
Model-Driven Construction of Embedded
Applications Based on Reusable Building Blocks

– An Example

Frank Alexander Kraemer, Vidar Sl̊atten, and Peter Herrmann

Norwegian University of Science and Technology (NTNU),
Department of Telematics, N-7491 Trondheim, Norway

{kraemer,herrmann,vidarsl}@item.ntnu.no

Abstract. For the rapid engineering of reactive systems we developed
the SPACE method, in which specifications can be composed of reusable
building blocks from domain-specific libraries. Due to the mathematical
rigor and completeness with which the building blocks are designed, we
can provide tool support facilitating a high degree of automation in the
development process. In this paper, we focus on the design of embedded
Java applications executed on Sun SPOTs by providing dedicated blocks
to access platform-specific functionality. These building blocks can be
used in combination with other blocks realizing protocols such as leader
election to build more comprehensive applications. We present an exam-
ple specification and discuss its automatic verification, transformation
and implementation.

1 Introduction

Maybe it is just that engineers still love the LEGO bricks of their childhood, but
creating software systems by connecting reusable building blocks seems to be an
attractive development paradigm that can facilitate reuse and enable an incre-
mental development style in which problems can be solved block by block. Yet
the everyday practice by developers often does not work as smoothly as simply
plugging together bricks: Major challenges lie in the nature of reusable modules
in the first place, especially in how to encapsulate and how to compose them.
Our engineering method SPACE [1,2] aims to address these issues. As reusable
units we use special building blocks that express their behavior in terms of UML
activities. These can be composed by pins, and a system can be constructed as
a hierarchy of building blocks. While building blocks can describe local behav-
ior executed by a single component, they can in general also cover collaborative
behavior among several components. This facilitates the reuse of solutions to
problems that require the coordination of several components, and is especially
useful to describe services.

While our method is general and useful in a variety of domains, we demon-
strate in this article its application in the area of embedded systems. For that,
we present the results of a case study on a sensor network carried out as part

R. Reed, A. Bilgic, and R. Gotzhein (Eds.): SDL 2009, LNCS 5719, pp. 1–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 F.A. Kraemer, V. Sl̊atten, and P. Herrmann

of the applied research project ISIS1 (Infrastructure for Integrated Services [3]),
in which we develop methods, platforms and tools for the model-driven devel-
opment of reactive systems for applications in home network systems. The case
study is implemented on small processing devices from Sun Microsystems, called
Sun SPOTs [4] that run Java.

In the following, we cover all steps needed to realize deployable code from
high-level specifications. We will focus especially on the definition of building
blocks for the domain of Sun SPOTs and on a protocol for fault-tolerant leader
election. We start with an introduction of Sun SPOTs including the runtime
support system, followed by a brief overview of our method. In Sect. 2, we present
the example system and its high-level specification based on UML activities.
The next two sections document our library for Sun SPOTs and the leader
election algorithm. In Sect. 5 and 6, explanations of the automated analysis and
implementation follow, in which state machines similar to SDL processes are
synthesized, from which code is generated.

1.1 Embedded Java on Sun SPOTs

A sketch of a Sun SPOT is shown on the left side of Fig. 1. Each SPOT is
equipped with two buttons and sensors for temperature, light and acceleration.
SPOTs can also carry extension cards to interact with various other devices. A
Sun SPOT is controlled by a 32-bit ARM 9 processor that can run the Java
virtual machine Squawk [5] executing Java 1.3 code following the CLDC 1.1
specification. SPOTs can communicate among each other using IEEE 802.15.4
radio communication, and build a mobile ad hoc network.

Scheduler Routing

Squawk Java Virtual Machine

Transport

stm 1 stm n...

Runtime

Support

System

LEDs

Button 2Light Sensor

Accelerometer Temperature

Sensor

Button 1

Fig. 1. Sun SPOT and Runtime Support System

1.2 Runtime Support System

To facilitate the execution of many concurrent processes on Sun SPOTs, we have
implemented a runtime support system [6], sketched on the right side of Fig. 1.
It includes a scheduler that is responsible for triggering the execution of state
machine transitions whenever signals are received or timers expire. Further, a
router and an object responsible for the transport of signals support commu-
nication using the SPOT’s radio communication. For a detailed description of
1 Partially funded by the Research Council of Norway, project #180122.

Model-Driven Construction of Embedded Applications 3

the execution mechanisms and their formal behavior in temporal logic, we refer
to [7]. To generate the state machine classes from UML state machines, we use
the code generator described in [8,9], which produces the necessary Java code.

1.3 The SPACE Engineering Method

We developed the method SPACE [1,2] for the engineering of reactive systems.
This method focuses on the definition of reusable building blocks expressed as
UML activities and collaborations, combined with Java code for detailed op-
erations. Building blocks are grouped into libraries for specific domains, as il-
lustrated on the left hand side of Fig. 2. Developers can use these blocks by
composing them together within UML collaborations and activities: the collabo-
rations describe the structural binding of roles and provide a high-level overview
and activities describe the detailed behavioral composition of events, with some
additional glue logic where necessary. Each block has an associated external
state machine, abbreviated ESM, that provides a behavioral contract describ-
ing in which sequence parameters must be provided to or may be emitted by a
block. This description is useful for understanding a block without looking at
its internal details, and enables compositional model checking, as we describe
below.

