Freescale Semiconductor Order this document as
AN496/D

AN496/D

Using M C683xx M -bus softwar eto communicate
between processor systems

James Gilbert,
Applications Group, High-Performance Products,
Freescale Semiconductor, Inc. East Kilbride, Scotland.

I ntroduction

M-bus is an 12C-compatible bus interface used in the 683xx family. It is a seria interface comprising two open-drain,
bidirectional signals, namely seria clock (SCL) and serial data (SDA). Multiple devices can be connected directly to these
open-drain lines, and indeed this is good reason for the widespread adoption of the bus as an efficient IC communication
method in end-systems.

A typical scenario would consist of a processor with an M-bus master controlling the data flow between several slaves, such
as LCDs, real-time clocks, keypads, A/D converters and memories. Moreover, a built-in bus collision mechanism supports
multiple M-bus masters as well as multiple slaves. The M-bus module of the 683xx is flexible enough to operate as either an
M-bus master or aslave.

This application note demonstrates control software for M-bus communication between two identical MC68307 systems,
one configured with an M-bus master and the other an M-bus dave. Only a short piece of initialisation code needs to be
changed to make the MC68307 code applicable to other 683xx devices with M-bus.

Overview of M-bus Software Transfer Mechanism

For full details of M-bus features, and a complete specification of the M-bus module, refer to the MC68307 User Manual .
For the sake of clarity, abrief overview of the software control mechanism is provided here.

The M-bus communication is on a byte-wide basis. The components of the hardware transfer protocol are a START
condition, 8 data bits, an acknowledge bit and a STOP condition. Before starting a communication, an M-bus master should
carry out a software check to ensure the bus is free, and therefore all other M-bus transfers are compl ete. Thereafter, the bus
master initiates a transfer by software writing a START condition onto the bus. Thisis an indicator to all connected M-bus
devices that this master is taking charge of the bus, and that the address of the targeted slave is to follow. For the 683xx M-
bus master, writing the targeted slave address to the data register initiates the 8-bit transfer (M SB first).

If a system has two or more M-bus masters which poll the bus free and start a transfer at the same time, then the collision
detection arbitration, throughout the transfer of the slave address transfer and subsequent data bytes, decides which device
gets charge of the bus. If the 683xx M-bus loses arbitration in this way, it stops driving data onto the bus, to prevent data
corruption. Furthermore, it switches automatically into slave mode pre-empting the alternate master addressing it asa slave.
If interrupts are enabled, an interrupt is generated on the completion of that byte, and a status bit indicates arbitration lost as
the interrupt source.

The first data byte transmitted by the M-bus master is always the targeted slave address, with the least significant bit
determining whether the slave remains ready to receive or transmit subsequent bytes. The addressed slave can then
acknowledge the received byte, or not, depending upon the software protocol and acknowledge capability of the slave
devices used. Each acknowledge is like a 9th data bit, asserted by the receiver as a handshake to successfully transmitted
data

© Freescale Semiconductor, Inc., 2004. All rights reserved. -

> freescale

semiconductor

0 1995. All trademarks are recognised.

rxzb30
ForwardLine

rxzb30
copywithline

rxzb30
copywithline

Freescale Semiconductor, Inc.

A block transfer comprising a series of data bytes (and acknowledges, if used) follows as commanded by the software
protocol. The bus remains busy throughout the block, precluding al other masters from starting transfers. At the end
of the block, the bus master relinquishes the bus by software placing a STOP condition onto the bus.

Ultimately, the M-bus master is responsible for starting and stopping transfers, but the number of bytes transferred
can be dictated by either the master or slave depending upon the desired software protocol. For example, a slave may
acknowledge all bytes received until it saturates, at which point the master STOPs the block transfer. Alternatively,
the slave receiver may acknowledge received bytes until the master transmitter dictates there are no more bytes to
send. Indeed, both master and slave can be charged with controlling the transfer block. For instance, the software
protocol may transfer a byte count as part of the communication, or use a fixed number of transfer bytes every time.

