
PACE
Debugging and Profiling Workshop	



June  17, 2014

     Mehmet (Memo) Belgin, PhD                                      www.pace.gatech.edu	


     Scientific Computing Consultant	


        Georgia Tech, OIT-ART, PACE	


        mehmet.belgin@oit.gatech.edu

http://www.pace.gatech.edu
mailto:mehmet.belgin@oit.gatech.edu


Debugging and Profiling Workshop
• A look at available debuggers and Profilers on PACE clusters (text/GUI)	



• Debuggers 	


- GDB	


-  Valgrind	


- DDT	



• Profilers	


- Gprof/Gcov	


- PAPI	


- TAU	



• Hands-on examples 	


• Run “pace-register-classes” and pick this class in the list to register and copy 
the class materials in ‘~/data/PACE_Debugging_Profiling_Class’ 	


• This includes *everything* you need to follow/replay the tutorial	


• Slides are designed to be self-contained (yes, they are crowded!)	





Path: Boring → Interesting 

Debuggers 	


➥ text	



  ➥ GUI	



          ➥ Profilers	


             ➥ text	


                  ➥ GUI



Overview
Debugging 
!
Codes can, and will:	



• crash with errors (e.g. segmentation faults)	


• hang with no output, w/wo using CPU	


• work on one system and fail on another	


• run to completion, but produce inaccurate results	



!
Debuggers can tell us:	



• the source code or libraries that are causing problems 	


• where inside the code problems arise	


• values for variables at any given instance 	


• where a variable is assigned an incorrect/unexpected value	


• which arrays that are leaking memory (allocation/deallocation errors)	


• which functions are called and in what order



Overview
Profiling 
!
Codes can, and will:	



• run very, very slow	


• run even slower in parallel	


• run fast up to N processors, but stop scaling for >N	



!
Profilers can tell us:	



• time consumed by functions, loops and even lines (for each thread/process)	


• the location of a code’s “bottleneck”  (Pareto Principle: 80-20 rule) 	


• event counts (instruction/data cache misses, memory access stalls, etc.)	


• call graphs (which functions call which functions)	


• communication matrices



Our Arsenal
(including, but not limited to...)	


!

Debuggers 
text-based:     GDB, valgrind	


GUI         :     DDT	


!

Profilers 
text-based:     Gprof/Gcov, PAPI	


GUI         :     TAU	



!



Registration
Single-step Registration:	


!
Run (case-sensitive!):	



pace-register-classes	
!
And pick this class from the list.  This command:	


!
• Includes your username/name/email in the registration list 	


!
• Moves the course material (including codes, files and this presentation) to:	


!

~/data/PACE_Debugging_Profiling_Class	
!

• Registering for multiple times is OK, but overwrites this directory and 
everything in it.	
!

• Alternatively:     http://pace.gatech.edu/workshop/DebuggingProfiling.pdf

https://pace.gatech.edu/workshop/DebuggingProfiling.pdf


Course Materials
Files of interest:	


!
(~/data/PACE_Debugging_Profiling_Class)	


              |	


              |__(codes)	


              |      |_ cg.c                                                   Sequential Conjugate Gradient (CG) Solver	


              |      |_ cg_buggy.c                                         Buggy sequential Conjugate Gradient (CG) Solver	


              |      |_ MPI_DDT                                         MPI codes for parallel debugging with DDT 	


              |      |           |_ startmpi_c.c/startmpi_f.f90     Buggy MPI code	



              |      |           |_ cpi.c                                      Another buggy MPI code	


              |      |_ (NPB3.3-MPI)                                               MPI (parallel) CG solver from NAS Benchmark Suite	


              |                  |_...	


              |                  |_(config)	


              |                  |        |_make.def    Makefile definitions for parallel NAS Benchmarks	


              |                  |_bin                      Executables for NAS Benchmarks	


              |                  |_(CG)                   NAS Benchmark source codes for parallel CG	


              |                  	


              |                  	


              |__(input)	


              |      |_ bayer10.mtx.csr       An Example sparse matrix in CSR format for sequential CG solver runs	


              |	


              |__tau_runtime_env.sh       Environment variables required to run TAU profiler 	


              |  	


              |__DebuggingProfiling.pdf   Course Slides 



PART I
DEBUGGERS



Debuggers / Text (GDB)
GNU Project Debugger (gdb) 
http://www.gnu.org/software/gdb/	


!
(quoting from GDB website)	


!

“GDB allows you to see what is going on ‘inside’ a program while it 
executes -- or what a program was doing at the moment it crashed.	


!
GDB can do four main kinds of things (plus other things in support of 
these) to help you catch bugs in the act:	


!

•  Start your program, specifying anything that might affect its behavior.	


•  Make your program stop on specified conditions.	


•  Examine what has happened, when your program has stopped.	


•  Change things in your program, so you can experiment with correcting the 
effects of one bug and go on to learn about another.”

http://www.gnu.org/software/gdb/


GDB test case: Buggy CG
CG: Conjugate Gradient Solver	


• An iterative Krylov Subspace solver 	


• Requires positive definite sparse matrices	


• Sparse matrix-vector multiply (SpMV) at each iteration	


!

cg.c            : Source code “without” a bug	


cg_buggy.c  : Source code “with” a bug	



!
Make:	



!
$ cd ~/data/PaceWorkshop/codes	
$ module purge               # remove all modules in your environment	
$ module load gcc            # load required modules	
$ make clean                 # clean existing objects/executables etc.	
$ make all                   # make both executables: “cg” and “cg_buggy”	
!
( ignore the “/usr/bin/ld:” warning, if any )	
!

Test run:	
!