Collaborations and Activities Executable State MachinesLibraries of Building Blocks

TransformationComposition

Analysis

Sensors

Dependability

General

Fig. 2. The SPACE engineering method

Once a specification is complete, it is analyzed to ensure various properties
that should hold for any application. For example, a composition of blocks should
never harm any of the contracts (ESMs) and a collaboration should terminate
consistently. For this behavioral analysis, we use model checking. Due to the
compositional semantics and the encapsulation of building blocks by their ESMs,
the state space needed for model checking tends to be very small, since only
one building block on a single decomposition level has to be considered at a
time.2

Complete systems are represented by special system collaborations and ac-
tivities. When a system is sound, it can be transformed automatically into exe-
cutable state machines and components, using a model transformation [10,11].
From the resulting state machines, code for different platforms (such as the Sun
SPOTs introduced above) can be generated.
2 We observe that most building blocks in our libraries require far less than 100 states.

4 F.A. Kraemer, V. Sl̊atten, and P. Herrmann

2 A Sensor Network for Remote Home Monitoring

An increasingly popular area for home automation is to remotely monitor vaca-
tion homes and cabins. Several sensors can be installed in a cabin. One of the
assumptions in our project is that embedded sensors with processing capacity
similar to Sun SPOTs are so cheap they can also be used in a consumer market.
For instance, the sensors can register the temperature at several places, detecting
frost or fire. Further, they can detect sudden changes in light or measure accel-
eration on doors and windows, indicating that somebody is breaking in. With
the extension card presented in [12], we further assume that each Sun SPOT is
capable of GSM communication to set off an alarm to a remote user, for example
by means of an SMS.

To improve the quality and robustness of the system, the sensors communicate
among each other before sending an alarm via GSM. This serves several purposes:
First, multiple sensors can be used redundantly, so that important conditions are
monitored by more than one sensor, whereas only one alarm should be issued.
Second, some conditions may give rise to alarm if the sensors are triggered in a
certain pattern. For example, while changes in light of one sensor could indicate
a broken window shutter, a change observed by several sensors may simply be
due to a cloud moving in front of the sun.3 This means that alarms need to be
coordinated. For that reason, we use a leader election protocol that points out
one SPOT sensor to filter and issue alarms. If the leader runs out of battery or
otherwise fails, a new leader takes over. Such a network is illustrated in Fig. 3.

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

GSM Module

IEEE 802.15.4
Network

elected leader

Fig. 3. Sensor network with the elected leader

Figure 4 shows the UML activity describing the behavior of a SPOT sensor
as composed from our reusable building blocks. Since the SPOT sensors of the
system all have the same behavior, it suffices to specify only one of them. To
visualize the relationship of a SPOT sensor to the other sensors explicitly, how-
ever, we use two activity partitions. The left one, spot sensor, describes how a
SPOT sensor is composed from building blocks, which defines the behavior. The

3 We will not discuss detailed patterns describing when an alarm should be triggered,
and we will also disregard the configuration of individual SPOT sensors.

Model-Driven Construction of Embedded Applications 5

s3: Temp. Sensor
activate threshold

exceeded

s1: Motion Sensor

moved
activate

s2: Light Sensor

threshold
exceeded

activate

create event

:Event

create event

:Event

create event

:Event

g: GSM Alarm a: Alarm Filter

eventalarmevent
activate

start stop

leader: ID

Spot Sensor System
spot sensor

select leader

set leader

:ID

set leader

:ID

l: Leader Election
activate

new leader : ID

i am leader: ID

leader==myID

else
1

2

spot sensors
other

myID: ID

leader=myID

initialize myID

«system»

other
candidatescandidate

Fig. 4. Activity describing the composition of SPOT sensors from building blocks

right partition, other spot sensors, enables us to represent the communication
with the other sensors. This partition is only sketched, as only the left one will
be used for the transformation and code generation.

A sensor consists of a block4 for GSM communication g, the alarm filter a
and three building blocks accessing the Sun SPOT’s sensors for motion (s1)
light (s2) and temperature (s3). While these blocks encapsulate local behavior,
a building block can also comprise collaborative behavior that is executed by
several participants. The leader election, contributed by building block l in Fig. 4,
is a typical example for that. It is a collaboration among several SPOT sensors,
and therefore crosses the activity partitions. Internally, the block specifies the
establishment of contact between all the sensors and how a leader is selected
amongst them. This behavior is detailed in Sect. 4.

The activity also contains references to the operation create event. Since UML
does not have a concrete language for actions, the details of these operations are
specified by Java methods, managed by our editor. The other elements in the
activity are initial nodes () as well as merge and decision nodes (). Decision
nodes are followed by flows that are guarded ().

4 Technically, blocks are modeled as UML elements of type Call Behavior Action,
which can refer to subordinate activities.

6 F.A. Kraemer, V. Sl̊atten, and P. Herrmann

GSM Alarm

Leader Election

Periodic Timer

Timer

Light Sensor

Motion Sensor

Temperature Sensor

Alarm Filter

Spot Sensor System

Spot Discovery

Infinitely Often Accurate Detector

Sun SPOT Library

Dependability Library
General Library

Application Specific Blocks

...

...

