1 Data Organization in General Purpose Registers

The memory-mapped GPRs use a block of 16 consecutive words within the DPRAM
Segment 0. The Context Pointer (CP) register determines the base address of the
currently active register bank. This register bank may consist of up to 16 word GPRs (R0,
R1, …, R15), and/or up to 16 byte GPRs (RL0, RH0, …, RL7, RH7). The 16-byte GPRs
are mapped onto the first 8 word GPRs (see table below).

In contrast to the system stack, a register bank grows from lower towards higher address
locations and occupies a maximum space of 32 bytes. The GPRs are accessed via short
2-, 4- or 8-bit addressing modes using the CP register as base address (independent of

Table 4-1 System stack size

<STKSZ> Stack Size (Words) DPRAM Addresses (Words)

0 0 0 B 256 00’FBFEH-00’FA00H (Default after Reset)

0 0 1 B 128 00’FBFEH-00’FB00H

0 1 0 B 64 00’FBFEH-00’FB80H

0 1 1 B 32 00’FBFEH-00’FBC0H

1 0 0 B 512 00’FBFEH-00’F800H

1 0 1 B --- Reserved. Do not use this combination.

1 1 0 B --- Reserved. Do not use this combination.

1 1 1 B 1536 00’FDFEH-00’F200H (Note: No circular stack)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-11 V 1.6, 2001-08

the current DPP register contents). Additionally, each bit in the currently active register
bank can be accessed individually.

The C166S supports register bank (context) switching. Multiple memory-mapped
register banks can physically exist within the DPRAM at the same time. Only the register
bank selected by the CP register is active at a given time, however. Selecting a new
active register bank is simply done by updating the CP register.

Figure 4-4 Mapping of General-Purpose Registers to DPRAM Addresses

A particular Switch ConteXT (SCXT) instruction performs register bank switching and
automatic saving of the previous context. The number of implemented register banks
(arbitrary sizes) is limited only by the size of the available DPRAM.

DPRAM Address Byte Registers Word Register

<CP> + 1EH --- R15

<CP> + 1CH --- R14

<CP> + 1AH --- R13

<CP> + 18H --- R12

<CP> + 16H --- R11

<CP> + 14H --- R10

<CP> + 12H --- R9

<CP> + 10H --- R8

<CP> + 0EH RH7 RL7 R7

<CP> + 0CH RH6 RL6 R6

<CP> + 0AH RH5 RL5 R5

<CP> + 08H RH4 RL4 R4

<CP> + 06H RH3 RL3 R3

<CP> + 04H RH2 RL2 R2

<CP> + 02H RH1 RL1 R1

<CP> + 00H RH0 RL0 R0

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-12 V 1.6, 2001-08

4.7 SFR / ESFR Table

The following table lists all SFRs/ESFRs which are implemented in the C166S V1 SubS
R1 ordered by their physical address.

Table 4-2 SFR/ESFR Table (ordered by physical address)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

F000H reserved ESFR 00H reserved - do not use

F002H reserved ESFR 01H reserved - do not use

F004H reserved ESFR 02H reserved - do not use

F006H reserved ESFR 03H reserved - do not use

F008H reserved ESFR 04H reserved - do not use

F00AH reserved ESFR 05H reserved - do not use

F00CH CPUID ESFR 06H CPU Identification Register 0410H

F00EH reserved ESFR 07H reserved - do not use

F010H reserved ESFR 08H reserved - do not use

F012H reserved ESFR 09H reserved - do not use

F014H XADRS1 ESFR 0AH XBUS Address Select Register 1 0000H

F016H XADRS2 ESFR 0BH XBUS Address Select Register 2 0000H

F018H XADRS3 ESFR 0CH XBUS Address Select Register 3 0000H

F01AH XADRS4 ESFR 0DH XBUS Address Select Register 4 0000H

F01CH XADRS5 ESFR 0EH XBUS Address Select Register 5 0000H

F01EH XADRS6 ESFR 0FH XBUS Address Select Register 6 0000H

F020H ESFR 10H

F022H ESFR 11H

F024H XPERCON ESFR 12H XBUS Peripheral Control
Register

0000H

F026H ESFR 13H

F028H ESFR 14H

F02AH ESFR 15H

F02CH ESFR 16H

F02EH ESFR 17H

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-13 V 1.6, 2001-08

F030H ESFR 18H

F032H ESFR 19H

F034H ESFR 1AH

F036H ESFR 1BH

F038H ESFR 1CH

F03AH ESFR 1DH

F03CH ESFR 1EH

F03EH ESFR 1FH

F040H ESFR 20H

F042H ESFR 21H

F044H ESFR 22H

F046H ESFR 23H

F048H ESFR 24H

F04AH ESFR 25H

F04CH ESFR 26H

F04EH ESFR 27H

F050H ESFR 28H

F052H ESFR 29H

F054H ESFR 2AH

F056H ESFR 2BH

F058H ESFR 2CH

F05AH ESFR 2DH

F05CH ESFR 2EH

F05EH ESFR 2FH

F060H ESFR 30H

F062H ESFR 31H

F064H ESFR 32H

F066H ESFR 33H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-14 V 1.6, 2001-08

F068H COMDATA ESFR 34H Cerberus Communication Mode
Register

0000H

F06AH RWDATA ESFR 35H Cerberus RW Mode Data
Register

0000H

F06CH IOSR ESFR 36H Cerberus status register 0000H

F06EH ESFR 37H

F070H ESFR 38H

F072H ESFR 39H

F074H ESFR 3AH

F076H ESFR 3BH

F078H ESFR 3CH

F07AH ESFR 3DH

F07CH ESFR 3EH

F07EH ESFR 3FH

F080H ESFR 40H

F082H ESFR 41H

F084H ESFR 42H

F086H ESFR 43H

F088H ESFR 44H

F08AH ESFR 45H

F08CH ESFR 46H

F08EH ESFR 47H

F090H ESFR 48H

F092H ESFR 49H

F094H ESFR 4AH

F096H ESFR 4BH

F098H ESFR 4CH

F09AH ESFR 4DH

F09CH ESFR 4EH

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-15 V 1.6, 2001-08

F09EH ESFR 4FH

F0A0H ESFR 50H

F0A2H ESFR 51H

F0A4H ESFR 52H

F0A6H ESFR 53H

F0A8H ESFR 54H

F0AAH ESFR 55H

F0ACH ESFR 56H

F0AEH ESFR 57H

F0B0H SSC0TB ESFR 58H SSC0 Transmit Buffer (WO) 0000H

F0B2H SSC0RB ESFR 59H SSC0 Receive Buffer (RO) 0000H

F0B4H SSC0BR ESFR 5AH SSC0 Baudrate Register 0000H

F0B6H SSC0PISEL ESFR 5BH SSC0 Port Input Selection
Register

0000H

F0B8H IRQ96IC ESFR 5CH IRQ96 Interrupt Control Register 0000H

F0BAH IRQ97IC ESFR 5DH IRQ97 Interrupt Control Register 0000H

F0BCH IRQ98IC ESFR 5EH IRQ98 Interrupt Control Register 0000H

F0BEH IRQ99IC ESFR 5FH IRQ99 Interrupt Control Register 0000H

F0C0H IRQ100IC ESFR 60H IRQ100 Interrupt Control
Register

0000H

F0C2H IRQ101IC ESFR 61H IRQ101 Interrupt Control
Register

0000H

F0C4H IRQ102IC ESFR 62H IRQ102 Interrupt Control
Register

0000H

F0C6H IRQ103IC ESFR 63H IRQ103 Interrupt Control
Register

0000H

F0C8H IRQ104IC ESFR 64H IRQ104 Interrupt Control
Register

0000H

F0CAH IRQ105IC ESFR 65H IRQ105 Interrupt Control
Register

0000H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-16 V 1.6, 2001-08

F0CCH IRQ106IC ESFR 66H IRQ106 Interrupt Control
Register

0000H

F0CEH IRQ107IC ESFR 67H IRQ107 Interrupt Control
Register

0000H

F0D0H IRQ108IC ESFR 68H IRQ108 Interrupt Control
Register

0000H

F0D2H IRQ109IC ESFR 69H IRQ109 Interrupt Control
Register

0000H

F0D4H IRQ110IC ESFR 6AH IRQ110 Interrupt Control
Register

0000H

F0D6H IRQ111IC ESFR 6BH IRQ111 Interrupt Control
Register

0000H

F0D8H DTIDR ESFR 6CH Task ID register 0000H

F0DAH ESFR 6DH

F0DCH ESFR 6EH

F0DEH ESFR 6FH

F0E0H ESFR 70H

F0E2H ESFR 71H

F0E4H ESFR 72H

F0E6H ESFR 73H

F0E8H ESFR 74H

F0EAH ESFR 75H

F0ECH DCMPSP ESFR 76H Select and Programming
Register for DCMPx

0000H

F0EEH DCMPDP ESFR 77H Data Programming Register for
DCMPx

0000H

F0F0H DTREVT ESFR 78H Specifies hardware triggers and
action

0000H

F0F2H DEXEVT ESFR 79H Specifies action if external break
pin is asserted

0000H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-17 V 1.6, 2001-08

F0F4H DSWEVT ESFR 7AH Specifies action if DEBUG
instruction is executed

0000H

F0F6H reserved ESFR 7BH reserved - do not use

F0F8H DIP ESFR 7CH Instruction pointer register 0000H

F0FAH DIPX ESFR 7DH Instruction pointer register
extension

3000H

F0FCH DBGSR ESFR 7EH Debug status register 0000H

F0FEH reserved ESFR 7FH reserved - do not use

F100H DP0L ESFR-b 80H P0L Direction Control Register 00H

F102H DP0H ESFR-b 81H P0H Direction Control Register 00H

F104H DP1L ESFR-b 82H P1L Direction Control Register 00H

F106H DP1H ESFR-b 83H P1H Direction Control Register 00H

F108H reserved ESFR-b 84H reserved - do not use

F10AH reserved ESFR-b 85H reserved - do not use

F10CH reserved ESFR-b 86H reserved - do not use

F10EH reserved ESFR-b 87H reserved - do not use

F110H reserved ESFR-b 88H reserved - do not use

F112H reserved ESFR-b 89H reserved - do not use

F114H XBCON1 ESFR-b 8AH XBUS Control register 1 0000H

F116H XBCON2 ESFR-b 8BH XBUS Control register 2 0000H

F118H XBCON3 ESFR-b 8CH XBUS Control register 3 0000H

F11AH XBCON4 ESFR-b 8DH XBUS Control register 4 0000H

F11CH XBCON5 ESFR-b 8EH XBUS Control register 5 0000H

F11EH XBCON6 ESFR-b 8FH XBUS Control register 6 0000H

F120H IRQ64IC ESFR-b 90H IRQ64 Interrupt Control Register 0000H

F122H IRQ65IC ESFR-b 91H IRQ65 Interrupt Control Register 0000H

F124H IRQ66IC ESFR-b 92H IRQ66 Interrupt Control Register 0000H

F126H IRQ67IC ESFR-b 93H IRQ67 Interrupt Control Register 0000H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-18 V 1.6, 2001-08

F128H IRQ68IC ESFR-b 94H IRQ68 Interrupt Control Register 0000H

F12AH IRQ69IC ESFR-b 95H IRQ69 Interrupt Control Register 0000H

F12CH IRQ70IC ESFR-b 96H IRQ70 Interrupt Control Register 0000H

F12EH IRQ71IC ESFR-b 97H IRQ71 Interrupt Control Register 0000H

F130H IRQ72IC ESFR-b 98H IRQ72 Interrupt Control Register 0000H

F132H IRQ73IC ESFR-b 99H IRQ73 Interrupt Control Register 0000H

F134H IRQ74IC ESFR-b 9AH IRQ74 Interrupt Control Register 0000H

F136H IRQ75IC ESFR-b 9BH IRQ75 Interrupt Control Register 0000H

F138H IRQ76IC ESFR-b 9CH IRQ76 Interrupt Control Register 0000H

F13AH IRQ77IC ESFR-b 9DH IRQ77 Interrupt Control Register 0000H

F13CH IRQ78IC ESFR-b 9EH IRQ78 Interrupt Control Register 0000H

F13EH IRQ79IC ESFR-b 9FH IRQ79 Interrupt Control Register 0000H

F140H IRQ80IC ESFR-b A0H IRQ80 Interrupt Control Register 0000H

F142H IRQ81IC ESFR-b A1H IRQ81 Interrupt Control Register 0000H

F144H IRQ82IC ESFR-b A2H IRQ82 Interrupt Control Register 0000H

F146H IRQ83IC ESFR-b A3H IRQ83 Interrupt Control Register 0000H

F148H IRQ84IC ESFR-b A4H IRQ84 Interrupt Control Register 0000H

F14AH IRQ85IC ESFR-b A5H IRQ85 Interrupt Control Register 0000H

F14CH IRQ86IC ESFR-b A6H IRQ86 Interrupt Control Register 0000H

F14EH IRQ87IC ESFR-b A7H IRQ87 Interrupt Control Register 0000H

F150H IRQ88IC ESFR-b A8H IRQ88 Interrupt Control Register 0000H

F152H IRQ89IC ESFR-b A9H IRQ89 Interrupt Control Register 0000H

F154H IRQ90IC ESFR-b AAH IRQ90 Interrupt Control Register 0000H

F156H IRQ91IC ESFR-b ABH IRQ91 Interrupt Control Register 0000H

F158H IRQ92IC ESFR-b ACH IRQ92 Interrupt Control Register 0000H

F15AH IRQ93IC ESFR-b ADH IRQ93 Interrupt Control Register 0000H

F15CH IRQ94IC ESFR-b AEH IRQ94 Interrupt Control Register 0000H

F15EH IRQ95IC ESFR-b AFH IRQ95 Interrupt Control Register 0000H

F160H IRQ48IC ESFR-b B0H IRQ48 Interrupt Control Register 0000H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-19 V 1.6, 2001-08

F162H IRQ49IC ESFR-b B1H IRQ49 Interrupt Control Register 0000H

F164H IRQ50IC ESFR-b B2H IRQ50 Interrupt Control Register 0000H

F166H IRQ51IC ESFR-b B3H IRQ51 Interrupt Control Register 0000H

F168H IRQ52IC ESFR-b B4H IRQ52 Interrupt Control Register 0000H

F16AH IRQ53IC ESFR-b B5H IRQ53 Interrupt Control Register 0000H

F16CH IRQ54IC ESFR-b B6H IRQ54 Interrupt Control Register 0000H

F16EH IRQ55IC ESFR-b B7H IRQ55 Interrupt Control Register 0000H

F170H IRQ56IC ESFR-b B8H IRQ56 Interrupt Control Register 0000H

F172H IRQ57IC ESFR-b B9H IRQ57 Interrupt Control Register 0000H

F174H IRQ58IC ESFR-b BAH IRQ58 Interrupt Control Register 0000H

F176H IRQ59IC ESFR-b BBH IRQ59 Interrupt Control Register 0000H

F178H IRQ60IC ESFR-b BCH IRQ60 Interrupt Control Register 0000H

F17AH IRQ40IC ESFR-b BDH IRQ40 Interrupt Control Register 0000H

F17CH IRQ41IC ESFR-b BEH IRQ41 Interrupt Control Register 0000H

F17EH IRQ15IC ESFR-b BFH IRQ15 Interrupt Control Register 0000H

F180H EOPIC ESFR-b C0H End of PEC Transfer Interrupt
Control Register

0000H

F182H IRQ42IC ESFR-b C1H IRQ42 Interrupt Control Register 0000H

F184H IRQ61IC ESFR-b C2H IRQ61 Interrupt Control Register 0000H

F186H IRQ36IC ESFR-b C3H IRQ36 Interrupt Control Register 0000H

F188H IRQ47IC ESFR-b C4H IRQ47 Interrupt Control Register 0000H

F18AH IRQ43IC ESFR-b C5H IRQ43 Interrupt Control Register 0000H

F18CH IRQ62IC ESFR-b C6H IRQ62 Interrupt Control Register 0000H

F18EH IRQ37IC ESFR-b C7H IRQ37 Interrupt Control Register 0000H

F190H IRQ45IC ESFR-b C8H IRQ45 Interrupt Control Register 0000H

F192H IRQ44IC ESFR-b C9H IRQ44 Interrupt Control Register 0000H

F194H IRQ63IC ESFR-b CAH IRQ63 Interrupt Control Register 0000H

F196H IRQ38IC ESFR-b CBH IRQ38 Interrupt Control Register 0000H

F198H IRQ46IC ESFR-b CCH IRQ46 Interrupt Control Register 0000H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-20 V 1.6, 2001-08

F19AH WDTIC ESFR-b CDH Watchdog Timer Interrupt Control
Register

0000H

F19CH S0TBIC ESFR-b CEH ASC0 Transmit Buffer Interrupt
Control Register

0000H

F19EH IRQ39IC ESFR-b CFH IRQ39 Interrupt Control Register 0000H

F1A0H ESFR-b D0H

F1A2H ESFR-b D1H

F1A4H ESFR-b D2H

F1A6H ESFR-b D3H

F1A8H ESFR-b D4H

F1AAH ESFR-b D5H

F1ACH ESFR-b D6H

F1AEH ESFR-b D7H

F1B0H ESFR-b D8H

F1B2H ESFR-b D9H

F1B4H ESFR-b DAH

F1B6H ASC0PISEL ESFR-b DBH ASC0 Port Input Selection
Register

0000H

F1B8H ESFR-b DCH

F1BAH ESFR-b DDH

F1BCH ESFR-b DEH

F1BEH ESFR-b DFH

F1C0H ESFR-b E0H

F1C2H ESFR-b E1H

F1C4H ESFR-b E2H

F1C6H ESFR-b E3H

F1C8H ESFR-b E4H

F1CAH ESFR-b E5H

F1CCH ESFR-b E6H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-21 V 1.6, 2001-08

F1CEH ESFR-b E7H

F1D0H ESFR-b E8H

F1D2H ESFR-b E9H

F1D4H ESFR-b EAH

F1D6H ESFR-b EBH

F1D8H ESFR-b ECH

F1DAH ESFR-b EDH

F1DCH ESFR-b EEH

F1DEH ESFR-b EFH

F1E0H reserved reserved - do not use

F1E2H reserved reserved - do not use

F1E4H reserved reserved - do not use

F1E6H reserved reserved - do not use

F1E8H reserved reserved - do not use

F1EAH reserved reserved - do not use

F1ECH reserved reserved - do not use

F1EEH reserved reserved - do not use

F1F0H reserved reserved - do not use

F1F2H reserved reserved - do not use

F1F4H reserved reserved - do not use

F1F6H reserved reserved - do not use

F1F8H reserved reserved - do not use

F1FAH reserved reserved - do not use

F1FCH reserved reserved - do not use

F1FEH reserved reserved - do not use

FE00H DPP0 SFR 00H CPU Data Page Pointer 0
Register (10 bits)

0000H

FE02H DPP1 SFR 01H CPU Data Page Pointer 1
Register (10 bits)

0001H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-22 V 1.6, 2001-08

FE04H DPP2 SFR 02H CPU Data Page Pointer 2
Register (10 bits)

0002H

FE06H DPP3 SFR 03H CPU Data Page Pointer 3
Register (10 bits)

0003H

FE08H CSP SFR 04H CPU Code Segment Pointer
Register (8 bits)

0000H

FE0AH reserved SFR 05H reserved - do not use 0000H

FE0CH MDH SFR 06H CPU Multiply Divide Register -
High Word

0000H

FE0EH MDL SFR 07H CPU Multiply Divide Register -
Low Word

0000H

FE10H CP SFR 08H CPU Context Pointer Register FC00H

FE12H SP SFR 09H CPU System Stack Pointer
Register

FC00H

FE14H STKOV SFR 0AH CPU Stack Overflow Pointer
Register

FA00H

FE16H STKUN SFR 0BH CPU Stack Underflow Pointer
Register

FC00H

FE18H ADDRSEL1 SFR 0CH Address Select Register 1 0000H

FE1AH ADDRSEL2 SFR 0DH Address Select Register 2 0000H

FE1CH ADDRSEL3 SFR 0EH Address Select Register 3 0000H

FE1EH ADDRSEL4 SFR 0FH Address Select Register 4 0000H

FE20H SFR 10H

FE22H SFR 11H

FE24H SFR 12H

FE26H SFR 13H

FE28H SFR 14H

FE2AH SFR 15H

FE2CH SFR 16H

FE2EH SFR 17H

FE30H SFR 18H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-23 V 1.6, 2001-08

FE32H SFR 19H

FE34H SFR 1AH

FE36H SFR 1BH

FE38H SFR 1CH

FE3AH SFR 1DH

FE3CH SFR 1EH

FE3EH SFR 1FH

FE40H T2 SFR 20H GPT Timer 2 Register 0000H

FE42H T3 SFR 21H GPT Timer 3 Register 0000H

FE44H T4 SFR 22H GPT Timer 4 Register 0000H

FE46H T5 SFR 23H GPT Timer 5 Register 0000H

FE48H T6 SFR 24H GPT Timer 6 Register 0000H

FE4AH CAPREL SFR 25H GPT Capture/Reload Register 0000H

FE4CH GPTIPISEL SFR 26H GPT Port Input Selection
Register

0000H

FE4EH SFR 27H

FE50H SFR 28H

FE52H SFR 29H

FE54H SFR 2AH

FE56H SFR 2BH

FE58H SFR 2CH

FE5AH SFR 2DH

FE5CH reserved SFR 2EH reserved - do not use

FE5EH reserved SFR 2FH reserved - do not use

FE60H SFR 30H

FE62H SFR 31H

FE64H SFR 32H

FE66H SFR 33H

FE68H SFR 34H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-24 V 1.6, 2001-08

FE6AH SFR 35H

FE6CH SFR 36H

FE6EH SFR 37H

FE70H SFR 38H

FE72H SFR 39H

FE74H SFR 3AH

FE76H SFR 3BH

FE78H SFR 3CH

FE7AH SFR 3DH

FE7CH SFR 3EH

FE7EH SFR 3FH

FE80H SFR 40H

FE82H SFR 41H

FE84H SFR 42H

FE86H SFR 43H

FE88H SFR 44H

FE8AH SFR 44H

FE8CH SFR 46H

FE8EH SFR 47H

FE90H SFR 48H

FE92H SFR 49H

FE94H SFR 4AH

FE96H SFR 4BH

FE98H SFR 4CH

FE9AH SFR 4DH

FE9CH SFR 4EH

FE9EH SFR 4FH

FEA0H SFR 50H

FEA2H SFR 51H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-25 V 1.6, 2001-08

FEA4H SFR 52H

FEA6H SFR 53H

FEA8H SFR 54H

FEAAH SFR 55H

FEACH SFR 56H

FEAEH WDT SFR 57H Watchdog Timer Register (RO) 0000H

FEB0H S0TBUF SFR 58H Serial Channel 0 Transmit Buffer
Register (WO)

0000H

FEB2H S0RBUF SFR 59H Serial Channel 0 Receive Buffer
Register (RO)

0000H

FEB4H S0BG SFR 5AH Serial Channel 0 Baud Rate
Generator Reload Register

0000H

FEB6H FDV SFR 5BH Fractional Divider Register 0000H

FEB8H PECSN12 SFR 5CH PEC Segment No. Register 0000H

FEBAH PECSN13 SFR 5DH PEC Segment No. Register 0000H

FEBCH PECSN14 SFR 5EH PEC Segment No. Register 0000H

FEBEH PECSN15 SFR 5FH PEC Segment No. Register 0000H

FEC0H PECC0 SFR 60H PEC Channel 0 Control Register 0000H

FEC2H PECC1 SFR 61H PEC Channel 1 Control Register 0000H

FEC4H PECC2 SFR 62H PEC Channel 2 Control Register 0000H

FEC6H PECC3 SFR 63H PEC Channel 3 Control Register 0000H

FEC8H PECC4 SFR 64H PEC Channel 4 Control Register 0000H

FECAH PECC5 SFR 65H PEC Channel 5 Control Register 0000H

FECCH PECC6 SFR 66H PEC Channel 6 Control Register 0000H

FECEH PECC7 SFR 67H PEC Channel 7 Control Register 0000H

FED0H PECSN0 SFR 68H PEC Segment No. Register 0000H

FED2H PECSN1 SFR 69H PEC Segment No. Register 0000H

FED4H PECSN2 SFR 6AH PEC Segment No. Register 0000H

FED6H PECSN3 SFR 6BH PEC Segment No. Register 0000H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-26 V 1.6, 2001-08

FED8H PECSN4 SFR 6CH PEC Segment No. Register 0000H

FEDAH PECSN5 SFR 6DH PEC Segment No. Register 0000H

FEDCH PECSN6 SFR 6EH PEC Segment No. Register 0000H

FEDEH PECSN7 SFR 6FH PEC Segment No. Register 0000H

FEE0H PECSN8 SFR 70H PEC Segment No. Register 0000H

FEE2H PECSN9 SFR 71H PEC Segment No. Register 0000H

FEE4H PECSN10 SFR 72H PEC Segment No. Register 0000H

FEE6H PECSN11 SFR 73H PEC Segment No. Register 0000H

FEE8H PECC8 SFR 74H PEC Channel 8 Control Register 0000H

FEEAH PECC9 SFR 75H PEC Channel 9 Control Register 0000H

FEECH PECC10 SFR 76H PEC Channel 10 Control Register 0000H

FEEEH PECC11 SFR 77H PEC Channel 11 Control Register 0000H

FEF0H PECXC0 SFR 78H PEC Channel 0 Extended Control
Register

0000H

FEF2H PECXC2 SFR 79H PEC Channel 2 Extended Control
Register

0000H

FEF4H reserved SFR 7AH reserved - do not use

FEF6H reserved SFR 7BH reserved - do not use

FEF8H PECC12 SFR 7CH PEC Channel 12 Control Register 0000H

FEFAH PECC13 SFR 7DH PEC Channel 13 Control Register 0000H

FEFCH PECC14 SFR 7EH PEC Channel 14 Control Register 0000H

FEFEH PECC15 SFR 7FH PEC Channel 15 Control Register 0000H

FF00H P0L SFR-b 80H Port 0 Low Register (Lower half) 00H

FF02H P0H SFR-b 81H Port 0 High Register (Upper half) 00H

FF04H P1L SFR-b 82H Port 1 Low Register (Lower half) 00H

FF06H P1H SFR-b 83H Port 1 High Register (Upper half) 00H

FF08H reserved SFR-b 84H reserved - do not use

FF0AH reserved SFR-b 85H reserved - do not use

FF0CH BUSCON0 SFR-b 86H Bus Configuration Register 0 0000H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-27 V 1.6, 2001-08

FF0EH MDC SFR-b 87H CPU Multiply Divide Control
Register

0000H

FF10H PSW SFR-b 88H CPU Program Status Word 0000H

FF12H SYSCON SFR-b 89H CPU System Configuration
Register

xxxxH

FF14H BUSCON1 SFR-b 8AH Bus Configuration Register 1 0000H

FF16H BUSCON2 SFR-b 8BH Bus Configuration Register 2 0000H

FF18H BUSCON3 SFR-b 8CH Bus Configuration Register 3 0000H

FF1AH BUSCON4 SFR-b 8DH Bus Configuration Register 4 0000H

FF1CH ZEROS SFR-b 8EH Constant Value 0sRegister’ 0000H

FF1EH ONES SFR-b 8FH Constant Value 1sRegister’ FFFFH

FF20H SFR-b 90H

FF22H SFR-b 91H

FF24H SFR-b 92H

FF26H SFR-b 93H

FF28H SFR-b 94H

FF2AH SFR-b 95H

FF2CH SFR-b 96H

FF2EH SFR-b 97H

FF30H SFR-b 98H

FF32H SFR-b 99H

FF34H SFR-b 9AH

FF36H SFR-b 9BH

FF38H SFR-b 9CH

FF3AH SFR-b 9DH

FF3CH SFR-b 9EH

FF3EH SFR-b 9FH

FF40H T2CON SFR-b A0H GPT Timer 2 Control Register 0000H

FF42H T3CON SFR-b A1H GPT Timer 3 Control Register 0000H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-28 V 1.6, 2001-08

FF44H T4CON SFR-b A2H GPT Timer 4 Control Register 0000H

FF46H T5CON SFR-b A3H GPT Timer 5 Control Register 0000H

FF48H T6CON SFR-b A4H GPT Timer 6 Control Register 0000H

FF4AH SFR-b A5H

FF4CH SFR-b A6H

FF4EH SFR-b A7H

FF50H SFR-b A8H

FF52H SFR-b A9H

FF54H SFR-b AAH

FF56H SFR-b ABH

FF58H SFR-b ACH

FF5AH SFR-b ADH

FF5CH SFR-b AEH

FF5EH SFR-b AFH

FF60H T2IC SFR-b B0H GPT12E Timer 2 Interrupt Control
Register

0000H

FF62H T3IC SFR-b B1H GPT12E Timer 3 Interrupt Control
Register

0000H

FF64H T4IC SFR-b B2H GPT12E Timer 4 Interrupt Control
Register

0000H

FF66H T5IC SFR-b B3H GPT12E Timer 5 Interrupt Control
Register

0000H

FF68H T6IC SFR-b B4H GPT12E Timer 6 Interrupt Control
Register

0000H

FF6AH CRIC SFR-b B5H GPT12E Capture/Reload
Interrupt Control Register

0000H

FF6CH S0TIC SFR-b B6H ASC0 Transmit Interrupt Control
Register

0000H

FF6EH S0RIC SFR-b B7H ASC0 Receive Interrupt Control
Register

0000H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-29 V 1.6, 2001-08

FF70H S0EIC SFR-b B8H ASC0 Error Interrupt Control
Register

0000H

FF72H SSC0TIC SFR-b B9H SSC0 Transmit Interrupt Control
Register

0000H

FF74H SSC0RIC SFR-b BAH SSC0 Receive Interrupt Control
Register

0000H

FF76H SSC0EIC SFR-b BBH SSC0 Error Interrupt Control
Register

0000H

FF78H IRQ16IC SFR-b BCH IRQ16 Interrupt Control Register 0000H

FF7AH IRQ17IC SFR-b BDH IRQ17 Interrupt Control Register 0000H

FF7CH IRQ18IC SFR-b BEH IRQ18 Interrupt Control Register 0000H

FF7EH IRQ19IC SFR-b BFH IRQ19 Interrupt Control Register 0000H

FF80H IRQ20IC SFR-b C0H IRQ20 Interrupt Control Register 0000H

FF82H IRQ21IC SFR-b C1H IRQ21 Interrupt Control Register 0000H

FF84H IRQ22IC SFR-b C2H IRQ22 Interrupt Control Register 0000H

FF86H IRQ23IC SFR-b C3H IRQ23 Interrupt Control Register 0000H

FF88H IRQ24IC SFR-b C4H IRQ24 Interrupt Control Register 0000H

FF8AH IRQ25IC SFR-b C5H IRQ25 Interrupt Control Register 0000H

FF8CH IRQ26IC SFR-b C6H IRQ26 Interrupt Control Register 0000H

FF8EH IRQ27IC SFR-b C7H IRQ27 Interrupt Control Register 0000H

FF90H IRQ28IC SFR-b C8H IRQ28 Interrupt Control Register 0000H

FF92H IRQ29IC SFR-b C9H IRQ29 Interrupt Control Register 0000H

FF94H IRQ30IC SFR-b CAH IRQ30 Interrupt Control Register 0000H

FF96H IRQ31IC SFR-b CBH IRQ31 Interrupt Control Register 0000H

FF98H IRQ34IC SFR-b CCH IRQ34 Interrupt Control Register 0000H

FF9AH IRQ35IC SFR-b CDH IRQ35 Interrupt Control Register 0000H

FF9CH IRQ32IC SFR-b CEH IRQ32 Interrupt Control Register 0000H

FF9EH IRQ33IC SFR-b CFH IRQ33 Interrupt Control Register 0000H

FFA0H SFR-b D0H

FFA2H SFR-b D1H

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-30 V 1.6, 2001-08

FFA4H SFR-b D2H

FFA6H SFR-b D3H

FFA8H PECISNC SFR-b D4H PEC Interrupt Subnode Control
Register

0000H

FFAAH SFR-b D5H

FFACH TFR SFR-b D6H Trap Flag Register 0000H

FFAEH WDTCON SFR-b D7H Watchdog Timer Control Register 008xH

FFB0H S0CON SFR-b D8H Serial Channel 0 Control Register 0000H

FFB2H SSC0CON SFR-b D9H SSC0 Control Register 0000H

FFB4H SFR-b DAH

FFB6H SFR-b DBH

FFB8H SFR-b DCH

FFBAH PECXISNC SFR-b DDH PEC Extended Interrupt Subnode
Control Register

0000H

FFBCH SFR-b DEH

FFBEH SFR-b DFH

FFC0H SFR-b E0H

FFC2H SFR-b E1H

FFC4H SFR-b E2H

FFC6H SFR-b E3H

FFC8H P4 SFR-b E4H Port 4 Register (8 bits) 00H

FFCAH DP4 SFR-b E5H Port 4 Direction Control Register 00H

FFCCH P6 SFR-b E6H Port 6 Register (8 bits) 00H

FFCEH DP6 SFR-b E7H Port 6 Direction Control Register 00H

FFD0H SFR-b E8H

FFD2H SFR-b E9H

FFD4H SFR-b EAH

FFD6H SFR-b EBH

FFD8H SFR-b ECH

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-31 V 1.6, 2001-08

FFDAH reserved SFR-b EDH reserved - do not use

FFDCH reserved SFR-b EEH reserved - do not use

FFDEH reserved SFR-b EFH reserved - do not use

FFE0H reserved reserved - do not use

FFE2H ASC0ID ASC0 Identification Register 44xxH

FFE4H SSC0ID SSC0 Identification Register 45xxH

FFE6H GPTID GPT Identification Register 58xxH

FFE8H reserved reserved - do not use 0000H

FFEAH reserved reserved - do not use 0000H

FFECH reserved reserved - do not use 0000H

FFEEH reserved reserved - do not use 0000H

FFF0H reserved reserved - do not use 0000H

FFF2H reserved reserved - do not use 0000H

FFF4H reserved reserved - do not use 0000H

FFF6H reserved reserved - do not use 0000H

FFF8H reserved reserved - do not use 0000H

FFFAH reserved reserved - do not use 0000H

FFFCH reserved reserved - do not use 0000H

FFFEH reserved reserved - do not use 0000H

1) The PDBUS+ chip select depends on the register type. Chip select "pd_cs_esfr" is used for register types
"ESFR" and "ESFR-b", whereas chip select "pd_cs_sfr" valid for register types "SFR" and "SFR-b"

2) This address is identical to PDBUS+ address A[8:1]. However, for address ranges F1E0H to F1FFH and FFE0H
to FFFFH there is no 8-bit address, but a PDBUS+ address.

3) NOTE: Reserved addresses are always read as FFFFH, except another reset value is explicitly documented
in this column. However, for enabling future enhancements without any compatibility problems, this addresses
should neither be written nor be used as read value by the software.

Table 4-2 SFR/ESFR Table (ordered by physical address) (cont’d)

Physical
Address

Name Type1) 8-bit
Addr2)

Description Reset
Value
3)

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-32 V 1.6, 2001-08

The following table lists all SFRs/ESFRs which are implemented in the C166S V1 SubS
R1 ordered by their name.

Table 4-3 SFR/ESFR Table (ordered by name)

Name Physical
Address

Type1) 8-bit
Addr
2)

Description Reset
Value

ADDRSEL1 FE18H SFR 0CH Address Select Register 1 0000H

ADDRSEL2 FE1AH SFR 0DH Address Select Register 2 0000H

ADDRSEL3 FE1CH SFR 0EH Address Select Register 3 0000H

ADDRSEL4 FE1EH SFR 0FH Address Select Register 4 0000H

ASC0ID FFE2H ASC0 Identification Register 44xxH

ASC0PISEL F1B6H SFR-b DBH ASC0 Port Input Selection
Register

0000H

BUSCON0 FF0CH SFR-b 86H Bus Configuration Register 0 0000H

BUSCON1 FF14H SFR-b 8AH Bus Configuration Register 1 0000H

BUSCON2 FF16H SFR-b 8BH Bus Configuration Register 2 0000H

BUSCON3 FF18H SFR-b 8CH Bus Configuration Register 3 0000H

BUSCON4 FF1AH SFR-b 8DH Bus Configuration Register 4 0000H

CAPREL FE4AH SFR 25H GPT Capture/Reload Register 0000H

COMDATA F068H ESFR 34H Cerberus Communication Mode
Register

0000H

CP FE10H SFR 08H CPU Context Pointer Register FC00H

CPUID F00CH ESFR 06H CPU Identification Register 0410H

CRIC FF6AH SFR-b B5H GPT12E Capture/Reload
Interrupt Control Register

0000H

CSP FE08H SFR 04H CPU Code Segment Pointer
Register (8 bits)

0000H

DBGSR F0FCH ESFR 7EH Debug status register 0000H

DCMPDP F0EEH ESFR 77H Data Programming Register for
DCMPx

0000H

DCMPSP F0ECH ESFR 76H Select and Programming
Register for DCMPx

0000H

DEXEVT F0F2H ESFR 79H Specifies action if external break
pin is asserted

0000H

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-33 V 1.6, 2001-08

DIP F0F8H ESFR 7CH Instruction pointer register 0000H

DIPX F0FAH ESFR 7DH Instruction pointer register
extension

3000H

DP0H F102H ESFR-b 81H P0H Direction Control Register 00H

DP0L F100H ESFR-b 80H P0L Direction Control Register 00H

DP1H F106H ESFR-b 83H P1H Direction Control Register 00H

DP1L F104H ESFR-b 82H P1L Direction Control Register 00H

DP4 FFCAH SFR-b E5H Port 4 Direction Control Register 00H

DP6 FFCEH SFR-b E7H Port 6 Direction Control Register 00H

DPP0 FE00H SFR 00H CPU Data Page Pointer 0
Register (10 bits)

0000H

DPP1 FE02H SFR 01H CPU Data Page Pointer 1
Register (10 bits)

0001H

DPP2 FE04H SFR 02H CPU Data Page Pointer 2
Register (10 bits)

0002H

DPP3 FE06H SFR 03H CPU Data Page Pointer 3
Register (10 bits)

0003H

DSWEVT F0F4H ESFR 7AH Specifies action if DEBUG
instruction is executed

0000H

DTIDR F0D8H ESFR 6CH Task ID register 0000H

DTREVT F0F0H ESFR 78H Specifies hardware triggers and
action

0000H

EOPIC F180H ESFR-b C0H End of PEC Transfer Interrupt
Control Register

0000H

FDV FEB6H SFR 5B Fractional Divider Register 0000H

GPTID FFE6H GPT Identification Register 58xxH

GPTPISEL FE4CH SFR 26H GPT Port Input Selection
Register

0000H

IOSR F06CH ESFR 36H Cerberus status register 0000H

IRQ15IC F17EH ESFR-b BFH IRQ15 Interrupt Control Register 0000H

IRQ16IC FF78H SFR-b BCH IRQ16 Interrupt Control Register 0000H

Table 4-3 SFR/ESFR Table (ordered by name) (cont’d)

Name Physical
Address

Type1) 8-bit
Addr
2)

Description Reset
Value

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-34 V 1.6, 2001-08

IRQ17IC FF7AH SFR-b BDH IRQ17 Interrupt Control Register 0000H

IRQ18IC FF7CH SFR-b BEH IRQ18 Interrupt Control Register 0000H

IRQ19IC FF7EH SFR-b BFH IRQ19 Interrupt Control Register 0000H

IRQ20IC FF80H SFR-b C0H IRQ20 Interrupt Control Register 0000H

IRQ21IC FF82H SFR-b C1H IRQ21 Interrupt Control Register 0000H

IRQ22IC FF84H SFR-b C2H IRQ22 Interrupt Control Register 0000H

IRQ23IC FF86H SFR-b C3H IRQ23 Interrupt Control Register 0000H

IRQ24IC FF88H SFR-b C4H IRQ24 Interrupt Control Register 0000H

IRQ25IC FF8AH SFR-b C5H IRQ25 Interrupt Control Register 0000H

IRQ26IC FF8CH SFR-b C6H IRQ26 Interrupt Control Register 0000H

IRQ27IC FF8EH SFR-b C7H IRQ27 Interrupt Control Register 0000H

IRQ28IC FF90H SFR-b C8H IRQ28 Interrupt Control Register 0000H

IRQ29IC FF92H SFR-b C9H IRQ29 Interrupt Control Register 0000H

IRQ30IC FF94H SFR-b CAH IRQ30 Interrupt Control Register 0000H

IRQ31IC FF96H SFR-b CBH IRQ31 Interrupt Control Register 0000H

IRQ32IC FF9CH SFR-b CEH IRQ32 Interrupt Control Register 0000H

IRQ33IC FF9EH SFR-b CFH IRQ33 Interrupt Control Register 0000H

IRQ34IC FF98H SFR-b CCH IRQ34 Interrupt Control Register 0000H

IRQ35IC FF9AH SFR-b CDH IRQ35 Interrupt Control Register 0000H

IRQ36IC F186H ESFR-b C3H IRQ36 Interrupt Control Register 0000H

IRQ37IC F18EH ESFR-b C7H IRQ37 Interrupt Control Register 0000H

IRQ38IC F196H ESFR-b CBH IRQ38 Interrupt Control Register 0000H

IRQ39IC F19EH ESFR-b CFH IRQ39 Interrupt Control Register 0000H

IRQ40IC F17AH ESFR-b BDH IRQ40 Interrupt Control Register 0000H

IRQ41IC F17CH ESFR-b BEH IRQ41 Interrupt Control Register 0000H

IRQ42IC F182H ESFR-b C1H IRQ42 Interrupt Control Register 0000H

IRQ43IC F18AH ESFR-b C5H IRQ43 Interrupt Control Register 0000H

IRQ44IC F192H ESFR-b C9H IRQ44 Interrupt Control Register 0000H

IRQ45IC F190H ESFR-b C8H IRQ45 Interrupt Control Register 0000H

Table 4-3 SFR/ESFR Table (ordered by name) (cont’d)

Name Physical
Address

Type1) 8-bit
Addr
2)

Description Reset
Value

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-35 V 1.6, 2001-08

IRQ46IC F198H ESFR-b CCH IRQ46 Interrupt Control Register 0000H

IRQ47IC F188H ESFR-b C4H IRQ47 Interrupt Control Register 0000H

IRQ48IC F160H ESFR-b B0H IRQ48 Interrupt Control Register 0000H

IRQ49IC F162H ESFR-b B1H IRQ49 Interrupt Control Register 0000H

IRQ50IC F164H ESFR-b B2H IRQ50 Interrupt Control Register 0000H

IRQ51IC F166H ESFR-b B3H IRQ51 Interrupt Control Register 0000H

IRQ52IC F168H ESFR-b B4H IRQ52 Interrupt Control Register 0000H

IRQ53IC F16AH ESFR-b B5H IRQ53 Interrupt Control Register 0000H

IRQ54IC F16CH ESFR-b B6H IRQ54 Interrupt Control Register 0000H

IRQ55IC F16EH ESFR-b B7H IRQ55 Interrupt Control Register 0000H

IRQ56IC F170H ESFR-b B8H IRQ56 Interrupt Control Register 0000H

IRQ57IC F172H ESFR-b B9H IRQ57 Interrupt Control Register 0000H

IRQ58IC F174H ESFR-b BAH IRQ58 Interrupt Control Register 0000H

IRQ59IC F176H ESFR-b BBH IRQ59 Interrupt Control Register 0000H

IRQ60IC F178H ESFR-b BCH IRQ60 Interrupt Control Register 0000H

IRQ61IC F184H ESFR-b C2H IRQ61 Interrupt Control Register 0000H

IRQ62IC F18CH ESFR-b C6H IRQ62 Interrupt Control Register 0000H

IRQ63IC F194H ESFR-b CAH IRQ63 Interrupt Control Register 0000H

IRQ64IC F120H ESFR-b 90H IRQ64 Interrupt Control Register 0000H

IRQ65IC F122H ESFR-b 91H IRQ65 Interrupt Control Register 0000H

IRQ66IC F124H ESFR-b 92H IRQ66 Interrupt Control Register 0000H

IRQ67IC F126H ESFR-b 93H IRQ67 Interrupt Control Register 0000H

IRQ68IC F128H ESFR-b 94H IRQ68 Interrupt Control Register 0000H

IRQ69IC F12AH ESFR-b 95H IRQ69 Interrupt Control Register 0000H

IRQ70IC F12CH ESFR-b 96H IRQ70 Interrupt Control Register 0000H

IRQ71IC F12EH ESFR-b 97H IRQ71 Interrupt Control Register 0000H

IRQ72IC F130H ESFR-b 98H IRQ72 Interrupt Control Register 0000H

IRQ73IC F132H ESFR-b 99H IRQ73 Interrupt Control Register 0000H

IRQ74IC F134H ESFR-b 9AH IRQ74 Interrupt Control Register 0000H

Table 4-3 SFR/ESFR Table (ordered by name) (cont’d)

Name Physical
Address

Type1) 8-bit
Addr
2)

Description Reset
Value

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-36 V 1.6, 2001-08

IRQ75IC F136H ESFR-b 9BH IRQ75 Interrupt Control Register 0000H

IRQ76IC F138H ESFR-b 9CH IRQ76 Interrupt Control Register 0000H

IRQ77IC F13AH ESFR-b 9DH IRQ77 Interrupt Control Register 0000H

IRQ78IC F13CH ESFR-b 9EH IRQ78 Interrupt Control Register 0000H

IRQ79IC F13EH ESFR-b 9FH IRQ79 Interrupt Control Register 0000H

IRQ80IC F140H ESFR-b A0H IRQ80 Interrupt Control Register 0000H

IRQ81IC F142H ESFR-b A1H IRQ81 Interrupt Control Register 0000H

IRQ82IC F144H ESFR-b A2H IRQ82 Interrupt Control Register 0000H

IRQ83IC F146H ESFR-b A3H IRQ83 Interrupt Control Register 0000H

IRQ84IC F148H ESFR-b A4H IRQ84 Interrupt Control Register 0000H

IRQ85IC F14AH ESFR-b A5H IRQ85 Interrupt Control Register 0000H

IRQ86IC F14CH ESFR-b A6H IRQ86 Interrupt Control Register 0000H

IRQ87IC F14EH ESFR-b A7H IRQ87 Interrupt Control Register 0000H

IRQ88IC F150H ESFR-b A8H IRQ88 Interrupt Control Register 0000H

IRQ89IC F152H ESFR-b A9H IRQ89 Interrupt Control Register 0000H

IRQ90IC F154H ESFR-b AAH IRQ90 Interrupt Control Register 0000H

IRQ91IC F156H ESFR-b ABH IRQ91 Interrupt Control Register 0000H

IRQ92IC F158H ESFR-b ACH IRQ92 Interrupt Control Register 0000H

IRQ93IC F15AH ESFR-b ADH IRQ93 Interrupt Control Register 0000H

IRQ94IC F15CH ESFR-b AEH IRQ94 Interrupt Control Register 0000H

IRQ95IC F15EH ESFR-b AFH IRQ95 Interrupt Control Register 0000H

IRQ96IC F0B8H ESFR 5CH IRQ96 Interrupt Control Register 0000H

IRQ97IC F0BAH ESFR 5DH IRQ97 Interrupt Control Register 0000H

IRQ98IC F0BCH ESFR 5EH IRQ98 Interrupt Control Register 0000H

IRQ99IC F0BEH ESFR 5FH IRQ99 Interrupt Control Register 0000H

IRQ100IC F0C0H ESFR 60H IRQ100 Interrupt Control
Register

0000H

IRQ101IC F0C2H ESFR 61H IRQ101 Interrupt Control
Register

0000H

Table 4-3 SFR/ESFR Table (ordered by name) (cont’d)

Name Physical
Address

Type1) 8-bit
Addr
2)

Description Reset
Value

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-37 V 1.6, 2001-08

IRQ102IC F0C4H ESFR 62H IRQ102 Interrupt Control
Register

0000H

IRQ103IC F0C6H ESFR 63H IRQ103 Interrupt Control
Register

0000H

IRQ104IC F0C8H ESFR 64H IRQ104 Interrupt Control
Register

0000H

IRQ105IC F0CAH ESFR 65H IRQ105 Interrupt Control
Register

0000H

IRQ106IC F0CCH ESFR 66H IRQ106 Interrupt Control
Register

0000H

IRQ107IC F0CEH ESFR 67H IRQ107 Interrupt Control
Register

0000H

IRQ108IC F0D0H ESFR 68H IRQ108 Interrupt Control
Register

0000H

IRQ109IC F0D2H ESFR 69H IRQ109 Interrupt Control
Register

0000H

IRQ110IC F0D4H ESFR 6AH IRQ110 Interrupt Control
Register

0000H

IRQ111IC F0D6H ESFR 6BH IRQ111 Interrupt Control
Register

0000H

MDC FF0EH SFR-b 87H CPU Multiply Divide Control
Register

0000H

MDH FE0CH SFR 06H CPU Multiply Divide Register -
High Word

0000H

MDL FE0EH SFR 07H CPU Multiply Divide Register -
Low Word

0000H

ONES FF1EH SFR-b 8FH Constant Value 1sRegister’ FFFFH

P0H FF02H SFR-b 81H Port 0 High Register (Upper half) 00H

P0L FF00H SFR-b 80H Port 0 Low Register (Lower half) 00H

P1H FF06H SFR-b 83H Port 1 High Register (Upper half) 00H

P1L FF04H SFR-b 82H Port 1 Low Register (Lower half) 00H

P4 FFC8H SFR-b E4H Port 4 Register (8 bits) 00H

Table 4-3 SFR/ESFR Table (ordered by name) (cont’d)

Name Physical
Address

Type1) 8-bit
Addr
2)

Description Reset
Value

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-38 V 1.6, 2001-08

P6 FFCCH SFR-b E6H Port 6 Register (8 bits) 00H

PECC0 FEC0H SFR 60H PEC Channel 0 Control Register 0000H

PECC1 FEC2H SFR 61H PEC Channel 1 Control Register 0000H

PECC2 FEC4H SFR 62H PEC Channel 2 Control Register 0000H

PECC3 FEC6H SFR 63H PEC Channel 3 Control Register 0000H

PECC4 FEC8H SFR 64H PEC Channel 4 Control Register 0000H

PECC5 FECAH SFR 65H PEC Channel 5 Control Register 0000H

PECC6 FECCH SFR 66H PEC Channel 6 Control Register 0000H

PECC7 FECEH SFR 67H PEC Channel 7 Control Register 0000H

PECC8 FEE8H SFR 74H PEC Channel 8 Control Register 0000H

PECC9 FEEAH SFR 75H PEC Channel 9 Control Register 0000H

PECC10 FEECH SFR 76H PEC Channel 10 Control
Register

0000H

PECC11 FEEEH SFR 77H PEC Channel 11 Control
Register

0000H

PECC12 FEF8H SFR 7CH PEC Channel 12 Control
Register

0000H

PECC13 FEFAH SFR 7DH PEC Channel 13 Control
Register

0000H

PECC14 FEFCH SFR 7EH PEC Channel 14 Control
Register

0000H

PECC15 FEFEH SFR 7FH PEC Channel 15 Control
Register

0000H

PECISNC FFA8H SFR-b D4H PEC Interrupt Subnode Control
Register

0000H

PECSN0 FED0H SFR 68H PEC Segment No. Register 0000H

PECSN1 FED2H SFR 69H PEC Segment No. Register 0000H

PECSN2 FED4H SFR 6AH PEC Segment No. Register 0000H

PECSN3 FED6H SFR 6BH PEC Segment No. Register 0000H

PECSN4 FED8H SFR 6CH PEC Segment No. Register 0000H

Table 4-3 SFR/ESFR Table (ordered by name) (cont’d)