$ ./cg_buggy bayer10.mtx.csr               PROBLEM!! 
Segmentation fault (core dumped)



GDB test case: Buggy CG

----------------------------------	
$gdb cg_buggy       # no arguments/inputs, just the executable!	
(gdb) run bayer10.mtx.csr 	
Starting program: /nv/pf2/mbelgin3/PaceWorkshop/codes/cg_buggy bayer10.mtx.csr	
!
Program received signal SIGSEGV, Segmentation fault.	
0x00007ffff72c8122 in ____strtoll_l_internal () from /lib64/libc.so.6	
!
(gdb) bt           	 # bt is “backtrace”	
#0  0x00007ffff72c8122 in ____strtoll_l_internal () from /lib64/libc.so.6	
#1  0x00007ffff72c4ec0 in atoi () from /lib64/libc.so.6	
#2  0x000000000040124c in Sparse_CG (AA=0x7ffff7f62010, b=0x617240, x=0x624440, IA=0x60a040, 	
    JA=0x7ffff7f05010, n=13436, nnz=94926, delta=9.9999999999999995e-08) at cg_buggy.c:29	
#3  0x0000000000401e37 in main (argc=2, argv=0x7fffffffdff8) at cg_buggy.c:182	
!
(gdb) list 29	 	 # list the source code ‘around’ line 29	
...	
27	 	 double 	 criteria, product;	
28	 	
29	 	 int MAXITER = atoi(getenv("CG_MAXITER"));	 	
30	 	
...	

• Requires “-g” in the compilation for source-code association	


• No optimization (-O0) is preferred	



in the Makefile:   “DEBUGOPTS=-g -pg -O0 -fprofile-arcs -ftest-coverage”	


• Initiate gdb:  gdb <executable_name>



GDB test case: Buggy CG
(gdb) show environment CG_MAXITER               	
Environment variable "CG_MAXITER" not defined.  # we found the first problem!	
(gdb) set environment CG_MAXITER 100            # environment variables can be manipulated inside the GDB	
(gdb) run                                       # no need for input arguments if you are running again	
The program being debugged has been started already.	
Start it from the beginning? (y or n) y	
!
Starting program: /nv/pf2/mbelgin3/PaceWorkshop/codes/cg_buggy bayer10.mtx.csr	
!
Program received signal SIGSEGV, Segmentation fault.         # we found a second problem!	
0x00000000004013e5 in Sparse_CG (AA=0x7ffff7f62010, b=0x60d4d0, x=0x61a6d0, 	
    IA=0x60a040, JA=0x7ffff7f05010, n=13436, nnz=94926, 	
    delta=9.9999999999999995e-08) at cg_buggy.c:53	
53	 	 	 	 	 sum += (AA[k] * oldx[JA[k] - 1]);	
(gdb) bt                                                     # backtrace	
#0  Sparse_CG (AA=0x7ffff7f62010, b=0x60d4d0, x=0x61a6d0, IA=0x60a040, JA=0x7ffff7f05010, 	
    n=13436, nnz=94926, delta=9.9999999999999995e-08) at cg_buggy.c:53	
#1  0x0000000000401e17 in main (argc=2, argv=0x7fffffffe128) at cg_buggy.c:182	
(gdb) list 53	
48	 	 for (i=0; i < n; ++i) {	
49	 	 	 K1 = IA[i];	
50	 	 	 K2 = IA[i+1] - 1;	
51	 	
52	  	 	 for (k=K1; k < K2 + 1; ++k) {	
53	 	 	 	 	 sum += (AA[k] * oldx[JA[k] - 1]);	
54	 	 	 }	
55	 	 	 oldr[i] = sum;	
56	 	 	 sum = 0.0;	
57	 	 }

Step 1: Pinpoint the problem (run, backtrace, list)



GDB test case: Buggy CG

(gdb) list 53	
48	 	 for (i=0; i < n; ++i) {      # The relationship with ‘i’ and ‘k’ is: i-> IA[i] -> K1,K2 -> k	
49	 	 	 K1 = IA[i];	
50	 	 	 K2 = IA[i+1] - 1;	
51	 	
52	  	 	 for (k=K1; k < K2 + 1; ++k) {	
53	 	 	 	 	 sum += (AA[k] * oldx[JA[k] - 1]);	
54	 	 	 }	
55	 	 	 oldr[i] = sum;	
56	 	 	 sum = 0.0;	
57	 	 }	
(gdb) print k	
$1 = 95230	
(gdb) print K1	
$2 = 21655	
(gdb) print K2           # K2 = IA[i+1] - 1	
$3 = 1065353214         # Suspiciously High!!! Should not be > nnz! (nnz= number of nonzeros in matrix)	
(gdb) print nnz	
$4 = 94926	
(gdb) break 49           # We want to stop at line 49...	
Breakpoint 1 at 0x401343: file cg_buggy.c, line 49.	
(gdb) condition 1 IA[i + 1] - 1 > nnz   # stop at bp#1 (@49) ONLY when this condition is met 	

Step 2: Dig deeper: place conditional breakpoints and print variables in stack
Breakpoint Cheatsheet	
• info breakpoints                    : list existing	
• clear <line#>                       : clear breakpoint at line#	
• disable <breakpoint#>               : skip breakpoint, but keep it in the list	
• ignore <breakpoint#> <N>            : skip break point for the first ‘N’ times	
• condition <breakpoint#> <condition> : stop at breakpoint# if condition is met  



GDB test case: Buggy CG
(gdb) info breakpoints	
Num     Type           Disp Enb Address            What	
1       breakpoint     keep y   0x0000000000401343 in Sparse_CG at cg_buggy.c:49	
	 stop only if IA[i + 1] - 1 > nnz	
(gdb) run	
Breakpoint 1, Sparse_CG (AA=0x7ffff7f62010, b=0x60d4d0, x=0x61a6d0, IA=0x60a040, 	
    JA=0x7ffff7f05010, n=13436, nnz=94926, delta=9.9999999999999995e-08) at cg_buggy.c:49	
49	 	 	 K1 = IA[i];	
!
(gdb) list	
44	 	 	 oldx[i] = x[i];	
45	 	 }	
46	 //	 Calculate Residual r with initial x	
47	 	 sum = 0.0;	
48	 	 for (i=0; i < n; ++i) {	
49	 	 	 K1 = IA[i];	
50	 	 	 K2 = IA[i+1] - 1;	
51	 	
52	  	 	 for (k=K1; k < K2 + 1; ++k) {	
53	 	 	 	 	 sum += (AA[k] * oldx[JA[k] - 1]);	
(gdb) print i	
$5 = 3363	
(gdb) print nnz	
$6 = 94926	
(gdb) print IA[i]	
$7 = 21656	
(gdb) print IA[i + 1]	
$8 = 1065353216        # IA[i + 1] cannot be larger than nnz, so this value is garbage

Step 3: locate the problem



GDB test case: Buggy CG
Check cg_buggy.c for the location where IA is allocated and used:	
!
160         JA = (int *) malloc (nnz * sizeof(int));	
161         IA = (int *) malloc (n + 1 * sizeof(int));  # This is (n + 4) = (13436 + 4) = 13440 bytes	
...                                                     # 13440 bytes can hold 3360 integers, not 13436.	
...                                                     # consistent with i=3363 where the code crashed!	
164 	
169         for (i=0; i < n + 1; ++i)                   	
170                 fscanf (fn, "%d", &IA[i]);          # IA must hold (n + 1) * 4 = 53748 bytes.    