Fig. 5. Overview of reused block from libraries and application-specific blocks

Upon the start of a SPOT sensor, the initial nodes emit a token and start
all blocks, including the collaboration for the leader election. The alarm filter
is started as well, so that the SPOT by default uses its own GSM Alarm block
to send any SMS notifications, until it finds another leader. The leader election
emits a token through new leader once it detects a SPOT that is pointed out as
the new leader, carrying its ID. In case a SPOT itself is pointed out as leader,
a token is emitted through i am leader. In both cases, the ID of the leader is
stored in variable leader. If a SPOT becomes leader, the alarm filter is started,
and if the SPOT loses its leader status, the alarm filter is terminated.

Whenever one of the sensors s1, s2 or s3 registers a condition, it emits a
token via its output pin, upon which an event is created containing the kind of
condition and ID of the sensor. If the SPOT owning the sensors has the leader
role (i.e., guard leader==myID is valid), the event is directly passed to the alarm
filter. Otherwise, the SPOT sensor forwards the event to the current leader. In
this case, the leader is one of the other SPOT sensors, and sending to it is
specified by the transfer edge ➊. Since the other SPOTs are potentially many,
we have to select which one to address, using the select operator introduced
in [10]. It refers to the ID of the leader. Vice versa, if a SPOT sensor has the
leader role, it may receive events from other SPOT sensors (at ➋).

Figure 5 provides an overview of the dependencies between the building blocks
used for the specification of the SPOT sensor system. Most of them are taken
from our existing libraries (listed here with only those blocks used in the exam-
ple). The Alarm Filter, the experimental GSM Alarm, and the complete system
are specific for the example.

3 Building Blocks Specific for Sun SPOTs

Our library for Sun SPOTs contains twelve building blocks dedicated to the
specific capabilities of the devices, such as the buttons, all sensors on the SPOTs,
and the LEDs. In the following we present some of those that are used in the
SPOT sensor system.

Model-Driven Construction of Embedded Applications 7

3.1 Building Block for Sensors

Figure 6 shows the internal details of the block for the detection of movements.
The accelerometers of the Sun SPOTs are accessible via a special API. To re-
act on sudden accelerations that exceed a certain threshold value, a listener is
registered at the SPOT classes that provide access to the hardware. To keep the
execution of the code reacting upon an event under the control of the scheduler
of our runtime support system (RTS), the building block uses an internal signal
as buffer, to decouple the processes. For this reason, operation register listener
creates a listener, which, upon its invocation following a sudden movement, pro-
duces a signal MOVED, that is fed into the RTS. Once this signal is processed,
the behavior following the accept signal action declared for MOVED in Fig. 6
is executed: a token is emitted via output node moved, and the listener is re-
activated, to listen for further movements. The blocks controlling the light and
temperature sensors access the SPOT API in a similar way.

On the right hand side of Fig. 6, the ESM for the motion sensor is shown.
As mentioned previously, it documents the behavior visible at the pins of an
activity, so that we know its external behavior when it is instantiated as a block
as in Fig. 4. Due to the ESM, we know that after a token enters activate, tokens
may be emitted via moved until we terminate the block via stop.

moved

activate

stop

register listener

remove listener

activate listener

MOVED

Motion Sensor «esm» Motion Sensor

activate

/moved

stop
active

Fig. 6. Building block for the motion sensor

3.2 SPOT Discovery

To dynamically find other SPOTs in the sensor network, we provide a collabo-
rative building block which uses the Sun SPOT’s broadcasting functions so that
they can discover each other. The corresponding activity is shown in Fig. 7.
The partition beacon describes how a SPOT that wants to be discovered sends
out periodic messages. Since these messages are specific for Sun SPOTS, they
are sent directly from the Java operation, instead of using our runtime support
system. The partition listener describes the logic to be implemented by a Sun
SPOT that wants to discover other SPOTs. For that, it listens to the incoming
beacon messages. To decouple the receiving processes from the scheduling of
state machine transitions, once such a message arrives, it is fed into our RTS
via signal FOUND, similar to the listener reacting to the movement of a SPOT
explained above. If the ID is not yet known, a token is emitted via found spot.
Notice that if a SPOT wants to both discover other SPOTS and be discovered,
it instantiates this collaboration twice, once as a beacon and once as a listener.

8 F.A. Kraemer, V. Sl̊atten, and P. Herrmann

SPOT Discovery
beacon

start
p: Periodic Timer

start

tick

get my ID

register listener

listener

broadcast
beacon signal

FOUND

id: ID

spot found: ID

spots.contains(id)

spots: Vector<ID>

else

spots.add(id)
: ID

: ID

start

Fig. 7. Building block for the service discovery

other

candidates

[0..*]

candidate

Leader Election

d1: SPOT Discovery

i1: IOD

i2: IOD

observed

observer

observer

observed

beacon

listener beacon

listener

d2: SPOT Discovery

Fig. 8. Collaboration for the leader election

4 Collaborative Building Blocks for Leader Election

To make sure that only one of the SPOT sensors forwards an alarm over GSM,
we use a fault-tolerant leader election protocol. Should the leader SPOT run out
of battery or otherwise fail, another one must take its place so that alarms are
still sent if necessary. To solve this problem, we implemented an algorithm from
[13]. The algorithm uses an Infinitely Often Accurate Detector (IOD) as failure
detector, a concept from [14], which is used by a component to monitor if any of
its communication partners have crashed.5 In Sect. 4.1 we provide a dedicated
building block for this function.