Name Physical
Address

Type1) 8-bit
Addr
2)

Description Reset
Value

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-39 V 1.6, 2001-08

PECSN5 FEDAH SFR 6DH PEC Segment No. Register 0000H

PECSN6 FEDCH SFR 6EH PEC Segment No. Register 0000H

PECSN7 FEDEH SFR 6FH PEC Segment No. Register 0000H

PECSN8 FEE0H SFR 70H PEC Segment No. Register 0000H

PECSN9 FEE2H SFR 71H PEC Segment No. Register 0000H

PECSN10 FEE4H SFR 72H PEC Segment No. Register 0000H

PECSN11 FEE6H SFR 73H PEC Segment No. Register 0000H

PECSN12 FEB8H SFR 5CH PEC Segment No. Register 0000H

PECSN13 FEBAH SFR 5DH PEC Segment No. Register 0000H

PECSN14 FEBCH SFR 5EH PEC Segment No. Register 0000H

PECSN15 FEBEH SFR 5FH PEC Segment No. Register 0000H

PECXC0 FEF0H SFR 78H PEC Channel 0 Extended
Control Register

0000H

PECXC2 FEF2H SFR 79H PEC Channel 2 Extended
Control Register

0000H

PECXISNC FFBAH SFR-b DDH PEC Extended Interrupt
Subnode Control Register

0000H

PSW FF10H SFR-b 88H CPU Program Status Word 0000H

RWDATA F06AH ESFR 35H Cerberus RW Mode Data
Register

0000H

S0BG FEB4H SFR 5AH Serial Channel 0 Baud Rate
Generator Reload Register

0000H

S0CON FFB0H SFR-b D8H Serial Channel 0 Control
Register

0000H

S0EIC FF70H SFR-b B8H ASC0 Error Interrupt Control
Register

0000H

S0RBUF FEB2H SFR 59H Serial Channel 0 Receive Buffer
Register (RO)

0000H

S0RIC FF6EH SFR-b B7H ASC0 Receive Interrupt Control
Register

0000H

Table 4-3 SFR/ESFR Table (ordered by name) (cont’d)

Name Physical
Address

Type1) 8-bit
Addr
2)

Description Reset
Value

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-40 V 1.6, 2001-08

S0TBIC F19CH ESFR-b CEH ASC0 Transmit Buffer Interrupt
Control Register

0000H

S0TBUF FEB0H SFR 58H Serial Channel 0 Transmit Buffer
Register (WO)

0000H

S0TIC FF6CH SFR-b B6H ASC0 Transmit Interrupt Control
Register

0000H

SP FE12H SFR 09H CPU System Stack Pointer
Register

FC00H

SSC0BR F0B4H ESFR 5AH SSC0 Baudrate Register 0000H

SSC0CON FFB2H SFR-b D9H SSC0 Control Register 0000H

SSC0EIC FF76H SFR-b BBH SSC0 Error Interrupt Control
Register

0000H

SSC0ID FFE4H SSC0 Identification Register 45xxH

SSC0PISEL F0B6H ESFR 5BH SSC0 Port Input Selection
Register

0000H

SSC0RB F0B2H ESFR 59H SSC0 Receive Buffer (RO) 0000H

SSC0RIC FF74H SFR-b BAH SSC0 Receive Interrupt Control
Register

0000H

SSC0TB F0B0H ESFR 58H SSC0 Transmit Buffer (WO) 0000H

SSC0TIC FF72H SFR-b B9H SSC0 Transmit Interrupt Control
Register

0000H

STKOV FE14H SFR 0AH CPU Stack Overflow Pointer
Register

FA00H

STKUN FE16H SFR 0BH CPU Stack Underflow Pointer
Register

FC00H

SYSCON FF12H SFR-b 89H CPU System Configuration
Register

xxxxH

T2 FE40H SFR 20H GPT Timer 2 Register 0000H

T2CON FF40H SFR-b A0H GPT Timer 2 Control Register 0000H

T2IC FF60H SFR-b B0H GPT12E Timer 2 Interrupt
Control Register

0000H

Table 4-3 SFR/ESFR Table (ordered by name) (cont’d)

Name Physical
Address

Type1) 8-bit
Addr
2)

Description Reset
Value

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-41 V 1.6, 2001-08

T3 FE42H SFR 21H GPT Timer 3 Register 0000H

T3CON FF42H SFR-b A1H GPT Timer 3 Control Register 0000H

T3IC FF62H SFR-b B1H GPT12E Timer 3 Interrupt
Control Register

0000H

T4 FE44H SFR 22H GPT Timer 4 Register 0000H

T4CON FF44H SFR-b A2H GPT Timer 4 Control Register 0000H

T4IC FF64H SFR-b B2H GPT12E Timer 4 Interrupt
Control Register

0000H

T5 FE46H SFR 23H GPT Timer 5 Register 0000H

T5CON FF46H SFR-b A3H GPT Timer 5 Control Register 0000H

T5IC FF66H SFR-b B3H GPT12E Timer 5 Interrupt
Control Register

0000H

T6 FE48H SFR 24H GPT Timer 6 Register 0000H

T6CON FF48H SFR-b A4H GPT Timer 6 Control Register 0000H

T6IC FF68H SFR-b B4H GPT12E Timer 6 Interrupt
Control Register

0000H

TFR FFACH SFR-b D6H Trap Flag Register 0000H

WDT FEAEH SFR 57H Watchdog Timer Register (RO) 0000H

WDTCON FFAEH SFR-b D7H Watchdog Timer Control
Register

008xH

WDTIC F19AH ESFR-b CDH Watchdog Timer Interrupt
Control Register

0000H

XADRS1 F014H ESFR 0AH XBUS Address Select Register 1 0000H

XADRS2 F016H ESFR 0BH XBUS Address Select Register 2 0000H

XADRS3 F018H ESFR 0CH XBUS Address Select Register 3 0000H

XADRS4 F01AH ESFR 0DH XBUS Address Select Register 4 0000H

XADRS5 F01CH ESFR 0EH XBUS Address Select Register 5 0000H

XADRS6 F01EH ESFR 0FH XBUS Address Select Register 6 0000H

XBCON1 F114H ESFR-b 8AH XBUS Control register 1 0000H

XBCON2 F116H ESFR-b 8BH XBUS Control register 2 0000H

Table 4-3 SFR/ESFR Table (ordered by name) (cont’d)

Name Physical
Address

Type1) 8-bit
Addr
2)

Description Reset
Value

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-42 V 1.6, 2001-08

XBCON3 F118H ESFR-b 8CH XBUS Control register 3 0000H

XBCON4 F11AH ESFR-b 8DH XBUS Control register 4 0000H

XBCON5 F11CH ESFR-b 8EH XBUS Control register 5 0000H

XBCON6 F11EH ESFR-b 8FH XBUS Control register 6 0000H

XPERCON F024H ESFR 12H XBUS Peripheral Control
Register

0000H

ZEROS FF1CH SFR-b 8EH Constant Value 0sRegister’ 0000H

1) The PDBUS+ chip select depends on the register type. Chip select "pd_cs_esfr" is used for register types
"ESFR" and "ESFR-b", whereas chip select "pd_cs_sfr" valid for register types "SFR" and "SFR-b"

2) This address is identical to PDBUS+ address A[8:1]. However, for address ranges F1E0H to F1FFH and FFE0H
to FFFFH there is no 8-bit address, but a PDBUS+ address.

Table 4-3 SFR/ESFR Table (ordered by name) (cont’d)

Name Physical
Address

Type1) 8-bit
Addr
2)

Description Reset
Value

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-43 V 1.6, 2001-08

4.8 Interrupt Vector Table

The interrupt vector table is an instruction table. For each interrupt a 4 byte range is
reserved for instructions. Up to 112 interrupt nodes and 16 trap entries are defined for a
C166S V1 SubS R1 based product. The subsystem itself allocates 15 interrupt nodes.
All interrupt nodes above them can be used by the product.

The table below lists all possible 112 interrupts and traps sorted by the trap number. The
maximum number of interrupt nodes depends on the subsystem configuration.
Depending on this configured number of interrupts not all below listed interrupts are
available on product level.

Example:

PARAM_IC_NODES = 16
⇒ Only one interrupt source is available on product level (irq_n_i[15]).

PARAM_IC_NODES = 48
⇒ 23 interrupt sources are available on product level (irq_n_i[15...47]).

Table 4-4 Interrupt Vector Table (sorted by trap number)

Signal Name
(Interrupt IF)

Source of Interrupt Interrupt Control
Register

Vector
Location

Trap
No

- Reset - 0000H 00H

- - 0004H 01H

nmi_trap_n_i1) Non maskable interrupt - 0008H 02H

- - 000CH 03H

- Stack overflow - 0010H 04H

- - 0014H 05H

- Stack underflow - 0018H 06H

- - 001CH 07H

- Software Break - 0020H 08H

- - 0024H 09H

- Class B Trap - 0028H 0AH

- - 002CH 0BH

- - 0030H 0CH

- - 0034H 0DH

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-44 V 1.6, 2001-08

- - 0038H 0EH

- - 003CH 0FH

irq_i[16] Product Interrupt Request 16 IRQ16IC 0040H 10H

irq_i[17] Product Interrupt Request 17 IRQ17IC 0044H 11H

irq_i[18] Product Interrupt Request 18 IRQ18IC 0048H 12H

irq_i[19] Product Interrupt Request 19 IRQ19IC 004CH 13H

irq_i[20] Product Interrupt Request 20 IRQ20IC 0050H 14H

irq_i[21] Product Interrupt Request 21 IRQ21IC 0054H 15H

irq_i[22] Product Interrupt Request 22 IRQ22IC 0058H 16H

irq_i[23] Product Interrupt Request 23 IRQ23IC 005CH 17H

irq_i[24] Product Interrupt Request 24 IRQ24IC 0060H 18H

irq_i[25] Product Interrupt Request 25 IRQ25IC 0064H 19H

irq_i[26] Product Interrupt Request 26 IRQ26IC 0068H 1AH

irq_i[27] Product Interrupt Request 27 IRQ27IC 006CH 1BH

irq_i[28] Product Interrupt Request 28 IRQ28IC 0070H 1CH

irq_i[29] Product Interrupt Request 29 IRQ29IC 0074H 1DH

irq_i[30] Product Interrupt Request 30 IRQ30IC 0078H 1EH

irq_i[31] Product Interrupt Request 31 IRQ31IC 007CH 1FH

irq_i[32] Product Interrupt Request 32 IRQ32IC 0080H 20H

irq_i[33] Product Interrupt Request 33 IRQ33IC 0084H 21H

per_irq_i[2]2) GPT12E Timer T2 T2IC 0088H 22H

per_irq_i[3]2) GPT12E Timer T3 T3IC 008CH 23H

per_irq_i[4]2) GPT12E Timer T4 T4IC 0090H 24H

per_irq_i[5]2) GPT12E Timer T5 T5IC 0094H 25H

per_irq_i[6]2) GPT12E Timer T6 T6IC 0098H 26H

per_irq_i[7]2) GPT12E Capture/Reload CRIC 009CH 27H

irq_i[34] Product Interrupt Request 34 IRQ34IC 00A0H 28H

irq_i[35] Product Interrupt Request 35 IRQ35IC 00A4H 29H

per_irq_i[11]2) ASC0 Transmit S0TIC 00A8H 2AH

Table 4-4 Interrupt Vector Table (cont’d) (sorted by trap number)

Signal Name
(Interrupt IF)

Source of Interrupt Interrupt Control
Register

Vector
Location

Trap
No

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-45 V 1.6, 2001-08

per_irq_i[12]2) ASC0 Receive S0RIC 00ACH 2BH

per_irq_i[13]2) ASC0 Error S0EIC 00B0H 2CH

per_irq_i[8]2) SSC0 Transmit SSC0TIC 00B4H 2DH

per_irq_i[9]2) SSC0 Receive SSC0RIC 00B8H 2EH

per_irq_i[10]2) SSC0 Error SSC0EIC 00BCH 2FH

irq_i[48] Product Interrupt Request 48 IRQ48IC 00C0H 30H

irq_i[49] Product Interrupt Request 49 IRQ49IC 00C4H 31H

irq_i[50] Product Interrupt Request 50 IRQ50IC 00C8H 32H

irq_i[51] Product Interrupt Request 51 IRQ51IC 00CCH 33H

irq_i[52] Product Interrupt Request 52 IRQ52IC 00D0H 34H

irq_i[53] Product Interrupt Request 53 IRQ53IC 00D4H 35H

irq_i[54] Product Interrupt Request 54 IRQ54IC 00D8H 36H

irq_i[55] Product Interrupt Request 55 IRQ55IC 00DCH 37H

irq_i[56] Product Interrupt Request 56 IRQ56IC 00E0H 38H

irq_i[57] Product Interrupt Request 57 IRQ57IC 00E4H 39H

irq_i[58] Product Interrupt Request 58 IRQ58IC 00E8H 3AH

irq_i[59] Product Interrupt Request 59 IRQ59IC 00ECH 3BH

irq_i[60] Product Interrupt Request 60 IRQ60IC 00F0H 3CH

irq_i[40] Product Interrupt Request 40 IRQ40IC 00F4H 3DH

irq_i[41] Product Interrupt Request 41 IRQ41IC 00F8H 3EH

irq_i[15] Product Interrupt Request 15 IRQ15IC 00FCH 3FH

irq_i[36] Product Interrupt Request 36 IRQ36IC 0100H 40H

irq_i[37] Product Interrupt Request 37 IRQ37IC 0104H 41H

irq_i[38] Product Interrupt Request 38 IRQ38IC 0108H 42H

irq_i[39] Product Interrupt Request 39 IRQ39IC 010CH 43H

irq_i[61] Product Interrupt Request 61 IRQ61IC 0110H 44H

irq_i[62] Product Interrupt Request 62 IRQ62IC 0114H 45H

irq_i[63] Product Interrupt Request 63 IRQ63IC 0118H 46H

per_irq_i[14]2) ASC0 Transmit Buffer S0TBIC 011CH 47H

Table 4-4 Interrupt Vector Table (cont’d) (sorted by trap number)

Signal Name
(Interrupt IF)

Source of Interrupt Interrupt Control
Register

Vector
Location

Trap
No

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-46 V 1.6, 2001-08

irq_i[42] Product Interrupt Request 42 IRQ42IC 0120H 48H

irq_i[43] Product Interrupt Request 43 IRQ43IC 0124H 49H

irq_i[44] Product Interrupt Request 44 IRQ44IC 0128H 4AH

per_irq_i[1]2) Watchdog Timer WDTIC 0130H 4BH

per_irq_i[0]2) End of PEC Transfer EOPIC 012CH 4CH

irq_i[45] Product Interrupt Request 45 IRQ45IC 0134H 4DH

irq_i[46] Product Interrupt Request 46 IRQ46IC 0138H 4EH

irq_i[47] Product Interrupt Request 47 IRQ47IC 013CH 4FH

irq_i[64] Product Interrupt Request 64 IRQ64IC 0140H 50H

irq_i[65] Product Interrupt Request 65 IRQ65IC 0144H 51H

irq_i[66] Product Interrupt Request 66 IRQ66IC 0148H 52H

irq_i[67] Product Interrupt Request 67 IRQ67IC 014CH 53H

irq_i[68] Product Interrupt Request 68 IRQ68IC 0150H 54H

irq_i[69] Product Interrupt Request 69 IRQ69IC 0154H 55H

irq_i[70] Product Interrupt Request 70 IRQ70IC 0158H 56H

irq_i[71] Product Interrupt Request 71 IRQ71IC 015CH 57H

irq_i[72] Product Interrupt Request 72 IRQ72IC 0160H 58H

irq_i[73] Product Interrupt Request 73 IRQ73IC 0164H 59H

irq_i[74] Product Interrupt Request 74 IRQ74IC 0168H 5AH

irq_i[75] Product Interrupt Request 75 IRQ75IC 016CH 5BH

irq_i[76] Product Interrupt Request 76 IRQ76IC 0170H 5CH

irq_i[77] Product Interrupt Request 77 IRQ77IC 0174H 5DH

irq_i[78] Product Interrupt Request 78 IRQ78IC 0178H 5EH

irq_i[79] Product Interrupt Request 79 IRQ79IC 017CH 5FH

irq_i[80] Product Interrupt Request 80 IRQ50IC 0180H 60H

irq_i[81] Product Interrupt Request 81 IRQ81IC 0184H 61H

irq_i[82] Product Interrupt Request 82 IRQ82IC 0188H 62H

irq_i[83] Product Interrupt Request 83 IRQ83IC 018CH 63H

irq_i[84] Product Interrupt Request 84 IRQ84IC 0190H 64H

Table 4-4 Interrupt Vector Table (cont’d) (sorted by trap number)

Signal Name
(Interrupt IF)

Source of Interrupt Interrupt Control
Register

Vector
Location

Trap
No

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-47 V 1.6, 2001-08

irq_i[85] Product Interrupt Request 85 IRQ85IC 0194H 65H

irq_i[86] Product Interrupt Request 86 IRQ86IC 0198H 66H

irq_i[87] Product Interrupt Request 87 IRQ87IC 019CH 67H

irq_i[88] Product Interrupt Request 88 IRQ88IC 01A0H 68H

irq_i[89] Product Interrupt Request 89 IRQ89IC 01A4H 69H

irq_i[90] Product Interrupt Request 90 IRQ90IC 01A8H 6AH

irq_i[91] Product Interrupt Request 91 IRQ91IC 01ACH 6BH

irq_i[92] Product Interrupt Request 92 IRQ92IC 01B0H 6CH

irq_i[93] Product Interrupt Request 93 IRQ93IC 01B4H 6DH

irq_i[94] Product Interrupt Request 94 IRQ94IC 01B8H 6EH

irq_i[95] Product Interrupt Request 95 IRQ95IC 01BCH 6FH

irq_i[96] Product Interrupt Request 96 IRQ96IC 01C0H 70H

irq_i[97] Product Interrupt Request 97 IRQ97IC 01C4H 71H

irq_i[98] Product Interrupt Request 98 IRQ98IC 01C8H 72H

irq_i[99] Product Interrupt Request 99 IRQ99IC 01CCH 73H

irq_i[100] Product Interrupt Request 100 IRQ100IC 01D0H 74H

irq_i[101] Product Interrupt Request 101 IRQ101IC 01D4H 75H

irq_i[102] Product Interrupt Request 102 IRQ102IC 01D8H 76H

irq_i[103] Product Interrupt Request 103 IRQ103IC 01DCH 77H

irq_i[104] Product Interrupt Request 104 IRQ104IC 01E0H 78H

irq_i[105] Product Interrupt Request 105 IRQ105IC 01E4H 79H

irq_i[106] Product Interrupt Request 106 IRQ106IC 01E8H 7AH

irq_i[107] Product Interrupt Request 107 IRQ107IC 01ECH 7BH

irq_i[108] Product Interrupt Request 108 IRQ108IC 01F0H 7CH

irq_i[109] Product Interrupt Request 109 IRQ109IC 01F4H 7DH

irq_i[110] Product Interrupt Request 110 IRQ110IC 01F8H 7EH

irq_i[111] Product Interrupt Request 111 IRQ111IC 01FCH 7FH

1) This signal is part of the general signals interface and is handled by the CPU directly (not handled by the
interrupt controller).

2) This signals are not part of the subsystem boundary, but included in the core macro´s interrupt interface.

Table 4-4 Interrupt Vector Table (cont’d) (sorted by trap number)

Signal Name
(Interrupt IF)

Source of Interrupt Interrupt Control
Register

Vector
Location

Trap
No

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-48 V 1.6, 2001-08

The following table lists all possible 97 interrupt source entries, which are available on
product level (listed by the interrupt interface signal name).

Note: Depending on the number of interrupt configuration not all entries are available
(see Page 4-43)

Table 4-5 Interrupt Vector Table (sorted by signal name)

Signal Name
(Interrupt IF)

Source of Interrupt Interrupt Control
Register

Vector
Location

Trap
No

irq_i[15] Product Interrupt Request 15 IRQ15IC 00FCH 3FH

irq_i[16] Product Interrupt Request 16 IRQ16IC 0040H 10H

irq_i[17] Product Interrupt Request 17 IRQ17IC 0044H 11H

irq_i[18] Product Interrupt Request 18 IRQ18IC 0048H 12H

irq_i[19] Product Interrupt Request 19 IRQ19IC 004CH 13H

irq_i[20] Product Interrupt Request 20 IRQ20IC 0050H 14H

irq_i[21] Product Interrupt Request 21 IRQ21IC 0054H 15H

irq_i[22] Product Interrupt Request 22 IRQ22IC 0058H 16H

irq_i[23] Product Interrupt Request 23 IRQ23IC 005CH 17H

irq_i[24] Product Interrupt Request 24 IRQ24IC 0060H 18H

irq_i[25] Product Interrupt Request 25 IRQ25IC 0064H 19H

irq_i[26] Product Interrupt Request 26 IRQ26IC 0068H 1AH

irq_i[27] Product Interrupt Request 27 IRQ27IC 006CH 1BH

irq_i[28] Product Interrupt Request 28 IRQ28IC 0070H 1CH

irq_i[29] Product Interrupt Request 29 IRQ29IC 0074H 1DH

irq_i[30] Product Interrupt Request 30 IRQ30IC 0078H 1EH

irq_i[31] Product Interrupt Request 31 IRQ31IC 007CH 1FH

irq_i[32] Product Interrupt Request 32 IRQ32IC 0080H 20H

irq_i[33] Product Interrupt Request 33 IRQ33IC 0084H 21H

irq_i[34] Product Interrupt Request 34 IRQ34IC 00A0H 28H

irq_i[35] Product Interrupt Request 35 IRQ35IC 00A4H 29H

irq_i[36] Product Interrupt Request 36 IRQ36IC 0100H 40H

irq_i[37] Product Interrupt Request 37 IRQ37IC 0104H 41H

irq_i[38] Product Interrupt Request 38 IRQ38IC 0108H 42H

irq_i[39] Product Interrupt Request 39 IRQ39IC 010CH 43H

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-49 V 1.6, 2001-08

irq_i[40] Product Interrupt Request 40 IRQ40IC 00F4H 3DH

irq_i[41] Product Interrupt Request 41 IRQ41IC 00F8H 3EH

irq_i[42] Product Interrupt Request 42 IRQ42IC 0120H 48H

irq_i[43] Product Interrupt Request 43 IRQ43IC 0124H 49H

irq_i[44] Product Interrupt Request 44 IRQ44IC 0128H 4AH

irq_i[45] Product Interrupt Request 45 IRQ45IC 0134H 4DH

irq_i[46] Product Interrupt Request 46 IRQ46IC 0138H 4EH

irq_i[47] Product Interrupt Request 47 IRQ47IC 013CH 4FH

irq_i[48] Product Interrupt Request 48 IRQ48IC 00C0H 30H

irq_i[49] Product Interrupt Request 49 IRQ49IC 00C4H 31H

irq_i[50] Product Interrupt Request 50 IRQ50IC 00C8H 32H

irq_i[51] Product Interrupt Request 51 IRQ51IC 00CCH 33H

irq_i[52] Product Interrupt Request 52 IRQ52IC 00D0H 34H

irq_i[53] Product Interrupt Request 53 IRQ53IC 00D4H 35H

irq_i[54] Product Interrupt Request 54 IRQ54IC 00D8H 36H

irq_i[55] Product Interrupt Request 55 IRQ55IC 00DCH 37H

irq_i[56] Product Interrupt Request 56 IRQ56IC 00E0H 38H

irq_i[57] Product Interrupt Request 57 IRQ57IC 00E4H 39H

irq_i[58] Product Interrupt Request 58 IRQ58IC 00E8H 3AH

irq_i[59] Product Interrupt Request 59 IRQ59IC 00ECH 3BH

irq_i[60] Product Interrupt Request 60 IRQ60IC 00F0H 3CH

irq_i[61] Product Interrupt Request 61 IRQ61IC 0110H 44H

irq_i[62] Product Interrupt Request 62 IRQ62IC 0114H 45H

irq_i[63] Product Interrupt Request 63 IRQ63IC 0118H 46H

irq_i[64] Product Interrupt Request 64 IRQ64IC 0140H 50H

irq_i[65] Product Interrupt Request 65 IRQ65IC 0144H 51H

irq_i[66] Product Interrupt Request 66 IRQ66IC 0148H 52H

irq_i[67] Product Interrupt Request 67 IRQ67IC 014CH 53H

irq_i[68] Product Interrupt Request 68 IRQ68IC 0150H 54H

Table 4-5 Interrupt Vector Table (cont’d) (sorted by signal name)

Signal Name
(Interrupt IF)

Source of Interrupt Interrupt Control
Register

Vector
Location

Trap
No

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-50 V 1.6, 2001-08

irq_i[69] Product Interrupt Request 69 IRQ69IC 0154H 55H

irq_i[70] Product Interrupt Request 70 IRQ70IC 0158H 56H

irq_i[71] Product Interrupt Request 71 IRQ71IC 015CH 57H

irq_i[72] Product Interrupt Request 72 IRQ72IC 0160H 58H

irq_i[73] Product Interrupt Request 73 IRQ73IC 0164H 59H

irq_i[74] Product Interrupt Request 74 IRQ74IC 0168H 5AH

irq_i[75] Product Interrupt Request 75 IRQ75IC 016CH 5BH

irq_i[76] Product Interrupt Request 76 IRQ76IC 0170H 5CH

irq_i[77] Product Interrupt Request 77 IRQ77IC 0174H 5DH

irq_i[78] Product Interrupt Request 78 IRQ78IC 0178H 5EH

irq_i[79] Product Interrupt Request 79 IRQ79IC 017CH 5FH

irq_i[80] Product Interrupt Request 80 IRQ50IC 0180H 60H

irq_i[81] Product Interrupt Request 81 IRQ81IC 0184H 61H

irq_i[82] Product Interrupt Request 82 IRQ82IC 0188H 62H

irq_i[83] Product Interrupt Request 83 IRQ83IC 018CH 63H

irq_i[84] Product Interrupt Request 84 IRQ84IC 0190H 64H

irq_i[85] Product Interrupt Request 85 IRQ85IC 0194H 65H

irq_i[86] Product Interrupt Request 86 IRQ86IC 0198H 66H

irq_i[87] Product Interrupt Request 87 IRQ87IC 019CH 67H

irq_i[88] Product Interrupt Request 88 IRQ88IC 01A0H 68H

irq_i[89] Product Interrupt Request 89 IRQ89IC 01A4H 69H

irq_i[90] Product Interrupt Request 90 IRQ90IC 01A8H 6AH

irq_i[91] Product Interrupt Request 91 IRQ91IC 01ACH 6BH

irq_i[92] Product Interrupt Request 92 IRQ92IC 01B0H 6CH

irq_i[93] Product Interrupt Request 93 IRQ93IC 01B4H 6DH

irq_i[94] Product Interrupt Request 94 IRQ94IC 01B8H 6EH

irq_i[95] Product Interrupt Request 95 IRQ95IC 01BCH 6FH

irq_i[96] Product Interrupt Request 96 IRQ96IC 01C0H 70H

irq_i[97] Product Interrupt Request 97 IRQ97IC 01C4H 71H

Table 4-5 Interrupt Vector Table (cont’d) (sorted by signal name)

Signal Name
(Interrupt IF)

Source of Interrupt Interrupt Control
Register

Vector
Location

Trap
No

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-51 V 1.6, 2001-08

irq_i[98] Product Interrupt Request 98 IRQ98IC 01C8H 72H

irq_i[99] Product Interrupt Request 99 IRQ99IC 01CCH 73H

irq_i[100] Product Interrupt Request 100 IRQ100IC 01D0H 74H

irq_i[101] Product Interrupt Request 101 IRQ101IC 01D4H 75H

irq_i[102] Product Interrupt Request 102 IRQ102IC 01D8H 76H

irq_i[103] Product Interrupt Request 103 IRQ103IC 01DCH 77H

irq_i[104] Product Interrupt Request 104 IRQ104IC 01E0H 78H

irq_i[105] Product Interrupt Request 105 IRQ105IC 01E4H 79H

irq_i[106] Product Interrupt Request 106 IRQ106IC 01E8H 7AH

irq_i[107] Product Interrupt Request 107 IRQ107IC 01ECH 7BH

irq_i[108] Product Interrupt Request 108 IRQ108IC 01F0H 7CH

irq_i[109] Product Interrupt Request 109 IRQ109IC 01F4H 7DH

irq_i[110] Product Interrupt Request 110 IRQ110IC 01F8H 7EH

irq_i[111] Product Interrupt Request 111 IRQ111IC 01FCH 7FH

Table 4-5 Interrupt Vector Table (cont’d) (sorted by signal name)

Signal Name
(Interrupt IF)

Source of Interrupt Interrupt Control
Register

Vector
Location

Trap
No

User’s Manual
C166S V1 SubSystem

Memory Organization

User’s Manual 4-52 V 1.6, 2001-08

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-1 V 1.6, 2001-08

5 Instruction Set

5.1 Short Instruction Summary

The following compressed cross-reference tables quickly identify a specific instruction
and provide basic information about it. Two ordering schemes are included:

The first table (two pages) is a compressed cross-reference table that quickly identifies
a specific hexadecimal opcode with the respective mnemonic.

The second table lists the instructions by their mnemonic and identifies the addressing
modes that may be used with a specific instruction and the instruction length depending
on the selected addressing mode. This reference helps to optimize instruction
sequences in terms of code size and/or execution time.

Note: Both ordering schemes (hexadecimal opcode and mnemonic) are provided in
more detailed lists in the following sections of this manual.

• 0x 1x 2x 3x 4x 5x 6x 7x

x0 ADD ADDC SUB SUBC CMP XOR AND OR

x1 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x2 ADD ADDC SUB SUBC CMP XOR AND OR

x3 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x4 ADD ADDC SUB SUBC - XOR AND OR

x5 ADDB ADDCB SUBB SUBCB - XORB ANDB ORB

x6 ADD ADDC SUB SUBC CMP XOR AND OR

x7 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x8 ADD ADDC SUB SUBC CMP XOR AND OR

x9 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

xA BFLDL BFLDH BCMP BMOVN BMOV BOR BAND BXOR

xB MUL MULU PRIOR - DIV DIVU DIVL DIVLU

xC ROL ROL ROR ROR SHL SHL SHR SHR

xD JMPR JMPR JMPR JMPR JMPR JMPR JMPR JMPR

xE BCLR BCLR BCLR BCLR BCLR BCLR BCLR BCLR

xF BSET BSET BSET BSET BSET BSET BSET BSET

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-2 V 1.6, 2001-08

Note: Both ordering schemes (hexadecimal opcode and mnemonic) are provided in
more detailed lists in the following sections of this manual.

8x 9x Ax Bx Cx Dx Ex Fx

x0 CMPI1 CMPI2 CMPD1 CMPD2 MOVBZ MOVBS MOV MOV

x1 NEG CPL NEGB CPLB - AT/
EXTR

MOVB MOVB

x2 CMPI1 CMPI2 CMPD1 CMPD2 MOVBZ MOVBS PCALL MOV

x3 - - - - - - - MOVB

x4 MOV MOV MOVB MOVB MOV MOV MOVB MOVB

x5 - - DIS
WDT

EINIT MOVBZ MOVBS - -

x6 CMPI1 CMPI2 CMPD1 CMPD2 SCXT SCXT MOV MOV

x7 IDLE PWRDN SRV
WDT

SRST - EXTP/S/
R

MOVB MOVB

x8 MOV MOV MOV MOV MOV MOV MOV -

x9 MOVB MOVB MOVB MOVB MOVB MOVB MOVB -

xA JB JNB JBC JNBS CALLA CALLS JMPA JMPS

xB - TRAP CALLI CALLR RET RETS RETP RETI

xC - JMPI ASHR ASHR NOP EXTP/S/
R

PUSH POP

xD JMPR JMPR JMPR JMPR JMPR JMPR JMPR JMPR

xE BCLR BCLR BCLR BCLR BCLR BCLR BCLR BCLR

xF BSET BSET BSET BSET BSET BSET BSET BSET

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-3 V 1.6, 2001-08

5.2 Instruction Set Summary

This chapter summarizes the instructions by listing them according to their functional
class. This allows to identify the right instruction(s) for a specific required function.

The following notes apply to this summary:

Data Addressing Modes

Rw: – Word GPR (R0, R1, … , R15)

Rb: – Byte GPR (RL0, RH0, …, RL7, RH7)

reg: – SFR or GPR
(in case of a byte operation on an SFR, only the low byte can be
accessed via ‘reg’)

mem: – Direct word or byte memory location

[…]: – Indirect word or byte memory location
(Any word GPR can be used as indirect address pointer, except for the
arithmetic, logical and compare instructions, where only R0 to R3 are
allowed)

bitaddr: – Direct bit in the bit-addressable memory area

bitoff: – Direct word in the bit-addressable memory area

#data: – Immediate constant
(The number of significant bits which can be specified by the user is
represented by the respective appendix ’x’)

#mask8: – Immediate 8-bit mask used for bit-field modifications

Multiply and Divide Operations

The MDL and MDH registers are implicit source and/or destination operands of the
multiply and divide instructions.

Branch Target Addressing Modes

caddr: – Direct 16-bit jump target address (Updates the Instruction Pointer)

seg: – Direct 2-bit segment address
(Updates the Code Segment Pointer)

rel: – Signed 8-bit jump target word offset address relative to the Instruction
Pointer of the following instruction

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-4 V 1.6, 2001-08

#trap7: – Immediate 7-bit trap or interrupt number.

Extension Operations

The EXT* instructions override the standard DPP addressing scheme:

#pag10: – Immediate 10-bit page address.

#seg8: – Immediate 8-bit segment address.

Branch Condition Codes

cc: Symbolically specifiable condition codes

cc_UC –Unconditional
cc_Z –Zero
cc_NZ –Not Zero
cc_V –Overflow
cc_NV –No Overflow
cc_N –Negative
cc_NN –Not Negative
cc_C –Carry
cc_NC –No Carry
cc_EQ –Equal
cc_NE –Not Equal
cc_ULT –Unsigned Less Than
cc_ULE –Unsigned Less Than or Equal
cc_UGE –Unsigned Greater Than or Equal
cc_UGT –Unsigned Greater Than
cc_SLE –Signed Less Than or Equal
cc_SGE –Signed Greater Than or Equal
cc_SGT –Signed Greater Than
cc_NET –Not Equal and Not End-of-Table

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-5 V 1.6, 2001-08

1) Byte oriented instructions (suffix ‘B’) use Rb instead of Rw (not with [Rwn]!).
2) Byte oriented instructions (suffix ‘B’) use #data8 instead of #data16.

Mnemonic Addressing ModesBytes Mnemonic Addressing ModesBytes
ADD[B]
ADDC[B]
AND[B]
OR[B]
SUB[B]
SUBC[B]
XOR[B]

Rwn Rwm 1)

Rwn [Rwi] 1)

Rwn [Rwi+] 1)

Rwn #data3 1)

reg #data16
reg mem
mem reg

2
2
2
2

4
4
4

CPL[B]
NEG[B]

Rwn 1) 2

DIV
DIVL
DIVLU
DIVU

Rwn 2

MUL
MULU

Rwn Rwm 2

ASHR
ROL / ROR
SHL / SHR

Rwn Rwm
Rwn #data4

2
2

CMPD1/2
CMPI1/2

Rwn #data4
Rwn #data16
Rwn mem

2
4
4

BAND
BCMP
BMOV
BMOVN
BOR /
BXOR

bitaddrZ.z bitaddrQ.q 4 CMP[B] Rwn Rwm 1)

Rwn [Rwi] 1)

Rwn [Rwi+] 1)

Rwn #data3 1)

reg #data16 2)

reg mem

2
2
2
2
4
4

BCLR
BSET

bitaddrQ.q 2 CALLA
JMPA

cc caddr 4

BFLDH
BFLDL

bitoffQ #mask8 #data8 4 CALLI
JMPI

cc [Rwn] 2

MOV[B] Rwn Rwm 1)

Rwn #data4 1)

Rwn [Rwm] 1)

Rwn [Rwm+] 1)

[Rwm] Rwn 1)

[-Rwm] Rwn 1)

[Rwn] [Rwm]
[Rwn+] [Rwm]
[Rwn] [Rwm+]

reg #data16 2)

Rwn [Rwm+#d16] 1)

[Rwm+#d16] Rwn 1)

[Rwn] mem
mem [Rwn]
reg mem
mem reg

2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4

CALLS
JMPS

seg caddr 4

CALLR rel 2
JMPR cc rel 2
JB
JBC
JNB
JNBS

bitaddrQ.q rel 4

PCALL reg caddr 4
POP
PUSH
RETP

reg 2

SCXT reg #data16
reg mem

4
4

PRIOR Rwn Rwm 2

MOVBS
MOVBZ

Rwn Rbm
reg mem
mem reg

2
4
4

TRAP #trap7 2
ATOMIC
EXTR

#irang2 2

EXTS
EXTSR

Rwm #irang2
#seg #irang2

2
4

EXTP
EXTPR

Rwm #irang2
#pag #irang2

2
4

NOP
RET
RETI
RETS

- 2 SRST/IDLE
PWRDN
SRVWDT
DISWDT
EINIT

- 4

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-6 V 1.6, 2001-08

Instruction Set Summary

Mnemonic Description Bytes

Arithmetic Operations

ADD Rw, Rw Add direct word GPR to direct GPR 2

ADD Rw, [Rw] Add indirect word memory to direct GPR 2

ADD Rw, [Rw +] Add indirect word memory to direct GPR and post-
increment source pointer by 2

2

ADD Rw, #data3 Add immediate word data to direct GPR 2

ADD reg, #data16 Add immediate word data to direct register 4

ADD reg, mem Add direct word memory to direct register 4

ADD mem, reg Add direct word register to direct memory 4

ADDB Rb, Rb Add direct byte GPR to direct GPR 2

ADDB Rb, [Rw] Add indirect byte memory to direct GPR 2

ADDB Rb, [Rw +] Add indirect byte memory to direct GPR and
post-increment source pointer by 1

2

ADDB Rb, #data3 Add immediate byte data to direct GPR 2

ADDB reg, #data8 Add immediate byte data to direct register 4

ADDB reg, mem Add direct byte memory to direct register 4

ADDB mem, reg Add direct byte register to direct memory 4

ADDC Rw, Rw Add direct word GPR to direct GPR with Carry 2

ADDC Rw, [Rw] Add indirect word memory to direct GPR with Carry 2

ADDC Rw, [Rw +] Add indirect word memory to direct GPR with Carry and
post-increment source pointer by 2

2

ADDC Rw, #data3 Add immediate word data to direct GPR with Carry 2

ADDC reg, #data16 Add immediate word data to direct register with Carry 4

ADDC reg, mem Add direct word memory to direct register with Carry 4

ADDC mem, reg Add direct word register to direct memory with Carry 4

ADDCB Rb, Rb Add direct byte GPR to direct GPR with Carry 2

ADDCB Rb, [Rw] Add indirect byte memory to direct GPR with Carry 2

ADDCB Rb, [Rw +] Add indirect byte memory to direct GPR with Carry and
post-increment source pointer by 1

2

ADDCB Rb, #data3 Add immediate byte data to direct GPR with Carry 2

ADDCB reg, #data8 Add immediate byte data to direct register with Carry 4

ADDCB reg, mem Add direct byte memory to direct register with Carry 4

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-7 V 1.6, 2001-08

Arithmetic Operations (cont’d)

ADDCB mem, reg Add direct byte register to direct memory with Carry 4

SUB Rw, Rw Subtract direct word GPR from direct GPR 2

SUB Rw, [Rw] Subtract indirect word memory from direct GPR 2

SUB Rw, [Rw +] Subtract indirect word memory from direct GPR and
post-increment source pointer by 2

2

SUB Rw, #data3 Subtract immediate word data from direct GPR 2

SUB reg, #data16 Subtract immediate word data from direct register 4

SUB reg, mem Subtract direct word memory from direct register 4

SUB mem, reg Subtract direct word register from direct memory 4

SUBB Rb, Rb Subtract direct byte GPR from direct GPR 2

SUBB Rb, [Rw] Subtract indirect byte memory from direct GPR 2

SUBB Rb, [Rw +] Subtract indirect byte memory from direct GPR and
post-increment source pointer by 1

2

SUBB Rb, #data3 Subtract immediate byte data from direct GPR 2

SUBB reg, #data8 Subtract immediate byte data from direct register 4

SUBB reg, mem Subtract direct byte memory from direct register 4

SUBB mem, reg Subtract direct byte register from direct memory 4

SUBC Rw, Rw Subtract direct word GPR from direct GPR with Carry 2

SUBC Rw, [Rw] Subtract indirect word memory from direct GPR with Carry 2

SUBC Rw, [Rw +] Subtract indirect word memory from direct GPR with
Carry and post-increment source pointer by 2

2

SUBC Rw, #data3 Subtract immediate word data from direct GPR with Carry 2

SUBC reg, #data16 Subtract immediate word data from direct register with
Carry

4

SUBC reg, mem Subtract direct word memory from direct register with Carry 4

SUBC mem, reg Subtract direct word register from direct memory with Carry 4

SUBCB Rb, Rb Subtract direct byte GPR from direct GPR with Carry 2

SUBCB Rb, [Rw] Subtract indirect byte memory from direct GPR with Carry 2

SUBCB Rb, [Rw +] Subtract indirect byte memory from direct GPR with Carry
and post-increment source pointer by 1

2

SUBCB Rb, #data3 Subtract immediate byte data from direct GPR with Carry 2

SUBCB reg, #data8 Subtract immediate byte data from direct register with Carry 4

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-8 V 1.6, 2001-08

Arithmetic Operations (cont’d)

SUBCB reg, mem Subtract direct byte memory from direct register with Carry 4

SUBCB mem, reg Subtract direct byte register from direct memory with Carry 4

MUL Rw, Rw Signed multiply direct GPR by direct GPR (16-16-bit) 2

MULU Rw, Rw Unsigned multiply direct GPR by direct GPR (16-16-bit) 2

DIV Rw Signed divide register MDL by direct GPR (16-/16-bit) 2

DIVL Rw Signed long divide register MD by direct GPR (32-/16-bit) 2

DIVLU Rw Unsigned long divide register MD by direct GPR
(32-/16-bit)

2

DIVU Rw Unsigned divide register MDL by direct GPR (16-/16-bit) 2

CPL Rw Complement direct word GPR 2

CPLB Rb Complement direct byte GPR 2

NEG Rw Negate direct word GPR 2

NEGB Rb Negate direct byte GPR 2

Logical Instructions

AND Rw, Rw Bitwise AND direct word GPR with direct GPR 2

AND Rw, [Rw] Bitwise AND indirect word memory with direct GPR 2

AND Rw, [Rw +] Bitwise AND indirect word memory with direct GPR and
post-increment source pointer by 2

2

AND Rw, #data3 Bitwise AND immediate word data with direct GPR 2

AND reg, #data16 Bitwise AND immediate word data with direct register 4

AND reg, mem Bitwise AND direct word memory with direct register 4

AND mem, reg Bitwise AND direct word register with direct memory 4

ANDB Rb, Rb Bitwise AND direct byte GPR with direct GPR 2

ANDB Rb, [Rw] Bitwise AND indirect byte memory with direct GPR 2

ANDB Rb, [Rw +] Bitwise AND indirect byte memory with direct GPR
and post-increment source pointer by 1

2

ANDB Rb, #data3 Bitwise AND immediate byte data with direct GPR 2

ANDB reg, #data8 Bitwise AND immediate byte data with direct register 4

ANDB reg, mem Bitwise AND direct byte memory with direct register 4

ANDB mem, reg Bitwise AND direct byte register with direct memory 4

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-9 V 1.6, 2001-08

Logical Instructions (cont’d)

OR Rw, Rw Bitwise OR direct word GPR with direct GPR 2

OR Rw, [Rw] Bitwise OR indirect word memory with direct GPR 2

OR Rw, [Rw +] Bitwise OR indirect word memory with direct GPR
and post-increment source pointer by 2

2

OR Rw, #data3 Bitwise OR immediate word data with direct GPR 2

OR reg, #data16 Bitwise OR immediate word data with direct register 4

OR reg, mem Bitwise OR direct word memory with direct register 4

OR mem, reg Bitwise OR direct word register with direct memory 4

ORB Rb, Rb Bitwise OR direct byte GPR with direct GPR 2

ORB Rb, [Rw] Bitwise OR indirect byte memory with direct GPR 2

ORB Rb, [Rw +] Bitwise OR indirect byte memory with direct GPR and
post-increment source pointer by 1

2

ORB Rb, #data3 Bitwise OR immediate byte data with direct GPR 2

ORB reg, #data8 Bitwise OR immediate byte data with direct register 4

ORB reg, mem Bitwise OR direct byte memory with direct register 4

ORB mem, reg Bitwise OR direct byte register with direct memory 4

XOR Rw, Rw Bitwise XOR direct word GPR with direct GPR 2

XOR Rw, [Rw] Bitwise XOR indirect word memory with direct GPR 2

XOR Rw, [Rw +] Bitwise XOR indirect word memory with direct GPR and
post-increment source pointer by 2

2

XOR Rw, #data3 Bitwise XOR immediate word data with direct GPR 2

XOR reg, #data16 Bitwise XOR immediate word data with direct register 4

XOR reg, mem Bitwise XOR direct word memory with direct register 4

XOR mem, reg Bitwise XOR direct word register with direct memory 4

XORB Rb, Rb Bitwise XOR direct byte GPR with direct GPR 2

XORB Rb, [Rw] Bitwise XOR indirect byte memory with direct GPR 2

XORB Rb, [Rw +] Bitwise XOR indirect byte memory with direct GPR and
post-increment source pointer by 1

2

XORB Rb, #data3 Bitwise XOR immediate byte data with direct GPR 2

XORB reg, #data8 Bitwise XOR immediate byte data with direct register 4

XORB reg, mem Bitwise XOR direct byte memory with direct register 4

XORB mem, reg Bitwise XOR direct byte register with direct memory 4

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-10 V 1.6, 2001-08

Boolean Bit Manipulation Operations

BCLR bitaddr Clear direct bit 2

BSET bitaddr Set direct bit 2

BMOV bitaddr, bitaddr Move direct bit to direct bit 4

BMOVN bitaddr, bitaddr Move negated direct bit to direct bit 4

BAND bitaddr, bitaddr AND direct bit with direct bit 4

BOR bitaddr, bitaddr OR direct bit with direct bit 4

BXOR bitaddr, bitaddr XOR direct bit with direct bit 4

BCMP bitaddr, bitaddr Compare direct bit to direct bit 4

BFLDH bitoff, #mask8,
#data8

Bitwise modify masked high byte of bit-addressable
direct word memory with immediate data

4

BFLDL bitoff, #mask8,
#data8

Bitwise modify masked low byte of bit-addressable
direct word memory with immediate data

4

CMP Rw, Rw Compare direct word GPR to direct GPR 2

CMP Rw, [Rw] Compare indirect word memory to direct GPR 2

CMP Rw, [Rw +] Compare indirect word memory to direct GPR and
post-increment source pointer by 2

2

CMP Rw, #data3 Compare immediate word data to direct GPR 2

CMP reg, #data16 Compare immediate word data to direct register 4

CMP reg, mem Compare direct word memory to direct register 4

CMPB Rb, Rb Compare direct byte GPR to direct GPR 2

CMPB Rb, [Rw] Compare indirect byte memory to direct GPR 2

CMPB Rb, [Rw +] Compare indirect byte memory to direct GPR and
post-increment source pointer by 1

2

CMPB Rb, #data3 Compare immediate byte data to direct GPR 2

CMPB reg, #data8 Compare immediate byte data to direct register 4

CMPB reg, mem Compare direct byte memory to direct register 4

Compare and Loop Control Instructions

CMPD1 Rw, #data4 Compare immediate word data to direct GPR and
decrement GPR by 1

2

CMPD1 Rw, #data16 Compare immediate word data to direct GPR and
decrement GPR by 1

4

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-11 V 1.6, 2001-08

Compare and Loop Control Instructions (cont’d)

CMPD1 Rw, mem Compare direct word memory to direct GPR and
decrement GPR by 1

4

CMPD2 Rw, #data4 Compare immediate word data to direct GPR and
decrement GPR by 2

2

CMPD2 Rw, #data16 Compare immediate word data to direct GPR and
decrement GPR by 2

4

CMPD2 Rw, mem Compare direct word memory to direct GPR and
decrement GPR by 2

4

CMPI1 Rw, #data4 Compare immediate word data to direct GPR and
increment GPR by 1

2

CMPI1 Rw, #data16 Compare immediate word data to direct GPR and
increment GPR by 1

4

CMPI1 Rw, mem Compare direct word memory to direct GPR and
increment GPR by 1

4

CMPI2 Rw, #data4 Compare immediate word data to direct GPR and
increment GPR by 2

2

CMPI2 Rw, #data16 Compare immediate word data to direct GPR and
increment GPR by 2

4

CMPI2 Rw, mem Compare direct word memory to direct GPR and
increment GPR by 2

4

Prioritize Instruction

PRIOR Rw, Rw Determine number of shift cycles to normalize direct
word GPR and store result in direct word GPR

2

Shift and Rotate Instructions

SHL Rw, Rw Shift left direct word GPR;
number of shift cycles specified by direct GPR

2

SHL Rw, #data4 Shift left direct word GPR;
number of shift cycles specified by immediate data

2

SHR Rw, Rw Shift right direct word GPR;
number of shift cycles specified by direct GPR

2

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-12 V 1.6, 2001-08

Shift and Rotate Instructions (cont’d)

SHR Rw, #data4 Shift right direct word GPR;
number of shift cycles specified by immediate data

2

ROL Rw, Rw Rotate left direct word GPR;
number of shift cycles specified by direct GPR

2

ROL Rw, #data4 Rotate left direct word GPR;
number of shift cycles specified by immediate data

2

ROR Rw, Rw Rotate right direct word GPR;
number of shift cycles specified by direct GPR

2

ROR Rw, #data4 Rotate right direct word GPR;
number of shift cycles specified by immediate data

2

ASHR Rw, Rw Arithmetic (sign bit) shift right direct word GPR;
number of shift cycles specified by direct GPR

2

ASHR Rw, #data4 Arithmetic (sign bit) shift right direct word GPR;
number of shift cycles specified by immediate data

2

Data Movement

MOV Rw, Rw Move direct word GPR to direct GPR 2

MOV Rw, #data4 Move immediate word data to direct GPR 2

MOV reg, #data16 Move immediate word data to direct register 4

MOV Rw, [Rw] Move indirect word memory to direct GPR 2

MOV Rw, [Rw +] Move indirect word memory to direct GPR and
post-increment source pointer by 2

2

MOV [Rw], Rw Move direct word GPR to indirect memory 2

MOV [-Rw], Rw Pre-decrement destination pointer by 2 and move direct
word GPR to indirect memory

2

MOV [Rw], [Rw] Move indirect word memory to indirect memory 2

MOV [Rw +], [Rw] Move indirect word memory to indirect memory and
post-increment destination pointer by 2

2

MOV [Rw], [Rw +] Move indirect word memory to indirect memory and
post-increment source pointer by 2

2

MOV Rw,
[Rw + #data16]

Move indirect word memory by base plus constant to
direct GPR

4

MOV [Rw + #data16],
Rw

Move direct word GPR to indirect memory by base plus
constant

4

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-13 V 1.6, 2001-08

Data Movement (cont’d)

MOV [Rw], mem Move direct word memory to indirect memory 4

MOV mem, [Rw] Move indirect word memory to direct memory 4

MOV reg, mem Move direct word memory to direct register 4

MOV mem, reg Move direct word register to direct memory 4

MOVB Rb, Rb Move direct byte GPR to direct GPR 2

MOVB Rb, #data4 Move immediate byte data to direct GPR 2

MOVB reg, #data8 Move immediate byte data to direct register 4

MOVB Rb, [Rw] Move indirect byte memory to direct GPR 2

MOVB Rb, [Rw +] Move indirect byte memory to direct GPR and
post-increment source pointer by 1

2

MOVB [Rw], Rb Move direct byte GPR to indirect memory 2

MOVB [-Rw], Rb Pre-decrement destination pointer by 1 and move
direct byte GPR to indirect memory

2

MOVB [Rw], [Rw] Move indirect byte memory to indirect memory 2

MOVB [Rw +], [Rw] Move indirect byte memory to indirect memory and
post-increment destination pointer by 1

2

MOVB [Rw], [Rw +] Move indirect byte memory to indirect memory and
post-increment source pointer by 1

2

MOVB Rb,
[Rw + #data16]

Move indirect byte memory by base plus constant to
direct GPR

4

MOVB [Rw + #data16],
Rb

Move direct byte GPR to indirect memory by base plus
constant

4

MOVB [Rw], mem Move direct byte memory to indirect memory 4

MOVB mem, [Rw] Move indirect byte memory to direct memory 4

MOVB reg, mem Move direct byte memory to direct register 4

MOVB mem, reg Move direct byte register to direct memory 4

MOVBS Rw, Rb Move direct byte GPR with sign extension to direct
word GPR

2

MOVBS reg, mem Move direct byte memory with sign extension to direct
word register

4

MOVBS mem, reg Move direct byte register with sign extension to direct
word memory

4

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-14 V 1.6, 2001-08

Data Movement (cont’d)

MOVBZ Rw, Rb Move direct byte GPR with zero extension to direct
word GPR

2

MOVBZ reg, mem Move direct byte memory with zero extension to direct
word register

4

MOVBZ mem, reg Move direct byte register with zero extension to direct
word memory

4

Jump and Call Operations

JMPA cc, caddr Jump absolute if condition is met 4

JMPI cc, [Rw] Jump indirect if condition is met 2

JMPR cc, rel Jump relative if condition is met 2

JMPS seg, caddr Jump absolute to a code segment 4

JB bitaddr, rel Jump relative if direct bit is set 4

JBC bitaddr, rel Jump relative and clear bit if direct bit is set 4

JNB bitaddr, rel Jump relative if direct bit is not set 4

JNBS bitaddr, rel Jump relative and set bit if direct bit is not set 4

CALLA cc, caddr Call absolute subroutine if condition is met 4

CALLI cc, [Rw] Call indirect subroutine if condition is met 2

CALLR rel Call relative subroutine 2

CALLS seg, caddr Call absolute subroutine in any code segment 4

PCALL reg, caddr Push direct word register onto system stack and call
absolute subroutine

4

TRAP #trap7 Call interrupt service routine via immediate trap number 2

System Stack Operations

POP reg Pop direct word register from system stack 2

PUSH reg Push direct word register onto system stack 2

SCXT reg, #data16 Push direct word register onto system stack und update
register with immediate data

4

SCXT reg, mem Push direct word register onto system stack und update
register with direct memory

4

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-15 V 1.6, 2001-08

Return Operations

RET Return from intra-segment subroutine 2

RETS Return from inter-segment subroutine 2

RETP reg Return from intra-segment subroutine and pop direct
word register from system stack

2

RETI Return from interrupt service subroutine 2

System Control

SRST Software Reset 4

IDLE Enter Idle Mode 4

PWRDN Enter Power Down Mode
(supposes NMI-pin being low)

4

SRVWDT Service Watchdog Timer 4

DISWDT Disable Watchdog Timer 4

EINIT Signify End-of-Initialization on RSTOUT-pin 4

ATOMIC #irang2 Begin ATOMIC sequence *) 2

EXTR #irang2 Begin EXTended Register sequence *) 2

EXTP Rw, #irang2 Begin EXTended Page sequence *) 2

EXTP #pag10, #irang2 Begin EXTended Page sequence *) 4

EXTPR Rw, #irang2 Begin EXTended Page and Register sequence *) 2

EXTPR #pag10, #irang2 Begin EXTended Page and Register sequence *) 4

EXTS Rw, #irang2 Begin EXTended Segment sequence *) 2

EXTS #seg8, #irang2 Begin EXTended Segment sequence *) 4

EXTSR Rw, #irang2 Begin EXTended Segment and Register sequence *) 2

EXTSR #seg8, #irang2 Begin EXTended Segment and Register sequence *) 4

Miscellaneous

NOP Null operation 2

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-16 V 1.6, 2001-08

5.3 Instruction Opcodes

The following pages list the instructions of the C166S ordered by their hexadecimal
opcodes. This helps to identify specific instructions when reading executable code, ie.
during the debugging phase.

