
An Introduction to IDL

David Alex Lamb

November 1988

External Technical Report

ISSN-0836-0227-

1988-237

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6

Version 1.2

Document prepared June 12, 1997

Copyright c
1988 David Alex Lamb

Abstract

This report contains some of my recent writings about IDL, including a tutorial

introduction, a description of possible target models for IDL, some possible

extensions to IDL, and a list of suggested standard implementation notes.

Contents

1 Introduction 1

2 Using IDL: A Tutorial 3

2.1 Why Use IDL? . 3

2.2 Basic Concepts . 4

2.2.1 Names . 4

2.2.2 Node Types . 4

2.2.3 Classes . 6

2.2.4 Graphs . 7

2.2.5 Attribute Types . 7

2.2.6 Structures and Instances 8

2.2.7 Membership, Narrowing, and Widening 9

2.3 Generated Modules . 11

2.3.1 Program Organization 12

2.3.2 IDL Translator Organization 12

2.3.3 Processes . 13

2.3.4 Exchange Representations 14

2.4 Advanced Topics . 15

2.4.1 Implementation Notes 16

2.4.2 Derivation . 17

2.4.3 Void . 18

2.4.4 Assertions . 18

3 Generating Interface Packages 21

3.1 Target Models . 21

3.2 Reference Representations . 23

3.2.1 Access Procedures . 23

3.2.2 Implementation Strategies 26

3.3 Strict Classes . 28

3.3.1 Single-Type Representations 29

3.3.2 Distinguishing Between Classes 29

3.3.3 Partitions versus Overlapping Classes 32

3.4 Operations on Classes . 36

i

ii CONTENTS

3.4.1 Creation . 36

3.4.2 Deletion . 36

3.4.3 Assignment . 37

3.4.4 Equality and Equivalence 37

3.5 Sequence and Set Representations 37

3.6 Other Implementation Details 40

3.6.1 Size . 40

3.6.2 Operation Restrictions 40

3.7 Readers and Writers . 42

3.7.1 Reader Design . 42

3.7.2 Writer Design . 44

3.7.3 Private Types . 47

3.7.4 Data Transformations 49

4 Extending the IDL System 51

4.1 Built-In Extensibility . 51

4.1.1 Implementation Notes 51

4.1.2 Atomic and Private Types 52

4.1.3 Type Constructors . 52

4.2 Notational Extensions . 53

4.2.1 Abbreviations . 53

4.2.2 Referencing Multiple Attributes 53

4.2.3 Other Notations . 54

5 Formal Semantics 55

6 Garbage Collection 57

6.1 Self-Identifying Storage . 57

6.2 Garbage Collector Structure 57

6.3 Finding Pointers in the Stack 58

6.4 Hidden Pointers . 59

A Extended BNF 61

B Standard Implementation Notes 67

B.1 Structures . 67

B.1.1 References . 68

B.1.2 Objects . 69

B.2 Types . 70

B.2.1 Boolean . 70

B.2.2 Classes . 70

B.2.3 Integer . 70

B.2.4 Private Types . 71

CONTENTS iii

B.2.5 Rational . 71

B.2.6 Sequence . 72

B.2.7 Set . 73

B.2.8 String . 73

B.3 Assertions . 74

B.4 Processes . 74

B.4.1 Modules . 74

B.4.2 Traversals . 75

B.4.3 Input and Output . 75

C History 77

Bibliography 81

iv CONTENTS

List of Figures

2.1 Expression Structure Example 9

2.2 Picture of an Instance of the Structure of Figure 2.1 10

2.3 Typical IDL-Based Program 12

2.4 IDL Translator Operation . 13

2.5 Sample External Forms . 15

3.1 Standard Attribute Representation in Pascal 24

3.2 Hash Table Attribute Representation in Pascal 25

3.3 Simple Structure Declaration 28

3.4 Flat Node Representation in Ada 30

3.5 Nested Class Representation in Ada 31

3.6 Worst-Case Implementation of Is E2 in Pascal 32

3.7 Non-Tree Class Declaration 33

3.8 C Representation of an IDL Structure 34

3.9 Layout of C structs for Figure 3.8 35

3.10 Manipulation of C Representations 35

3.11 Form of Threaded Sequence Package in Ada 39

3.12 Hiding the Thread Fields in Ada 41

3.13 Partial List of Reader-Detected Errors 43

3.14 Pascal Writer Skeleton . 45

3.15 In
uence of Structural Attributes on External Form 46

3.16 Pascal Module for a Private Type 48

4.1 Sequence Representation of Attribute Group 54

v

Chapter 1

Introduction

IDL (Interface Description Language) is a notation for describing programs

and the data structures by which they communicate. Since 1980, IDL has

formed a signi�cant fraction of my research work. This report contains several

chapters that represent recent work I have done describing various portions

of IDL; as such they may seem somewhat disconnected. I expect to reuse

portions of this report in later IDL-related work, especially the PCG project

[Lamb87b].

Chapter 2 gives a tutorial introduction to portions of IDL. For full details

of the language, you should refer to the version 2 language de�nition [Nest82].

After version 2, IDL has split into several dialects, but the early sections of

the tutorial apply to them all. Chapter 4 describes my current thinking about

the Queen's dialect of IDL.

The thing about IDL that I have had the hardest time convincing people

of is the wide variety of implementation strategies it can support. Chapter 3

describes many possible approaches to de�ning target models for implement-

ing IDL; I have written earlier papers on the same theme [Lamb85,Lamb87d,

Lamb87c]. Appendix B summarizes some standard implementation strategies

IDL implementations might consider supporting.

Margaret Lamb, John Nestor, Joe Newcomer, and Don Stone make helpful

comments on earlier drafts of this material.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Using IDL: A Tutorial

This chapter introduces you to the basic concepts of IDL, including how to

interact with it in conventional programming languages.

2.1 Why Use IDL?

A signi�cant fraction of IDL consists of notation for describing data struc-

tures. A reasonable question is, why should you use IDL rather than the type

declaration mechanisms of your favorite programming language? Three of the

important reasons are:

1. IDL can describe complex data structures in a simple but formal way.

It gives you a way to talk about the information content of your data

separately from its representation, much more clearly than most pro-

gramming languages do.

2. IDL tools can automatically generate stereotypical modules of a program,

such as input/output procedures.

3. The automatically-generated modules support passing data between pro-

grams that might be written in di�erent programming languages, and

might run on di�erent machines.

The third point was our main original motivation for designing IDL. At this

level, the only communication we care to support is exchanging data structures.

We want each program to be able to work on an internal representation of its

data that is appropriate for its processing needs. Moreover, we might want to

write each program in a di�erent implementation language, and may want to

run each of them on a di�erent type of machine. On the other hand, we might

want to design two programs separately for convenience, then combine them

into a single program for e�ciency.

3

4 CHAPTER 2. USING IDL: A TUTORIAL

These requirements dictate some of the design decisions in IDL. We must

have some way to talk about individual programs, and group basic programs

into composite ones. We must be able to describe the abstract information-

content properties of data structures (the ones all programs can depend on)

separately from the concrete representational properties (the ones that change

from program to program).

2.2 Basic Concepts

A structure is an IDL declaration of a data structure. You can view it as a

schema that describes a collection of object types; the objects form a graph

(technically, a typed attributed directed graph). This section discusses IDL's

facilities for describing and manipulating graphs.

2.2.1 Names

IDL identi�ers start with a letter and consist of a sequence of letters, digits,

and underscores. IDL ignores case distinctions between letters; the identi�er

NAME means the same thing as NaMe or name. Underscores do make identi�ers

di�erent; name 1 is not the same as name1. For readability, you should avoid

using consecutive underscores in an identi�er; it is hard to tell some name from

some name.

IDL reserves several identi�ers for its own use, typically to de�ne language

constructs.

2.2.2 Node Types

The basic units from which you build graphs are nodes, which are analogous

to records in typical programming languages. Associated with each node you

may have several attributes, which you can view as information about the node;

they are analogous to record �elds. In IDL, what you declare is the node type;

the IDL notation does not include the notion of variables. Thus one might

implement the IDL declaration
item => name : string,

value : integer;

with the Algol-like type declaration
type item rep = pointer to record

name : string rep; value : integer rep

end

We use the \ rep" su�x to distinguish the implementation language's repre-

sentation type from the IDL type. The type is a pointer to a record rather

2.2. BASIC CONCEPTS 5

than simply a record because we will eventually be building trees and graphs

from such objects.

In a program that uses IDL data, you would declare variables of this type

and manipulate their attributes. For example,
var a, b : item rep;

...

a.value := b.value+5;

shows how you might declare two objects and manipulate their value at-

tributes. The exact syntax for accessing attributes would vary from language

to language. In C you might write

a->value = b->value+5;

whereas in Pascal you might write

a ^.value := b ^.value+5;

These issues are part of what we call the target model : the description of how

you map IDL concepts into di�erent programming languages. We will see in

Section 3.2 that some target models would require you to write

Set value(a, Fetch value(b)+5);

The point is that there is a simple concept, such as attribute access, and sev-

eral di�erent ways of representing that concept in di�erent implementation

languages.

If you want to build interesting data structures, you need several di�erent

types of nodes. For example, to the previous example you could add
date => month : integer,

day : integer,

year : integer;

item => start date : date,

end date : date;

This says that item nodes have two date-valued �elds, and that date nodes

have three integer-valued �elds. You might access this information by saying

if a.start date.year = b.end date.year then ...

This example also shows that IDL lets you declare the attributes of a node

in separate declarations if you choose to do so. Thus
item => start date : date,

end date : date;

means the same thing as
item => start date : date;

item => end date : date;

Furthermore, you do not need to declare something before you use it, so you

could declare the date-valued attributes before you de�ned type date. This is

6 CHAPTER 2. USING IDL: A TUTORIAL

a general characteristic of most IDL declarations; their order does not matter,

and you can de�ne several things in one declaration or split them into several

declarations.

Remember that we de�ned the item rep type as a pointer; similarly, date rep

would be a pointer. Thus, a.start date points to a date object that is sepa-

rate from a. Thus, perhaps somewhat surprisingly, we have created a simple

graph, since item nodes point to date nodes; we will see in Section 3.2.2 how

to avoid this by embedding the dates in the items.

2.2.3 Classes

If we want to construct interesting graphs, we need a way to say that an

attribute can reference more than one type of node. The IDL way to do this

is to de�ne a strict class type. Thus
expression ::= binary | literal;

binary => left : expression, right : expression;

literal => symbol : string;

The �rst line says expression is a strict class that contains classes binary and

literal. The left and right attributes of binary nodes form a graph by

pointing to other expression (that is, binary or literal) nodes.

At �rst glance, strict classes seem similar to union types in languages such

as C or Algol-68. However, IDL classes give you more expressive power than

ordinary unions; they provide an inheritance mechanism similar to Simula

classes or Smalltalk objects. You can declare

expression => value : integer;

This says that all expression nodes have an integer-valued value attribute.

Thus every literal node or binary node will have such an attribute; they

inherit it from their parent, expression.

The term class includes both node types and strict class types. Thus

expression, binary, and literal are all classes, but only expression is a

strict class. We use this terminology to avoid having to say \strict class or

node type" in several places where we need to refer to both; we can say \class"

instead. Thus we can describe the two forms of de�nition we have seen so far

as \a class name, followed by =>, followed by a sequence of attribute de�nitions

separated by commas," and \a strict class name, followed by ::=, followed by

a sequence of class names separated by vertical bars."

Ideally, a target model will provide types and operations that match the

IDL graph's meaning as closely as possible. Thus you should be able to de-

clare objects of implementation-language types corresponding to expression,

binary, and literal; you should also be able to fetch and store appropriate

attributes of each type. Thus after declaring

2.2. BASIC CONCEPTS 7

var t : expression rep;

i : binary rep;

l : literal rep;

in your program you should be able to say

t.value := i.left.value + string length(l.symbol);

This particular computation may not make much sense itself; we use it only

to show the attribute accesses

2.2.4 Graphs

Conceptually, attributes are pointers to objects; forming graphs is easy. For

example, if we wanted to add a cross-reference from each literal node to the

last node with the same symbol �eld, we could do this by saying
literal => previous : literal void;

literal void => literal | void;

We will discuss void in Section 2.4.3; for now, interpret this declaration as

saying that previous attributes point to literal nodes or to nothing.

The idea of attributes as pointers may surprise you somewhat. When we

say

binary => left : expression, right : expression;

there is no particular reason the left attribute of an binary node could not

point at the node itself, forming a cyclic graph instead of a tree. Thus the no-

tation encourages general graph structures; to restrict the graph to a tree, you

would need to use the assertion language, which we introduce in Section 2.4.4.

2.2.5 Attribute Types

We have seen examples of integer-valued attributes and class-valued attributes.

Attributes can also be booleans, strings, or rationals. Rationals include all the

�xed point,
oating point, and \real" numbers computers support. We call

these four types, plus classes, the basic types.

Attributes can also be composite types: sets or sequences of some basic

type. Thus you can say
dictionary => symbols : set of string,

call => actuals : seq of expression;

Sets are unordered collections; sequences are ordered collections. As with

all other IDL types, there are many possible representations. For example, we

might implement a sequence as an array, a singly linked list, or a doubly-linked

list.

Sometimes you will want to use a type that IDL knows nothing about. To

do this, you can declare a private type, and tell the IDL translator (using im-

plementation notes; see Section 2.4.1) where to �nd an implementation for the

8 CHAPTER 2. USING IDL: A TUTORIAL

type. Thus, for example, you could declare a stack type, MyStack, by saying
type MyStack;

for MyStack use Package(myPackage,repType);

IDL does not have a special mechanism for creating enumeration types;

instead, the strict class mechanism serves that purpose. If a class consists

entirely of node types without attributes, it behaves much like an enumeration

type. For example,
binary => op : operation;

operation ::= plus | minus | times | divide;

plus =>; minus =>; times =>; divide =>;

de�nes class operation, which serves as the type of the \operation code" �eld

of binary expressions.

2.2.6 Structures and Instances

A structure is an IDL declaration of a data structure. You can view it as a

schema that describes a collection of object types. An instance of an IDL

structure is a collection of objects whose types and relationships match those

of the corresponding structure declaration. In general, the objects form a

directed graph, which might contain cycles.

The general form of a simple structure declaration (in the extended Backus-

Naur form of Appendix A) is

structure <name>1 froot <name>2 g? is

f <structure item> # ; g*
end

This is a simpli�cation; the IDL reference manual [Nest82] gives the full syntax.

<name>1 is the name of the structure; depending on the implementation model

you choose, it may also become the name of the module that implements the

structure. The nonterminal <structure item> includes the declarations we

have already seen, as well as items we will see in later sections.

<name>2 is the name of the root type for your structure. It must name

some type you de�ne within the structure, and will usually be a class type

or a sequence type. IDL de�nes the \contents" of an instance of your data

structure as all the objects you can reach by following attributes starting at the

root. This is not a restrictive requirement; most data structures such as parse

trees and
ow graphs already have a well-de�ned root. If not, the designer can

add a dictionary node that points to the roots of all the disjoint subgraphs.