The collaboration in Fig. 8 specifies the structural aspects of the leader elec-
tion. It depicts the participant candidate as collaboration role, and refers to the
sub-services for SPOT discovery and failure detection by collaboration uses d1,
d2 and i1, i2. The leader election is a symmetric collaboration, in which all par-
ticipating roles have the same behavior, and the role for the candidate is therefore
represented twice. For the model transformation and the code generation, the
left candidate is used. To make the collaboration with the other candidates ex-
plicit, we refer to the other candidates on the right hand side, similar to our
proceedings with the SPOT sensors in Sect. 2.

5 In the fault-tolerance domain, a node is said to crash if it from some point on
permanently ceases all operations, but works correctly until then (see [15]).

Model-Driven Construction of Embedded Applications 9

Infinitely Often Accurate Detector (IOD)
observed

start

p: Periodic Timer
start

tick

get my ID

:ID

observedID: ID

set observedID

:ID

isSuspected

else
:int

determine
timeout

set isSuspected
= false

t: Timer

start: int

restart: int

set isSuspected
= true

get observedID

:ID

get observedID

:ID

:int
increase
timeout

timeout

suspected: IDnot suspected: ID

observer

isSuspected: boolean

Fig. 9. Building block for the Infinitely Often Accurate Detector

4.1 Infinitely Often Accurate Detector (IOD)

In our example, we use the Infinitely Often Accurate Detector (IOD, [13]) as
specified in Fig. 9. The partition on the left side models the observed SPOT,
which periodically sends so-called “alive” messages to the observing SPOT, rep-
resented by partition observer. These messages are triggered by the periodic
timer p and carry the ID of the observed SPOT. The observer SPOT maintains
two variables to store the status of the observed SPOT; observedID for its ID
and the boolean isSuspected. Moreover, the observer has a timer t to determine
if the alive message from the observed SPOT is delayed.

Whenever the observer receives an alive message from the observed SPOT, it
reacts depending on the current value of isSuspected :

– If the observer does not suspect the observed SPOT sensor of having crashed,
it will simply restart timer t and wait for the next alive message.

– If, on the other hand, the observer currently suspects the observed SPOT of
having crashed, the observer will change isSuspected, increment the timeout
period6 and emit the observed’s ID through output node not suspected.

If, however, timer t expires (i.e., no alive message was received in time), the
observer will suspect the observed SPOT of having crashed, set isSuspected ac-
cordingly and emit a token carrying the observed SPOT’s ID through output
node suspected.

Since a message could also be delayed in the communication medium, a time-
out does not always mean that a SPOT has crashed. Hence there may exist
transient states in which two SPOTs are both considered the leader. This, how-
ever, is acceptable for our application domain. For a detailed analysis and proof
of the properties of the Infinitely Often Accurate Detector, we refer to [13].
6 Incrementing the timeout period upon detecting a false suspicion ensures that the

observer will wrongly suspect the observed only a limited number of times.

10 F.A. Kraemer, V. Sl̊atten, and P. Herrmann

4.2 Composed Building Block for the Leader Election

The detailed behavior of the leader election is expressed by the activity in Fig. 10.
Similar to the overall system of Fig. 4, the leader election is symmetric. The
partition candidate on the left side represents one participant and its detailed
behavior, while the partition to the right represents its communication partners.

As part of the leader election, a SPOT participates in the Infinitely Often
Accurate Detector (IOD) collaboration as both observer and observed entity.
This is represented by blocks i1 and i2, which both refer to the activity in Fig. 9,
but which are bound to partition candidate with roles observed resp. observer.
Moreover, this collaboration is executed as multiple concurrent sessions (once
towards each communication partner). This is signified by the shadow around
them, a notation introduced in [10].

When the leader election collaboration is activated, the SPOT Discovery col-
laboration is initialized as both beacon (d1) and listener (d2), according to the
role binding in Fig. 8, so that a SPOT sensor can both detect others and be
detected by others. For each sensor found, a token with its ID is emitted via pin
spot found of d2. This ID is used to start a new session of the IOD collaboration
i1, so that a SPOT is observed by any other SPOT it detects. For that we use
again the select statement, which this time refers to the value provided by the
token flow. Vice versa, once a SPOT is detected by other SPOTS, they start a
new instance of the IOD collaboration (in this direction represented by i2).

i2: IOD
not suspected: ID

suspected:ID

i1: IOD

start

activate

Leader Election
candidate

suspects: Hashtable

d2: SPOT Discovery

spot found: ID

start

d1: SPOT Discovery
start

:ID

:ID

new leader: ID

store as
not suspected

determine
new leader

:ID

set leader
:ID

result!=leader

get leader

leader == getMyID()

get leader

else

else

store as
suspected

i am leader: ID

observer

select id

observed

observedobserver

listener beacon

listenerbeacon

other
candidates

leader: ID

Fig. 10. Building block for leader election

Model-Driven Construction of Embedded Applications 11

Via the output pins suspected and not suspected on i2, a SPOT is notified
about perceived changes in the state of each of the other SPOTs. The logic
that follows determines the current leader status. For that, hash table suspects
maps the ID of the other SPOTs to their respective status (suspected or not
suspected). Whenever i2 issues a change in state of another SPOT via one of its
output pins, the subsequent operations store this change to the hash table and
determine the new leader. If several SPOTs qualify for the leader status, the one
with the lowest ID is chosen. If the leader has changed, we store the new leader
and check if the new leader is this SPOT. Depending on the outcome, a token
is emitted through either the i am leader or new leader output node.