Notes for Opcode Lists

1. These instructions are encoded by means of additional bits in the operand field of the
instruction

x0H – x7H: Rw, #data3 or Rb, #data3
x8H – xBH: Rw, [Rw] or Rb, [Rw]
xCH – xFH: Rw, [Rw +] or Rb, [Rw +]

For these instructions only the lowest four GPRs, R0 to R3, can be used as indirect
address pointers.

2. These instructions are encoded by means of additional bits in the operand field of the
instruction

00xx.xxxxB: EXTS or ATOMIC
01xx.xxxxB: EXTP
10xx.xxxxB: EXTSR or EXTR
11xx.xxxxB: EXTPR

Notes on the JMPR Instructions

The condition code to be tested for the JMPR instructions is specified by the opcode.
Two mnemonic representation alternatives exist for some of the condition codes.

Notes on the BCLR and BSET Instructions

The position of the bit to be set or to be cleared is specified by the opcode. The operand
‘bitoff.n’ (n = 0 to 15) refers to a particular bit within a bit-addressable word.

Notes on the Undefined Opcodes

A hardware trap occurs when one of the undefined opcodes signified by ‘----’ is decoded
by the CPU.

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-17 V 1.6, 2001-08

Hex-
code

Num-
ber of
Bytes

Mnemonic Operands Hex-
code

Num-
ber of
Bytes

Mnemonic Operands

00 2 ADD Rw, Rw 20 2 SUB Rw, Rw
01 2 ADDB Rb, Rb 21 2 SUBB Rb, Rb
02 4 ADD reg, mem 22 4 SUB reg, mem
03 4 ADDB reg, mem 23 4 SUBB reg, mem
04 4 ADD mem, reg 24 4 SUB mem, reg

05 4 ADDB mem, reg 25 4 SUBB mem, reg
06 4 ADD reg, #data16 26 4 SUB reg, #data16
07 4 ADDB reg, #data8 27 4 SUBB reg, #data8
08 2 ADD Rw, [Rw +] or

Rw, [Rw] or
Rw, #data3

28 2 SUB Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3

09 2 ADDB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

29 2 SUBB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

0A 4 BFLDL bitoff, #mask8,
#data8

2A 4 BCMP bitaddr, bitaddr

0B 2 MUL Rw, Rw 2B 2 PRIOR Rw, Rw
0C 2 ROL Rw, Rw 2C 2 ROR Rw, Rw
0D 2 JMPR cc_UC, rel 2D 2 JMPR cc_EQ, rel or

cc_Z, rel
0E 2 BCLR bitoff.0 2E 2 BCLR bitoff.2
0F 2 BSET bitoff.0 2F 2 BSET bitoff.2
10 2 ADDC Rw, Rw 30 2 SUBC Rw, Rw
11 2 ADDCB Rb, Rb 31 2 SUBCB Rb, Rb
12 4 ADDC reg, mem 32 4 SUBC reg, mem
13 4 ADDCB reg, mem 33 4 SUBCB reg, mem
14 4 ADDC mem, reg 34 4 SUBC mem, reg
15 4 ADDCB mem, reg 35 4 SUBCB mem, reg
16 4 ADDC reg, #data16 36 4 SUBC reg, #data16
17 4 ADDCB reg, #data8 37 4 SUBCB reg, #data8
18 2 ADDC Rw, [Rw +] or

Rw, [Rw] or
Rw, #data3

38 2 SUBC Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3

19 2 ADDCB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

39 2 SUBCB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

1A 4 BFLDH bitoff, #mask8,
#data8

3A 4 BMOVN bitaddr, bitaddr

1B 2 MULU Rw, Rw 3B - - -
1C 2 ROL Rw, #data4 3C 2 ROR Rw, #data4
1D 2 JMPR cc_NET, rel 3D 2 JMPR cc_NE, rel or

cc_NZ, rel
1E 2 BCLR bitoff.1 3E 2 BCLR bitoff.3
1F 2 BSET bitoff.1 3F 2 BSET bitoff.3

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-18 V 1.6, 2001-08

Hex-
code

Num-
ber of
Bytes

Mnemonic Operands Hex-
code

Num-
ber of
Bytes

Mnemonic Operands

40 2 CMP Rw, Rw 60 2 AND Rw, Rw
41 2 CMPB Rb, Rb 61 2 ANDB Rb, Rb
42 4 CMP reg, mem 62 4 AND reg, mem
43 4 CMPB reg, mem 63 4 ANDB reg, mem
44 - - - 64 4 AND mem, reg

45 - - - 65 4 ANDB mem, reg
46 4 CMP reg, #data16 66 4 AND reg, #data16
47 4 CMPB reg, #data8 67 4 ANDB reg, #data8
48 2 CMP Rw, [Rw +] or

Rw, [Rw] or
Rw, #data3

68 2 AND Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3

49 2 CMPB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

69 2 ANDB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

4A 4 BMOV bitaddr, bitaddr 6A 4 BAND bitaddr, bitaddr

4B 2 DIV Rw 6B 2 DIVL Rw
4C 2 SHL Rw, Rw 6C 2 SHR Rw, Rw
4D 2 JMPR cc_V, rel 6D 2 JMPR cc_N, rel

4E 2 BCLR bitoff.4 6E 2 BCLR bitoff.6
4F 2 BSET bitoff.4 6F 2 BSET bitoff.6
50 2 XOR Rw, Rw 70 2 OR Rw, Rw
51 2 XORB Rb, Rb 71 2 ORB Rb, Rb
52 4 XOR reg, mem 72 4 OR reg, mem
53 4 XORB reg, mem 73 4 ORB reg, mem
54 4 XOR mem, reg 74 4 OR mem, reg
55 4 XORB mem, reg 75 4 ORB mem, reg
56 4 XOR reg, #data16 76 4 OR reg, #data16
57 4 XORB reg, #data8 77 4 ORB reg, #data8
58 2 XOR Rw, [Rw +] or

Rw, [Rw] or
Rw, #data3

78 2 OR Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3 1)

59 2 XORB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

79 2 ORB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

5A 4 BOR bitaddr, bitaddr 7A 4 BXOR bitaddr, bitaddr

5B 2 DIVU Rw 7B 2 DIVLU Rw
5C 2 SHL Rw, #data4 7C 2 SHR Rw, #data4
5D 2 JMPR cc_NV, rel 7D 2 JMPR cc_NN, rel

5E 2 BCLR bitoff.5 7E 2 BCLR bitoff.7
5F 2 BSET bitoff.5 7F 2 BSET bitoff.7

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-19 V 1.6, 2001-08

Hex-
code

Num-
ber of
Bytes

Mnemonic Operands Hex-
code

Num-
ber of
Bytes

Mnemonic Operands

80 2 CMPI1 Rw, #data4 A0 2 CMPD1 Rw, #data4
81 2 NEG Rw A1 2 NEGB Rb
82 4 CMPI1 Rw, mem A2 4 CMPD1 Rw, mem
83 4 CoXXX xx A3 4 CoXXX xx
84 4 MOV [Rw], mem A4 4 MOVB [Rw], mem

85 - - - A5 4 DISWDT
86 4 CMPI1 Rw, #data16 A6 4 CMPD1 Rw, #data16
87 4 IDLE A7 4 SRVWDT
88 2 MOV [-Rw], Rw A8 2 MOV Rw, [Rw]

89 2 MOVB [-Rw], Rb A9 2 MOVB Rb, [Rw]

8A 4 JB bitaddr, rel AA 4 JBC bitaddr, rel

8B - - - AB 2 CALLI cc, [Rw]
8C - - - AC 2 ASHR Rw, Rw
8D 2 JMPR cc_C, rel or

cc_ULT, rel
AD 2 JMPR cc_SGT, rel

8E 2 BCLR bitoff.8 AE 2 BCLR bitoff.10
8F 2 BSET bitoff.8 AF 2 BSET bitoff.10
90 2 CMPI2 Rw, #data4 B0 2 CMPD2 Rw, #data4
91 2 CPL Rw B1 2 CPLB Rb

92 4 CMPI2 Rw, mem B2 4 CMPD2 Rw, mem
93 4 - - B3 4 - -
94 4 MOV mem, [Rw] B4 4 MOVB mem, [Rw]

95 - - - B5 4 EINIT
96 4 CMPI2 Rw, #data16 B6 4 CMPD2 Rw, #data16
97 4 PWRDN B7 4 SRST

98 2 MOV Rw, [Rw+] B8 2 MOV [Rw], Rw
99 2 MOVB Rb, [Rw+] B9 2 MOVB [Rw], Rb
9A 4 JNB bitaddr, rel BA 4 JNBS bitaddr, rel

9B 2 TRAP #trap7 BB 2 CALLR rel
9C 2 JMPI cc, [Rw] BC 2 ASHR Rw, #data4

9D 2 JMPR cc_NC, rel or
cc_UGE, rel

BD 2 JMPR cc_SLE, rel

9E 2 BCLR bitoff.9 BE 2 BCLR bitoff.11
9F 2 BSET bitoff.9 BF 2 BSET bitoff.11

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-20 V 1.6, 2001-08

Hex-
code

Num-
ber of
Bytes

Mnemonic Operands Hex-
code

Num-
ber of
Bytes

Mnemonic Operands

C0 2 MOVBZ Rw, Rb E0 2 MOV Rw, #data4
C1 - - - E1 2 MOVB Rb, #data4
C2 4 MOVBZ reg, mem E2 4 PCALL reg, caddr
C3 4 - - E3 - - -
C4 4 MOV [Rw+#data16],

Rw
E4 4 MOVB [Rw+#data16],

Rb
C5 4 MOVBZ mem, reg E5 - - -
C6 4 SCXT reg, #data16 E6 4 MOV reg, #data16
C7 - - - E7 4 MOVB reg, #data8
C8 2 MOV [Rw], [Rw] E8 2 MOV [Rw], [Rw+]

C9 2 MOVB [Rw], [Rw] E9 2 MOVB [Rw], [Rw+]

CA 4 CALLA cc, addr EA 4 JMPA cc, caddr

CB 2 RET EB 2 RETP reg
CC 2 NOP EC 2 PUSH reg
CD 2 JMPR cc_SLT, rel ED 2 JMPR cc_UGT, rel

CE 2 BCLR bitoff.12 EE 2 BCLR bitoff.14
CF 2 BSET bitoff.12 EF 2 BSET bitoff.14
D0 2 MOVBS Rw, Rb F0 2 MOV Rw, Rw
D1 2 ATOMIC or

EXTR
#irang2 F1 2 MOVB Rb, Rb

D2 4 MOVBS reg, mem F2 4 MOV reg, mem
D3 4 - - F3 4 MOVB reg, mem
D4 4 MOV Rw,

[Rw + #data16]
F4 4 MOVB Rb,

[Rw + #data16]
D5 4 MOVBS mem, reg F5 - - -
D6 4 SCXT reg, mem F6 4 MOV mem, reg
D7 4 EXTP(R),

EXTS(R)
#pag10,#irang2
#seg8, #irang2

F7 4 MOVB mem, reg

D8 2 MOV [Rw+], [Rw] F8 - - -
D9 2 MOVB [Rw+], [Rw] F9 - - -
DA 4 CALLS seg, caddr FA 4 JMPS seg, caddr

DB 2 RETS FB 2 RETI
DC 2 EXTP(R),

EXTS(R)
Rw, #irang2 FC 2 POP reg

DD 2 JMPR cc_SGE, rel FD 2 JMPR cc_ULE, rel

DE 2 BCLR bitoff.13 FE 2 BCLR bitoff.15
DF 2 BSET bitoff.13 FF 2 BSET bitoff.15

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-21 V 1.6, 2001-08

5.4 Instruction Description

This chapter describes each instruction in details. The instructions are listed
alphabetically, and the description contains the following elements.

• Instruction Name: Specifies the mnemonic opcode of the instruction in oversized
bold lettering for easy reference. The mnemonics have been chosen with regard to the
particular operation performed by the instruction.

• Syntax: Specifies the mnemonic opcode and the required formal operands of the
instruction as used in the following subsection 'Operation'. There are instructions with
either none, one, two or three operands, which must be separated from each other by
commas:

MNEMONIC {op1 {,op2 {,op3 } } }

The syntax for the actual operands of an instruction depends on the selected addressing
mode. All of the available addressing modes are summarized at the end of each single
instruction description. In contrast to the syntax for the instructions described in the
following, the assembler provides much more flexibility in writing C166S programs (e.g.
by generic instructions and by automatically selecting appropriate addressing modes
whenever possible), and thus it eases the use of the instruction set. For more information
about this item please refer to the Assembler manual.

• Operation: This part presents a logical description of the operation performed by an
instruction as a symbolic formula or a high level language construct.

The following symbols are used to represent data movement, arithmetic or logical
operators.

Diadic operations: (opX) operator (opY)

← (opY) is MOVED into (opX)

+ (opX) is ADDED to (opY)

- (opY) is SUBTRACTED from (opX)

* (opX) is MULTIPLIED by (opY)

/ (opX) is DIVIDED by (opY)

∧ (opX) is logically ANDed with (opY)

∨ (opX) is logically ORed with (opY)

⊕ (opX) is logically EXCLUSIVELY ORed with (opY)

⇔ (opX) is COMPARED against (opY)

mod (opX) is divided MODULO (opY)

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-22 V 1.6, 2001-08

Monadic operations: operator (opX)

¬ (opX) is logically COMPLEMENTED

Parentheses indicate a method of the used operand addressing as follows:

opX Specifies the immediate constant value of opX

(opX) Specifies the contents of opX

(opX[n]) Specifies the contents of bit n of opX

((opX)) Specifies the contents of the contents of opX
(ie. opX is used as pointer to the actual operand)

The following operands notation will also be used in the operational description:

CP Context Pointer

CSP Code Segment Pointer

IP Instruction Pointer

MD Multiply/Divide register
(32 bits wide, consists of MDH and MDL)

MDL, MDH Multiply/Divide Low and High registers
(each 16 bit wide)

PSW Program Status Word

SP System Stack Pointer

SYSCON SYSCON Configuration register

C Carry condition flag in the PSW register

V Overflow condition flag in the PSW register

SGTDIS Segmentation Disable bit in the SYSCON register

count Temporary variable for an intermediate storage of
the number of shift or rotate cycles which remain
to complete the shift or rotate operation

tmp Temporary variable for an intermediate result

0, 1, 2,... Constant values due to the data format
of the specified operation

Data Types: This part specifies the particular data type according to the instruction.
Basically, the following data types are possible:

BIT, BYTE, WORD

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-23 V 1.6, 2001-08

Only instructions which extend byte data to word change data type. Note that the data
types mentioned in this subsection do not cover accesses to indirect address pointers or
to the system stack. These accesses are always performed with word data. Moreover,
no data type is specified for System Control Instructions and for those of the branch
instructions which do not access any explicitly addressed data.

• Description: This part provides a brief description of the action that is executed by
the respective instruction.

• Condition Code: The Condition code indicates that respective instruction is
executed, if the specified condition exists, and is skipped, if it does not. The table
below summarizes the 16 possible condition codes that can be used within Call and
Branch instructions. The table shows the abbreviations, the test that is executed for a
specific condition and a 4-bit number associated with condition code.

Condition
Code
Mnemonic cc

Test Description Condition Code
Number c

cc_UC 1 = 1 Unconditional 0H

cc_Z Z = 1 Zero 2H

cc_NZ Z = 0 Not zero 3H

cc_V V = 1 Overflow 4H

cc_NV V = 0 No overflow 5H

cc_N N = 1 Negative 6H

cc_NN N = 0 Not negative 7H

cc_C C = 1 Carry 8H

cc_NC C = 0 No carry 9H

cc_EQ Z = 1 Equal 2H

cc_NE Z = 0 Not equal 3H

cc_ULT C = 1 Unsigned less than 8H

cc_ULE (Z∨ C) = 1 Unsigned less than or equal FH

cc_UGE C = 0 Unsigned greater than or equal 9H

cc_UGT (Z∨ C) = 0 Unsigned greater than EH

cc_SLT (N⊕ V) = 1 Signed less than CH

cc_SLE (Z∨ (N⊕ V)) = 1 Signed less than or equal BH

cc_SGE (N⊕ V) = 0 Signed greater than or equal DH

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-24 V 1.6, 2001-08

• Condition Flags: This part reflects the state of the N, C, V, Z and E flags in the PSW
register which is the state after execution of the corresponding instruction, except if
the PSW register itself was specified as the destination operand of that instruction
(see Note).

The resulting state of the flags is represented by symbols as follows:

'*' The flag is set due to the following standard rules for the corresponding flag:

N = 1 : MSB of the result is set

N = 0 : MSB of the result is not set

C = 1 : Carry occurred during operation

C = 0 : No Carry occurred during operation

V = 1 : Arithmetic Overflow occurred during operation

V = 0 : No Arithmetic Overflow occurred during operation

Z = 1 : Result equals zero

Z = 0 : Result does not equal zero

E = 1 : Source operand represents the lowest negative number
(either 8000h for word data or 80h for byte data)

E = 0 : Source operand does not represent the lowest negative
number for the specified data type

'S' The flag is set due to rules which deviate from the described standard.
For more details see instruction pages (below) or the ALU status flags
description.

'-' The flag is not affected by the operation.

'0' The flag is cleared by the operation.

'NOR' The flag contains the logical NORing of the two specified bit operands.

'AND' The flag contains the logical ANDing of the two specified bit operands.

'OR' The flag contains the logical ORing of the two specified bit operands.

'XOR' The flag contains the logical XORing of the two specified bit operands.

cc_SGT (Z∨ (N⊕ V)) = 0 Signed greater than AH

cc_NET (Z∨ E) = 0 Not equal AND not end of table 1H

Condition
Code
Mnemonic cc

Test Description Condition Code
Number c

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-25 V 1.6, 2001-08

’B’ The flag contains the original value of the specified bit operand.

’B’ The flag contains the complemented value of the specified bit operand.

Note: If the PSW register was specified as the destination operand of an instruction, the
condition flags can not be interpreted as just described, because the PSW register
is modified depending on the data format of the instruction as follows:
For word operations, the PSW register is overwritten with the word result. For byte
operations, the non-addressed byte is cleared and the addressed byte is
overwritten. For bit or bit-field operations on the PSW register, only the specified
bits are modified. Supposed that the condition flags were not selected as
destination bits, they stay unchanged. This means that they keep the state after
execution of the previous instruction.
In any case, if the PSW was the destination operand of an instruction, the PSW
flags do NOT represent the condition flags of this instruction as usual.

• Addressing Modes: This part specifies which combinations of different addressing
modes are available for the required operands. The selected addressing mode
combination is mostly specified by the opcode of the corresponding instruction.
However, there are some arithmetic and logical instructions where the addressing
mode combination is not specified by the (identical) opcodes but by particular bits
within the operand field.

The addressing mode entries are made up of three elements:

Mnemonic Shows accepted operands for the respective instruction.

Format This part specifies the format of the instructions as it is represented in the
assembler listing. The Figure 5-1 shows the relation between the instruction format
representation of the assembler and the corresponding internal organization of such an
instruction format (N = nibble = 4 bits).

The following symbols are used to describe the instruction formats:

00H through FFH: Instruction Opcodes

0, 1 : Constant Values

:.... : Each of the 4 characters immediately following a colon represents a single bit

:..ii : 2-bit short GPR address (Rwi)

SS : Code segment number

:..## : 2-bit immediate constant (#irang2)

:.### : 3-bit immediate constant (#data3)

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-26 V 1.6, 2001-08

...#:# : 5-bit immediate constant (#data5)

c : 4-bit condition code specification (cc)

n : 4-bit short GPR address (Rwn or Rbn)

m : 4-bit short GPR address (Rwm or Rbm)

q : 4-bit position of the source bit within the word specified by QQ

z : 4-bit position of the destination bit within the word specified by ZZ

: 4-bit immediate constant (#data4)

t:ttt0 : 7-bit trap number (#trap7)

QQ : 8-bit word address of the source bit (bitoff)

rr : 8-bit relative target address word offset (rel)

RR : 8-bit word address reg

ZZ : 8-bit word address of the destination bit (bitoff)

: 8-bit immediate constant (#data8)

xx : 8-bit immediate constant (represented by #data16, byte xx is not significant)

@@ : 8-bit immediate constant (#mask8)

MMMM : 16-bit address (mem or caddr; low byte, high byte)

: 16-bit immediate constant (#data16; low byte, high byte)

Number of Bytes All C166S instructions are either 2 or 4 bytes. According to the
instruction size, all instructions can be classified as either single word or double word
instructions.

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-27 V 1.6, 2001-08

Figure 5-1 Instruction Format Representation

The following pages of this section contain a detailed description of each instruction in
alphabetical order.

Bits in ascending order LSBMSB

Representation in the
Assembler Listing:

N2N1 N4N3 N6N5 N8N7

High Byte 2nd word

Low Byte 2nd word

High Byte 1st word

Low Byte 1st word

Internal Organization:

N8 N7 N6 N5 N4 N3 N2 N1

User’s Manual
C166S V1 SubSystem

Instruction Set

User’s Manual 5-28 V 1.6, 2001-08

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-1 V 1.6, 2001-08

6 Detailed Instruction Set
The following pages of this section contain a detailed description of each instruction in
alphabetical order.

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-2 V 1.6, 2001-08

ADD Integer Addition ADD
Group Arithmetic Instructions

Syntax ADD op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation
(op1) ← (op1) + (op2)

Description
Performs a 2’s complement binary addition of the source operand specified by op2 and
the destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the word data
type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * * * *

Mnemonic Format Bytes
ADD Rwn , #data3 08 n:0### 2

ADD Rwn , Rwm 00 nm 2

ADD Rwn , [Rwi+] 08 n:11ii 2

ADD Rwn , [Rwi] 08 n:10ii 2

ADD mem , reg 04 RR MM MM 4

ADD reg , #data16 06 RR ## ## 4

ADD reg , mem 02 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-3 V 1.6, 2001-08

ADDB Integer Addition ADDB
Group Arithmetic Instructions

Syntax ADDB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation
(op1) ← (op1) + (op2)

Description
Performs a 2’s complement binary addition of the source operand specified by op2 and
the destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the result cannot be
represented in the byte data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the byte data
type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * * * *

Mnemonic Format Bytes
ADDB Rbn , #data3 09 n:0### 2

ADDB Rbn , Rbm 01 nm 2

ADDB Rbn , [Rwi+] 09 n:11ii 2

ADDB Rbn , [Rwi] 09 n:10ii 2

ADDB mem , reg 05 RR MM MM 4

ADDB reg , #data8 07 RR ## xx 4

ADDB reg , mem 03 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-4 V 1.6, 2001-08

ADDC Integer Addition with Carry ADDC
Group Arithmetic Instructions

Syntax ADDC op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation
(op1) ← (op1) + (op2) + (C)

Description
Performs a 2’s complement binary addition of the source operand specified by op2, the
destination operand specified by op1 and the previously generated carry bit. The sum is
then stored in op1. This instruction can be used to perform multiple precision arithmetic.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero and previous Z flag was set. Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the word data
type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* S * * *

Mnemonic Format Bytes
ADDC Rwn , #data3 18 n:0### 2

ADDC Rwn , Rwm 10 nm 2

ADDC Rwn , [Rwi+] 18 n:11ii 2

ADDC Rwn , [Rwi] 18 n:10ii 2

ADDC mem , reg 14 RR MM MM 4

ADDC reg , #data16 16 RR ## ## 4

ADDC reg , mem 12 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-5 V 1.6, 2001-08

ADDCB Integer Addition with Carry ADDCB
Group Arithmetic Instructions

Syntax ADDCB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation
(op1) ← (op1) + (op2) + (C)

Description
Performs a 2’s complement binary addition of the source operand specified by op2, the
destination operand specified by op1 and the previously generated carry bit. The sum is
then stored in op1. This instruction can be used to perform multiple precision arithmetic.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero and previous Z flag was set. Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the result cannot be
represented in the byte data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the byte data
type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* S * * *

Mnemonic Format Bytes
ADDCB Rbn , #data3 19 n:0### 2

ADDCB Rbn , Rbm 11 nm 2

ADDCB Rbn , [Rwi+] 19 n:11ii 2

ADDCB Rbn , [Rwi] 19 n:10ii 2

ADDCB mem , reg 15 RR MM MM 4

ADDCB reg , #data8 17 RR ## xx 4

ADDCB reg , mem 13 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-6 V 1.6, 2001-08

AND Logical AND AND
Group Logical Instructions

Syntax AND op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation
(op1) ← (op1) ∧ (op2)

Description
Performs a bitwise logical AND of the source operand specified by op2 and the
destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * 0 0 *

Mnemonic Format Bytes
AND Rwn , #data3 68 n:0### 2

AND Rwn , Rwm 60 nm 2

AND Rwn , [Rwi+] 68 n:11ii 2

AND Rwn , [Rwi] 68 n:10ii 2

AND mem , reg 64 RR MM MM 4

AND reg , #data16 66 RR ## ## 4

AND reg , mem 62 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-7 V 1.6, 2001-08

ANDB Logical AND ANDB
Group Logical Instructions

Syntax ANDB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation
(op1) ← (op1) ∧ (op2)

Description
Performs a bitwise logical AND of the source operand specified by op2 and the
destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * 0 0 *

Mnemonic Format Bytes
ANDB Rbn , #data3 69 n:0### 2

ANDB Rbn , Rbm 61 nm 2

ANDB Rbn , [Rwi+] 69 n:11ii 2

ANDB Rbn , [Rwi] 69 n:10ii 2

ANDB mem , reg 65 RR MM MM 4

ANDB reg , #data8 67 RR ## xx 4

ANDB reg , mem 63 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-8 V 1.6, 2001-08

ASHR Arithmetic Shift Right ASHR
Group Shift and Rotate Instructions

Syntax ASHR op1, op2

Source Operand(s) op1 → WORD
op2 → shift counter

Destination Operand(s) op1 → WORD

Operation
(count) ← (op2)
(V) ← 0
(C) ← 0
DO WHILE ((count) ≠ 0)

(V) ← (C) ∨ (V)
(C) ← (op1[0])
(op1[n]) ← (op1[n+1]) [n=0...14]
(count) ← (count) - 1

END WHILE

Description
Arithmetically shifts the destination word operand op1 right by the number of times as
specified by the source operand op2. To preserve the sign of the original operand op1,
the most significant bits of the result are filled with zeros if the original most significant
bit was a 0 or with ones if the original most significant bit was a 1. The Overflow flag is
used as a Rounding flag. The least significant bit is shifted into the Carry. Only shift
values between 0 and 15 are allowed. When using a GPR as the count control, only the
least significant 4 bits are used.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the shift operation a 1 is shifted out of the carry flag.
Cleared in case of a shift count equal 0.

C The carry flag is set according to the last least significant bit shifted out of
op1. Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

E Z V C N
0 * * * *

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-9 V 1.6, 2001-08

Encoding

Mnemonic Format Bytes
ASHR Rwn , #data4 BC #n 2

ASHR Rwn , Rwm AC nm 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-10 V 1.6, 2001-08

ATOMIC Begin ATOMIC Sequence ATOMIC
Group System Control Instructions

Syntax ATOMIC op1

Source Operand(s) op1 → 2-bit instruction counter

Destination Operand(s) none

Operation
(count) ← (op1) [1 ≤ op1 ≤ 4]
Disable interrupts and Class A traps
DO WHILE ((count) ≠ 0 AND Class_B_Trap_Condition ≠ TRUE)

Next Instruction
(count) ← (count) - 1

END WHILE
(count) ← 0
Enable interrupts and traps

Description
Causes standard and PEC interrupts and class A hardware traps to be disabled for a
specified number of instructions. The ATOMIC instruction becomes immediately active.
No NOPs are required for normal ATOMIC execution. Depending on the value of op1,
the period of validity of the ATOMIC sequence extends over the sequence of the next 1
to 4 instructions being executed after the ATOMIC instruction. All instructions requiring
multiple cycles or hold states to be executed are regarded as one instruction in this
sense. Any instruction type can be used with the ATOMIC instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
ATOMIC #irang2 D1 :00##-0 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-11 V 1.6, 2001-08

BAND Bit Logical AND BAND
Group Boolean Bit Manipulation Instructions

Syntax BAND op1, op2

Source Operand(s) op1, op2 → BIT

Destination Operand(s) op1 → BIT

Operation
(op1) ← (op1) ∧ (op2)

Description
Performs a single bit logical AND of the source bit specified by op2 and the destination
bit specified by op1. The result is then stored in op1.

CPU Flags

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Encoding

E Z V C N
0 NOR OR AND XOR

Mnemonic Format Bytes
BAND bitaddrZ.z , bitaddrQ.q 6A QQ ZZ qz 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-12 V 1.6, 2001-08

BCLR Bit Clear BCLR
Group Boolean Bit Manipulation Instructions

Syntax BCLR op1

Source Operand(s) none

Destination Operand(s) op1 → BIT

Operation
(op1) ← 0

Description
Clears the bit specified by op1. This instruction is primarily used for peripheral and
system control.

CPU Flags

E Always cleared.

Z Contains the logical negation of the previous state of the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

Encoding

E Z V C N
0 B 0 0 B

Mnemonic Format Bytes
BCLR bitaddrQ.q qE QQ 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-13 V 1.6, 2001-08

BCMP Bit to Bit Compare BCMP
Group Boolean Bit Manipulation Instructions

Syntax BCMP op1, op2

Source Operand(s) op1, op2 → BIT

Destination Operand(s) none

Operation
(op1) ⇔ (op2)

Description
Performs a single bit comparison of the source bit specified by op1 and the source bit
specified by op2. No result is written by this instruction. Only the flags are updated.

CPU Flags

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Encoding

E Z V C N
0 NOR OR AND XOR

Mnemonic Format Bytes
BCMP bitaddrZ.z , bitaddrQ.q 2A QQ ZZ qz 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-14 V 1.6, 2001-08

BFLDH Bit Field High Byte BFLDH
Group Boolean Bit Manipulation Instructions

Syntax BFLDH op1, op2, op3

Source Operand(s) op1 → WORD
op2, op3 → BYTE

Destination Operand(s) op1 → WORD

Operation
(count) ← 0
DO WHILE ((count) <8)

IF (op2[(count)] = 1)
(op1[(count) + 8]) ← op3[(count)]

ENDIF
(count) ← (count) + 1
END WHILE

Description
Replaces those bits in the high byte of the destination word operand op1 which are
selected by an ’1’ in the mask specified by op2 with the bits at the corresponding
positions in “op3”.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
0 * 0 0 *

Mnemonic Format Bytes
BFLDH bitoffQ , #mask8 , #data8 1A QQ ## @@ 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-15 V 1.6, 2001-08

BFLDL Bit Field Low Byte BFLDL
Group Boolean Bit Manipulation Instructions

Syntax BFLDL op1, op2, op3

Source Operand(s) op1 → WORD
op2, op3 → BYTE

Destination Operand(s) op1 → WORD

Operation
(count) ← 0
DO WHILE ((count) <8)

IF op2[(count)] = 1
(op1[(count)]) ← op3[(count)]

ENDIF
(count) ← (count) + 1
END WHILE

Description
Replaces those bits in the low byte of the destination word operand op1 which are
selected by an ’1’ in the mask specified by op2 with the bits at the corresponding
positions in “op3”.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
0 * 0 0 *

Mnemonic Format Bytes
BFLDL bitoffQ , #mask8 , #data8 0A QQ @@ ## 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-16 V 1.6, 2001-08

BMOV Bit to Bit Move BMOV
Group Boolean Bit Manipulation Instructions

Syntax BMOV op1, op2

Source Operand(s) op2 → BIT

Destination Operand(s) op1 → BIT

Operation
(op1) ← (op2)

Description
Moves a single bit from the source operand specified by op2 into the destination
operand specified by op1. The source bit is examined and the flags are updated
accordingly.

CPU Flags

E Always cleared.

Z Contains the logical negation of the source bit.

V Always cleared.

C Always cleared.

N Contains the state of the source bit.

Encoding

E Z V C N
0 B 0 0 B

Mnemonic Format Bytes
BMOV bitaddrZ.z , bitaddrQ.q 4A QQ ZZ qz 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-17 V 1.6, 2001-08

BMOVN Bit to Bit Move and Negate BMOVN
Group Boolean Bit Manipulation Instructions

Syntax BMOVN op1, op2

Source Operand(s) op2 → BIT

Destination Operand(s) op1 → BIT

Operation
(op1) ← ¬ (op2)

Description
Moves the complement of a single bit from the source operand specified by op2 into the
destination operand specified by op1. The source bit is examined and the flags are
updated accordingly.

CPU Flags

E Always cleared.

Z Contains the logical negation of the source bit.

V Always cleared.

C Always cleared.

N Contains the state of the source bit.

Encoding

E Z V C N
0 B 0 0 B

Mnemonic Format Bytes
BMOVN bitaddrZ.z , bitaddrQ.q 3A QQ ZZ qz 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-18 V 1.6, 2001-08

BOR Bit Logical OR BOR
Group Boolean Bit Manipulation Instructions

Syntax BOR op1, op2

Source Operand(s) op1, op2 → BIT

Destination Operand(s) op1 → BIT

Operation
(op1) ← (op1) ∨ (op2)

Description
Performs a single bit logical OR of the source bit specified by op2 and the destination
bit specified by op1. The result is then stored in op1.

CPU Flags

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Encoding

E Z V C N
0 NOR OR AND XOR

Mnemonic Format Bytes
BOR bitaddrZ.z , bitaddrQ.q 5A QQ ZZ qz 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-19 V 1.6, 2001-08

BSET Bit Set BSET
Group Boolean Bit Manipulation Instructions

Syntax BSET op1

Source Operand(s) none

Destination Operand(s) op1 → BIT

Operation
(op1) ← 1

Description
Sets the bit specified by op1.

CPU Flags

E Always cleared.

Z Contains the logical negation of the previous state of the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

Encoding

E Z V C N
0 B 0 0 B

Mnemonic Format Bytes
BSET bitaddrQ.q qF QQ 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-20 V 1.6, 2001-08

BXOR Bit Logical XOR BXOR
Group Boolean Bit Manipulation Instructions

Syntax BXOR op1, op2

Source Operand(s) op1, op2 → BIT

Destination Operand(s) op1 → BIT

Operation
(op1) ← (op1) ⊕ (op2)

Description
Performs a single bit logical EXCLUSIVE OR of the source bit specified by op2 and the
destination bit specified by op1. The result is then stored in op1.

CPU Flags

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Encoding

E Z V C N
0 NOR OR AND XOR

Mnemonic Format Bytes
BXOR bitaddrZ.z , bitaddrQ.q 7A QQ ZZ qz 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-21 V 1.6, 2001-08

CALLA Call Subroutine Absolute CALLA
Group Call Instructions

Syntax CALLA op1, op2

Source Operand(s) op1 → extended condition code
op2 → 16-bit address offset

Destination Operand(s) none

Operation
IF (op1) THEN

(SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← op2

ELSE
next instruction

END IF

Description
If the condition specified by op1 is met, a branch to the absolute memory location
specified by the second operand op2 is taken. The value of the instruction pointer IP is
placed into the system stack. Because the IP always points to the instruction following
the branch instruction, the value stored in the system stack represents the return
address of the calling routine. If the condition is not met, no action is taken and the next
instruction is executed normally.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
CALLA xcc , caddr CA d00a MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-22 V 1.6, 2001-08

CALLI Call Subroutine Indirect CALLI
Group Call Instructions

Syntax CALLI op1, op2

Source Operand(s) op1 → condition code
op2 → 16-bit address offset

Destination Operand(s) none

Operation
IF (op1) THEN

(SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← op2

ELSE
next instruction

END IF

Description
If the condition specified by op1 is met, a branch to the location specified indirectly by
the second operand op2 is taken. The value of the instruction pointer IP is placed onto
the system stack. Because the IP always points to the instruction following the branch
instruction, the value stored in the system stack represents the return address of the
calling routine. If the condition is not met, no action is taken and the next instruction is
executed normally.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
CALLI cc , [Rwn] AB cn 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-23 V 1.6, 2001-08

CALLR Call Subroutine Relative CALLR
Group Call Instructions

Syntax CALLR op1

Source Operand(s) op1 → 8-bit signed displacement

Destination Operand(s) none

Operation
(SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← (IP) + 2*sign_extend(op1)

Description
A branch is taken to the location specified by the instruction pointer IP plus the relative
displacement op1. The displacement is a two’s complement number which is sign
extended and counts the relative distance in words. The value of the instruction pointer
(IP) is placed into the system stack. Because the IP always points to the instruction
following the branch instruction, the value stored in the system stack represents the
return address of the calling routine. The value of the IP used in the target address
calculation is the address of the instruction following the CALLR instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
CALLR rel BB rr 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-24 V 1.6, 2001-08

CALLS Call Inter-Segment Subroutine CALLS
Group Call Instructions

Syntax CALLS op1, op2

Source Operand(s) op1 → segment number
op2 → 16-bit address offset

Destination Operand(s) none

Operation
(SP) ← (SP) - 2
((SP)) ← (CSP)
(SP) ← (SP) - 2
((SP)) ← (IP)
(CSP) ← op1
(IP) ← op2

Description
A branch is taken to the absolute location specified by op2 within the segment specified
by op1. The previous value of the CSP is placed into the system stack to insure correct
return to the calling segment. The value of the instruction pointer (IP) is also placed into
the system stack. Because the IP always points to the instruction following the branch
instruction, the value stored on the system stack represents the return address to the
calling routine.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
CALLS seg , caddr DA SS MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-25 V 1.6, 2001-08

CMP Integer Compare CMP
Group Boolean Bit Manipulation Instructions

Syntax CMP op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) none

Operation
(op1) ⇔ (op2)

Description
The source operand specified by op1 is compared to the source operand specified by
op2 by performing a 2’s complement binary subtraction of op2 from op1. The flags are
set according to the rules of subtraction. The operands remain unchanged.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * * S *

Mnemonic Format Bytes
CMP Rwn , #data3 48 n:0### 2

CMP Rwn , Rwm 40 nm 2

CMP Rwn , [Rwi+] 48 n:11ii 2

CMP Rwn , [Rwi] 48 n:10ii 2

CMP reg , #data16 46 RR ## ## 4

CMP reg , mem 42 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-26 V 1.6, 2001-08

CMPB Integer Compare CMPB
Group Boolean Bit Manipulation Instructions

Syntax CMPB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) none

Operation
(op1) ⇔ (op2)

Description
The source operand specified by op1 is compared to the source operand specified by
op2 by performing a 2’s complement binary subtraction of op2 from op1. The flags are
set according to the rules of subtraction. The operands remain unchanged.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the byte data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * * S *

Mnemonic Format Bytes
CMPB Rbn , #data3 49 n:0### 2

CMPB Rbn , Rbm 41 nm 2

CMPB Rbn , [Rwi+] 49 n:11ii 2

CMPB Rbn , [Rwi] 49 n:10ii 2

CMPB reg , #data8 47 RR ## xx 4

CMPB reg , mem 43 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-27 V 1.6, 2001-08

CMPD1 Integer Compare and Decrement by 1 CMPD1
Group Compare and Loop Control Instructions

Syntax CMPD1 op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation
(op1) ⇔ (op2)
(op1) ← (op1) - 1

Description
This instruction is used to enhance the performance and flexibility of loops. The source
operand specified by op1 is compared to the source operand specified by op2 by
performing a 2’s complement binary subtraction of op2 from op1. Operand op1 may
specify ONLY GPR registers. Once the subtraction has completed, the operand op1 is
decremented by one. Using the set flags, a branch instruction can then be used in
conjunction with this instruction to form common high level language FOR loops of any
range.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * * S *

Mnemonic Format Bytes
CMPD1 Rwn , #data16 A6 Fn ## ## 4

CMPD1 Rwn , #data4 A0 #n 2

CMPD1 Rwn , mem A2 Fn MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-28 V 1.6, 2001-08

CMPD2 Integer Compare and Decrement by 2 CMPD2
Group Compare and Loop Control Instructions

Syntax CMPD2 op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation
(op1) ⇔ (op2)
(op1) ← (op1) - 2

Description
This instruction is used to enhance the performance and flexibility of loops. The source
operand specified by op1 is compared to the source operand specified by op2 by
performing a 2’s complement binary subtraction of op2 from op1. Operand op1 may
specify ONLY GPR registers. Once the subtraction has completed, the operand op1 is
decremented by two. Using the set flags, a branch instruction can then be used in
conjunction with this instruction to form common high level language FOR loops of any
range.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * * S *

Mnemonic Format Bytes
CMPD2 Rwn , #data16 B6 Fn ## ## 4

CMPD2 Rwn , #data4 B0 #n 2

CMPD2 Rwn , mem B2 Fn MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-29 V 1.6, 2001-08

CMPI1 Integer Compare and Increment by 1 CMPI1
Group Compare and Loop Control Instructions

Syntax CMPI1 op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation
(op1) ⇔ (op2)
(op1) ← (op1) + 1

Description
This instruction is used to enhance the performance and flexibility of loops. The source
operand specified by op1 is compared to the source operand specified by op2 by
performing a 2’s complement binary subtraction of op2 from op1. Operand op1 may
specify ONLY GPR registers. Once the subtraction has completed, the operand op1 is
incremented by one. Using the set flags, a branch instruction can then be used in
conjunction with this instruction to form common high level language FOR loops of any
range.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * * S *

Mnemonic Format Bytes
CMPI1 Rwn , #data16 86 Fn ## ## 4

CMPI1 Rwn , #data4 80 #n 2

CMPI1 Rwn , mem 82 Fn MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-30 V 1.6, 2001-08

CMPI2 Integer Compare and Increment by 2 CMPI2
Group Compare and Loop Control Instructions

Syntax CMPI2 op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation
(op1) ⇔ (op2)
(op1) ← (op1) + 2

Description
This instruction is used to enhance the performance and flexibility of loops. The source
operand specified by op1 is compared to the source operand specified by op2 by
performing a 2’s complement binary subtraction of op2 from op1. Operand op1 may
specify ONLY GPR registers. Once the subtraction has completed, the operand op1 is
incremented by two. Using the set flags, a branch instruction can then be used in
conjunction with this instruction to form common high level language FOR loops of any
range.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * * S *

Mnemonic Format Bytes
CMPI2 Rwn , #data16 96 Fn ## ## 4

CMPI2 Rwn , #data4 90 #n 2

CMPI2 Rwn , mem 92 Fn MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-31 V 1.6, 2001-08

CPL Integer One’s Complement CPL
Group Arithmetic Instructions

Syntax CPL op1

Source Operand(s) op1 → WORD

Destination Operand(s) op1 → WORD

Operation
(op1) ← ¬ (op1)

Description
Performs a 1’s complement of the source operand specified by op1. The result is stored
back into op1.

CPU Flags

E Set if the value of op1 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * 0 0 *

Mnemonic Format Bytes
CPL Rwn 91 n0 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-32 V 1.6, 2001-08

CPLB Integer One’s Complement CPLB
Group Arithmetic Instructions

Syntax CPLB op1

Source Operand(s) op1 → BYTE

Destination Operand(s) op1 → BYTE

Operation
(op1) ← ¬ (op1)

Description
Performs a 1’s complement of the source operand specified by op1. The result is stored
back into op1.

CPU Flags

E Set if the value of op1 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * 0 0 *

Mnemonic Format Bytes
CPLB Rbn B1 n0 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-33 V 1.6, 2001-08

DISWDT Disable Watchdog Timer DISWDT
Group System Control Instructions

Syntax DISWDT

Source Operand(s) none

Destination Operand(s) none

Operation
Disable the watchdog timer

Description
This instruction disables the watchdog timer. If the WDTCTL bit is cleared, the DISWDT
instruction can be executed at any time between the Reset and the first execution of
either EINIT or SRVWDT. Once either an EINIT or a SRVWDT has been executed, the
DISWDT instruction will have no effect. If the WDTCTL bit is set, the DISWDT
instruction can always be executed regardless of the execution of EINIT or SRVWDT.
To insure that this instruction is not accidentally executed, it is implemented as a
protected instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
DISWDT A5 5A A5 A5 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-34 V 1.6, 2001-08

DIV 16-by-16 Signed Division DIV
Group Arithmetic Instructions

Syntax DIV op1

Source Operand(s) op1 → WORD
MDL → WORD

Destination Operand(s) MD → DOUBLEWORD

Operation
(MDL) ← (MDL) / (op1)
(MDH) ← (MDL) mod (op1)

Description
Performs a signed 16-bit by 16-bit division of the low order word stored in the MD
register by the source word operand op1. The signed quotient is then stored in the low
order word of the MD register (MDL) and the remainder is stored in the high order word
of the MD register (MDH).

CPU Flags

E Always cleared.

Z Set if quotient, stored in the MDL register, equals zero. Cleared
otherwise. Undefined if the V flag is set.

V Set if an arithmetic overflow occurred, i.e. the quotient cannot be
represented in a word data type, or if the divisor op1 was zero. Cleared
otherwise.

C Always cleared.

N Set if the most significant bit of the quotient, stored in the MDL register, is
set. Cleared otherwise. Undefined if the V flag is set.

Encoding

E Z V C N
0 * * 0 *

Mnemonic Format Bytes
DIV Rwn 4B nn 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-35 V 1.6, 2001-08

DIVL 32-by-16 Signed Division DIVL
Group Arithmetic Instructions

Syntax DIVL op1

Source Operand(s) op1 → WORD
MD → DOUBLEWORD

Destination Operand(s) MD → DOUBLEWORD

Operation
(MDL) ← (MD) / (op1)
(MDH) ← (MD) mod (op1)

Description
Performs an extended signed 32-bit by 16-bit division of the two words stored in the MD
register by the source word operand op1. The signed quotient is then stored in the low
order word of the MD register (MDL) and the remainder is stored in the high order word
of the MD register (MDH).