Figure 2.1 shows an example of an IDL structure. Previous sections ex-

plained the details of this example. Figure 2.2 shows one possible instance of

2.2. BASIC CONCEPTS 9

structure TreeStruc root expression is

expression ::= call | binary | literal;

binary => left: expression,

right:expression;

binary ::= plus | minus | times | divide;

plus =>; minus =>; times =>; divide =>;

call => name : string,

actuals : seq of expression;

literal => symbol:string;

expression => value:integer;

end

Figure 2.1: Expression Structure Example

the structure from Figure 2.1. There are two cases of sharing in this diagram:

� root.value is the same integer-valued object as root.actuals[1].value,

� root.actuals[1].right.value contains the value 23, and is the same

integer-valued object as root.actuals[3].actuals[1].value.

This illustrates that IDL permits sharing of any type of object, even scalars.1

2.2.7 Membership, Narrowing, and Widening

If you write a program that manipulates trees, you will sometimes need to

inspect a tree node and determine whether it is a literal or a binary or a

call node. Depending on the target model, there may be several ways of doing

this.

A node object's kind is a tag corresponding to its node type. Thus cor-

responding to node types call and literal would be tags call and literal;

most implementation languages would require that you give the tags di�erent

names, such as call kind and literal kind. An implementation would give

you some way of inspecting a class object's kind; for example, a NodeKind op-

eration might returns its parameter's kind. Thus

1You can avoid sharing by embedding an unsharable object in the object that references

it. Many target models do this with scalars by default.

10 CHAPTER 2. USING IDL: A TUTORIAL

literal

value

symbol "4"

4

literal

value

symbol "5"

5

right

left

value

times

20

literal

value

symbol "003"

3

right

left

value

plus

23

literal

value

symbol"-17"

-17

call

value

name

actuals

6

"sqr"

seq

literal

value

symbol "3"

seq

actuals

name

value

call

"max"

Figure 2.2: Picture of an Instance of the Structure of Figure 2.1

var t : expression rep;

...

if NodeKind(t) = literal kind then ...

might test whether a tree node is a literal.

An alternative way of packaging this test is for the target model to provide

boolean operations that test class membership. Thus another way of doing

the same test is

if Is literal(t) then ...

A third alternative is for the target model to provide a generic operation that

takes an object and a class and reports whether the object is a member of the

class.

2.3. GENERATED MODULES 11

if IsMember(t,literal) then ...

if IsMember(t,binary) then ...

If we know that an object is a member of a particular class, we may wish

to treat it as an object of a containing class. For example, given a literal, we

may wish to pass it to a procedure that takes an expression as a parameter.

Since many implementation languages are strongly type checked, this may

require a widening operation to convince the language translator to treat the

object as the more general type. For example, in
procedure Grind(t:expression rep) is ... end Grind;

...

var i : binary rep;

...

GrindTree(binary to expression(i));

the function binary to expression is a widening operation. Ideally, widening

is purely a compile-time operation.

Similarly, we may wish to treat a variable of one class as if it were a

member of a contained class; this may require a narrowing operation. Unlike

widening, narrowing typically requires a run-time check that the object has a

kind corresponding to the narrower type. Thus in
var i:binary rep;

...

print(expression to literal(i.left).value)

the function expression to literal is a narrowing operation. It checks at

run-time that i.left is of kind literal, and reports an error otherwise.

Target models can ensure that both narrowing and widening are perfectly

type-safe; they are coercions, which convert a value of one type to another

compatible type, rather than type casts, which tell the compiler to pretend

that a value of one type is of another type.

2.3 Generated Modules

Earlier, we said a bene�t of using IDL was automatic generation of stereotyp-

ical modules of your program, particularly graph readers and writers. This

section discusses some of the modules the IDL system can generate for you.

It is easy to show why automating the coding of readers and writers is

useful. Internally, most programs represent references as pointers to locations

in memory. In an external �le, the pointers must have some di�erent represen-

tation, such as o�sets from the beginning of the �le, or textual labels and label

references. The code to walk over a graph, converting pointers and emitting a

representation of each node, is tedious and error-prone to write by hand.

12 CHAPTER 2. USING IDL: A TUTORIAL

reader
input

data
writer

output

data

User Code

Interface

Internal Data

User Process

Arrows indicate direction of data
ow.

Figure 2.3: Typical IDL-Based Program

2.3.1 Program Organization

Figure 2.3 shows the organization of a simple IDL-based program. It reads

input data in some external representation, maniupulates it in some internal

representation, and writes the altered data in another external representation.

We can view the job of a reader module as converting an external instance into

an equivalent internal instance; a writermodule does the reverse coversion. We

normally talk of readers and writers that convert an entire structure at once,

although some implementations may also provide incremental conversions. A

third module, the interface, provides the means for user code to access internal

data. In e�ect, the interface de�nes an abstract data type; the internal form

is a representation.

2.3.2 IDL Translator Organization

The primary new tool you would use in an IDL system is an IDL translator,

which can automatically generate readers, writers, and interface from an IDL

description. Figure 2.4 shows the general behavior of such a translator. A user

writes an IDL description and the code for a program (dotted boxes). The

translator analyses the description to produce

� a listing with summary information and cross-references, to assist in

maintaining the IDL description;

2.3. GENERATED MODULES 13

IDL structure

description
IDL translator

implementation

strategies

interface

package

Figure 2.4: IDL Translator Operation

� the speci�cation of an interface module, for use in compiling the user's

code;

� the implementation of the interface module, for use in the running sys-

tem;

� tables and code fragments that, when combined with information from a

library, give the readers and writers that assist in exchanging data with

other tools.

In emitting a module, the translator may make use of a library of information

about implementation strategies. Some parts of this \library" may be part of

the code of the translator, other parts might reside in tables, while still others

might be part of a separate �le.

Chapter 3 discusses the operation of IDL translators in more detail, and

discusses issues one must consider in designing interface, reader, and writer

modules.

2.3.3 Processes

A process is IDL's notion of an executable program or fragment of a program.

It places few constraints on the program; it merely deals with IDL-related

aspects of the program, such as what data structures it manipulates. The

IDL V2.0 processes were not particularly useful; users at Tartan complained

about having to include an otherwise useless process declaration just to get

any output. Nestor has designed one replacement, and I am contemplating an

alternative replacement.

The key things that a process declaration must specify are:

14 CHAPTER 2. USING IDL: A TUTORIAL

� A name for the process.

� What structures the process reads and writes.

� What structures the process uses internally.

� If the process contains subprocesses, how the processes communicate

with each other.

2.3.4 Exchange Representations

In order for two processes to exchange data, they must agree on the repre-

sentation of the data. If the two run on machines with di�erent word sizes

and data formats, they must agree on some representation that both of them

can interpret. We call such a data representation an exchange representa-

tion. It is the task of a writer to translate its process' internal representation

into an exchange representation; it is the task of a reader to do the inverse

transformation.

The amount of work a reader or writer must do depends on how similarly

the two processes represent data. If the two programs have identical repre-

sentations and run in the same executable image (say, as overlays), no work

is necessary. If they have nearly identical representations but are in separate

programs, they might use a binary representation. If they run on di�erent

types of machine, they may need the
exibility of an ASCII representation.

Ideally, the exchange representation schema should be readily derivable from

the IDL description.

In other parts of the report we sometimes use an ASCII representation

to show particular data structures; although there are many possible external

representations, we have de�ned this one as part of IDL to ensure there is

one representation all implementations can depend on. The representation of

a structure consists of a reference to the root node followed by a sequence of

labeled nodes. The representation of a node consists of the name of the node

type, followed by list of attribute-value pairs. Any value may have a label; all

labels must be unique.

Figure 2.5 shows how to represent formally the structure instance that Fig-

ure 2.2 on page 10 represented informally. Figure 2.5(a) shows each object in

a \
at" list. The external ASCII form permits some variability; Figure 2.5(b)

represents the same instance using a \nested" form. In either form, the writer

can add extra white space between tokens to improve readability. Whether to

use a
at or nested form depends on the way in which you will use the external

representation, and how large the structure is. The nested form seems more

natural for small tree-like structures, but for deep graphs the white space used

to line up attributes of the same node rapidly gets out of hand. The
at form

uses less white space, and some systems can choose label names to make it

2.4. ADVANCED TOPICS 15

L0: call [value L1: 23; name "max"; parameters <L3 ^ L4 ^ L5 ^>]

L3: plus [value L1 ^; left L6 ^; right L9 ^]

L4: literal[value -17; symbol "-17"]

L5: call [value 6; name "sqr"; parameters <L10 ^>]

L6: times [value 20; left L7 ^; right L8 ^]

L7: literal[value 4; symbol "4"]

L8: literal[value 5; symbol "5"]

L9: literal[value L2: 3; symbol "003"]]

L10: literal[value L2 ^; symbol "3"]

(a) Flat Form

call [value L1: 23; name "max"; parameters <

plus [value L1 ^;

left times [value 20;

left literal[value 4; symbol "4"];

right literal[value 5; symbol "5"]];

right literal[value L2: 3; symbol "003"]]

literal[value -17; symbol "-17"]

call [value 6; name "sqr"; parameters <

literal[value L2 ^; symbol "3"] >]

>]

(b) Nested Form

Figure 2.5: Sample External Forms

easier for a human being to �nd individual nodes, but processing the labels

can slow down a reader considerably.

2.4 Advanced Topics

This section discusses several advanced topics that you should study if you

want a more complete understanding of IDL and the software engineering

problems it addresses.

16 CHAPTER 2. USING IDL: A TUTORIAL

2.4.1 Implementation Notes

We designed IDL to support abstraction, with a single type implementable in

many di�erent possible ways. For example, the type integer might require a

machine word, or or a variable size block capable of representing arbitrarily

large integers. Similarly, sequences might be �xed size arrays or variable size

arrays or linked lists. In the absence of any user action, each IDL translator

applies its own set of default rules to select a speci�c representation. Users

can also gain more explicit control by using implementation notes.

The syntax of an implementation note is

<structure item> ::= <implementation statement>;

<implementation statement> ::=

f for <implementation reference> g?
use <implementation note>;

<implementation note> ::= <name> f (f <note parameter> #

, g+) g?;
<note parameter> ::= <implementation note> | <literal> ;

Whether you omit the <implementation reference> clause depends on the

particular implementation note.

� If you omit the implementation reference, it usually means you are say-

ing something about the entire structure. For example, in the Queen's

implementation,

use Filename("string")

means that you should use the name string for any �les the translator

emits for this structure.

� A note with a name reference usually applies to a named type and all

attributes of the type; thus
operation ::= plus | minus | times | divide;

for operation use Enumeration;

says that type operation (a strict class type) should have an enumeration

type as its representation.

� A note with an attribute reference applies to a particular attribute of a

particular node; thus

for expression.value use Range(0,255)

says that the value attribute of expression nodes (an integer attribute)

should hold numbers in the range 0 to 255.

There are three forms of representation reference.

2.4. ADVANCED TOPICS 17

<implementation reference> ::= f 'root' | <name> f '.'

<name> g g
f '(' '*' ')' g?;

The <name> refers to a named type; this was the form we used in the preceding

example. The form <name>1.<name>2 refers to an attribute; <name>1 is a class

type, and <name>2 is one of its attributes. The root form refers to the root type

of the structure. The optional asterisk for these forms gives a way to specify a

representation for the elements of a composite type (a set or sequence type).

Thus
call => actuals : seq of expression;

for call.actuals use Array;

for call.actuals(*) use Size(16);

says that the actuals attribute of objects of type call should be an array of

16-bit values (presumably short pointers).

Some properties of a data structure that you think of as abstract properties

are really implementation details. For example, we know of one project that

commonly had declarations like
call => head : expression void, tail : expression void;

expression => next : expression void;

expression void ::= expression | void;

What the writers intended was to have a sequence of expression elements in

each call. The head and tail attributes of call nodes reference the �rst and

last elements of the sequence; the next attribute in each expression node links

it with the next element in the list. A better way to re
ect what is really go-

ing on is to declare a sequence, and add an implementation note. This would

result in

for call.actuals use Threaded(next);

2.4.2 Derivation

Derivation is the process of saying that one structure is similar to another. For

example, from the structure de�ning expressions, we could derive two others,

one of which represented the sequence of actual parameters in a call node as

an array, and one of which represented it as a linked list. From a complex

structure we could derive several others that give narrower interfaces to the

same data, eliminating certain attributes or types of nodes. From distinct

structures we could derive a single structure that combined them all.

Ideally, the derivation mechanism should be able to support di�erent struc-

tures giving di�erent views of the same data. For example, there are two ways

to de�ne binary expressions. Earlier, we showed one way:

18 CHAPTER 2. USING IDL: A TUTORIAL

binary => left : expression, right : expression;binary => op : operation;

operation ::= plus | minus | times | divide;

plus =>; minus =>; times =>; divide =>;

Alternatively, we could make binary a strict class:
binary => left : expression, right : expression;binary ::= operation;

operation ::= plus | minus | times | divide;

plus =>; minus =>; times =>; divide =>;

It is possible to think of these as two di�erent representations of the same in-

formation.

IDL V2 had two mechanisms: derivation and re�nement. Derivation was

more general than re�nement; anything you could do with re�nement you

could also do with derivation. The only reason for having re�nement was if

some uses of derivation were easier if you could guarantee that you only the

re�nement subset. I plan to implement only derivation in the Queen's subset,

until I �nd some circumstance that demands re�nement instead.

2.4.3 Void

It is common to have class-valued attributes that reference either a member of a

particular class or nothing. You need to be able to say that the attribute could

reference nothing. However, IDL does not de�ne the concept of \pointing to

nothing"; every attribute must reference an object of some appropriate type.

The way we deal with \pointing to nothing" is to de�ne a class called void

that has no attributes. The declarations
expression => parent : expression void;

expression void ::= expression | void;

say that expression.parent might reference nothing (for example, the root

node might not have a parent). This is cleaner than the alternative, which is

to say that expression.parent is a set or sequence of expression nodes with

either 0 or 1 elements. void is part of a \standard prelude" from which all

structures inherit prede�ned types like integer and boolean. Other than this,

there is nothing special about the name void; if we replaced all occurrences of

void with fred, the meaning would be the same.

2.4.4 Assertions

The declarations we have discussed so far do not capture all the abstract

properties we might want to specify for structures and processes. IDL provides

a powerful assertion sublanguage for declaring such properties.

An assertion consists of the reserved word assert followed by a boolean ex-

pression. If an assertion occurs inside a structure, then the boolean expression

2.4. ADVANCED TOPICS 19

must be true for any instance of the structure. Assertions are not necessarily

true of a structure instance at all times. They must certainly be true whenever

someone claims to have a complete instance, such as just after reading one in

or just before writing one out. However, while user code is manipulating a

structure, it need not meet its assertions.