5 Automated Analysis

The analysis of the specification is based on model checking. This process is au-
tomated, since our tool also generates the corresponding theorems to be verified.
Currently, we check the following generally desirable system properties [16]:

– A building block must conform with its own ESM. The motion sensor of
Fig. 6, for instance, may not emit a token via node moved after the sur-
rounding context provided one via stop.

– A building block must also obey all ESMs of the subordinate blocks it is
composed from.

– Building blocks with more than one participant are checked for bounded
communication queues. For the IO detector in Fig. 9, for instance, we find
that the periodic timer could, in principle, overflow the queue between the
observing and the observed component.7

The analysis focuses on the soundness of interactions among collaboration par-
ticipants as well as the correct composition of all building blocks with respect
to event orderings. The content of operations (that is, the Java code) is not part
of the analysis. In cases where decisions are involved that depend on variables,
the analysis always examines all alternative branches. If the executions of some
branches may harm certain properties, we reason manually if these cases may
in fact happen. For instance, in the IO detector of Fig. 9, the else branch may
restart the timer before it is started. This, however, never happens in the final
system because of the value of isSuspected.

The results of the analysis are presented to the user by explanatory anno-
tations within the original UML model, so that no expertise in the underlying
formalism is required, as demonstrated in [17]. In addition, counter examples
illustrating design flaws are presented as animations within the activities. In
our experience, checking the above mentioned properties is of great value in the
practical development of specifications. Although these properties may appear
simple when considered in isolation, even experienced engineers usually harm

7 In this case, however, we estimate the time needed for the transmission and subse-
quent processing and conclude that this is not an issue in a real system.

12 F.A. Kraemer, V. Sl̊atten, and P. Herrmann

several of them in initial designs, especially when more complex collaborations
are constructed.

Due to the compositional semantics of our method, each building block can
be analyzed separately. Internal building blocks are abstracted by their ESMs,
so that the global state space of the specification in Fig. 4 has only 15 distinct
reachable states. Moreover, since most of the building blocks are taken from
libraries and are already analyzed, only the new ones created for the specific
applications have to be examined. These are the ones for the SPOT Sensor
System, the Alarm Filter and the GSM Alarm.

6 Automated Implementation

As briefly mentioned in the introduction, the implementation is performed by a
completely automated process with two steps: In a first step, executable state
machines are synthesized from the activities. In a second step, code is generated.
This is possible since the activities provide descriptions that are behaviorally
complete, and the details of operations are provided as Java methods as part of
the building blocks.

6.1 Transformation to Executable State Machines

In Fig. 11 and 12, we present the state machines as generated by the transfor-
mation. In our method, they are only an intermediate result used as input for
the subsequent code generation; developers do not have to edit or read them. In
the following, we highlight some properties to demonstrate the soundness of the
transformation.

For the partitioning of components into state machines (or processes in SDL),
our algorithm follows the guidelines from [6]. In particular, the algorithm merges
all behavior of building blocks that is executed one at a time by the compo-
nent under construction into one single state machine. All blocks that denote
multi-session collaborations (behavior that is executed multiple times towards
a changing number of different communication partners) are implemented by
dedicated state machines, one instance for each session, as presented in [10]. For
the SPOT sensor system, for instance, the algorithm creates the state machine
Spot Sensor, depicted in Fig. 11, which takes care of the main component be-
havior. This includes all logic contained in the building blocks used in Fig. 4.
However, since the behavior of the Infinite Often Accurate Detector is executed
concurrently within each SPOT sensor (once for each other sensor detected), its
behavior is implemented by dedicated state machines. These are state machines
Observer and Observed in Fig. 12.

The main state machine Spot Sensor has two8 distinct control states, 1 and
2. This is because the transition behavior only has to distinguish if a SPOT is
8 This is less than the 15 states from the previous analysis because the analysis also

captures the interleaving with other SPOTs and the queues for communication,
which do not contribute any control states for a local component.

Model-Driven Construction of Embedded Applications 13

stm Spot Sensor

start t4
start t2

registerWithSingleton()
start t0

registerAccListener()
activateGSM()

timeout t0
evaluate()

timeout t4
checkLight()

THRESHOLD_EXCEEDED

1

[isAlarm==true]
sendGSMEvent()

restart t0

[else]
restart t0

[checkLight==true]

[else]
restart t4

[else]
send EVENT

activate()

[leader=myID]
registerEvent()

evaluate()

[else]
send EVENT

restart t4

[leader==myID]
registerEvent()

evaluate()

[leader==myID]
registerEvent()

evaluate()

EVENT
registerEvent()

evaluate()

[leader==myID]
registerEvent()

evaluate()

[leader==myID]
registerEvent()

evaluate()

[leader==myID]
registerEvent()

evaluate()

[else]
restart t4

[else]
restart t4

[checkLight==true]

[checkTemp==true]

[checkTemp==true]

THRESHOLD_EXCEEDED

timeout t4
checkLight()

SUSPECTED
addToList()

determineLeader()

SUSPECTED
addToList()

determineLeader()

timeout t2
checkTemperature()

timeout t2
checkTemperature()

NOT_SUSPECTED
removeFromList()
determineLeader()