Step 4: The Fix.

FIX:	
!
160         JA = (int *) malloc (nnz * sizeof(int));	
161         IA = (int *) malloc ((n + 1) * sizeof(int));  # Fixed by adding the missing parenthesis

• GDB was able to tell us where the problem occurs	


• But: GDB cannot tell us the size of dynamic arrays at run time  	



(gdb) print sizeof(IA)	
$11 = 8          # This is the size of the IA pointer, not the array.	

•  The same symptoms could still arise if the input file included garbage values.	


IA[ i ]      <- 21656	
IA[ i + 1 ]  <- 1065353216  # IA could be allocated large enough, but filled with garbage values   



There is more to GDB
• Watchpoints: Breakpoints on “variables”, instead of functions or lines.	



• watch  <var>     : Stop on writes on <var>	
• rwatch <var>     : Stop on reads on <var>	
• swatch <var>     : Stop on writes/reads on <var>	
• info breakpoints : Listing and manipulation of watchpoints 	

!
• Other useful commands 	



• step : continue to next line	
• next : skip over the function	
• cont : run until the next breakpoint (or to completion is there is none)	
• print sizeof(var): returns the size of a variable 	
• whatis(var):  returns type of the variable	
• ptype(var): similar to whatis(), but more detailed. E.g. shows structs	
• set var <var> = <value>: sets or replaces a variable at runtime	

E.g.: (gdb) set var i = 5  	
!

• Running GDB in parallel 	


• mpirun -np 4 xterm -e gdb your_mpi.exe      (well, good luck with that!)	
• Use GUI debuggers!



Debuggers / Text (Valgrind)
Valgrind 
http://valgrind.org/	


!
• A CPU simulator with hierarchical memory support.	


• All requests for memory allocation/deallocation are captured and 

analyzed. 	


• Subtle errors that does not crash the code can also be identified.	


• Slow (up to 50x), so small test cases should be preferred.	


• Six different tools 	



• a memory error detector (default) 
• two thread error detectors 	


• a cache and branch-prediction profiler 	


• a call-graph generating cache branch-prediction profiler 	


• a heap profiler”

http://valgrind.org/


Debuggers / Text (Valgrind)
Usage on PACE:	



•   Sequential	


module load valgrind    # Very important!! Don’t use the system default!	
valgrind <exe> <args> 	

!
•   Parallel	



module load gcc mvapich2 valgrind	
mpirun -np <#cores> valgrind <exe> <args>	
!
Alternatively, to distribute each process’ output on a separate file:	


mpirun -np <#cores> valgrind --log-file=valgrind_out.%p <exe> <args>	
!
valgrind_out.27025	
valgrind_out.27026	
valgrind_out.27027	
valgrind_out.27028	
...	
...



Debuggers / Text (Valgrind)

!
161         IA = (int *) malloc (n + 1 * sizeof(int));	
162         b  = (float *) malloc (n * sizeof(float));	
163         x  = (float *) malloc (n * sizeof(float));	
164	
165         for (i=0; i < nnz; ++i)	
166                 fscanf (fn, "%f", &a[i]);	
167         for (i=0; i < nnz; ++i)	
168                 fscanf (fn, "%d", &JA[i]);	
169         for (i=0; i < n + 1; ++i)	
170                 fscanf (fn, "%d", &IA[i]);

$ module load valgrind	
$ export CG_MAXITER=100	
$ valgrind ./cg_buggy ./bayer10.mtx.csr	
...	
...	
==9428== Invalid write of size 4	
==9428==    at 0x5625A20: _IO_vfscanf (in /lib64/libc-2.12.so)	
==9428==    by 0x563354A: __isoc99_fscanf (in /lib64/libc-2.12.so)	
==9428==    by 0x401D28: main (cg_buggy.c:170)     # The operation on line 170 is an invalid write	
==9428==  Address 0x5a22c60 is 0 bytes after a block of size 13,440 alloc'd  # 13,440 / 4 = 3360 !!	
==9428==    at 0x4C267BA: malloc (vg_replace_malloc.c:263)	
==9428==    by 0x401BF2: main (cg_buggy.c:161)     # On the variable that was allocated on line 161

valgrind output for the buggy CG run:

Buggy CG source code:



Debuggers / Text (Valgrind)

 30	
 31         oldx = (float *) malloc (n * sizeof(float));	
 32         r = (float *) malloc (n * sizeof(float));	
 33         oldr = (float *) malloc (n * sizeof(float));	
...	
...	
 51	
 52                 for (k=K1; k < K2 + 1; ++k) {	
 53                                 sum += (AA[k] * oldx[JA[k] - 1]);  # 1-based / 0-based confusion	
 54                 }                                                  	
!
...

==23817== Invalid read of size 4	
==23817==    at 0x4012E2: Sparse_CG (cg_buggy.c:53)	
==23817==    by 0x401D33: main (cg_buggy.c:182)	
==23817==  Address 0x5528e7c is 4 bytes before a block of size 53,744 alloc'd	
==23817==    at 0x4C267BA: malloc (vg_replace_malloc.c:263)	
==23817==    by 0x401162: Sparse_CG (cg_buggy.c:31)	
==23817==    by 0x401D33: main (cg_buggy.c:182)	
==23817==	
==23817== Invalid read of size 4	
==23817==    at 0x4015A0: Sparse_CG (cg_buggy.c:83)	
==23817==    by 0x401D33: main (cg_buggy.c:182)	
==23817==  Address 0x555050c is 4 bytes before a block of size 53,744 alloc'd	
==23817==    at 0x4C267BA: malloc (vg_replace_malloc.c:263)	
==23817==    by 0x4011AA: Sparse_CG (cg_buggy.c:34)	
==23817==    by 0x401D33: main (cg_buggy.c:182)

But wait... Looks like there is more, which GDB did not complain about !!