For the best choice in software control, transfers can adopt either a status polling method, or interrupts at the end of
each byte. The interrupt option is most commonly used to minimise the time the processor is tied up with the transfers
(overhead). If enabled, the interrupts are generated on the compl etion of each 9 bits (8 data bits plus an acknowledge).

M-bus Master Mode Operation

Using interrupts to transmit data to the addressed slave is straightforward. During the M-bus initialisation, the 683xx
M-bus sets up master transmitter mode, sets the M-bus frequency, enables interrupts, provides an interrupt handler
and STARTSs the block transfer. The targeted slave address (with Isb = 1 for slave receiver mode) is transmitted by
writing to the M-bus data register. On each subsequent end-of-byte interrupt, further data bytes are transmitted by
writing data to the M-bus data register until the block is complete. On the interrupt at the end of the last byte the
software STOPs the transfer.

For receiving from the addressed dave, the initialisation is exactly the same. Remember that even if receiving, the
first operation isto transmit the targeted slave address (except thistime Isb ='0"). In the interrupt handler at the end of
the dave address transmit byte, the transmit mode is changed to receive. Then, to initiate the first byte receive
operation, the 683xx M-bus master software carries out adummy read of the data register. No sensible dataiis read at
this point, but it is the action of this read which starts the data receive. At the end of each received byte, the interrupt
generated is used to read the data register again for valid data, and to start the next byte receive. This continues until
the master receiver STOPs the block transfer.

The receiver is aways responsible for the generation of acknowledges. The 683xx M-bus receiver can be
programmed to generate acknowledges automatically for each byte received if desired. Most slave transmitters take
an acknowledge from the master receiver to mean that further bytes are desired. In fact, for some slave transmitters, it
is necessary for the master receiver to acknowledge all received bytes (except the last one), to indicate that more data
byte transmits are required. Thisis not arequirement of the 683xx M-bus slave.

M-bus Slave M ode Oper ation

Many of the principles discussed for the master operation also hold true for the slave 683xx M-bus. The main
differences are that the M-bus is no longer controlling the transfer (STARTing and STOPping) or the provider of the
M-bus clock, but isinstead following what the master dictates.

For slave operation, again initialise the M-bus frequency, M-bus slave address, interrupt handler and interrupt enable.
As the first transfer is aways the receipt of the slave address, slave receive mode should always be programmed
initially. All target dave addresses which are transmitted by the master (first byte after START) are then checked
against the programmed 683xx M-bus slave address for a match. When they match, an interrupt is generated (if
enabled), and a status bit indicates the cause as M-bus addressed-as-lave (MAAYS).

On entering the corresponding interrupt handler, the software read/write status indicator is read to determine whether
the dave is to receive or transmit subseguent bytes, and the transmit/receive mode set accordingly. If in transmit
mode, the first data byte transmit isinitiated by writing to the dataregister. If in receive mode, the first receive byteis

For More Information On This Product,
2 Go to: www.freescale.com

Freescale Semiconductor, Inc.

initiated by a dummy read of the data register. There is no sensible data read at this point, but having started the
receive process, data register reads in subsequent end-of-byte interrupts read valid data and initiate the next byte
receive. Again, the software protocol determines the use of acknowledges.

For afuller description of the M-bus software and hardware features, see the MC68307 users manual.

Description of Set-up

The hardware consists of two identical MC68307 systems connected together via the M-bus as shown in Figure 1.
Both are master-mode processor systems, each with the MC68307 processor core executing instructions prefetched
from ROM. This is not to be confused with the master and slave operation of the M-bus modules within each
processor.

68307 5V 68307
System System
2.2k 2.2k
Master | SCL 0T SCL | Save
MBus | SDA . SDA | MBus

Figure 1 Hardware Setup

Each MC68307 system has 128kB EPROM and 128kB SRAM and runs a debug monitor. A complete description of
the system hardware is provided in AN490/D, “Multiple Bus Interfaces using the MC68307".

Using the monitor's download facility, an M-bus control program is downloaded into the SRAM of each board. The
code alows one system to control its M-bus module as a master, while the other implements an M-bus save.
Together, the two software programs alow the MC68307 M-bus master to write data to the M-bus dave and later
read it back for verification.