CPU Flags

E Always cleared.

Z Set if quotient, stored in the MDL register, equals zero. Cleared
otherwise. Undefined if the V flag is set.

V Set if an arithmetic overflow occurred, i.e. the quotient cannot be
represented in a word data type, or if the divisor op1 was zero. Cleared
otherwise.

C Always cleared.

N Set if the most significant bit of the quotient, stored in the MDL register, is
set. Cleared otherwise. Undefined if the V flag is set.

Encoding

E Z V C N
0 * * 0 *

Mnemonic Format Bytes
DIVL Rwn 6B nn 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-36 V 1.6, 2001-08

DIVLU 32-by-16 Unsigned Division DIVLU
Group Arithmetic Instructions

Syntax DIVLU op1

Source Operand(s) op1 → WORD
MD → DOUBLEWORD

Destination Operand(s) MD → DOUBLEWORD

Operation
(MDL) ← (MD) / op1
(MDH) ← (MD) mod (op1)

Description
Performs an extended unsigned 32-bit by 16-bit division of the two words stored in the
MD register by the source word operand op1. The unsigned quotient is then stored in
the low order word of the MD register (MDL) and the remainder is stored in the high
order word of the MD register (MDH).

CPU Flags

E Always cleared.

Z Set if quotient, stored in the MDL register, equals zero. Cleared
otherwise. Undefined if the V flag is set.

V Set if an arithmetic overflow occurred, i.e. the quotient cannot be
represented in a word data type, or if the divisor op1 was zero. Cleared
otherwise.

C Always cleared.

N Set if the most significant bit of the quotient, stored in the MDL register, is
set. Cleared otherwise. Undefined if the V flag is set.

Encoding

E Z V C N
0 * * 0 *

Mnemonic Format Bytes
DIVLU Rwn 7B nn 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-37 V 1.6, 2001-08

DIVU 16-by-16 Unsigned Division DIVU
Group Arithmetic Instructions

Syntax DIVU op1

Source Operand(s) op1 → WORD
MDL → WORD

Destination Operand(s) MD → DOUBLEWORD

Operation
(MDL) ← (MDL) / (op1)
(MDH) ← (MDL) mod (op1)

Description
Performs an unsigned 16-bit by 16-bit division of the low order word stored in the MD
register by the source word operand op1. The unsigned quotient is then stored in the
low order word of the MD register (MDL) and the remainder is stored in the high order
word of the MD register (MDH).

CPU Flags

E Always cleared.

Z Set if quotient, stored in the MDL register, equals zero. Cleared
otherwise. Undefined if the V flag is set.

V Set if the divisor op1 was zero.

C Always cleared.

N Set if the most significant bit of the quotient, stored in the MDL register, is
set. Cleared otherwise. Undefined if the V flag is set.

Encoding

E Z V C N
0 * * 0 *

Mnemonic Format Bytes
DIVU Rwn 5B nn 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-38 V 1.6, 2001-08

EINIT End of Initialization EINIT
Group System Control Instructions

Syntax EINIT

Source Operand(s) none

Destination Operand(s) none

Operation
End of Initialization

Description
After a reset, the reset output pin RSTOUT is pulled low. It remains low until the EINIT
instruction has been executed at which time it goes high. This enables the software to
signal the external circuitry that it has successfully initialized the microcontroller.
Execution of the Disable Watchdog Timer (DISWDT) instruction after the execution of
the EINIT instruction has no effect. To insure that this instruction is not accidentally
executed, it is implemented as a protected instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
EINIT B5 4A B5 B5 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-39 V 1.6, 2001-08

EXTP Begin EXTended Page Sequence EXTP
Group System Control Instructions

Syntax EXTP op1, op2

Source Operand(s) op1 → 10-bit page number
op2 → 2-bit instruction counter

Destination Operand(s) none

Operation
(count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Page ← (op1)
DO WHILE ((count) ≠ 0 AND Class_B_Trap_Condition ≠ TRUE)

Next Instruction
(count) ← (count) - 1

END WHILE
(count) ← 0
Data_Page ← (DPPx)
Enable interrupts and traps

Description
Overrides the standard DPP addressing scheme of the long and indirect addressing
modes for a specified number of instructions. During their execution, both standard and
PEC interrupts and class A hardware traps are locked. The EXTP instruction becomes
immediately active such that no additional NOPs are required. For any long (’mem’) or
indirect ([...]) address in the EXTP instruction sequence, the 10-bit page number
(address bits A23-A14) is not determined by the contents of a DPP register but by the
value of op1 itself. The 14-bit page offset (address bits A13-A0) is derived from the long
or indirect address as usual. The value of op2 defines the length of the effected
instruction sequence.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

E Z V C N
- - - - -

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-40 V 1.6, 2001-08

Encoding

Mnemonic Format Bytes
EXTP #pag , #irang2 D7 :01##-0 pp 0:00pp 4

EXTP Rwm , #irang2 DC :01##-m 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-41 V 1.6, 2001-08

EXTPR Begin EXTended Page and Register Sequence EXTPR
Group System Control Instructions

Syntax EXTPR op1, op2

Source Operand(s) op1 → 10-bit page number
op2 → 2-bit instruction counter

Destination Operand(s) none

Operation
(count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Page ← (op1)
SFR_range ← Extended
DO WHILE ((count) ≠ 0 AND Class_B_Trap_Condition ≠ TRUE)

Next Instruction
(count) ← (count) - 1

END WHILE
(count) ← 0
Data_Page ← (DPPx)
SFR_range ← Standard
Enable interrupts and traps

Description
Overrides the standard DPP addressing scheme of the long and indirect addressing
modes and causes all SFR or SFR bit accesses via the ’reg’, ’bitoff’ or ’bitaddr’
addressing modes being made to the Extended SFR space for a specified number of
instructions. During their execution, both standard and PEC interrupts and class A
hardware traps are locked. For any long (’mem’) or indirect ([...]) address in the EXTP
instruction sequence, the 10-bit page number (address bits A23-A14) is not determined
by the contents of a DPP register but by the value of op1 itself. The 14-bit page offset
(address bits A13-A0) is derived from the long or indirect address as usual. The value
of op2 defines the length of the effected instruction sequence.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

E Z V C N
- - - - -

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-42 V 1.6, 2001-08

C Not affected.

N Not affected.

Encoding

Mnemonic Format Bytes
EXTPR #pag , #irang2 D7 :11##-0 pp 0:00pp 4

EXTPR Rwm , #irang2 DC :11##-m 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-43 V 1.6, 2001-08

EXTR Begin EXTended Register Sequence EXTR
Group System Control Instructions

Syntax EXTR op1

Source Operand(s) op1 → 2-bit instruction counter

Destination Operand(s) none

Operation
(count) ← (op1) [1 ≤ op1 ≤ 4]
Disable interrupts and Class A traps
SFR_range ← Extended
DO WHILE ((count) ≠ 0 AND Class_B_Trap_Condition ≠ TRUE)

Next Instruction
(count) ← (count) - 1

END WHILE
(count) ← 0
SFR_range ← Standard
Enable interrupts and traps

Description
Causes all SFR or SFR bit accesses via the ’reg’, ’bitoff’ or ’bitaddr’ addressing modes
being made to the Extended SFR space for a specified number of instructions. During
their execution, both standard and PEC interrupts and class A hardware traps are
locked. The value of op1 defines the length of the effected instruction sequence.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
EXTR #irang2 D1 :10##-0 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-44 V 1.6, 2001-08

EXTS Begin EXTended Segment Sequence EXTS
Group System Control Instructions

Syntax EXTS op1, op2

Source Operand(s) op1 → segment number
op2 → 2-bit instruction counter

Destination Operand(s) none

Operation
(count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Segment ← (op1)
DO WHILE ((count) ≠ 0 AND Class_B_Trap_Condition ≠ TRUE)

Next Instruction
(count) ← (count) - 1

END WHILE
(count) ← 0
Data_Page ← (DPPx)
Enable interrupts and traps

Description
Overrides the standard DPP addressing scheme of the long and indirect addressing
modes for a specified number of instructions. During their execution, both standard and
PEC interrupts and class A hardware traps are locked. The EXTS instruction becomes
immediately active such that no additional NOPs are required. For any long (’mem’) or
indirect ([...]) address in an EXTS instruction sequence, the value of op1 determines the
8-bit segment (address bits A23-A16) valid for the corresponding data access. The long
or indirect address itself represents the 16-bit segment offset (address bits A15-A0).
The value of op2 defines the length of the effected instruction sequence.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

E Z V C N
- - - - -

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-45 V 1.6, 2001-08

Encoding

Mnemonic Format Bytes
EXTS #seg , #irang2 D7 :00##-0 ss 00 4

EXTS Rwm , #irang2 DC :00##-m 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-46 V 1.6, 2001-08

EXTSR Begin EXTended Segment and Register Sequence EXTSR
Group System Control Instructions

Syntax EXTSR op1, op2

Source Operand(s) op1 → segment number
op2 → 2-bit instruction counter

Destination Operand(s) none

Operation
(count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Segment ← (op1)
SFR_range ← Extended
DO WHILE ((count) ≠ 0 AND Class_B_Trap_Condition ≠ TRUE)

Next Instruction
(count) ← (count) - 1

END WHILE
(count) ← 0
Data_Page ← (DPPx)
SFR_range ← Standard
Enable interrupts and traps

Description
Overrides the standard DPP addressing scheme of the long and indirect addressing
modes and causes all SFR or SFR bit accesses via the ’reg’, ’bitoff’ or ’bitaddr’
addressing modes being made to the Extended SFR space for a specified number of
instructions. During their execution, both standard and PEC interrupts and class A
hardware traps are locked. The EXTSR instruction becomes immediately active such
that no additional NOPs are required. For any long (’mem’) or indirect ([...]) address in
an EXTSR instruction sequence, the value of op1 determines the 8-bit segment
(address bits A23-A16) valid for the corresponding data access. The long or indirect
address itself represents the 16-bit segment offset (address bits A15-A0). The value of
op2 defines the length of the effected instruction sequence.

CPU Flags

E Not affected.

Z Not affected.

E Z V C N
- - - - -

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-47 V 1.6, 2001-08

V Not affected.

C Not affected.

N Not affected.

Encoding

Mnemonic Format Bytes
EXTSR #seg , #irang2 D7 :10##-0 ss 00 4

EXTSR Rwm , #irang2 DC :10##-m 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-48 V 1.6, 2001-08

IDLE Enter Idle Mode IDLE
Group System Control Instructions

Syntax IDLE

Source Operand(s) none

Destination Operand(s) none

Operation
Enter Idle Mode

Description
This instruction causes the part to enter the idle mode. In this mode, the CPU is
powered down while the peripherals remain running. It remains powered down until a
peripheral interrupt or external interrupt occurs. To insure that this instruction is not
accidentally executed, it is implemented as a protected instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
IDLE 87 78 87 87 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-49 V 1.6, 2001-08

JB Relative Jump if Bit Set JB
Group Jump Instructions

Syntax JB op1, op2

Source Operand(s) op1 → BIT
op2 → 8-bit signed displacement

Destination Operand(s) none

Operation
IF ((op1) = 1) THEN

(IP) ← (IP) + 2*sign_extend(op2)
ELSE

Next Instruction
END IF

Description
If the bit specified by op1 is set, program execution continues at the location of the
instruction pointer IP, plus the specified displacement op2. The displacement is a two’s
complement number which is sign extended and counts the relative distance in words.
The value of the IP used in the target address calculation is the address of the
instruction following the JB instruction. If the specified bit is cleared, program execution
continues normally with the instruction following the JB instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
JB bitaddrQ.q , rel 8A QQ rr q0 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-50 V 1.6, 2001-08

JBC Relative Jump if Bit Set and Clear Bit JBC
Group Jump Instructions

Syntax JBC op1, op2

Source Operand(s) op1 → BIT
op2 → 8-bit signed displacement

Destination Operand(s) none

Operation
IF ((op1) = 1) THEN

(op1) ← 0
(IP) ← (IP) + 2*sign_extend(op2)

ELSE
Next Instruction

END IF

Description
If the bit specified by op1 is set, program execution continues at the location of the
instruction pointer IP, plus the specified displacement op2. The bit specified by op1 is
cleared, allowing implementation of semaphore operations. The displacement is a two’s
complement number which is sign extended and counts the relative distance in words.
The value of the IP used in the target address calculation is the address of the
instruction following the JBC instruction. If the specified bit was clear, program
execution continues normally with the instruction following the JBC instruction.

Note Flags are always updated by this instruction.

CPU Flags

E Always cleared.

Z Contains the logical negation of the previous state of the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

E Z V C N
0 B 0 0 B

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-51 V 1.6, 2001-08

Encoding

Mnemonic Format Bytes
JBC bitaddrQ.q , rel AA QQ rr q0 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-52 V 1.6, 2001-08

JMPA Absolute Conditional Jump JMPA
Group Jump Instructions

Syntax JMPA op1, op2

Source Operand(s) op1 → extended condition code
op2 → 16-bit address offset

Destination Operand(s) none

Operation
IF ((op1) = 1) THEN

(IP) ← op2
ELSE

Next Instruction
END IF

Description
If the condition specified by op1 is met, a branch to the absolute address specified by
op2 is taken. If the condition is not met, no action is taken, and the instruction following
the JMPA instruction is executed normally.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
JMPA xcc , caddr EA d0la MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-53 V 1.6, 2001-08

JMPI Indirect Conditional Jump JMPI
Group Jump Instructions

Syntax JMPI op1, op2

Source Operand(s) op1 → condition code
op2 → 16-bit address offset

Destination Operand(s) none

Operation
IF ((op1) = 1) THEN

(IP) ← (op2)
ELSE

Next Instruction
END IF

Description
If the condition specified by op1 is met, a branch to the absolute address specified by
op2 is taken. If the condition is not met, no action is taken, and program execution
continues normally with the instruction following the JMPI instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
JMPI cc , [Rwn] 9C cn 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-54 V 1.6, 2001-08

JMPR Relative Conditional Jump JMPR
Group Jump Instructions

Syntax JMPR op1, op2

Source Operand(s) op1 → condition code
op2 → 8-bit signed displacement

Destination Operand(s) none

Operation
IF ((op1) = 1) THEN

(IP) ← (IP) + 2*sign_extend(op2)
ELSE

Next Instruction
END IF

Description
If the extended condition specified by op1 is met, program execution continues at the
location of the instruction pointer, IP, plus the specified displacement, op2. The
displacement is a two’s complement number which is sign-extended and counts the
relative distance in words. The value of the IP used in the target address calculation is
the address of the instruction following the JMPR instruction. If the specified condition is
not met, program execution continues normally with the instruction following the JMPR
instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
JMPR cc , rel cD rr 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-55 V 1.6, 2001-08

JMPS Absolute Inter-Segment Jump JMPS
Group Jump Instructions

Syntax JMPS op1, op2

Source Operand(s) op1 → segment number
op2 → 16-bit address offset

Destination Operand(s) none

Operation
(CSP) ← op1
(IP) ← op2

Description
Branches unconditionally to the absolute address specified by op2 within the segment
specified by op1.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
JMPS seg , caddr FA SS MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-56 V 1.6, 2001-08

JNB Relative Jump if Bit Clear JNB
Group Jump Instructions

Syntax JNB op1, op2

Source Operand(s) op1 → BIT
op2 → 8-bit signed displacement

Destination Operand(s) none

Operation
IF ((op1) = 0) THEN

(IP) ← (IP) + 2*sign_extend(op2)
ELSE

Next Instruction
END IF

Description
If the bit specified by op1 is clear, program execution continues at the location of the
instruction pointer IP, plus the specified displacement op2. The displacement is a two’s
complement number which is sign-extended and counts the relative distance in words.
The value of the IP used in the target address calculation is the address of the
instruction following the JNB instruction. If the specified bit is set, program execution
continues normally with the instruction following the JNB instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
JNB bitaddrQ.q , rel 9A QQ rr q0 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-57 V 1.6, 2001-08

JNBS Relative Jump if Bit Clear and Set Bit JNBS
Group Jump Instructions

Syntax JNBS op1, op2

Source Operand(s) op1 → BIT
op2 → 8-bit signed displacement

Destination Operand(s) none

Operation
IF ((op1) = 0) THEN

(op1) ← 1
(IP) ← (IP) + 2*sign_extend(op2)

ELSE
Next Instruction

END IF

Description
If the bit specified by op1 is clear, program execution continues at the location of the
instruction pointer IP, plus the specified displacement op2. The bit specified by op1 is
set, allowing implementation of semaphore operations. The displacement is a two’s
complement number which is sign-extended and counts the relative distance in words.
The value of the IP used in the target address calculation is the address of the
instruction following the JNBS instruction. If the specified bit was set, program
execution continues normally with the instruction following the JNBS instruction.

Note Flags are always updated by this instruction.

CPU Flags

E Always cleared.

Z Contains the logical negation of the previous state of the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

Encoding

E Z V C N
0 B 0 0 B

Mnemonic Format Bytes
JNBS bitaddrQ.q , rel BA QQ rr q0 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-58 V 1.6, 2001-08

MOV Move Data MOV
Group Data Movement Instructions

Syntax MOV op1, op2

Source Operand(s) op2 → WORD

Destination Operand(s) op1 → WORD

Operation
(op1) ← (op2)

Description
Moves the contents of the source operand specified by op2 to the location specified by
the destination operand op1. The contents of the moved data is examined, and the
flags are updated accordingly.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the source operand op2 equals zero. Cleared
otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set. Cleared
otherwise.

Encoding

E Z V C N
* * - - *

Mnemonic Format Bytes
MOV Rwn , #data4 E0 #n 2

MOV Rwn , Rwm F0 nm 2

MOV Rwn , [Rwm+#data16] D4 nm ## ## 4

MOV Rwn , [Rwm+] 98 nm 2

MOV Rwn , [Rwm] A8 nm 2

MOV [-Rwm] , Rwn 88 nm 2

MOV [Rwm+#data16] , Rwn C4 nm ## ## 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-59 V 1.6, 2001-08

MOV [Rwm] , Rwn B8 nm 2

MOV [Rwn+] , [Rwm] D8 nm 2

MOV [Rwn] , [Rwm+] E8 nm 2

MOV [Rwn] , [Rwm] C8 nm 2

MOV [Rwn] , mem 84 0n MM MM 4

MOV mem , [Rwn] 94 0n MM MM 4

MOV mem , reg F6 RR MM MM 4

MOV reg , #data16 E6 RR ## ## 4

MOV reg , mem F2 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-60 V 1.6, 2001-08

MOVB Move Data MOVB
Group Data Movement Instructions

Syntax MOVB op1, op2

Source Operand(s) op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation
(op1) ← (op2)

Description
Moves the contents of the source operand specified by op2 to the location specified by
the destination operand op1. The contents of the moved data is examined, and the
flags are updated accordingly.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the source operand op2 equals zero. Cleared
otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set. Cleared
otherwise.

Encoding

E Z V C N
* * - - *

Mnemonic Format Bytes
MOVB Rbn , #data4 E1 #n 2

MOVB Rbn , Rbm F1 nm 2

MOVB Rbn , [Rwm + #data16] F4 nm ## ## 4

MOVB Rbn , [Rwm+] 99 nm 2

MOVB Rbn , [Rwm] A9 nm 2

MOVB [-Rwm] , Rbn 89 nm 2

MOVB [Rwm + #data16] , Rbn E4 nm ## ## 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-61 V 1.6, 2001-08

MOVB [Rwm] , Rbn B9 nm 2

MOVB [Rwn+] , [Rwm] D9 nm 2

MOVB [Rwn] , [Rwm+] E9 nm 2

MOVB [Rwn] , [Rwm] C9 nm 2

MOVB [Rwn] , mem A4 0n MM MM 4

MOVB mem , [Rwn] B4 0n MM MM 4

MOVB mem , reg F7 RR MM MM 4

MOVB reg , #data8 E7 RR ## xx 4

MOVB reg , mem F3 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-62 V 1.6, 2001-08

MOVBS Move Byte Sign Extend MOVBS
Group Data Movement Instructions

Syntax MOVBS op1, op2

Source Operand(s) op2 → BYTE

Destination Operand(s) op1 → WORD

Operation
(low byte op1) ← (op2)
IF ((op2[7]) = 1) THEN

(high byte op1) ← FFH
ELSE

(high byte op1) ← 00H
END IF

Description
Moves and sign-extends the contents of the source byte operand specified by op2 to
the word location specified by the destination operand op1. The contents of the moved
data is examined, and the flags are updated accordingly.

CPU Flags

E Always cleared.

Z Set if the value of the source byte operand op2 equals zero. Cleared
otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set. Cleared
otherwise.

Encoding

E Z V C N
0 * - - *

Mnemonic Format Bytes
MOVBS Rwn , Rbm D0 mn 2

MOVBS mem , reg D5 RR MM MM 4

MOVBS reg , mem D2 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-63 V 1.6, 2001-08

MOVBZ Move Byte Zero Extend MOVBZ
Group Data Movement Instructions

Syntax MOVBZ op1, op2

Source Operand(s) op2 → BYTE

Destination Operand(s) op1 → WORD

Operation
(low byte op1) ← (op2)
(high byte op1) ← 00H

Description
Moves and zero-extends the contents of the source byte operand specified by op2 to
the word location specified by the destination operand op1. The contents of the moved
data is examined, and the flags are updated accordingly.

CPU Flags

E Always cleared.

Z Set if the value of the source byte operand op2 equals zero. Cleared
otherwise.

V Not affected.

C Not affected.

N Always cleared.

Encoding

E Z V C N
0 * - - 0

Mnemonic Format Bytes
MOVBZ Rwn , Rbm C0 mn 2

MOVBZ mem , reg C5 RR MM MM 4

MOVBZ reg , mem C2 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-64 V 1.6, 2001-08

MUL Signed Multiplication MUL
Group Arithmetic Instructions

Syntax MUL op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) MD → DOUBLEWORD

Operation
(MD) ← (op1) * (op2)

Description
Performs a 16-bit by 16-bit signed multiplication using the two words specified by
operands op1 and op2 respectively. The signed 32-bit result is placed in the MD
register.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V This bit is set if the result cannot be represented in a word data type.
Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
0 * * 0 *

Mnemonic Format Bytes
MUL Rwn , Rwm 0B nm 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-65 V 1.6, 2001-08

MULU Unsigned Multiplication MULU
Group Arithmetic Instructions

Syntax MULU op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) MD → DOUBLEWORD

Operation
(MD) ← (op1) * (op2)

Description
Performs a 16-bit by 16-bit unsigned multiplication using the two words specified by
operands op1 and op2 respectively. The unsigned 32-bit result is placed in the MD
register.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V This bit is set if the result cannot be represented in a word data type.
Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
0 * * 0 *

Mnemonic Format Bytes
MULU Rwn , Rwm 1B nm 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-66 V 1.6, 2001-08

NEG Integer Two’s Complement NEG
Group Arithmetic Instructions

Syntax NEG op1

Source Operand(s) op1 → WORD

Destination Operand(s) op1 → WORD

Operation
(op1) ← 0 - (op1)

Description
Performs a binary 2’s complement of the source operand specified by op1. The result is
then stored in op1.

CPU Flags

E Set if the value of op1 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * * * *

Mnemonic Format Bytes
NEG Rwn 81 n0 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-67 V 1.6, 2001-08

NEGB Integer Two’s Complement NEGB
Group Arithmetic Instructions

Syntax NEGB op1

Source Operand(s) op1 → BYTE

Destination Operand(s) op1 → BYTE

Operation
(op1) ← 0 - (op1)

Description
Performs a binary 2’s complement of the source operand specified by op1. The result is
then stored in op1.

CPU Flags

E Set if the value of op1 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the byte data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * * * *

Mnemonic Format Bytes
NEGB Rbn A1 n0 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-68 V 1.6, 2001-08

NOP No Operation NOP
Group Null operation

Syntax NOP

Source Operand(s) none

Destination Operand(s) none

Operation
No Operation

Description
This instruction causes a null operation to be performed. A null operation causes no
change in the status of the flags.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
NOP CC 00 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-69 V 1.6, 2001-08

OR Logical OR OR
Group Logical Instructions

Syntax OR op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation
(op1) ← (op1) ∨ (op2)

Description
Performs a bitwise logical OR of the source operand specified by op2 and the
destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * 0 0 *

Mnemonic Format Bytes
OR Rwn , #data3 78 n:0### 2

OR Rwn , Rwm 70 nm 2

OR Rwn , [Rwi+] 78 n:11ii 2

OR Rwn , [Rwi] 78 n:10ii 2

OR mem , reg 74 RR MM MM 4

OR reg , #data16 76 RR ## ## 4

OR reg , mem 72 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-70 V 1.6, 2001-08

ORB Logical OR ORB
Group Logical Instructions

Syntax ORB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation
(op1) ← (op1) ∨ (op2)

Description
Performs a bitwise logical OR of the source operand specified by op2 and the
destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * 0 0 *

Mnemonic Format Bytes
ORB Rbn , #data3 79 n:0### 2

ORB Rbn , Rbm 71 nm 2

ORB Rbn , [Rwi+] 79 n:11ii 2

ORB Rbn , [Rwi] 79 n:10ii 2

ORB mem , reg 75 RR MM MM 4

ORB reg , #data8 77 RR ## xx 4

ORB reg , mem 73 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-71 V 1.6, 2001-08

PCALL Push Word and Call Subroutine Absolute PCALL
Group Call Instructions

Syntax PCALL op1, op2

Source Operand(s) op1 → WORD
op2 → 16-bit address offset

Destination Operand(s) none

Operation
(tmp) ← (op1)
(SP) ← (SP) - 2
((SP)) ← (tmp)
(SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← op2

Description
Pushes the word specified by operand op1 and the value of the instruction pointer, IP,
onto the system stack, and branches to the absolute memory location specified by the
second operand op2. Because IP always points to the instruction following the branch
instruction, the value stored on the system stack represents the return address of the
calling routine.

CPU Flags

E Set if the value of the pushed operand op1 represents the lowest
possible negative number. Cleared otherwise. Used to signal the end of a
table.

Z Set if the value of the pushed operand op1 equals zero. Cleared
otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the pushed operand op1 is set. Cleared
otherwise.

E Z V C N
* * - - *

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-72 V 1.6, 2001-08

Encoding

Mnemonic Format Bytes
PCALL reg , caddr E2 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-73 V 1.6, 2001-08

POP Pop Word from System Stack POP
Group System Stack Instructions

Syntax POP op1

Source Operand(s) none

Destination Operand(s) op1 → WORD

Operation
(tmp) ← ((SP))
(SP) ← (SP) + 2
(op1) ← (tmp)

Description
Pops one word from the system stack specified by the Stack Pointer into the operand
specified by op1. The Stack Pointer is then incremented by two.

CPU Flags

E Set if the value of the popped word represents the lowest possible
negative number. Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the popped word equals zero. Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the popped word is set. Cleared
otherwise.

Encoding

E Z V C N
* * - - *

Mnemonic Format Bytes
POP reg FC RR 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-74 V 1.6, 2001-08

PRIOR Prioritize Register PRIOR
Group Prioritize Instruction

Syntax PRIOR op1, op2

Source Operand(s) op2 → WORD

Destination Operand(s) op1 → WORD

Operation
(tmp) ← (op2)
(count) ← 0
DO WHILE (((tmp[15]) ≠ 1) AND ((op2) ≠ 0)))

(tmp[n]) ← (tmp[n-1]) [n=15...1]
(count) ← (count) + 1

END WHILE
(op1) ← (count)

Description
This instruction stores a count value in the word operand specified by op1. This count
value indicates the number of single bit shifts required to normalize the word operand
op2 so that its most significant bit is equal to one. If the source operand op2 equals
zero, a zero is written to operand op1 and the zero flag is set. Otherwise the zero flag is
cleared.

CPU Flags

E Always cleared.

Z Set if the value of the source operand op2 equals zero. Cleared
otherwise.

V Always cleared.

C Always cleared.

N Always cleared.

Encoding

E Z V C N
0 * 0 0 0

Mnemonic Format Bytes
PRIOR Rwn , Rwm 2B nm 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-75 V 1.6, 2001-08

PUSH Push Word on System Stack PUSH
Group System Stack Instructions

Syntax PUSH op1

Source Operand(s) op1 → WORD

Destination Operand(s) none

Operation
(tmp) ← (op1)
(SP) ← (SP) - 2
((SP)) ← (tmp)

Description
Moves the word specified by operand op1 to the location in the system stack specified
by the Stack Pointer, after the Stack Pointer has been decremented by two.

CPU Flags

E Set if the value of the pushed operand op1 represents the lowest
possible negative number. Cleared otherwise. Used to signal the end of a
table.

Z Set if the value of the pushed operand op1 equals zero. Cleared
otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the pushed operand op1 is set. Cleared
otherwise.

Encoding

E Z V C N
* * - - *

Mnemonic Format Bytes
PUSH reg EC RR 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-76 V 1.6, 2001-08

PWRDN Enter Power Down Mode PWRDN
Group System Control Instructions

Syntax PWRDN

Source Operand(s) none

Destination Operand(s) none

Operation
Enter Power Down Mode

Description
This instruction causes the part to enter the power down mode. In this mode, all
peripherals and the CPU are powered down until the part is externally reset. To insure
that this instruction is not accidentally executed, it is implemented as a protected
instruction. To further control the action of this instruction, the PWRDN instruction is
only enabled when the non-maskable interrupt pin (NMI) is in the low state. Otherwise,
this instruction has no effect.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
PWRDN 97 68 97 97 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-77 V 1.6, 2001-08

RET Return from Subroutine RET
Group Return Instructions

Syntax RET

Source Operand(s) none

Destination Operand(s) none

Operation
(IP) ← ((SP))
(SP) ← (SP) + 2

Description
Returns from a subroutine. The IP is popped from the system stack.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
RET CB 00 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-78 V 1.6, 2001-08

RETI Return from Interrupt Subroutine RETI
Group Return Instructions

Syntax RETI

Source Operand(s) none

Destination Operand(s) none

Operation
(IP) ← ((SP))
(SP) ← (SP) + 2
IF (SYSCON.SGTDIS = 0) THEN

(CSP) ← ((SP))
(SP) ← (SP) + 2

END IF
(PSW) ← ((SP))
(SP) ← (SP) + 2

Description
Returns from an interrupt routine. The IP, CSP, and PSW are popped off the system
stack. The CSP is only popped if segmentation is enabled. This is indicated by the
SGTDIS bit in the SYSCON register.

CPU Flags

E Restored from the PSW popped from stack.

Z Restored from the PSW popped from stack.

V Restored from the PSW popped from stack.

C Restored from the PSW popped from stack.

N Restored from the PSW popped from stack.

Encoding

E Z V C N
* * * * *

Mnemonic Format Bytes
RETI FB 88 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-79 V 1.6, 2001-08

RETP Return from Subroutine and Pop Word RETP
Group Return Instructions

Syntax RETP op1

Source Operand(s) none

Destination Operand(s) op1 → WORD

Operation
(IP) ← ((SP))
(SP) ← (SP) + 2
(tmp) ← ((SP))
(SP) ← (SP) + 2
(op1) ← (tmp)

Description
Returns from a subroutine. First the IP is popped from the system stack and then the
next word is popped from the system stack into the operand specified by op1.

CPU Flags

E Set if the value of the popped word represents the lowest possible
negative number. Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the popped word equals zero. Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the popped word is set. Cleared
otherwise.

Encoding

E Z V C N
* * - - *

Mnemonic Format Bytes
RETP reg EB RR 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-80 V 1.6, 2001-08

RETS Return from Inter-Segment Subroutine RETS
Group Return Instructions

Syntax RETS

Source Operand(s) none

Destination Operand(s) none

Operation
(IP) ← ((SP))
(SP) ← (SP) + 2
(CSP) ← ((SP))
(SP) ← (SP) + 2

Description
Returns from an inter-segment subroutine. The IP and CSP are popped from the
system stack.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
RETS DB 00 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-81 V 1.6, 2001-08

ROL Rotate Left ROL
Group Shift and Rotate Instructions

Syntax ROL op1, op2

Source Operand(s) op1 → WORD
op2 → shift counter

Destination Operand(s) op1 → WORD

Operation
(count) ← (op2)
(C) ← 0
DO WHILE ((count) ≠ 0)

(C) ← (op1[15])
(op1[n]) ← (op1[n-1]) [n=15...1]
(op1[0]) ← (C)
(count) ← (count) - 1

END WHILE

Description
Rotates the destination word operand op1 the number of times as specified by the
source operand op2. Bit 15 is rotated into Bit 0 and into the Carry. Only shift values
between 0 and 15 are allowed. When using a GPR as the count control, only the least
significant 4 bits are used.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C The carry flag is set according to the last most significant bit shifted out of
op1. Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

E Z V C N
0 * 0 S *

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-82 V 1.6, 2001-08

Encoding

Mnemonic Format Bytes
ROL Rwn , #data4 1C #n 2

ROL Rwn , Rwm 0C nm 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-83 V 1.6, 2001-08

ROR Rotate Right ROR
Group Shift and Rotate Instructions

Syntax ROR op1, op2

Source Operand(s) op1 → WORD
op2 → shift counter

Destination Operand(s) op1 → WORD

Operation
(count) ← (op2)
(C) ← 0
(V) ← 0
DO WHILE ((count) ≠ 0)

(V) ← (V) ∨ (C)
(C) ← (op1[0])
(op1[n]) ← (op1[n+1]) [n=0...14]
(op1[15]) ← (C)
(count) ← (count) - 1

END WHILE

Description
Rotates the destination word operand op1 right by the number of times as specified by
the source operand op2. Bit 0 is rotated into Bit 15 and into the Carry. Only shift values
between 0 and 15 are allowed. When using a GPR as the count control, only the least
significant 4 bits are used.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the rotate operation a 1 is shifted out of the carry
flag. Cleared for a rotate count of zero.

C The carry flag is set according to the last least significant bit shifted out of
op1. Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

E Z V C N
0 * S S *

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-84 V 1.6, 2001-08

Encoding

Mnemonic Format Bytes
ROR Rwn , #data4 3C #n 2

ROR Rwn , Rwm 2C nm 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-85 V 1.6, 2001-08

SCXT Switch Context SCXT
Group System Stack Instructions

Syntax SCXT op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation
(tmp1) ← (op1)
(tmp2) ← (op2)
(SP) ← (SP) - 2
((SP)) ← (tmp1)
(op1) ← (tmp2)

Description
Switches contexts of any register. Switching context is a push and load operation. The
contents of the register specified by the first operand op1, are pushed onto the stack.
That register is then loaded with the value specified by the second operand, op2.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
SCXT reg , #data16 C6 RR ## ## 4

SCXT reg , mem D6 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-86 V 1.6, 2001-08

SHL Shift Left SHL
Group Shift and Rotate Instructions

Syntax SHL op1, op2

Source Operand(s) op1 → WORD
op2 → shift counter

Destination Operand(s) op1 → WORD

Operation
(count) ← (op2)
(C) ← 0
DO WHILE ((count) ≠ 0)

(C) ← (op1[15])
(op1[n]) ← (op1[n-1]) [n=15...1]
(op1[0]) ← 0
(count) ← (count) - 1

END WHILE

Description
Shifts the destination word operand op1 the number of times as specified by the source
operand op2. The least significant bits of the result are filled with zeros accordingly. The
least The most significant bit is shifted into the Carry. Only shift values between 0 and
15 are allowed. When using a GPR as the count control, only the least significant 4 bits
are used.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C The carry flag is set according to the last most significant bit shifted out of
op1. Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

E Z V C N
0 * 0 S *

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-87 V 1.6, 2001-08

Encoding

Mnemonic Format Bytes
SHL Rwn , #data4 5C #n 2

SHL Rwn , Rwm 4C nm 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-88 V 1.6, 2001-08

SHR Shift Right SHR
Group Shift and Rotate Instructions

Syntax SHR op1, op2

Source Operand(s) op1 → WORD
op2 → shift counter

Destination Operand(s) op1 → WORD

Operation
(count) ← (op2)
(C) ← 0
(V) ← 0
DO WHILE ((count) ≠ 0)

(V) ← (C) ∨ (V)
(C) ← (op1[0])
(op1[n]) ← (op1[n+1]) [n=0...14]
(op1[15]) ← 0
(count) ← (count) - 1

END WHILE

Description
Shifts the destination word operand op1 right by the number of times as specified by the
source operand op2. The most significant bits of the result are filled with zeros
accordingly. Since the bits shifted out effectively represent the remainder, the Overflow
flag is used instead as a Rounding flag. A shift right is a division by a power of two. The
overflow flag with the carry flag allows to determine whether the fractional part of the
division result is greater than, less than or equal to one half (0.5 in decimal base). This
allows to round the division result accordingly. Only shift values between 0 and 15 are
allowed. When using a GPR as the count control, only the least significant 4 bits are
used.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the shift operation a 1 is shifted out of the carry flag.
Cleared in case of a shift count equal 0.

E Z V C N
0 * S S *

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-89 V 1.6, 2001-08

C The carry flag is set according to the last least significant bit shifted out of
op1. Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic Format Bytes
SHR Rwn , #data4 7C #n 2

SHR Rwn , Rwm 6C nm 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-90 V 1.6, 2001-08

SRST Software Reset SRST
Group System Control Instructions

Syntax SRST

Source Operand(s) none

Destination Operand(s) none

Operation
Software Reset

Description
This instruction is used to perform a software reset. A software reset has the same
effect on the microcontroller as an externally applied hardware reset. To insure that this
instruction is not accidentally executed, it is implemented as a protected instruction.

CPU Flags

E Always cleared.

Z Always cleared.

V Always cleared.

C Always cleared.

N Always cleared.

Encoding

E Z V C N
0 0 0 0 0

Mnemonic Format Bytes
SRST B7 48 B7 B7 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-91 V 1.6, 2001-08

SRVWDT Service Watchdog Timer SRVWDT
Group System Control Instructions

Syntax SRVWDT

Source Operand(s) none

Destination Operand(s) none

Operation
Service Watchdog Timer

Description
This instruction reloads the high order byte of the Watchdog Timer with a preset value
and clears the low byte. Once this instruction has been executed, the watchdog timer
cannot be disabled. To insure that this instruction is not accidentally executed, it is
implemented as a protected instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N
- - - - -

Mnemonic Format Bytes
SRVWDT A7 58 A7 A7 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-92 V 1.6, 2001-08

SUB Integer Subtraction SUB
Group Arithmetic Instructions

Syntax SUB op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation
(op1) ← (op1) - (op2)

Description
Performs a 2’s complement binary subtraction of the source operand specified by op2
and the destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * * S *

Mnemonic Format Bytes
SUB Rwn , #data3 28 n:0### 2

SUB Rwn , Rwm 20 nm 2

SUB Rwn , [Rwi+] 28 n:11ii 2

SUB Rwn , [Rwi] 28 n:10ii 2

SUB mem , reg 24 RR MM MM 4

SUB reg , #data16 26 RR ## ## 4

SUB reg , mem 22 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-93 V 1.6, 2001-08

SUBB Integer Subtraction SUBB
Group Arithmetic Instructions

Syntax SUBB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation
(op1) ← (op1) - (op2)

Description
Performs a 2’s complement binary subtraction of the source operand specified by op2
and the destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * * S *

Mnemonic Format Bytes
SUBB Rbn , #data3 29 n:0### 2

SUBB Rbn , Rbm 21 nm 2

SUBB Rbn , [Rwi+] 29 n:11ii 2

SUBB Rbn , [Rwi] 29 n:10ii 2

SUBB mem , reg 25 RR MM MM 4

SUBB reg , #data8 27 RR ## xx 4

SUBB reg , mem 23 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-94 V 1.6, 2001-08

SUBC Integer Subtraction with Carry SUBC
Group Arithmetic Instructions

Syntax SUBC op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation
(op1) ← (op1) - (op2) - (C)

Description
Performs a 2’s complement binary subtraction of the source operand specified by op2
and the previously generated carry bit from the destination operand specified by op1.
The result is then stored in op1. This instruction can be used to perform multiple
precision arithmetic.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero and previous Z flag was set. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* S * S *

Mnemonic Format Bytes
SUBC Rwn , #data3 38 n:0### 2

SUBC Rwn , Rwm 30 nm 2

SUBC Rwn , [Rwi+] 38 n:11ii 2

SUBC Rwn , [Rwi] 38 n:10ii 2

SUBC mem , reg 34 RR MM MM 4

SUBC reg , #data16 36 RR ## ## 4

SUBC reg , mem 32 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-95 V 1.6, 2001-08

SUBCB Integer Subtraction with Carry SUBCB
Group Arithmetic Instructions

Syntax SUBCB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation
(op1) ← (op1) - (op2) - (C)

Description
Performs a 2’s complement binary subtraction of the source operand specified by op2
and the previously generated carry bit from the destination operand specified by op1.
The result is then stored in op1. This instruction can be used to perform multiple
precision arithmetic.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero and the previous Z flag was set. Cleared
otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* S * S *

Mnemonic Format Bytes
SUBCB Rbn , #data3 39 n:0### 2

SUBCB Rbn , Rbm 31 nm 2

SUBCB Rbn , [Rwi+] 39 n:11ii 2

SUBCB Rbn , [Rwi] 39 n:10ii 2

SUBCB mem , reg 35 RR MM MM 4

SUBCB reg , #data8 37 RR ## xx 4

SUBCB reg , mem 33 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-96 V 1.6, 2001-08

TRAP Software Trap TRAP
Group Call Instructions

Syntax TRAP op1

Source Operand(s) op1 → 7-bit trap number

Destination Operand(s) none

Operation
(SP) ← (SP) - 2
((SP) ← (PSW)
IF (SYSCON.SGTDIS = 0) THEN

(SP) ← (SP) - 2
((SP)) ← (CSP)
(CSP) ← (0)

END IF
(SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← zero_extended((op1) * 4)

Description
Invokes a trap or interrupt routine based on the specified operand op1. The invoked
routine is determined by branching to the specified vector table entry point. This routine
has no indication of whether it was called by software or hardware. System state is
preserved identically to hardware interrupt entry except that the CPU priority level is not
affected. The RETI, Return from Interrupt instruction is used to resume execution after
the completion of the trap or interrupt routine. The CSP is pushed if the segmentation is
enabled. This is indicated by the SGTDIS bit of the SYSCON register.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

E Z V C N
- - - - -

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-97 V 1.6, 2001-08

Encoding

Mnemonic Format Bytes
TRAP #trap7 9B t:ttt0 2

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-98 V 1.6, 2001-08

XOR Logical Exclusive OR XOR
Group Logical Instructions

Syntax XOR op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation
(op1) ← (op1) ⊕ (op2)

Description
Performs a bitwise logical EXCLUSIVE OR of the source operand specified by op2 and
the destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * 0 0 *

Mnemonic Format Bytes
XOR Rwn , #data3 58 n:0### 2

XOR Rwn , Rwm 50 nm 2

XOR Rwn , [Rwi+] 58 n:11ii 2

XOR Rwn , [Rwi] 58 n:10ii 2

XOR mem , reg 54 RR MM MM 4

XOR reg , #data16 56 RR ## ## 4

XOR reg , mem 52 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-99 V 1.6, 2001-08

XORB Logical Exclusive OR XORB
Group Logical Instructions

Syntax XORB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation
(op1) ← (op1) ⊕ (op2)

Description
Performs a bitwise logical EXCLUSIVE OR of the source operand specified by op2 and
the destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N
* * 0 0 *

Mnemonic Format Bytes
XORB Rbn , #data3 59 n:0### 2

XORB Rbn , Rbm 51 nm 2

XORB Rbn , [Rwi+] 59 n:11ii 2

XORB Rbn , [Rwi] 59 n:10ii 2

XORB mem , reg 55 RR MM MM 4

XORB reg , #data8 57 RR ## xx 4

XORB reg , mem 53 RR MM MM 4

User’s Manual
C166S V1 SubSystem

Detailed Instruction Set

User’s Manual 6-100 V 1.6, 2001-08

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-1 V 1.6, 2001-08

7 Parallel Ports
In order to accept or generate single external control signals or parallel data, the C166S
s provides up to 48 parallel IO lines organized into six 8-bit IO ports (PORT0 made of
P0H and P0L, PORT1 made of P1H and P1L, Port 4, Port 6).

These port lines may be used for general purpose Input/Output controlled via software
or may be used implicitly by the C166S V1 SubS R1’s integrated peripherals or the
External Bus Controller.

All port lines are bit addressable, and all input/output lines are individually (bit-wise)
programmable as inputs or outputs via direction registers. The IO ports are true
bidirectional ports which are switched to high impedance state when configured as
inputs.

The logic level of a pin is clocked into the input latch once per state time, regardless
whether the port is configured for input or output.

Figure 7-1 SFRs associated with the Parallel Ports

A write operation to a port pin configured as an input causes the value to be written into
the port output register, while a read operation returns the registered state of the pin
itself. A read-modify-write operation reads the value of the pin, modifies it, and writes it
back to the output register.

Writing to a pin configured as an output (DPx.y=‘1’) causes the output register and the
pin to have the written value, since the output buffer is enabled. Reading this pin returns
the value of the output register. A read-modify-write operation reads the value of the
output register, modifies it, and writes it back to the output register, thus also modifying
the level at the pin.

Data Input / Output
Registers

Direction Control
Registers

P4 P6DP4 DP6

P1L

P1H

DP1L E

DP1H E

P0L

P0H

DP0L E

DP0H E

Data Input / Output
Registers

Direction Control
Registers

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-2 V 1.6, 2001-08

7.1 Alternate Port Functions

In order to provide a maximum of flexibility for different applications and their specific IO
requirements port lines have programmable alternate input or output functions
associated with them.

If an alternate output function of a pin is to be used, the direction of this pin must be
programmed for output (DPx.y=‘1’), except for some signals that are used directly after
reset and are configured automatically. Otherwise the pin remains in the high-impedance
state and is not effected by the alternate output function. The respective port register
should hold a ‘1’, because its output is combined with the alternate output data.

If an alternate input function of a pin is used, the direction of the pin must be
programmed for input (DPx.y=‘0’) if an external device is driving the pin. The input
direction is the default after reset. If no external device is connected to the pin, however,
one can also set the direction for this pin to output. In this case, the pin reflects the state
of the port output register. Thus, the alternate input function reads the value stored in the
port output register. This can be used for testing purposes to allow a software trigger of
an alternate input function by writing to the port output register.

On most of the port lines, the user software is responsible for setting the proper direction
when using an alternate input or output function of a pin. This is done by setting or
clearing the direction control bit DPx.y of the pin before enabling the alternate function.
There are port lines, however, where the direction of the port line is switched
automatically. For instance, in the multiplexed external bus modes of PORT0, the
direction must be switched several times for an instruction fetch in order to output the
addresses and to input the data. Obviously, this cannot be done through instructions. In
these cases, the direction of the port line is switched automatically by hardware if the
alternate function of such a pin is enabled.
To determine the appropriate level of the port output registers check how the alternate
data output is combined with the respective port register output.

There is one basic structure for all port lines with only an alternate input function. Port
lines with only an alternate output function, however, have different structures due to the

Table 7-1 Summary of Alternate Port Functions

Port Alternate Function(s) Alternate Signal(s)

PORT0 Address and data lines when accessing
external resources (e.g. memory)

AD15 ... AD0

PORT1 Address lines when accessing ext. resources A15 ... A0,

Port 4 Selected segment address lines in systems
with more than 64 KBytes of external resources

A23 ... A16

Port 6 Chip select output signals CS4 ... CS0

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-3 V 1.6, 2001-08

way the direction of the pin is switched and depending on whether the pin is accessible
by the user software or not in the alternate function mode.

All port lines that are not used for these alternate functions may be used as general
purpose IO lines. When using port pins for general purpose output, the initial output
value should be written to the port register prior to enabling the output drivers, in order
to avoid undesired transitions on the output pins. This applies to single pins as well as
to pin groups (see examples below).

OUTPUT_ENABLE_SINGLE_PIN:
BSET P4.0 ;Initial output level is ’high’
BSET DP4.0 ;Switch on the output driver

OUTPUT_ENABLE_PIN_GROUP:
BFLDL P4, #05H, #05H ;Initial output level is ’high’
BFLDL DP4, #05H, #05H ;Switch on the output drivers

Note: When using several BSET pairs to control more pins of one port, these pairs must
be separated by instructions, which do not reference the respective port (see
Section 3.8.1 “Particular Pipeline Effects” in chapter “The Central Processing
Unit”).

Each of these ports and the alternate input and output functions are described in detail
in the following subsections.

7.2 PORT0

The two 8-bit ports P0H and P0L represent the higher and lower part of PORT0,
respectively. Both halfs of PORT0 can be written (e.g. via a PEC transfer) without
effecting the other half.
If this port is used for general purpose IO, the direction of each line can be configured
via the corresponding direction registers DP0H and DP0L.

P0L
PORT0 Low Register SFR (FF00H/80H Reset value: - - 00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P0L
.7

P0L
.6

P0L
.5

P0L
.4

P0L
.3

P0L
.2

P0L
.1

P0L
.0

- - - - - - - - rw rw rw rw rw rw rw rw

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-4 V 1.6, 2001-08

Alternate Functions of PORT0

When an external bus is enabled, PORT0 is used as data bus or address/data bus.
Note that an external 8-bit demultiplexed bus only uses P0L, while P0H is free for IO
(provided that no other bus mode is enabled).

During external accesses in multiplexed bus modes PORT0 first outputs the 16-bit intra-
segment address as an alternate output function. PORT0 is then switched to high-
impedance input mode to read the incoming instruction or data. In 8-bit data bus mode,
two memory cycles are required for word accesses, the first for the low byte and the
second for the high byte of the word. During write cycles PORT0 outputs the data byte
or word after outputting the address.

P0H
PORT0 High Register SFR (FF02H/81H) Reset value: - - 00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P0H
.7

P0H
.6

P0H
.5

P0H
.4

P0H
.3

P0H
.2

P0H
.1

P0H
.0

- - - - - - - - rw rw rw rw rw rw rw rw

Bit Function

P0X.y Port data register P0H or P0L bit y

DP0L
P0L Direction Ctrl. Register ESFR (F100H/80H) Reset value: - - 00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DP0L
.7

DP0L
.6

DP0L
.5

DP0L
.4

DP0L
.3

DP0L
.2

DP0L
.1

DP0L
.0

- - - - - - - - rw rw rw rw rw rw rw rw

DP0H
P0H Direction Ctrl. Register ESFR (F102H/81H) Reset Value: - - 00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DP0H
.7

DP0H
.6

DP0H
.5

DP0H
.4

DP0H
.3

DP0H
.2

DP0H
.1

DP0H
.0

- - - - - - - - rw rw rw rw rw rw rw rw

Bit Function

DP0X.y Port direction register DP0H or DP0L bit y
DP0X.y = 0: Port line P0X.y is an input (high-impedance)
DP0X.y = 1: Port line P0X.y is an output

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-5 V 1.6, 2001-08

During external accesses in demultiplexed bus modes PORT0 reads the incoming
instruction or data word or outputs the data byte or word.