Debuggers / Text (Valgrind)
 30	
 31         oldx = (float *) malloc (n * sizeof(float));	
 32         r = (float *) malloc (n * sizeof(float));	
 33         oldr = (float *) malloc (n * sizeof(float));	
 34         p = (float *) malloc (n * sizeof(float));	
 35         oldp = (float *) malloc (n * sizeof(float));	
...	
 51	
 52                 for (k=K1; k < K2 + 1; ++k) {	
 53                                 sum += (AA[k] * oldx[JA[k]);    # It was: oldx[JA[k] - 1] now fixed.	
 54                 }                                             	
...	
 82                 for (k=K1; k < K2 + 1; ++k) {	
 83                                 sum += AA[k] * p[JA[k]];        # It was: p[JA[k] - 1] now fixed.	
 84                 }	
...

Code was assuming 1-based, but the input is 0-based

==24512== LEAK SUMMARY:	
==24512==    definitely lost: 1,243,108 bytes in 11 blocks    # Another Problem?	
==24512==    indirectly lost: 0 bytes in 0 blocks	
==24512==      possibly lost: 0 bytes in 0 blocks	
==24512==    still reachable: 16,404 bytes in 2 blocks	
==24512==         suppressed: 0 bytes in 0 blocks	
==24512== Rerun with --leak-check=full to see details of leaked memoryggy.c:34) # This is what we will do	
==23817==    by 0x401D33: main (cg_buggy.c:182)

The code runs correctly, but Valgrind still reports leaks...

More problems? Definitely YES. Trust Valgrind on this! 



Debuggers / Text (Valgrind)

$  valgrind --leak-check=full ./cg_buggy bayer10.mtx.csr	
!
==24935== Memcheck, a memory error detector	
==24935== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.	
==24935== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info	
==24935== Command: ./cg_buggy bayer10.mtx.csr	
==24935==	
NOT CONVERGED!! at iteration = 101	
Elapsed time: 3.315764 sec.	
==24935==	
==24935== HEAP SUMMARY:	
==24935==     in use at exit: 1,259,512 bytes in 13 blocks	
==24935==   total heap usage: 14 allocs, 1 frees, 1,260,080 bytes allocated	
==24935==	
==24935== 53,744 bytes in 1 blocks are definitely lost in loss record 3 of 13	
==24935==    at 0x4C267BA: malloc (vg_replace_malloc.c:263)	
==24935==    by 0x401B4C: main (cg_buggy.c:162)	
==24935==	
==24935== 53,744 bytes in 1 blocks are definitely lost in loss record 4 of 13	
==24935==    at 0x4C267BA: malloc (vg_replace_malloc.c:263)	
==24935==    by 0x401B61: main (cg_buggy.c:163)	
==24935==	
==24935== 53,744 bytes in 1 blocks are definitely lost in loss record 5 of 13	
==24935==    at 0x4C267BA: malloc (vg_replace_malloc.c:263)	
==24935==    by 0x401192: Sparse_CG (cg_buggy.c:31)	
...	
...

Full Leak Check:   Shows all sources for leaking memory
valgrind --leak-check=full <exe> <args> 



Debuggers / Text (Valgrind)

$ valgrind --leak-check=full ./cg_buggy bayer10.mtx.csr	
...	
...	
==26027== HEAP SUMMARY:	
==26027==     in use at exit: 16,628 bytes in 2 blocks	
==26027==   total heap usage: 14 allocs, 12 frees, 1,260,304 bytes allocated	
==26027==	
==26027== LEAK SUMMARY:	
==26027==    definitely lost: 0 bytes in 0 blocks             # Finally!	
==26027==    indirectly lost: 0 bytes in 0 blocks             	
==26027==      possibly lost: 0 bytes in 0 blocks             	
==26027==    still reachable: 16,628 bytes in 2 blocks	
==26027==         suppressed: 0 bytes in 0 blocks	
==26027== Reachable blocks (those to which a pointer was found) are not shown.	
	

 In Sparse_CG(), add to the end:	
!
	 free(oldx);	 	
	 free(r);	 	 	
	 free(oldr); 	 	
	 free(p); 		
	 free(oldp); 	 	
	 free(q);	
!
In main(), add to the end:	
!
	 free (AA);	
	 free (IA);	
	 free (JA);	
	 free (b);	
	 free (x);



Debuggers / Text (Valgrind)

• "definitely lost" means your program is leaking memory -- fix those leaks!	


!
• "indirectly lost" means your program is leaking memory in a pointer-based structure. (E.g. 
if the root node of a binary tree is "definitely lost", all the children will be "indirectly lost".) If 
you fix the "definitely lost" leaks, the "indirectly lost" leaks should go away.	


!
• "possibly lost" means your program is leaking memory, unless you're doing unusual things 
with pointers that could cause them to point into the middle of an allocated block; see the 
user manual for some possible causes. Use --show-possibly-lost=no if you don't want to 
see these reports.	


!

• "still reachable" means your program is probably ok -- it didn't free some memory it 
could have. This is quite common and often reasonable. Don't use --show-reachable=yes if 
you don't want to see these reports.	


!

• "suppressed" means that a leak error has been suppressed. There are some suppressions 
in the default suppression files. You can ignore suppressed errors.

(Valgrind FAQ 5.2)



Debuggers / GUI (DDT)

Allinea DDT 
www.allinea.com/products/ddt/	


!
• A commercial debugger with a GUI	


• PACE has a single user license with up to 32 procs. 	


• Heavily builds on GDB, does everything GDB does, and more	


• Supports memory debugging and data structure visualization	


• Supports Mvapich2/OpenMPI and also custom MPI stacks	


• Supports GNU, Intel & PGI compilers (and more)	


• Distributed debugging with focus on scalability	



http://valgrind.org/


Debuggers / GUI (DDT)
• We will use the same buggy CG code. 	



• Starting the DDT debugger (always on a compute node!!, use msub -I ):	


$ msub -I -X -q iw-shared-6 -l nodes=1:ppn=8,pmem=2gb	


$ module load gcc mvapich2    # whichever compiler/MPI	
$ module load ddt 	
$ ddt

Select “Auto-Detect (none)”



Debuggers / GUI (DDT)

Your decision really, but I 
usually skip this step and 
run things interactively

This is for admins, you can 
also skip this step.