[else]
restart t2

[else]

[else]

[else]

[else]
restart t2

[else]

[else]

[else]

[else]
activate()

[else]
send EVENT

restart t2

[isAlarm==true]
sendGSMEvent()

restart t4

[else]
restart t4

[else]
restart t2

[isAlarm==true]
sendGSMEvent()

restart t2

[isAlarm==true]
sendGSMEvent()

activate()

[isAlarm==true]
sendGSMEvent()

restart t4

[isAlarm==true]
sendGSMEvent()

restart t2

[else]
restart t2

[else]
send EVENT

restart t4

[isAlarm==true]
sendGSMEvent()

[isAlarm==true]
sendGSMEvent()

activate()

[else]
activate()

[else]
send EVENT

activate()

[else]
send EVENT

restart t2

[result!=leader]
set leader

[result!=leader]
set leader

[result!=leader]
set leader

[isAlarm==true]
sendGSMEvent()

[else]

[else]

[else]

[else]

[leader==me]
restart t0

[leader==me]
restart t0

[leader==me]
start t0

SPOT_FOUND
startIODSession()

EVENT
registerEvent()

evaluate()

NOT_SUSPECTED
removeFromList()
determineLeader() [result!=leader]

set leader

[leader==me]
start t0

SPOT_FOUND
startIODSession() 1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

1

2

2

2

2

2

2

2

1

2

2

2

2 2

2

2

1

2

2

2

Fig. 11. Bird’s eye view of the synthesized state machine for the Spot Sensor

14 F.A. Kraemer, V. Sl̊atten, and P. Herrmann

stm Observed

stm Observer

0 1

1

0

0 1

0

1

1

IODETECTOR_START
set id

send ALIVE
start t0

timeout t0
send ALIVE

restart t0

IODETECTOR_STOP

ALIVE
set observedID

[else]
start t0

[suspected==true]
incrementTimeout()

set timeout
getFalse()

setSusepected
start t0

NOT_SUSPECTED

timeout t0
getTrue()

set suspected
send SUSPECTED

[else]
restart t0

[suspected==true]
incrementTimeout()

set timeout
getFalse()

set suspected
restart t0

send NOT_SUSPECTED
ALIVE

set observedID

Fig. 12. The synthesized state machines for the IO detector

the leader or not. When a spot is the leader, the alarm filter is active and the
state machine is in state 1. When another SPOT is the leader, the alarm filter
is inactive and the state machine is in state 2. The transitions from either state
handle the periodic checks of the sensors, the periodic discovery protocol and
react to the events of the Infinitely Often Accurate Detector. In state 1, which is
entered by the initial transition, the SPOT assumes it is the leader and therefore
starts the alarm filter, which constantly evaluates the log of events, shown by
the topmost transition.

6.2 Code Generation for Sun SPOTs

Since the Sun SPOTs execute Java, the code generator described in [9] is largely
based on the standard Java code generator, described in [18]. As introduced in
Sect. 1.2, the execution is based on a runtime support system, which takes care of
scheduling, routing and transport of messages. The scheduler (see Fig. 1) main-
tains event queues for each state machine in which incoming messages and active
timers are placed. In a round-robin manner, the scheduler triggers the execution
of state machine transitions by feeding the event into a dedicated transition
method, which is specific for each state machine type. The transition method
contains nested if-statements that distinguish the current control state and input
event and then execute the effect as specified by the UML transitions in Fig. 11
and 12. Effects referring to operation calls on the activity level, such as determine
new leader in Fig. 10, are copied into the transition method. Other actions that
are part of a transition effect, such as sending signals or operations on timers, are
synthesized from the UML model. The transport module (see Fig. 1), responsible
for sending and receiving messages from and to other SPOTs, uses the the radio
stream protocol from the Sun SPOT API to transmit messages. This protocol
provides buffered, reliable, stream-based communications over multiple hops on
top of the IEEE 802.15.4 radio protocol. The content of the messages sent via
the radio channels are SOAP-documents generated with the help of the kSOAP
libraries [19], as described in [8]. For the necessary serialization of objects, the
code generator adds methods that convert objects and primitive types to strings.

Model-Driven Construction of Embedded Applications 15

7 Estimation of Reuse Proportions

To estimate the degree of reuse for the exemplified system, we distinguish be-
tween the building blocks that are part of our libraries and intended for reuse,
and those building blocks constructed specifically for the application. These are
shown in Fig. 5, with the libraries on the left hand side. As application-specific
we count the Alarm Filter, the GSM Alarm and the overall SPOT sensor sys-
tem. The effort necessary for the construction of a building block consists of the
UML models on the one hand and Java code contained within the call operation
actions (like determine new leader in Fig. 10) on the other hand.

– By counting the lines of code contained in the call operation actions in each
building block, we find that there are lblocks = 443 lines of code within the
call operation actions for all building blocks used in the system in total.
Those building blocks taken from libraries contribute with llib = 333 lines,
so that the reuse proportion Rcode = llib/lblocks is 75 %.

– As an estimate for the effort spent UML modeling, we use a simple metric
that just counts the number of activity nodes and activity edges n = nnodes+
nedges within a building block. This metric shows that all building blocks used
in the system consist of n = 276 edges and nodes in total. Those building
blocks taken from the library contribute with nlib = 195 elements, so that
the reuse proportion Rmodel = (nlib/n) is 71 %.