Figure 7-2 PORT0 IO and Alternate Functions

When an external bus mode is enabled, the direction of the port pin and the loading of
data into the port output latch are controlled by the bus controller hardware. The input of
the port output latch is disconnected from the internal bus and is switched to the line
labeled “Alternate Data Output” via a multiplexer. The alternate data can be the 16-bit
intrasegment address or the 8/16-bit data information. The incoming data on PORT0 is
read on the line “Alternate Data Input”. While an external bus mode is enabled, the user
software should not write to the port output latch, otherwise unpredictable results may
occur. When the external bus modes are disabled, the contents of the direction register
last written by the user becomes active.

P0H.7
P0H.6
P0H.5
P0H.4
P0H.3
P0H.2
P0H.1
P0H.0
P0L.7
P0L.6
P0L.5
P0L.4
P0L.3
P0L.2
P0L.1
P0L.0

PORT0 D7
D6
D5
D4
D3
D2
D1
D0

P0H

P0L

D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

A15
A14
A13
A12
A11
A10
A9
A8
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0

AD15
AD14
AD13
AD12
AD11
AD10
AD9
AD8
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0

Alternate Function a) b) c) d)

General Purpose
Input/Output

8-bit
Demux Bus

16-bit
Demux Bus

8-bit
MUX Bus

16-bit
MUX Bus

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-6 V 1.6, 2001-08

The figure below shows the structure of a PORT0 pin.

Figure 7-3 Block Diagram of a PORT0 Pin

P0H.7-0, P0L.7-0

Port Output
Register

0

1

0

1
Driver

Clock

Pin

Direction
Register

0 1

Input
Register

Internal Bus

AltDataIn

AltDataOut

AltEN

AltDir

R
ea

d

W
rit

e

R
ea

d

W
rit

e

P
or

t0
_1

.v
sd

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-7 V 1.6, 2001-08

7.3 PORT1

The two 8-bit ports P1H and P1L represent the higher and lower part of PORT1,
respectively. Both halfs of PORT1 can be written (e.g. via a PEC transfer) without
effecting the other half.
If this port is used for general purpose IO, the direction of each line can be configured
via the corresponding direction registers DP1H and DP1L.

P1L
PORT1 Low Register SFR (FF04H/82H) Reset Value: - - 00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P1L
.7

P1L
6

P1L
.5

P1L
.4

P1L
.3

P1L
.2

P1L
.1

P1L
.0

- - - - - - - - rw rw rw rw rw rw rw rw

P1H
PORT1 High Register SFR (FF06H/83H) Reset Value: - - 00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P1H
.7

P1H
.6

P1H
.5

P1H
.4

P1H
.3

P1H
.2

P1H
.1

P1H
.0

- - - - - - - - rw rw rw rw rw rw rw rw

Bit Function

P1X.y Port data register P1H or P1L bit y

DP1L
P1L Direction Ctrl. Register ESFR (F104H/82H) Reset Value: - - 00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DP1
L.7

DP1
L.6

DP1
L.5

DP1
L.4

DP1
L.3

DP1
L.2

DP1
L.1

DP1
L.0

- - - - - - - - rw rw rw rw rw rw rw rw

DP1H
P1H Direction Ctrl. Register ESFR (F106H/83H) Reset Value: - - 00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DP1
H.7

DP1
H.6

DP1
H.5

DP1
H.4

DP1
H.3

DP1
H.2

DP1
H.1

DP1
H.0

- - - - - - - - rw rw rw rw rw rw rw rw

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-8 V 1.6, 2001-08

Alternate Functions of PORT1

When a demultiplexed external bus is enabled, PORT1 is used as address bus.
Note that demultiplexed bus modes use PORT1 as a 16-bit port. Otherwise all 16 port
lines can be used for general purpose IO.

Figure 7-4 PORT1 IO and Alternate Functions

During external accesses in demultiplexed bus modes PORT1 outputs the 16-bit intra-
segment address as an alternate output function.

During external accesses in multiplexed bus modes, when no BUSCON register selects
a demultiplexed bus mode, PORT1 is not used and is available for general purpose IO.

When an external bus mode is enabled, the direction of the port pin and the loading of
data into the port output register are controlled by the bus controller hardware. The input
of the port output register is disconnected from the internal bus and is switched to the
line labeled “Alternate Data Output” via a multiplexer. The alternate data is the 16-bit
intrasegment address. While an external bus mode is enabled, the user software should
not write to the port output register, otherwise unpredictable results may occur. When the
external bus modes are disabled, the contents of the direction register last written by the
user becomes active.

Bit Function

DP1X.y Port direction register DP1H or DP1L bit y
DP1X.y = 0: Port line P1X.y is an input (high-impedance)
DP1X.y = 1: Port line P1X.y is an output

P1H.7
P1H.6
P1H.5
P1H.4
P1H.3
P1H.2
P1H.1
P1H.0
P1L.7
P1L.6
P1L.5
P1L.4
P1L.3
P1L.2
P1L.1
P1L.0

PORT1

P1H

P1L

Alternate Function

General Purpose
Input/Output

a)

A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

8/16-bit
Demux Bus

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-9 V 1.6, 2001-08

The figures below show the structure of PORT1 pins. The upper 4 pins of PORT1
combine internal bus data and alternate data output before the port register input.

Figure 7-5 Block Diagram of a PORT1 Pin with Address Function

Port Output
Register

0

1

0

1
Driver

Clock

Pin

Direction
Register

0 1

Input
Register

Internal Bus

AltDataOut

AltEN

AltDir = ’1’

R
ea

d

W
rit

e

R
ea

d

W
rit

e

P
or

t1
_1

.v
sd

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-10 V 1.6, 2001-08

7.4 Port 4

If this 8-bit port is used for general purpose IO, the direction of each line can be
configured via the corresponding direction register DP4.

Alternate Functions of Port 4

During external bus cycles that use segmentation (i.e. an address space above
64 KByte) a number of Port 4 pins may output the segment address lines. The number
of pins that is used for segment address output determines the external address space
which is directly accessible. The other pins of Port 4 (if any) may be used for general
purpose IO.
If segment address lines are selected, the alternate function of Port 4 may be necessary
to access e.g. external memory directly after reset. For this reason Port 4 will be
switched to this alternate function automatically.

The number of segment address lines is selected via conf_rst_salsel_i[1:0] (SALSEL)
during reset.

P4
�������
������������ SFR (FFC8H/E4H) Reset Value: - - 00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P4.7 P4.6 P4.5 P4.4 P4.3 P4.2 P4.1 P4.0

- - - - - - - - rw rw rw rw rw rw rw rw

Bit Function

P4.y Port data register P4 bit y

DP4
P4 Direction Ctrl. Register SFR (FFCAH/E5H) Reset Value: - - 00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DP4
.7

DP4
.6

DP4
.5

DP4
.4

DP4
.3

DP4
.2

DP4
.1

DP4
.0

- - - - - - - - rw rw rw rw rw rw rw rw

Bit Function

DP4.y Port direction register DP4 bit y
DP4.y = 0: Port line P4.y is an input (high-impedance)
DP4.y = 1: Port line P4.y is an output

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-11 V 1.6, 2001-08

The table below summarizes the alternate functions of Port 4 depending on the number
of selected segment address lines.

Note: Port 4 pins that are not used for segment address output may be used for general
purpose IO.

Figure 7-6 Port 4 IO and Alternate Functions

Table 7-2 Alternate Functions of Port 4

Port 4
Pin

Std. Function
SALSEL=01
64 KB

Altern. Function
SALSEL=11
256KB

Altern. Function
SALSEL=00
1 MB

Altern. Function
SALSEL=10
16 MB

P4.0
P4.1
P4.2
P4.3
P4.4
P4.5
P4.6
P4.7

Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO

Seg. Address A16
Seg. Address A17
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO

Seg. Address A16
Seg. Address A17
Seg. Address A18
Seg. Address A19
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO

Seg. Address A16
Seg. Address A17
Seg. Address A18
Seg. Address A19
Seg. Address A20
Seg. Address A21
Seg. Address A22
Seg. Address A23

-
-
-
-
-
-
-
-
P4.7
P4.6
P4.5
P4.4
P4.3
P4.2
P4.1
P4.0

Port 4

-
-
-
-
-
-
-
-
A23
A22
A21
A20
A19
A18
A17
A16

Alternate Function a)

General Purpose
Input/Output

Full Segment
Address (16 MB)

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-12 V 1.6, 2001-08

Figure 7-7 Block Diagram of a Port 4 Pin

P4.7-0

Port Output
Register

0

1

0

1
Driver

Clock

Pin

Direction
Register

0 1

Input
Register

Internal Bus

AltDataIn

AltDataOut

AltEN

AltDir = ’1’

R
ea

d

W
rit

e

R
ea

d

W
rit

e

P
or

t4
_1

.v
sd

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-13 V 1.6, 2001-08

7.5 Port 6

If this 8-bit port is used for general purpose IO, the direction of each line can be
configured via the corresponding direction register DP6.

Alternate Functions of Port 6

A programmable number of chip select signals (CS4...CS0) derived from the bus control
registers (BUSCON4...BUSCON0) can be output on 5 pins of Port 6. The number of chip
select signals is selected via conf_rst_cssel_i[1:0] (CSSEL) during reset.

P6
�������
������������ SFR (FFCCH/E6H) Reset Value: - - 00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P6.7 P6.6 P6.5 P6.4 P6.3 P6.2 P6.1 P6.0

- - - - - - - - rw rw rw rw rw rw rw rw

Bit Function

P6.y Port data register P6 bit y

DP6
P6 Direction Ctrl. Register SFR (FFCEH/E7H) Reset Value: - - 00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DP6
.7

DP6
.6

DP6
.5

DP6
.4

DP6
.3

DP6
.2

DP6
.1

DP6
.0

- - - - - - - - rw rw rw rw rw rw rw rw

Bit Function

DP6.y Port direction register DP6 bit y
DP6.y = 0: Port line P6.y is an input (high-impedance)
DP6.y = 1: Port line P6.y is an output

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-14 V 1.6, 2001-08

The table below summarizes the alternate functions of Port 6 depending on the number
of selected chip select lines (coded via bitfield CSSEL).

Figure 7-8 Port 6 IO and Alternate Functions

Note: The chip select lines of Port 6 should have (product specific) an internal weak pull-
up device.This device should be switched on during reset for all potential CS
output pins. This feature should be implemented to drive the chip select lines high
during reset in order to avoid multiple chip selection.

After reset the CS function must be used, if selected so. In this case there is no possibility
to program any port registers before. Thus the alternate function (CS) is selected
automatically in this case.

Table 7-3 Alternate Functions of Port 6

Port 6 Pin Altern. Function
CSSEL = 10

Altern. Function
CSSEL = 01

Altern. Function
CSSEL = 00

Altern. Function
CSSEL = 11

P6.0
P6.1
P6.2
P6.3
P6.4
P6.5
P6.6
P6.7

Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO

Chip select CS0
Chip select CS1
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO

Chip select CS0
Chip select CS1
Chip select CS2
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO

Chip select CS0
Chip select CS1
Chip select CS2
Chip select CS3
Chip select CS4
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO

-
-
-
-
-
-
-
-
P6.7
P6.6
P6.5
P6.4
P6.3
P6.2
P6.1
P6.0

Port 6

-
-
-
-
-
-
-
-
P6.7
P6.6
P6.5
CS4
CS3
CS2
CS1
CS0

Alternate Function a)

General Purpose
Input/Output

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-15 V 1.6, 2001-08

Figure 7-9 Block Diagram of Port 6 Pins with an alternate output function

P6.4-0

Port Output
Register

0

1

0

1
Driver

Clock

Pin

Direction
Register

0 1

Input
Register

Internal Bus

AltDataIn

AltDataOut

AltEN

AltDir = ’1’

R
ea

d

W
rit

e

R
ea

d

W
rit

e

P
or

t6
_1

.v
sd

User’s Manual
C166S V1 SubSystem

Parallel Ports

User’s Manual 7-16 V 1.6, 2001-08

Figure 7-10 Block Diagram of Port 6 Pins without an alternate output function

P6.7-5

Port Output
Register

Driver

Clock

Pin

Direction
Register

0 1

Input
Register

Internal Bus

R
ea

d

W
rit

e

R
ea

d

W
rit

e

P
or

t6
_2

.v
sd

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-1 V 1.6, 2001-08

8 The External Bus Interface
Although the C166S subsystem supports a powerful set of on-chip peripherals and on-
chip RAM and ROM/OTP/Flash areas, these internal units cover only a small fraction of
the chip’s address space (up to 16 MBytes). The external bus interface allows access to
external peripherals and additional volatile and non-volatile memory. The external bus
interface has a number of possible configurations, so it can be tailored to fit perfectly into
a given application system.

Figure 8-1 SFRs and Port Pins Associated with the External Bus Interface

Accesses to external memory or peripherals are executed by the integrated External Bus
Controller (EBC). The function of the EBC is controlled via the SYSCON, BUSCONx,
and ADDRSELx registers. The BUSCONx registers specify the external bus cycles in
terms of address (mux / demux), data width (16-bit / 8-bit), chip selects, and length
(waitstates / READY control / ALE / RW delay). These parameters are used for accesses
within a specific address area that is defined via the corresponding register ADDRSELx.

The four pairs BUSCON1/ADDRSEL1...BUSCON4/ADDRSEL4 make it possible to
define four independent “address windows”, while all external accesses outside these
windows are controlled via BUSCON0.

P4

BUSCON0

BUSCON1

BUSCON2

ADDRSEL4

P0L / P0H

ADDRSEL1

SYSCON

ODP6 Port 6 Open Drain Control Register
DP6 Port 6 Direction Control Register
P6 Port 6 Data Register
ADDRSELx Address Range Select Register 1...4
BUSCONx Bus Mode Control Register 0...4
SYSCON System Control Register
RP0H Port P0H Reset Configuration Register

Ports & Direction Control
Alternate Functions

Address Registers Mode Registers Control Registers

BUSCON3

BUSCON4

ADDRSEL2

RP0H

DP3

P3 ADDRSEL3

P1L / P1H

P6

ODP6E

DP6

A[23:0] EA BREQ CS[4:0]
D[15:0] RSTIN HLDA
ALE READY HOLD
RD
WR/WRL
BHE/WRH

P0L/P0H PORT0 Data Registers
P1L/P1H PORT1 Data Registers
DP3 Port 3 Direction Control Register
P3 Port 3 Data Register
ODP4 Port 4 Open Drain Control Register
P4 Port 4 Data Register

ODP4E

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-2 V 1.6, 2001-08

8.1 Single-chip Mode

Single-chip mode is entered when the signal conf_start_external_n_i is high during
reset. In this case, BUSCON0 is initialized with 0000H, which also resets bit BUSACT0,
so no external bus is enabled.

In single-chip mode, the C166S operates only with and out of internal resources. No
external bus is configured and no external peripherals and/or memory can be accessed.
No port lines are used for the bus interface. When running in single-chip mode, however,
external access may be enabled by configuring an external bus under software control.
Single-chip mode allows the C166S to start execution out of the internal program
memory (Mask-ROM, OTP, DRAM, SRAM or flash memory).

Note: Any attempt to access a location in the external memory space in single-chip
mode results in the hardware trap ILLBUS if no external bus has been enabled
explicitly by software.

8.2 External Bus Modes

When the external bus interface is enabled (bit BUSACTx=1) and configured (bitfield
BTYP), the C166S uses a subset of its port lines together with some control lines to build
the external bus.

The bus configuration (BTYP) for the address windows (BUSCON4... BUSCON1) is
selected via software, typically during the initialization of the system.

The bus configuration (BTYP) for the default address range (BUSCON0) is selected via
conf_rst_bustyp_i[1:0] during reset, provided that the signal conf_start_external_n_i is
low during reset. Otherwise, BUSCON0 may be programmed via software just like the
other BUSCON registers.

The 16-MByte address space of the C166S is divided into 256 segments of 64 KBytes
each. The 16-bit intra-segment address is output on PORT0. When segmentation is
disabled, only one 64-KByte segment can be used and accessed. Otherwise, additional
address lines may be output on Port 4 (addressing up to 16 MByte), and/or several chip
select lines may be used to select different memory banks or peripherals. These

Table 8-1 Summary of External Bus Modes

BTYP
Encoding

External Data Bus Width External Address Bus Mode

0 0 8-bit Data Demultiplexed Addresses

0 1 8-bit Data Multiplexed Addresses

1 0 16-bit Data Demultiplexed Addresses

1 1 16-bit Data Multiplexed Addresses

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-3 V 1.6, 2001-08

functions are selected during reset via bitfields SALSEL and CSSEL of register RP0H,
respectively.

8.2.1 Multiplexed Bus Modes

In the multiplexed bus modes, the 16-bit intra-segment address and the data both use
PORT0. The address is time-multiplexed with the data, and has to be latched externally.
The width of the required latch depends on the selected data bus width. For example,
an 8-bit data bus requires a byte latch (the address bits A15...A8 on P0H do not change,
while P0L multiplexes address and data); a 16-bit data bus requires a word latch (the
least significant address line A0 is not relevant for word accesses). The upper segment
address lines (An...A16) are permanently output on Port 4 if segmentation is enabled,
and do not require latches.

The EBC initiates an external access by generating the Address Latch Enable (ALE)
signal and then placing an address on the bus. The falling edge of ALE triggers an
external latch to capture the address. After a period of time during which the address
must have been latched externally, the address is removed from the bus. The EBC now
activates the appropriate command signal (RD, WR, WRL, WRH). Data is driven onto
the bus either by the EBC (for write cycles) or by the external memory/peripheral (for
read cycles). After a period of time that is determined by the access time of the memory/
peripheral, data become valid.

Read cycles: Input data is latched and the command signal is now deactivated. This
causes the accessed device to remove its data from the bus, which is then tri-stated
again.

Write cycles: The command signal is now deactivated. The data remain valid on the bus
until the next external bus cycle is started.

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-4 V 1.6, 2001-08

Figure 8-2 Multiplexed Bus, Write Access

4)
MTTC

ValidA23-A0,
BHE, CSxE6)

CLKOUT

 Normal ALE

Normal ALE Cycle 5)

CSxL6)

Data Out

Extend. ALE

WRL, WRH,
WR, WRCS

Extended ALE Cycle 5)

D15-D0
(Norm. ALE)

1)

3)
MCTC

Low Address

Data Out
D15-D0

(Extd. ALE) Low Address

2)

1) Section 8.3.4 Read/Write Delay
2) Section 8.3.5 Early Write
3) Section 8.3.2 Memory Cycle Time
4) Section 8.3.3 Memory Tri-State Time
5) Section 8.3.1 ALE Length Control
6) Section 8.2.3 CS Signal Generation

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-5 V 1.6, 2001-08

Figure 8-3 Multiplexed Bus, Read Access

ValidA23-A0,
BHE, CSxE6)

CLKOUT

 Normal ALE

Normal ALE Cycle 5)

CSxL6)

Extend. ALE

RD,
RDCS

Extended ALE Cycle 5)

1)

3)
MCTC

4)
MTTC

Data InLow AddressD15-D0
(Norm. ALE)

D15-D0
(Extd. ALE)

Data InLow Address

1) Section 8.3.4 Read/Write Delay
3) Section 8.3.2 Memory Cycle Time
4) Section 8.3.3 Memory Tri-State Time
5) Section 8.3.1 ALE Length Control
6) Section 8.2.3 CS Signal Generation

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-6 V 1.6, 2001-08

8.2.2 Demultiplexed Bus Modes

In the demultiplexed bus modes, the 16-bit intra-segment address is permanently output
on PORT1, while the data uses PORT0 (16-bit data) or P0L (8-bit data). The upper
address lines are permanently output on Port 4 (if selected via SALSEL during reset). No
address latches are required.

The EBC initiates an external access by placing an address on the address bus. After a
programmable period of time, the EBC activates the appropriate command signal (RD,
WR, WRL, WRH). Data is driven onto the data bus either by the EBC (for write cycles)
or by the external memory/peripheral (for read cycles). After a period of time determined
by the access time of the memory/peripheral, data becomes valid.

Read cycles: Input data is latched and the command signal is now deactivated. This
causes the accessed device to remove its data from the data bus which is then tri-stated
again.

Write cycles: The command signal is now deactivated. If a subsequent external bus
cycle is required, the EBC places the relevant address on the address bus. The data
remain valid on the bus until the next external bus cycle is started.

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-7 V 1.6, 2001-08

Figure 8-4 Demultiplexed Bus, Write Access

Valid

Data Out

A23-A0,
BHE, CSxE6)

D15-D0
(Normal Wr.)

CLKOUT

 Normal ALE

Normal ALE Cycle 5)

CSxL6)

Data Out

Extend. ALE

WRL, WRH,
WR, WRCS

Extended ALE Cycle 5)

D15-D0
(Early Write)

1)

3)
MCTC

2)

1) Section 8.3.4 Read/Write Delay
2) Section 8.3.5 Early Write
3) Section 8.3.2 Memory Cycle Time
4) Section 8.3.3 Memory Tri-State Time
5) Section 8.3.1 ALE Length Control
6) Section 8.2.3 CS Signal Generation

4)
MTTC

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-8 V 1.6, 2001-08

Figure 8-5 Demultiplexed Bus, Read Access

ValidA23-A0,
BHE, CSxE6)

CLKOUT

 Normal ALE

Normal ALE Cycle 5)

CSxL6)

Extend. ALE

RD,
RDCS

Extended ALE Cycle 5)

1)

3)
MCTC

4)
MTTC

Data InD15-D0

1) Section 8.3.4 Read/Write Delay
3) Section 8.3.2 Memory Cycle Time
4) Section 8.3.3 Memory Tri-State Time
5) Section 8.3.1 ALE Length Control
6) Section 8.2.3 CS Signal Generation

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-9 V 1.6, 2001-08

8.2.3 Switching Among the Bus Modes

The EBC allows dynamic switching among different bus modes, i.e., subsequent
external bus cycles may be executed in different ways. Certain address areas may use
an 8-bit or 16-bit data bus, or predefined waitstates.

A change of the external bus characteristics can be initiated in two different ways:

Reprogramming the BUSCON and/or ADDRSEL registers allows the bus mode to be
changed for a given address window, or changing the size of an address window that
uses a certain bus mode. Reprogramming makes it possible to use a great number of
different address windows (more than BUSCONs are available), although there is some
overhead for changing the registers and keeping appropriate tables.

Switching between predefined address windows automatically selects the bus mode
that is associated with the respective window. Predefined address windows allow the
use of different bus modes without any overhead, but restrict the number of windows to
the number of BUSCONs. However, as BUSCON0 controls all address areas that are
not covered by the other BUSCONs, there may be gaps between windows that use the
bus mode of BUSCON0.

PORT1 will output the intra-segment address when any of the BUSCON registers
selects a demultiplexed bus mode, even if the current bus cycle uses a multiplexed bus
mode. This allows an external address decoder to be connected to PORT1 only, while
using it for all kinds of bus cycles.

Note: Never change the configuration for an address area that currently supplies the
instruction stream. Due to internal pipelining, it is very difficult to determine the first
instruction fetch that will use the new configuration. Only change the configuration
for address areas that are not currently accessed. This applies to BUSCON
registers as well as to ADDRSEL registers.

The usage of the BUSCON/ADDRSEL registers is controlled via the addresses issued.
When an access (code fetch or data) is initiated, the generated physical address
determines whether the access is made internally, uses one of the address windows
defined by ADDRSEL4...1, or uses the default configuration in BUSCON0. After
initializing the active registers, they are selected and evaluated automatically by
interpreting the physical address. No additional switching or selecting is necessary
during run time, except when more than four address windows plus the default
(BUSCON0) are to be used.

Switching from demultiplexed to multiplexed bus mode represents a special case.
The bus cycle is started by activating ALE and driving the address to Port 4 and PORT1
as usual, if another BUSCON register selects a demultiplexed bus. However, in the
multiplexed bus modes, the address is also required on PORT0. In this special case. the
address on PORT0 is delayed by one CPU clock cycle, which delays the complete
(multiplexed) bus cycle and extends the corresponding ALE signal (see Figure 8-6).

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-10 V 1.6, 2001-08

This extra time is required to allow the previously-selected device (via demultiplexed
bus) to release the data bus, which would be available in a demultiplexed bus cycle.

Figure 8-6 Switching from Demultiplexed to Multiplexed Bus Mode

Switching between external resources (e.g., different peripherals) may create a
problem if the previously-accessed resource needs some time to switch off its output
drivers (after a read), and if the resource to be accessed next switches on its output
drivers very fast. In systems running on higher frequencies, this may lead to a bus
conflict (switch-off delays normally are independent from the clock frequency).

In such a case, an additional waitstate can automatically be inserted when leaving a
certain address window, i.e. when the next cycle accesses a different window. This
waitstate is controlled in the same way as the waitstate when switching from
demultiplexed to multiplexed bus mode (see Figure 8-6).

BUSCON switch waitstates are enabled via bits BSWCx in the BUSCON registers. By
enabling the automatic BUSCON switch waitstate (BSWCx = 1), there is no impact on
the system performance as long as the external bus cycles access the same address
window. If the following cycle accesses a different window, a waitstate is inserted
between the last access to the previous window and the first access to the new window.

After reset, no BUSCON switch waitstates are selected.

 ALE

valid

RD

WR

low address

low address

	����

Data

��	����

valid

����

write data

A23-A0

A7-A0,(A15-A8)
D15-D0

A7-A0,(A15-A8)
D15-D0 write data

In

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-11 V 1.6, 2001-08

External Data Bus Width

The EBC can operate on 8-bit- or 16-bit-wide external memory/peripherals. A 16-bit data
bus uses PORT0, while an 8-bit data bus only uses P0L, the lower byte of PORT0. This
saves on address latches, bus transceivers, bus routing, and memory-related increases
in transfer time. The EBC can control word accesses on an 8-bit data bus as well as byte
accesses on a 16-bit data bus.

Word accesses on an 8-bit data bus are automatically split into two subsequent byte
accesses in which the low byte is accessed first, then the high byte. The assembly of
bytes to words and the disassembly of words into bytes is handled by the EBC, and is
transparent to the CPU and the programmer.

Byte accesses on a 16-bit data bus require that the upper and lower half of the memory
can be accessed individually. In this case, the upper byte is selected with the Byte High
Enable BHE signal, while the lower byte is selected with the A0 signal. The two bytes of
the memory can be enabled independently of each other, or together when accessing
words.

When writing bytes to an external 16-bit device that has a single CS input and two WR
enable inputs (for the two bytes), the EBC can generate these two write control signals
directly. This saves the external combination of the WR signal with A0 or BHE. In this
case, pin WR serves as WRL (WRite Low byte) and pin BHE serves as WRH (WRite
High byte). Bit WRCFG in register SYSCON selects the operating mode for pins WR and
BHE. The respective byte will be written on both data bus halves.

When reading bytes from an external 16-bit device, whole words may be read and the
C166S automatically selects the byte to be input and discards the other. However, care
must be taken when reading devices that change state when being read such as FIFOs,
interrupt status registers, etc. In this case, individual bytes should be selected using BHE
and A0.

Note: PORT1 becomes available for general-purpose IO when none of the BUSCON
registers selects a demultiplexed bus mode. PORT0H becomes available for
general-purpose IO when only the 8-bit demultiplexed bus mode is selected.

Table 8-2 Bus Mode Versus Performance

Bus Mode Transfer Rate
(Speed factor for
byte/word/dword access)

System Requirements Free IO
Lines

8-bit Multiplexed Very low (1.5 / 3 / 6) Low (8-bit latch, byte bus) P1H, P1L

8-bit Demultipl. Low (1 / 2 / 4) Very low (no latch, byte bus) P0H

16-bit Multiplexed High (1.5 / 1.5 / 3) High (16-bit latch, word bus) P1H, P1L

16-bit Demultipl. Very high (1 / 1 / 2) Low (no latch, word bus) ---

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-12 V 1.6, 2001-08

Disable/Enable Control for Pin BHE (BYTDIS)
Bit BYTDIS is provided for controlling the active low Byte High Enable (BHE) pin. The
function of the BHE pin is enabled if the BYTDIS bit contains a 0. Otherwise, it is disabled
and the pin can be used as a standard I/O pin. The BHE pin is used implicitly by the EBC
to select one of two byte-organized memory chips, which are connected to the C166S
via a word-wide external data bus. After reset, the BHE function is automatically enabled
(BYTDIS = 0) if a 16-bit data bus is selected during reset; otherwise it is disabled
(BYTDIS=1). It may be disabled if byte access to 16-bit memory is not required, and if
the BHE signal is not used.

Segment Address Generation

During external accesses, the EBC generates a (programmable) number of address
lines on Port 4, which extend the 16-bit address output on PORT0 and thus increase the
accessible address space. The number of segment address lines is selected via
conf_rst_salsel_i[1:0] during reset, and coded in bit field SALSEL in register RP0H (see
table below).

Note: The total accessible address space may be increased by accessing several banks
that are distinguished by individual chip select lines.
If Port 4 is used to output segment address lines, in most cases the drivers must
operate in push/pull mode. Make sure that OPD4 does not select open-drain mode
in this case.

Table 8-3 Decoding of Segment Address Lines

SALSEL Segment Address Lines Directly accessible Address Space

1 1 Two: A17...A16 256 KByte (Default without pull-downs)

1 0 Eight: A23...A16 16 MByte (Maximum)

0 1 None 64 KByte (Minimum)

0 0 Four: A19...A16 1 MByte

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-13 V 1.6, 2001-08

CS Signal Generation

During external accesses, the EBC can generate a (programmable) number of CS lines
on Port 4, which make it possible to select external peripherals or memory banks directly
without requiring an external decoder. The number of CS lines is selected via
conf_rst_cssel_i[1:0] during reset, and coded in bit field CSSEL in register RP0H (see
Table 8-4).

The CSx outputs are associated with the BUSCONx registers, and are driven active low
for any access within the address area defined for the respective BUSCON register. For
any access outside this defined address area, the respective CSx signal will go inactive
high. At the beginning of each external bus cycle, the corresponding valid CS signal is
determined and activated. All other CS lines are deactivated (driven high) at the same
time.

Note: The CSx signals will not be updated for an access to any internal address area
(i.e. when no external bus cycle is started), even if this area is covered by the
respective ADDRSELx register. An internal bus interface access deactivates all
external CS signals.
Upon accesses to address windows without a selected CS line, all selected CS
lines are deactivated.

The chip-select signals may be operated in four different modes (see Table 8-5) that are
selected via bits CSWENx and CSRENx in the respective BUSCONx register.

Table 8-4 Decoding of Chip Select Lines

CSSEL Chip Select Lines Note

1 1 Five: CS4...CS0 Default without pull-downs

1 0 None

0 1 Two: CS1...CS0

0 0 Three: CS2...CS0

Table 8-5 Chip-Select Generation Modes

CSWENx CSRENx Chip-Select Mode

0 0 Address chip select (default after reset)

0 1 Read chip select

1 0 Write chip select

1 1 Read/write chip select

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-14 V 1.6, 2001-08

Read or Write Chip-Select (CS is renamed WRCS or RDCS in the protocol diagrams)
signals remain active only as long as the associated control signal (RD or WR) is active.
This also includes the programmable read/write delay. Read chip select is activated only
for read cycles; write chip select is activated only for write cycles; and read/write chip
select is activated for both read and write cycles (write cycles are assumed if either of
the signals WRH or WRL goes active). These modes save external glue logic when
accessing external devices such as latches or drivers that have only a single enable
input.

Address Chip-Select signals remain active during the complete bus cycle. For address
chip select signals, two generation modes can be selected via bit CSCFG in register
SYSCON:

• A latched address chip-select signal (CS is renamed in CSxL in the protocol
diagrams) (CSCFG=0) becomes active with the falling edge of ALE and becomes
inactive at the beginning of an external bus cycle that accesses a different address
window. No spikes will be generated on the chip-select lines, and no changes occur
as long as locations within the same address window or within internal memory
(excluding internal bus interface) are accessed.

• An early address chip-select signal (CS is renamed in CSxE in the protocol diagrams)
(CSCFG=1) becomes active together with the address and BHE (if enabled) and
remains active until the end of the current bus cycle. Early address chip-select signals
are not latched internally and may toggle intermediately while the address is changing.

Note: CS0 provides a latched address chip select directly after reset (except for single-
chip mode) when the first instruction is fetched.

Internal pull-up devices hold all CS lines high during reset. After the end of a reset
sequence, the pull-up devices are switched off and the pin drivers control the pin levels
on the selected CS lines. Unselected CS lines will enter the high-impedance state, and
be available for general purpose I/O.

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-15 V 1.6, 2001-08

Figure 8-7 Latched and Early Chip Select

Segment Address versus Chip Select

The external bus interface of the C166S supports many configurations for the external
memory. By increasing the number of segment address lines, the C166S can address a
linear address space of 256 KByte, 1 MByte, 4 MByte, 8 MByte or 16 MByte. This allows
implementation of a large sequential memory area, and access to a great number of
external devices, using an external decoder. By increasing the number of CS lines, the
C166S can access memory banks or peripherals without external glue logic. These two
features may be combined to optimize the overall system performance.

Note: If the number of segment address lines and CS lines configured at reset cause
overlap (e.g. A18...A16 and CS4...CS0), the segment address line function will
take precedence.

ValidCSxE

CLKOUT

 Normal ALE

Normal ALE Cycle 5)

CSxL

Extend. ALE

Extended ALE Cycle 5)

5) Section 8.3.1 ALE Length Control

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-16 V 1.6, 2001-08

8.3 Programmable Bus Characteristics

Important timing characteristics of the external bus interface have been made user-
programmable to adapt it to a wide range of external bus and memory configurations
with different types of memories and/or peripherals.

The following parameters of an external bus cycle are programmable:

• ALE Control defines the ALE signal length and the address hold time after its falling
edge

• Memory Cycle Time (extendable with 1-15 waitstates) defines the allowable access time
• Memory Tri-State Time (extendable with 1 waitstate) defines the time for a data driver to

float
• Read/Write Delay Time defines when a command is activated after the falling edge of

ALE

Note: External accesses use the slowest possible bus cycle after reset. The bus cycle
timing may then be optimized by the initialization software.

Figure 8-8 Programmable External Bus Cycle

8.3.1 ALE Length Control

The length of the ALE signal and the address hold time after its falling edge are
controlled by the ALECTLx bits in the BUSCON registers. When bit ALECTL is set to 1,

ALECTL MCTC MTTC

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-17 V 1.6, 2001-08

external bus cycles accessing the appropriate address window will have their ALE signal
prolonged by half a CPU clock (1 TCL). Also the address hold time after the falling edge
of ALE (on a multiplexed bus) will be prolonged by half a CPU clock, so the data transfer
within a bus cycle refers to the same CLKOUT edges as usual (i.e., the data transfer is
delayed by one CPU clock). This allows more time for the address to be latched.

Note: ALECTL0 is 1 after reset to select the slowest possible bus cycle, the other
ALECTLx bits are 0 after reset.

8.3.2 Programmable Memory Cycle Time

The C166S allows the user to adjust the controller’s external bus cycles to the access
time of the respective memory or peripheral. This access time is the total time required
to move the data to the destination. It represents the period of time during which the
controller’s signals do not change.

The external bus cycles of the C166S can be extended by introducing waitstates during
access (see Figure 8-8) to compensate for a memory or peripheral that cannot keep
pace with the controller’s maximum speed . During these memory cycle time waitstates,
the CPU is idle if this access is required for the execution of the current instruction.

The memory cycle time waitstates can be programmed in increments of one CPU clock
(2 TCL) within a range from 0 to 15 (default after reset) via the Memory Cycle Time
Control (MCTC) fields of the BUSCON registers. 15-<MCTC> waitstates will be
inserted.

8.3.3 Programmable Memory Tri-State Time

The C166S allows the user to adjust the time between two subsequent external
accesses in order to account for the tri-state time of the external device. The tristate time
defines when the external device has released the bus after deactivation of the read
command (RD).

The output of the next address on the external bus can be delayed by introducing a
waitstate after the previous bus cycle in order to compensate for a memory or peripheral
that needs more time to switch off its bus drivers, (see Figure 8-8). During this memory
tri-state time waitstate, the CPU is not idle, so CPU operations will be slowed down only
if a subsequent external instruction or data fetch operation is required during the next
instruction cycle.

The memory tristate time waitstate requires one CPU clock (2 TCL) and is controlled via
the Memory Tristate Time Control (MTTCx) bits of the BUSCON registers. A waitstate
will be inserted if bit MTTCx is 0 (default after reset).

Note: External bus cycles in multiplexed bus modes implicitly add one tristate time
waitstate in addition to the programmable MTTC waitstate.

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-18 V 1.6, 2001-08

8.3.4 Read/Write Signal Delay

The C166S allows the user to adjust the timing of the read and write commands to
account for timing requirements of external peripherals. The read/write delay controls the
time between the falling edge of ALE and the falling edge of the command. Without read/
write delay, the falling edges of ALE and command(s) are concurrent (except for
propagation delays). With the delay enabled, the command(s) become active half a CPU
clock (1 TCL) after the falling edge of ALE. The read/write delay does not extend the
memory cycle time, and does not slow down the controller. In multiplexed bus modes,
however, the data drivers of an external device may conflict with the C166S’s address
when the early RD signal is used. Therefore, multiplexed bus cycles should always be
programmed with read/write delay.

The read/write delay is controlled via the Read Write Delay Control (RWDCx) bits in the
BUSCON registers. The command(s) will be delayed if bit RWDCx is 0 (default after
reset).

8.3.5 Early WR

The duration of an external write access can be shortened by one TCL. The WR signal
is activated (driven low) in the standard way, but can be deactivated (driven high) one
TCL earlier than defined in the standard timing. In this case, the data output drivers will
also be deactivated one TCL earlier.

This is especially useful in systems that operate on higher CPU clock frequencies and
employ external modules (memories, peripherals, etc.) that switch on their own data
drivers very rapidly in response to e.g. a chip select signal.

Conflicts between the C166S’s and the external peripheral’s output drivers can be
avoided by selecting early WR for the C166S.

Note: Make sure that the reduced WR low time still meets the requirements of the
external peripheral/memory.

Early WR deactivation is controlled via the Early Write EnNable (EWENx) bits in the
BUSCON registers. The WR signal will be shortened if bit EWENx is 1 (default after reset
is a standard WR signal, i.e. EWENx = 0).

8.3.6 READY Controlled Bus Cycles

For situations in which the programmable waitstates are not enough, or the response
(access) time of a peripheral is not constant, the C166S has external bus cycles that are
terminated via an asynchronous READY input signal. In this case, the C166S first inserts
a programmable number of waitstates (0-7) and then monitors the READY line to
determine the actual end of the current bus cycle. The external device drives READY low
in order to indicate that data have been latched (write cycle) or are available (read cycle).

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-19 V 1.6, 2001-08

Figure 8-9 READY Controlled Bus Cycles
1) Section 8.3.4 Read/Write Delay
2) Section 8.3.5 Early Write
4) Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).
5) READY sampled HIGH at this sampling point generates a READY controlled waitstate,

READY sampled LOW at this sampling point terminates the currently running bus cycle.
6) Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may

be inserted here. For a multiplexed bus with MTTC waitstate, this delay is 2 CLKOUT cycles; for a
demultiplexed bus without MTTC waitstate this delay is zero.

7) If the next following bus cycle is READY controlled, an active READY signal must be disabled before the first
valid sample point for the next bus cycle. This sample point depends on the MTTC waitstate of the current
cycle, and on the MCTC waitstates and the ALE mode of the next cycle. If the current cycle uses a multiplexed
bus, the intrinsic MUX waitstate adds another CLKOUT cycle to the READY deactivation time.

The READY function is enabled via the ReaDY ENable (RDYENx) bits in the BUSCON
registers. When this function is selected (RDYENx = 1), only the lower 3 bits of the
respective MCTC bit field define the number of inserted waitstates (0-7), while the MSB
of bit field MCTC is unused:

As shown in Figure 8-9, the asychronous READY requires additional waitstates caused
by the internal synchronization. The asynchronous READY is synchronized internally,
and programmed waitstates may be necessary to provide proper bus cycles (see also
notes on “normally-ready” peripherals below).

An asynchronous READY signal that has been activated by an external device may be
deactivated in response to the trailing (rising) edge of the respective command (RD or
WR).

Note: When the READY function is enabled for a specific address window, each bus
cycle within this window must be terminated with an active READY signal.
Otherwise, the controller hangs until the next reset. A time-out function is provided
by the watchdog timer.

T
h

e
n

ex
t

ex
te

rn
al

 b
u

s

CLKOUT

Command
(RD, WR)

Running Cycle 4)

1)

Asynch.
READY

READY-WS MUX/MTTC

5) 5)

6)

7) cy
cl

e
m

y
st

ar
t

h
er

e.

2)

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-20 V 1.6, 2001-08

Combining the READY function with predefined waitstates is advantageous in two
cases:

Memory components with a fixed access time and peripherals operating with READY
may be grouped into the same address window. The (external) waitstate control logic in
this case would activate READY either upon the memory’s chip select or with the
peripheral’s READY output. After the predefined number of waitstates, the C166S will
check its READY line to determine the end of the bus cycle. For a memory access, it will
already be low; for a peripheral access, it may be delayed. As memories tend to be faster
than peripherals, there should be no impact on system performance.

When using the READY function with so-called “normally-ready” peripherals, erroneous
bus cycles may occur if the READY line is sampled too early. These peripherals pull their
READY output low while they are idle. When they are accessed, they deactivate READY
until the bus cycle is complete, then drive it low again. If, however, the peripheral
deactivates READY after the first sample point of the C166S, the controller samples an
active READY and terminates the current bus cycle too early. By inserting predefined
waitstates, the first READY sample point can be shifted to an interval in which the
peripheral has safely controlled the READY line.

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-21 V 1.6, 2001-08

8.4 Controlling the External Bus Controller

A set of registers controls the functions of the EBC. General features such as the usage
of interface pins (WR, BHE), segmentation, and internal memory mapping are controlled
via register SYSCON. The properties of a bus cycle such as chip-select mode, length of
ALE, external bus mode, read/write delay, and waitstates are controlled via registers
BUSCON4-BUSCON0. Four of these registers (BUSCON4-BUSCON1) have an
address select register (ADDRSEL4-ADDRSEL1) associated with them, which makes it
possible to specify up to four address areas and the individual bus characteristics within
these areas. All accesses that are not covered by these four areas are then controlled
via BUSCON0. This allows the use of memory components or peripherals with different
interfaces within the same system, while optimizing accesses to each of them.

SYSCON
System Control Register SFR (FF12H/89H) Reset value: 0XX0H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STKSZ ROM
S1

SGT
DIS

ROM
EN

BYT
DIS

CLK
EN

WR
CFG

CS
CFG

SYS
CON

5

SYS
CON

4

SYS
CON

3
XPEN VISI-

BLE
SYS
CON

0
rw rw rw rwh rwh rw rwh rw rwh rwh rwh rw rw rwh

Field Bits Type Description

SYSCON0 0 rwh System Configuration Bit

VISIBLE 1 rw Visible Mode Control
0: Accesses to XBUS peripherals are done internally
1: XBUS peripheral accesses are made visible on the

external pins

XPEN 2 rw XBUS Peripheral Enable Bit
0: Accesses to the on-chip X-Peripherals and their

functions are disabled
1: The on-chip X-Peripherals are enabled and can be

accessed

SYSCON3
.....
SYSCON5

3
....
5

rwh System Configuration Bit

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-22 V 1.6, 2001-08

CSCFG 6 rw Chip Select Configuration Control
0: Latched CS mode. The CS signals are latched

internally and driven to the (enabled) port pins
synchronously.

1: Unlatched CS mode. The CS signals are directly
derived from the address and driven to the
(enabled) port pins.

WRCFG 7 rwh Write Configuration Control (Set according to pin
P0H.0 during reset)
0: Pins WR and BHE retain their normal function
1: Pin WR acts as WRL, pin BHE acts as WRH

CLKEN 8 rw System Clock Enable (CLKOUT, cleard after reset)
0: CLKOUT disabled: pin may be used for general

purpose IO
1: CLKOUT enabled: pin outputs the system clock

signal

BYTDIS 9 rwh Disable/Enable Control for Pin BHE (Set according to
data bus width)
0: Pin BHE enabled
1: Pin BHE disabled, pin may be used for general

purpose IO

ROMEN 10 rwh CPU Configuration Bit
Internal ROM Enable (Set according to pin EA during
reset)
0 Internal Local Memory disabled: accesses to the
Local Memory area use the external bus
1 Internal Local Memory enabled

SGTDIS 11 rw CPU Configuration Bit
Segmentation Disable/Enable Control
0 Segmentation enabled (CSP is saved/restored

during interrupt entry/exit)
1 Segmentation disabled (Only IP is saved/restored)

Field Bits Type Description

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-23 V 1.6, 2001-08

Note: Register SYSCON cannot be changed after execution of the EINIT instruction.

The layout of the BUSCON registers and ADDRSEL registers is identical.

Registers BUSCON4...BUSCON1, which control the selected address windows, are
completely under software control. Register BUSCON0, which is also used for the very
first code access after reset, is partly controlled by hardware, i.e., it is initialized via
dedicated configuration signals during the reset sequence. This hardware control allows
an appropriate external bus to be defined for systems in which no internal program
memory is provided.

ROMS1 12 rw CPU Configuration Bit
Internal Local Memory Mapping
0 Internal Local Memory area mapped to segment 0

(00’0000H...00’7FFFH)
1 Internal Local Memory area mapped to segment 1

(01’0000H...01’7FFFH)

STKSZ [15:13] rw CPU Configuration Bit
System Stack Size
Selects the size of the system stack (in the internal
DPRAM) from 32 to 1024 words

Field Bits Type Description

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-24 V 1.6, 2001-08

Note: BUSCON0 is initialized with 00C0H if conf_start_external_i is high during reset. If
conf_start_external_i is low during reset, bits BUSACT0 and ALECTL0 are set (1)

BUSCON0
Bus Control Register 0 SFR (FF0CH/86H) Reset value: 0XX0H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSW
EN0

CSR
EN0 0 RDY

EN0
BSW
C0

BUS
ACT

0

ALE
CTL

0
EW
EN0 BTYP MTT

C0
RWD

C0 MCTC

rw rw r rw rw rwh rwh rw rwh rw rw rw

BUSCON1
Bus Control Register 1 SFR (FF14H/8AH) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSW
EN1

CSR
EN1 0 RDY

EN1
BSW
C1

BUS
ACT

1

ALE
CTL

1
EW
EN1 BTYP MTT

C1
RWD

C1 MCTC

rw rw r rw rw rw rw rw rw rw rw rw

BUSCON2
Bus Control Register 2 SFR (FF16H/8BH) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSW
EN2

CSR
EN2 0 RDY

EN2
BSW
C2

BUS
ACT

2

ALE
CTL

2
EW
EN2 BTYP MTT

C2
RWD

C2 MCTC

rw rw r rw rw rw rw rw rw rw rw rw

BUSCON3
Bus Control Register 3 SFR (FF18H/8CH) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSW
EN3

CSR
EN3 0 RDY

EN3
BSW
C3

BUS
ACT

3

ALE
CTL

3
EW
EN3 BTYP MTT

C3
RWD

C3 MCTC

rw rw r rw rw rw rw rw rw rw rw rw

BUSCON4
Bus Control Register 4 SFR (FF1AH/8DH) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSW
EN4

CSR
EN4 0 RDY

EN4
BSW
C4

BUS
ACT

4

ALE
CTL

4
EW
EN4 BTYP MTT

C4
RWD

C4 MCTC

rw rw r rw rw rw rw rw rw rw rw rw

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-25 V 1.6, 2001-08

and bit field BTYP is loaded with the bus configuration selected via
conf_rst_bustyp_i[1:0].

Field Bits Type Description

MCTC [3:0] rw Memory Cycle Time Control 1)(Number of memory cycle
time waitstates)
0000: 15 waitstates
. . . (Number = 15 - <MCTC>)
1111: No waitstates

RWDCx 4 rw Read/Write Delay Control for BUSCONx
0: With rd/wr delay: activate command 1 TCL after falling

edge of ALE
1: No rd/wr delay: activate command with falling edge of

ALE

MTTCx 5 rw Memory Tristate Time Control
0: 1 waitstate
1: No waitstate

BTYP [7:6] rw External Bus Configuration
00: 8-bit Demultiplexed Bus
01: 8-bit Multiplexed Bus
10: 16-bit Demultiplexed Bus
11: 16-bit Multiplexed Bus

Note: For BUSCON0, BTYP is defined via
conf_rst_bustyp_i[1:0] during reset.

EWENx 8 rw Early Write Enable
0: Normal WR signal
1: Early write: The WR signal is deactivated and write

data is tristated
one TCL earlier

ALECTLx 9 rw ALE Lengthening Control
0: Normal ALE signal
1: Lengthened ALE signal

BUSACTx 10 rw Bus Active Control
0: External bus disabled
1: External bus enabled within respective address window

(ADDRSEL)

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-26 V 1.6, 2001-08

BSWCx 11 rw BUSCON Switch Control
0: Address windows are switched immediately
1: A tristate waitstate is inserted if the next bus cycle

accesses a different window than the one controlled by
this BUSCON register2)

RDYENx 12 rw READY Input Enable
0: External bus cycle is controlled by bit field MCTC only
1: External bus cycle is controlled by the READY input

signal

CSRENx 14 rw Read Chip Select Enable
0: The CS signal is independent of the read command

(RD)
1: The CS signal is generated for the duration of the read

command

CSWENx 15 rw Write Chip Select Enable
0: The CS signal is independent of the write cmd.

(WR,WRL,WRH)
1: The CS signal is generated for the duration of the write

command
1) When the READY function is selected (RDYENx = 1), only the lower 3 bits of the respective MCTC bit field

define the number of inserted waitstates (0-7), while the MSB of bit field MCTC is unused
2) A BUSCON switch waitstate is enabled by bit BUSCONx.BSWCx of the address window that is left.

ADDRSEL1
Address Select Register 1 SFR (FE18H/0CH) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSAD RGSZ

rw rw

ADDRSEL2
Address Select Register 2 SFR (FE1AH/0DH) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSAD RGSZ

rw rw

Field Bits Type Description

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-27 V 1.6, 2001-08

Note: There is no register ADDRSEL0, as register BUSCON0 controls all external
accesses outside the four address windows of BUSCON4-BUSCON1 within the
complete address space.

ADDRSEL3
Address Select Register 3 SFR (FE1CH/0EH) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSAD RGSZ

rw rw

ADDRSEL4
Address Select Register 4 SFR (FE1EH/0FH) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSAD RGSZ

rw rw

Field Bits Type Description

RGSZ [0:3] rw Range Size Selection
Defines the size of the address area controlled by the
respective BUSCONx/ADDRSELx register pair. See
Table 8-6 below.

RGSAD [15:4] rw Range Start Address
Defines the upper bits of the start address of the respective
address area. See Table 8-6 below.

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-28 V 1.6, 2001-08

Definition of Address Areas

The four register pairs BUSCON4/ADDRSEL4-BUSCON1/ADDRSEL1 allow 4 address
areas to be defined within the address space of the C166S. Within each of these address
areas, external accesses can be controlled by one of the four different bus modes,
independent of each other and of the bus mode specified in register BUSCON0. Each
ADDRSELx register cuts out an address window, within which the parameters in register
BUSCONx are used to control external accesses. The range start address of such a
window defines the upper address bits, which are not used within the address window of
the specified size (see table below). For a given window size, only those upper address
bits of the start address (marked “R”) that are not implicitly used for addresses inside the
window are used. The lower bits of the start address (marked “x”) are disregarded.