The IDL V2 assertion language had several problems, not the least of

which is that almost no one (besides Snodgrass' group at the University North

Carolina) ever used it. Nestor has de�ned a revision to the assertion language;

however, until we have more use of the language, it is hard to say whether we

understand it well enough to stabilize it.

I expect to expand on the assertion language tutorial as I decide what

subset of the assertion language to implement at Queen's.

20 CHAPTER 2. USING IDL: A TUTORIAL

Chapter 3

Generating Interface Packages

Chapter 2 introduced the basic ideas of IDL, and mentioned a few ways of

implementing some of them. This chapter gives much more detail on modules

that give access to the data structures you can de�ne with IDL, and exchange

data among programs. It touches on some general characteristics of IDL trans-

lators, concentrates on what issues you must address in designing modules, and

shows how to use libraries of prede�ned implementation strategies for e�cient

data structure representations.

3.1 Target Models

A target model is the set of functions, notations, and conventions used to con-

struct the user code interface for all structures. The IDL translator constructs

a particular user code interface by applying the target model to a particular

structure speci�cation. Normally, there is a di�erent target model for each

di�erent programming language. Some target models might support several

languages, if a single program has portions in each of them that need to access

the same data. Di�erent implementations often use di�erent target models for

the same language.

In designing a target model, you must make a set of interacting (and some-

times con
icting) engineering decisions. You must ask yourself several ques-

tions.

� Representation independence. To what degree do you wish to pro-

tect users of an interface module from changes in the representation of

the package? A high degree of protection means that you need not edit

clients of a module when the representation changes. If you want little

protection, your interface module will typically make visible the underly-

ing representations. If you want much protection, your interface module

will require users to use access procedures to manipulate the representa-

tions. Your implementation language's degree of support for information

21

22 CHAPTER 3. GENERATING INTERFACE PACKAGES

hiding will in
uence this decision.

� Type model. To what extent do you want to mimic the type struc-

ture of the IDL description? Close mimicry means your language's type

checking mechanisms can help check whether your program uses the IDL

types correctly. If you want to mimic it closely, your package must ex-

port implementation language types for each IDL node type, class type,

private type, and attribute type in the IDL description. If you do not

want to mimic it closely, you might have one implementation language

type for the entire IDL structure, or perhaps one for each of a few classes

within the structure. The closeness of your implementation language's

type model to that of IDL, and the extent of its abstraction facilities,

will in
uence this decision.

� Attribute access. Given a programming language representation of a

node, how e�ciently can you fetch or store an attribute of the node?

Your implementation language's facilities for specifying low-level repre-

sentational details will in
uence this decision.

� Development support. To what extent must you recompile clients of

a module when its speci�cation changes, even if the parts of the inter-

face the clients depend on do not change? This is a di�erent issue from

representation independence; it involves adding, changing, or deleting

attributes, nodes, or classes. Your implementation language's facilities

for separate compilation, its compiler's facilities for recompilation anal-

ysis, and the e�ort you are willing to put into recompilation support in

an IDL translator, will in
uence this decision.

� Generic tool support. To what extent must the modules support

generic or table-driven tools de�ned outside the package? A generic

tool is one that embodies an algorithm that applies to any structure;

it relies on structure-speci�c information (typically in tables) in the in-

terface module. Often a generic tool is slower than one \hard-coded"

for a particular structure. Your implementation language's facilities for

generic operations (or type-cheating mechanisms for implementing such

operations) might in
uence this decision.

Most of the following sections show how to use an IDL speci�cation, and

that from an implementation strategy library, to generate interface modules

(speci�cation and implementation). Section 3.7 discusses the design of reader

and writer modules.

3.2. REFERENCE REPRESENTATIONS 23

3.2 Reference Representations

Attributes of nodes are like �elds of records, provided you generalize the stan-

dard mental model of records as contiguous blocks of memory and �elds as

o�sets into such blocks. In the IDL formal model, attributes are always point-

ers to objects. Once you break away from both of these mind sets there are

two issues with any attribute.

1. How do you represent the object the attribute references? We refer to

these as object representations.

2. How do you represent the attribute itself? We refer to these as reference

representations.

This section addresses the second question; later sections address the �rst.

3.2.1 Access Procedures

If you accept that you want to hide representational decisions, you must design

access procedures that let clients fetch and store attributes without revealing

either the representation of the attribute or of the object the attribute refer-

ences. An IDL attribute declaration of the form

ClassName => AttrName : AttrType;

corresponds to a pair of fetch/store procedures; in Pascal they might take the

form
function Get ClassName AttrName(x:ClassName) : AttrType;

procedure Set ClassName AttrName(var x:ClassName; a:AttrType);

The �rst fetches the current value of the attribute; the second stores a new

value. Figure 3.1 shows the corresponding Pascal procedure bodies if one

adopts the obvious record representation for the class. Since the bodies of

these procedures are so simple, a designer would probably wish to declare that

the compiler should expand calls on the subprograms inline. Standard Pascal

gives no way to do this, but in Ada you could say

pragma inline(Get ClassName AttrName, Set ClassName AttrName);

In Ada you could rely on overloading to disambiguate procedures when dif-

ferent classes have attributes of the same name. This would give shorter

procedure names, of the form
function Get AttrName(x:ClassName) return AttrType;

procedure Set AttrName(in out x:ClassName; a:AttrType);

With such a simple representation, many people wonder why one must

go through all the complexity of having a pair of procedures to represent an

attribute. Where before users might have said

x.AttrName := y.AttrName

24 CHAPTER 3. GENERATING INTERFACE PACKAGES

type Classname = ^ f typically a pointer type g
record ... AttrName : AttrType ... end;

function Get ClassName AttrName(x:ClassName) : AttrType;

begin

Get ClassName AttrName := x.AttrName;

end f Get ClassName AttrName g;

procedure Set ClassName AttrName(var x:ClassName; a:AttrType);

begin

x.AttrName := a;

end f Set ClassName AttrName g;

Figure 3.1: Standard Attribute Representation in Pascal

they must now say

Set ClassName AttrName(x, Get ClassName AttrName(y))

Figure 3.2 gives an alternative representation that shows why we need the

procedures. Here, the attribute almost always has a particular value. To save

space, we use the address of the record representing the IDL node as a key

for a hash table. If the key is in the table, the table also holds the value of

the attribute. If the key is not in the table, the value of the attribute is the

default. This may be a suitable representation for the DIANA lx comments

attribute, which is almost always null [Goos83].

If a designer initially uses the representation of Figure 3.1 and makes avail-

able the �elds of the record type, programmers will directly assign to compo-

nents of the record. If space performance measurements later show that the

representation of Figure 3.2 is appropriate, converting the code will require

massive re-editing. However, if client modules only use the Set and Get proce-

dures, maintainers need only recompile them after changing the single module

representing the ClassName type.

Even languages that allow user-de�ned assignment might not give enough

support to allow

x.AttrName1 := y.AttrName2;

The hashing representation requires that you combine selecting a destination

attribute (the dot \operator") with assigning to the attribute (the assignment

operator); some proposals for user-de�ned assignment separate the two in such

3.2. REFERENCE REPRESENTATIONS 25

f references package Hash, which provides operations

Lookup, Delete, Enter g
...

type ClassName = ... ;

function DefaultVal : AttrType; f Pascal idiom for a run-time constant g
begin DefaultVal := ... end;

function Get AttrName(x:ClassName) : AttrType;

var val : AttrType; IsPresent:boolean;

begin

Lookup(HashTable, x, val, IsPresent);

if IsPresent

then Get AttrName := val

else Get AttrName := DefaultVal

end f Get AttrName g;

procedure Set AttrName(var x:ClassName; a:AttrType);

begin

if a=DefaultVal

then Delete(HashTable, x)

else Enter(HashTable, x, a)

end f Set AttrName g;

Figure 3.2: Hash Table Attribute Representation in Pascal

a way that you never have enough information in one place to implement the

hashing scheme. An alternative is to use a preprocessor that translates

x.AttrName1 := y.AttrName2

into

Set AttrName1(x,Get AttrName2(y))

where appropriate; ?CS? propose this approach with their C implementation

of IDL.

There are other possible ways of packaging the fetch/store procedure pairs.

For example, for structures where classes never (or rarely) have multiple at-

tributes of the same type, the name of the function might re
ect the attribute

type rather than the attribute name.

function Get AttrType(x:ClassName) : AttrType;

If one also represents all IDL node types by a single implementation language

26 CHAPTER 3. GENERATING INTERFACE PACKAGES

type (see Section 3.3), this scheme requires fewer interface procedures than

the previous one (the size of some styles of interface module strains some com-

pilers). Alternatively, one might have a single generic fetch function
function GetAttribute(x:Universal, class:ClassName,

attr:AttrName) : Universal

where Universal is some type capable of representing any IDL object, and

ClassName and AttrName are strings or enumerated types naming the desired

class and attribute. This method requires run-time consistency checks to en-

sure the class really has such an attribute. In a language like Ada you could

get a bit more type checking by overloading on the return type, and specializ-

ing the �rst argument to represent just the node types of the structure:
function GetAttribute(x:Structure Rep, class:ClassName,

attr:AttrName) return AttrType;

The GRAPHITE project at the University of Massachusetts uses this form of

attribute access [Clar86].

3.2.2 Implementation Strategies

There are at least �ve ways of implementing an attribute reference (that is,

of answering question 2 on page 23). In the following paragraphs, \the node"

means the node containing the attribute, and \the object" means the object

referenced by the attribute.

1. The attribute may be a pointer. This representation is closest to the

general IDL model, and is the obvious way to implement class-valued

attributes. One might say

for node.attr use pointer;

2. One might embed the object in the node. This is the obvious way of

implementing unshared data, such as most integer-valued or boolean-

valued attributes. One might say

for node.attr use embed;

3. One might keep the object in a hash table, where the node's address is a

hash key. Thus the attribute requires no space in the node. This might

be suitable for attributes that almost always have some default value.

A hash implementation note might need several parameters, specifying

open versus closed hashing, the size of the hash table, the method of

rehashing on collisions, the default value, and so on.

4. One might keep the object in a table, where the attribute is the index

into the table. This might be suitable when there are few enough objects

3.2. REFERENCE REPRESENTATIONS 27

that size of an index is signi�cantly smaller than the size of a pointer. An

index speci�cation would need a parameter for the length of the table,

and the size of the index �eld.
for node.attr use index(47); -- 47 elements

for node.attr use reference size(byte);

5. One might combine several attributes into a sequence, as Figure 4.1 on

page 54 shows, using any of the above representations for elements of

the sequence would.
expr => children: seq of expr;

for bin exp.fleft rightg use sequence(children);

for expr.children(*) use index(23)

This example shows another reason we call these \reference representa-

tions" rather than \attribute representations": most of them apply to

any reference to an object, including elements of sequences.

It might be undesirable to �x some of the parameters for hashed and in-

dexed speci�cations in the IDL description. If you do not permit some param-

eters, you must provide some mechanism for postponing their binding. For

example, suppose the generic hash representation has �ve parameters parm1

through parm5. Instead of providing these parameters in the implementation

note via

for xxx use hash(parm1, ..., parm5)

you might require that the user de�ne a package that exports these �ve param-

eters, and have the IDL description name this package. In Ada the package

might take the form
package HashParms

parm1 : integer;

...

procedure parm5(...);

end HashParms

In the IDL declaration, you would then say

for xxx use hash(HashParms)

The package IDL generates would contain appropriate declarations to use

HashParms.

If you specify one of these representations for a type, rather than an at-

tribute, the representation would apply to any attribute of the type. Thus

for Integer use embed

says that you want to embed all integer-valued attributes in their nodes. If a

user later says
x => a : Integer;

for x.a use pointer

28 CHAPTER 3. GENERATING INTERFACE PACKAGES

structure example root E1 is

A => a1: String;

B => b1: Integer, b2: Rational;

C => c1: Rational;

D => d1: Integer;

E1 ::= A | B; E2 ::= E1 | C ;

E1 => x : Integer; -- all members of E1 have x

E2 => y : Rational; -- all members of E2 have y

end

Figure 3.3: Simple Structure Declaration

a translator should issue an error message that this con
icts with the prior

implementation note about integers.

For embedded integer-valued attributes, there are other space-saving en-

coding: o�set and polynomial representations. If a node has three attributes

month, day, and year, with ranges 1..12, 1..31, and 1960..2000, then repre-

senting the �elds separately as unsigned integers requires 4 + 5 + 11 = 20

bits. We can save space by representing each number as an o�set within its

range; the attribute fetch procedure can add the o�set, while the store pro-

cedure subtracts it. Thus the smallest representation of the three �elds as

separate items requires 4+5+6 = 15 bits. However, we could encode all three

together as ((year � 1960) � 12 +month � 1) � 31 + day � 1, which requires

log2((40 � 12 + 11) � 31 + 30) bits, or 14 bits.

3.3 Strict Classes

An IDL strict class is a union of node types. Classes may contain other classes,

and may overlap arbitrarily. Unlike unions in most programming languages,

strict classes may have attributes. Figure 3.3 shows an example. Class E1

contains members A and B; all members of E1 have attribute x. We used to

view this as an abbreviation mechanism, which prevents having to write
A => x : Integer;

B => x : Integer;

However, there are deeper semantic issues that require us to view classes as

3.3. STRICT CLASSES 29

more than abbreviations. A simple reason to prefer the declaration in Fig-

ure 3.3 is that it clearly shows that you intend for A and B to have an attribute

with the same name and same type.

Since we use classes as types of attributes, we need to design representa-

tions of classes. The following sections show several possible implementation

techniques, which represent di�erent engineering choices based on the tradeo�s

we discussed at the beginning of Section 3.1.

3.3.1 Single-Type Representations

The obvious Pascal representation for an IDL structure declares one record

type, with variants for each node type. Class variables and class-valued at-

tributes would be pointers to such records. Similarly, in Ada one might de�ne

one access record type. All objects from a particular structure have the same

type; an application cannot declare objects of some class narrower than the

whole structure. The suggested Ada package from Chapter 4 of the DIANA

reference manual implies a representation of this kind, since it de�nes one Ada

type (Tree) for all DIANA nodes [Goos83].

The single-variant-record representation for a structure can be space-e�cient,

since each node takes only the space needed for the attributes stored in it (if

the implementation language's compiler packs records e�ciently). However,

access to individual attributes can be slow. If a routine manipulates an object

of class E1 (from Figure 3.3), fetching the x attribute requires extra run-time

code, as Figure 3.4 shows; the access procedure must determine the node kind

at run-time before making the access. If the class containment relation forms a

tree (see Section 3.3.3), a more e�cient representation has sub-variants within

variants. Figure 3.5 shows one possible representation. This is just as e�cient

in data space as Figure 3.4, requires somewhat less code space, and gives a

slightly more time-e�cient attribute fetch or store on some machines.