Softwar e Flow

The MC68307 master M-bus controls the number of blocks transferred via START and STOP conditions. In this
example, there are only two communication blocks, one transmitting data to the dlave (master transmit block), and
one receiving data back from the slave for verification (master receive block). The master/slave responsibilities
during the master transmit block are outlined in Figure 2a and for the master receive block in Figure 3a.

On these diagrams, note that for a given transfer byte, the end-of-byte interrupts on the master and slave occur at
around the same time. The built-in M-bus transfer mechanism means it does not matter in which order they are
serviced. The master and slave interrupt service order used in the flowcharts of Figures 2a and 3a is purely for
demonstration purposes. The interrupt handlers are shown such that the data flow is always from transmitter to
receiver. It should be understood that the master and slave interrupt handlers are happening at the same time, as are
the transmit and receive of a particular byte.

Transfer Blocks

The master M-bus controls the number of data bytes within each transmit/receive block. Observe Figures 2b and 3b,
which give asummary of the activity on the M-bus during the master transmit and master receive blocks respectively.

When the master is transmitting data (master transmit block), the slave acknowledges al bytes received, and the
master decides when the transfer is completed by setting a STOP condition; see Figure 2b. When the master is

AN496/D For More Information On This Product,
Go to: www.freescale.com)

Freescale Semiconductor, Inc.

receiving data (master receive block), it decides when the transfer is complete by stopping acknowledges on the last
received byte, (thereby stopping the slave transmitting) and setting a STOP condition; see Figure 3b.

Softwar e |mplementation

The software used is shown in Software listing 1 and 2. Only the method of enabling the M-bus and interrupts at the
start of the software listings is specific to the MC68307. Thereafter, the code is generic for any 683xx device with an
M-bus module.

The 683xx M-bus slave software should always be set running before the master software, such that the prospective
daveisinitialised as areceiver before the master transmits the slave address.

The software uses interrupts to control the byte transfers within each block. The M-bus master starts the transfer by
transmitting the slave address. Thereafter interrupts are generated on both the master and slave M-bus to control the
test. The M-bus hardware protocol does not care which order the interrupts are serviced by the master (transmitter or
receiver) or slave (transmitter or receiver) at the end of each byte. Consider that the master is in charge of generating
the SCL clocks to shift data out the transmitter and into the receiver, when atransmit/receive is initiated by writing/
reading the M-bus data register respectively. However, the clocks do not start until the slave has released the clock
line on the bus by making its corresponding read/write of its M-bus data register. Therefore, both 683xx M-bus
master and slave interrupts have to initiate the next data transfer.

The dave frequency can be programmed as greater or less than that of the master. M-bus implements a clock
synchronisation mechanism such that the clock with the shortest high time and longest low time dictates the open-
drain clock. For example, if the programmed slave M-bus clock frequency is less than the master, the slave can
stretch the clock as necessary.

The number of transfer and receive blocks, and the number of data bytes within each block can be altered in the
master software.The slave software remains the same throughout. If the user desires detailed crosschecks on the
software flow, interrupt counts (for number of bytes transferred) or a flag passing mechanisms could be implemented.
For simplicity thisis not used in the example software.

For More Information On This Product,
4 Go to: www.freescale.com

Freescale Semiconductor, Inc.

M-bus Slave Receiver Activity M-bus Master Transmitter Activity

-Set slave Rx mode |—> -Set master Tx mode

-START block transfer

-Write slave address to MBDR to
initiate address Tx (66)

(slave is to Rx data, so Isb = 0)

-Rx slave address —— | -Tx slave address

-Auto-Acknowledge address

-Interrupt on Slave address match
-Set Tx/Rx mode to Rx
-Dummy read of MBDR, ready
Rx 1st data byte —— | -Interrupt at end of address Tx

-Verify Acknowledge

-Remain in Tx mode

-Write 1st data byte (AA) to

MBDR to initiate Tx

-Rx data ®—_Tx data

-Auto-Acknowledge data

-Interrupt at end of 1st data byte Rx
-Read 1st byte of valid data from
MBDR (AA), and ready for next Rx — -Interrupt at end of 1st data byte Tx