Address Window Arbitration

The address windows that can be defined within the C166S’s address space may partly
overlap each other. Thus small areas may be cut out of bigger windows, for example, in
order to utilize external resources effectively, especially within segment 0.

For each access, the EBC compares the current address with all address-select
registers (programmable ADDRSELx and hardwired/programmable XADRSx1)). This
comparison is done in three levels. The XADRSx registers have the highest priority
(priority I). The ADDRSEL registers have the second highest priority (priority II). If there
is no match with any XADRSx or ADDRSELx register, the access to the external bus
uses register BUSCON0 (priority III).

Table 8-6 Address Window Definition

Bit field RGSZ Resulting Window Size Relevant Bits (R) of Start Addr. (A12...)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 x x

4 KByte
8 KByte

16 KByte
32 KByte
64 KByte

128 KByte
256 KByte
512 KByte
1 MByte
2 MByte
4 MByte
8 MByte

Reserved.

R R R R R R R R R R R R
R R R R R R R R R R R x
R R R R R R R R R R x x
R R R R R R R R R x x x
R R R R R R R R x x x x
R R R R R R R x x x x x
R R R R R R x x x x x x
R R R R R x x x x x x x
R R R R x x x x x x x x
R R R x x x x x x x x x
R R x x x x x x x x x x
R x x x x x x x x x x x

1) The XADR registers are the control registers of the internal XBUS interface (see Section 8.7).

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-29 V 1.6, 2001-08

Priority 1: The XADRSx registers are evaluated first. A match with one of these
registers directs the access to the respective X-Peripheral using the corresponding
XBCONx register and ignoring all other ADDRSELx registers. Priority of the XADRSx
registers: XADR1 (priority I.1) , XADRS2 (I.2), XADRS3 (I.3), XADR4 (I.4) , XADRS5
(I.5), XADRS6 (I.6)

Priority 2: A match with one of the registers ADDRSELx directs the access to the
respective external area using the corresponding BUSCONx register.
Priority of the ADDRSELx registers: ADDRSEL2 (priority II.1), ADDRSEL4 (II.2),
ADDRSEL1 (II.3), ADDRSEL3 (II.4)

Priority 3: If there is no match with any XADRSx or ADDRSELx register, the access to
the external bus uses BUSCON0.

Figure 8-10 Address Window Arbitration Example

Note: RP0H cannot be changed directly via software, but rather allows the current
configuration to be checked.
Bitfields CLKCFG, SALSEL, and CSSEL may be reconfigured via register
RSTCON.

RP0H
Reset Value of P0H SFR (F108H/84H) Reset value: - - XXH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLKCFG SALSEL CSSEL WRC

rh rh rh rh

Active Window Inactive Window

BUSCON0

BUSCON1

BUSCON2

XBCON1

BUSCON3

BUSCON4

XBCON6

XBCON...

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-30 V 1.6, 2001-08

Precautions and Hints

• The external bus interface is enabled as long as at least one of the BUSCON registers
has its BUSACT bit set.

• PORT1 will output the intra-segment address as long as at least one of the BUSCON
registers selects a demultiplexed external bus, even for multiplexed bus cycles.

• The address windows defined via registers ADDRSELx may overlap internal address
areas. Internal accesses will be executed in this case.

• For any access to an internal address area, the EBC will remain inactive (see
Section 8.5 EBC Idle State).

8.5 EBC Idle State

When the external bus interface is enabled, but no external access is currently being
executed, the EBC is idle. As long as only internal resources (from an architecture point
of view) such as DPRAM, GPRs, or SFRs, etc. are used, the external bus interface does
not change (seeTable 8-7 below).

Accesses to on-chip X-Peripherals are also controlled by the EBC. However, even
though an X-Peripheral appears to the controller as if it were an external peripheral, the
accesses do not generate valid external bus cycles.

Bit Function

WRC Write Configuration
0: Pins WR and BHE operate as WRL and WRH signals
1: Pins WR and BHE operate as WR and BHE signals

CSSEL Chip Select Line Selection (Number of active CS outputs)
00: 3 CS lines: CS2...CS0
01: 2 CS lines: CS1...CS0
10: No CS lines at all
11: 4 CS lines: CS3...CS0 (Default without put-downs)

SALSEL Segment Address Line Selection (Nr. of active segment addr. outputs)
00: 4-bit segment address: A19...A16
01: No segment address lines at all
10: 6-bit segment address: A21...A16
11: 2-bit segment address: A17...A16 (Default without put-downs)

CLKCFG Clock Generation Mode Configuration
These pins define the clock generation mode, i.e. the mechanism how
the internal CPU clock is generated from the externally applied (XTAL1)
input clock.

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-31 V 1.6, 2001-08

Due to timing constraints, address and write data of an XBUS cycle are reflected on the
external bus interface (see Table 8-7 below). The “address” mentioned above includes
Port 4, BHE, and ALE (which also pulses for an XBUS cycle). The external CS signals
are driven inactive (high) because the EBC switches to an internal XCS signal.

The external control signals (RD and WR or WRL/WRH if enabled) remain inactive
(high).

8.6 External Bus Arbitration

In high-performance systems, it may be efficient to share external resources such as
memory banks or peripheral devices among more than one controller. The C166S
supports this approach with the possibility to arbitrate the access to its external bus, i.e.,
to the external devices.

This bus arbitration allows an external master to request the C166S’s bus via the HOLD
input. The C166S acknowledges this request via the HLDA output and will float its bus
lines in this case. The CS outputs provide internal pull-up devices. The new master may
now access the peripheral devices or memory banks via the same interface lines as the
C166S. During this time, the C166S can keep on executing, as long as it does not need

Table 8-7 Status Of The External Bus Interface During EBC Idle State

Pins Internal accesses only XBUS accesses

PORT0 Tristated (floating) Tristated (floating) for read
accesses
XBUS write data for write accesses

PORT1 Last used external address
(if used for the bus interface)

Last used XBUS address
(if used for the bus interface)

Port 4 Last used external segment address
(on selected pins)

Last used XBUS segment address
(on selected pins)

Active external CS signal
corresponding to last used address

Inactive (high) for selected CS
signals

BHE Level corresponding to last external
access

Level corresponding to last XBUS
access

ALE Inactive (low) Pulses as defined for X-Peripheral

RD Inactive (high) Inactive (high)

WR/WRL Inactive (high) Inactive (high)

WRH Inactive (high) Inactive (high)

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-32 V 1.6, 2001-08

access to the external bus. All actions that just require internal resources such as
instruction, data memory, or on-chip peripherals may be executed in parallel.

When the C166S needs access to its external bus while it is occupied by another bus
master, it demands it via the BREQ output.

The external bus arbitration is enabled by setting bit HLDEN in register PSW to 1. The
three bus arbitration pins HOLD, HLDA, and BREQ will be controlled automatically by
the EBC independent of their I/O configuration. Bit HLDEN may be cleared during the
execution of program sequences in which the external resources are required but cannot
be shared with other bus masters. In this case, the C166S will not answer to HOLD
requests from other external masters. If HLDEN is cleared while the C166S is in hold
state (code execution from internal RAM/ROM), this hold state is left only after HOLD
has been deactivated again. The current hold state will continue and only the next HOLD
request is not answered.

Connecting two C166Ss in this way would require additional logic to combine the
respective output signals HLDA and BREQ. This can be avoided by switching one of the
controllers into Slave Mode, in which pin HLDA is switched to input. This allows the slave
controller to be connected directly to another master controller without glue logic. The
Slave Mode is selected by setting bit DP6.7 to ’1’. DP6.7=’0’ (default after reset) selects
the Master Mode.

Note: The pins HOLD, HLDA and BREQ keep their alternate function (bus arbitration)
even after the arbitration mechanism has been switched off by clearing HLDEN.
All three pins are used for bus arbitration after bit HLDEN has been set once.

Connecting Bus Masters

When multiple C166Ss or a C166S and another bus master share external resources,
some glue logic is required to define the currently active bus master, and to enable a

PSW
Processor Status Word SFR(FF10H,88H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ILVL IEN HLD
EN 0 0 0 USR0 MUL

IP E Z V C N

rwh rw rw r r r rw rwh rwh rwh rwh rwh rwh

Field Bits Type Description

HLDEN [10] rw External Bus Arbitration Control
0H External arbitration disabled
1H External arbitration enabled

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-33 V 1.6, 2001-08

C166S that has surrendered its bus interface to regain control of it in case it must access
the shared external resources. This glue logic is required if the other bus master does
not automatically remove its hold request after having used the shared resources.

When two C166Ss are to be connected in this way, the external glue logic can be left
out. One of the controllers must be operated in its Master Mode (default after reset,
DP6.7=0) while the other one must be operated in its Slave Mode (selected with
DP6.7=1).

In Slave Mode, the C166S inverts the direction of its HLDA pin and uses it as an input,
while the master’s HLDA pin remains an output. This approach does not require any
additional glue logic for the bus arbitration (see Figure 8-11 below).

Figure 8-11 Sharing External Resources Using Slave Mode

When the bus arbitration is enabled (HLDEN=1), the three corresponding pins are
controlled automatically by the EBC. Normally, the respective port direction register bits
retain their reset value, which is 0. This selects Master Mode. Slave Mode is enabled by
intentionally switching pin BREQ to output (DP6.7=1).

Entering the Hold State

Access to the C166S’s external bus is requested by driving its HOLD input low. After
synchronizing this signal, the C166S will complete a current external bus cycle (if any is
active), release the external bus, and grant access to it by driving the HLDA output low.
During hold state, the C166S treats the external bus interface as follows:

• Address and data bus(es) float to tristate
• ALE is pulled low by an internal pull-down device
• Command lines are pulled high by internal pull-up devices (RD, WR/WRL, BHE/WRH)
• CSx outputs are pulled high (push/pull mode) or float to tri-state (open-drain mode)

C
16

6S
 in

M
as

te
r

M
o

d
e

BREQ

HLDA

HOLD

C
16

6S
 in

S
la

ve
 M

o
d

e

BREQ

HLDA

HOLD

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-34 V 1.6, 2001-08

Should the C166S require access to its external bus during hold mode, it activates its
bus request output BREQ to notify the arbitration circuitry. BREQ is activated only during
hold mode. It will be inactive during normal operation.

Figure 8-12 External Bus Arbitration, Releasing the Bus

Note: The C166S will complete the bus cycle that is currently running before granting
bus access, as indicated by the broken lines in Figure 8-12. This may delay hold
acknowledge compared to this figure. The Figure 8-12 shows the first possibility
for BREQ to go active.
During bus hold pin, P3.12 is switched back to its standard function and is then
controlled by DP3.12 and P3.12. DP3.12 should be cleared and held at 0 to ensure
floating in hold mode.

Exiting the Hold State

The external bus master returns the access rights to the C166S by driving the HOLD
input high. After synchronizing this signal, the C166S will drive the HLDA output high,
actively drive the control signals, and resume executing external bus cycles if required.

Depending on the arbitration logic, the external bus can be returned to the C166S under
two circumstances:

• The external master no longer requires access to the shared resources and gives up
its own access rights, or

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-35 V 1.6, 2001-08

• the C166S needs access to the shared resources and demands this by activating its
BREQ output. The arbitration logic may then deactivate the other master’s HLDA and
so free the external bus for the C166S, depending on the priority of the different
masters.

Note: The Hold State is not terminated by clearing bit HLDEN.

Figure 8-13 External Bus Arbitration, Regaining the Bus

Note: The falling BREQ edge indicates the last chance for BREQ to trigger the regain
sequence. Even if BREQ is activated earlier, the regain sequence is initiated by
HOLD going high. BREQ and HOLD are connected via an external arbitration
circuitry. HOLD may also be deactivated without the C166S requesting the bus.

8.7 The XBUS Interface

The C166S provides an on-chip interface (the XBUS interface) by which integrated
customer/application-specific peripherals can be connected to the standard controller
core. The XBUS is an internal representation of the external bus interface, i.e., it is
operated in the same way.

For each peripheral on the XBUS (X-Peripheral) there is a separate address window
controlled by a register pair XBCONx/XADRSx (similar to registers BUSCONx and
ADDRSELx). Because an interface to a peripheral is represented in many cases by just
a few registers, most of the XADDRSEL registers select smaller address windows than

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-36 V 1.6, 2001-08

the standard ADDRSEL registers. As the register pairs control integrated peripherals
rather than externally connected ones, most of the registers are fixed by mask
programming rather than being user-programmable.

The XBUS provides byte-wide or word-wide X-Peripheral accesses. Because the on-
chip connection can be very efficient, and for performance reasons, X-Peripherals are
implemented only with a separate address bus, i.e., in demultiplexed bus mode. Interrupt
nodes are provided for X-Peripherals to be integrated.

Enabling XBUS Peripherals

After reset, all on-chip XBUS peripherals are disabled. An XBUS peripheral cannot be
used unless it has been enabled via the global enable bit XPEN in register SYSCON.

Additional to the XPEN bit, the XPERCON register define which on-chip peripherals are
enabled or disabled (xpercon_o[15:0]). If a peripheral is disabled all it’s addresses are
no more visible.

The XPERCON register is accessible until execution of the EINIT instruction.
XPER selection with the XPERCON register has to be performed before the selected X-
peripherals are globally enabled via XPEREN-bit in SYSCON Register.

XPERCON
XPeripheral Control Register SFR (F024H/12H) Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PER
15

PER
14

PER
13

PER
12

PER
11

PER
10

PER
9

PER
8

PER
7

PER
6

PER
5

PER
4

PER
3

PER
2

PER
1

PER
0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description

PER0 [0] rw XPeripheral Enable Control for XCS1
0 XPeripheral disabled
1 XPeripheral enabled

PER1 [1] rw XPeripheral Enable Control for XCS2
0 XPeripheral disabled
1 XPeripheral enabled

PER2 [2] rw XPeripheral Enable Control for XCS3
0 XPeripheral disabled
1 XPeripheral enabled

PER3 [3] rw XPeripheral Enable Control for XCS4
0 XPeripheral disabled
1 XPeripheral enabled

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-37 V 1.6, 2001-08

8.7.1 XBUS Access Control

In C166S up to six (configurable) address ranges with according bus definitions can be
programmed for XBUS peripherals (including memories).

Address ranges and thus address mapping of memories or peripherals on XBUS are
controlled with the address selection registers XADRSx. The respective bus type
definitions are controlled with registers XBCONx.

The XADRS registers are defined as follows:

The respective SFR addresses of XADRSx registers can be found in list of SFRs.

Due to the different range size options, address mapping of XPERs is possible only
within the first MByte of the total address range if XADRS1 to XADRS4 is used. The
upper four address lines (A23:A20) are set to zero. Note that the range start address can
be located only on boundaries specified by the selected range size.

The following table shows the definitions of range size selections and range start
addresses for the address selection registers XADRS1/2/3/4.

PER4 [4] rw XPeripheral Enable Control for XCS5
0 XPeripheral disabled
1 XPeripheral enabled

PER5 [5] rw XPeripheral Enable Control for XCS6
0 XPeripheral disabled
1 XPeripheral enabled

PERx [15:6] rw XPeripheral Enable Control for XCSx, x=7..16
0 XPeripheral disabled
1 XPeripheral enabled

XADRS1(/2/3/4/5/6)
XBUS Address Selection Reg. � (Reset value: XXXXH)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSADx RGSZx

rw rw

Field Bits Type Description

RGSADx [15:4] rw Address Range Start Address Selection

RGSZx [3:0] rw Address Range Size Selection

Field Bits Type Description

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-38 V 1.6, 2001-08

The address range and address range start definition of XADRS5 and XADRS6
registers is identical to the address selection definition for external devices (see
Address Window Definition). It is thus possible to use the whole address range also
for internal memories or peripherals.

The XBCONx registers are defined as follows:

All XBCONx registers are located in the bitaddressable ESFR memory space. The
respective SFR addresses of XBCON registers can be found in list of SFRs.

Range
Size
RGSZ

Selected
Address
Range

Relevant(R) bits
of RGSAD

Selected Range Start Address
(Relevant(R) bits of RGSAD)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
11xx

256 Byte
512 Bytes
1 KBytes
2 KBytes
4 KBytes
8 KBytes
16 KBytes
32 KBytes
64 KBytes
128 KBytes
256 KBytes
512 KBytes
- reserved

RRRR RRRR RRRR
RRRR RRRR RRR0
RRRR RRRR RR00
RRRR RRRR R000
RRRR RRRR 0000
RRRR RRR0 0000
RRRR RR00 0000
RRRR R000 0000
RRRR 0000 0000
RRR0 0000 0000
RR00 0000 0000
R000 0000 0000

0000 RRRR RRRR RRRR 0000 0000
0000 RRRR RRRR RRR0 0000 0000
0000 RRRR RRRR RR00 0000 0000
0000 RRRR RRRR R000 0000 0000
0000 RRRR RRRR 0000 0000 0000
0000 RRRR RRR0 0000 0000 0000
0000 RRRR RR00 0000 0000 0000
0000 RRRR R000 0000 0000 0000
0000 RRRR 0000 0000 0000 0000
0000 RRR0 0000 0000 0000 0000
0000 RR00 0000 0000 0000 0000
0000 R000 0000 0000 0000 0000

Figure 8-14 Address Range and Address Range Start Definition of XADRS1/2/3/
4 register

XBCON1 (/2/3/4/5/6)
XBUS Control Register (Reset value: XXXXH)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0
RDY
ENx

BS
WCx

BUS
ACT

x
0 0

B
TYP

x
0 1 1 MCTCx

r r r rw rw rw r r rw r r r rw

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-39 V 1.6, 2001-08

Field Bits Type Description

MCTCx [3:0] rw Memory Cycle Time Control 1)

(number of wait states). See BUSCON

BTYPx [7] rw XBUS Type Definition
0 8-bit Demultiplexed Bus
1 16-bit Demultiplexed Bus

BUSACTx 10 rw XBUS Active Control
0 XBUS (peripheral) disabled
1 XBUS (peripheral) enabled
Enables the XBUS and the according chip select XCSx
for the respective address window (respective XBUS
peripheral), selected with XADRSx window.
Note: Enable/Disable also is controlled with XPERCON
and SYSCON registers.

BSWCx 11 rw BUSCON Switch Control
0: Address windows are switched immediately
1: A tristate waitstate is inserted if the next bus cycle

accesses a different window than the one
controlled by this BUSCON register2)

RDYENx 12 rw READY Enable
0 The bus cycle length is controlled by bit field

MCTC only
1 The bus cycle length is controlled by the

peripheral using READY signal

1) When the READY function is selected (RDYENx = 1), only the lower 3 bits of the respective MCTC bit field
define the number of inserted waitstates (0-7), while the MSB of bit field MCTC is unused

2) A BUSCON switch waitstate is enabled by bit BUSCONx.BSWCx of the address window that is left.

User’s Manual
C166S V1 SubSystem

The External Bus Interface

User’s Manual 8-40 V 1.6, 2001-08

User’s Manual
C166S V1 SubSystem

Watchdog Timer

User’s Manual 9-1 V 1.6, 2001-08

9 Watchdog Timer
To allow recovery from software or hardware failure, the User’s Manual provides a
Watchdog Timer 1). If the software fails to service this timer before an overflow occurs,
a watchdog timer reset can be initiated and a watchdog timer overflow can be signaled
by wdtint_n_o.

When the watchdog timer reset is enabled (default) and the software has been designed
to service it regularly before it overflows, the watchdog timer will supervise the program
execution as it only will overflow if the program does not progress properly. The
watchdog timer will also time out if a software error was due to hardware related failures.
This prevents the controller from malfunctioning for longer than a user-specified time.
The watchdog timer reset resets the CPU, Interruptcontroller, the External Bus
Controller, the Control Block and the WDT itself.

The wdtint_n_o always shows the occurrence of a watchdog timer overflow. If the
watchdog timer reset is disabled, the WDTINT signal can be used to trigger an interrupt.
The wdtint_n_o signals can be directly connected to one interrupt control node. The
watchdog timer can be used as a running timer and generates a periodical interrupt
request with the occurrence of a timer overflow. In case of an overflow the WDT counter
is automatically reloaded. Nevertheless the automatic reload is overruled in case of a
WDT reset (wdt reset not disabled). The WDT can still be serviced with the execution of
the srvwdt instruction.

Note: The WDT is automatically reloaded in case of a WDT overflow. In case of an
enabled WDT reset, the generated reset resets the WDT and overrules the reload
mechanism.

The watchdog timer provides two 16-bit registers and two subsystem signals:

• a read-only timer register that contains the current count,
• a control register for initialization and reset source detection,
• a conf_wdt_en_i subsystem signal to disable globally the WDT and
• a wdtint_o subsystem signal to signal a watchdog timer overflow.

The 16-bit watchdog timer is realized as two concatenated 8-bit timers. The upper 8 bits
of the watchdog timer can be preset to a user-programmable value via a watchdog
service access in order to vary the watchdog expire time. The lower 8 bits are reset upon
each service access.

The watchdog timer is a 16-bit up counter which is clocked with the prescaled PDBus+
clock (fPD). The prescaler divides the PDBus+ clock

• by 2 (WDTIN = ’0’, WDTPRE = ’0’), or
• by 4 (WDTIN = ’0’, WDTPRE = ’1’), or

1) The WDT can be globally disabled by the conf_wdt_en subsystem signal.

User’s Manual
C166S V1 SubSystem

Watchdog Timer

User’s Manual 9-2 V 1.6, 2001-08

• by 128 (WDTIN = ’1’, WDTPRE = ’0’), or
• by 256 (WDTIN = ’1’, WDTPRE = ’1’).

9.1 Operation of the Watchdog Timer

The current count value of the Watchdog Timer is contained in the Watchdog Timer
Register WDT which is a non-bitaddressable read-only register. The operation of the
Watchdog Timer is controlled by its bitaddressable Watchdog Timer Control Register
WDTCON. This register specifies the reload value for the high byte of the timer, selects
the input clock prescaling factor and also provides flags that indicate the source of a
reset.

After any reset a globally enable watchdog timer (conf_wdt_en active) starts counting up
from 0000H with the default frequency fWDT = fPD/256. The default input frequency may
be changed to another frequency (fWDT = fPD/128) by programming the prescaler (bit
WDTIN).

The watchdog timer supports different modes:

• WDT Reset mode: When the watchdog timer is not disabled via instruction DISWDT
it will continue counting up, even during Idle Mode. If it is not serviced via the
instruction SRVWDT by the time the count reaches FFFFH the watchdog timer will
overflow and cause a watchdog timer reset and a wdt overflow will be signaled (wdtint)
as well. But nevertheless the whole subsystem including the WDT itself will be
reseted.

• WDT Interrupt mode: If the TIMEN bit is set, only the generation of watchdog timer
resets is surpressed after the execution of the DISWDT instruction. A watchdog timer
overflow event will still be signaled.

• WDT Disable mode: This mode is enable if the TIMer ENable TIMEN bit in the
WDTCON register is not set, and the watchdog timer reset generation was stopped
with the execution of the DISWDT instruction. In this case the whole WDT counter is
stopped. Neither a watchdog timer reset will be generated nor a watchdog timer
overflow (wdtint_o) event will be signaled.

Instruction DISWDT is a protected 32-bit instruction which will ONLY be executed during
the time between a reset and execution of either the EINIT (End of Initialization) or the
SRVWDT (Service Watchdog Timer) instruction. Either one of these instructions
disables the execution of DISWDT.

Note: The above described protection using the execution of EINIT or SRVWDT must
be implemented inside the WDT block.

A watchdog reset will not complete a running external bus cycle before starting the
internal reset sequence.

To prevent the watchdog timer from overflowing it must be serviced periodically by the
user software. The watchdog timer is serviced with the instruction SRVWDT which is a
protected 32-bit instruction. Servicing the watchdog timer clears the low byte and reloads

User’s Manual
C166S V1 SubSystem

Watchdog Timer

User’s Manual 9-3 V 1.6, 2001-08

the high byte of the watchdog timer register WDT with the preset value from bitfield
WDTREL which is the high byte of register WDTCON. After being serviced the watchdog
timer continues counting up from the value (<WDTREL> * 28).

Note: SRVWDT always triggers a timer reload independent of the execution of the EINIT
and DISWDT instruction.

Instruction SRVWDT has been encoded in such a way that the chance of unintentionally
servicing the watchdog timer (e.g. by fetching and executing a bit pattern from a wrong
location) is minimized. When instruction SRVWDT does not match the format for
protected instructions the Protection Fault Trap will be entered, rather than the
instruction be executed.

The time period for an overflow of the watchdog timer is programmable in two ways:

• the input frequency to the watchdog timer can be selected via a prescaler controlled
by bits WDTPRE and WDTIN in register WDTCON to be
fPD/2, fPD/4, fPD/128, or fPD/256.

• the reload value WDTREL for the high byte of WDT can be programmed in register
WDTCON.

WDTCON
WDT Control Register SFR (FFAEH/D7H) Reset value: 008X1)

H

1) X=0xx1b

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDTREL WDT
PRE

TIM
EN - - - SW

R
WDT

R
WDT

IN

- rw rw - - - rh rh rw

Bit Function

WDTIN Watchdog Timer Input Frequency Select (combined with WDTPRE)
Controls the input clock prescaler.

WDTR Watchdog Timer Reset Indication Flag

SWR Software Reset Indication Flag

TIMEN TIMer ENable TIMEN
If the TIMEN bit is set, only the generation of watchdog timer resets is
surpressed after the execution of the DISWDT instruction. A watchdog
timer overflow event will still be signaled.

WDTPRE Watchdog Timer Input Prescaler Control (combined with WDTIN)
Controls the input clock prescaler.

WDTREL Watchdog Timer Reload Value (for the high byte of WDT)

User’s Manual
C166S V1 SubSystem

Watchdog Timer

User’s Manual 9-4 V 1.6, 2001-08

The period PWDT between servicing the watchdog timer and the next overflow can
therefore be determined by the following formula:

Note: For safety reasons, the user is advised to rewrite WDTCON each time before the
watchdog timer is serviced.

Hardware Reset is indicated after a reset was triggered by a hardware event. In this
case neither the SWR nor the WDTR bit is set. In case of a hardware reset, the software
and watchdog timer reset are surpressed and not visible.

Software Reset is indicated after a reset was triggered by the execution of instruction
SRST.

Watchdog Timer Reset is indicated after a reset triggered by an overflow of the
watchdog timer.

Table 9-1 Reset Indication Flag Combinations

Event Reset Indication Flags1)

1) Description of table entries:
’1’ = flag is set, ’0’ = flag is cleared.

SWR WDTR

Hardware Reset (HWRST) 0 0

Software Reset (SRST) 1 0

Watchdog Timer Reset (WDTRST) 0 1

HWRST and SRST 0 0

HWRST and WDTRST 0 0

HWRST, SRST and WDTRST 0 0

SRST and WDTRST 1 1

PWDT =
fPD

2(1 + <WDTPRE> + <WDTIN>*6) * (216 - <WDTREL>*28)

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-1 V 1.6, 2001-08

10 Asynchronous/Synchronous Serial Interface (ASC)

10.1 Introduction

This document describes the Asynchronous/Synchronous Serial Interface (ASC). The
ASC supports a certain protocol to transfer data via a serial interconnection. It is also
connected to a parallel bus of a microcontroller. The implementation is similar to the
implementation in the C166 microcontrollers, however its parameters are changeable to
work with parallel busses of different width and with different protocols.

Features

• Full duplex asynchronous operating modes
– 8- or 9-bit data frames, LSB first
– Parity bit generation/checking
– One or two stop bits
– Baudrate from 3.75 MBaud to 0.888 Baud (@ 60 MHz module clock fclk)

• Multiprocessor Mode for automatic address/data byte detection
• Loop-back capability
• Half-duplex 8-bit synchronous operating mode

– Baudrate from 7.5 MBaud to 764.4 Baud (@ 60 MHz module clock fclk)
• Double buffered transmitter/receiver
• Interrupt generation
• on a transmitter buffer empty condition
• on a transmit last bit of a frame condition
• on a receiver buffer full condition
• on an error condition (frame, parity, overrun error)

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-2 V 1.6, 2001-08

Figure 10-1 shows all funtional relevant interfaces associated with the ASC Kernel.

Figure 10-1 ASC Interface Diagram

Figure 10-2 shows all of the registers associated with the ASC Kernel.

Figure 10-2 ASC Kernel Registers

All ASC registers are located in the SFR/ESFR memory space. The respective SFR
addresses can be found in list of SFRs.

ASC

Module

Interrupt

Control

Port

Control

Clock

Control

Address

Decoder
(Kernel)

fclk

BPI Module
Product
InterfaceInterface

TXD

RXD

TIR

TBIR

RIR

EIR

Control Registers Data Registers

CON TBUF

FDV RBUF

BG

PISEL

CON Control Register TBUF Transmit Buffer Register
FDV Fractional Divider Register RBUF Receive Buffer Register
BG Baudrate Timer/Reload Register
PISEL Port Input Select Register

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-3 V 1.6, 2001-08

Port Input Select Register

The PISEL register controls the receiver input selection of the ASC module.

PISEL
Port Input Select Register (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RIS

r rw

Field Bits Typ Description

RIS [0] rw Receiver Input Select
0 Receiver input RXDY0 selected
1 Receiver input RXDY1 selected

0 [15:1] r Reserved for future use; reading returns 0;
writing to these bit positions has no effect.

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-4 V 1.6, 2001-08

10.2 Operational Overview

Figure 10-3 shows a block diagram of the ASC with its operating modes (asynchronous
and synchronous mode).

Figure 10-3 Block Diagram of the ASC

fclk Baudrate
Timer

Serial Port
Control

Receive / Transmit
buffers and

Shift Registers
RXD TXD

fclk Baudrate
Timer

Serial Port
Control

Receive / Transmit
buffers and

Shift Registers
RXDTXD

Prescaler /
Divider

÷ 2
or
÷ 3

������������
����

�����������
����

Shift Clock

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-5 V 1.6, 2001-08

10.3 General Operation

The ASC supports full-duplex asynchronous communication up to 3.75 MBaud and
half-duplex synchronous communication up to 7.5 MBaud (@ 60 MHz module clock). In
Synchronous Mode, data are transmitted or received synchronous to a shift clock that is
generated by the microcontroller. In Asynchronous Mode, either 8- or 9-bit data transfer,
parity generation, and the number of stop bits can be selected. Parity, framing, and
overrun error detection is provided to increase the reliability of data transfers.
Transmission and reception of data is double-buffered. For multiprocessor
communication, a mechanism is provided to distinguish address bytes from data bytes.
Testing is supported by a loop-back option. A 13-bit baudrate timer with a versatile input
clock divider circuitry provides the serial clock signal.

A transmission is started by writing to the Transmit Buffer register TBUF. The selected
operating mode determines the number of data bits that will actually be transmitted, so
that, bits written to positions 9 through 15 of register TBUF are always insignificant. Data
transmission is double-buffered, so a new character may be written to the transmit buffer
register before the transmission of the previous character is complete. This allows the
transmission of characters back-to-back without gaps.

Data reception is enabled by the Receiver Enable Bit CON_REN. After reception of a
character has been completed, the received data can be read from the (read-only)
Receive Buffer register RBUF; the received parity bit can also be read if provided by the
selected operating mode. Bits in the upper half of RBUF that are not valid in the selected
operating mode will be read as zeros.
Data reception is double-buffered, so that reception of a second character may already
begin before the previously received character has been read out of the receive buffer
register. In all modes, receive overrun error detection can be selected through bit
CON_OEN. When enabled, the overrun error status flag CON_OE and the error interrupt
request line EIR will be activated when the receive buffer register has not been read by
the time reception of a ninth character is complete. The previously received character in
the receive buffer is overwritten.

The Loop-Back option (selected by bit CON_LB) allows the data currently being
transmitted to be received simultaneously in the receive buffer. This may be used to test
serial communication routines at an early stage without having to provide an external
network. In Loop-back Mode, the alternate input/output functions of the asosiacted Port
pins are not necessary.

Note: Serial data transmission or reception is only possible when the Baudrate
Generator Run Bit CON_R is set to 1. Otherwise, the serial interface is idle.
Do not program the mode control field COM_M to one of the reserved
combinations to avoid unpredictable behavior of the serial interface.

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-6 V 1.6, 2001-08

The operating mode of the serial channel ASC is controlled by its control register CON.
This register contains control bits for mode and error check selection, and status flags
for error identification.

CON
Control Register (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R LB BRS ODD FDE OE FE PE OEN FEN/
RXDI PEN REN STP M

rw rw rw rw rw rwh rwh rwh rw rw rw rwh rw rw

Field Bits Typ Description

M [2:0] rw Mode Control
000 8-bit-data for synchronous operation
001 8-bit-data for asynchronous operation
010 Reserved. Do not use this combination
011 7-bit-data and parity for asynchronous

operation
100 9-bit-data for asynchronous operation
101 8-bit-data and wake up bit for asynchronous

operation
110 Reserved. Do not use this combination
111 8-bit-data and parity for asynchronous

operation

STP [3] rw Number of Stop Bits Selection
0 One stop bit
1 Two stop bits

REN [4] rwh Receiver Enable Bit
0 Receiver disabled
1 Receiver enabled

Note: bit is cleared by hardware after reception of a
byte in Synchronous Mode

PEN [5] rw Parity Check Enable
All Asynchronous Modes without IrDA Mode:
0 Ignore parity
1 Check parity

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-7 V 1.6, 2001-08

FEN [6] rw Framing Check Enable
(Asynchronous Mode only)
0 Ignore framing errors
1 Check framing errors

OEN [7] rw Overrun Check Enable
0 Ignore overrun errors
1 Check overrun errors

PE [8] rwh Parity Error Flag
Set by hardware on a parity error (PEN=1).
Must be cleared by software.

FE [9] rwh Framing Error Flag
Set by hardware on a framing error (FEN=1).
Must be cleared by software.

OE [10] rwh Overrun Error Flag
Set by hardware on an overrun error (OEN=1).
Must be cleared by software.

FDE [11] rw Fractional Divider Enable
0 Fractional divider disabled
1 Fractional divider enabled and used as

perscaler for baudrate generator
(bit BRS is don’t care)

ODD [12] rw Parity Selection
0 Even parity selected (parity bit of 1 is included

in data stream on odd number of 1 and parity
bit of 0 is included in data stream on even
number of 1)

1 Odd parity selected (parity bit of 1 is included
in data stream on even number of 1 and parity
bit of 0 is included in data stream on odd
number of 1)

BRS [13] rw Baudrate Selection
0 Divide clock by reload-value+constant

(depending on mode)
1 Additionally reduce serial clock to 2/3

Note: BRS is don’t care if FDE=1
(fractional divider selected)

Field Bits Typ Description

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-8 V 1.6, 2001-08

LB [14] rw Loopback Mode Enabled
0 Loopback Mode disabled.

Standard transmit/receive Mode
1 Loopback Mode enabled

R [15] rw Baudrate Generator Run Control Bit
0 Baudrate generator disabled (ASC inactive)
1 Baudrate generator enabled

Note: BR_VALUE should only be written if R=0.

Field Bits Typ Description

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-9 V 1.6, 2001-08

10.3.1 Asynchronous Operation

Asynchronous Mode supports full-duplex communication in which both transmitter and
receiver use the same data frame format and the same baudrate. Data is transmitted on
line TXD and received on line RXD. Figure 10-4 shows the block diagram of the ASC
when operating in Asynchronous Mode.

Figure 10-4 Asynchronous Mode of Serial Channel ASC

÷16÷2
fclk

R

13-Bit Reload Register

13-Bit Baudrate Timer

÷3

Fractional
Divider

MUX

FDE

BRS

Serial Port Control

M
STP FE OE

PE

REN
FEN
PEN
OEN
LB

Receive Int.
Request
Transmit Int.
Request
Transmit Buffer
Int. Request
Error Int.
Request

 Transmit Buffer Reg.
TBUF

Receive Shift
Register

Transmit Shift
Register

TXD

Internal Bus

Samp-
ling

 RXD

fDIV

fBRT

Shift Clock

fBR

Receive Buffer Reg.
RBUF

RIR

TIR

TBIR

EIRShift
Clock

ODD

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-10 V 1.6, 2001-08

10.3.1.1 Asynchronous Data Frames

8-Bit Data Frames

8-bit data frames consist of either eight data bits D7...D0 (CON_M=’001B’), or seven data
bits D6...D0 plus an automatically generated parity bit (CON_M=’011B’). Parity may be
odd or even, depending on bit CON_ODD. An even parity bit will be set if the modulo-2-
sum of the 7 data bits is 1. An odd parity bit will be cleared in this case. Parity checking
is enabled via bit CON_PEN (always OFF in 8-bit data mode). The parity error flag
CON_PE will be set, along with the error interrupt request flag, if a wrong parity bit is
received. The parity bit itself will be stored in bit RBUF.7.

Figure 10-5 Asynchronous 8-Bit Frames

9-Bit Data Frames

9-bit data frames consist of either nine data bits D8...D0 (CON_M=’100B’), eight data bits
D7...D0 plus an automatically generated parity bit (CON_M=’111B’), or eight data bits
D7...D0 plus wake-up bit (CON_M=’101B’). Parity may be odd or even, depending on bit
CON_ODD. An even parity bit will be set if the modulo-2-sum of the 8 data bits is 1. An
odd parity bit will be cleared in this case. Parity checking is enabled via bit CON_PEN
(always OFF in 9-bit data and wake-up mode). The parity error flag CON_PE will be set,
along with the error interrupt request flag, if a wrong parity bit is received. The parity bit
itself will be stored in bit RBUF.8.

D7
MSB

Parity
Bit

D0
LSB D1 D2 D3 D4 D5 D6

D6
MSB

Start
Bit

8 Data Bits

(1st)
Stop
Bit0

1 1

(2nd)
Stop
Bit

�� !�"##�%

D0
LSB D1 D2 D3 D4 D5

7 Data Bits

10-/11-Bit UART Frame

(1st)
Stop
Bit0

1 1

(2nd)
Stop
Bit

�� !�"#��%

Start
Bit

10-/11-Bit UART Frame

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-11 V 1.6, 2001-08

Figure 10-6 Asynchronous 9-Bit Frames

In wake-up mode, received frames are transferred to the receive buffer register only if
the 9th bit (the wake-up bit) is 1. If this bit is 0, no receive interrupt request will be
activated and no data will be transferred.

This feature may be used to control communication in a multi-processor system:
When the master processor wants to transmit a block of data to one of several slaves, it
first sends out an address byte to identify the target slave. An address byte differs from
a data byte in that the additional 9th bit is a 1 for an address byte, but is a 0 for a data
byte; so, no slave will be interrupted by a data ’byte’. An address ’byte’ will interrupt all
slaves (operating in 8-bit data + wake-up bit mode), so each slave can examine the eight
LSBs of the received character (the address). The addressed slave will switch to 9-bit
data mode (such as by clearing bit CON_M.0), to enable it to also receive the data bytes
that will be coming (having the wake-up bit cleared). The slaves not being addressed
remain in 8-bit data + wake-up bit mode, ignoring the following data bytes.

10.3.1.2 Asynchronous Transmission

Asynchronous transmission begins at the next overflow of the divide-by-16 baudrate
timer (transition of the baudrate clock fBR), if bit CON_R is set and data has been loaded
into TBUF. The transmitted data frame consists of three basic elements:

– Start bit
– Data field (eight or nine bits, LSB first, including a parity bit, if selected)
– Delimiter (one or two stop bits)

Data transmission is double-buffered. When the transmitter is idle, the transmit data
loaded in the transmit buffer register TBUF is immediately moved to the transmit shift
register, thus freeing the transmit buffer for the next data to be sent. This is indicated by
the transmit Buffer interrupt request line TBIR being activated. TBUF may now be loaded
with the next data, while transmission of the previous data continues.

Bit 9D7D0
LSB D1 D2 D3 D4 D5 D6

Start
Bit

9 Data Bits

11-/12-Bit UART Frame

(1st)
Stop
Bit0

1 1

(2nd)
Stop
Bit

�� !�"�##%�$ Bit 9 = Data Bit D8
�� !�"�#�%�$ Bit 9 = Wake-up Bit
�� !�"���%�$ Bit 9 = Parity Bit

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-12 V 1.6, 2001-08

The transmit interrupt request line TIR will be activated before the last bit of a frame is
transmitted, that is, before the first or the second stop bit is shifted out of the transmit
shift register.

Note: The transmitter output pin TXD must be configured for alternate data output’.

10.3.1.3 Asynchronous Reception

Asynchronous reception is initiated by a falling edge (1-to-0 transition) on line RXD,
provided that bits CON_R and CON_REN are set. The receive data input line RXD is
sampled at 16 times the rate of the selected baudrate. A majority decision of the 7th, 8th,
and 9th sample determines the effective bit value. This avoids erroneous results that
may be caused by noise.

If the detected value is not a 0 when the start bit is sampled, the receive circuit is reset
and waits for the next 1-to-0 transition at line RXD. If the start bit proves valid, the receive
circuit continues sampling and shifts the incoming data frame into the receive shift
register.

When the last stop bit has been received, the content of the receive shift register are
transferred to the receive data Buffer register RBUF. Simultaneously, the receive
interrupt request line RIR is activated after the 9th sample in the last stop bit time slot (as
programmed), regardless of whether valid stop bits have been received or not. The

TBUF
Transmit Buffer Register (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TD_VALUE

r rw

Field Bits Typ Description

TD_VALUE [8:0] rw Transmit Data Register Value
TBUF contains the data to be transmitted in either
asynchronous or synchronous operating mode of
the ASC. Data transmission is double buffered.
Therefore, a new value can be written to TBUF
before transmission of the previous value is
completed.

0 [15:9] r Reserved for future use; reading returns 0;
writing to these bit positions has no effect.

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-13 V 1.6, 2001-08

receive circuit then waits for the next start bit (1-to-0 transition) at the receive data input
line.

Note: The receiver input pin RXD must be configured for input.

Asynchronous reception is stopped by clearing bit CON_REN. A currently received
frame is completed including the generation of the receive interrupt request and an error
interrupt request, if appropriate. Start bits that follow this frame will not be recognized.

Note: In wake-up mode, received frames are transferred to the receive FIFO register
only if the 9th bit (the wake-up bit) is 1. If this bit is 0, no receive interrupt request
will be activated and no data will be transferred.

RBUF
Receive Buffer Register Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RD_VALUE

r rw

Field Bits Typ Description

RD_VALUE [8:0] rw Receive Data Register Value
RBUF contains the received data bits and,
depending on the selected mode, the parity bit in
asynchronous and synchronous operating mode of
the ASC.
In asynchronous operating mode with M=011 (7-bit
data + parity) the received parity bit is written into
RD7.
In asynchronous operating mode with M=111 (8-bit
data + parity) the received parity bit is written into
RD8.

0 [15:9] r Reserved for future use; reading returns 0;
writing to these bit positions has no effect.

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-14 V 1.6, 2001-08

10.3.2 Synchronous Operation

Synchronous Mode supports half-duplex communication, basically for simple I/O
expansion via shift registers. Data is transmitted and received via line RXD while line
TXD outputs the shift clock.

Note: These signals are alternate functions of port pins.

Synchronous Mode is selected with CON_M=’000B’.

Eight data bits are transmitted or received synchronous to a shift clock generated by the
internal baudrate generator. The shift clock is active only as long as data bits are
transmitted or received.

Figure 10-7 Synchronous Mode of Serial Channel ASC

TXD

÷4

fclk

R

13-Bit Reload Register

13-Bit Baudrate Timer

M=000B
OE

REN
OEN
LB

 Transmit Buffer Reg.
TBUF

Transmit Shift
Register

Internal Bus

MUX
 RXD

fDIV

fBRT

Shift Clock

fBR

0

1

÷2

÷3

Mux

BRS

Receive Buffer Reg.
RBUF

Receive Shift
Register

Receive Int.
Request
Transmit Int.
Request
Transmit Buffer
Int. Request
Error Int.
Request

RIR

TIR

TBIR

EIR

Serial Port Control

Shift
Clock

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-15 V 1.6, 2001-08

10.3.2.1 Synchronous Transmission

Synchronous transmission begins within four state times after data has been loaded into
TBUF, provided that CON_R is set and CON_REN is cleared (half-duplex, no reception).
Exception: in loopback mode (bit CON_LB set), CON_REN must be set for reception of
the transmitted byte. Data transmission is double-buffered. When the transmitter is idle,
the transmit data loaded into TBUF is immediately moved to the transmit shift register,
thus freeing TBUF for more data. This is indicated by the transmit Buffer interrupt request
line TBIR being activated. TBUF may now be loaded with the next data, while
transmission of the previous continoues. The data bits are transmitted synchronous with
the shift clock. After the bit time for the eighth data bit, both the TXD and RXD lines will
go high, the transmit interrupt request line TIR is activated, and serial data transmission
stops.

Note: Pin TXD must be configured for alternate data output in order to provide the shift
clock. Pin RXD must also be configured for output during transmission.

10.3.2.2 Synchronous Reception

Synchronous reception is initiated by setting bit CON_REN. If bit CON_R is set, the data
applied at RXD is clocked into the receive shift register synchronous to the clock that is
output at TXD. After the eighth bit has been shifted in, the contents of the receive shift
register are transferred to the receive data buffer RBUF, the receive interrupt request line
RIR is activated, the receiver enable bit CON_REN is reset, and serial data reception
stops.

Note: Pin TXD must be configured for alternate data output in order to provide the shift
clock. Pin RXD must be configured as alternate data input.

Synchronous reception is stopped by clearing bit CON_REN. A currently received byte
is completed, including the generation of the receive interrupt request and an error
interrupt request, if appropriate. Writing to the transmit buffer register while a reception
is in progress has no effect on reception and will not start a transmission.

If a previously received byte has not been read out of a full receive buffer at the time the
reception of the next byte is complete, both the error interrupt request line EIR and the
overrun error status flag CON_OE will be activated/set, provided the overrun check has
been enabled by bit CON_OEN.

10.3.2.3 Synchronous Timing

Figure 10-8 shows timing diagrams of the ASC Synchronous Mode data reception and
data transmission. In idle state, the shift clock level is high. With the beginning of a
synchronous transmission of a data byte, the data is shifted out at RXD with the falling
edge of the shift clock. If a data byte is received through RXD, data is latched with the
rising edge of the shift clock.

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-16 V 1.6, 2001-08

Between two consecutive receive or transmit data bytes, one shift clock cycle (fBR) delay
is inserted.

Figure 10-8 ASC Synchronous Mode Waveforms

Shift
Latch

Shift
Latch

Valid

Shift

Valid
Data n+2

Shift Clock
(TXD)

Transmit Data
(RXD)

Shift Clock
(TXD)

Transmit Data
(RXD)

Receive Data
(RXD)

Valid
Data n

Receive/Transmit Timing

Continuous Transmit Timing

Data
Bit n

Data
Bit n+1

Data
Bit n+2

D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3

1. Byte 2. Byte

Receive Data
(RXD)

D0 D0 D1 D2 D3D6 D7D1 D2 D3 D4 D5

Data n+1

1. Byte 2. Byte

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-17 V 1.6, 2001-08

10.3.3 Baudrate Generation

The serial channel ASC has its own dedicated 13-bit baudrate generator with reload
capability, allowing baudrate generation independent of other timers.

The baudrate generator is clocked with a clock (fDIV) derived via a prescaler from the
ASC input clock fclk. The baudrate timer counts downwards and can be started or
stopped through the baudrate generator run bit CON_R. Each underflow of the timer
provides one clock pulse to the serial channel. The timer is reloaded with the value
stored in its 13-bit reload register each time it underflows. The resulting clock fBRT is
again divided by a factor for the baudrate clock (±16 in asynchronous modes and ±4 in
synchronous mode). The prescaler is selected by the bits CON_BRS and CON_FDE. In
addition to the two fixed dividers, a fractional divider prescaler unit is available in the
asynchronous operating modes that allows selection of prescaler divider ratios of n/512
with n=0...511. Therefore, the baudrate of ASC is determined by the module clock, the
content of FDV, the reload value of BG, and the operating mode (asynchronous or
synchronous).

Register BG is the dual-function Baudrate Generator/Reload register. Reading BG
returns the contents of the timer BR_VALUE (bits 15...13 return zero), while writing to
BG always updates the reload register (bits 15...13 are insignificant).

An auto-reload of the timer with the contents of the reload register is performed each time
CON_BG is written to. However, if CON_R is cleared at the time a write operation to
CON_BG is performed, the timer will not be reloaded until the first instruction cycle after
CON_R was set. For a clean baudrate initialization, CON_BG should be written only if
CON_R is reset. If CON_BG is written while CON_R is set, unpredictable behavior of the
ASC may occur during running transmit or receive operations.

The ASC baudrate timer reload register BG contains the 13-bit reload value for the
baudrate timer in Asynchronous and Synchronous modes.

10.3.3.1 Baudrate in Asynchronous Mode

For asynchronous operation, the baudrate generator provides a clock fBRT with sixteen
times the rate of the established baudrate. Every received bit is sampled at the 7th, 8th,
and 9th cycle of this clock. The clock divider circuitry, which generates the input clock for
the 13-bit baudrate timer, is extended by a fractional divider circuitry that allows
adjustment for more accurate baudrate and the extension of the baudrate range.

BG
Baudrate Timer/Reload Register Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BR_VALUE

r rw

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-18 V 1.6, 2001-08

The baudrate of the baudrate generator depends on the following bits and register
values:

– Input clock fclk
– Selection of the baudrate timer input clock fDIV by bits CON_FDE and CON_BRS
– If bit CON_FDE=1 (fractional divider): value of register CON_FDV
– Value of the 13-bit reload register BG

The output clock of the baudrate timer with the reload register is the sample clock in the
asynchronous modes of the ASC. For baudrate calculations, this baudrate clock fBR is
derived from the sample clock fDIV by a division by 16.

The ASC fractional divider register FDV contains the 9-bit divider value for the fractional
divider (asynchronous mode only). It is also used for reference clock generation of the
autobaud detection unit.

Field Bits Typ Description

BR_VALUE [12:0] rw Baudrate Timer/Reload Value
Reading returns the 13-bit contents of the baudrate
timer; writing loads the baudrate timer/reload value.

Note: BG should only be written if R=’0’.

0 [15:13] r Reserved for future use; reading returns 0;
writing to these bit positions has no effect.

FDV
Fractional Divider Register Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 FD_VALUE

r rw

Field Bits Typ Description

FD_VALUE [8:0] rw Fractional divider register value
FD_VALUE contains the 9-bit value of the fractional
divider which defines the fractional divider ratio n/
512 (n=0...511). With n=0, the fractional divider is
switched off (input=output frequency,
fDIV = fclk, see Figure 10-9).

0 [15:9] r Reserved for future use; reading returns 0;
writing to these bit positions has no effect.