Of course, these numbers vary for different systems. For the given example, we
have programmed a relatively simple logic for the alarm filter, which contributes
only 50 lines of code. Since the GSM module is not yet finalized, we estimate
another 50 lines for that building block.

To get an impression of the overall gains including the automatic implemen-
tation, we consider also the complete code needed for the execution on top of the
runtime support system. The code generated automatically for the state machine
logic adds up to lstm = 634 lines, and the number of code lines written manually
for the Java operations copied from the building blocks as mentioned above is
lblocks = 443. This means that the code necessary for the entire application has
ltotal = lstm + lblocks = 1077 lines,9 from which lstm/ltotal = 59 % are generated
automatically. If we add up these numbers, we find that (llib+ lstm)/ltotal = 90 %
of the Java code lines are either reused or generated from the UML models.

8 Related Work

There exist a number of approaches for the model-based design of reactive sys-
tems that are also suitable for embedded applications. Some of them based on
SDL such as TIMe [20], SPECS [21], SOMT [22] and SDL-MDD [23]. Others,

9 The underlying runtime support system has about 1900 lines of code. Since it is
provided as a library that can be reused also in manual approaches, it is not part of
our calculation.

16 F.A. Kraemer, V. Sl̊atten, and P. Herrmann

such as ROOM [24] (later UML-RT) or Catalysis [25], are oriented towards
UML as language. As design models that describe the behavior of individual
components, these approaches use state machines, either in the form of SDL
processes or as UML state charts (called ROOM charts in [24]). To capture col-
laborative behavior among several components, most of these approaches rely
on MSCs. Catalysis [25], inspired by the Object-Oriented Role Analysis Method
(OOram, [26]) and DisCo [27], on the other hand, uses collaborations more ex-
plicitly in specific diagrams, albeit in a rather informal way that requires manual
synchronization by the developers. Micro protocols [28] are another approach to
capture and encapsulate communication protocols within self-contained units,
by using pairs of SDL processes or composite states.

In principle, these approaches are compatible with the one presented here,
since all the design models based on state machines with their emphasis on
event-driven transitions are quite similar. The difference lies in the models on
which developers work: To enable the composition of collaborative behavior as
self-contained building blocks, we use UML activities, from which the state
machine-based design models are derived automatically. This enables a num-
ber of opportunities for the reusability, the analysis and the overall specification
style, as we will argue below.

9 Concluding Remarks

In our experience, the composition as enabled by activities, shown for example
in Fig. 4, is quite flexible. We attribute this to two major reasons: First, the
complete but cross-cutting nature of UML activities, in which the coordination
of several participants can be described within the same diagram. If, for example,
we would like to exchange the selected leader election protocol with another one,
we would just have to replace the building block l in Fig. 4, and its connections
to the other blocks, which can be achieved by focusing on one single diagram.
Second, the way activities enable the encapsulation of functionality related to a
certain purpose as separate, self-contained building blocks. While state machines
offer some means of structuring (for example composite states), they do not
offer the same degree of flexibility and separation as activities. The functions
encapsulated by the building blocks in Fig. 4, for example, are dispersed among
several transitions in the state machines of Fig. 11 and 12. One reason for that
is that state machines represent their states by explicit control states, while
activities use concurrent flows that may execute independently. Although such
behavior can to a certain degree be described in state machines by concurrent
regions, such a description style gets intricate once the behaviors in these regions
need to be synchronized. However, since state machines are very suitable for the
specification of the executable behavior of components, we generate them in the
described way, so that we have both the compositional features of UML activities
and the efficient scheduling of state machines.

Besides these properties coming from the chosen notation, an important fea-
ture of our method is the compositional verification it enables, based on the

Model-Driven Construction of Embedded Applications 17

underlying semantics in cTLA [29]. Not only does this reduce the state space
during model checking, but it also has important effects on the larger scale de-
velopment process. Since building blocks can be verified individually, proven
solutions can be encapsulated in building blocks, and these can be checked and
stored in a library. Whenever a building block is reused, the verified properties
are enforced automatically and do not have to be re-verified. This enables “true
reuse” as mentioned in [25], in which reuse does not mean to simply copy and
paste some parts of a specification, but also ensures that important properties
are maintained.

All things considered, we think that the chosen principles and the way they
are combined enable a reuse-oriented specification style, one that encourages the
use of encapsulated building blocks to a high degree, but that still allows us to
adapt systems to match the requirements of the individual application. This is a
crucial step towards the cost-effective LEGO-brick like development paradigm.

Acknowledgements. We would like to thank Fritjof Boger Engelhardtsen from
Telenor for support with the GSM module, as well as Marius Bjerke and Bemnet
Tesfaye Merha for their enthusiastic work on the Sun SPOTs in their theses.