-Verify Acknowledge

-Write 2nd data byte (55) to

MBDR to initiate Tx

-Rx data <———_-Tx data

-Auto-Acknowledge data
-Interrupt at end of 2nd data byte Rx
-Read 2nd byte of valid data from | gy

-Interrupt at end of 2nd data byte Tx
MBDR (55), and ready for next Rx Verify Acknowledge

- STOP block transfer

Figure 2a Master/Slave Responsibilities for the Master Transmit Block

o Start Tx Slave Tx 1st data Tx 2nd data Stop
Master Activity Block | Address byte byte Block
(Slave to Rx)
M-bus [start | 66 [Ack | AA [Ack | 55 | Ack | stop |
Rx Slave Ack Rx 1stdata | Ack Rx 2nd data Ack
Slave Activity Address byte byte

Figure2b Summary of M-bus Activity for the Master Transmit Block

AN496/D For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

M-bus Slave Tranmitter Activity M-bus Master ReceiverActivity
|-Set slave Rk mode I—> Set master Tx mode
START block transfer

Write dave address to MBDR to
inifate address Tx (67)
(slavetoRx so Isb =1)

-Rx slave address ®—— Tx slave address

-Auto-Acknowledge address
-Interrupt on Slave address match
SetTX¥Rx mode toTx

R//IVBrgeR1;t a%e;,t?o?—/;e (AA) o | p| dnterrupt at end of address Tx
-Verify Acknowledge

-Set Tx/Rx mode to Rx
-Dummy read of MBDR toinitiate
Rx of 1st data byte (AA)

-Tx data i—> -Rx data

-Auto- Acknow ledge data
dnterrupt at end of 1st data byte Rx
-Read of MBDR ready toRx 2nd
JInterrupt at end of 1st data byte Tx [———— databyte (55)
-Verify Acknowledge
Write 2nd data byte (AA) to
MBDR toinitiate Tx

-Tx data —— B -Rx data

No Acknowledge
dnterrupt at end of 2nd byte Rx

la————— - STOP block transfer

-Interrupt at end of 2nd data byte Tx
-No Acknowledge, so end Tx
-Switchto slave Rx mode ready
for next slave address

Figure 3a Master/Slave Responsihilities for the Master Receive Block

o Start Tx Slave Rx 1st data Ack Rx 2nd data No | Stop
Master Activity | Block | Address byte byte Ack | Block
(Slave to Tx)
M-bus [stat | 67 [Ack| AA [Ack | 55 [No Ack| Stop |
Rx Slave Ack Tx 1st data Tx 2nd data
Slave Activity Address byte byte

Figure 3b Summary of M-bus Activity for the Master Receive Block

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

SoftwareListing 1 - M-bus Master Software

hkkkkkkkhkkhkkhkkkkkkkkkk k%

FREESCALE 68307 | MBP TEST BOARD -

MBUS *

MODULE: MBM_I NT. SRC
Freescale

HI - END Appl i cations
East Kil bride.

Devel oped by :

NOTES:

controlled by the master. (i.e.
it acknow edges all the tine,
bytes to transfer.

bytes or not.)
The Master:

1) Wites out the slave chip address,
2) Wites out the slave chip address,

Master MBUS Routine using interrupts for a Master/ Sl ave Test

The nunber of bytes transmitted and received is conpletely

When the slave is receiving data,
and the nmaster dictates the nunmber of
Wien the slave is transnitting,
recei ver acknow edges dictate whether the slave is to send further

3) Verifies the data read back against that originally sent.

DATE: 8/ 4/ 94

* % kK

the naster

and 2 slave data bytes.
and reads 2 slave data bytes.