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-19 V 1.6, 2001-08

Figure 10-9 ASC Baudrate Generator Circuitry in Asynchronous Modes

Using the fixed Input Clock Divider

The baudrate for asynchronous operation of serial channel ASC when using the fixed
input clock divider ratios (CON_FDE=0) and the required reload value for a given
baudrate can be determined by the following formulas:

Table 10-1 Asynchronous Baudrate Formulas using the Fixed Input Clock
Dividers

FDE BRS BG Formula

0 0 0 ... 8191

1

÷16

÷2
fclk

Baud
Rate
Clock

Sample
Clock

R

13-Bit Reload Register

13-Bit Baudrate Timer

÷3

Fractional
Divider

Mux

FDE

BRS

%
& BRS Selected Divider

0 0 ÷ 2

0 1 ÷ 3

1 X Fractional Divider

fDIV

fBRT

fBR

32 x (BG+1)
Baudrate =

fclk

32 x Baudrate
fclkBG = - 1

48 x (BG+1)
Baudrate =

fclk

48 x Baudrate
fkw_clkBG = - 1

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-20 V 1.6, 2001-08

BG represents the contents of the reload register BG (BR_VALUE), taken as unsigned
13-bit integer.

The maximum baudrate that can be achieved for the asynchronous modes when using
the two fixed clock dividers and a module clock of 60 MHz is 1.875 MBaud. Table 10-2
lists various commonly used baudrates together with the required reload values and the
deviation errors compared to the intended baudrate.

Note: CON_FDE must be 0 to achieve the baudrates in the table above. The deviation
errors given in the table above are rounded. Using a baudrate crystal will provide
correct baudrates without deviation errors.

Using the Fractional Divider

When the fractional divider is selected, the input clock fDIV for the baudrate timer is
derived from the module clock fclk by a programmable divider. If CON_FDE is set, the
fractional divider is activated. It divides fclk by a fraction of n/512 for any value of n from
0 to 511. If n=0, the divider ratio is 1, which means that fDIV=fclk. In general, the fractional
divider allows the baudrate to be programmed with much more accuracy than with the
two fixed prescaler divider stages.

BG represents the contents of the reload register BG (BR_VALUE), taken as an
unsigned 13-bit integer.
FDV represents the contents of the fractional divider register (FD_VALUE) taken as an
unsigned 9-bit integer.

Table 10-2 Typical Asynchronous Baudrates using the Fixed Input Clock
Dividers

Baudrate BRS = ‘0’, fclk = 60 MHz BRS = ‘1’, fclk = 60 MHz

Deviation
Error

Reload Value Deviation
Error

Reload Value

1.875 MBaud --- 0000H --- ---

1.25 MBaud --- --- --- 0000H

19.2 KBaud +0.7 % / -0.4 % 0060H / 0061H +0.2 % / -1.4 % 0040H / 0041H

9600 Baud +0.2 % / -0.4 % 00C2H /
00C3H

+0.2 % / -0.6 % 0081H / 0082H

4800 Baud +0.2 % / -0.1 % 0185H / 0186H +0.2 % / -0.2 % 0104H / 0105H

2400 Baud +0.0 % / -0.1 % 030CH /
030DH

+0.2 % / -0.0 % 0207H / 0208H

1200 Baud +0.0 % / -0.0 % 0619H /
061AH

+0.1 % / -0.0 % 0410H / 0411H

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-21 V 1.6, 2001-08

Note: ApNote AP2423 provides a program ’ASC.EXE’ which allows calculation of
values for the FDV and BG registers depending on fclk, the requested baudrate,
and the maximum deviation.

10.3.3.2 Baudrate in Synchronous Mode

For synchronous operation, the baudrate generator provides a clock with four times the
rate of the established baudrate.(see Figure 10-10).

Table 10-3 Asynchronous Baudrate Formulas using the Fractional Input Clock
Divider

FDE BRS BG FDV Formula

1 - 1 ... 8191 1 ... 511

0

Table 10-4 Typical Asynchronous Baudrates using the Fractional Input Clock
Divider

fclk Desired
Baudrate

BG FDV Resulting
Baudrate

Deviation

40 MHz 115.2 kBaud 15H 1F7H 115.214 kBaud 0.01 %

57.6 kBaud 26H 1F7H 57.607 kBaud 0.01 %

38.4 kBaud 41H 1F7H 38.404 kBaud 0.01 %

19.2 kBaud 83H 1F7H 19.202 kBaud 0.01 %

60 MHz 115.2 kBaud 20H 1F7H 115.214 kBaud 0.01 %

57.6 kBaud 41H 1F7H 57.607 kBaud 0.01 %

38.4 kBaud 61H 1FDH 38.415 kBaud 0.04 %

19.2 kBaud C5H 1FDH 19.207 kBaud 0.04 %

FDV
16 x (BG+1)

Baudrate =
fclk

512
x

16 x (BG+1)
Baudrate =

fclk

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-22 V 1.6, 2001-08

Figure 10-10 ASC Baudrate Generator Circuitry in Synchronous Mode

The baudrate for synchronous operation of serial channel ASC can be determined by the
formulas as shown in Table 10-5.

BG represents the contents of the reload register (BR_VALUE), taken as an unsigned
13-bit integers.

The maximum baudrate that can be achieved in synchronous mode when using a
module clock of 60 MHz is 7.5 MBaud.

Table 10-5 Synchronous Baudrate Formulas

SBRS BG Formula

0 0 ... 8191

1

÷4
÷2

fclk
Shift /
Sample
Clock

R

13-Bit Reload Register

13-Bit Baudrate Timer

÷3

Mux

BRS

fDIV

fBRT

BRS Selected Divider

0 ÷ 2

1 ÷ 3

8 x (BG+1)
Baudrate =

fclk

8 x Baudrate
fclkBG = - 1

12 x (BG+1)
Baudrate =

fclk

12 x Baudrate
fclkBG = - 1

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-23 V 1.6, 2001-08

10.3.4 Hardware Error Detection Capabilities

To improve the safety of serial data exchange, the serial channel ASC provides an error
interrupt request flag to indicate the presence of an error, and three (selectable) error
status flags in register CON to indicate which error has been detected during reception.
Upon completion of a reception, the error interrupt request line EIR will be activated
simultaneously with the receive interrupt request line RIR, if one or more of the following
conditions are met:

– If the framing error detection enable bit CON_FEN is set and any of the expected
stop bits is not high, the framing error flag CON_FE is set, indicating that the error
interrupt request is due to a framing error (Asynchronous Mode only).

– If the parity error detection enable bit CON_PEN is set in the modes where a parity
bit is received, and the parity check on the received data bits proves false, the parity
error flag CON_PE is set, indicating that the error interrupt request is due to a parity
error (Asynchronous Mode only).

– If the overrun error detection enable bit CON_OEN is set and the last character
received was not read out of the receive buffer by software or by a DMA transfer at
the time the reception of a new frame is complete, the overrun error flag CON_OE
is set indicating that the error interrupt request is due to an overrun error
(Asynchronous and Synchronous Mode).

10.3.5 Interrupts

Four interrupt sources are provided for serial channel ASC. Line TIC indicates a transmit
interrupt, TBIC indicates a transmit FIFO interrupt, RIC indicates a receive interrupt, and
SEIC indicates an error interrupt of the serial channel. The interrupt output lines TBIR,
TIR, RIR, and EIR are activated (active state) for two periods of the module clock fclk.

The cause of an error interrupt request (framing, parity, overrun error) can be identified
by the error status flags FE, PE, and OE located in control register CON.

Note: In contrast to the error interrupt request line EIR, the error status flags FE/PE/OE
are not reset automatically but must be cleared by software.

For normal operation (other than error interrupt) the ASC provides three interrupt
requests to control data exchange via this serial channel:

– TBIR is activated when data is moved from TBUF to the transmit shift register.
– TIR is activated before the last bit of an asynchronous frame is transmitted, or after

the last bit of a synchronous frame has been transmitted.
– RIR is activated when the received frame is moved to RBUF.

While the task of the receive interrupt handler is quite clear, the transmitter is serviced
by two interrupt handlers. This provides advantages for the servicing software.

For single transfers, it is sufficient to use the transmitter interrupt (TIR), which indicates
that all the previously loaded data has been transmitted except for the last bit of an
asynchronous frame.

User’s Manual
C166S V1 SubSystem

Asynchronous/Synchronous Serial Interface (ASC)

User’s Manual 10-24 V 1.6, 2001-08

For multiple back-to-back transfers, it is necessary to load the following piece of data
until the time the last bit of the previous frame has been transmitted. In Asynchronous
Mode, this leaves just one bit-time for the handler to respond to the transmitter interrupt
request; in Synchronous Mode it is completly impossible at all if no FIFO is present.

Using the transmit buffer interrupt (TBIR) to reload transmit data provides the time to
transmit a complete frame for the service routine, as TBUF may be reloaded while the
previous data is still being transmitted.

Figure 10-11 ASC Interrupt Generation

As shown in Figure 10-11, TBIR is an early trigger for the reload routine, while TIR
indicates the completed transmission. Therefore, software using handshake should rely
on TIR at the end of a data block to ensure that all data has actually been transmitted.

Note: Refer to the general Interrupt Control Register description for an explanation of the
control fields

Idle IdleS
ta

rt

S
ta

rt

S
ta

rt

S
to

p

S
to

p

S
to

p
Idle Idle

Asynchronous Mode

TBIR TBIR

TIR

TBIR

TIR

RIR RIR

Synchronous Mode

TBIR

RIR

TBIR

TIR

RIR

TBIR

TIR

RIR

TIR

RIR

TIR

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-1 V 1.6, 2001-08

11 High-Speed Synchronous Serial Interface (SSC)

11.1 Introduction

The High-Speed Synchronous Serial Interface (SSC) supports both full-duplex and half-
duplex serial synchronous communication up to 30 MBaud (@ 60 MHz module clock).
The serial clock signal can be generated by the SSC itself (Master Mode) or can be
received from an external master (Slave Mode). Data width, shift direction, clock polarity,
and phase are programmable. This allows communication with SPI-compatible devices.
Transmission and reception of data is double-buffered. A 16-bit baudrate generator
provides the SSC with a separate serial clock signal.

Features:

• Master and Slave Mode operation
– Full-duplex or half-duplex operation

• Flexible data format
– Programmable number of data bits: 2 to 16 bits
– Programmable shift direction: LSB or MSB shift first
– Programmable clock polarity: idle low or high state for the shift clock
– Programmable clock/data phase: data shift with leading or trailing edge of the shift

clock

• Baudrate generation from 30 MBaud to 457.76 Baud (@ 60 MHz module clock)

• Interrupt generation
– On a transmitter empty condition
– On a receiver full condition
– On an error condition (receive, phase, baudrate, transmit error)

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-2 V 1.6, 2001-08

Figure 11-1 shows all funtional relevant interfaces associated with the SSC Kernel.

Figure 11-1 SSC Interface Diagram

Figure 11-2 shows all of the registers associated with the SSC Kernel.

Figure 11-2 SSC Kernel Registers

All SSC registers are located in the SFR/ESFR memory space. The respective SFR
addresses can be found in list of SFRs.

SSC

Module

Interrupt

Control

Port

Control

Clock

Control

Address

Decoder
(Kernel)

fclk

TXD

BPI Module
Product
InterfaceInterface

RXD

RXD

SS_CLK

TXD

MS_CLK
EIRQ

RIRQ

TIRQ

S
C

LK
S

la
ve

M
as

te
r

Control Registers Data Registers

CON TB

BR RB

CON Control Register
BR Baudrate Timer Reload Register
TB Transmit Buffer Register
RB Receive Buffer Register

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-3 V 1.6, 2001-08

11.2 General Operation

The SSC supports full-duplex and half-duplex synchronous communication up to
30 MBaud (@ 60 MHz module clock). The serial clock signal can be generated by the
SSC itself (Master Mode) or can be received from an external master (Slave Mode). Data
width, shift direction, clock polarity, and phase are programmable. This allows
communication with SPI-compatible devices. Transmission and reception of data is
double-buffered. A 16-bit baudrate generator provides the SSC with a separate serial
clock signal.

The high-speed synchronous serial interface can be configured in a very flexible way, so
it can be used with other synchronous serial interfaces, can serve for master/slave or
multimaster interconnections or can operate compatible with the popular SPI interface.
Thus, the SSC can be used to communicate with shift registers (IO expansion),
peripherals (e.g. EEPROMs etc.) or other controllers (networking). The SSC supports
half-duplex and full-duplex communication. Data is transmitted or received on lines TXD
and RXD, normally connected with pins MTSR (Master Transmit / Slave Receive) and
MRST (Master Receive / Slave Transmit). The clock signal is output via line MS_CLK
(Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines
are normally connoted to pin SCLK. These pins are alternate functions of port pins.

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-4 V 1.6, 2001-08

Figure 11-3 Synchronous Serial Channel SSC Block Diagram

fclk

Internal Bus

Baudrate
Generator

Clock
Control

SSC Control Block
Register CON

SS_CLK

RIR

TIR

EIR

Receive Int. Request

Transmit Int. Request

Error Int. Request

ControlStatus

TXD(Master)

RXD(Slave)
Pin

Control
16-Bit Shift Register

Transmit Buffer
Register TB

Receive Buffer
Register RB

Shift
Clock

MS_CLK

RXD(Master)

TXD(Slave)

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-5 V 1.6, 2001-08

11.2.1 Operating Mode Selection

The operating mode of the serial channel SSC is controlled by its control register CON.
This register serves two purposes:

– During programming (SSC disabled by CON.EN=0), it provides access to a set of
control bits

– During operation (SSC enabled by CON.EN=1), it provides access to a set of status
flags.

Configuration Register

This register contains control bits for mode and error check selection, and status flags
for error identification. Depending on bit EN, either control functions or status flags and
master/slave control is enabled.

CON.EN = 0: Programming Mode

CON
Control Register (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN MS 0 A
REN BEN PEN REN TEN LB PO PH HB BM

rw rw r rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description

BM [3:0] rw Data Width Selection
0000 Reserved. Do not use this combination.
0001 -
1111 Transfer Data Width is 2...16 bit (<BM>+1)

HB 4 rw Heading Control
0 Transmit/Receive LSB First
1 Transmit/Receive MSB First

PH 5 rw Clock Phase Control
0 Shift transmit data on the leading clock edge,

latch on trailing edge
1 Latch receive data on leading clock edge, shift

on trailing edge

PO 6 rw Clock Polarity Control
0 Idle clock line is low, leading clock edge is low-

to-high transition
1 Idle clock line is high, leading clock edge is high-

to-low transition

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-6 V 1.6, 2001-08

CON.EN = 1: Operating Mode

LB 7 rw Loop Back Control
0 Normal output
1 Receive input is connected with transmit output

(half-duplex mode)

TEN 8 rw Transmit Error Enable
0 Ignore transmit errors
1 Check transmit errors

REN 9 rw Receive Error Enable
0 Ignore receive errors
1 Check receive errors

PEN 10 rw Phase Error Enable
0 Ignore phase errors
1 Check phase errors

BEN 11 rw Baudrate Error Enable
0 Ignore baudrate errors
1 Check baudrate errors

AREN 12 rw Automatic Reset Enable
0 No additional action upon a baudrate error
1 The SSC is automatically reset upon a baudrate

error

MS 14 rw Master Select
0 Slave Mode. Operate on shift clock received via

SCLK.
1 Master Mode. Generate shift clock and output it

via SCLK.

EN 15 rw Enable Bit = ‘0’
Transmission and reception disabled. Access to
control bits.

0 13 r Reserved; returns ‘0’ if read; should be written with ‘0’;

CON
Control Register (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN MS 0 BSY BE PE RE TE – – – – BC

rw rw r rh rwh rwh rwh rwh r rw

Field Bits Type Description

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-7 V 1.6, 2001-08

Note: The target of an access to CON (control bits or flags) is determined by the state of
CON.EN prior to the access; that is, writing C057H to CON in programming mode
(CON.EN=0) will initialize the SSC (CON.EN was 0) and then turn it on
(CON.EN=1). When writing to CON, ensure that reserved locations receive zeros.

Field Bits Type Description

BC [3:0] rh Bit Count Field
0001 -
1111 Shift counter is updated with every shifted bit.
Do not write to !!!

TE 8 rwh Transmit Error Flag
0 No error
1 Transfer starts with the slave’s transmit buffer not

being updated

RE 9 rwh Receive Error Flag
0 No error
1 Reception completed before the receive buffer

was read

PE 19 rwh Phase Error Flag
0 No error
1 Received data changes around sampling clock

edge

BE 11 rwh Baudrate Error Flag
0 No error
1 More than factor 2 or 0.5 between slave’s actual

and expected baudrate

BSY 12 rh Busy Flag
Set while a transfer is in progress. Do not write to!!!

MS 14 rw Master Select Bit
0 Slave Mode. Operate on shift clock received via

SCLK.
1 Master Mode. Generate shift clock and output it

via SCLK.

EN 15 rw Enable Bit = ‘1’
Transmission and reception enabled. Access to status
flags and M/S control

– [7:4] - Reserved:

0 13 r Reserved; returns ‘0’ if read; should be written with ‘0’;

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-8 V 1.6, 2001-08

The shift register of the SSC is connected to both the transmit lines and the receive lines
via the pin control logic (see block diagram in Figure 11-3). Transmission and reception
of serial data are synchronized and take place at the same time, i.e. the same number
of transmitted bits is also received. Transmit data is written into the Transmit Buffer (TB).
It is moved to the shift register as soon as this is empty. An SSC master (CON.MS=1)
immediately begins transmitting, while an SSC slave (CON.MS=0) will wait for an active
shift clock. When the transfer starts, the busy flag CON.BSY is set and the Transmit
Interrupt Request line TIR will be activated to indicate that register TB may be reloaded
again. When the programmed number of bits (2...16) has been transferred, the contents
of the shift register are moved to the Receive Buffer RB and the Receive Interrupt
Request line RIR will be activated. If no further transfer is to take place (TB is empty),
CON.BSY will be cleared at the same time. Software should not modify CON.BSY, as
this flag is hardware controlled.

Transmitter Buffer Register

The SSC transmitter buffer register TB contains the transmit data value.

Receiver Buffer Register

The SSC receiver buffer register RB contains the receive data value.

TB
Transmitter Buffer Register (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TB_VALUE

rw

Field Bits Type Description

TB_VALUE [15:0] rw Transmit Data Register Value
TB_VALUE is the data value to be transmitted.
Unselected bits of TB are ignored during
transmission.

RB
Receiver Buffer Register (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RB_VALUE

rH

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-9 V 1.6, 2001-08

Note: Only one SSC (etc.) can be master at a given time.

The transfer of serial data bits can be programmed in many respects:

– The data width can be specified from 2 bits to 16 bits
– A transfer may start with either the LSB or the MSB
– The shift clock may be idle low or idle high
– The data bits may be shifted with the leading edge or the trailing edge of the shift

clock signal
– The baudrate may be set from 457.76 Baud up to 30 MBaud (@ 60 MHz module

clock)
– The shift clock can be generated (MS_CLK) or can be received (SS_CLK)

These features allow the adaptation of the SSC to a wide range of applications in which
serial data transfer is required.

The Data Width Selection supports the transfer of frames of any data length, from 2-bit
“characters” up to 16-bit “characters”. Starting with the LSB (CON.HB=0) allows
communication with SSC devices in Synchronous Mode or with 8051 like serial
interfaces for example. Starting with the MSB (CON.HB=1) allows operation compatible
with the SPI interface.
Regardless of the data width selected and whether the MSB or the LSB is transmitted
first, the transfer data is always right-aligned in registers TB and RB, with the LSB of the
transfer data in bit 0 of these registers. The data bits are rearranged for transfer by the
internal shift register logic. The unselected bits of TB are ignored; the unselected bits of
RB will not be valid and should be ignored by the receiver service routine.

The Clock Control allows the adaptation of transmit and receive behavior of the SSC to
a variety of serial interfaces. A specific shift clock edge (rising or falling) is used to shift
out transmit data, while the other shift clock edge is used to latch in receive data. Bit
CON.PH selects the leading edge or the trailing edge for each function. Bit CON.PO
selects the level of the shift clock line in the idle state. Thus, for an idle-high clock, the
leading edge is a falling one, a 1-to-0 transition (see Figure 11-4).

Field Bits Type Description

RB_VALUE [15:0] rh Receive Data Register Value
RB contains the received data value RB_VALUE.
Unselected bits of RB will be not valid and should be
ignored.

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-10 V 1.6, 2001-08

Figure 11-4 Serial Clock Phase and Polarity Options

11.2.2 Full-Duplex Operation

The various devices are connected through three lines. The definition of these lines is
always determined by the master: The line connected to the master’s data output line
TXD is the transmit line; the receive line is connected to its data input line RXD; the shift
clock line is either MS_CLK or SS_CLK. Only the device selected for master operation
generates and outputs the shift clock on line MS_CLK. All slaves receive this clock; so,
their pin SCLK must be switched to input mode. The output of the master’s shift register
is connected to the external transmit line, which in turn is connected to the slaves’ shift
register input. The output of the slaves’ shift register is connected to the external receive
line in order to enable the master to receive the data shifted out of the slave. The external
connections are hard-wired, the function and direction of these pins is determined by the
master or slave operation of the individual device.

Note: The shift direction shown in the figure applies for MSB-first operation as well as for
LSB-first operation.

When initializing the devices in this configuration, one device must be selected for
master operation while all other devices must be programmed for slave operation.
Initialization includes the operating mode of the device's SSC and also the function of
the respective port lines.

Shift Clock
MS_CLK/SS_CLK

CON.
PH

CON.
PO

1

0

0

0

1

1

1

0

Pins
MTSR/MRST

Transmit Data

Shift Data
Latch Data

First
Bit

Last
Bit

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-11 V 1.6, 2001-08

Figure 11-5 SSC Full-Duplex Configuration

The data output pins MRST of all slave devices are connected together onto the one
receive line in the configuration shown in Figure 11-5. During a transfer each slave shifts
out data from its shift register. There are two ways to avoid collisions on the receive line
due to different slave data:

– Only one slave drives the line, i.e. enables the driver of its MRST pin. All the other
slaves must have their MRST pins programmed as input so only one slave can put
its data onto the master's receive line. Only receiving data from the master is
possible. The master selects the slave device from which it expects data either by
separate select lines, or by sending a special command to this slave. The selected
slave then switches its MRST line to output until it gets a de-selection signal or
command.

– The slaves use open drain output on MRST. This forms a wired-AND connection.
The receive line needs an external pull-up in this case. Corruption of the data on
the receive line sent by the selected slave is avoided when all slaves not selected
for transmission to the master only send ones (1s). Because this high level is not
actively driven onto the line, but only held through the pull-up device, the selected
slave can pull this line actively to a low level when transmitting a zero bit. The

Master Device #1

Shift Register

Clock

MTSR

MRST

CLK CLK

MRST

MTSRTransmit

Receive

Clock
Clock

Shift Register

Device #2 Slave

SlaveDevice #3

MRST

CLK

MTSR

Clock

Shift Register

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-12 V 1.6, 2001-08

master selects the slave device from which it expects data either by separate select
lines or by sending a special command to this slave.

After performing the necessary initialization of the SSC, the serial interfaces can be
enabled. For a master device, the alternate clock line will now go to its programmed
polarity. The alternate data line will go to either 0 or 1 until the first transfer will start. After
a transfer, the alternate data line will always remain at the logic level of the last
transmitted data bit.

When the serial interfaces are enabled, the master device can initiate the first data
transfer by writing the transmit data into register TB. This value is copied into the shift
register (assumed to be empty at this time), and the selected first bit of the transmit data
will be placed onto the TXD line on the next clock from the baudrate generator
(transmission starts only if CON.EN=1). Depending on the selected clock phase, a clock
pulse will also be generated on the MS_CLK line. At the same time, with the opposite
clock edge, the master latches and shifts in the data detected at its input line RXD. This
“exchanges” the transmit data with the receive data. Because the clock line is connected
to all slaves, their shift registers will be shifted synchronously with the master's shift
register—shifting out the data contained in the registers, and shifting in the data detected
at the input line. After the preprogrammed number of clock pulses (via the data width
selection), the data transmitted by the master is contained in all the slaves’ shift
registers, while the master's shift register holds the data of the selected slave. In the
master and all slaves, the content of the shift register are copied into the receive buffer
RB and the receive interrupt line RIR is activated.

A slave device will immediately output the selected first bit (MSB or LSB of the transfer
data) at line RXD when the contents of the transmit buffer are copied into the slave's shift
register. Bit CON.BSY is not set until the first clock edge at SS_CLK appears. The slave
device will not wait for the next clock from the baudrate generator, as the master does.
The reason for this is that, depending on the selected clock phase, the first clock edge
generated by the master may already be used to clock in the first data bit. Thus, the
slave's first data bit must already be valid at this time.

Note: On the SSC, a transmission and a reception takes place at the same time,
regardless of whether valid data has been transmitted or received.

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-13 V 1.6, 2001-08

11.2.3 Half-Duplex Operation

In a Half-Duplex Mode, only one data line is necessary for both receiving and
transmitting of data. The data exchange line is connected to both the MTSR and MRST
pins of each device, the shift clock line is connected to the SCLK pin.

The master device controls the data transfer by generating the shift clock, while the slave
devices receive it. Due to the fact that all transmit and receive pins are connected to the
one data exchange line, serial data may be moved between arbitrary stations.

Similar to Full-Duplex Mode, there are two ways to avoid collisions on the data exchange
line:

– only the transmitting device may enable its transmit pin driver
– the non-transmitting devices use open drain output and send only ones.

Because the data inputs and outputs are connected together, a transmitting device will
clock in its own data at the input pin (MRST for a master device, MTSR for a slave). By
this method, any corruptions on the common data exchange line are detected if the
received data is not equal to the transmitted data.

Figure 11-6 SSC Half-Duplex Configuration

Master Device #1

Shift Register

Clock

MTSR

CLK

MRST MRST

CLK

MTSR

Clock

Shift Register

Device #2 Slave

Common
Transmit/
Receive
Line

SlaveDevice #3

MRST

CLK

MTSR

Clock

Shift Register

Transmit

Clock

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-14 V 1.6, 2001-08

11.2.4 Continuous Transfers

When the transmit interrupt request flag is set, it indicates that the transmit buffer TB is
empty and ready to be loaded with the next transmit data. If TB has been reloaded by
the time the current transmission is finished, the data is immediately transferred to the
shift register and the next transmission will start without any additional delay. On the data
line, there is no gap between the two successive frames. For example, two byte transfers
would look the same as one word transfer. This feature can be used to interface with
devices that can operate with or require more than 16 data bits per transfer. It is just a
matter of software, how long a total data frame length can be. This option can also be
used to interface to byte-wide and word-wide devices on the same serial bus, for
instance.

Note: Of course, this can happen only in multiples of the selected basic data width,
because it would require disabling/enabling of the SSC to reprogram the basic
data width on-the-fly.

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-15 V 1.6, 2001-08

11.2.5 Baudrate Generation

The serial channel SSC has its own dedicated 16-bit baudrate generator with 16-bit
reload capability, allowing baudrate generation independent of the timers. Figure 11-3
shows the baudrate generator. Figure 11-7 shows the baudrate generator of the SSC in
more detail.

Figure 11-7 SSC Baudrate Generator

The baudrate generator is clocked with the module clock fclk. The timer counts
downwards. Register BR is the dual-function Baudrate Generator/Reload register.
Reading BR, while the SSC is enabled, returns the content of the timer. Reading BR,
while the SSC is disabled, returns the programmed reload value. In this mode the
desired reload value can be written to BR.

Baudrate Timer Reload Register

The SSC baudrate timer reload register BR contains the 16-bit reload value for the
baudrate timer.

Note: Never write to BR while the SSC is enabled.

The formulas below calculate either the resulting baudrate for a given reload value, or
the required reload value for a given baudrate:

BR
Baudrate Timer Reload Register (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BR_VALUE

rw

16-Bit Counter 2
fclk fMS_CLK/SS_CLK

16-Bit Reload Register

fMS_CLK max in Master Mode fclk / 2

fSS_CLK max in Slave Mode fclk / 4

..

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-16 V 1.6, 2001-08

 represents the contents of the reload register, taken as unsigned 16-bit integer;
while Baudrate is equal to fMS_CLK/SS_CLK as shown in Figure 11-7.

The maximum baudrate that can be achieved when using a module clock of 60 MHz is
30 MBaud in Master Mode (with
 = 0000H) or 15 MBaud in Slave Mode (with

= 0001H).

Table 11-1 lists some possible baudrates together with the required reload values and
the resulting bit times, assuming a module clock of 60 MHz.

Field Bits Type Description

BR_VALUE [15:0] rw Baudrate Timer/Reload Register Value
Reading BR returns the 16-bit content of the baudrate
timer. Writing BR loads the baudrate timer reload
register with BR_VALUE.

Table 11-1 Typical Baudrates of the SSC (fclk = 60 MHz)

Reload Value Baudrate (= fMS_CLK/SS_CLK) Deviation

0000H 30 MBaud (only in Master Mode) 0.0%

0001H 15 MBaud 0.0%

001DH 1 MBaud 0.0%

0027H 750 kBaud 0.0%

003BH 500 kBaud 0.0%

0095H 200 kBaud 0.0%

012BH 100 kBaud 0.0%

FFFFH 457.76 Baud 0.0%

 - 1BR =Baudrate =
2 * (
 + 1)

fclk fclk

2 * Baudrate

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-17 V 1.6, 2001-08

11.2.6 Error Detection Mechanisms

The SSC is able to detect four different error conditions. Receive Error and Phase Error
are detected in all modes; Transmit Error and Baudrate Error only apply to Slave Mode.
When an error is detected, the respective error flag is set and an error interrupt request
will be generated by activating the EIR line (see Figure 11-8). The error interrupt handler
may then check the error flags to determine the cause of the error interrupt. The error
flags are not reset automatically but rather must be cleared by software after servicing.
This allows servicing of some error conditions via interrupt, while the others may be
polled by software.

Note: The error interrupt handler must clear the associated (enabled) error flag(s) to
prevent repeated interrupt requests.

Figure 11-8 SSC Error Interrupt Control

A Receive Error (Master or Slave Mode) is detected when a new data frame is
completely received but the previous data was not read out of the receive buffer register
RB. This condition sets the error flag CON.RE and, when enabled via CON.REN, the
error interrupt request line EIR. The old data in the receive buffer RB will be overwritten
with the new value and is irretrievably lost.

&

&

&

&

Bits in Register
CON

Error Interrupt
EIR

Baudrate

Error

Phase

Error

Receive

Error

Transmit

Error

TEN

TE

REN

RE

PEN

PE

BEN

BE

1

User’s Manual
C166S V1 SubSystem

High-Speed Synchronous Serial Interface (SSC)

User’s Manual 11-18 V 1.6, 2001-08

A Phase Error (Master or Slave Mode) is detected when the incoming data at pin MRST
(Master Mode) or MTSR (Slave Mode), sampled with the same frequency as the module
clock, changes between one cycle before and two cycles after the latching edge of the
shift clock signal SCLK. This condition sets the error flag CON.PE and, when enabled
via CON.PEN, the error interrupt request line EIR.

A Baudrate Error (Slave Mode) is detected when the incoming clock signal deviates
from the programmed baudrate by more than 100%, i.e. it either is more than double or
less than half the expected baudrate. This condition sets the error flag CON.BE and,
when enabled via CON.BEN, the error interrupt request line EIR. Using this error
detection capability requires that the slave’s baudrate generator is programmed to the
same baudrate as the master device. This feature detects false additional, or missing
pulses on the clock line (within a certain frame).

Note: If this error condition occurs and bit CON.REN=1, an automatic reset of the SSC
will be performed in case of this error. This is done to re-initialize the SSC if too
few or too many clock pulses have been detected.

A Transmit Error (Slave Mode) is detected when a transfer was initiated by the master
(SS_CLK gets active) but the transmit buffer TB of the slave was not updated since the
last transfer. This condition sets the error flag CON.TE and, when enabled via
CON.TEN, the error interrupt request line EIR. If a transfer starts while the transmit buffer
is not updated, the slave will shift out the ’old’ contents of the shift register, which
normally is the data received during the last transfer. This may lead to corruption of the
data on the transmit/receive line in half-duplex mode (open drain configuration) if this
slave is not selected for transmission. This mode requires that slaves not selected for
transmission only shift out ones; that is, their transmit buffers must be loaded with
’FFFFH’ prior to any transfer.

Note: A slave with push/pull output drivers not selected for transmission, will normally
have its output drivers switched. However, in order to avoid possible conflicts or
misinterpretations, it is recommended to always load the slave’s transmit buffer
prior to any transfer.

The cause of an error interrupt request (receive, phase, baudrate, transmit error) can be
identified by the error status flags in control register CON.

Note: In contrast to the error interrupt request line EIR, the error status flags CON.TE,
CON.RE, CON.PE, and CON.BE, are not reset automatically upon entry into the
error interrupt service routine, but must be cleared by software.

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-1 V 1.6, 2001-08

12 General Purpose Timer Unit

12.1 Introduction

The General Purpose Timer Unit (GPT12E) provides very flexible multifunctional timer
structures that may be used for timing, event counting, pulse width measurement, pulse
generation, frequency multiplication, and other purposes. The GPT12E incorporates five
16-bit timers grouped into two timer blocks: Block 1 (GPT1) and Block 2 (GPT2). Each
timer in each block can operate independently in a number of different modes, such as
Gated Timer Mode or Counter Mode; or, each timer can be concatenated with another
timer of the same block.

Block 1 contains three timers/counters with a maximum resolution of fclk/4. The auxiliary
timers of GPT1 may optionally be configured as reload or capture registers for the core
timer.

Block 2 contains two timers/counters with a maximum resolution of fclk/2. An additional
CAPREL register supports capture and reload operation with extended functionality.

Note: Core Timer T6 may be concatenated with timers of other on chip peripherals.

The following summary identifies all features to be supported by the GPT12E:

• Timer Block 1:
– Maximum resolution of fclk/4
– Three independent timers/counters
– Concatenation of timers/counters can be done
– Four operating modes (Timer Mode, Gated Timer Mode, Counter Mode,

Incremental Interface Mode)
– Separate interrupt lines for each timer/counter

• Timer Block 2:
– Maximum resolution of fclk/2
– Two independent timers/counters
– Concatenation of Timers/counters can be done
– Three operating modes (Timer Mode, Gated Timer Mode, Counter Mode)
– Extended capture/reload functions via 16-bit capture/reload register CAPREL
– Separate interrupt lines for each timer/counter

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-2 V 1.6, 2001-08

Figure 12-1 GPT12E Interface Diagram

Note: Bus Peripheral Interface (BPI) is the connection to the on-chip bus system.

GPT12E

Module

Interrupt

Control

Port

Control

Clock

Control

Address

Decoder
(Kernel)

fclk T3OUT

BPI Module
Product
InterfaceInterface

T2IN
T3IN
T4IN
T5IN
T6IN

T2EUD
T3EUD
T4EUD
T5EUD
T6EUD
T5EUD

CAPIN

T6OUT

T6OFL

T2IRQ
T3IRQ
T4IRQ
T5IRQ
T6IRQ
CRIRQ

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-3 V 1.6, 2001-08

12.2 Functional Description of Timer Block 1

All three timers of Block 1 (T2, T3, T4) can run in four basic modes: Timer Mode, Gated
Timer Mode, Counter Mode, and Incremental Interface Mode. All timers can count up or
down. Each timer of Block 1 is controlled by a separate control register TxCON.

Each timer has an input line, TxIN, associated with it which serves as the gate control in
Gated Timer Mode, or as the count input in Counter Mode. The count direction (up/down)
may be programmed via software or may be dynamically altered by a signal at an
external control line, External Up/Down Control Input TxEUD. An overflow/underflow of
core Timer T3 is indicated by the Output Toggle Latch T3OTL whose state may be output
on related signal line T3OUT. Additionally, the auxiliary timers T2 and T4 may be
concatenated with core Timer T3 or may be used as capture or reload registers for core
Timer T3. Concatenation of T3 with other timers is provided through line T3OTL.

The current contents of each timer can be read or modified by the CPU by accessing the
corresponding timer registers, T2, T3, or T4, located in the non-bitaddressable Special
Function Register (SFR) space. When any of the timer registers is written by the CPU in
the state immediately before a timer increment, decrement, reload, or capture is to be
performed, the CPU write operation has priority in order to guarantee correct results.

From a programmer’s point of view, the GPT1 block is composed of a set of SFRs as
summarized below. Those registers which are not part of the GPT1 block are shaded.

Figure 12-2 SFRs associated with Timer Block GPT1

All GPT1 registers are located in the SFR/ESFR memory space. The respective SFR
addresses can be found in list of SFRs.

T4IC

T2IC

T3IC

T2CON

T3CON

T4CONT4

T3

T2

T2 Timer 2 Register
T3 Timer 3 Register
T4 Timer 4 Register
T2ICTimer 2 Interrupt Control Register
T3ICTimer 3 Interrupt Control Register
T4ICTimer 4 Interrupt Control Register

Data Registers Control Registers Interrupt Control

T2CONTimer 2 Control Register
T3CONTimer 3 Control Register
T4CONTimer 4 Control Register

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-4 V 1.6, 2001-08

Figure 12-3 Structure of Timer Block 1

T3
Mode

Control

T2
Mode

Control

GPT1 Timer T2

Reload

Capture

Prescaler

T4
Mode

Control GPT1 Timer T4

Reload

Capture

GPT1 Timer T3 T3OTL

U/D

T2EUD

T2IN

T3IN

T3EUD

T4IN

T4EUD U/D

U/D

T2IRQ

T3IRQ

T4IRQ

MCT02141_b

fclk

T3OTL

T3OTL

Prescalerfclk

Prescalerfclk

T3OE

T3OUTMUX
0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-5 V 1.6, 2001-08

12.2.1 Core Timer T3

The operation of core Timer T3 is controlled by its bitaddressable control register
T3CON.

T3
Timer 3 (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T3

rwh

Field Bits Typ Description

T3 [15:0] rwh Timer 3
Contains the current value of Timer 3.

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-6 V 1.6, 2001-08

T3CON
Timer 3 Control Register (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T3
RDIR

T3
CH
DIR

T3
EDG

E
BPS1 T3

OTL
T3
OE

T3
UDE

T3
UD T3R T3M T3I

rh rwh rwh rw rwh rw rw rw rw rw rw

Field Bits Typ Description

T3I [2:0] rw Timer 3 Input Parameter Selection
Timer Mode: see Table 12-2 for encoding
Gated Timer Mode: see Table 12-2 for encoding
Counter Mode: see Table 12-4 for encoding
Incremental Interface Mode: see Table 12-5 for
encoding

T3M [5:3] rw Timer 3 Mode Control
000 Timer Mode
001 Counter Mode
010 Gated Timer Mode with gate active low
011 Gated Timer Mode with gate active high
100 Reserved. Do not use this combination!
101 Reserved. Do not use this combination!
110 Incremental Interface Mode

(Rotation Detection Mode)
111 Incremental Interface Mode

(Edge Detection Mode)

T3R [6] rw Timer 3 Run Bit
0 Stops Timer/counter 3
1 Runs Timer/counter 3

T3UD [7] rw Timer 3 Up/Down Control
(when T3UDE = 0)
0 Counts up
1 Counts down

T3UDE [8] rw Timer 3 External Up/Down Enable
0 Counting direction is internally controlled by

software
1 Counting direction is externally controlled by

line T3EUD

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-7 V 1.6, 2001-08

Run Control

The timer can be started or stopped by software through bit T3R. Setting bit T3R will start
the timer; clearing T3R stops the timer.

In Gated Timer Mode, the timer will run only if T3R is set and the gate is active (high or
low, as programmed).

Note: When bit T2RC/T4RC in timer control register T2CON/T4CON is set, T3R will also
control (start and stop) auxiliary Timer T2/T4.

T3OE [9] rw Overflow/Underflow Output Enable
0 T3 overflow/underflow cannot be externally

monitored via T3IN
1 T3 overflow/underflow may be externally

monitored via T3IN

T3OTL [10] rwh Timer 3 Overflow Toggle Latch
Toggles on each overflow/underflow of T3.
Can be set or reset by software.

BPS1 [12:11] rw Timer Block Prescaler 1
The maximum input frequency1)

00 Timer Block 1 is fclk / 8
01 Timer Block 1 is fclk / 4
10 Timer Block 1 is fclk / 32
11 Timer Block 1 is fclk / 16

T3EDGE [13] rwh Timer 3 Edge Detection
The bit is set on each successful edge detection.
The bit has to be reset by SW.
0 No count edge was detected
1 A count edge was detected

T3CHDIR [14] rwh Timer 3 Count Direction Change
The bit is set on a change of the count direction of
Timer 3. The bit has to be reset by SW.
0 No change in count direction was detected
1 A change in count direction was detected

T3RDIR [15] rh Timer 3 Rotation Direction
0 Timer 3 counts up
1 Timer 3 counts down

1) Additionally, the timer input frequency can be modified by T3I for Timer Mode, Gated Timer Mode and Counter
Mode.

Field Bits Typ Description

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-8 V 1.6, 2001-08

Count Direction Control

The count direction of the core timer can be controlled either by software or by the
external input line, T3EUD. These options are selected by bits T3UD and T3UDE in
control register, T3CON. When the up/down control is set by software (bit T3UDE is
cleared), the count direction can be altered by setting or clearing bit T3UD. When T3UDE
is set, line T3EUD is selected to be the controlling source of the count direction.
However, bit T3UD can still be used to reverse the actual count direction, as shown in
Table 12-1. If T3UD is cleared and line T3EUD shows a low level, the timer is counting
up. With a high level at T3EUD, the timer is counting down. If T3UD is set, a high level
at line T3EUD specifies counting up, and a low level specifies counting down. The count
direction can be changed whether or not the timer is running or not.

Note: When line T3EUD is used as external count direction control input, its associated
port pin must be configured as input.

Note: The direction control works the same way for core Timer T3 and for auxiliary
Timers T2 and T4.

Timer 3 Overflow/Underflow Monitoring

An overflow or underflow of Timer T3 will set clock bit T3OTL in control register T3CON.
T3OTL can also be set or reset by software. Bit T3OE (overflow/underflow output
enable) in register T3CON enables the state of T3OTL to be monitored via an external
line, T3OUT. If this line is linked to an external port pin (configured as output), T3OUT
can be used to control external hardware.

Additionally, T3OTL can be used in conjunction with auxiliary Timers T2 and T4. In this
case, T3OTL serves as input for the counter function or as trigger source for the reload
function of T2 and T4. T3OTL is internally connected for this functionality and it is not
necessary to enable overflow/underflow output on T3OUT for this purpose.

Table 12-1 Core Timer T3 Count Direction Control

Line T3EUD Bit T3UDE Bit T3UD Count Direction

X 0 0 Count Up

X 0 1 Count Down

0 1 0 Count Up

1 1 0 Count Down

0 1 1 Count Down

1 1 1 Count Up

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-9 V 1.6, 2001-08

Timer 3 in Timer Mode

Timer Mode for core Timer T3 is selected by setting bitfield T3M in register T3CON to
‘000B’.

A block diagram of T3 in Timer Mode is shown in Figure 12-4.

In this mode, T3 is clocked with the module clock fclk divided by a programmable
prescaler block, controlled by bitfield T3I and BPS1. The input frequency fT3 for Timer
T3 and its resolution rT3 are scaled linearly with lower module clock frequencies, as can
be seen from the following formula:

Note: <BPS1> represents the prescaler value of the prescaler part controlled by bitfield
BPS1. For the values, see the bit description in register T3CON.

Table 12-2 Timer 3 Input Parameter Selection: Timer and Gated Timer Modes

T3I Prescaler for fclk
(BPS1 = 00)

Prescaler for fclk
(BPS1 = 01)

Prescaler for fclk
(BPS1 = 10)

Prescaler for fclk
(BPS1 = 11)

000 8 4 32 16

001 16 8 64 32

010 32 16 128 64

011 64 32 256 128

100 128 64 512 256

101 256 128 1024 512

110 512 256 2048 1024

111 1024 512 4096 2048

Table 12-3 Example for Timer 3 Frequencies and Resolutions

fclk [MHz] T3I BPS1 fT3 [KHz] rT3 [µs]

40 7 10 9.77 102.4

40 0 01 10000 0.1

50 0 00 6250 0.16

50 4 11 195.31 5.12

50 7 10 12.20 81.97

fT3 =
 fclk

<BPS1> * 2<T3I> rT3 [ms] =
 fclk [MHz]

<BPS1> * 2<T3I>

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-10 V 1.6, 2001-08

This formula also applies to T3 in Gated Timer Mode and to the auxiliary timers T2 and
T4 in Timer Mode and Gated Timer Mode.

Figure 12-4 Block Diagram of Core Timer T3 in Timer Mode

Timer 3 in Gated Timer Mode

Gated Timer Mode for core Timer T3 is selected by setting bitfield T3M in register
T3CON to ‘010B’ or ‘011B’.

Bit T3M.0 (T3CON.3) selects the active level of the gate input. The same options for the
input frequency are available in Gated Timer Mode as for the Timer Mode. However, the
input clock to the timer in this mode is gated by the external input line T3IN (Timer T3
External Input); an associated port pin should be configured as input.

Core Timer T3

T3OTL

T3IRQ

T3OE

T3OUT
T3R

Prescaler

BPS1

EXOR

0

MUX

1

Up/
Down

T3EUD

T3UDE MCB02028_d

fclk

T3l

T3UD
MUX

0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-11 V 1.6, 2001-08

Figure 12-5 Block Diagram of Core Timer T3 in Gated Timer Mode

If T3M = ‘010B’, the timer is enabled when T3IN shows a low level. A high level at this
line stops the timer. If T3M = ‘011B’, line T3IN must have a high level to enable the timer.
Additionally, the timer can be turned on or off by software using bit T3R. The timer will
run only if T3R is set and the gate is active. It will stop if either T3R is cleared or the gate
is inactive.

Note: A transition of the gate signal at line T3IN does not cause an interrupt request.

Timer 3 in Counter Mode

Counter Mode for core Timer T3 is selected by setting bitfield T3M in register T3CON to
‘001B’. In Counter Mode, Timer T3 is clocked by a transition at the external input line
T3IN. The event causing an increment or decrement of the timer can be a positive, a
negative, or both a positive and a negative transition at this line. Bitfield T3I in control
register T3CON selects the triggering transition (see Table 12-4).

Core Timer T3

T3IRQ

T3R

MUX

XOR

0

MUX

1

Up/
Down

T3EUD

T3UDE MCB02029_d

T3M

T3IN

T3UD

Prescaler

BPS1

fclk

T3l

T3OTL

T3OE

T3OUTMUX
0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-12 V 1.6, 2001-08

Figure 12-6 Block Diagram of Core Timer T3 in Counter Mode

Table 12-4 Core Timer T3 (Counter Mode) Input Edge Selection

For Counter Mode operation, a port pin associated with line T3IN must be configured as
input. The maximum input frequency allowed in Counter Mode is fclk/8 (BPS1 =’01B’). To
ensure that a transition of the count input signal applied to T3IN is correctly recognized,
its level should be held high or low for at least 4 fclk cycles (BPS1 =’01B’) before it
changes.

Timer 3 in Incremental Interface Mode

Incremental Interface Mode for core Timer T3 is selected by setting bitfield T3M in
register T3CON to ‘110B’ or ‘111B’. In Incremental Interface Mode, the two inputs
associated with Timer T3 (T3IN, T3EUD) are used to interface to an external incremental
encoder. T3 is clocked by each transition on one or both of the external input lines which
gives 2-fold or 4-fold resolution of the encoder input.

T3I Triggering Edge for Counter Increment/Decrement

0 0 0 None. Counter T3 is disabled

0 0 1 Positive transition (rising edge) on T3IN

0 1 0 Negative transition (falling edge) on T3IN

0 1 1 Any transition (rising or falling edge) on T3IN

1 X X Reserved. Do not use this combination

Core Timer T3

T3R

XOR

0

MUX

1

Up/
Down

T3EUD

T3UDE MCB02030_b

T3l

T3IN

Edge
Select

T3OTL

T3IRQ

T3UD

T3OE

T3OUTMUX
0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-13 V 1.6, 2001-08

Figure 12-7 Block Diagram of Core Timer T3 in Incremental Interface Mode

Bitfield T3I in control register T3CON selects the triggering transitions (see Table 12-5).
The sequence of the transitions of the two input signals is evaluated and generates count
pulses as well as the direction signal. Depending on whether Rotation Detection Mode
(T3M=’110B’) or Edge Detection Mode (T3M=’111B’) is chosen, an interrupt request on
T3IRQ is generated. For Rotation Detection Mode, an interrupt is generated each time
the count direction of Timer T3 changes. For Edge Detection Mode, an interrupt is
generated each time a count action for Timer T3 occurs. Count direction, changes in the
count direction, and count requests are monitored by status bits T3RDIR, T3CHDIR, and
T3EDGE in register T3CON. T3 is modified automatically according to the speed and
direction of the incremental encoder. Therefore, the contents of Timer T3 always
represents the encoder’s current position.

Table 12-5 Core Timer T3 (Incremental Interface Mode) Input Edge Selection

T3I Triggering Edge for Counter Increment/Decrement

0 0 0 None. Counter T3 stops.

0 0 1 Any transition (rising or falling edge) on T3IN.

0 1 0 Any transition (rising or falling edge) on T3EUD.

0 1 1 Any transition (rising or falling edge) on any T3 input (T3IN or T3EUD).

1 X X Reserved. Do not use this combination

Edge
Select Timer T3

XOR
MUX

T3EUD

T3UDE
MCB03998_b

T3l

T3IN
T3OTL

T3IRQ

Phase
Detect

T3R

T3IRQ

T3
Edge

T3UD

T3
CHDIR

0

1

Change
Detection

T3
RDIR

T3IRQ

T3M

Up/
Down

T3M

T3OE

T3OUTMUX
0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-14 V 1.6, 2001-08

The incremental encoder can be connected directly to the microcontroller without
external interface logic. In a standard system, however, comparators will be employed
to convert the encoder’s differential outputs (such as A, A) to digital signals (such as A
in Figure 12-8). This greatly increases noise immunity.

Note: The third encoder output T0, which indicates the mechanical zero position, may
be connected to an external interrupt input to trigger a reset of Timer T3.

Figure 12-8 Interfacing the Encoder to the Microcontroller

The following conditions must be met for Incremental Interface Mode operation:

• Bitfield T3M must be ’110B’ or ‘111B’
• Pins associated with lines T3IN and T3EUD must be configured as inputs
• Bit T3UDE must be set to enable external direction control

The maximum input frequency allowed in Incremental Interface Mode is fclk/8 (T3BPS =
’01B’). To ensure that a transition of any input signal is correctly recognized, its level
should be held high or low for at least 4 fclk cycles (T3BPS = ’01B’) before it changes.

In Incremental Interface Mode, the count direction is automatically derived from the
sequence in which the input signals change, corresponding to the rotation direction of
the connected sensor. Table 12-6 summarizes the possible combinations.

Figure 12-9 and Figure 12-10 give examples of the operation of T3 to illustrate count
signal generation and direction control. Each example also shows how input jitter, which
might occur if the sensor rests near one of its switching points, is compensated.