Another alternative, which does not rely on classes forming a tree, is useful

if the target language provides its own representation speci�cation facilities,

and if compilers for the language do certain kinds of optimization. The IDL

translator can use the record declarations of Figure 3.4, but tell the target

language compiler to place particular �elds at particular places within the

records. The translator can give the same positional speci�cation for the A x

�eld as the B x �eld. When compiling function Get x, the target language

compiler would notice that all arms of the case statement contained identical

code, and would simplify the procedure accordingly.

3.3.2 Distinguishing Between Classes

Section 2.2.7 on page 9 introduced the idea of to determining if a particular

node is a member of a particular class. For each class X, the implementation

30 CHAPTER 3. GENERATING INTERFACE PACKAGES

package Example Struc is

type node kinds is (A node, B Node, C Node, D Node);

type Example Rep(node kind:node kinds) is private;

function Get x(n:Example Rep) return Integer;

...

private

type Example Rep(node kind:node kinds) is access record

case node kind is

when A node =>

A a1: stringStruc; A x: Integer; A y: Rational;

when B node =>

B b1, B x: Integer; B b2, B y: Rational;

when C node =>

C c1, C y: Rational;

when D node =>

D d1: Integer;

end record;

end;

package body Example Struc is

...

function Get x(n:Example Rep) return Integer is

begin

case n.node kind is

when A node => return n.A x;

when B node => return n.B x;

when others => raise No Such Attribute;

end case;

end Get x;

end;

Figure 3.4: Flat Node Representation in Ada

3.3. STRICT CLASSES 31

package Example Struc is

type node kinds is (A node, B Node, C Node, D Node);

type Example Rep(node kind:node kinds) is private;

function Get x(n:Example Rep) return Integer;

...

private

type struc rep(node kind:node kinds) is access record

case node kind is

when A node..C node => -- class E2

E2 y: Rational;

case node kind is

when A node..B node => -- class E1

E1 x: Integer;

case node kind is

when A node => A a1: stringRep;

when B node => B b1: integer; B b2: Rational;

end case;

when C node =>

C c1: Rational;

end case;

when D node =>

D d1: Integer;

end case;

end record;

end;

package body Example Struc is

...

function Get x(n:Example Rep) return Integer is

begin

return n.E1 x;

end Get x;

pragma inline(Get x);

end;

Figure 3.5: Nested Class Representation in Ada

32 CHAPTER 3. GENERATING INTERFACE PACKAGES

function Is E2(n:struc rep) : boolean;

begin

Is E2 := (n.node kind = A node) or (n.node kind = B node) or

(n.node kind = C node)

end f Is E2 g;

Figure 3.6: Worst-Case Implementation of Is E2 in Pascal

may provide an Is X function that returns true if the argument is a member

of the given class. Instead of one Is X function per class, a target model might

provide a single function IsMember(node, class type).

In the worst case, the implementation of Is X must compare the node kind

with all possible kinds for members of the class, as Figure 3.6 shows.

If the class containment partial order forms a tree, we can do better. The

tree has pure classes as the interior elements and node types as the leaves.

One can walk the tree in either NLR or LRN order1 to sort the node kinds

such that all members of each class are contiguous. More complex algorithms

can �nd such encodings for some (but not all) non-trees [Lamb88]. Thus a

node is a member of class E2 if its kind is in the range A node..C node. The

representation of Figure 3.5 also requires that all the node kind values for

members of a particular class be contiguous.

A method that works for any class containment relation, regardless of over-

laps, is to assign a number to each class and one to each node, and record the

relationship in a boolean matrix indexed by class index and node kind. The

cost of indexing into such a matrix is usually comparable to the cost of a range

check, depending on the architecture of the target machine. Such matrices are

usually sparse; compression techniques can reduce the size of the matrix while

keeping the cost of a check low.

3.3.3 Partitions versus Overlapping Classes

If the class containment relation forms a forest (collection of trees), an imple-

mentor can partition the classes. Each class not contained in any others can be

the root of a partition, and each partition may have a di�erent style of repre-

sentation. This can allow applications to de�ne objects of types corresponding

1The older names for these are preorder and postorder; William A. Wulf introduced the

newer notation to describe arbitrary tree walks by combining the letters L (for visit left

subtree), N (for process node), and R (for visit right subtree).

3.3. STRICT CLASSES 33

A => a1:Integer, ... ; -- declaration of node type A

B => b1:Integer, ... ; -- declaration of node type B

C => c1:Integer, ... ; -- declaration of node type C

D1 ::= A | B ; -- class D1

D2 ::= B | C ; -- class D2

D1 => x : Integer; -- all members of D1 have x

D2 => y : Rational; -- all members of D2 have y

Figure 3.7: Non-Tree Class Declaration

to narrower classes than the whole structure. An interesting special case is a

partition consisting entirely of classes without attributes; we can represent the

whole partition as an enumerated type.

A designer cannot use a nested representation unless the classes form a

tree. The classes of Figure 3.7 do not form a tree, since classes D1 and D2

overlap without either containing the other.

Other implementation languages, such as C, have no di�culty with over-

lapping classes. Figure 3.8 shows a possible C representation of the structure

of Figure 3.7. It has one struct per node type and one union per class type,

and one struct per class type. Each union has one element per member of the

class, plus a member called \self" that represents attributes directly declared

for the class. Thus the \self" variant of union type CD1 contains a D1 x �eld

(line 3.3.3), since class D1 of Figure 3.7 has an x attribute. Each struct has

one �eld per attribute, plus extra �elds to ensure proper alignment of �elds

corresponding to attributes common to more than one member of a class; Thus

RD2 has a \Filler001" �eld (line 3.3.3) so that its D2 y �eld (line 29) lines up

with those in RB and RC (lines 3.3.3 and 3.3.3). Figure 3.9 shows a picture of

the �eld layouts corresponding to Figure 3.8. An IDL translator can ensure

that each struct in a class has attributes de�ned on that class in the same

position within each struct. This may waste some space in some node types,

but ensures fast access to attributes. Snodgrass and his colleagues at the Uni-

versity of North Carolina in Chapel Hill support this style of representation

for non-overlapping classes in their C implementation [Shan86].

The C representation makes it easy for a program to declare parameters and

local variables of precisely the correct type. Figure 3.10 shows some typical

examples of direct access to attributes. An implementation that wishes to

34 CHAPTER 3. GENERATING INTERFACE PACKAGES

1 /* node names */

2 #define RA struct rRA

3 #define RB struct rRB

4 #define RC struct rRC

5 #define RD1 struct rRD1

6 #define RD2 struct rRD2

7 /* class names */

8 #define CD1 union cCD1

9 #define CD2 union cCD2

10 /* class D1 contains A and B, plus attributes of its own */

11 CD1 fRD1 *self; RA *A; RB *B; g;
12 /* class D2 contains B and C, plus attributes of its own */

13 CD2 fRD2 *self; RB *B; RC *C; g;
14 RA fnode header header; /* standard node header, includes node type */

15 int D1 x; /* from D1 */

16 int A a1; ... g; /* other A-specific attributes */

17 RB fnode header header; /* standard node header, includes node type */

18 int D1 x; /* from D1 */

19 real D2 y; /* from D2 */

20 int B b1; ... g; /* other B-specific attributes */

21 RC fnode header header; /* standard node header, includes node type */

22 int C c1; /* forces alignment of Y with RB */

23 real D2 y; /* from D2 */

24 ... g; /* other C-specific attributes */

25 RD1 fnode header header; /* standard node header, includes node type */

26 int D1 x; g; /* same relative position as x in RA and RB */

27 RD2 fnode header header; /* standard node header, includes node type */

28 int Filler001; /* forces alignment of y with RB and RC */

29 real D2 y; g;

Figure 3.8: C Representation of an IDL Structure

3.3. STRICT CLASSES 35

RB:

header

D1 X

D2 Y

B B1

RD1:

header

D1 X

RD2:

header

D2 Y

Figure 3.9: Layout of C structs for Figure 3.8

/* take parameter of class D1 */

manip(D1obj)

CD1 D1obj;

f
/* set attribute x */

D1obj.self->D1 x = 1;

/* do member-specific processing */

switch (D1obj.self->header.node kind)

f
case NA:D1obj.A->a1 = ...; break;

case NB:D1obj.B->b1 = ...; break;

default:error("D1 object must be A or B");

g
g

Figure 3.10: Manipulation of C Representations

36 CHAPTER 3. GENERATING INTERFACE PACKAGES

stress data abstraction would hide these within fetch/store macros.

Figure 3.8 represented a class as a union of pointers to structs. An

alternative is to represent a class as a union of structs; this more closely

resembles variant records. The former representation assumes only node types

have a physical existence; the latter allows for allocating space for an object

when you haven't yet decided what member of the class it will be. Each has

implications for what information the header �eld must contain that go beyond

the scope of this chapter.

3.4 Operations on Classes

We can view attribute fetching and storing operations (Section 3.2.1) as op-

erations on classes. Aside from these, one can declare, create, delete, assign,

and test for equality.

3.4.1 Creation

A target model will require some way for specifying what attributes to supply

at node creation time. A sensible way to do this is to to use the view mechanism

of derived structures. For example, given
structure S1 is

A => A1 : T1, A2 : T2;

end

structure S2 from S1 is

A => A3 : T3

end

you could direct the IDL translator to creating objects via S1 and access objects

via S2. Thus the node creation procedures will accept values for attributes A1

and A2 as parameters, and will assign a default value for A3. There should

also be some way for users to specify the parameter order; the Traversal

implementation note suggested in Section 4.2.2 is one possible mechanism.

As it stands, IDL does not provide a mechanism for specifying default

initialization. However, this is a reasonable and simple extension; see Sec-

tion 3.7.4.

3.4.2 Deletion

Since IDL structures can have arbitrary sharing, explicit object deletion is

dangerous. Unless your IDL structures have very simple sharing, you must

consider building a garbage collector. Chapter 6 outlines a garbage collection

technique suitable for many IDL-based systems.

3.5. SEQUENCE AND SET REPRESENTATIONS 37

3.4.3 Assignment

The target model may need to include operations for assigning class-valued

variables, since the target language's built-in rules for assignment may not be

appropriate. In addition to explicit assignment, the target model needs to deal

with implicit assignments, which show up in call-by-value and call-by-value-

result parameter passing.

If the type model follows IDL closely, the source and destination of an

assignment need not have the same type. For example, if we have the IDL

declaration
Tree ::= inner | leaf;

inner ::= unary | binary;

then to a destination of type Tree you may assign a value of type inner, unary,

binary, or leaf. We call this a widening assignment; it requires no run time

checks, unless the target model calls for checking for unde�ned values.

Assignments in the other direction do require a check; we call these narrow-

ing assignments. Section 2.2.7 introduced the idea of widening and narrowing.

3.4.4 Equality and Equivalence

To match IDL closely, the target model should represent variables as references

(pointers, indices, and so on) to objects. Thus it makes sense to ask whether

two variables reference the same object. In typical cases this might have a low-

level implementation as pointer equality. However, some DIANA discussions

led us to postulate representations that involved making multiple copies of the

same \object" for performance reasons; here the equality test might involve

comparing some form of global object identi�er hidden away in the internal

representation of the object. Thus the target language equality operator may

not be appropriate.

3.5 Sequence and Set Representations

Sequence and set object representations typically involve a parameter for the

element type. Implementations may involve instantiating generic packages,

possibly with parameters provided by a representation speci�cation. For ex-

ample,
type t1 = seq of t2;

for t1 use circular queue;

might lead the IDL translator to include the following Ada code in the inter-

face module speci�cation for the containing structure:
package t1Pkg is new circular queue(t2 rep);

subtype t1 rep is t1Pkg.seqType;

38 CHAPTER 3. GENERATING INTERFACE PACKAGES

where t2 rep is the Ada type that implements IDL type t2. If there is a sec-

ond circular sequence type, with elements of type t3 that happens to have

the same Ada type as t1, a clever IDL translator need not instantiate package

circular queue again; instead, it could simply add a subtype declaration for

t3 rep.

In languages that lack generics, we can achieve similar results by having

the IDL translator expand some form of generic package description. The

key point of this section is that implementation notes may need parameters,

and we need not wire all that much information about speci�c representation

packages into the IDL translator.

Some combinations of representational techniques and implementation lan-

guages may require that users supply parameters in the implementation note

for things that we would prefer to keep hidden. For example, one sequence

implementation requires threading the sequence through the nodes it contains;

this requires that no node be on more than one such sequence. This requires

adding a new attribute to each node to hold the pointer to the next element

of the sequence; trying to use Ada generics for a \threaded" representation

forces us to give such an attribute a name. It is best to supply the name in

an implementation note rather than have the IDL translator invent one, since

invented names inherently depend on processing details and could change from

one run of the translator to the next.2 Thus
type t1 = seq of t2;

for t1 use threaded(t1 thread);

leads to adding another fetch/store procedure pair
function Get t1 thread(x:t2 rep) return t2 rep;

procedure Set t1 thread(in out x:t2 rep; in a:t2 rep);

plus the type declaration
package t1Pkg is new

threaded(t2 rep, Get t1 thread, Set t1 thread)

subtype t1 rep is t1Pkg.SeqType;

The operations provided by the generic package call the procedural parameters

to build the sequence and iterate through it.

Ada forces a bit of additional complication on us. The threaded represen-

tation depends on t2 rep being an access type. To pass an access type as a

generic parameter and allow the generic package to know it is an access type,

you must pass both the access type and the type it points to. Figure 3.11

shows an outline of what the threaded package should look like.

To reiterate, this problem arose because we tried to use Ada package in-

stantiation to de�ne all the sequence operations on type t1 rep. We had to tell

2For example, the translator might invent thread1 for the �rst thread �eld, thread2

for the second, and so on. If you then delete the �rst threaded representation, the name for

what used to be the second changes to thread1.

3.5. SEQUENCE AND SET REPRESENTATIONS 39

generic

type ElementRep is private;

type Element is access ElementRep;

with function GetThread(x:Element) return Element;

with procedure SetThread(in out x:Element; v:Element);

package threaded is

type SeqType is private;

procedure Append(in out S:SeqType; E:Element);

function Get Subscript(in out S:SeqType; I:integer) return Element;

...

private

type SeqType is

record

First,Last:Element := null;

end record;

end;

package body threaded is

procedure Append(in out S:SeqType; E:Element) is

begin

if S.First = null

then S.First := E

else SetThread(S.Last, E)

end if;

S.Last := E; SetThread(E,null);

end Append;

function Get Subscript(in out S:SeqType; I:integer) return Element is

Cur : Element := S.First;

begin

if I<=0 then raise Subscript Error end if;

while I>1 loop

if Cur = null then raise Subscript Error end if;

I := I-1; Cur := GetThread(Cur);

end loop;

return Cur;

end Get Subscript;

...

end;

Figure 3.11: Form of Threaded Sequence Package in Ada

40 CHAPTER 3. GENERATING INTERFACE PACKAGES

the body of package \threaded" how to manipulate the t1 thread attribute,

and the only way to do so was to pass the speci�cation procedures as generic

parameters to the speci�cation. We had to de�ne these procedures within the

package de�ning the IDL structure.