B I S T T

T . A T TN

EXTERNAL REFERENCE DECLARATI ONS

XREF SCR System Control Reg
XREF PBCNT Port B Control Reg
XREF Pl VR Peripheral Interrupt Vector Reg
XREF PI CR Peripheral Interrupt Control Reg
XREF MADR MBUS Address Reg
XREF MFDR MBUS Freq Divider Reg
XREF MBCR MBUS Control Reg
XREF MBSR MBUS St at us Reg
XREF MBDR MBUS Data Reg
*
* Constants
*
UVECBASE EQU $100 User Vector Base
MBUSVEC EQU UVECBASE+($D* 4) MBUS vector |ocation
MBUSHAN EQU $15000 MBUS | nterrupt Handl er |ocation
S307_AD EQU $66 Sl ave 68307 MBus Address
DRXCNT EQU $3 Dat a RECEI VE COUNT (2 + 1 Dummy)
ATXCNT EQU $1 Address TRANSM T COUNT
DTXCNT EQU $2 Data TRANSM T COUNT
*
* Mai n Program
*
ORG $10000 RANDOM LOCATI ON FOR ASSEMBLY
AND. L #$FFFFFEFF, SCR Clear SCR bit 8, MBUS CLock Active
MOVE. B #$40, PI VR Vector = #%$40, Vector @ address $100
OoR W #$000D, Pl CR MBUS Interrupt level =5
MOVE. L #VBUSHAN, MBUSVEC Set up MBUS Interrupt Handl er
R W #3$0003, PBCNT Enabl e MBUS Li nes
BSR I'NI T_MBM Initialise MBus as master
* WRI TE TO SLAVE 68307 MBus
* Wite Chip Address, and Two bytes of data
START BSR MBBUSY Poll the MBUS, wait till bus free
MOVE. B #0, V_DRXCNT Dat a RECEI VE COUNT
MOVE. B #ATXCNT, V_ATXCNT Address TRANSM T COUNT
MOVE. B #DTXCNT, V_DTXCNT Data TRANSM T COUNT
MOVE. B #1,V_WRI TE Set Wite to slave var = TRUE
MOVE. B #S307_AD, V_CH PAD Sl ave 68307 Mus recei ver Address
MOVE. L #S307_DATA, A0 Pointer to stored data for transfer
BSR WRI TE1 Send out the Chip Address

* READ FROM SLAVE 68307 MBus
* Wite Chip Address,

BSR MBBUSY

MOVE. B #DRXCNT, V_DRXCNT
MOVE. B #ATXCNT, V_ATXCNT
MOVE. B #0, V_DTXCNT

MOVE. B #0, V_WRI TE

and READ Two bytes of data

Poll the MBUS, wait till bus free
Dat a RECElI VE COUNT

Address TRANSM T COUNT

Data TRANSM T COUNT

Set Wite to slave var = FALSE

AN496/D

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

MOVE. B #S307_AD, D6 Al'ter chip address |sb for

OR B #$01, D6 sl ave transmt and

MOVE. B D6, V_CHI PAD wite to chip address variable

MOVE. L #S307_DATA, A0 Pointer to data for nenory 1

BSR WRI TE1 Send out the Chip Address
* Test Conplete

BSR MBBUSY Poll the MBUS, wait till bus free
FOREVER BRA FOREVER Test conplete & passed, |oop forever

hkkkkkkkkkkkkkkkkkkkkkkkhkk ok kkkhkk ok kkkkkkkkkkkkkkkkkkkhkkkkhkkhkkkkkkkkkkhkkhkkkk kK kK Kk k%

* MBUS SETUP/ I NI TI ALI SATI ON

P R R R R R R R R]

INNT_MBM MOVE.W #$2700, SR DI SABLE | NTERRUPTS BY SETTI NG TO LEVEL 7
MOVE. B #0, MBSR CLEAR | NTERRUPT PEND, ARBI TRATI ON LOST
MOVE. B #$0C, MFDR SET FREQUENCY
MOVE. B #$00, MBCR DI SABLE AND RESET MBUS
MOVE. B #%$80, MBCR ENABLE MBUS
RTS