Table 12-6 Core Timer T3 (Incremental Interface Mode) Count Direction

Level on
respective other
input

T3IN Input T3EUD Input

Rising Falling Rising Falling

High Down Up Up Down

Low Up Down Down Up

�

���������������

�

'
'

#
#

�

'

#

&�������

(��)��

(��)��

*������)t

&������

�������������������

+,

+
,

+
,

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-15 V 1.6, 2001-08

Figure 12-9 Evaluation of the Incremental Encoder Signals

Figure 12-10 Evaluation of the Incremental Encoder Signals

Note: Timer T3 operating in Incremental Interface Mode automatically provides
information about the sensor’s current position. Dynamic information (speed,
acceleration, deceleration) may be obtained by measuring the incoming signal
periods.

T3IN

T3EUD

Contents
of T3

Forward ForwardBackward JitterJitter

Up Down
Up

Note: This example shows the timer behavior assuming that T3 counts upon any
transition on any input, i.e. T3I = ’011B’.

T3IN

T3EUD

��������
���(

Forward ForwardBackward JitterJitter

Up Down Up

Note: This example shows the timer behavior assuming that T3 counts upon any
transition on input T3IN, i.e. T3I = ’001B’.

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-16 V 1.6, 2001-08

12.2.2 Auxiliary Timers T2 and T4

T2
Timer 2 (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T2

rwh

T4
Timer 4 (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T4

rwh

Field Bits Typ Description

Tx [15:0] rwh Timer x
Contains the current value of Timer x.

T2CON
Timer 2 Control Register (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T2
RDIR

T2
CH
DIR

T2
EDG

E

T2
IR

DIS
0 T2

RC
T2

UDE
T2
UD T2R T2M T2I

rh rwh rwh rw r rw rw rw rw rw rw

T4CON
Timer 4 Control Register (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T4
RDIR

T4
CH
DIR

T4
EDG

E

T4
IR

DIS
0 T4

RC
T4

UDE
T4
UD T4R T4M T4I

rh rwh rwh rw r rw rw rw rw rw rw

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-17 V 1.6, 2001-08

Field Bits Typ Description

TxI [2:0] rw Timer x Input Parameter Selection
Timer Mode: see Table 12-7 for encoding
Gated Timer Mode: see Table 12-7 for encoding
Counter Mode: see Table 12-8 for encoding
Incremental Interface Mode: see Table 12-9 for
encoding

TxM [5:3] rw Timer x Mode Control (Basic Operating Mode)
000 Timer Mode
001 Counter Mode
010 Gated Timer Mode with gate active low
011 Gated Timer Mode with gate active high
100 Reload Mode
101 Capture Mode
110 Incremental Interface Mode

(Rotation Detection Mode)
111 Incremental Interface Mode

(Edge Detection Mode)

TxR [6] rw Timer x Run Bit
0 Timer/Counter x stops
1 Timer/Counter x runs

TxUD [7] rw Timer x Up/Down Control
(when TxUDE = ’0’)
0 Counts Up
1 Counts Down

TxUDE [8] rw Timer x External Up/Down Enable
0 Counting direction is internally controlled by

software
1 Counting direction is externally controlled by

line TxEUD

TxRC [9] rw Timer x Remote Control
0 Timer/Counter x is controlled by its own run bit

TxR
1 Timer/Counter x is controlled by the run bit of

core Timer 3

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-18 V 1.6, 2001-08

Both auxiliary timers T2 and T4 have exactly the same functionality. They can be
configured for Timer Mode, Gated Timer Mode, Counter Mode, or Incremental Interface
Mode with the same options for the timer frequencies and the count signal as the core
Timer T3. In addition to these 4 counting modes, the auxiliary timers can be
concatenated with the core timer, or they may be used as reload or capture registers in
conjunction with the core timer.

The individual configurations for Timers T2 and T4 are determined by their
bitaddressable control registers T2CON and T4CON, which are organized identically.
Note that functions which are present in all 3 timers of Timer Block 1 are controlled in the
same bit positions and manner in each of the specific control registers.

Run control for auxiliary timers T2 and T4 can be handled by the associated run control
bit T2R/T4R in register T2CON/T4CON. Alternatively, a remote control option (T2RC,
T4RC set) may be enabled to start and stop T2/T4 via the run bit T3R of core Timer T3.

TxIRDIS [12] rw Timer x Interrupt Disable
0 Interrupt generation for TxCHDIR and

TxEDGE interrupts in Incremental Interface
Mode is enabled

1 Interrupt generation for TxCHDIR and
TxEDGE interrupts in Incremental Interface
Mode is disabled

TxEDGE [13] rwh Timer x Edge Detection
The bit is set on each successful edge detection.
The bit has to be reset by software.
0 No count edge was detected
1 A count edge was detected

TxCHDIR [14] rwh Timer x Count Direction Change
The bit is set on a change of the count direction of
timer x. The bit has to be reset by software.
0 No change in count direction was detected
1 A change in count direction was detected

TxRDIR [15] rh Timer x Rotation Direction
0 Timer x counts up
1 Timer x counts down

0 [11:10] r Reserved for future use; reading returns 0;
writing to these bit positions has no effect.

Field Bits Typ Description

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-19 V 1.6, 2001-08

Timers T2 and T4 in Timer Mode or Gated Timer Mode

When the auxiliary Timers T2 and T4 are programmed to Timer Mode or Gated Timer
Mode, their operation is the same as described for the core Timer T3. The descriptions,
figures, and tables apply accordingly with two exceptions:

• There is no TxOUT output line for T2 and T4.
• Overflow/underflow monitoring is not supported (no bit TxOTL in registers TxCON).

Table 12-7 Timer x Input Parameter Selection: Timer and Gated Timer Modes

TxI Prescaler for fclk
(BPS1 = 00)

Prescaler for fclk
(BPS1 = 01)

Prescaler for fclk
(BPS1 = 10)

Prescaler for fclk
(BPS1 = 11)

000 8 4 32 16

001 16 8 64 32

010 32 16 128 64

011 64 32 256 128

100 128 64 512 256

101 256 128 1024 512

110 512 256 2048 1024

111 1024 512 4096 2048

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-20 V 1.6, 2001-08

Timers T2 and T4 in Counter Mode

In Counter Mode, Timers T2 and T4 can be clocked either by a transition at the
respective external input line TxIN, or by a transition of T3OTL.

Figure 12-11 Block Diagram of an Auxiliary Timer in Counter Mode

The event causing an increment or decrement of a timer can be a positive, a negative,
or both a positive and a negative transition at either the respective input line or at the
output toggle latch T3OTL. Bitfield TxI in the respective control register TxCON selects
the triggering transition (see Table 12-8).

Note: Only state transitions of T3OTL caused by the overflow/underflow of T3 will trigger
the counter function of T2/T4. Modifications of T3OTL via software will NOT trigger
the counter function of T2/T4.

Table 12-8 Auxiliary Timer (Counter Mode) Input Edge Selection

T2I / T4I Triggering Edge for Counter Increment / Decrement

X 0 0 None. Counter Tx is disabled

0 0 1 Positive transition (rising edge) on TxIN

0 1 0 Negative transition (falling edge) on TxIN

0 1 1 Any transition (rising or falling edge) on TxIN

1 0 1 Positive transition (rising edge) of T3OTL

1 1 0 Negative transition (falling edge) of T3OTL

1 1 1 Any transition (rising or falling edge) of T3OTL

Auxiliary Timer Tx TxIRQ

TxR

XOR

0

MUX

1

Up/
Down

TxEUD

TxUDE MCB02221_b

Txl

TxIN

Edge
Select

TxUD

x = 2,4

T3OTL

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-21 V 1.6, 2001-08

For counter operation, an external pin associated with line TxIN must be configured as
input. The maximum input frequency allowed in Counter Mode is fclk/8 (BPS1 = ’01’). To
ensure that a transition of the count input signal applied to TxIN is correctly recognized,
its level should be held for at least 4 fclk cycles (BPS1 = ’01’) before it changes.

12.2.3 Timer Concatenation

Using T3OTL as a clock source for an auxiliary timer of Block 1 in Counter Mode
concatenates core Timer T3 with the respective auxiliary timer. Depending on which
transition of T3OTL is selected to clock the auxiliary timer, this concatenation forms a
32-bit or a 33-bit timer/counter.

• 32-bit Timer/Counter: If both a positive and a negative transition of T3OTL are used
to clock the auxiliary timer, this timer is clocked on every overflow/underflow of core
Timer T3. Thus, the two timers form a 32-bit timer.

• 33-bit Timer/Counter: If either a positive or a negative transition of T3OTL is selected
to clock the auxiliary timer, this timer is clocked on every second overflow/underflow
of core Timer T3. This configuration forms a 33-bit timer (16-bit core
timer+T3OTL+16-bit auxiliary timer).

The count directions is not required to be the same in the two concatenated timers. This
offers a wide variety of different configurations. T3 can operate in Timer Mode, Gated
Timer Mode or Counter Mode in this case.

Figure 12-12 Concatenation of Core Timer T3 and an Auxiliary Timer

Note: Line ’*)’ is affected by over/underflow of T3 only, but NOT by software
modifications of T3OTL

Core Timer T3 T3OTL

T3IRQ

T3R

Prescaler

T3l

MCB02034_d

fclk

Up/Down

Auxiliary Timer Tx

TxR

Txl

Edge
Select

TxIR TxIRQ

*)

BPS1

Up/Down

x = 2,4
TxIN

T3OE

T3OUTMUX
0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-22 V 1.6, 2001-08

Auxiliary Timer in Reload Mode

Reload Mode for the auxiliary timers T2 and T4 is selected by setting bitfield TxM in the
respective register TxCON to ‘100B’. In Reload Mode, core Timer T3 is reloaded with the
contents of an auxiliary timer register, triggered by one of two different signals. The
trigger signal is selected the same way as the clock source for Counter Mode (see
Table 12-8). That is, a transition of the auxiliary timer’s input or the output toggle latch
T3OTL may trigger the reload.

Note: When programmed for Reload Mode, the respective auxiliary Timer (T2 or T4)
stops independently of its run flag T2R or T4R.

Figure 12-13 GPT1 Auxiliary Timer in Reload Mode

Note: Line ’*)’ is affected by over/underflow of T3 only, but NOT by software
modifications of T3OTL

Upon a trigger signal, T3 is loaded with the contents of the respective timer register (T2
or T4) and T2IRQ or T4IRQ is driven high.

Note: When a T3OTL transition is selected for the trigger signal, the interrupt request
flag T3IR will be set upon a trigger, indicating T3’s overflow or underflow.
Modifications of T3OTL via software will NOT trigger the counter function of T2/T4.

Core Timer T3

Up/Down

Source/Edge
Select

T3OTL

T3IRQ

TxIN

TxI

TxIRQ

MCB02035_b

T3R

Prescaler

T3l

fclk

BPS1

Auxiliary Timer Tx

x = 2,4

*)

T3OE

T3OUTMUX
1

01

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-23 V 1.6, 2001-08

The Reload Mode triggered by T3OTL can be used in a number of different
configurations. Depending on the selected active transition, the following functions can
be performed:

• If both a positive and a negative transition of T3OTL are selected to trigger a reload,
the core timer will be reloaded with the contents of the auxiliary timer each time it
overflows or underflows. This is the standard Reload Mode (reload on overflow/
underflow).

• If either a positive or a negative transition of T3OTL is selected to trigger a reload, the
core timer will be reloaded with the contents of the auxiliary timer on every second
overflow or underflow.

• Using this “single-transition” mode for both auxiliary timers allows very flexible Pulse
Width Modulation (PWM). One of the auxiliary timers is programmed to reload the
core timer on a positive transition of T3OTL; the other is programmed for a reload on
a negative transition of T3OTL. With this combination, the core timer is alternately
reloaded from the two auxiliary timers.

The Figure 12-14 shows an example for the generation of a PWM signal using the
alternate reload mechanism. T2 defines the high time of the PWM signal (reloaded on
positive transitions) and T4 defines the low time of the PWM signal (reloaded on negative
transitions). The PWM signal can be output on line T3OUT if the enable bit T3OE is set.
Using this method, the high and low time of the PWM signal can be varied over a wide
range.

Note: T3OTL is accessible via software and may be changed, if required, to modify the
PWM signal. However, this will NOT trigger the reloading of T3.

Note: An associated port pin linked to line T3OUT should be configured as output.

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-24 V 1.6, 2001-08

Figure 12-14 GPT1 Timer Reload Configuration for PWM Generation

Note: Line ’*)’ is affected by over/underflow of T3 only, NOT by software modifications
of T3OTL

Note: It should be avoided to select the same reload trigger event for both auxiliary
timers. In this case both reload registers would try to load the core timer at the
same time. If this combination is selected, T2 is disregarded and the contents of
T4 is reloaded.

Auxiliary Timer in Capture Mode

Capture Mode for the auxiliary Timers T2 and T4 is selected by setting bitfield TxM in the
respective register TxCON to ‘101B’. In Capture Mode, the contents of the core timer are
latched into an auxiliary timer register in response to a signal transition at the respective
auxiliary timer's external input line TxIN. The capture trigger signal can be a positive, a
negative, or both a positive and a negative transition.

The two Least Significant Bits of bitfield TxI are used to select the active transition (see
Table 12-8), while the most significant bit TxI.2 is irrelevant for Capture Mode. It is
recommended to keep this bit cleared (TxI.2 = ‘0’).

Note: When programmed for Capture Mode, the respective auxiliary Timer (T2 or T4)
stops independently of its run flag T2R or T4R.

Core Timer T3

Up/Down

T3IRQ

T2IRQ

T4IRQ

T2I

T4I MCB02037_b

T3R

Prescaler

T3l

fclk

BPS1

*)

*)

Auxiliary Timer T2

Auxiliary Timer T4

T3OTL

T3OE

T3OUTMUX
0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-25 V 1.6, 2001-08

Figure 12-15 Auxiliary Timer of Timer Block 1 in Capture Mode

Upon a trigger (selected transition) at the corresponding input line TxIN, the contents of
the core timer are loaded into the auxiliary timer register and the associated interrupt
request line TxIRQ will be driven high.

Note: Port pins associated with T2IN and T4IN must be configured to Input, and the level
of the capture trigger signal should be held high or low for at least 4 fclk (BPS1 =
’01’) cycles before it changes to ensure correct edge detection.

Auxiliary in Incremental Interface Mode

When auxiliary Timers T2 and T4 are programmed to Incremental Interface Mode, their
operation is the same as described for core Timer T3. The descriptions, figures, and
tables apply accordingly with two exceptions:

• There is no TxOUT output line for T2 and T4.
• Overflow/underflow monitoring is not supported (no bit TxOTL).

Table 12-9 Timer x Input Parameter Selection for Incremental Interface Mode

TxI Triggering Edge for Counter Update

000 None. Counter Tx stops

001 Any transition (rising or falling edge) on TxIN

010 Any transition (rising or falling edge) on TxEUD

011 Any transition (rising or falling edge) on TxIN or TxEUD

1XX Reserved. Do not use this combination!

Core Timer T3

Up/Down

Edge
Select

T3OTL

T3IRQ

TxIN TxIRQ

MCB02038_b

TxI

T3R

Prescaler

T3l

fclk

BPS1

Auxiliary Timer Tx

x = 2,4

T3OE

T3OUTMUX
0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-26 V 1.6, 2001-08

12.3 Functional Description of Timer Block 2

Timer Block 2 includes the two Timers T5 (referred to as the auxiliary timer) and T6
(referred to as the core timer), and the 16-bit capture/reload register CAPREL. Each
timer of Block 2 is controlled by a separate control register, TxCON.

Each timer has an input line (TxIN) associated with it which serves as the gate control in
Gated Timer Mode or as the count input in Counter Mode. The count direction (up/down)
may be programmed via software or may be dynamically altered by a signal at an
external control input line. An overflow/underflow of core Timer T6 is indicated by bit
T6OTL whose state may be output on related line T6OUT and on line T6OFL. Core
Timer T6 may be reloaded with the contents of CAPREL.

The toggle bit also supports the concatenation of T6 with auxiliary Timer T5, while
concatenation of T6 with other timers is provided through line T6OUT. Triggered by an
external signal, the contents of T5 can be captured into register CAPREL, and T5 may
optionally be cleared. Both timer (T6 and T5) can count up or down, and the current timer
value can be read or modified by the CPU in the non-bitaddressable SFRs T6 and T5.

From a programmer’s point of view, the GPT2 block is composed of a set of SFRs as
summarized below. Those registers which are not part of the GPT2 block are shaded.

Figure 12-16 SFRs associated with Timer Block GPT2

All GPT2 registers are located in the SFR/ESFR memory space. The respective SFR
addresses can be found in list of SFRs.

CRIC

T5IC

T6IC

T5CON

T6CON

CAPREL

T6

T5

T5 Timer 5 Register
T6 Timer 6 Register
CAPREL Capture/Reload Register
T5IC Timer 5 Interrupt Control Register
T6IC Timer 6 Interrupt Control Register
CRIC Caprel Interrupt Control Register

Data Registers Control Registers Interrupt Control

T5CON Timer 5 Control Register
T6CON Timer 6 Control Register

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-27 V 1.6, 2001-08

Figure 12-17 Structure of Timer Block 2

MUX

Prescalerfclk T5
Mode

Control

GPT2 Timer T5

Prescalerfclk

T6
Mode

Control

GPT2 Timer T6

GPT2 CAPREL

T6OTL

T5EUD

T5IN

CAPIN

T3IN/
T3EUD

T6IN

T6EUD

U/D

U/D

T5IRQ

CRIRQ

T6IRQ

T6OFL

Clear

Capture

CT3

MCB03999_b

Clear

T3OE

T3OUTMUX
0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-28 V 1.6, 2001-08

12.3.1 Core Timer T6

The operation of the core Timer T6 is controlled by its bitaddressable control register
T6CON.

T6
Timer 6 (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T6

rwh

Field Bits Typ Description

T6 [15:0] rwh Timer 6
Contains the current value of Timer 6.

T6CON
Timer 6 Control Register (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T6
SR

T6
CLR 0 BPS2 T6

OTL
T6
OE

T6
UDE

T6
UD T6R T6M T6I

rw rw r rw rwh rw rw rw rw rw rw

Field Bits Typ Description

T6I [2:0] rw Timer 6 Input Parameter Selection
Timer Mode: see Table 12-11 for encoding
Gated Timer Mode: see Table 12-11 for encoding
Counter Mode: see Table 12-12 for encoding

T6M [5:3] rw Timer 6 Mode Control (Basic Operating Mode)
000 Timer Mode
001 Counter Mode
010 Gated Timer Mode with gate active low
011 Gated Timer with gate active high
1XX Reserved. Do not use this combination!

T6R [6] rw Timer 6 Run Bit
0 Timer/Counter 6 stops
1 Timer/Counter 6 runs

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-29 V 1.6, 2001-08

Timer 6 Run Bit

The timer can be started or stopped by software through bit T6R (Timer T6 Run Bit).
Setting bit T6R will start the timer; clearing T6R stops the timer.

T6UD [7] rw Timer 6 Up / Down Control
(when T6UDE = ’0’)
0 Counts Up
1 Counts Down

T6UDE [8] rw Timer 6 External Up/Down Enable
0 Counting direction is internally controlled by

software
1 Counting direction is externally controlled by

line T6EUD

T6OE [9] rw Overflow/Underflow Output Enable
0 T6 overflow/underflow can not be externally

monitored
1 T6 overflow/underflow may be externally

monitored via T6OUT

T6OTL [10] rwh Timer 6 Output Toggle Latch
Toggles on each overflow/underflow of T6. Can be
set or reset by software.

BPS2 [12:11] rw Timer Block Prescaler 2
The maximum input frequency1)

00 Timer Block 2 is fclk / 4
01 Timer Block 2 is fclk / 2
10 Timer Block 2 is fclk / 16
11 Timer Block 2 is fclk / 8

T6CLR [14] rw Timer 6 Clear Bit
0 Timer 6 is not cleared on a capture event
1 Timer 6 is cleared on a capture event

T6SR [15] rw Timer 6 Reload Mode Enable
0 Reload from register CAPREL disabled
1 Reload from register CAPREL enabled

0 [13] r Reserved for future use; reading returns 0;
writing to these bit positions has no effect.

1) Additionally, the timer input frequency can be modified by T6I for Timer Mode, Gated Timer Mode and Counter
Mode.

Field Bits Typ Description

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-30 V 1.6, 2001-08

In Gated Timer Mode, the timer will run only if T6R is set and the gate is active (high or
low, as programmed).

Note: When bit T5RC is set, bit T6R will also control (start and stop) auxiliary Timer T5.

Count Direction Control

The count direction of the core timer can be controlled either by software or by the
External Up/Down control input line (T6EUD). These options are selected by bits T6UD
and T6UDE in control register T6CON. When the up/down control is done by software
(bit T6UDE is cleared), the count direction can be altered by setting or clearing bit T6UD.
When T6UDE is set, line T6EUD is selected to be the controlling source of the count
direction. However, bit T6UD can still be used to reverse the actual count direction, as
shown in the table below. If T6UD is cleared and line T6EUD shows a low level, the timer
is counting up. With a high level at T6EUD the timer is counting down. If T6UD is set, a
high level at line T6EUD specifies counting up, and a low level specifies counting down.
The count direction can be changed whether the timer is running or not.

Note: The direction control works the same for core Timer T6 and for auxiliary Timer T5.

Timer 6 Overflow/Underflow Monitoring

An overflow or underflow of Timer T6 will toggle T6OTL in control register T6CON.
T6OTL can also be set or reset by software. Bit T6OE in register T6CON enables the
state of T6OTL to be monitored via the external output line T6OUT. An associated port
pin must be configured as output.

Additionally, T6OTL can be used in conjunction with the timer over/underflow as an input
for the counter function of auxiliary Timer T5. For this purpose, the state of T6OTL does
not have to be available at line T6OUT, because an internal connection is provided for
this option.

An overflow or underflow of Timer T6 can also be used to clock other timers. For this
purpose, there is the special output line T6OFL.

Table 12-10 Core Timer T6 Count Direction Control

Line T6EUD Bit T6UDE Bit T6UD Count Direction

X 0 0 Count Up

X 0 1 Count Down

0 1 0 Count Up

1 1 0 Count Down

0 1 1 Count Down

1 1 1 Count Up

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-31 V 1.6, 2001-08

Timer 6 in Timer Mode

Timer Mode for core Timer T6 is selected by setting bitfield T6M in register T6CON to
‘000B’. In this mode, T6 is clocked with the module clock divided by a programmable
prescaler, as selected by bitfield T6I. The input frequency fT6 for Timer T6 and its
resolution rT6 are scaled linearly with lower clock frequencies fclk, as can be seen from
the following formula:

Note: <BPS2> represents the prescaler value of the prescaler part controlled by bitfield
BPS2. For the values, see the bit description in register T6CON.

Figure 12-18 Block Diagram of Core Timer T6 in Timer Mode

Table 12-11 Timer 6 Input Parameter Selection: Timer and Gated Timer Modes

T6I Prescaler for fclk
(BPS2 = 00)

Prescaler for fclk
(BPS2 = 01)

Prescaler for fclk
(BPS2 = 10)

Prescaler for fclk
(BPS2 = 11)

000 4 2 16 8

001 8 4 32 16

010 16 8 64 32

011 32 16 128 64

fT6 =
fclk [MHz]

<BPS2> * 2<T6I> rT6 [ms] =
fclk [MHz]

<BPS2> * 2<T6I>

Core Timer T6

T6OTL

T6IRQ

T6R

Prescaler

BPS2

EXOR

0

MUX

1

Up/
Down

T6EUD

T6UDE MCB02028_e

fclk

T6l

T6UD

T6OFL

T3OE

T3OUTMUX
0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-32 V 1.6, 2001-08

Timer 6 in Gated Timer Mode

Gated Timer Mode for core Timer T6 is selected by setting bitfield T6M in register
T6CON to ‘010B’ or ‘011B’. Bit T6M.0 (T6CON.3) selects the active level of the gate
input. In Gated Timer Mode, the same options for the input frequency as for the Timer
Mode are available. However, in this mode, the input clock to the timer is gated by the
external input line T6IN.

Figure 12-19 Block Diagram of Core Timer T6 in Gated Timer Mode

If T6M.0 = ‘0’, the timer is enabled when T6IN shows a low level. A high level at this line
stops the timer. If T6M.0 = ‘1’, line T6IN must have a high level to enable the timer.
Additionally, the timer can be turned on or off by software using bit T6R. The timer will
run only if T6R is set and the gate is active. It will stop if either T6R is cleared or the gate
is inactive.

Note: A transition of the gate signal at line T6IN does not cause an interrupt request.

100 64 32 256 128

101 128 64 512 256

110 256 128 1024 512

111 512 256 2048 1024

Table 12-11 Timer 6 Input Parameter Selection: Timer and Gated Timer Modes

T6I Prescaler for fclk
(BPS2 = 00)

Prescaler for fclk
(BPS2 = 01)

Prescaler for fclk
(BPS2 = 10)

Prescaler for fclk
(BPS2 = 11)

Core Timer T6 T6OTL

T6IRQ

T6R

MUX

XOR

0

MUX

1

Up/
Down

T6EUD

T6UDE MCB02029_e

Prescaler

T6I

fclk

T6M

T6IN

BPS2

T6UD

T6OFL

T6OE

T6OUTMUX
0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-33 V 1.6, 2001-08

Timer 6 in Counter Mode

Counter Mode for core Timer T6 is selected by setting bitfield T6M in register T6CON to
‘001B’. In Counter Mode, Timer T6 is clocked by a transition at the external input line
T6IN. The event causing an increment or decrement of the timer can be a positive, a
negative, or both a positive and a negative transition at this line. Bitfield T6I in control
register T6CON selects the triggering transition (see Table 12-12).

Figure 12-20 Block Diagram of Core Timer T6 in Counter Mode

Table 12-12 Core Timer T6 (Counter Mode) Input Edge Selection

T6I Triggering Edge for Counter Increment/Decrement

0 0 0 None. Counter T6 is disabled

0 0 1 Positive transition (rising edge) on T6IN

0 1 0 Negative transition (falling edge) on T6IN

0 1 1 Any transition (rising or falling edge) on T6IN

1 X X Reserved. Do not use this combination

Core Timer T6

T6R

XOR

0

MUX

1

Up/
Down

T6EUD

T6UDE
MCB02030_c

T6l

T6IN

Edge
Select

T6OTL

T6IRQ

T6UD

T6OFL

T6OE

T6OUTMUX
0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-34 V 1.6, 2001-08

The maximum input frequency allowed in Counter Mode is fclk/4 (BPS2 = ’01’). To ensure
that a transition of the count input signal applied to T6IN is correctly recognized, its level
should be held high or low for at least 2 fclk cycles (BPS2 = ’01’) before it changes.

12.3.2 Auxiliary Timer T5

The auxiliary Timer T5 can be configured for Timer Mode, Gated Timer Mode, or Counter
Mode with the same options for the timer frequencies and the count signal as core Timer
T6. In addition to these three counting modes, the auxiliary timer can be concatenated
with the core timer.

The individual configuration for Timer T5 is determined by its bitaddressable control
register T5CON. Note that functions present in both timers of Timer Block 2 are
controlled in the same bit positions and in the same manner in each of the specific control
registers.

Run control for auxiliary Timer T5 can be handled by the associated Run Control Bit T5R
in register T5CON. Alternatively, a remote control option (T5RC is set) may be enabled
to start and stop T5 via the run bit T6R of core Timer T6.

Note: The auxiliary timer has no bit T5OTL. Therefore, an output line for overflow/
underflow monitoring is not provided.

T5
Timer 5 (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T5

rwh

Field Bits Typ Description

T5 [15:0] rwh Timer 5
Contains the current value of Timer 5.

T5CON
Timer 5 Control Register (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T5
SC

T5
CLR CI T5

CC CT3 T5
RC

T5
UDE

T5
UD T5R T5M T5I

rw rw rw rw rw rw rw rw rw rw rw

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-35 V 1.6, 2001-08

Field Bits Typ Description

T5I [2:0] rw Timer 5 Input Parameter Selection
Timer Mode: see Table 12-13 for encoding
Gated Timer Mode: see Table 12-13 for encoding
Counter Mode: see Table 12-14 for encoding

T5M [5:3] rw Timer 5 Mode Control (Basic Operating Mode)
000 Timer Mode
001 Counter Mode
010 Gated Timer Mode with gate active low
011 Gated Timer Mode with gate active high
1XX Reserved. Do not use this combination!

T5R [6] rw Timer 5 Run Bit
0 Timer/Counter 5 stops
1 Timer/Counter 5 runs

T5UD [7] rw Timer 5 Up/Down Control
(when T5UDE = ’0’)
0 Counts Up
1 Counts Down

T5UDE [8] rw Timer 5 External Up/Down Enable
0 Counting direction is internally controlled by

software
1 Counting direction is externally controlled by

line T5EUD

T5RC [9] rw Timer 5 Remote Control
0 Timer/counter 5 is controlled by its own run bit

T5R
1 Timer/counter 5 is controlled by the run bit of

core Timer 6

CT3 [10] rw Timer 3 Capture Trigger Enable
0 Capture trigger from input line CAPIN
1 Capture trigger from T3 input lines T3IN and/

or T3EUD

T5CC [11] rw Timer 5 Capture Correction
0 T5 is just captured, without any correction
1 T5 is decremented by 1 before being captured

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-36 V 1.6, 2001-08

Count Direction Control for Auxiliary Timer

The count direction of the auxiliary timer can be controlled in the same way as for core
Timer T6. The description and the table apply accordingly.

Timer T5 in Timer Mode or Gated Timer Mode

When auxiliary Timer T5 is programmed to Timer or Gated Timer Mode, its operation is
the same as described for core Timer T6. The descriptions, figures, and tables apply
accordingly with three exceptions:

• There is no T5OUT line for T5
• There is no T5OFL line for T5
• Overflow/underflow monitoring is not supported (no bit T5OTL).

CI [13:12] rw Register CAPREL Capture Trigger Selection
(depending on bit CT3)
00 Capture disabled
01 Positive transition (rising edge) on CAPIN or

any transition on T3IN
10 Negative transition (falling edge) on CAPIN or

any transition on T3EUD
11 Any transition (rising or falling edge) on CAPIN

or any transition on T3IN or T3EUD

T5CLR [14] rw Timer 5 Clear Bit
0 Timer 5 is not cleared on a capture event
1 Timer 5 is cleared on a capture event

T5SC [15] rw Timer 5 Capture Mode Enable
0 Capture into register CAPREL disabled
1 Capture into register CAPREL enabled

Field Bits Typ Description

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-37 V 1.6, 2001-08

Timer T5 in Counter Mode

Counter Mode for auxiliary Timer T5 is selected by setting bitfield T5M in register T5CON
to ‘001B’. In Counter Mode, Timer T5 can be clocked either by a transition at the external
input line T5IN or by a transition of the output toggle latch T6OTL on Timer 6.

Figure 12-21 Block Diagram of Auxiliary Timer T5 in Counter Mode

Table 12-13 Timer 5 Input Parameter Selection: Timer and Gated Timer Modes

T5I Prescaler for fclk
(BPS2 = 00)

Prescaler for fclk
(BPS2 = 01)

Prescaler for fclk
(BPS2 = 10)

Prescaler for fclk
(BPS2 = 11)

000 4 2 16 8

001 8 4 32 16

010 16 8 64 32

011 32 16 128 64

100 64 32 256 128

101 128 64 512 256

110 256 128 1024 512

111 512 256 2048 1024

Auxiliary Timer T5 T5IRQ

T5R

XOR

0

MUX

1

Up/
Down

TxEUD

TxUDE MCB02221_c

T5l

T5IN

Edge
Select

TxUD

T6OTL

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-38 V 1.6, 2001-08

The event causing an increment or decrement of the timer can be a positive, a negative,
or both a positive and a negative transition at either the input line T5IN or at the toggle
latch T6OTL.

Bitfield T5P in control register T5CON selects the triggering transition (see Table 12-14).

Note: Only state transitions of T6OTL caused by the overflow/underflow of T6 will trigger
the counter function of T5. Modifications of T6OTL via software will NOT trigger
the counter function of T5.

The maximum input frequency allowed in Counter Mode is fclk/4 (BPS2 = ’01’). To ensure
that a transition of the count input signal applied to T5IN is correctly recognized, its level
should be held high or low for at least 2 fclk cycles (BPS2 = ’01’) before it changes.

12.3.3 Timer Concatenation

Using the toggle bit T6OTL as a clock source for the auxiliary Timer of Block 2 in Counter
Mode concatenates core Timer T6 with auxiliary Timer T5. Depending on which
transition of T6OTL is selected to clock auxiliary Timer T5, this concatenation forms a
32-bit or a 33-bit timer/counter.

• 32-bit Timer/Counter: If both a positive and a negative transition of T6OTL is used to
clock auxiliary Timer T5, this timer is clocked on every overflow/underflow of core
Timer T6. Thus, the two timers form a 32-bit timer.

• 33-bit Timer/Counter: If either a positive or a negative transition of T6OTL is selected
to clock auxiliary Timer T5, this timer is clocked on every second overflow/underflow
of core Timer T6. This configuration forms a 33-bit timer (16-bit core
timer+T6OTL+16-bit auxiliary timer).The count directions of the two concatenated
timers are not required to be the same. This offers a wide variety configurations.T6
can operate in Timer Mode, Gated Timer Mode or Counter Mode in this case.

Table 12-14 Auxiliary Timer (Counter Mode) Input Edge Selection

T5P Triggering Edge for Counter Increment/Decrement

X 0 0 None. Counter T5 is disabled

0 0 1 Positive transition (rising edge) on T5IN

0 1 0 Negative transition (falling edge) on T5IN

0 1 1 Any transition (rising or falling edge) on T5IN

1 0 1 Positive transition (rising edge) on T6OTL

1 1 0 Negative transition (falling edge) on T6OTL

1 1 1 Any transition (rising or falling edge) on T6OTL

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-39 V 1.6, 2001-08

Figure 12-22 Concatenation of Core Timer T6 and Auxiliary Timer T5

Note: Line ’*)’ is affected by over/underflow of T6 only, NOT by software modifications
of T6OTL

Capture/Reload Register CAPREL in Capture Mode

This 16-bit register can be used as a capture register for auxiliary Timer T5. This mode
is selected by setting bit T5SC in control register T5CON. Bit CT3 selects the external
input line (CAPIN) or the input lines (T3IN and/or T3EUD) of Timer T3 as the source for
a capture trigger. Either a positive, a negative, or both a positive and a negative transition
at line CAPIN can be selected to trigger the capture function, or transitions on input T3IN

CAPREL
Capture/Reload Register (Reset value: 0000H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CAPREL

rwh

Field Bits Typ Description

CAPREL [15:0] rwh Capture Reload Register Value
Contains the current value of the CAPREL register.

Core Timer T6 T6OTL

T6IRQ

T6R

Prescaler

T6l

MCB02034_e

fclk

Up/Down

Auxiliary Timer T5

T5R

T5l

Edge
Select

T5IR T5IRQ

*)

BPS2

Up/Down

T5IN

T6OE

T6OUTMUX
0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-40 V 1.6, 2001-08

or input T3EUD or both inputs T3IN and T3EUD. The active edge is controlled by bitfield
CI in register T5CON.

The maximum input frequency for the capture trigger signal at CAPIN is fclk/2 (BPS2 =
’01’). To ensure that a transition of the capture trigger signal is correctly recognized, its
level should be held for at least one fclk cycle (BPS2 = ’01’) before it changes.

When Timer T3 capture trigger is enabled (CT3 is set) register CAPREL captures the
contents of T5 upon transitions of the selected input(s). These values can be used to
measure input signals of T3. This is useful, for example, when T3 operates in
Incremental Interface Mode, to derive dynamic information (speed or acceleration) from
the input signals.

When a selected transition at the external input line CAPIN is detected, the contents of
auxiliary Timer T5 are latched into register CAPREL, and interrupt request line CRIRQ
is driven at high level. With the same event, Timer T5 can be cleared to 0000H. This
option is controlled by bit T5CLR in register T5CON. If T5CLR is cleared, the contents of
Timer T5 are not affected by a capture. If T5CLR is set, Timer T5 is cleared after the
current timer value has been latched into register CAPREL.

Note: Bit T5SC only controls whether a capture is performed or not. If T5SC is cleared,
the input line CAPIN can still be used to clear Timer T5 or as an external interrupt
input. This interrupt is controlled by the CAPREL interrupt control register CRIC.

Figure 12-23 Timer Block 2 Register CAPREL in Capture Mode

Auxiliary Timer T5

MCB02044_c

T5IRQ

T5CC

T5SC

T5CLR

Up/Down

CRIRQ

CAPREL Register

Edge
Select

CI

CAPIN

MUX

CT3

T3IN/
T3EUD

T5R

Prescaler

T5l

fclk

BPS2

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-41 V 1.6, 2001-08

Timer Block 2 Capture/Reload Register CAPREL in Reload Mode

This 16-bit register can be used as a reload register for core Timer T6. This mode is
selected by setting bit T6SR in register T6CON. The event causing a reload in this mode
is an overflow or underflow of core Timer T6.

When Timer T6 overflows from FFFFH to 0000H (when counting up) or underflows from
0000H to FFFFH (when counting down), the value stored in register CAPREL is loaded
into Timer T6. This will not drive the interrupt request line CRIRQ associated with the
CAPREL register. However, interrupt request line T6IRQ will be driven at high level to
indicate the overflow/underflow of T6.

Figure 12-24 Timer Block 2 Register CAPREL in Reload Mode

Core Timer T6

Up/Down

T6IRQ

MCB02045_b

T6OTL

T6SR

CAPREL Register

T6OFLT6R

Prescaler

T6l

fclk

BPS2
T6OE

T6OUTMUX
0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-42 V 1.6, 2001-08

Timer Block 2 Capture/Reload Register CAPREL in Capture-And-Reload Mode

Because the reload and capture functions of register CAPREL can be enabled
individually by bits T5SC and T6SR, the two functions can be enabled simultaneously by
setting both bits. This feature can be used to generate an output frequency that is a
multiple of the input frequency.

Figure 12-25 Timer Block 2 Register CAPREL in Capture-And-Reload Mode

This combined mode can be used to detect consecutive external events which may
occur aperiodically, but which require a finer resolution (more ’ticks’ within the time
between two external events). For this purpose, the time between the external events is
measured using Timer T5 and the CAPREL register. Timer T5 runs in Timer Mode
counting up with a frequency of fclk/32, for example. The external events are applied to
line CAPIN. When an external event occurs, the contents of Timer T5 are latched into

Auxiliary Timer T5

MCB02046_c

T5IRQ

T5CC

T5SC

T5CLR

Up/Down

CRIRQ

CAPREL Register

T6OTL

T6OE

Core Timer T6 T6IRQ

T6SR

Up/Down T6OFL

Edge
Select

CI

CAPIN

MUX

CT3

T3IN/
T3EUD

T6CLR

T6R

Prescaler

T6l

fclk

BPS2

T5R

Prescaler

T5l

fclk

BPS2

T6OUTMUX
0

1

1

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-43 V 1.6, 2001-08

register CAPREL, and Timer T5 is cleared (T5CLR cleared). Thus, register CAPREL
always contains the correct time between two events, measured in Timer T5 increments.
Timer T6, which runs in Timer Mode counting down with a frequency of fclk/4, for
example, uses the value in register CAPREL to perform a reload on underflow. This
means that the value in register CAPREL represents the time between two underflows
of Timer T6, now measured in Timer T6 increments. Because Timer T6 runs eight times
faster than Timer T5, it will underflow eight times within the time between two external
events. Thus, the underflow signal of Timer T6 generates eight ’ticks’. Upon each
underflow, the interrupt request flag T6IR will be set and bit T6OTL will be toggled. The
state of T6OTL may be output on line T6OUT. This signal has eight times more
transitions than the signal applied to line CAPIN.

A certain deviation of the output frequency is generated by the fact that Timer T5 will
count actual time units (for example: T5 running at 1 MHz will capture the value 64H/
100D for a 10 KHz input signal) while T6OTL will only toggle upon an underflow of T6
(that is, the transition from 0000H to FFFFH). In the above mentioned example T6 would
count down from 64H so the underflow would occur after 101 T6 timing ticks. The actual
output frequency then is 79.2 KHz instead of the expected 80 KHz.
This can be solved by activating the Capture Correction (T5CC is set). If capture
correction is active, the content of T5 is decremented by 1 before being captured. The
described deviation is eliminated (in the example, T5 would now capture 63H/99D and
the output frequency would be 80 KHz).

Note: The underflow signal of Timer T6 can furthermore be used to clock one ore more
timers of other timer units. This makes it possible to set compare events based on
a finer resolution than that of the external events. This connection is accomplished
via signal T6OFL.

User’s Manual
C166S V1 SubSystem

General Purpose Timer Unit

User’s Manual 12-44 V 1.6, 2001-08

User’s Manual
C166S V1 SubSystem

Instruction Index

User’s Manual 13-1 V 1.6, 2001-08

13 Instruction Index
This section lists alphabetically all C166S instructions together with references to
respective pages holding the detailed descriptions. This helps to quickly find the
explanation of any specific core instruction.

ADD 6-2
ADDB 6-3
ADDC 6-4
ADDCB 6-5
AND 6-6
ANDB 6-7
ASHR 6-8
ATOMIC 6-10
BAND 6-11
BCLR 6-12
BCMP 6-13
BFLDH 6-14
BFLDL 6-15
BMOV 6-16
BMOVN 6-17
BOR 6-18
BSET 6-19
BXOR 6-20
CALLA 6-21
CALLI 6-22
CALLR 6-23
CALLS 6-24
CMP 6-25
CMPB 6-26
CMPD1 6-27
CMPD2 6-28
CMPI1 6-29
CMPI2 6-30
CPL 6-31
CPLB 6-32
DISWDT 6-33
DIV 6-34

DIVL6-35
DIVLU6-36
DIVU6-37
EINIT 6-38
EXTP 6-39
EXTPR6-41
EXTR 6-43
EXTS 6-44
EXTSR6-46
IDLE6-48
JB6-49
JBC 6-50
JMPA 6-52
JMPI6-53
JMPR6-54
JMPS 6-55
JNB 6-56
JNBS 6-57
MOV6-58
MOVB6-60
MOVBS 6-62
MOVBZ 6-63
MUL 6-64
MULU6-65
NEG6-66
NEGB6-67
NOP6-68
OR 6-69
ORB6-70
PCALL 6-71
POP 6-73
PRIOR 6-74

PUSH 6-75
PWRDN 6-76
RET 6-77
RETI 6-78
RETP 6-79
RETS 6-80
ROL 6-81
ROR 6-83
SCXT 6-85
SHL 6-86
SHR 6-88
SRST 6-90
SRVWDT 6-91
SUB 6-92
SUBB 6-93
SUBC 6-94
SUBCB 6-95
TRAP 6-96
XOR 6-98
XORB 6-99

User’s Manual
C166S V1 SubSystem

Instruction Index

User’s Manual 13-2 V 1.6, 2001-08

User’s Manual
C166S V1 SubSystem

Keyword Index

User’s Manual 14-1 V 1.6, 2001-08

A
Address

Arbitration 8-28
Area Definition 8-28
Boundaries 4-9
Segment 8-12

Addressing Modes
Indirect Addressing Mode 3-59
Long Adressing Mode 3-58
Long and Indirect Addressing Modes 3-
54
Short Addressing Modes 3-52

ADDRSELx 8-25, 8-28
ALE length 8-16
Alternate signals 7-2
Arbitration

Address 8-28
External Bus 8-31

ASC0
Error Detection 10-23

Auxiliary Timer 5 12-34

B
Baudrate

ASC0 10-17
BHE 8-12
Bit

protected 3-71
Boundaries 4-9
Bus

Arbitration 8-31
Demultiplexed 8-6
Idle State 8-30
Mode Configuration 8-2
Multiplexed 8-3

BUSCONx 8-23, 8-29
BWT 3-37

C
CAPREL 12-39
Capture Mode (GPT2) 12-39
Capture/Reload Register 12-39
Central System Control 2-13
CGU 2-14
Chip Select

Configuration 8-13
Latched/Early 8-14

Clock Generation Unit 2-14
Concatenation of Timers 12-21, 12-38
Configuration

Address 8-12
Bus Mode 8-2
Chip Select 8-13

Context Pointer 3-50
Context Switch 3-50
Continuous PEC Transfers 3-38
Core Timer T3 12-5
COUNT 3-37, 3-38, 3-39
Count direction 12-8, 12-30
CP Register 3-50
CPU 2-2
CPUID Register 3-90
CSP Register 3-15

D
Data Page

boundaries 4-9
Data Page Pointer 3-55
Data Types 3-68
Delay

14 Keyword Index
This section lists a number of keywords which refer to specific details of the C166S V1
SubS R1 in terms of its architecture, its functional units or functions. This helps to quickly
find the answer to specific questions about the C166S V1 SubS R1.

User’s Manual
C166S V1 SubSystem

Keyword Index

User’s Manual 14-2 V 1.6, 2001-08

Read/Write 8-18
Demultiplexed Bus 8-6
Development Support 1-5
Direction

count 12-8, 12-30
DP0L, DP0H 7-3
DP1L, DP1H 7-7
DP4 7-10, 7-13
DPPx Register 3-56
DSTPx Register 3-34

E
Early chip select 8-14
Early WR control 8-18
Enable

XBUS peripherals 8-36
Error Detection

ASC0 10-23
ESFR Table (ordered by address) 4-12
ESFR Table (ordered by name) 4-32
External

Bus 2-8
Bus Characteristics 8-16–8-20
Bus Idle State 8-30
Bus Modes 8-2–8-11

G
GPR 4-10
GPT1 12-3
GPT2 12-26

H
Hold State 8-33

I
ID Control 2-13
Idle

State (Bus) 8-30
INC 3-36, 3-37
Instruction

Timing 3-87
Interface

External Bus 8-1

Internal
Bus 2-8

Interrrupt Control Register 3-21, 3-44
Interrupt

System 2-6, 3-19
Interrupt Sources 4-43, 4-48
IP Register 3-15

J
JTAG 2-12

L
Latched chip select 8-14

M
Master mode

External bus 8-32
MDC Register 3-73
MDH Register 3-72
MDL Register 3-72
Memory

External 4-8
ROM 4-4
Tristate time 8-17

Memory Cycle Time 8-17
Multiplexed Bus 8-3

N
NMI 3-18, 3-29

O
OCDS 2-12
ONES Register 3-89

P
P0L, P0H 7-3
P1L, P1H 7-7
P4 7-10, 7-13
PEC 3-32
PEC Control Register 3-36
PEC Pointer Address Handling 3-33
PEC Transfer Count 3-37
PECCx Register 3-36

User’s Manual
C166S V1 SubSystem

Keyword Index

User’s Manual 14-3 V 1.6, 2001-08

PECSNx Register 3-35
Peripheral

Summary 2-8
Peripheral Event Controller 3-32
Pipeline

Effects 3-80
PLEV 3-36
Power Saving Control 2-13
Protected

Bits 3-71
PSW 3-22
PSW Register 3-76

R
Read/Write Delay 8-18
READY 8-18
Register

CP 3-50
CPUID 3-90
CSP 3-15
DPPx 3-56
DSTPx 3-34
IP 3-15
MDC 3-73
MDH 3-72
MDL 3-72
ONES 3-89
PECCx 3-36
PECSNx 3-35
PSW 3-76
SP 3-61
SRCPx 3-34
STKOV 3-62
STKUN 3-63
SYSCON 3-17
TFR 3-27
xxIC 3-21, 3-44
ZEROS 3-89

Reset Control 2-12

S
S0BG 10-17
S0EIC, S0RIC, S0TIC, S0TBIC 10-23

S0RBUF 10-13, 10-15
S0TBUF 10-11, 10-15
SCU 2-12
Segment

Address 8-12
boundaries 4-9

Serial Interface
Asynchronous 10-9
Synchronous 10-14

SFR 4-5
SFR Table (ordered by address) 4-12
SFR Table (ordered by name) 4-32
Single Chip Mode 8-2
Slave mode

External bus 8-32
SP Register 3-61
SRCPx Register 3-34
SSC

Baudrate generation 11-15
Block diagram 11-4
Error detection 11-17
Full duplex operation 11-10
Half duplex operation 11-13
Interrupts 11-17
Registers ??–11-8

BR 11-15
CON 11-5, 11-6
Overview 10-2, 11-2
RB 11-8
TB 11-8

SSC0_BR 11-15
SSC0_CON 11-5, 11-6
SSC0_RB 11-8
SSC0_TB 11-8
SSC1_BR 11-15
SSC1_CON 11-5, 11-6
SSC1_RB 11-8
SSC1_TB 11-8
STKOV Register 3-62
STKUN Register 3-63
SYSCON 3-16, 3-17, 8-21, 8-36
SYSCON Register 3-17
System Control Unit 2-12

User’s Manual
C166S V1 SubSystem

Keyword Index

User’s Manual 14-4 V 1.6, 2001-08

T
T2 12-16
T2CON 12-16
T3CON 12-6
T4 12-16
T4CON 12-16
T5 12-34
T5CON 12-34
T6 12-28
T6CON 12-28
TFR Register 3-27
Timer

Auxiliary Timer 2/4 12-16
Concatenation 12-21, 12-38

Timer 2 12-16
Timer 2 Capture Mode 12-24
Timer 2 Control Register 12-16
Timer 2 Counter Mode 12-20
Timer 2 Gated Mode 12-19
Timer 2 Incremental Interface 12-25
Timer 2 Reload Mode 12-22
Timer 2 Timer Mode 12-19
Timer 3 Control Register 12-6
Timer 3 Counter Mode 12-11
Timer 3 Gated Timer Mode 12-10
Timer 3 Incremental Interface 12-12
Timer 3 Timer Mode 12-9
Timer 4 Capture Mode 12-24
Timer 4 Control Register 12-16
Timer 4 Counter Mode 12-20
Timer 4 Gated Mode 12-19
Timer 4 Incremental Interface 12-25
Timer 4 Reload Mode 12-22
Timer 4 Timer Mode 12-19
Timer 5 12-34
Timer 5 Control Register 12-34
Timer 5 Counter Mode 12-37
Timer 5 Gated Mode 12-36
Timer 5 Timer Mode 12-36
Timer 6

Core Timer 6 12-28
Timer 6 Control Register 12-28

Timer 6 Counter Mode 12-33
Timer 6 Gated Mode 12-32
Timer 6 Timer Mode 12-31
Timer Block 1 12-3
Timer Block 2 12-26
Timer T3 12-5
Timer4 12-16
Tools 1-5
Trap Number 4-43, 4-48
Traps 3-28
Tristate Time 8-17

V
Vector Location 4-43, 4-48

W
Waitstate

Memory Cycle 8-17
Tristate 8-17

Watchdog Timer 2-13
WDT 2-13
WDTCON 9-3
WDTREL 2-14

X
XADRS 8-37
XBCON 8-38
XBUS 8-35

enable peripherals 8-36

Z
ZEROS Register 3-89

h t t p : / / w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

Infineon goes for Business Excellence

“Business excellence means intelligent approaches and clearly
defined processes, which are both constantly under review and
ultimately lead to good operating results.
Better operating results and business excellence mean less
idleness and wastefulness for all of us, more professional
success, more accurate information, a better overview and,
thereby, less frustration and more satisfaction.”

Dr. Ulrich Schumacher