Ideally, we shouldn't need to name the thread �elds at all, since we wouldn't

want users to manipulate them directly. In an alternative scheme, the IDL

translator could \macro expand" the speci�cation of the threaded package,

plugging in t2 rep in the appropriate places. Figure 3.12 shows an IDL in-

terface module that does so. In the body of the IDL structure package, we

instantiate the threaded package and use it to de�ne the functions whose head-

ers we macro-expanded in the speci�cations.

3.6 Other Implementation Details

The previous sections showed that much of what an IDL translator does de-

pends only on the names of the types and the names given in the implemen-

tation note. Some implementation notes require that the the IDL translator

embody more information about representational details.

3.6.1 Size

Sometimes an IDL translator needs to know the size of a type. For example,

C has union types rather than variant records. To keep attributes of a class

in the same relative positions in di�erent nodes within the class, while allow-

ing for overlapping classes, the translator must align �elds of di�erent struct

declarations.

This poses no problem for built-in types. However, the IDL translator does

not know the size of any private types. Thus a structure to be implemented

in C must have a size representation for each private type; for example, a user

might say
type t1;

for t1 use package(p1,t2);

for t1 use size(bits(27))

Some target models might require additional information, such as whether the

private type uses heap storage.

3.6.2 Operation Restrictions

Previous sections have discussed implementation notes that controlled repre-

sentations of references and objects. Another note controls what operations a

generated package should contain. The implementation notes
for <type reference>use operations(name1, ..., nameN)

for <type reference> use forbid(name1, ..., nameM)

3.6. OTHER IMPLEMENTATION DETAILS 41

package IDLstruc is

...

-- defines Get, Set functions for all visible attributes

-- does not define Get t1 thread, Set T1 thread

...

type t1 rep is private;

procedure Append(in out S:t1 rep; E:t2 rep);

function Get Subscript(in out S:t1 rep; I:integer) return t2 rep;

private

type hidden t2 rep is private;

type t2 rep is access hidden t2 rep;

type hidden t1 rep is private;

type t1 rep is access hidden t1 rep;

end;

package body IDLstruc is

function Get t1 thread(x:t2 rep) return t2 rep is ...;

procedure Set t1 thread(in out x:t2 rep; in a:t2 rep) is ...;

package t1pkg is new

threaded(t2 rep, hidden t2 rep, Get t1 thread, Set t1 thread);

subtype t1 rep is t1pkg.SeqType;

procedure Append(in out S:t1 rep; E:t2 rep) is

begin

t1pkg.Append(S,E);

end Append;

pragma inline(Append);

...

end;

Figure 3.12: Hiding the Thread Fields in Ada

42 CHAPTER 3. GENERATING INTERFACE PACKAGES

de�ne what operations the designer wants to make available on each type.

operations names allowed operations; forbid names forbidden operations.

You would normally use only one or the other; if you use both, any con
ict

between the two is an error.

The two operations on attributes are fetch and store. Restricting either

of these operations eliminates the corresponding member of the procedure pair

from the interface. Restricting both means the attribute is physically present

but invisible. This might happen with a series of derived structures, where

a process using the �rst sets an attribute, intermediate processes ignore it,

and a process at the end of the series fetches the attribute. In addition to

reducing the size of an interface module, this gives �ne-grain control over who

can change an attribute.

3.7 Readers and Writers

Unless two processes have identical representations for a data structure (down

to the exact values of pointers), one or the other must transform the repre-

sentation of the data. In an IDL-based system, both processes cooperate; one

process writes the information in an exchange representation, and the other

reads the exchange representation into an internal form. This section discusses

readers and writers for the ASCII external form introduced in Section 2.3.4

on page 14.

3.7.1 Reader Design

An IDL reader is a parser for the external representation scheme. This gram-

mar requires a lookahead of 2 because of labels, but a lexer could reduce a

parser's lookahead to 1 by treating a name followed by ^ or : as a single

symbol.

A top-down parser requires less overhead than a bottom-up parser. A top-

down parser can create a node representation as it begins to parse a node

production, then store individual attributes in the current node as it parses

attribute productions. A bottom-up parser must keep the attribute/value

pairs around in some auxiliary structure until it is ready to build the whole

node.

When designing the reader, you must decide the extent to which it will

detect and recover from errors. If you assume its input always comes from

a correct IDL writer, you might have little error detection. If you assume

input might come from hand-generated �les, or incorrect processes, you might

need more error detection. Figure 3.13 gives a partial list of errors you should

consider having your reader check for.

3.7. READERS AND WRITERS 43

1. Syntax error (violation of the external form BNF). The message should

show clearly what the parser found and what it expected to �nd.

2. Invalid attribute name for this node type.

3. Invalid attribute value. The message should say what type of value the

reader expected.

4. Unknown node type (possibly a special case of error 3, except that it

includes the root node).

5. This node type is not a member of the necessary class (possibly a special

case of error 3, except that it includes the root node).

6. Invalid value for this sequence (or set).

7. The representation of this attribute does not permit this value. You

might consider special cases of this message, such as \expecting an inte-

ger in range A..B", or \expecting a string of exactly K characters".

8. Too many distinct values for this attribute. This is a special case of

error 7, but applies only to indexed or hashed attributes.

9. Inappropriate sharing (a special case of error 7). A value is shared in

the input �le, but the representation does not permit sharing. This

could happen because the attribute is embedded, the two attributes that

share the value have di�erent representations, or the value is part of two

distinct threaded lists of the same type.

10. Unde�ned label. Since IDL allows forward references, the reader can

only give this message at the end of the input �le. Ideally the message

should give some way to �nd all the places in the input that reference

the label.

11. Assertion failure. This message ought to identify the assertion that failed

and explain why it failed. Simple readers might not check all assertions.

Figure 3.13: Partial List of Reader-Detected Errors

44 CHAPTER 3. GENERATING INTERFACE PACKAGES

Because of labels and cross-references, the reader must contain the same

label-resolution logic found in many single-pass compilers.

3.7.2 Writer Design

If a writer has no other purpose but to emit an exchange representation, it

has a simple structure. The writer skeleton shown in Figure 3.14 makes two

passes over the data structure: one to detect shared nodes (for later labeling),

and one to write out the data structure. The alternative is to make one

pass, writing out a label for each node. Performance �gures show that label

processing by the reader is expensive, while the extra pass to detect sharing

is cheap [Lamb87a]. Thus the two pass method is more e�cient.

This skeleton assumes that each node has a pair of bookkeeping
ags,

Touched and Shared. At any call on Writer, the Touched �eld of each node

equals the current value of TouchPhase (the reader leaves these �elds false).

At the end of the call on Writer, the Touched attribute of each node has the

same value as at the beginning. It also requires that you can reach nodes in

a structure from the root node by following attributes, and so need no extra

links to guide iteration.

For many data structures, you consider some attributes to be structural and

others to be auxiliary. For example, the DIANA attributes whose names start

with \as " are structural attributes. You might add implementation notes to

identify the structural attributes; this would allow a more complex writer

to use nesting only for structural attributes, and cross-references for non-

structural ones. This makes the nesting of the external representation match

the designer's idea of what the spanning tree for the structure should be, and

prevents forward references from distorting the structure. Figure 3.15 shows

two variant external representations for a tree for the expression A+(B*A).

The next �eld of a tree node points to the next occurrence of node represent-

ing the same \common subexpression". In 3.15a, printing structural attributes

�rst forces the external form to follow the intuitive tree structure. In 3.15b,

the writer printed the next �eld �rst, thus printing all the \A" leaves �rst; un-

derstanding the conventional tree structure requires following cross-references

rather than following the nesting.

You might choose to complicate the basic structure of the writer to serve

additional purposes. For example, a debug writer might label each node with

its memory address. Also, a debug writer cannot assume that the data struc-

ture is correct; in particular, it cannot assume that Touched and Shared
ags

are in a consistent state. Thus it may need to maintain auxiliary data struc-

tures to record sharing.

3.7. READERS AND WRITERS 45

procedure Writer(Root:NodeType);

procedure MarkShared(Node:NodeType);

begin

if Node.Touched = TouchPhase

then begin Node.Shared := true; AssignLabel(Node) end

else begin

Node.Touched := TouchPhase; Node.Shared := false;

case Node.Kind of

f code to call MarkShared for all subnodes g
end

end

end f MarkShared g;

procedure WriteNode(Node:NodeType);

begin

if Node.Touched = TouchPhase

then Write(Node.Label," ^")

else begin

Node.Touched := TouchPhase;

if Node.Shared then Write(GetLabel(Node),":");

case Node.Kind of

f code to write the node type, followed by all its

attribute, using WriteNode for node-valued attributes

end

end if

end f WriteNode g;

begin

TouchPhase := not TouchPhase; MarkShared(Root);

TouchPhase := not TouchPhase; WriteNode(Root);

end f Writer g

Figure 3.14: Pascal Writer Skeleton

46 CHAPTER 3. GENERATING INTERFACE PACKAGES

tree ::= inner | leaf;

leaf => name : String;

inner => left : tree, right : tree, op : String;

leaf => next : tree void;

tree void ::= tree | void;

Representations of A+(B*A) with forward links from

each node to the next occurrence of a \common subex-

pression."

inner [

op "+";

left

leaf [name "A";

next L1 ^];

right

inner[

op "*";

left leaf [name "B";

next void];

right L1:

leaf [name "A";

next void]

]

]

(a) Structural Attributes First

inner [

op "+";

left

leaf [name "A";

next L1:

leaf [name "A";

next void]];

right

inner[

op "*";

left leaf [name "B";

next void];

right L1 ^

]

]

(b) Depth First Order

Figure 3.15: In
uence of Structural Attributes on External Form

3.7. READERS AND WRITERS 47

3.7.3 Private Types

IDL provides private types for declaring objects and attributes whose repre-

sentation is unknown to the IDL translator. One tells the IDL translator what

external representation to use for the type, then provides a package that im-

plements the internal representation. For example, to declare a stack type one

might say
type MyStack = seq of ElementType;

for MyStack use package(myPackage,repType);

Externally, MyStack is represented by a sequence of objects of type ElementType.

Internally, one uses type repType from package myPackage.

To allow reading and writing of private types, a package must provide op-

erations that interact with the graph readers and writers. One might choose a

variety of ways of doing this; we chose a method that prohibits private packages

from directly reading or writing �les. This permits the readers and writers to

hide the details of the external representation. The IDL translator, run-time

library, readers, writers, and generated interface understand the representa-

tional details of all the non-private types in a structure. The input/output

interface for a private type must use these known types.

Each IDL system might have its own conventions for how the reader/writer

communicates with private packages. Figure 3.16 shows the IDL declarations

for a private type and the Pascal module that implements it, using the conven-

tions of my Ph.D. thesis system [Lamb83]. The types Nxsrc and Rxsrc come

from the interface module, typically by �le inclusion.

A module implementing a private type must supply

� A type declaration for the internal representation of the private type

(PosType in Figure 3.16).

� An input mapping routine that accepts the reader's representation of the

data and returns a value of the private type (IPosType in Figure 3.16).

� A \detect sharing" routine that accepts a value of the private type and

marks it or portions of its substructure that are shared (MPosType in

Figure 3.16). The writer needs this routine because it does not know

whether the representation of the private type has room to record sharing

(such as via marker
ags) or whether it needs some auxiliary data.

� An output mapping routine that accepts a value of the private type

and returns the writer's representation for the external representation

(OPosType in Figure 3.16). If substructure of the private type already

has a representation that the reader/writer understands, the output rou-

tine can reference it rather than create new objects. If the private value

is shared (as recorded by the detection-of-sharing routine), the output

48 CHAPTER 3. GENERATING INTERFACE PACKAGES

f main file for PosModule: implementation of SrcPos g
f IDL declarations:

type srcpos = xsrc;

xsrc => line: Integer, charp: Integer;

for srcpos use package(PosModule,PosType);

g

const charsPerLine = 256;

type PosType = integer;

f Nxsrc, Rxsrc imported from generated interface module, probably by

file inclusion g
Nxsrc = ^ Rxsrc;

Rxsrc = record

line, charp: integer; f plus overhead fields g
end;

f input mapping routine g

procedure IPosType(var D:PosType; X:Nxsrc);

begin

D := X ^.line*CharsPerLine + X ^.charp

end;

f detection-of-sharing routine g

procedure MPosType(var D:PosType);

begin f PosType objects are never shared g end;

f output mapping routine g

procedure OPosType(var Ret:Nxsrc; X:PosType);

begin

new(Ret);

Ret ^.line := X div CharsPerLine;

Ret ^.charp := X mod CharsPerLine;

end;

f deletion of generated output representation g

procedure DPosType(var X:Nxsrc);

begin Dispose(X); X := nil end.

Figure 3.16: Pascal Module for a Private Type

3.7. READERS AND WRITERS 49

mapping routine must return the same reader/writer representation ob-

ject every time writer passes it the same value, so that the external

representation can preserve sharing.

� A deletion routine that accepts the object returned by the output map-

ping routine and deletes it (DPosType in Figure 3.16). In a target system

with garbage collection this routine need not do anything. It should

only delete the portions of the object generated by the output mapping

routine.

The reader's representation and writer's representation for a type are iden-

tical (type Nxsrc in Figure 3.16). The IDL translator can derive the writer's

data structure for the external representation directly from the structure dec-

laration.

� If the external representation is an integer, rational, boolean, or string,

the writer's data structure is a string containing the characters of the

external representation. This allows the private type module maximum

generality. A debugging version of the writer might also check that the

string was lexically correct.

� If the external representation is a set or sequence, and the target language

allows some form of generic sequence type, the writer's data structure is

a sequence of records representing the elements of the set or sequence,

in the order they appeared in the input. Alternatively, the user's pack-

age could provide a trio of input routines, \create empty sequence (or

set)", \append element to sequence (or set)", and \�nish appending to

sequence (or set)", plus a similar trio of output routines.

� If the external representation is a node, the writer's data structure is the

default representation the IDL translator would build for such a node {

typically a record or element of a variant record.

The easiest way for the reader/writer to deal with the primitive integer,

rational, boolean, and string types is via modules like those for private types.

3.7.4 Data Transformations

In large systems one may have a series of data structures, each only slightly

di�erent from the previous. A designer may use the IDL derivation facilities

(Section 2.4.2) to derive one structure from another. The new structure may

add new node types, delete old ones, add new attributes to existing nodes,

and delete old attributes.

With process declarations a designer can specify that the output of a par-

ticular process becomes the input of another. The structure de�nition for the

50 CHAPTER 3. GENERATING INTERFACE PACKAGES

input need not be the same as that of the output, provided one was derived

from the other. The IDL system can supply a writer/reader pair that makes

some simple transformations from one structure to another.