* NOTE - By not witing MADR the 68307 MBUS sl ave address = 0

P R

* Poll the MBUS BUSY

hkkk kK k k%

MBBUSY BTST #5, MBSR TEST MBB BI T,
BNE MBBUSY AND VAIT UNTIL IT IS CLEAR
RTS

kk ok kkk ok k k ok k&

* GENERATI ON FI RST BYTE OF DATA TRANSFER

L R R

VRI TE1 BTST #5, MBSR TEST MBB BIT,
BNE VRI TE1 AND WAIT UNTIL IT IS CLEAR
TXSTART
BSET #4, MBCR SET TRANSM T MCDE
BSET #5, MBCR SET MASTER MODE (GENERATE START)
BSET #6, MBCR Enabl e MBUS Interrupts
MOVE. B (V_CH PAD), MBDR TRANSM T THE SLAVE CHI P ADDRESS
MOVE. W #%$2000, SR ENABLE | NTERRUPTS BY SETTI NG TO LEVEL 0
MBFREE BTST #5, MBSR TEST MBB BIT,
BEQ MBFREE If bus is still free, wait until busy
RTS

hkkkkkkkkkkkkkkkkkkkkkkk ok kkk ok k ok k ok kkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkk ok k ok k&

* POST BYTE TRANSM SSI ON/ RECEPTI ON SOFTWARE RESPONSE

P

ORG MBUSHAN Start of Interrupt Handler
I SR BCLR #1, MBSR CLEAR THE M F FLAG

MOVE. L DO, - (A7) PUSH D0 REG STER TO STACK
MOVE. L D1, - (A7) PUSH D1 REGQ STER TO STACK
MOVE. L #0, DO Cl ear general data reg
MOVE. L #0, D1 Clear general data reg
BTST #5, MBCR CHECK THE MSTA FLAG

BEQ SLAVE BRANCH | F SLAVE MODE

BTST #4, MBCR CHECK THE MODE FLAG

BEQ MASTRX BRANCH | F RECEI VE MODE

hkkkhkkkkkkkkkkkkkkkk kK k k%

* Master TRANSM T caused | nterrupt

P R R R]

MASTX BTST #0, MBSR CHECK ACK FROM RECEI VER,
BNE ENDVASTX I'F NO ACK, END TRANSM SSI ON
TXADDR MOVE. B V_ATXCNT, D1 CHECK Address TX COUNT
BEQ TXDATA I f address already Conplete go to data
SUBQ B #1, V_ATXCNT Decrenent Address Tx Count
TXDATA MOVE. B V_WRI TE, D1 Check if witing or reading slave
BEQ SETMASTRX If reading set to Master receive
MOVE. B V_DTXCNT, D1 CHECK Data TX COUNT
BEQ ENDVASTX I F NO MORE DATA THEN STOP BI T
SUBQ B #1, V_DTXCNT Reduce Tx Count
MOVE. B (AO0) +, MBDR Transmt next byte
BRA END EXIT
ENDVASTX BCLR #5, MBCR GENERATE STOP CONDI TI ON
BRA END EXIT
SETMASTRX BCLR #3, MBCR Enabl e TXAK
BCLR #4, NBCR Set mmster Receive Mde
BSET #5, MBCR SET MASTER MODE (GENERATE START)

For More Information On This Product,
] Go to: www.freescale.com

Freescale Semiconductor, Inc.

P R R R]

* Master RECElIVE

hkkkhkkkkkkkkkkkkkkkkkkk Kk Kk k%

MASTRX SUBQ B #1, V_DRXCNT Decrenent receive count
MOVE. B V_DRXCNT, D1
CWP. B #DRXCNT- 1, D1 First byte read Check
BNE NOTFI RST If not first, read and conpare as usual
MOVE. B MBDR, DO If first, DUMW read only to start Rx
BRA END
NOTFIRST CWP.B #0, D1
BEQ ENVASR LAST BYTE TO BE READ CHECK
SUBQ B #1,D1 LAST SECOND BYTE TO BE READ CHECK
BNE NXMAR NOT LAST ONE OR LAST SECOND, SO BRANCH
LAMAR BSET #3, MBCR LAST SECOND, DI SABLE ACK TRANSM TTI NG
BRA NXMAR
ENVASR BCLR #5, MBCR LAST ONE, GENERATE STOP S| GNAL
NXMAR MOVE. B MBDR, DO READ DATA
CWP. B (A0) +, DO COVPARE W TH WRI TTEN DATA
BEQ END I f data as expected o.k.
READERR BRA READERR El se ERROR | oop forever.
END MOVE. L (A7) +, D1 POP D1 REG STER FROM STACK
MOVE. L (A7) +, DO POP DO REG STER FROM STACK
RTE
SLAVE NOP
BRA SLAVE SLAVE OPERATI ON NOT | MPLEMENTED