Debuggers / GUI (DDT)

Run and debug a code

Only for command line!!

Attach any of the running processes

Open and debug a coredump

• “Run & Debug” is for running and debugging the code interactively.	


• Manually Launch a Program is for runs started DDT’s command line tools	


• Attach to any running processes (which you own)	



• Displays running processes and allows you to pick any subset	


• Allows you to selectively attach (e.g. only 32 procs of 128 total) 	



• DDT can also analyze coredumps



Debuggers / GUI (DDT)

input matrix *is* an 
argument, NOT an 

input file, since it 
is not redirected in 
the code with “<”



Debuggers / GUI (DDT)

If you see 
this, turn off  
optimizations!

Annotated 
source code



Debuggers / GUI (DDT)

!
$ cp cg_buggy.c cg_fixed.c       # Optional, if you would like to keep the fixed code	
$ cp cg_buggy.c.org cg_buggy.c	
$ make clean	
$ make all

Turn off the Optimizations!	


in the Makefile:   “DEBUGOPTS=-g -pg -O0 -fprofile-arcs -ftest-coverage”

   Restart DDT.  It will remember previous settings (configuration is stored in ~/.ddt)



Debuggers / GUI (DDT)

Move mouse 
over variables 
to see their 

value

Double click on (49) to create a breakpoint (or right click and select from menu)



Debuggers / GUI (DDT)

•   Select “Breakpoint”  Tab and enter the breakpoint condition: IA[i + 1] - 1 > nnz	


•   Hit “Play” again

Enter the condition	
(there is a typo here, it 
should be IA[i+1] - 1)



Debuggers / GUI (DDT)

•   It stopped exactly when the condition is met and we can browse for all variables 	


•   No need for “print”  



Debuggers / GUI (DDT)

• Right Click on  “IA” from the “Current Line(s)” (or “Locals”) panel on the right, and select “View Array”	


• Enter 0 and 13437 (n + 1) as the Range, and click on “Visualize” 	


•  We expect IA to gradually increase, but the graph shows a drastic spike around 3000 (remember i=3363) 	


• Using visualization, it only takes a single glance to recognize problems! 



Parallel Debugging with DDT
• Not so different from sequential debugging (which cannot be said for text 

based debuggers)	


• Process and Thread level debugging with the ability to see and compare the 

stack for each process/thread	


• Powerful “Cross Process/Thread Comparison” tool to compare the stack in 

different processes/threads	


!
Hands-on Examples (if there is time!)	



• Warmup: startmpi_c.c / startmpi_f.f90	


• Deadlock: cpi.c	



!



DDT Parallel case: startmpi_c/f
$ cd codes/MPI_DDT	
$ source load_modules	
$ make	
# First, try with no args	
$ mpirun -np 4 ./startmpi_c	
# No problem! Try *with* args	
$ mpirun -np 4 ./startmpi_c a b c	
# CRASH! Open DDT:	
$ ddt	
# start code in DDT (see screenshot)



1) Hit the Play button to run	


2) When crashes, hit pause	


3) Click on the “main” directly 

above the print_arg function 
in the “Stack” View.	



4) This takes you to main which 
lets you see where that arg 
value comes from.	



5) Now click on the “Locals” tab 
(on the right-hand side of the 
GUI) – you are seeing all the 
local variables.	



6) Click on the “Current Line” 
tab to simplify and show only 
the variables on that line.	



7) Click and drag between lines 
113 and 118 in the source 
code to show all the 
variables in that region.

DDT Parallel case: startmpi_c/f

FIX: 
1) y = 4251280 (the number of arguments ??) 	


2) Fix on line 117:     for (y = 0; y < argc; y++)



# Now try with 5 procs:	
$ mpirun -np 5 ./startmpi_c a b c	
# CRASH! Open DDT again

DDT Parallel case: startmpi_c/f
!
1) Try clicking on the boxes representing processes 0 to 4, 

how do the values in stack change?	


2) Can you spot the problem? (hint check the screenshot)



Homework!	
!

Hint: It’a deadlock

DDT Parallel case: cpi.c
$ cd codes/MPI_DDT	
$ source load_modules	
$ make	
# First, try with 4 procs	
$ mpirun -np 4 ./cpi	
# No problem! Try with 10 procs	
$ mpirun -np 10 ./cpi	
# No problem! Try with 8 procs	
$ mpirun -np 8 ./cpi	
# CRASH! But why?



PART II
PROFILERS



Profilers / Text (Gprof)
Gprof     (part of GNU binutils package) 
http://www.gnu.org/software/binutils/	


!

• Turn on the optimizations! (e.g -02)  	


• Requires compilation with “-g -pg”  both! 

in the Makefile:   “DEBUGOPTS=-g -pg -O2 -fprofile-arcs -ftest-coverage”	
!
make clean; make all	
!

• Nothing extra on the command line. Just run the code (‘cg’ this time)	


$./cg bayer10.mtx.csr	
NOT CONVERGED!! at iteration = 1001	
Elapsed time : 0.551763 sec.	
!

• A file named “gmon.out” appears in the working directory	


• To see the profiling information, run:	



$gprof cg > gprof.out

http://www.gnu.org/software/binutils/


Profilers / Text (Gprof)
Flat profile:	
!
Each sample counts as 0.01 seconds.	
  %     cumulative   self              self     total	
 time   seconds     seconds    calls  ms/call  ms/call  name	
100.10      0.55     0.55        1   550.54   550.54  Sparse_CG	
  0.00      0.55     0.00        2     0.00     0.00  rtc	
...	
                     Call graph (explanation follows)	
granularity: each sample hit covers 2 byte(s) for 1.82% of 0.55 seconds	
index % time    self  children    called     name	
                0.55    0.00       1/1           main [2]	
[1]    100.0    0.55    0.00       1         Sparse_CG [1]        # Current function	
-----------------------------------------------	
                                                 <spontaneous>	
[2]    100.0    0.00    0.55                 main [2]             # Current function	
                0.55    0.00       1/1           Sparse_CG [1]	
                0.00    0.00       2/2           rtc [3]	
-----------------------------------------------	
                0.00    0.00       2/2           main [2]	
[3]      0.0    0.00    0.00       2         rtc [3]              # Current function	
-----------------------------------------------



Profilers / Text (Gprof)
• The [1], [2], [3], ... are tables for each function, sorted by the 

‘exclusive’ time spent 	



•Gprof  output is verbose. (use ‘-b’ to omit definitions) 	



• Total % might be >100.0 due to accumulated sampling errors	



• “self” means this function alone 	



• “cumulative” means this function plus all listed above it (parents)	



• “children” means time propagated into this function by its children	



• Add ‘-l -A’ for annotated output. NOT line by line, only shows 

the number of calls for each function.	