Some transformations are easy. Deleting an attribute is trivial. If one adds

an attribute, the reader can supply a default value; by saying

for node.attr use default("xxx");

the designer could specify a default in the IDL description. If one adds new

node types, the reader has no extra work: the input cannot have any such

nodes in it. If one deletes a node type, the reader must report errors if any

such nodes exist in the input.

We can speculate about improved IDL systems that could support more

complex transformations or initializations. IDL contains a sublanguage for

making assertions about properties of a structure. An IDL system could gen-

erate a program for verifying whether an instance of the structure satis�es the

assertions; ?CS? describes such a checker for a large subset of the assertion

language. For example, the checker could determine whether a particular inte-

ger attribute recorded the depth of the node that contains it from the root. It

may be possible to interpret some assertions about attributes as computations

for de�ning their values.

Chapter 4

Extending the IDL System

Given the basic IDL notation for describing programs and their data, and

tools to process the notation, it is easy to imagine several extensions one

might wish to make. This chapter discusses extensibility mechanisms build

into IDL, and some other extensions I have considered that require changing

the IDL notation. These ideas are sketchy; I expect to revise them as I extend

the Queen's IDL system.

4.1 Built-In Extensibility

IDL has four built-in mechanisms to allow di�erent implementations to ex-

tend the system: implementation notes, private types, atomic types, and type

constructors.

4.1.1 Implementation Notes

In all versions of IDL, implementation notes (once called representation spec-

i�cations) have been the main route by which the designers expected to see

variations among di�erent systems. Appendix B summarizes the standard

implementation notes implementations might wish to support.

The main purpose of implementation notes is to name di�erent representa-

tions for IDL types; the only limit to their variability is how much information

an IDL translator implementor wishes to embed in the translator. For example,

one might provide several implementations of sequences, such as �xed-length

arrays, singly-linked lists, doubly-linked lists, or threaded lists.

However, the only real restriction on implementation notes is that they

should not change the semantics of the abstract IDL types. Thus, for example,

in Section 3.7.4 we suggested a note of the form

for node.attr use default(value)

which would specify the default value to which a reader initializes an attribute.

51

52 CHAPTER 4. EXTENDING THE IDL SYSTEM

4.1.2 Atomic and Private Types

In previous versions of IDL the prede�ned type names integer, boolean,

rational, and string were all reserved words. There is no good reason why

they shouldn't simply be prede�ned identi�ers. This makes it easier to extend

the set of prede�ned types.

One obvious extension is to prede�ne type names that imply particular

representations (unless the user overrides the default with an implementation

note). For example, the target model may de�ne integer as having a 32-bit

representation. The IDL translator may supply a short integer prede�ned

type that has a 16-bit default representation.

Private types are an alternative mechanism for extending the set of rep-

resentations. For example, if a user wanted an arbitrary-precision rational

number implementation, she could write such a package and say
type myInteger = Integer;

for myInteger use package(myPackage,arbitrary int)

Any particular system will have conventions for how private types will interact

with the rest of the run-time system; Section 3.16 shows one possible set of

conventions for a Pascal-based implementation.

4.1.3 Type Constructors

In earlier versions of IDL, set and seq were reserved words. They should be

identi�ers to allow implementations to extend the collection of type construc-

tors.

One extension I am thinking of is to add map and relation extensions.

� A relation is a set of ordered n-tuples, which one might think of as a set

of nodes in IDL. Operations on relations include the ones that relational

databases typically provide. Thus one might declare
row => f1:t1, ..., fN:tN;

x => rel : relation of row;

� A map is a data structure representing a function. One way to represent

a map is as a set of ordered pairs, with the restriction that no value may

occur more than once as the �rst element of the pair. Thus one could

think of a map as a set of objects of some node type where the node

had exactly two attributes. Typical operations on maps are application

(table lookup) and element rede�nition (table entry). Thus one might

declare
elem => key:keyType, val:valType;

x => attr : map Of elem;

4.2. NOTATIONAL EXTENSIONS 53

4.2 Notational Extensions

Some extension to IDL might require changing or augmenting the syntax of

the IDL notation.

4.2.1 Abbreviations

One of our design constraints with IDL was to avoid notational abbreviations.

We wanted to avoid adding such mechanisms until we were certain we under-

stood the base functionality. Typical extensions one might consider include

� Allow several implementation notes in the same clause.

for x.y use rep1(arg1),rep2(arg2);

� Allow several �elds of the same type.

x => f1, f2 : t1, f3, f4 : t2;

4.2.2 Referencing Multiple Attributes

Sometimes one would like to refer to several attributes of a class at once. The

form

<implementation reference> ::= <multiple attribute

reference>

<multiple attribute reference> ::= <name>0.'f' f <name>1 #

, g+ 'g'

is a Queen's extension; it refers to a group of attributes whose representations

you need to coordinate. <name>0 is the name of a class; each <name>1 is one of

its attributes. For example,

for someClass.fattr1, attr2, ...g use Traversal

says that depth-�rst tree traversals should �rst visit attr1, then attr2, and so

forth.

As another example, Figure 4.1 shows a structure, tree, that has several

distinct node-valued attributes per node. We might want a representation that

makes generic tree-walks over this structure easy. The derived structure tree2

does so by representing all the node-valued attributes of each node as a single

sequence; clients of this representation could refer to x.children[i] instead of

x.left or x.right.

54 CHAPTER 4. EXTENDING THE IDL SYSTEM

structure tree root expr is

expr ::= if exp | oper exp | leaf;

oper exp ::= bin exp | unary exp;

if exp => cond: expr, then: expr, else: expr;

oper exp => op: operator;

bin exp => left: expr, right: expr;

unary exp => child: expr;

operator ::= plus | minus | ... ;

plus =>; minus =>;

leaf => ...;

end

structure tree2 from tree is

expr => children: seq of expr;

for bin exp.fleft, rightg use Sequence(children);

for unary exp.child use Sequence(children);

for if node.fcond, then, elseg use Sequence(children);

for leaf.fg use Sequence(children);

end

Figure 4.1: Sequence Representation of Attribute Group

4.2.3 Other Notations

If a tool designer needs some completely di�erent notation to capture some-

thing she wants to do with IDL, one possible mechanism is to hide the ex-

tensions in annotations. Annotations are comments with a particular easy-to-

recognize pre�x. For example, my research project keeps the grammar for an

input language in the same �le as the IDL description of the abstract syntax,

for ease of maintenance. A simple tool extracts the grammar and passes it to

a parser generator. The section for a simple expression might look like
expr ::= binary;

binary => left : expr, op : operator, right : expr;

--G expr ::= expr addOp factor | factor

--G factor ::= factor mulOp term | term

The --G looks like a comment to IDL, but is easy for the grammar extractor

to �nd.

Chapter 5

Formal Semantics

A formal semantics is a precise description of the meaning of a notation using a

method that itself has a precisely de�ned syntax and semantics. Using a formal

semantics instead of some more informal description has several advantages.

1. Formal methods give a precise speci�cation for what the notation means.

Informal methods are prone to ambiguity and omission.

2. Formal methods give a rigorous way to reason about the notation. In

particular, it gives a way to verify that an implementation of the notation

is correct.

3. Formal methods typically give some way to abstract away from implementation-

speci�c details, and specify properties that must be true for all possible

implementations.

The technique we have used in the IDL work is denotational semantics.

Tennent [Tenn81] gives an introduction to the basic ideas of using denota-

tional semantics to programming languages; Gordon [Gord79] and Stoy

[Stoy81] give more advanced treatments. The key idea is as follows. One

bases a denotational description of a language on the abstract syntax of the

language. One gives the meaning of each construct of the language as a de-

notation: a mathematical object that models the meaning of the construct.

Typically a denotational description has one semantic function for each major

syntactic class (such as expressions, commands, and de�nitions) that gives the

meanings of all abstract syntax trees that are instances of that class. To de-

�ne the semantic functions, one gives a set of semantic equations, one for each

member of the syntactic class. Thus if a language has assignment commands,

sequences of commands, if commands, and while commands, one would de�ne

the semantic function for commands with four equations, one for each type of

command.

Typically each semantic function takes arguments that supply contextual

information, such as the meanings of the identi�ers. One typically gives the

55

56 CHAPTER 5. FORMAL SEMANTICS

meaning of a construct in terms of the contextual information and the mean-

ings of the components of the construct. This structurally-oriented approach

leads naturally to a structural method of reasoning about instances of the no-

tation; one proves or de�nes a property for the primitive notions, then deals

with the constructs via structural induction.

Formal methods in general, and the ones we have used with IDL in partic-

ular, su�er from two important problems.

� Most people who would want to understand IDL have di�culty following

mathematical descriptions.

� Without tools to help check the semantic equations, semanticists are

prone to making errors in their descriptions.

I know of no good solution to the �rst problem, other than education. For the

second, I hope to supervise a series of student projects to import or construct

a suitable set of tools.

Chapter 6

Garbage Collection

Most IDL-based systems would use a heap to allocate space for IDL objects.

In a large system, it is likely that many objects have limited lifetime, so the

space needed for all objects at any one time is probably much smaller than the

space needed for all objects over the life of the program. Thus an IDL-based

system must almost certainly solve the problem of releasing objects once they

are no longer useful.

Explicit deletion of objects in a system with sharing is dangerous; you can

rarely be sure you have zeroed the last pointer to a block before releasing

it. Garbage collection is a much safer alternative. This chapter describes

a method of garbage collection (designed by Nestor, Newcomer, and Steele)

suited for IDL implementations in languages like C.

6.1 Self-Identifying Storage

A major argument against garbage collection strategies in conventional lan-

guages is that it is impossible to know where to �nd all the pointers. In an

IDL-based system with self-identifying storage, this argument is false.

Many storage allocation methods require a small amount of overhead in

each block of the heap. If we are careful to design this overhead so that the

length of each block is encoded in the block, then each storage block is self-

identifying. In an IDL-based system, we can store node tags and bookkeeping

ags in the overhead words, since we can use the node tags to index into a

table of block sizes.

6.2 Garbage Collector Structure

A garbage collector typically has three phases:

� Mark all heap objects as potential garbage.

57

58 CHAPTER 6. GARBAGE COLLECTION

� Find all pointers, and mark the objects they reference as non-garbage.

� Return all unmarked heap objects to the free lists.

Pointers to IDL objects can occur in one of four places:

� In other IDL objects.

� In registers.

� In static (own) storage.

� On the stack.

� Implicitly, in \hidden" pointers such as those of the Indexed implemen-

tation note.

Pointers in IDL objects are no problem, since the storage blocks are self-

identifying, and the IDL system can create tables that describe where in each

node to �nd the pointers. Pointers in registers are a special case of pointers

on the stack, since procedure call conventions can force all registers onto the

stack at the call to the garbage collector. Section 6.4 discusses how to handle

hidden pointers; however, many useful IDL-based systems might have no hid-

den pointers. Thus the interesting problem is how to handle pointers in static

and stack storage.

6.3 Finding Pointers in the Stack

With help from the compiler, we can treat static storage and stack frames as

IDL objects. However, for stacks this method imposes the additional overhead

of creating the object header for the stack frame on each call, which can make

procedure calls unacceptably slow. Furthermore, most implementors cannot

a�ord to modify the compiler in this way.

We can avoid the need for compiler help and runtime overhead in procedure

calls with a technique John Nestor developed. It relies on four observations

about IDL-based systems:

� It is easy to �nd the beginning and end of the stack, and thus iterate

over it.

� It is easy to tell if an address is on the heap, by scanning a list of

begin/end pairs for each storage area.

� The word before any IDL object is a storage header.

� It is easy to scan the heap in order of increasing addresses.

6.4. HIDDEN POINTERS 59

The garbage collector scans the stack looking for words that might be

pointers to IDL objects. It rejects many words immediately because they

could not be heap addresses. It ignores any word that appears to point into

the heap if the word before the one it points to has the bit set that says the

garbage collector has already scanned it, whether that word is really a storage

header or not. It stores any words that remain into a small bu�er area.

When the bu�er �lls up, or the scanner �nishes with the whole stack, the

garbage collector sorts the bu�er in increasing order of addresses. It then scans

the heap in storage order, comparing the address of each storage block with

words in the header; this is a linear operation since both lists are sorted. When

it �nds a word in the bu�er that points to the word after a storage header, it

can mark the storage block as non-garbage. When it �nishes with the bu�er,

it can go back to scanning the stack from where it left o�.

This method may fail to �nd some garbage, since some words on the stack

might accidentally look like pointers. This is unlikely, but it is safe: storage

leaks lead to performance problems, which are easier to live with than the

errors that result from freeing non-garbage. It requires a �xed overhead for

the bu�er area, which it can allocate at system startup time. Given a list of

pointers to the beginning and end of static storage segments, it can also �nd

pointers in static storage.

6.4 Hidden Pointers

Hidden pointers are references represented by a mechanism such as that of

the Indexed implementation note. Finding such pointers in IDL objects is no

problem, since the IDL translator can create tables that say where in each

object to �nd them, and how to turn them into full pointers. However, hidden

pointers on the stack are impossible to distinguish from small integers.

One way to deal with hidden pointers is to assume that any object such a

hidden pointer might reference is non-garbage. For example, for each Indexed

attribute there is a table that contains full pointers; the garbage collector could

locate these tables through the runtime symbol table and mark all objects they

reference.

An alternative relies on having the user call the garbage collector explicitly

at certain \safe" points. One IDL rule is that when a structure is consistent,

every node that is part of the structure is reachable from a root object. User

code could pass these roots to the garbage collector, and declare that only the

objects reachable from those roots are worth keeping. This can lead to the

same dangling pointer problems as explicit deletion, but is much less likely to

do so.

60 CHAPTER 6. GARBAGE COLLECTION

Appendix A

Extended BNF

This report uses an extended version of BNF to describe context-free syntactic

rules; John Nestor developed the original version of these conventions for the

C-MU Front End Generator [Nest81]. Its primary di�erences from other BNF

variations are:

� All its constructs are linear sequences of characters, suitable for machine

processing. Other BNFs sometimes use superscripts or subscripts.

� It aims to minimize how much a designer has to write. Thus other BNFs

may require

A ::= X (',' X)...

instead of

A ::= f X # ',' g+

This section gives both the concrete and abstract syntax of a BNF gram-

mar. The concrete syntax gives the rules for what you would type to describe

a grammer; the abstract syntax is an IDL description for an internal repre-

sentation of the grammar. newNT stands for a new non-terminal; in any one

description, it is the same nonterminal in all occurrences.

� Grammar. A grammar is a sequence of rules; there may be special means

for describing the start symbol and other grammar properties.