B R R R

* Buffers and Vari abl es

hkkk kX k k%

V_WRI TE DC. B $1 Slave wite = True
V_CH PAD DC.B S307_AD Chip Address variable = Slave 307 Add
V_DRXCNT DC. B DRXCNT Set up variables - Data Recei ve Count
V_ATXCNT DC. B ATXCNT - Addr Transmt Count
V_DTXCNT DC. B DTXCNT - Data Transmit Count
S307_DATA DC.B $AA, $55 Chip 1 Data

END
AN496/D For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Software Listing 2 - M-bus Slave Software

khkkhkkhkhhhkhkhkkkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhrhkhkhkhhdhhhhhrrrrrxkx

* FREESCALE 68307 | MBP TEST BOARD - MBUS *
* *
* *
* MODULE: MBS_I NT. SRC DATE: 8/ 4/ 94 *
* *
* Devel oped by : Freescale *
* Hi - END Applications *
* East Kil bride. *
* *
* NOTES: *
* Slave MBUS Routine using interrupts for a Master/Slave Test *
* *
* The nunber of bytes transmtted and received is conpletely *
* controlled by the master. (i.e. Wen the slave is receiving data, *
* it acknow edges all the tine, and the naster dictates the nunber of*
* bytes to transfer. Wien the slave is transmtting, the naster *
* receiver acknow edges dictate whether the slave is to send further *
* bytes or not.) *
* *
* The Sl ave: *
* 1) Recognises its slave chip address, and receives 2 data bytes. *
* 2) Recognises its slave chip address, and transmts the 2 bytes. *
* *
*

* EXTERNAL REFERENCE DECLARATI ONS

*

XREF SCR System Control Reg
XREF PBCNT Port B Control Reg
XREF Pl VR Peripheral Interrupt Vector Reg
XREF Pl CR Peripheral Interrupt Control Reg
XREF MADR MBUS Address Reg
XREF MFDR MBUS Freq Divider Reg
XREF MBCR MBUS Control Reg
XREF MBSR MBUS Status Reg
XREF MBDR MBUS Data Reg
*
* Const ant's
*
UVECBASE EQU $100 User Vector Base
MBUSVEC EQU UVECBASE+($D* 4) MBUS vector |ocation
MBUSHAN EQU $15000 MBUS | nterrupt Handl er |ocation
S307_AD EQU $66 Sl ave 68307 MBus Address
*
* Mai n Program
*
ORG $10000 RANDOM LOCATI ON FOR ASSEMBLY
AND. L #$FFFFFEFF, SCR Clear SCR bit 8, MBUS CLock Active
MOVE. B #$40, PI VR Vector = #$40, Vector @ address $100
R W #3$000D, PI CR MBUS Interrupt level =5
MOVE. L #MBUSHAN, MBUSVEC Set up MBUS Interrupt Handl er
R W #3$0003, PBCNT Enabl e MBUS Li nes
BSR I NI T_MBS Initialise MBus as sl ave
FI NI SH BRA FI NI SH Loop forever

L

* MBUS SETUP/ I NI TI ALI SATI ON

B R R R R R R R R R R R]