References

1. Kraemer, F.A.: Engineering Reactive Systems: A Compositional and Model-Driven
Method Based on Collaborative Building Blocks. PhD thesis, Norwegian University
of Science and Technology, Trondheim (August 2008)

2. Kraemer, F.A., Herrmann, P.: Service Specification by Composition of Collabo-
rations — An Example. In: Proceedings of the 2006 WI-IAT Workshops (2006
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology), pp. 129–133. IEEE Computer Society Press, Los Alamitos
(2006)

3. ISIS Project Website, http://www.isisproject.org
4. http://www.sunspotworld.com
5. http://squawk.dev.java.net/
6. Bræk, R., Haugen, Ø.: Engineering Real Time Systems: An Object-Oriented

Methodology Using SDL. Prentice-Hall, Englewood Cliffs (1993)
7. Kraemer, F.A., Herrmann, P., Bræk, R.: Aligning UML 2.0 state machines and

temporal logic for the efficient execution of services. In: Meersman, R., Tari, Z.
(eds.) DOA 2006. LNCS, vol. 4276, pp. 1612–1632. Springer, Heidelberg (2006)

8. Bjerke, M.: Asynchronous Messaging between Embedded Java Devices. Project
Thesis. Norwegian University of Science and Technology, Trondheim (December
2008)

9. Merha, B.T.: Code Generation for Executable State Machines on Embedded Java
Devices. Project Thesis. Norwegian University of Science and Technology, Trond-
heim (December 2008)

10. Kraemer, F.A., Bræk, R., Herrmann, P.: Synthesizing Components with Sessions
from Collaboration-Oriented Service Specifications. In: Gaudin, E., Najm, E.,
Reed, R. (eds.) SDL 2007. LNCS, vol. 4745, pp. 166–185. Springer, Heidelberg
(2007)

http://www.isisproject.org
http://www.sunspotworld.com
http://squawk.dev.java.net/

18 F.A. Kraemer, V. Sl̊atten, and P. Herrmann

11. Kraemer, F.A., Herrmann, P.: Transforming Collaborative Service Specifications
into Efficiently Executable State Machines. In: Ehring, K., Giese, H. (eds.) Pro-
ceedings of the 6th International Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT 2007). Electronic Communications of the EASST,
vol. 7. EASST (2007)

12. Arseneau, E., Engelhardtsen, F.B.: Project playSIM: Experimenting with Java
Card 3 System Programming. In: JavaOne (June 2009)

13. Garg, V.K.: Elements of Distributed Computing. John Wiley & Sons, Inc., New
York (2002)

14. Chandra, T.D., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed
Systems. Journal of the ACM 43(2), 225–267 (1996)

15. Tanenbaum, A.S.: Distributed Systems: Principles and Paradigms. Prentice-Hall,
New Jersey (2002)

16. Kraemer, F.A., Sl̊atten, V., Herrmann, P.: Engineering Support for UML Activ-
ities by Automated Model-Checking — An Example. In: Proceedings of the 4th
International Workshop on Rapid Integration of Software Engineering Techniques,
RISE (2007)

17. Kraemer, F.A., Bræk, R., Herrmann, P.: Compositional Service Engineering with
Arctis. Telektronikk 105(1) (2009)

18. Kraemer, F.A.: Rapid Service Development for Service Frame. Master’s thesis,
University of Stuttgart (2003)

19. http://ksoap2.sourceforge.net/
20. Bræk, R., Gorman, J., Haugen, Ø., Melby, G., Møller-Pedersen, B., Sanders, R.:

Quality by Construction Exemplified by TIMe — The Integrated Methodology.
Telektronikk 95(1), 73–82 (1997)

21. Olsen, A., Færgemand, O., Møller-Pedersen, B., Reed, R., Smith, J.R.W.: Sys-
tems Engineering Using SDL-92, Chapter 6 – Systems Engineering. Elsevier North-
Holland, Inc., Amsterdam (1994)

22. Telelogic: Tau 4.4 User’s Manual. Malmö (2002)
23. Kuhn, T., Gotzhein, R., Webel, C.: Model-Driven Development with SDL - Process,

Tools, and Experiences. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 83–97. Springer, Heidelberg (2006)

24. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. John
Wiley & Sons, Inc., New York (1994)

25. D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML: the
Catalysis Approach. Addison-Wesley, Reading (1999)

26. Reenskaug, T., Wold, P., Lehne, O.A.: Working with Objects, The OOram Software
Engineering Method. Prentice-Hall, Englewood Cliffs (1995)

27. Jarvinen, H., Kurki-Suonio, R., Sakkinen, M., Systa, K.: Object-Oriented Specifi-
cation of Reactive Systems. In: Proceedings of the 12th International Conference
on Software Engineering, pp. 63–71. IEEE Computer Society Press, Los Alamitos
(1990)

28. Fliege, I., Gotzhein, R.: Automated generation of micro protocol descriptions from
SDL design specifications. In: Gaudin, E., Najm, E., Reed, R. (eds.) SDL 2007.
LNCS, vol. 4745, pp. 150–165. Springer, Heidelberg (2007)

29. Herrmann, P., Krumm, H.: A Framework for Modeling Transfer Protocols. Com-
puter Networks 34(2), 317–337 (2000)

http://ksoap2.sourceforge.net/

	Introduction
	Embedded Java on Sun SPOTs
	Runtime Support System
	The SPACE Engineering Method

	A Sensor Network for Remote Home Monitoring
	Building Blocks Specific for Sun SPOTs
	Building Block for Sensors
	SPOT Discovery

	Collaborative Building Blocks for Leader Election
	Infinitely Often Accurate Detector (IOD)
	Composed Building Block for the Leader Election

	Automated Analysis
	Automated Implementation
	Transformation to Executable State Machines
	Code Generation for Sun SPOTs

	Estimation of Reuse Proportions
	Related Work
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