<grammar> ::= f <production> ';' g* ;

<production> ::= <nonterminal> '::=' <bnf> ;

grammar => rules: seq of production;

production => lhs : nonterminal, rhs : bnf;

61

62 APPENDIX A. EXTENDED BNF

� Symbols. In the concrete syntax, a nonterminal is any sequence of let-

ters, digits, spaces, and underscores enclosed in angle brackets (<>). A

terminal is any sequence of printable characters enclosed in single quotes

('); to include quotes within a terminal, double them (thus 'it"s' is a ter-

minal containing the word \it's").

<bnf primary> ::= <terminal> | <nonterminal>;

<nonterminal> ::= ' <' f <letter> | ' ' | ' ' | <digit>

g+ ' >';

<terminal> ::= '''' f f <printable> # '''' g | '''''' g+
'''';

Type Token;

symbol ::= nonterminal | terminal;

nonterminal =>; terminal =>;

symbol => lx symrep : Token;

bnf primary ::= symbol;

� Alternation.

<bnf> ::= <bnf alternation>

<bnf alternation> ::= f <bnf seq> # '|' g*;

bnf ::= bnf list

bnf list ::= bnf alt; bnf alt =>;

bnf list => list : seq of bnf

An expression of the form

bnf1 | ::: | bnfN

is equivalent to an occurrence of a new nonterminal newNT where

newNT ::= bnf1; ::: newNT ::= bnfN;

are new productions.

� Sequences. Any sequence of BNF expressions is a BNF expression. Se-

quencing has higher precedence than alternation.

<bnf seq> ::= f <bnf primary> g*;

bnf list ::= bnf seq; bnf seq =>;

63

� Grouping.

<bnf primary> ::= 'f' <bnf> 'g';

bnf primary ::= bnf single;

bnf single ::= bnf group; bnf group =>;

bnf single => item : bnf;

An expression of the form

f bnf g

is equivalent to a new nonterminal newNT where

newNT ::= bnf;

is a new production.

� Non-empty list.

<bnf primary> ::= 'f' <bnf> 'g+' ;

bnf single ::= bnf plus; bnf plus =>;

An expression of the form

f bnf g+

is equivalent to a new nonterminal newNT where

newNT ::= bnf | newNT bnf;

is a new production.

� Possibly empty list.

<bnf primary> ::= 'f' <bnf> 'g*' ;

bnf single ::= bnf star; bnf star =>;

An expression of the form

f bnf g*

is equivalent to a new nonterminal newNT where

newNT ::= | newNT bnf;

is a new production.

� Non-empty separated list.

<bnf primary> ::= 'f' <bnf> '#' <bnf> 'g+' ;

64 APPENDIX A. EXTENDED BNF

bnf double ::= bnf sep plus; bnf sep plus =>;

bnf double => element : bnf, separator : bnf

An expression of the form

f bnf1 # bnf2 g+

is equivalent to a new nonterminal newNT where

newNT ::= bnf1 | newNT bnf2 bnf1;

is a new production. Alternatively, it is equivalent to

bnf1 f bnf2 bnf1 g*

� Possibly empty separated list.

<bnf primary> ::= 'f' <bnf> '#' <bnf> 'g*' ;

bnf double ::= bnf sep star; bnf sep star =>;

An expression of the form

f bnf1 # bnf2g*

is equivalent to

f f bnf1 # bnf2g+ g?

� Elements once in any order.

<bnf primary> ::= 'f' f <bnf> # '#' g+ 'g?';

bnf list ::= bnf once; bnf once =>;

The expression

f bnf1 # ::: # bnfNg?

is equivalent to

f bnf1 | ::: | bnfNg*

restricted so that each bnfi can appear at most once. The special case

with exactly one element has the obvious meaning of an optional element.

� Di�erence.

<bnf primary> ::= 'f' <bnf> '#' <bnf> 'g-' ;

bnf primary ::= bnf diff;

bnf diff => left : bnf, right : bnf;

An expression of the form

65

f bnf1 # bnf2 g�

means any bnf1 that is not a bnf2. In general this is only computable

for regular expressions.

66 APPENDIX A. EXTENDED BNF

Appendix B

Standard Implementation Notes

This appendix summarizes standard implementation notes. All implementa-

tions should consider implementing these notes, but need not do so; however,

if you are an IDL implementor and want to support an implementation note

with functionality similar to one of these, you should use the name I give here

rather than inventing your own. This is the appropriate compromise between

rigidly de�ning a set of implementation notes and providing no guidelines at

all.

Three implementation note apply to any nameable IDL entity.

� Supply the name to use for the entity (node, class, type, attribute, struc-

ture, process, port, de�nition) in the target model.

for reference use target name(identifier)

This gives a way for you to name entities in the target model that con
ict

with IDL keywords.

� Name the operations allowed on the entity.

for reference use operations(identifier,...,identifier)

This restricts the operations to a subset of those the target model de�nes.

� Name the operations forbidden on the entity.

for reference use forbid(identifier,...,identifier)

This is an alternative way to restrict the operations to a subset of those

the target model de�nes.

B.1 Structures

If you apply a process-speci�c note (such as use generate) to a structure, an

IDL translator invents a process with a default body; the default may vary

from translator to translator. For example, one suitable default might be a

full-blown interface module, a nested ASCII writer, and an ASCII reader.

67

68 APPENDIX B. STANDARD IMPLEMENTATION NOTES

B.1.1 References

Section 3.2 discusses reference representations in more detail. Except for hash

(which applies only to attributes), all these implementation notes apply to any

object reference (attribute, or element of composite type).

� pointer. Represent the reference as an implementation-language pointer.

� embed. An embedded object exists only as a part of the object that ref-

erences it; it cannot be shared. Embed is the default for types boolean,

integer, and rational. The enumeration and nil representations are spe-

cial forms of the embed representation.

� unique. Here there is exactly one object of the given type with any given

value.

� index. The reference is a small integer index into an auxiliary table.

� hash. This note applies only to attribute references. The reference is

stored in a hash table, with the node's address as a key. It is especially

useful when most attribute instances have a particular default value,

which need not be stored in the table.

All references have the operations fetch and store, which you may use in

operations and forbid notes.

The reference size note controls the space allocated for a reference. It

takes the same parameters as the size note (see Section B.1.2). Thus, for

example,
type X = ...;

a => b : X;

for a.b use pointer;

for a.b use reference size(bytes(2));

uses two-byte pointers pointers; saying

for a.b use size(bytes(2));

would mean that the objects referenced from a.b attributes (a subset of the

objects of type X) are two bytes long.

The reasoning for the distinction between size and reference size is:

� You might want to supply a reference size on a type, implying a default

for any references to objects of that type.

� You might want to supply a size on a reference, controlling the size

of the subset of objects of the attributes type that one might reference

through the attribute.

� For index attributes, you might need to specify both sizes.

B.1. STRUCTURES 69

� We expect specifying the size of embedded objects to be the most com-

mon use of either size, hence object sizes should have the shorter name.

B.1.2 Objects

All non-embedded objects have the operations create and destroy. If an

object type T appears only as embedded references, target models obey an

implicit

for T use forbid(create,destroy)

For embedded references (and objects in general), the size note controls

the size of the object. The following are mutually exclusive.

� bits.

for x.i use size(bits(n));

where n is an integer and n>0.

� bytes.

for x.i use size(bytes(n));

where n is an integer and n>0.

� words. This depends on the machine word size, and so means di�erent

things on di�erent systems. It is a way of giving a convenient, easily-

processed unit.

for x.i use size(words(n));

� address. The size of a word address. This depends on the machine word

size, and so means di�erent things on di�erent systems. It is a way of

giving a convenient, easily-processed unit.

for x.i use size(address);

If addresses of di�erent kinds of objects are of di�erent sizes, an IDL

implementation may need to provide several other address-like imple-

mentation notes.

The default note speci�es a default initial value for objects of a type. A

typical use is to give a default value to attributes:
x => a : string;

for x.a use default("Fred")

Node creation procedures would use these to initialize the attributes, as would

readers.

70 APPENDIX B. STANDARD IMPLEMENTATION NOTES

B.2 Types

B.2.1 Boolean

There are no special implementation notes for boolean. All object and refer-

ence notes apply. Many implementations will default boolean to embed and

size(bits(1)).

We don't list any operations on type boolean, since we don't see any par-

ticular reason to restrict any of them. A good starting place for a list would

be the operations on booleans in the assertion language.

B.2.2 Classes

The special representations on classes are:

� enumeration. This is a special case of embed.

� nil. This is also a special case of embed. No class may contain two

di�erent subclasses with a nil representation.

The only operations on classes are the create and destroy for any non-

embedded objects, and member, which tests whether an object is a member of

the class.

B.2.3 Integer

All object and reference notes apply. Many implementations will default in-

teger to embed. In addition, there are the following speci�c implementation

notes.

� Range.

for x.i use range(n1,n2);

N1 and n2 are integers, and n1 � n2. The size must be large enough to

hold all numbers in the range, including the sign.

� Bias. This is a number to be added to the stored representation to yield

the actual integer value. The normal bias is zero.

for x.i use bias(n);

N is any integer; if you omit it, the default is the lowest value of the range.

Biased representations permit smaller representations. For example,
for x.i use range(250,260);

for x.i use bias;

allows a four-bit representation instead of a nine-bit representation.

B.2. TYPES 71

We don't list any operations on type integer, since we don't see any par-

ticular reason to restrict any of them. A good starting place for a list would

be the operations on integers in the assertion language.

B.2.4 Private Types

The primary implementation note for private types is package, which names

the module (and optionally the type within the module) that implements the

private type.
type T;

for T use package(pack,sometype)

says that type sometype of module pack implements IDL type T. If you omit

the name after the dot, it defaults to the name of the private type. Thus given

a private type T, the following are equivalent.
for T use package(pack);

for T use package(pack,T);

Some target models may require that you also specify the size implemen-

tation note for any private type. We don't list any operations on private types,

since each will have its own operations, de�ned in the package that implements

it.

B.2.5 Rational

Rationals allow the range and bias notes, as do integers; the limits and bias

may be rational literals as well as integer literals.

The main additional notes specify classes of implementations. The follow-

ing are mutually exclusive.

� Floating point. Specify the minimum decimal digits of precision via use

digits(n); n must be a positive integer.

� Fixed point. Specify the exact di�erence between successive elements

via use delta(n); n must be a positive rational. A �xed point rational

with use delta(1) is equivalent to an integer.

� Pair of integers: use pair. Specify integer implementation notes (size,

range, bias, and so on) for the numerator and denominator as arguments

to pair, or independently as use numerator(notes) and use denominator(notes).

We don't list any operations on type rational, since we don't see any par-

ticular reason to restrict any of them. A good starting place for a list would

be the operations on rationals in the assertion language.

72 APPENDIX B. STANDARD IMPLEMENTATION NOTES

B.2.6 Sequence

The following sequence representations are mutually exclusive.

� array(integer). Fixed length. If you supply an integer argument, the

array length is a constant for all instances. Otherwise, the size is deter-

mined at allocation.

� chained array(integer). A linked list of arrays of elements. The integer

gives the length of the individual arrays.

� array stack(integer). Standard array implementation of a stack, with

index of top of stack. If you supply an integer parameter, it gives the

array length for all instances. Otherwise, the size is determined at allo-

cation.

� array queue(integer). Standard array implementation of a queue, with

indices of �rst and last elements. If you supply an integer parameter, it

gives the array length for all instances. Otherwise, the size is determined

at allocation.

� list. This is a partially resolved representation. A translator would

use default rules, possibly taking into account operation restrictions, to

resolve it to single list, circular queue, double list, circular deq, or

some other list representation.

� single list. Non-circular singly linked list.

� circular queue. Circular singly linked list; the type is a pointer to the

last element of the list, allowing fast insertions at either end and fast

removal from the front.

� double list. Non-circular doubly linked list.

� circular deq. Circular doubly linked list.

The threaded applies to any sequence with a list implementation; it runs

the links through attributes of the nodes rather than in a separate object. This

note limits how many such sequences each node can be on, since each requires

a di�erent collection of attributes. For singly-linked lists, it takes the name of

a single attribute; for doubly-linked lists, it takes the names of two attributes,

for forward and backward links (in that order).

There are many possible operations on sequences; not all representations

support all operations. Possible operations include concatenate two sequences,

delete front (pop, dequeue), delete back, get element (fetch via subscript),

get first (top, front), get last, insert front (push), insert back (append,

B.2. TYPES 73

enqueue), length, set element (store via subscript), set first, set last. Se-

quence packages may also provide iterators to access each element of a sequence

in order, and editors for walking over a sequence and adding and deleting ele-

ments in the middle. Operations on iterators might include get current and

set current. Operations on editors might include those for iterators, plus

delete current, insert after current element, and insert before current el-

ement.

B.2.7 Set

There are many possible representations of sets. The following are mutually

exclusive.

� bitmap(integer). An array of booleans, indexed by values of the element

type. This is only suitable for small sets of integers, �xed-point rationals,

�xed-length strings (typically of length 1, for characters), or enumeration

classes. If you supply the optional integer argument, it �xes the length

of the array; otherwise the size is set at allocation.

� flag. This is only suitable for sets of elements from a class where there is

only one such set in the system. The parameter names a boolean-valued

attribute to use as the set membership
ag.

� hash set(integer). A hash table, similar to those for the hash attribute

representation. If you supply the optional integer argument, it �xes the

length of the table; otherwise the size is set at allocation.

� sorted array(integer). A partially-�lled array where you test for mem-

bership with binary search. If you supply the optional integer argument,

it �xes the length of the array; otherwise the size is set at allocation.

� unsorted array(integer). A partially-�lled array where you test for

membership with linear search. If you supply the optional integer ar-

gument, it �xes the length of the array; otherwise the size is set at

allocation.

B.2.8 String

The following representations are mutually exclusive.

� varying(n). The string length may vary up to some maximum. If you

supply the optional positive integer argument n, the maximum size is n

for all such strings. Otherwise, each string has its maximum size �xed

at allocation.

74 APPENDIX B. STANDARD IMPLEMENTATION NOTES

� fixed(n). Once allocated, a string's size never varies. If you supply the

optional positive integer argument n, the size is n for all such strings.

Otherwise, each string has its size �xed at allocation.

� string common. Strings may be of any size, but are allocated as part of

a separately-managed string space. Strings in the SAIL language are of

this type [vanL73].

Operations on strings include concatenate, get element, get substring,

length, set element, and set substring.

B.3 Assertions

The package note for a user-supplied de�nition names the package that supplies

the body for the de�nition.

B.4 Processes

The only process-wide note is use generate.

If you use a structure-speci�c note in a process, it supplies a default for all

structures associated with the process.

B.4.1 Modules

Module notes a�ect aspects of the target model associated with the generated

module. With a for clause, they apply to a particular module or structure.

Without a for clause, they apply to all modules or structures in a process.

� Specify the target model. This normally implies the target implementa-

tion language; it would be typical to use a model with the same name as

the language. However, some models support several languages at once.

use model(name)

� Specify the target implementation language. This normally implies a

default target model.

use language(name)

� Pre�x all names for implementations of nodes, classes, private types, and

procedures in the module with a string to make them unique.