Profilers / Text (Gprof)
  gprof cg -l -A > annotated_gprof.out	

  in annotated_gprof.out: 
  	
                void	
                output_vector(char *label, float *a, int n);	
!
                double rtc()	
           2 -> {                                                    # Called twice	
                        struct timeval time;	
                        gettimeofday(&time,NULL);	
                        return ( (double)(time.tv_sec*1000000+time.tv_usec)/1000000 );	
                }	
!
Top 10 Lines:	
     Line      Count	
       24          2	
       32          1	
!
Execution Summary:	
       86   Executable lines in this file	
        3   Lines executed	
     3.49   Percent of the file executed	
!
        3   Total number of line executions	

     0.03   Average executions per line



Profilers / Text (Gcov)

Gcov  
!

• Show which parts of the code were executed	


• Can be regarded as a debugger or profiler, depending on the usage	


• Code must be compiled with "-fprofile-arcs -ftest-coverage"	



in the Makefile:   “DEBUGOPTS=-g -pg -O2 -fprofile-arcs -ftest-coverage”	
!
make clean; make all	
!

• "gcov <exe>" creates source.c.gcov (the annotated source 
code)	





Profilers / Text (Gcov)
$ gcov cg	
File 'cg.c'	
Lines executed:93.07% of 101	
cg.c:creating 'cg.c.gcov'	
!
in cg.c.gcov:

!
        -:  118: (Blank)	
     1000:  119:                criteria = 0.0;	
 13437000:  120: (executed 13437000x)   for (i = 0; i < n; ++i)	
 13436000:  121:                        criteria += r[i] * r[i];	
        -:  122:	
     1000:  123:                if      (sqrt(criteria) < delta) {	
    #####:  124: (Not executed)         printf ("Converged at iter = %d\n", iter);	
    #####:  125:                        break;	
        -:  126:                }	
     1000:  127:                oldro = ro;	
        -:  128:	
 13437000:  129:                for (i = 0; i < n; ++i) {	
 13436000:  130:                        oldr[i] = r[i];	
 13436000:  131:                        oldp[i] = p[i];	
 13436000:  132:



Profilers / API (PAPI)
PAPI  
Performance Application Programming Interface 
http://icl.cs.utk.edu/papi	


!

• A profiling API for C/C++/Fortran/Java and collection of tools	


• Supports a large variety of architectures (intel, AMD, Power ...)	


• Used by many profiling packages (TAU, OpenSpeedshop, etc)	


• No longer requires modified Kernel for hardware counter support 

(starting with 2.6.39)

http://valgrind.org/


Profilers / API (PAPI)
Preset Events: 
!

• Can be a single hardware event, or derived using multiple events. E.g:	


Single:	


PAPI_TOT_CYC: Total number of cycles, single event	
!
Derived:	
PAPI_L1_TCM : Total L1 misses = (L1 data misses) + (L1 instr misses)	
!

• Support for Preset Events depend on the architecture	


!

• The number and types of Preset Events that can be counted 
concurrently are also architecture dependent	


!

• Usage on PACE Clusters (for both API and tools)	


!
$ module load papi



Profilers / API (PAPI)
$ papi_avail	
Available events and hardware information.	
--------------------------------------------------------------------------------	
PAPI Version             : 5.0.1.0	
Vendor string and code   : AuthenticAMD (2)	
Model string and code    : AMD Opteron(tm) Processor 6168 (9)	
...	
...	
Number Hardware Counters : 4	
Max Multiplex Counters   : 64	
--------------------------------------------------------------------------------	
!
    Name        Code    Avail Deriv Description (Note)	
PAPI_L1_DCM  0x80000000  Yes   No   Level 1 data cache misses	
PAPI_L1_ICM  0x80000001  Yes   No   Level 1 instruction cache misses	
PAPI_L2_DCM  0x80000002  Yes   No   Level 2 data cache misses	
PAPI_L2_ICM  0x80000003  Yes   No   Level 2 instruction cache misses	
PAPI_L3_DCM  0x80000004  No    No   Level 3 data cache misses	
...	
...	
PAPI_VEC_SP  0x80000069  No    No   Single precision vector/SIMD instructions	
PAPI_VEC_DP  0x8000006a  No    No   Double precision vector/SIMD instructions	
PAPI_REF_CYC 0x8000006b  No    No   Reference clock cycles	
-------------------------------------------------------------------------	
Of 108 possible events, 40 are available, of which 8 are derived.	
!
avail.c                                     PASSED

Getting the list of supported events:  papi_avail



Profilers / API (PAPI)
USAGE:	


!
$ papi_event_chooser    # Buggy: Safe to ignore messages “PAPI Error: Didn't close all events”	
Usage: papi_event_chooser NATIVE|PRESET evt1 evt2 ...	
!
Q: Can we count L2 Data Misses (PAPI_L2_DCM) and Accesses (PAPI_L2_DCA) together?	


!
$ papi_event_chooser PRESET PAPI_L2_DCM PAPI_L2_DCA	
Event Chooser: Available events which can be added with given events.	
...	
!
Q: How about L2 Data Misses (PAPI_L2_DCM) and L3 Data Misses (PAPI_L3_DCM) together?	


!
$ papi_event_chooser PRESET  PAPI_L2_DCM PAPI_L3_DCM	
...	
Event PAPI_L3_DCM can't be counted with others -7   # Not supported (or no such cache exists)	
!
Q: PAPI_L1_DCM + PAPI_L1_DCA + PAPI_L2_DCM + PAPI_L2_DCA + PAPI_TOT_CYC?	