INNT_MBS MOVE. W
MOVE. B
MOVE. B
MOVE. B
MOVE. B
OR B
MOVE. W
RTS

#3$2700, SR

#0, MBSR

#$10, MFDR
#S307_AD, MADR
#3$00, MBCR
#3$C0, MBCR
#$2300, SR

DI SABLE | NTERRUPTS BY SETTI NG TO LEVEL 7
CLEAR | NTERRUPT PEND, ARBI TRATI ON LOST
Set FREQUENCY

Set MBUS sl ave address

DI SABLE AND RESET MBUS

ENABLE MBUS, Ints, TXAK

Enabl e | NTS BY SETTI NG TO LEVEL 3

L R

hkkk ok k ok ok k ok k&

#5, MBSR
MBBUSY

* Poll the MBUS BUSY
MBBUSY BTST

BNE

RTS

TEST MBB BI T,
AND VAIT UNTIL IT IS CLEAR

10

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

hkkk ok k ok ok k ok k&

* POST BYTE TRANSM SSI ON RECEPTI ON SOFTWARE RESPONSE

hkkkhkkhkkkkkkkkhkkhkkhkkkkkk kK k k%

ORG MBUSHAN Start of Interrupt Handl er
I SR BCLR #1, MBSR CLEAR THE M F FLAG

MOVE. L Do, - (A7) PUSH DO REG STER TO STACK

MOVE. L D1, - (A7) PUSH D1 REGQ STER TO STACK

MOVE. L #0, DO Clear general data reg

MOVE. L #0, D1 Clear general data reg
* Interrupt Counter

ADDQ. L #1, D3 (Not used, sinply nonitor)

BTST #5, MBCR CHECK THE MSTA FLAG

BEQ SLAVE BRANCH | F SLAVE MODE
MASTER BRA MASTER Mast er not inplenmented, so error
IR E R R R R R R R E RS RRRRRRRRRRERREREREEEEEESE]
SLAVE MOVE. B MBSR, D6 Read MBSR

BTST.B #6, D6 Is it slave address byte?

BEQ SLAVE_DATA If not, then data

hkkk kK k k&

* Addressed as SLAVE

P R R R

SLAVE_ADD BTST #2, D6 Read SRWto verify slave Tx or Rx
BEQ I NI T_SRX If Rx, initialise SLAVE receive count
INNT_STX OR B #$10, MBCR Set transnmit node
MOVE. L #DATABUF, A0 Pointer to data storage buffer
MOVE. B (A0) +, MBDR First data byte transmt
BRA END_SLAVE
I NI T_SRX AND. B #$E7, MBCR Set receive node and TXAK
MOVE. L #DATABUF, AO Pointer to data storage buffer
MOVE. B MBDR, DO Start receive via Dummy byte read
BRA END_SLAVE

hkkkhkkkkkkkkkkkkkkkkkkkk kK k k%

* Sl ave Data
IR RS RS R SRR R RS RS E SRS SRR RS R R R R R R R RS RS RS SRR RS R EREREEEEREREREEEEEEEEERERS]
SLAVE_DATA BTST #4, MBCR Read Tx or Rx node

BEQ SRX_DATA

P R R R R R]

* Post Slave data Transmit Control

L R R

STX_DATA BTST #0, MBSR CHECK ACK FROM RECEI VER,
BEQ NXT_TX IF ACK, THEN TX NEXT DATA BYTE
AND. B #$EF, MBCR TX conplete so swap to Rx
MOVE. B MBDR, DO Dummy read to free bus (SCL)
BRA END_SLAVE Finish and await Master

NXT_TX MOVE. B (AO0) +, MBDR Tx next data byte
BRA END_SLAVE EXIT

P R R R

* Post Slave data Receive Control

hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkk kK k k%

SRX_DATA MOVE. B MBDR, DO READ DATA

MOVE. B DO, (AO) + Store data in next data buffer |ocation
END_SLAVE MOVE. L (A7) +, D1 POP D1 REGQ STER FROM STACK

MOVE.L (A7)+, DO POP DO REG STER FROM STACK

RTE

hkkkhkkhkkkkhkkkkkkkkkkkkhkkhkkkkkk kK k k%

* Buffers and Vari abl es

P R R R R R]

DATABUF DS. B 0 Sl ave data buffer between Rx and Tx

END

AN496/D For More Information On This Product,
Go to: www.freescale.com

11

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

2 “ freescale’

semiconductor

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