B.4. PROCESSES 75

use prefix(XX);

use prefix("Y$");

You can use a string where the target language allows characters in

identi�ers that IDL forbids.

B.4.2 Traversals

Writers and other iterators have a choice of what algorithm to use to decide

what order to access elements of the structure.

� Traverse all objects in storage order.

for writer use iterator(storage)

� Traverse all objects reachable from some node.

for write use iterator(reachable)

B.4.3 Input and Output

Several notes specify detailed properties of the readers and writers. The fol-

lowing notes are mutually exclusive.

� ascii. Use an ASCII external form. For writers, you may supply a

parameter to choose between nested and
at forms:
for writer use ascii(flat);

for writer use ascii(nested)

Readers should read both nested and
at forms.

� binary. Use a binary external form. For writers, you may supply a

parameter to choose between nested and
at forms:
for writer use binary(flat);

for writer use binary(nested)

Readers should read both nested and
at forms.

� repack. The reader/writer pair in the connection will cooperate to repack

an existing structure in memory. If the two internal representation hap-

pen to be identical, no work is necessary.

For ASCII and binary writers, the compress speci�es how much to compress

the output. The following arguments are mutually exclusive.

76 APPENDIX B. STANDARD IMPLEMENTATION NOTES

� none. No compression. Use the full-blown ASCII external form, and tag

each attribute in a binary external form with a value corresponding to the

attribute name. This allows for arbitrary rearrangement and repacking

on input.

� defaults. Tag each attribute with the attribute name, as in none, but

eliminate those attributes with default values.

� tags. Eliminate attribute tags, writing out attributes in a prede�ned

order.

The medium note takes an argument specifying how to pass the encoded

information from one process to another.

for R use medium(file)

Both sides of a connection must specify (or default to) the same medium. The

following media are mutually exclusive:

� file. Pass the information in an operating system �le. The target

model must give a way to specify the name of the �le. This is the most

sensible default for ascii and binary I/O.

� memory. Pass the information in memory; this is the default medium for

repack. It makes less sense for ascii and binary, but is still possible.

� message. Use message-passing primitives.

Appendix C

History

IDL is an outgrowth of an earlier system called LG developed at Carnegie-

Mellon University for the PQCC (Production Quality Compiler-Compiler)

project [Leve80]. PQCC was a research project investigating the design and

construction of optimizing compilers. Several of the project's research goals

guided the design of LG:

� The PQCC compiler would be a multiple-phase program, to allow dif-

ferent researchers to work on di�erent parts of the PQCC system inde-

pendently.

� Phases would need to exchange program trees,
ow graphs, and similar

graph structures.

� The implementation language, BLISS-10 [Wulf71] (and later BLISS-36

[DEC77]), had no convenient means for declaring structured data.

� Debugging a phase often required examining some portion of the graphs

produced by the phase. This meant there had to be some human-

readable form for the graphs.

� A phase might need to be tested before some predecessor was working.

Typically this would mean that a human would simulate the missing

phase by hand. This meant there had to be a human-editable form for

the graph structures.

� The wide variety of graph structures needed during the project made it

highly desirable to automatically generate declarations and input/output

routines, rather than writing each by hand.

This led to a generic graph reader/writer, a notation (never named) for de-

scribing nodes, and a program (the `Require �le generator') for generating

BLISS data declarations and tables for the reader/writer. Between 1976 and

77

78 APPENDIX C. HISTORY

1981, when the project shut down, several people helped design and imple-

ment portions of the LG system, including David Dill, Gary Feldman, Paul N.

Hil�nger, Steven O. Hobbs, Joseph M. Newcomer, and Wm. A. Wulf. Wulf

was in charge of the PQCC project, and wrote generic set and list processing

packages. Newcomer, Hil�nger, and Hobbs were responsible for the original

design and implementation. Newcomer had primary responsibility for the Re-

quire �le generator, and modi�ed the existing BLISS debugger to interface

with the reader/writer to print and modify nodes. Newcomer and Dill built

the �rst binary reader/writer package during 1978-9.

During 1979 and early 1980 Intermetrics, Inc. developed its own variant

of LG to support several languages, including Fortran, PL/1, C, and Pascal

[Inte80]. Also during this period, the PQCC project published its representa-

tion scheme for Ada programs, TCOLAda [Scha79,Newc79,Bros80]. Experience

convinced us that the input language for the Require �le generator was a poor

way to communicate such descriptions to other people. In addition, there was

some interest in trying to be able to communicate between the Gandalf project

[Habe79] and PQCC. Gandalf was written in C [Kern78] and ran on a VAX-

11, a machine with 32-bit words, while PQCC was written in BLISS and ran

on a DECsystem20, a machine with 36-bit words. Thus there was motivation

to develop a replacement for LG that would permit communication between

programs written in di�erent languages on di�erent hardware, with a more

human-readable graph description language.

During the summer of 1980, Wm. A. Wulf, John R. Nestor, and David

Alex Lamb began to work on IDL as a replacement for LG; they completed

the initial design during December 1980. In January 1981 they met with

Gerhard Goos' team from the University of Karlsruhe at Eglin Air Force Base

to design DIANA [Goos83], an intermediate representation for Ada programs.

DIANA contained ideas from TCOLAda and AIDA, Karlsruhe's intermediate

representation. The DIANA de�nition was the �rst major use of IDL. David

Lamb wrote the �rst IDL translator as part of his PhD research during 1981-

2. The initial target for IDL was Bliss-36 using LG support. David A. Syiek

produced a Pascal target model to support his Master's project.

When Wulf, Nestor, and Anita Jones founded Tartan Laboratories in 1981,

they adopted Lamb's IDL translator as a key tool. The main players in build-

ing the Tartan technology were Kenneth J. Butler, Steven B. Byrne, Susan

Dart, Edward N. Dekker, David Alex Lamb, Don Lindsay, Joseph M. New-

comer, John R. Nestor, Guy L. Steele, David A. Syiek, and Leland Szewerenko.

Syiek and Dekker built the �rst target model for the Gnal language; Newcomer

and Nestor built the second during 1983-4. These were the �rst real target

models for a modern language that supported information hiding. Syiek and

Dekker were the �rst to suggest the need for a Constant Structure Generator

tool; Newcomer implemented it in 1984. Steele, Newcomer, and Nestor de-

signed and built a highly optimized storage allocator and garbage collector.

79

Tartan supported other work on IDL, including a revision of the formal de�-

nition [Gian86], IDL-based extensions to attribute grammars [Nest83], and a

portable runtime system.

Several other organizations built their own IDL translators, often as part

of e�orts to build Ada compilers using DIANA. Intermetrics has two such

translators, and has built several compiler development tools on top of IDL.

For example, BONSAI [Inte86] is a tool that aids in generating tree transfor-

mation phases; it uses IDL to describe the data structures. Snodgrass and his

colleagues at the University of North Carolina in Chapel Hill have an exten-

sive collection of IDL-based tools, including an IDL-to-C translator [Snod87].

They were the �rst group to make extensive use of IDL facilities other than

structure declarations, such as process declarations and assertions. They are

preparing a book describing their tools [Snod89].

In February, 1985, Intermetrics, Inc. sponsored a DIANA/IDL Workshop

in Airlie, Virginia as part of a DIANA revision contract. At this meeting Ben

Hyde showed Lamb the need to distinguish reference representations from

object representations (Section 3.2).

During 1986-7 the Software Engineering Institute at Carnegie-Mellon Uni-

versity explored IDL as a tool for interfacing large sets of software tools. The

project brought together IDL developers and users from industry, academia,

and government. An SEI-sponsored workshop at Kiawah, South Carolina,

May 19-21, 1986, brought together several practitioners with IDL experience.

Participants in the workshop made several valuable suggestions about inter-

face package design issues. One result of the workshop was a special issue of

SIGPLAN Notices on IDL [Morg87].

Several other organizations have supported IDL research and development

e�orts, including the Defense Advanced Research Projects Agency (DARPA),

the Software Engineering Institute of Carnegie-Mellon University, and the Nat-

ural Sciences and Engineering Research Council of Canada (NSERC). The

members of IFIP Working Group 2.4 have given much helpful feedback over

several years.

80 APPENDIX C. HISTORY

Bibliography

Ben M. Brosgol, Joseph M. Newcomer, David Alex Lamb, D.

Levine, Mary S. van Deusen, and William A. Wulf, \TCOL.Ada: Re-

vised Report on An Intermediate Representation for the Preliminary

Ada Language," Technical Report CMU-CS-80-105, Computer Science

Department, Carnegie-Mellon University (February 1980).

Lori A. Clarke, Jack C. Wileden, and Alexander L. Wolf,

\Graphite: A Meta-Tool for Ada Environment Development," Tech-

nical Report COINS Technical Report 85-44 (March 1986).

Digital Equipment Corporation, \BLISS Language Guide"

(1977).

Paola Giannini, \A Formal Semantics for IDL," Computer Sci-

ence Department, Carnegie-Mellon University (1986).

Gerhard Goos, William A. Wulf, Art Evans, and Kenneth J.

Butler, DIANA: An Intermediate Language for Ada. Springer-Verlag

(1983). Lecture Notes in Computer Science #161.

M.J.C. Gordon, The Denotational Description of Programming

Languages: an Introduction. Springer-Verlag, New York (1979).

A. N. Habermann, \The Gandalf Research Project," in

Computer Science Research Review, Computer Science Department,

Carnegie-Mellon University (1978-79).

Intermetrics, Inc., 733 Concord Ave., Cambridge, MA 02138,

\Intermetrics LG System Description," Technical Report IR 536 (Au-

gust 1980).

Intermetrics, Inc., 733 Concord Ave., Cambridge, MA 02138,

\Compiler Retargeting Tools User's Guide," Technical Report IR-MA-

623 (5 May 1986).

B. W. Kernighan and D. M. Ritchie, The C Programming Lan-

guage. Prentice-Hall, Inc., Englewood Cli�s (1978).

81

82 BIBLIOGRAPHY

Jerry Scott Kickenson, \An Interface Description Language As-

sertion Checker," Technical Report TR86-014, Computer Science De-

partment, University of North Carolina (Chapel Hill) (1986).

David Alex Lamb, Sharing Intermediate Representations: The

Interface Description Language, Ph.D. dissertation, CMU-CS-83-129,

Carnegie-Mellon University (May 1983).

David Alex Lamb, \Implementation Strategies for DIANA At-

tributes," Technical Report 85-176, Queen's University Department of

Computing and Information Science (November 1985).

David Alex Lamb, \IDL: Sharing Intermediate Representa-

tions," ACM Transactions on Programming Languages and Systems Vol.

9(3):267-318 (July 1987).

David Alex Lamb, \Program Component Generator Project Im-

plementor's Guide, Version 1.4," Technical Report Internal Technical

Report ISSN-0836-0235-87-IR-01, Queen's University Department of

Computing and Information Science (October 1987).

David Alex Lamb, \Generating Interface Packages, Readers, and

Writers from IDL Descriptions," Technical Report 87-190, Queen's Uni-

versity Department of Computing and Information Science (October

1987).

David Alex Lamb, \Implementation Strategies for DIANA At-

tributes," SIGPLAN Notices Vol. 22(11) (November 1987).

David Alex Lamb and Robin Dawes, \Testing for Class Member-

ship in Multi-Parent Hierarchies," Information Processing Letters Vol.

28(1):21-25 (May 1988).

Bruce W. Leverett, Richard G. G. Cattell, Steven O. Hobbs,

Joseph M. Newcomer, Andrew H. Reiner, Bruce R. Schatz, and William

A. Wulf, \An Overview of the Production Quality Compiler-Compiler

Project," IEEE Computer Vol. 13(8):38-49 (August 1980).

C. Robert Morgan, SIGPLAN Notices Special Issue on the In-

terface Description Language IDL. (November 1987). SIGPLAN Notices

22,11.

John R. Nestor and Margaret A. Beard, \Front End Generator

System," in Computer Science Research Reviewappendix B , pages 79-

92, Computer Science Department, Carnegie-Mellon University (1980-

1981).

BIBLIOGRAPHY 83

John R. Nestor, William A. Wulf, and David Alex Lamb, \IDL

- Interface Description Language: Formal Description," Computer Sci-

ence Department, Carnegie-Mellon University (June 1982). Draft revi-

sion 2.0. Available from the Software Engineering Institute, Carnegie-

Mellon University, Pittsburgh, PA 15213.

John R. Nestor, Bhubaneswar Mishra, William L. Scherlis, and

William A. Wulf, \Extensions to Attribute Grammars," Technical Re-

port TL 83-86, Tartan Laboratories, Inc. (April 1983).

Joseph M. Newcomer, David Alex Lamb, Bruce W. Leverett,

D. Levine, Andrew H. Reiner, Michael Tighe, and William A. Wulf,

\TCOL.Ada: Revised Report on An Intermediate Representation for

the DOD Standard Programming Language," Technical Report CMU-

CS-79-128, Computer Science Department, Carnegie-Mellon University

(June 1979).

Bruce R. Schatz, Bruce W. Leverett, Joseph M. Newcomer,

Andrew H. Reiner, and William A. Wulf, \TCOL.Ada: An Inter-

mediate Representation for the DOD Standard Programming Lan-

guage," Technical Report CMU-CS-79-110, Computer Science Depart-

ment, Carnegie-Mellon University (March 1979).

Karen Shannon and Richard Snodgrass, \Mapping the Interface

Description Language Type Model into C," Technical Report SoftLab

Document 24, Computer Science Department, University of North Car-

olina (Chapel Hill) (March 12, 1986).

Richard Snodgrass, \IDL Toolkit Release Notes (Version 3.2),"

Technical Report SoftLab Document 33, Computer Science Department,

University of North Carolina (Chapel Hill) (November 1987).

Richard Snodgrass, Karen P. Shannon, Jerry S. Kickenson,

Michael A. Shapiro, Dean D. Throop, William B. Warren, David A.

Lamb, John R. Nestor, and William A. Wulf, The Interface Description

Language: De�nition and Use. Computer Science Press, Rockville, MD

(1989).

J.E. Stoy, Denotational Semantics: the Scott-Strachey Ap-

proach to Programming Language Theory. MIT Press, Cambridge (Mas-

sachusetts) (1981).

R. D. Tennent, Principles of Programming Languages. Prentice-

Hall, Englewood Cli�s, NJ (1981).

84 BIBLIOGRAPHY

Kurt A. van Lehn, \SAIL User Manual," Technical Report

Memo AIM-204, Stanford Arti�cial Intelligence Laboratory (July 1973).

Also available as Stanford Computer Science Department Report STAN-

CS-73-373, or from the National Technical Information Service, Spring-

�eld, VA 22151.

William A. Wulf, D. B. Russell, and A. Nico Habermann,

\BLISS: a Language for Systems Programming," Communications of

the ACM Vol. 14(12):780-790 (December 1971).