!
$ papi_event_chooser PRESET PAPI_L1_DCM PAPI_L1_DCA PAPI_L2_DCM PAPI_L2_DCA PAPI_TOT_CYC	
...	
Event PAPI_L2_DCA can't be counted with others -8   # supported, but cannot count with others	

Choose events to count concurrently: papi_event_chooser



Profilers / API (PAPI)
Compilation with PAPI 	



• Use of #ifdef blocks are recommended to easily turn on/off PAPI. 	


in the code: 

#ifdef PAPI	
   ...	
   ...	
#endif	
!

• Load the PAPI module	


$ module load papi	

• Add PAPI and PFM libraries in the Makefile (and -DPAPI for #ifdef blocks)	


in the Makefile: 

PAPILIB=-L$(PAPIDIR)/lib/ -lpfm -lpapi	
PAPI=$(PAPILIB) -DPAPI	
...	
...	
cg: cg.c	
        $(CC) -o cg cg.c $(DEBUGOPTS) $(PAPI) $(LIBS)



Profilers / API (PAPI)
Embedding PAPI in the code (See cg.c for a working example) 	



• Include the PAPI header define the number of concurrent events 	


#ifdef PAPI	
        #include <papi.h>	
        #define NUMEVENTS 2	
#endif	
!

• Initialize PAPI and start counters	


#ifdef PAPI	

                // Initialize PAPI	
                int events[NUMEVENTS] = {PAPI_L2_DCM, PAPI_L2_DCA};        # Two events will be counted	!
                // Start Counters	
                int errorcode = PAPI_start_counters(events, NUMEVENTS);    # Start counters	
                if (errorcode != PAPI_OK) { // Error handling goes here 	
       #endif	!

• Read from counters and printout the results	


...    # Do some work here	
#ifdef PAPI	
        long long values[NUMEVENTS];         # Use long long, since the number of events may get too large	

               errorcode = PAPI_read_counters(values, NUMEVENTS);      # This function resets the counters!	
 fprintf(stderr, "L2 Access    : %lld\n", values[1]);	
 fprintf(stderr, "L2 Miss      : %lld\n", values[0]); 	

#endif



Profilers / GUI (TAU)
TAU  
Tuning and Analysis Utilizies 
http://www.cs.uoregon.edu/research/tau/home.php	


!

• A profiling GUI for C/C++/Fortran/Java/Python (paraprof)	


• For sequential and parallel (distributed and multithreaded) codes	


• Supports both dynamic instrumentation and recompilation of code via 

compiler wrappers	


• Collects and Visualizes profiling data (including data by other packages)	


• Function and loop level granularity (nothing at line-level so far)	


• Supports 2D and 3D Visualizations	


• Supports instrumentation using PDT (program data toolkit)	


• Utilizes PAPI for HW counters	


• Provides a Text-based interface (pprof) as well



Profilers / GUI (TAU)
• Usage on PACE Clusters:	



!
$ msub -I -X -q iw-shared-6 -l nodes=1:ppn=8,pmem=2gb   # -X for X11 forwarding	


$ module load gcc mvapich2    # whichever compiler/MPI	
$ module load tau/2.22.1	
$ module list	
Currently Loaded Modulefiles:	
  1) gcc/4.4.5(default)      3) mvapich2/1.6(default)   5) pdt/3.18	
  2) hwloc/1.2(default)      4) papi/5.0.1              6) tau/2.22.1 	

•  Code re-compilation requires a specific Makefile, provided by TAU. 
The TAU module on PACE automatically defines it in your environment.	



!
$ echo $TAU_MAKEFILE	
/usr/local/packages/tau/2.22.1/mvapich2-1.6/gcc-4.4.5/x86_64/lib/Makefile.tau-
papi-mpi-pdt-openmp	
!

•  We will use the NAS Parallel Benchmark Suite for TAU demonstration   	


http://www.nas.nasa.gov/publications/npb.html	


!

• NAS Suite comes with a MPI CG solver, which we will use :-)

http://www.nas.nasa.gov/publications/npb.html


Profilers / GUI (TAU)
• Change directory to “PaceWorkshop/codes/NPB3.3-MPI”	



$ cd ~/data/PaceWorkshop/codes/NPB3.3-MPI	

• Check “config” directory for Makefile definitions	


$ cd config	
$ ls -al	

lrwxrwxrwx  1 mbelgin3 pace-admins   12 Feb 11 14:17 make.def -> make.def.tau	
-rw-------  1 mbelgin3 pace-admins 7264 Feb 11 14:13 make.def.org	
-rw-------  1 mbelgin3 pace-admins 7337 Feb 12 16:41 make.def.tau	
!

• make.def.org is the original definitions file that comes with the suite	



• make.def.tau includes the modifications needed for TAU	



• Currently, make.def is linked to make.def.tau, switch between these 

two as you wish.



Profilers / GUI (TAU)
Let’s check the differences between two Makefile definition files:

• The only difference is replacing the 
compiler with TAU-provided wrapper	


!

• On our system, there is a default libpfm:	


/usr/lib64/libpfm.so	

!
which is not compatible with TAU, so we 
need to use the one that comes with PDT. 
However,  this is not correctly defined in the 
TAU Makefile ($TAU_MAKEFILE)	


!
Until this is resolved, we need to add ‘-
lpfm’

$ diff make.def.org make.def.tau	
32,33c32,33	
< MPIF77 = mpif77	
<	
---	
> #MPIF77 = mpif77	
> MPIF77 = tau_f77.sh -lpfm	
79c79,80	
< MPICC = mpicc	
---	
> #MPICC = mpicc	
> MPICC = tau_cc.sh -lpfm	
124c125,126	
< CC	= cc -g	
---	
> #CC	 = cc -g	
> CC	= tau_cc.sh -lpfm



Profilers / GUI (TAU)
• Make the Parallel CG Suite	



$ cd ../                 #or cd ~/data/PaceWorkshop/codes/NPB3.3-MPI/	
$ make clean	
$ make cg NPROCS=8 CLASS=W	
!

• “NPROCS” is the number of processors, “CLASS=W” defines the size 	



• NPROCS and CLASS are NAS-specific, they have nothing to do with TAU	



• You can ignore the message that says:	


/usr/bin/ld: warning: libpfm.so.3, needed by /usr/local/packages/papi/5.0.1/lib//
libpapi.so, may conflict with libpfm.so.4	

• Now, find the executable named “cg.W.8” in the bin directory:	


$ cd bin	
$ ls	
cg.W.8	

• Run the Benchmark as usual	


$ mpirun -np 8 ./cg.W.8	



Profilers / GUI (TAU)
• You will notice new profiling files named as “profile.x.y.z” for each processor	



$ ls	
cg.W.8    profile.0.0.0  profile.2.0.0  profile.4.0.0  profile.6.0.0	
!

• Run the TAU GUI “paraprof ” (in the same directory)	


$ paraprof



Profilers / GUI (TAU)
• This profiling data only includes “TIME”. Double click on it.	



• Then double click on *any* of the blue bars 



Profilers / GUI (TAU)
 Function-specific view for the selected metric (TIME) for each 
process/thread.

Function name: MPI_Init()
“Windows” Menu is identical for	
all views, and not specific to 	
functions. Explore! 

time spent in the 
function for each 
thread/process

sorted by 
time, 
including 
min, max, 
mean, and 
std dev



Profilers / GUI (TAU)

3D viz allows us 
to compare two 
metrics on the 
same plot.	


!
We have only 
“TIME” here, so a 
3D viz is not that 
meaningful



Profilers / GUI (TAU)

Right-click on the 
green bar (function 
SPRNVC) and select 
“Show Source Code”

 You might need to tell TAU where the source codes are 	


(if they not in the same directory as the executables)



Profilers / GUI (TAU)

•  The function selected with blue text background	



• Do not hope to see line-by-line metrics. The finest granularity is loops, and 
it needs to be enabled :-(

You will not see the “Show 
Source Code” option for 
functions that do not 
come from packages 
compiled without 
debugging enables (-g).	


!
E.g. try right clicking on 
the blue bar for MPI_Init() 



Profilers / GUI (TAU)

Not impressed yet? Let’s do more!	



• Throw more metrics in the mix (E.g. Number of cycles and Cache events) 	



• Use 3D visualization features to compare two different metrics at a glance	



• Derive new metrics using the already counted events	



• Check MPI communication patterns	



• Create a Call Graph	



• Get detailed counts/statistics in table and text formats 



Profilers / GUI (TAU)
•TAU configuration is done using env variables. Using a script is recommended.	



  See:  ~/data/PaceWorkshop/tau_runtime_env.sh 
#!/bin/bash	
# Sets up runtime TAU intrumentation parameters	
!
module purge	
module load gcc	
module load mvapich2	
module load tau/2.22.1-beta	
!
# The directory where profiling takes place	
export PROFILEDIR=~/data/PaceWorkshop/codes/NPB3.3-MPI/bin	
!
# Required for visualizing the communication matrix (for MPI)	
export TAU_COMM_MATRIX=1	
!
# Enable tracking for message communication	
export TAU_TRACK_MESSAGE=1	
!
# Which hardware counters to count	
export TAU_METRICS="PAPI_L1_DCM:PAPI_L1_DCA:PAPI_FP_OPS:TIME  "	
!
# Create a callpath with a max depth of 100	
export TAU_CALLPATH=1	
export TAU_CALLPATH_DEPTH=100	
!
# TAU options file	
export TAU_OPTIONS='"-optTauSelectFile=~/data/PaceWorkshop/codes/NPB3.3-MPI/bin/select.tau –optVerbose"'

Loop-Level Granularity!	


!
BEGIN_INSTRUMENT_SECTION	
loops routine="#"	
END_INSTRUMENT_SECTION

PAPI Events

TAU Event



Profilers / GUI (TAU)
• DON’T run this script, “source” it.  Source exports all env variables to shell.	



$ msub -I -X -q iw-shared-6 -l nodes=1:ppn=8,pmem=2gb   # if not in a compute node	
$ module purge                                          # In case you have loaded modules	
$ cd ~/data/PaceWorkshop/codes/NPB3.3-MPI	
$ source tau_runtime_env.sh	
$ echo $TAU_METRICS                                     # Check if sourcing worked fine	
  PAPI_L1_DCM:PAPI_L1_DCA:PAPI_FP_OPS:TIME              # Good                	
!

•  Recompile and run the code (required due to new TAU configurations)	


$ make clean	
$ make cg NPROCS=8 CLASS=W	
$ cd bin	
$ mpirun -np 8 ./cg.W.8	
!

•  You will notice new directories named “MULTI__PAPI_X_Y”	


$ ls	
...	
MULTI__PAPI_L1_DCA  MULTI__PAPI_FP_OPS	
MULTI__PAPI_L1_DCM  MULTI__TIME	
    	

•  Run paraprof (in the bin directory)	


$ paraprof



Profilers / GUI (TAU)
See “Height” and “Color” Metrics. Can you tell which loops are FP_OPS-heavy?



Profilers / GUI (TAU)
Deriving your own metrics using collected data. E.g. L1_MISS_RATE (%)

SETUP_PROC_INFO on 
node 6 experienced a	


 10.718% L1 Miss Rate

Use the Derived Metric Panel to Create your own:	


L1_MISSRATE=(100*"PAPI_L1_DCM")/"PAPI_L1_DCA" 



Profilers / GUI (TAU)
3D Communication Matrix

We can easily identify 	


two kinds of messages:	



1. Frequent but small	


2. Less Frequent but large	





Profilers / GUI (TAU)
Call Graph

The labels are scaled to the 
“exclusive” time spent, but 
the can be enlarged using 
the mouse to read the 
function names 	





Profilers / GUI (TAU)
Statistics (Table)



Profilers / GUI (TAU)
Statistics (Text)



Profilers / GUI (TAU)
          	

•  “Packing” all profiling data into a single package	


$ cd bin	
$ paraprof --pack tau_results.ppk	
!
(then on “any” system with TAU installed)	
!
$ paraprof tau_results.ppk	

•  Dynamic Instrumentation (for codes that are not compiled with TAU)	


$ mpirun -np 8 tau_exec ./cg.W.8	
    	
(TAU will do its best to profile the code)	



• Text-based paraprof: pprof	


$ pprof profile.0.0.0	
$ pprof profile.1.0.0	
$ ...	
!
(Separate runs for each thread/process)



Thank You!
          	

•  Your feedback will be appreciated! (mehmet.belgin@oit.gatech.edu)	



- Give it to me straight, I welcome criticism :-)	



- We *might* send you a survey later, and any comment will help.

Have More Time?

mailto:mehmet.belgin@oit.gatech.edu

